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ABSTRACT 

 

Genetics of Merle Patterning in the Domestic Dog and Gene Transcript Profiling and 

Immunobiology of Dermatomyositis in the Shetland Sheepdog. (May 2008) 

Jacquelyn Marie Bell Wahl, B.A., Baylor University 

Chair of Advisory Committee: Dr. Keith E. Murphy 

 

Since its domestication, the dog has served in many roles, from protector, guide, 

hunter, and best friend, to model organism. Every role in which the dog serves is 

important; however, this work highlights the importance of the dog as a model organism 

for study of human hereditary diseases. Roughly half of the 450 hereditary diseases 

found in the dog have clinical presentations similar to those found in the human. 

Included in these are auditory-pigmentation conditions and skin diseases for which the 

dog is a working model.  

 Described herein are studies of the merle coat pattern and dermatomyositis. 

Through research on these topics, important information can be obtained that can be 

used to help both the dog and the human.  Merle is a pattern of coloring observed in the 

coat of the domestic dog and is characterized by patches of diluted pigment. Dogs 

heterozygous or homozygous for the merle locus exhibit a wide range of auditory and 

ophthalmologic abnormalities. Linkage disequilibrium was identified for a microsatellite 

marker with the merle phenotype in the Shetland Sheepdog. This region of the human 

genome contains SILV, a gene important in mammalian pigmentation. Therefore, this 
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gene was evaluated as a candidate for merle patterning. A short interspersed element 

insertion at the boundary of intron 10/exon 11 was found, and this insertion segregates 

with the merle phenotype in multiple breeds. These data show that SILV is responsible 

for merle patterning and is associated with impaired function of the auditory and 

ophthalmologic systems.   

Dermatomyositis (DM) is an inflammatory disease of the skin and muscle that 

occurs most often in the rough collie and Shetland Sheepdog. Gene transcript profiles 

were generated for affected and normal skin using a canine-specific oligonucleotide 

array. Two-hundred and eight-five gene transcripts, many of which are involved in 

immune function, were found to be differentially regulated in these tissues. Also 

reported are western blot, immunohistochemistry, and immunofluorescence analyses. 

While our work suggests that canine DM is a disease that may be immune mediated, it 

did not detect the production of specific disease-associated autoantibodies. 
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CHAPTER Ι 

INTRODUCTION 

The Dog as a Model 

 The domestic dog (Canis familiaris) has served as a focal point of scientific 

curiosity for ages. Originating in East Asia, domestic dogs diverged exclusively from the 

gray wolf approximately 40,000-15,000 years ago, according to mtDNA evidence (Vila 

et al., 1997; Leonard et al., 2002; Savolainen et al., 2002). Alternatively, archeological 

evidence suggests a later domestication event, around 14,000-9,000 years ago (Leonard 

et al., 2002; Savolainen et al., 2002). To date, there are over 1000 regional varieties and 

recognized breeds of dog world-wide, the majority of which were created in the past 250 

years (Ostrander and Giniger, 1997; Neff and Rine, 2006). This rapid breed 

differentiation was accomplished using selective inbreeding practices, often from a very 

small number of founders (Ostrander and Kruglyak, 2000). The desire to breed dogs 

with specific traits led to a species that is unrivaled among mammals in diversity. Dog 

breeds differ in size, coat color and texture, craniofacial structure, body conformation, 

and behavior.   

 Interbreeding among dogs of the same breed is necessary in order to maintain 

breed characteristics. This inbreeding, coupled with an already limited genetic pool, 

leads to a greater expression of recessively inherited traits and diseases in the dog than 

observed in other species. Forty-six percent of the identified genetic diseases occur  

 

____________ 
This dissertation follows the style of Gene. 
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predominately in one or few breeds (Ostrander et al., 2000). Interestingly, the 

reproductive isolation of dog breeds has created relatively closed gene pools that can be 

studied as isolated populations (Patterson, 2000; Parker et al., 2004). 

To date, there are more than 450 different hereditary diseases identified in the 

dog, 58% of which have clinical presentations similar to their human counterparts 

(Ostrander and Giniger, 1997).  Of these 450 diseases, greater than 70% are autosomal 

recessive, X-linked, or complex traits. Diseases that are inherited in an autosomal 

dominant fashion are not as common because they can easily be selected against by 

removal of affected dogs from breeding programs (Ostrander et al., 2000). The dog has 

more naturally occurring hereditary diseases than any other species other than human 

(Crook and Hill, 1998; Patterson, 2000; Sargan, 2004). In addition, many diseases are 

influenced by environmental factors, making the dog an ideal model for human diseases 

because they often share our same living space, exercise habits, and even food. Coupled 

with the fact that there is a higher sequence similarity between orthologous genes of the 

human and dog than is found between the human and mouse, this makes the dog an ideal 

model system in which to study human hereditary diseases (Kirkness et al., 2003).  

 The importance of the dog as a model for study of diseases was clearly indicated 

when canine genome was selected as the fourth mammalian genome to be sequenced. 

The first sequence was a 1.5 X sequence of a male Standard Poodle in 2002 (Kirkness et 

al., 2003). This sequence provided 77% coverage of the genome and was assembled by a 

private company, Celera Genomics (Kirkness et al., 2003). In 2004, the National Human 

Genome Research Institute (NHGRI) completed a 7.8X sequence of a female Boxer. 
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This provides greater than 95% coverage (Lindblad-Toh et al., 2005). This sequence is 

publicly available and, since its release, has propelled the field of canine genetics 

research into a new era. With the published DNA sequences of both the dog and the 

human, the canine model can now be more effectively used to study both canine and 

human diseases.  

Canine Coat Color Genetics 

 The field of canine coat color genetics has been studied for a number of years, 

and is particularly intriguing because phenotypes are easily measured. Studies of the 

inheritance of coat color began in 1977 with the Labrador Retriever (Templeton et al., 

1977). Labradors were of interest because they exhibit three basic coat colors: black, 

chocolate, and yellow. Previous studies identified the dominant B allele at the B locus as 

responsible for black coloring (Little, 1957). The yellow coat color is determined by the 

recessive e allele at the E locus and is epistatic to the B locus in the homozygous 

condition. The inheritance of the brown coat color, however, remained unknown (Little, 

1957). The recessive b allele at the B locus was identified by Templeton et al. as 

responsible for the chocolate coat color (1977). In addition, it was determined that the 

hypostatic B alleles have some expression in e/e dogs, as well, and are responsible for 

iris, nose, and lip pigmentation (Templeton et al., 1977). The conclusions made by Little 

and Templeton, which were based solely on the phenotypes of the offspring produced 

from planned breedings. Today, with the availability of the published canine sequence, 

coat color genetics in the dog can be more thoroughly evaluated at the molecular level. 

As a result, such data support and refute various conclusions of Little and Templeton. 
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 There are four main loci for basic coat colors that have been discovered to date: 

melanocortin 1 receptor(MC1R), tyrosinase related protein 1(TYRP1), agouti signal 

peptide(ASIP), and β-defensin 103 (CBD103) (Candille et al., 2007; Schmutz and 

Berryere, 2007).  

 MC1R is the gene referred to by Little as the E locus. A loss-of-function mutation 

in MC1R results in the clear red coat color in dogs (Everts et al., 2000), the allele 

referred to by Little as e, while the wild type allele was called E (Little, 1957). A single 

nucleotide substitution in MC1R results in an allele producing a melanistic mask and is 

referred to as allele EM. The mask, observed in dogs with fawn or brindle coloring, is the 

result of a single copy of this allele. Dogs that have solid black, brown, or blue coloring 

do not have a distinguishable mask even though they may carry the EM allele (Schmutz 

and Berryere, 2007).  

 The gene responsible for the brown coat color is TYRP1, referred to by Little as 

the B locus. The recessive allele of this gene results in brown coloring, while the 

dominant allele produces solid black (Schmutz et al., 2002). To date, three different 

alleles of TYRP1have been detected. Allele bs contains a premature stop codon in exon 5, 

allele bc contains a base pair substitution in exon 2 that changes a serine residue to a 

cysteine residue, and allele bd has a deleted proline residue in exon 5 (Schmutz et al., 

2002). Any combination of two of these alleles will result in a brown coat color in the 

dog (Schmutz and Berryere, 2007). 

 The coat color phenotype of a dog is the result of interaction between alleles of 

TYRP1 and MC1R (Schmutz et al., 2002). A dog with a yellow, cream, or red coat color 
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but the nose, eye rims, and pads of feet which have keratinized epidermis are either 

black or brown or a dilution of these has the genotype of e/e (Schmutz and Berryere, 

2007). This mechanism of gene interaction was hypothesized by Templeton and 

associates years ago but is still not fully understood (Templeton et al., 1977). All dogs 

that are either solid or spotted brown, black, or grey have at least one E or EM allele and 

inherit the coat color in a dominant fashion. Additionally, these dogs also possess at least 

one KB allele (Kerns et al., 2007; Candille et al., 2007). For most dog breeds, in order to 

express the eumelanin (brown, black , or grey) coat color the dog must carry one E or EM 

allele at the MC1R locus and one dominant allele at the CBD103 locus (Candille et al., 

2007; Schmutz and Berryere, 2007). 

 ASIP is another gene that determines coloring in the dog. ASIP possesses four 

alleles, which exhibit a hierarchy: ay> aw> at> a (Schmutz and Berryere, 2007). The 

dominant allele of the ASIP alleles, ay, results in the fawn or sable coat color found in 

breeds such as the Shetland Sheepdog, Collie, and Great Dane (Berryere et al., 2005). 

Allele aw is the wild type allele and results in a banding pattern of the hair, consisting of 

a band of eumelanin (brown, black, or grey), followed by a band of phaeomelanin (red, 

yellow, or cream), and another band of eumelanin from the base of the hair to the tip 

(Schmutz and Berryere, 2007). The at allele produces a coloring pattern of black with tan 

areas around the eyes and on the muzzle, chest and legs, seen commonly in Doberman 

pinschers and Rottweilers. The recessive allele, a, results in a black coat color in dogs 

which are from primarily herding decent, such as the Puli and Schipperke and is the sole 
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allele responsible for of black coloring in the German Shepherd Dog and the Shetland 

Sheepdog(Kerns et al., 2004; Berryere et al., 2005; Schmutz and Berryere, 2007).  

 CBD103, formerly known as the K locus, is the fourth main color gene in the 

dog. This gene is responsible for causing the dominant black coat color. As mentioned 

above, in most cases (with the exception of the recessive a allele),  in order for a dog to 

have a eumelanin coat color it  must carry one E or EM allele at the MC1R locus and one 

dominant allele at the CBD103 locus. The CBD103 locus has three alleles which exhibit 

a dominance hierarchy: KB (black) > kbr (brindle)> ky (yellow) (Candille et al., 2007).  A 

single copy of kbr in the presence of ky produces the brindle phenotype, which consists of 

alternating stripes of phaeomelanin and eumelanin of various shades (Kerns et al., 2007). 

Brindle, as for many coat colors, is variable between dog breeds, with some breeds 

having very thin bands of phaeomelanin and thus appearing black and others having very 

thin bands of eumelanin (Schmutz and Berryere, 2007). Furthermore, depending on the 

genotype of the dog at the ASIP locus, dogs with ky/ky could have fawn coloring, 

eumelanin and tan, or wolf sable coloring (Schmutz and Berryere, 2007). Dogs with an 

ay allele have the brindle patterning over their entire body whereas dogs possessing the 

at/at genotype have brindle patterning only along the ventral surfaces of the body 

(Berryere et al., 2005).  

 The four genes, MC1R, TYRP1, ASIP, and CBD103, are responsible for the main 

coat colors observed in most domestic dogs; however, there are also coat patterns of the 

dog, such as harlequin, ticking, and white spotting. The causative genes for harlequin 

and ticking remain unknown (Schmutz and Berryere, 2007). The exact mutation for 
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white spotting is unknown, but the phenotype was mapped to an associated region of less 

than 1 Mb containing only one gene: microphthalmia-associated transcription factor 

(MITF). MITF is an ideal candidate locus for white spotting (Karlsson et al., 2007). The 

causative mutation for another modification, the merle phenotype, has been determined 

(Clark et al., 2006) and will be discussed in detail in chapter II. 

 Coat color genetics is an important area of research because it demonstrates the 

complexity of inheritance of what appears to be a simple trait and may also help identify 

deleterious alleles that produce phenotypes which are associated with some coat colors, 

such as deafness, skin anomalies, and vision abnormalities (Schmutz et al., 1998; Clark 

et al., 2006; Von Bomhard et al., 2006). Studies of the inheritance of coat color in the 

domestic dog have identified several genes responsible for specific coat colors and 

patterns. These genes, in addition to others, contribute to the diverse level of phenotypic 

variation found in the domestic dog, making it unique among all mammals.   

Dermatomyositis 

Dermatomyositis (DM) is a devastating dermatologic condition that most 

commonly affects the skin and/or muscles of the collie and Shetland Sheepdog (Haupt et 

al., 1985; Hargis and Mundell, 1992 

; Scott et al., 2000). The DM phenotype is extremely variable, with some 

affected dogs experiencing mild, transient symptoms, and others developing a life 

threatening form of the disease. Clinical findings consistent with DM include the 

development of skin lesions, which include hair loss, redness, scaling and crusting on the 

face, ears, legs, and tail tip. Lesions in individual dogs vary, and may affect multiple 
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areas, and dogs afflicted with DM often develop disfiguring scarring and secondary skin 

infections. In addition, cases of DM with muscle involvement are characterized by 

muscle atrophy, megaesophagus, aspiration pneumonia, and difficulty eating or walking, 

causing some dogs to walk with an abnormal high stepping gait. For those dogs with 

severe DM, the quality of life becomes a concern, often necessitating euthanasia(Hargis 

and Mundell, 1992). 

In the collie, the mode of inheritance of DM is thought to be autosomal dominant 

with incomplete penetrance (Haupt et al., 1985; Scott et al., 2000). The age of onset for 

DM varies widely, with some affected dogs showing clinical signs of DM as early as 

eight weeks of age, while others are several years old before clinical symptoms are 

detectable. The inability to diagnose DM prior to the development of clinical symptoms 

has made control of the disease difficult.  

Identification of the gene(s) causative for DM would allow for the development 

of a DNA-based test to identify dogs that carry the mutation responsible for DM. Such a 

test would allow early detection of affected dogs, in addition to dogs that have mild, 

undetectable clinical symptoms. This knowledge would benefit affected dogs, allowing 

early treatment and possibly improving their prognoses, and also help breeders make 

informed decisions in their breeding programs and eliminate DM in their lines.    
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CHAPTER ΙI 

RETROTRANSPOSON INSERTION IN SILV IS RESPONSIBLE FOR MERLE 

PATTERNING IN THE DOMESTIC DOG* 

Overview 

 Merle is a pattern of coloring observed in the coat of the domestic dog and is 

characterized by patches of diluted pigment. This trait is inherited in an autosomal, 

incompletely dominant fashion. Dogs heterozygous or homozygous for the merle locus 

exhibit a wide range of auditory and ophthalmologic abnormalities, which are similar to 

those observed for the human auditory–pigmentation disorder Waardenburg syndrome. 

Mutations in at least five genes have been identified as causative for Waardenburg 

syndrome; however, the genetic bases for all cases have not been determined. Linkage 

disequilibrium was identified for a microsatellite marker with the merle phenotype in the 

Shetland Sheepdog. The marker is located in a region of CFA10 that exhibits 

conservation of synteny with HSA12q13. This region of the human genome contains 

SILV, a gene important in mammalian pigmentation. Therefore, this gene was evaluated 

as a candidate for merle patterning. A short interspersed element insertion at the 

boundary of intron 10/exon 11 was found, and this insertion segregates with the merle 

phenotype in multiple breeds. Another finding was deletions within the oligo(dA)-rich  

____________ 
*Reprinted with permission from “Retrotransposon insertion in SILV is responsible for 
merle patterning of the domestic dog” by Clark, L.A., Wahl, J.M., Rees, C.A., and 
Murphy, K.E., 2006. Proc Natl Acad Sci USA, 103, 1376-81, Copyright 2006 by 
Copyright National Academy of Sciences, U.S.A. 
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tail of the short interspersed element. Such deletions permit normal pigmentation. These 

data show that SILV is responsible for merle patterning and is associated with impaired 

function of the auditory and ophthalmologic systems. Although the mutant phenotype of 

SILV in the human is unknown, these results make it an intriguing candidate gene for 

human auditory–pigmentation disorders. 

Introduction 

 Merle is a coat pattern in the domestic dog characterized by patches of diluted 

pigment intermingled with normal melanin. It is a standard coloration for several breeds 

recognized by the American Kennel Club, including the Shetland Sheepdog, Australian 

Shepherd, Cardigan Welsh Corgi, and Dachshund. The merle phenotype in the 

Dachshund is known as dapple. Although merle is not an acceptable color in the Great 

Dane, the desirable harlequin pattern results from the interaction of the merle locus (M) 

and a separate harlequin locus (H) (O'Sullivan and Robinson, 1988). In addition, many 

breeds (e.g., Catahoula Leopard Dog, Bergamasco Sheepdog, and Pyrenean Shepherd) 

accepted by other kennel clubs present with merle patterning. 

 Merle is inherited in an autosomal, incompletely dominant fashion (Mitchell, 

1935). Although rare, a dog that does not present with the overt merle phenotype may 

possess the merle genotype and subsequently produce merle offspring. Such a dog is 

termed a cryptic merle. The mechanism for this phenomenon is unknown. Dogs 

homozygous for merle (MM) are known as double merles and are predominantly white 

(Fig. 1C). 



11 
 

Dogs having Mm and MM genotypes typically have blue eyes and often exhibit a 

wide range of auditory and ophthalmologic abnormalities (Sorsby and Davey, 1954). 

Reetz et al. (1977) studied the auditory capacity of Dachshunds and found that 54.6% of 

MM and 36.8% of Mm dogs had auditory dysfunction, ranging from mild to severe 

deafness. All control dogs (mm) in the study had normal hearing. Klinckmann et al. 

(1987; 1987) conducted ophthalmologic studies with three groups of Dachshunds (MM, 

Mm, and mm) and found that merles and double merles had significantly greater 

frequencies of ocular abnormalities, including increased intraocular pressure and 

ametropic eyes. Microphthalmia and colobomas are well described in merle and double 

merle Dachshunds and Australian Shepherds (Sorsby and Davey, 1954; Gelatt and 

McGill, 1973; Dausch et al., 1977). In all breeds, the double merle genotype can be 

sublethal and is associated with multiple abnormalities of the skeletal, cardiac, and 

reproductive systems (Sorsby and Davey, 1954; Little, 1957; Sponenberg and Bowling, 

1985). For these reasons, merle-to-merle breedings are strongly discouraged (Little, 

1957). 

 Interestingly, many of the abnormalities associated with merle dogs are 

remarkably similar to those observed in Waardenburg syndrome (WS) (Schaible and 

Brumbaugh, 1976). WS is an autosomal dominant auditory–pigmentation disorder in 

humans (1 per 40,000 live births) that accounts for 2% of all cases of congenital 

deafness (Nayak and Isaacson, 2003). Several genes have been implicated in the four 

clinical varieties of WS: Mutations in PAX3 cause WS type 1 and type 3 (Baldwin et al., 

1992; Tassabehji et al., 1992) and mutations in SOX10, EDNRB,or EDNR3 cause WS 
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type 4 (Puffenberger et al., 1994; Pingault et al., 1998; McCallion and Chakravarti, 

2001). Mutations in MITF cause WS type 2; however, the genetic basis for 85% of type 

2 cases remains unidentified (Tassabehji et al., 1994; Choi et al., 2004). 

 To identify a chromosomal region segregating with merle, we carried out a 

whole-genome scan for the Shetland Sheepdog by using the multiplexed Minimal 

Screening Set 2 (Guyon et al., 2003; Clark et al., 2004). Linkage disequilibrium (LD) for 

merle was identified with a microsatellite marker in a region of CFA10 that exhibits 

conservation of synteny with HSA12q13. This region of HSA12 harbors the SILV gene. 

SILV (also known as Pmel17; gp100) is a pigment gene best known as the Silver 

locus responsible for a recessive trait in an inbred strain of black mice in which the hair 

color dilutes with age (Dunn and Thigpen, 1930; Kwon et al., 1995). Although this gene 

is known to have a central role in pigmentation, the precise function of SILV remains 

controversial (Theos et al., 2005). Multiple studies have provided data to suggest that 

SILV is involved in the biogenesis of premelanosomes (Kobayashi et al., 1994; Zhou et 

al., 1994; Berson et al., 2001). Significant expression of the gene is almost exclusive to 

the skin and eye, providing further evidence to support a role in pigmentation (Theos et 

al., 2005). Although mutations in SILV have not been implicated in disease, the 

aforementioned LD data and the role of SILV in pigmentation made it a candidate gene 

for merle. 

 Characterization of SILV in merle and nonmerle Shetland Sheepdogs revealed a 

short interspersed element (SINE) insertion at the intron 10/exon 11 boundary. The 

SINE segregates with the merle phenotype in multiple breeds and is absent from dogs 
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representing breeds that do not have merle patterning. All examined harlequin Great 

Danes harbored the insertion in either a heterozygous or homozygous state. Described 

herein is LD with merle and characterization of a SINE insertion in SILV that is 

responsible for merle patterning in the dog. 

Results 

LD with the Merle Phenotype  

Genotype data for 279 Minimal Screening Set 2 markers were generated for 9 

merle and 32 nonmerle Shetland Sheepdogs. Only one marker had an allele that 

appeared to be more common in the merle population. For this marker, FH2537, a 

statistically significant P value (7.2 × 10-6) was obtained. To validate this result, 

genotype data were generated for the aforementioned marker by using additional 

Shetland Sheepdogs: 7 merle, 2 double merle, and 11 nonmerle. These genotypes were 

combined with the original data set and used to recalculate the P value, which increased 

in significance (3.0 × 10-8). 

Candidate Gene Selection  

 The above result allowed narrowing of the search to those genes that are (i) 

important in pigmentation and (ii) also proximal to microsatellite marker FH2537 on 

CFA10. SILV encodes a melanosomal protein important in pigmentation (Sturm et al., 

2001) and maps to HSA12q13–q14, which exhibits conservation of synteny with CFA10 

(Kwon et al., 1991). A single base insertion in SILV causes the silver phenotype in the 

mouse (Kwon et al., 1995), and polymorphisms in this gene are associated with the 

dominant white, dun, and smoky plumage color variants in chickens (Kerje et al., 2004). 



14 
 

The dilute coloration of Charolais cattle has also recently been attributed to a mutation in 

SILV (Theos et al., 2005). Furthermore, SILV expression is dependent on MITF (Baxter 

and Pavan, 2003), which is causative for some cases of WS type 2 (Tassabehji et al., 

1994). 

SINE Insertion  

 PCR was carried out by using genomic DNA from two nonmerle, one blue merle, 

and one double merle Shetland Sheepdog to obtain amplicons from each exon of SILV. 

Amplification of exon 11 yielded two products: (i) the expected 206-bp product and (ii) 

a larger product (slightly smaller than 500 bp). These amplicons segregated with the 

merle phenotype among the aforementioned dogs: The nonmerle dogs were homozygous 

for the 206-bp product; the blue merle was heterozygous for the products; and the double 

merle was homozygous for the larger product (Figure 1).     
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Figure 1. SINE insertion in SILV segregates with merle phenotype. (A) Tricolored (black, sable, and 
white), nonmerle Shetland Sheepdog (mm). (B) Blue merle Shetland Sheepdog (Mm). (C) Double merle 
Shetland Sheepdog (MM). (Left) Phenotypes. (Center) Exon 11 PCR products. (Right) Length markers. 

 

 Sequence analysis of exon 11 products revealed an insertion of a tRNA-derived 

SINE, highly similar to the unique canine SINEs described by Minnick et al. (1992). The 

insertion occurs at the boundary of intron 10 and exon 11 and is flanked by a 15-bp 

target site duplication (Figure 2). The SINE insertion is in reverse orientation, with the 5′ 

end closer to exon 11. Sequence analysis of all coding regions of the gene did not reveal 

any other mutations that may disrupt the function of SILV. 
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Figure 2. Structure of wild-type canine SILV and sequence of the SINE insertion site in merle dogs. The 
putative lariat branch point sequence is boxed. Splicing acceptors are indicated by bold type. In merle 
dogs, the splicing acceptor is located in the 15-bp duplicated sequence (underlined) that flanks the SINE 
insertion. The average insertion size (not including the duplicated sequence) for the merle dogs analyzed 
herein is 253 bp. 

 

DNA was available from 50 of the 61 Shetland Sheepdogs used in the linkage 

analysis. These 50 dogs were analyzed by gel electrophoresis for the insertion. The insert 

was present in the heterozygous state in 12 merles and in the homozygous state in 2 

double merles. Thirty-one nonmerle dogs did not harbor the insertion and four nonmerle 

dogs were heterozygous for a smaller insertion. Sequence analysis of this smaller 

insertion from two Shetland Sheepdogs revealed a deletion within the oligo(dA)-rich tail 

of the SINE. This smaller insertion was also present in a nonmerle that is suspected to be 

cryptic because it was sired by a double merle; however, no test breedings have been 

conducted to date to conclusively classify the dog as cryptic. 
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To determine whether the SILV mutation causing merle patterning in the 

Shetland Sheepdog population was breed specific, merle and nonmerle dogs representing 

six other breeds (Collie, Border Collie, Australian Shepherd, Cardigan Welsh Corgi, 

Dachshund, and Great Dane) were analyzed for the insertion. Merle dogs from all six 

breeds were heterozygous and one double merle Great Dane was homozygous for the 

insertion (Figure 3). Sequence analyses of one representative merle dog from each of the 

aforementioned breeds showed that they have the same SINE insertion in SILV (Figure 

4). 

 

 

Figure 3. Mutation analysis of SILV and its segregation in six breeds. PCR on genomic DNA from a 
sable/white Collie (lane 2), blue merle Collie (lane 3), black/white Border Collie (lane 4), blue merle 
Border Collie (lane 5), red Australian Shepherd (lane 6), blue merle Australian Shepherd (lane 7), brindle 
Cardigan Welsh Corgi (lane 8), blue merle Cardigan Welsh Corgi (lane 9), black/tan Dachshund (lane 10), 
red dapple Dachshund (lane 11), fawn Great Dane (lane 12), blue merle Great Dane (lane 13), and 
harlequin Great Danes (lanes 14 and 15). 

 

 Genotypes of 12 harlequin Great Danes were also analyzed by gel 

electrophoresis: 9 were heterozygous and 3 were homozygous for the insertion. 

Additionally, seven Great Danes (six harlequin and one black) were heterozygous for a 

smaller insertion, and sequence analysis from one of these dogs showed a deletion 

within the oligo(dA)-rich tail, as was observed in the Shetland Sheepdogs (Figure 4).  
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Figure 4. Sequence alignment of the SINE insertion in eight merle dogs from seven breeds (Shetland 
Sheepdog "Sheltie," Collie, Border Collie, Australian Shepherd "Aussie," Cardigan Welsh Corgi, 
Dachshund, and Great Dane) and three nonmerle dogs from two breeds (Shetland Sheepdog and Great 
Dane) with the smaller insertion. 
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Gel electrophoresis analysis showed that the SINE insertion also segregated with 

the merle phenotype in dogs from five additional breeds (American Pit Bull Terrier, 

Catahoula Leopard Dog, Chihuahua, Miniature Poodle, and Pyrenean Shepherd). 

Analysis of the intron10/exon 11 segment from 29 dogs representing 26 breeds that do 

not have merle patterning revealed that they do not have the insertion. 

Discussion 

 Melanocytes are pigment-producing cells present in many tissues, including the 

epidermis, hair follicle, inner ear, and choroid of the eye (Steingrimsson et al., 2004). 

Melanocyte cell populations differentiate from unpigmented melanoblasts released from 

the neural crest during embryogenesis (Steingrimsson et al., 2004). The complex process 

in which melanoblasts migrate and differentiate into melanocytes is not fully understood; 

however, the study of pigmentary anomalies may accelerate identification of genes 

important for normal development (McCallion and Chakravarti, 2001). 

 The merle phenotype of the dog is a pattern of pigmentation associated with a 

wide range of developmental defects. A whole genome scan for merle by using 41 

Shetland Sheepdogs showed LD with FH2537 on CFA10. No genes previously 

implicated in WS (PAX3, MITF, SOX10, EDNRB, and EDN3) map to this region. 

However, another gene important in pigmentation, SILV, is located ≈0.2 Mb from this 

marker. The SILV protein appears to be necessary for the formation of the fibril matrix 

upon which melanin intermediates are deposited late in melanosome maturation (Theos 

et al., 2005). Other studies have shown that SILV may also participate in melanin 

biosynthesis by accelerating the conversion of 5,6-dihydroxyindole-2-carboxylic acid to 
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melanin (Chakraborty et al., 1996; Lee et al., 1996). The mutant phenotype of SILV in 

the human is unknown (Sturm et al., 2001). 

 A SINE, structurally similar to a class of canine SINEs described by Minnick et 

al. (1992), was identified in SILV for all merle dogs analyzed. This SINE shows high 

sequence similarity (95–97%) with canine SINEs previously identified in the canine D2 

dopamine receptor gene (Jeoung et al., 2000), the dystrophin gene (Fletcher et al., 2001), 

and the PTPLA gene, implicated in centronuclear myopathy (Pele et al., 2005). These 

SINEs are tRNA-derived and highly abundant in the dog, representing 7% of the 

genome (Kirkness et al., 2003). 

 It was previously hypothesized that the merle locus contains a transposable 

element (Whitney and Lamoreux, 1982). This theory is based, in part, on the finding that 

matings of homozygous merle dogs have produced nonmerle offspring (Whitney and 

Lamoreux, 1982; Sponenberg, 1984). Subsequent breedings with these offspring 

produced only nonmerle puppies, providing evidence for a stable germinal reversion 

(Sponenberg, 1984). It is estimated that the reversion rate in the germ line is 3–4% 

(Sponenberg, 1984). 

 In the human, Alu insertions causing disease are usually found in coding exons or 

near the boundaries of exons and introns (Druker and Whitelaw, 2004). These insertions 

result in disease, presumably by affecting splicing (Druker and Whitelaw, 2004; Pele et 

al., 2005). Similarly, SINE insertions at these locations have been reported in the dog. A 

SINE insertion within exon 2 of the PTPLA gene causes aberrant splicing patterns 

associated with centronuclear myopathy in the Labrador Retriever (Pele et al., 2005). 
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Lin et al. (1999) identified a SINE insertion in the 5′-flanking intronic region of exon 4 

of HCRTR2 that causes narcolepsy. The insertion displaces a putative lariat branch point 

sequence necessary for proper splicing (Lin et al., 1999). The SINE insertion reported 

herein also occurs at an intron/exon boundary and may displace the putative lariat branch 

point sequence (Figure 2). This change in sequence of the gene is further complicated by 

the fact that in humans and presumably in other mammals as well, SILV has alternative 

splicing patterns (Bailin et al., 1996; Nichols et al., 2003). Therefore, cDNA transcripts 

should be analyzed to determine splicing patterns in nonmerle and merle dogs and the 

effect of the insertion on the encoded protein. 

 Fifty Shetland Sheepdogs were analyzed for the insertion, which segregated 

perfectly with the merle phenotype. The mutation also segregated with merle among 

dogs representing the Collie, Border Collie, Australian Shepherd, Cardigan Welsh Corgi, 

Dachshund, and Great Dane breeds, and sequence analysis confirmed that they have the 

same insertion. Aside from a single point mutation in two breeds each, the sequence of 

the SINE is identical. This finding suggests that the SINE insertion is identical by 

descent, and that the breeds analyzed in this study share a common ancestor. The 

occurrence of merle in many breeds and the fact that the first breeds to diverge from the 

working Sheepdog population in the 1800s have merle patterning (Collie, Old English 

Sheepdog, and Shetland Sheepdog), suggest that the founding mutation may predate the 

divergence of breeds (Neff et al., 2004). 

 Harlequin is a popular coat pattern in the Great Dane and is characterized by 

black patches on a white background. Studies of the inheritance of harlequin support the 
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hypothesis that it is the result of two genes: M and the dominant gene H (Sponenberg, 

1985). A deficiency of white dogs (MM) from harlequin to harlequin matings provides 

evidence to suggest that the H+ MM genotype has reduced viability (O'Sullivan and 

Robinson, 1988). The identification of harlequin Great Danes homozygous for the SINE 

insertion in the present study demonstrates that harlequin dogs may be either H+ Mm or 

H+ MM. These data suggest that the H gene is dominant to M and that white Great 

Danes have the ++ MM genotype. This misclassification of phenotype could account for 

the deficiency of white dogs observed in the aforementioned harlequin studies 

(Sponenberg, 1985; O'Sullivan and Robinson, 1988). Further studies are necessary to 

confirm this hypothesis. 

 Polymorphisms in the 3′ end of the SINE insertion were identified in four 

nonmerle Shetland Sheepdogs from two families and in seven Great Danes (six 

harlequin and one black) from one kindred. These Shetland Sheepdogs were 

heterozygous for the allele in LD with the merle phenotype, suggesting that the deletion 

may have occurred as a secondary mutation. The 3′ end of retroelements is typically 

polymorphic because of the presence of an oligo(dA)-rich tail, which is subject to strand 

slippage during replication and unequal crossing-over (Roy-Engel et al., 2002). Roy-

Engel et al. (2002) report an association between longer oligo(dA)-rich tails and 

diseased loci. In general, the oligo(dA)-rich tails decay gradually, with older insertions 

having shorter tails, although they can also shorten significantly in a single generation 

(Roy-Engel et al., 2002). Abdelhak et al. (1997) report that the oligo(dA)-rich tail of an 

Alu insertion into the eya1 locus shortened from A97 to A31 in one generation. 
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 The present work identifies variable oligo(dA)-rich tail lengths associated with 

the SINE insertion: An A91–101 segment present in merle dogs from seven breeds and an 

A54–65 segment present in the aforementioned nonmerle Shetland Sheepdogs and Great 

Danes. No oligo(dA)-rich tail lengths intermediate to these were found. These data 

suggest that the truncation may have occurred in a single generation and could represent 

a reversion of the merle mutation (Sponenberg, 1984). Additionally, expansion of the 

oligo(dA)-rich tail in the germ line of a nonmerle dog having the smaller insertion may 

result in merle offspring and may be the mechanism behind the cryptic merle phenotype. 

Although the data presented herein suggest that the oligo(dA)-rich tail length determines 

phenotype (i.e., merle, nonmerle), they are not sufficient to determine the precise 

threshold for this phenomenon. 

 Here we have described a mutation in SILV that results in a disease phenotype 

and presented evidence to suggest a critical role for SILV in normal mammalian 

development. Phenotypic similarities between merling in the dog and WS in the human 

suggest that SILV may be involved in human auditory–pigmentation disorders. This 

work also enables genetic testing to identify dogs that carry the SINE insertion and may 

produce merle offspring. A genetic test for the merle locus can help responsible breeders 

of merle dogs prevent undesirable double merle progeny by allowing them to (i) 

distinguish merle from nonmerle in light-colored dogs that show little contrast between 

areas of dilution and full pigmentation, (ii) classify harlequin Great Danes as single or 

double merle, and (iii) identify cryptic merles. We have submitted a provisional patent 

application (Murphy et al., 2005) for the identification of the mutation causing merle. 
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Materials and Methods 

Sample Collection 

 DNA samples were obtained during previous studies conducted in the Canine 

Genetics Laboratory at Texas A&M University and through contributions from 

participating owners and breeders. Whole blood or buccal cells were collected from all 

dogs and genomic DNA was isolated by using the Puregene DNA Isolation kit (Gentra 

Systems). 

Genotyping 

 Fluorescently labeled primers were synthesized and multiplex PCR was 

performed for Minimal Screening Set 2 markers as described by Clark et al. (2004). 

PCR products were resolved with an internal size standard (GeneScan 500 LIZ, Applied 

Biosystems) by using an ABI 3730xl DNA Analyzer (Applied Biosystems). Genotypes 

were determined by using genemapper 3.5 software (Applied Biosystems). 

Linkage Analysis 

 Analyses for LD were carried out for all genotyped Minimal Screening Set 2 

markers by using 41 Shetland Sheepdogs. For each marker, the allele more often 

associated with the merle dogs was identified, and all other alleles were combined into a 

second independent class. Fisher's exact probability test for 2 × 2 tables was used to 

evaluate allelic frequencies between the merle and nonmerle dogs. By convention, a P 

value of <0.0001 provides evidence for LD. For one marker with evidence of LD, an 

additional 20 Shetland Sheepdogs were genotyped and the P value was recalculated. 
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Sequencing 

 Primers were designed to amplify the complete exon and partial flanking intronic 

sequences for the 11 exons of SILV (see Table 1) by using the Boxer and the human 

intron/exon boundaries reported in Bailin et al. (1996). Concentrations for an 8.45-µl 

PCR volume were 0.09 units/µl Taq DNA polymerase with 1.2× buffer B (Fisher 

Scientific), 3.55 mM MgCl2, 1.2× MasterAmp PCR Enhancer (Epicentre Technologies, 

Madison, WI), 0.59 mM total dNTPs, 5.9 ng/µl DNA, 0.47 µM each forward and reverse 

primer, and 2.8 µl of water. All exons were amplified with a single stepdown thermal 

cycling program: 5 min at 95°C followed by 5 cycles of 30 sec at 95°C, 15 sec at 58°C, 

and 10 sec at 72°C, and an additional 30 cycles of 20 sec at 95°C, 15 sec at 56°C, and 10 

sec at 72°C, with a final extension of 5 min at 72°C. 

 

Table 1. Primer sequences for the 11 exons of canine SILV 

Exon Forward Reverse 
1 GTAGCGGGATGTCCAGGG GAGAAAAATCAGAGCAGGTGTG

2and3 ATGGTGCTGTCCCCTGA ATCTGAGCCCTTGGAATAA 
4 GGTTTGAGGGTGACTCTGTGT GGGCAGTGAAGATTTAGGGAA 
5 TTCCCTATGCTCAGTTCTTCC GCTTTGCCCCTTCCCA 
6a GGTGTGCCTGTGAAAGAAG CAAGCGTAGTGCCTGTGAC 
6b GCAGATGACGACCACGG GTCCCACCTCAATGAACCT 
7 GCCTCTTCAATCCTCTCC CAAGGTATGCTTTCACTGG 
8 GAAGCAGCCTTACGGTTTT CGGAGTTCTCAGGACAATCA 
9 CCATTGCCCTGACCTAAGC AGCCTGTCCAACGCCTG 
10 TGGCGGGGAGCAGACA AAGAATGAGCAGTGGCAAGAG 
11 CAGTTTCTCCTTTATTCTCCCA CCTCGGCAAATCACAGCA 
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 PCR products were analyzed by electrophoresis on a 3% agarose gel. The Gel 

Extract kit was used to purify amplicons (Qiagen, Valencia, CA). Products were ligated 

into pCR4.0-TOPO (Invitrogen) and transformed into chemically competent Escherichia 

coli TOP-10 cells (Invitrogen). Two clones for each dog were selected for sequencing. 

Nucleotide sequencing was performed by using the Big Dye Terminator version 1.1 

Cycle Sequencing kit (Applied Biosystems) and an ABI 3130 Genetic Analyzer 

(Applied Biosystems). Sequences were aligned by using Clustal W 

(www.ebi.ac.uk/clustalw). 
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CHAPTER ΙII 

CANINE SINES AND THEIR EFFECTS ON PHENOTYPES OF THE 

DOMESTIC DOG 

Overview 

Short interspersed elements (SINEs) are mobile elements that contribute to 

genomic diversity through the addition of genetic material. Recent genomic analyses 

have vastly augmented our knowledge of both human- and canine-specific SINEs. 

SINEC_Cf is a major SINE of the canid family that has undergone recent expansion and 

is thought to be present in half of all genes. To date, only three phenotypes of the 

domestic dog have been attributed to a SINE. One of these is merle, a coat pattern 

characterized by patches of full color on a diluted background and associated with ocular 

and auditory anomalies. A SINEC_Cf in the SILV gene causes merle patterning by 

altering the cDNA transcript and has unique characteristics that are likely responsible for 

the random nature of the phenotype. 

Short Interspersed Elements 

Short interspersed elements (SINEs) are non-autonomous transposons of 

approximately 100 to 400 bp. SINEs have an internal promoter and are transcribed by 

RNA polymerase III but rely on long interspersed elements (LINEs) for reverse 

transcription and integration into the genome (Dewannieux et al., 2003). A typical SINE 

is characterized by three features: the head, which contains the promoter necessary for 

initiation of transcription; the body, which is similar at the 3' end to LINE RNA and is 

necessary for reverse transcription; and the tail, which is usually A- or AT- rich but can 
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vary in sequence and length and may be involved in transcription termination, RNA 

delivery, and/or RNA stability (Kramerov and Vassetzky, 2005). 

Our knowledge of SINEs has increased greatly in recent years, largely due to the 

assembly of whole genome sequences. Analyses of the human sequence revealed that 

SINEs comprise 13% of the genome (Lander et al., 2001). In the human, the dominant 

SINE is the Alu element, which is also the only active SINE family in the genome 

(Lander et al., 2001). The promoter region of Alu elements is derived from 7SL RNA 

sequences. This is different from most SINEs in that the majority of SINEs have 

promoters derived from tRNA sequences (Ullu and Tschudi, 1984; Lander et al., 2001). 

It is estimated that 75% of human genes contain Alu elements, but many of these were 

inserted prior to divergence and thus are fixed in the population (Wang and Kirkness, 

2005). 

In 1992, Minnick et al. described a family of SINEs specific to canids. These 

SINEs, which are tRNA-Lys derived, are characterized by a (TC) repeat and an oligo-dA 

rich tail (Minnick et al., 1992). A subfamily of these SINEs is SINEC_Cf. It is estimated 

that there are 170,000 SINEC_Cf elements in the genome and that half of all genes 

contain a SINEC_Cf insertion (Wang and Kirkness, 2005). Analyses of the first 

available canine genome sequence, which provides 1.5X coverage (a Standard Poodle 

was used), suggest that SINEC_Cf elements have experienced a large expansion in 

recent history and that this subfamily is highly conserved, exhibiting only 4.8% 

divergence from the consensus sequence (Kirkness et al., 2003). When this sequence 

was compared to the 7.5X coverage sequence (from a Boxer), 10,000 insertion sites 
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were found to be bimorphic (differing by the presence or absence of a SINE), indicating 

that there are a substantial number of bimorphic sites present in the entire canine 

population (Lindblad-Toh et al., 2005).  

The first published report of a disease-causing retrotransposon in the dog came in 

1999 when Lin et al. discovered that narcolepsy in the Doberman Pinscher results from a 

226 bp SINEC_Cf insertion in intron 3 of Hcrtr2. The SINE, located 35 bp upstream of 

the exon 4 splice acceptor, causes skipping of exon 4. Exon skipping as a result of an 

intronic SINE is also reported in the human, causing autoimmune lymphoproliferative 

syndrome (Tighe et al., 2002) and hemophilia A (Ganguly et al., 2003). In both 

organisms, this phenomenon presumably results from displacement of the lariat branch 

point sequence. 

A second canine disorder was recently attributed to a retrotransposon. Pele et al. 

(2005) showed that exon 2 of PTPLA is disrupted by a 236 bp SINEC_Cf element in 

Labrador retrievers having autosomal recessive centronuclear myopathy. The result of 

the insertion is variable; seven different cDNA transcripts are identified. Exon-skipping 

and exonization (the incorporation of SINE sequence into mRNA) are observed in the 

mutant transcripts. Interestingly, one of the seven transcripts is wild-type, indicating that 

the SINE is spliced out.  

Merle Patterning 

While the most devastating impact of SINE insertions is disease such as the two 

mentioned above, SINEs may also have a dramatic effect on physical appearance of 

dogs, without necessarily causing overt clinical disease. An example of this is a 
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SINEC_Cf insertion in the gene SILV that causes merle patterning in several breeds of 

dog (Clark et al., 2006). In a single dose, the mutation causes dilution of the base fur 

color, which is determined by a separate locus, and can also cause blue eye color. The 

predominant characteristic of merling is random patches of full color distributed in 

various sizes and patterns across the coat. In some breeds (e.g., Australian Shepherd 

Dog, Catahoula Leopard Dog) this coat pattern is extremely popular and, according to 

breed standard, is the preferred phenotype.  

Unfortunately, merle is problematic when two mutant copies of SILV are 

inherited (dogs may be referred to as double merles or double dilutes). Double merles 

have very little pigmentation and are afflicted with a variety of auditory and ocular 

defects (Figure 5). The most common abnormality in double merles is deafness. One 

study concluded that 54.6% of double merle and 36.8% of single merle dogs have mild 

to severe deafness (Reetz et al., 1977). Also, merle dogs exhibit greater frequencies of 

ocular abnormalities than do non-merle dogs. These include increased ocular pressure, 

ametropic eyes, microphthalmia, and colobomas (Sorsby and Davey, 1954; Gelatt and 

McGill, 1973; Dausch et al., 1977; Klinckmann et al., 1987; Klinckmann and Wegner, 

1987). Skeletal defects and sterility have also been reported in double merle dogs (Treu 

et al., 1976; Sponenberg and Bowling, 1985) 
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Figure 5. Three red (e/e) Australian Shepherd dogs. From left to right: a homozygous merle, a non-merle, 
and a heterozygous merle. 
 

A linkage disequilibrium approach using 32 non-merle and 9 merle Shetland 

Sheepdogs was used to identify the merle locus (Clark et al., 2006). SILV (also known as 

Pmel17; gp100) was selected as a candidate gene for its location and its role in 

pigmentation of the mouse and chicken (Kwon et al., 1991; Kerje et al., 2004). Although 

SILV is clearly critical for pigmentation, its precise function remains controversial 

(Theos et al., 2005). Studies suggest that the SILV protein is necessary for the formation 

of the fibril matrix upon which melanin intermediates are deposited (Theos et al., 2005). 

Sequencing of SILV revealed a SINEC_Cf insertion at the intron 10/exon 11 

boundary in merle dogs. The SINE is flanked by a 15 bp target duplication site that 

includes the exon 11 splice acceptor, making it impossible to determine if the insertion is 
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exonic or intronic. Initial sequencing of the SINE was carried out using DNA from a 

single dog and the total insertion size was determined to be 262 bp.  

 

 

Figure 6. Genomic sequence of the 3’ end of SILV with SINEC_CF insertion. The putative lariat branch 
point is boxed. The 15 bp target duplication site is underlined and contains the exon 11 3’ splice site (in 
bold). The cryptic splice acceptor within the SINE is in bold and the arrow depicts where transcription 
begins in merle dogs. 
 
 
 
 

cDNA transcripts from double merle dogs have a portion of the SINE 

incorporated between exons 10 and 11 (unpublished). This exonization is possible 

because the SINE is situated in reverse orientation and the reverse complement sequence 

of the SINEC_Cf element has an intron splice acceptor site (Figure 6) (Kirkness, 2006). 

Immediately following the splice acceptor is the characteristic GA tandem repeat, which 

is subject to strand slippage and thus is variable in length. Two alleles have been 
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identified to date. One allele, with seven GA repeats, maintains the reading frame. The 

SILV gene is transcribed in full with the mutant protein having a 52 amino acid insertion 

(Figure 7). A second allele has only six GA repeats and the insertion disrupts the reading 

frame. Fifty-one amino acids are incorporated after exon 10, and a premature stop codon 

occurs near the end of the insertion (Figure 7). 

A-tails Are Important 

Gel eletrophoresis analysis of the SILV SINE showed that the insertion size 

varies from dog to dog. Further sequencing revealed that the variability in the SINE is 

found in the poly(A) tail. A-tail length is an important factor in retrotransposition. Roy-

Engel et al. (2002) analyzed A-tail length in Alu elements and found that insertions that 

result in disease (many are de novo events) have a mean length nearly twofold longer 

than other insertions. They also observed that overall, younger Alu elements have longer 

A-tails than older Alu elements (Roy-Engel et al., 2002). These data suggest that the A-

tail is evolutionarily unstable and subject to mutation and degradation over time. This 

phenomenon may exist in part because A-tails are subject to strand slippage during 

replication and unequal crossing over (Roy-Engel et al., 2002). 
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Figure 7.  Wild-type and mutant SILV protein sequences. The arrow denotes where the truncated GA 
repeat alters the reading frame. 
 
 

 

The SINE element that disrupts the SILV gene is longer than other SINEC_Cf 

elements that have been described in the dog (Jeoung et al., 2000; Fletcher et al., 2001; 

Pele et al., 2005). The variation in length is again found in the A-tail, which we define as 

the region after the (TC) repeat, between the last G and the duplicated sequence. The A-
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tail of the SINEs in the PTPLA, dystrophin, and D2 dopamine receptor genes are 64, 50, 

and 46 bp long, respectively (Jeoung et al., 2000; Fletcher et al., 2001; Pele et al., 2005). 

In merle dogs, the tail length of the SILV SINE insertion ranges from 91 to 101 bp.  

Along with changes in length, A-tails accumulate non-A bases that disrupt the 

pure A stretches. These interruptions reduce the likelihood of strand slippage, resulting 

in greater tail stability. The SILV SINE has fewer A-tail interruptions than do the PTPLA 

and dystrophin SINEs. Consequently, the former SINE has pure A stretches extending as 

long as 83 bp, while the latter SINEs have maximum pure A stretches of 14 and 15 bp, 

respectively. The length and purity of the A-tail of the SILV insertion suggest that it is a 

young SINEC_Cf and is subject to greater levels of instability.  

A surprising find is the presence of the SILV SINE in dogs that do not have the 

merle phenotype (Clark et al., 2006). In these dogs, the poly(A)-tail is shortened, 

ranging from 54 to 65 bp. This finding suggests that the SINE insertion is necessary but 

not sufficient for the merle pattern (Cordaux and Batzer, 2006). Although the threshold 

has not been determined, it is apparent that a long A-tail is requisite to produce the 

phenotype. A smaller insertion size may bring the lariat branch point to a more 

reasonable distance with the true splice site, encouraging proper splicing. 

These data offer a possible explanation for merle patterning. During 

development, melanoblasts migrate from the neural crest and differentiate into the 

pigment-producing melanocytes (Steingrimsson et al., 2004). Instability of the poly(A)-

tail during this migration could result in cell populations with varying tail lengths. 

Melanocytes having a larger SILV SINE insertion would produce diluted pigment, while 
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those with a truncated A-tail would produce full pigment. A similar mechanism is found 

in pigs: black spotting results from somatic reversions of a C expansion in the MC1R 

gene (Kijas et al., 2001). 

The randomness of merling may also provide an explanation for the variability of 

the abnormalities associated with the double merle phenotype. In 2006, a hearing test 

known as the brainstem auditory evoked response (BAER), which detects electrical 

activity in the cochlea and auditory pathways in the brain (Wilson and Mills, 2005), was 

performed on 70 young to middle aged merles representing five breeds (unpublished). 

Twenty-two double merles were examined: eight were bilaterally deaf and two were 

unilaterally deaf. Although Reetz et. al. (1977) suggested that about one-third of 

heterozygous merles have deafness, only one of the 48 heterozygous merles in this study 

was deaf (unilateral). This dog, a Great Dane, was also piebald and consequently the 

deafness cannot be positively attributed to the SILV mutation (Strain, 1999).  

Fifteen of the double merles tested were Catahoula Leopard Dogs and of these, 

only four were deaf. Although the sample size is small, this study suggests that only 

about 26% of double merle Catahoula Leopard Dogs are deaf while roughly 85% of 

double merles from other breeds tested (Australian Shepherd, Collie, and Shetland 

Sheepdog) are deaf. This finding is not entirely surprising because double merle 

Catahoula Leopard Dogs exhibit larger amounts of pigmentation than do other breeds. 

These phenotypic differences may result from a shorter average poly(A)-tail length in 

the breed or from modifying genes.  
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Conclusion 

Mobile elements promote genomic diversity through the addition, and occasional 

deletion, of genetic material. Those mutations which occur in or near coding regions 

may also influence phenotypic diversity by altering gene expression and function. These 

changes may manifest themselves as detrimental genetic disorders or as simple physical 

traits. In addition, variability within phenotypes may result from instability of the 

causative element. This is exemplified by merle patterning in the dog in which random 

spotting is determined by the total size of the SINE insertion. 
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CHAPTER ΙV 

ANALYSIS OF GENE TRANSCRIPT PROFILING AND IMMUNOBIOLOGY 

IN SHETLAND SHEEPDOGS WITH DERMATOMYOSITIS* 

Overview 

 Dermatomyositis (DM) is a canine and human inflammatory disease of the skin 

and muscle that is thought to be autoimmune in nature. In the dog, DM occurs most 

often in the rough collie and Shetland Sheepdog. Characteristic skin lesions typically 

develop on the face, ears, tail, and distal extremities. The severity of lesions varies and is 

thought to increase with stressful stimuli. Previous studies in the collie suggest that DM 

is inherited in an autosomal dominant fashion with incomplete penetrance. The work 

presented herein concerns the different levels of gene transcripts and immunobiology of 

DM in the Shetland Sheepdog. Gene transcript profiles were generated for affected and 

normal skin using a canine-specific oligonucleotide array having 49,929 probe sets. 

Two-hundred and eight-five gene transcripts, many of which are involved in immune 

function, were found to be differentially regulated in these tissues. Also reported are 

western blot, immunohistochemistry, and immunofluorescence analyses which showed 

that staining patterns with sera from normal and affected dogs are quite similar. While 

our work suggests that canine DM is a disease that may be immune mediated, it did not 

detect the production of specific disease-associated autoantibodies. 

____________ 
*Reprinted with permission from “Analysis of Gene Transcript Profiling and 
Immunobiology in Shetland Sheepdogs with Dermatomyositis” by Wahl, J.M., Clark, 
L.A., Skalli, O., Ambrus, A., Rees, C.A., Mansell, J.L., and Murphy, K.E., 2008. J Vet 
Derm., 19, 52-58, Copyright 2008 by Wiley-Blackwell Publishing Ltd  
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Introduction 

 In humans, dermatomyositis (DM) is an inflammatory disease of the skin and/or 

muscle that occurs in both children and adults. The childhood form, juvenile DM, 

presents much like the adult form but is accompanied by vasculitis and is classified into 

two types (Winkelmann, 1982). Type I exhibits rapid progression and is lethal (Banker 

and Victor, 1966), while Type II is chronic and less severe (Roberts and Brunsting, 

1954). Canine familial DM is most similar to Type II juvenile DM (Hargis and Mundell, 

1992). Canine DM is predominantly found in the Shetland Sheepdog and rough collie 

breeds (Haupt et al., 1985; Hargis and Mundell, 1992; Scott et al., 2000). In general, the 

Shetland Sheepdog presents primarily with skin lesions whereas the collie is more likely 

to have both skin lesions and muscle disease. Clinical signs in both breeds may occur as 

early as two to six months of age. These signs vary from mild to severe and start with 

small focal areas of crusting and scaling. Early signs of the disease usually begin on the 

face and lower extremities, often becoming more severe over time. Later stages of DM 

can be characterized by skin lesions that may include erythema, mottled pigmentation, 

and ulceration. Lesions occur primarily around the eyes, inner surfaces of pinnae, nose, 

lips, tail, and the distal extremities (Kunkle et al., 1985; Hargis and Mundell, 1992; Scott 

et al., 2000). One or more of these areas may be affected. Muscle lesions are rare in the 

Shetland Sheepdog but, when present, tend to coincide regionally with skin lesions and 

are more severe in the head and distal extremities. In severe cases, muscle lesions may 

cause difficulty in drinking and eating, reduced gag reflex, and an atypical high-stepping 

walk. Megaesophagus, which can be complicated by subsequent aspiration pneumonia, 
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may also occur. In some cases, euthanasia may be necessary due to a diminished quality 

of life (Hargis and Mundell, 1992; Scott et al., 2000). 

Familial studies of DM in the collie suggest that it is inherited in an autosomal 

dominant fashion with incomplete penetrance (Haupt et al., 1985). To date, inheritance 

studies in the Shetland Sheepdog have not been carried out. The undefined transmission 

genetics of DM combined with the inability to diagnose cases before symptoms are 

evident, make this a difficult disease to manage. An additional complication is that even 

when signs of disease are present, there is marked clinical heterogeneity among dogs, 

even those of the same breed. Interestingly, circulating autoantibodies in affected human 

patients have been found, thereby lending credence to the hypothesis that DM may be an 

autoimmune disease, at least in the human (Kaufmann et al., 2005; Targoff et al., 2006; 

Matsushita et al., 2007). The aims of the study reported herein were to (1) generate gene 

transcript profiles for dogs with DM and (2) characterize the immunobiology of this 

disease in the Shetland Sheepdog.   

Materials and Methods 

Population Selection and Sample Collection  

 Dogs were selected to participate in the study by a veterinary dermatologist (CR) 

based on historical, clinical and histopathological findings consistent with a diagnosis of 

canine familial DM. Dogs which were selected had developed skin lesions within the 

first two years of life. Skin lesions were located within one or more of the typical DM 

areas (face, ear tips, extremities, tail tip). These skin lesions consisted of erythema, 

alopecia, scaling, crusting, papules, erosions and ulcers. One or more of these lesions 
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was present in each dog.  The histopathological slides from all of the dogs included in 

the study were reviewed by one veterinary dermatohistopathologist (JM). The 

histopathological findings, as previously reported (Gross et al., 1992), consisted of 

scattered degeneration of basal epidermal cells  which was either vacuolated or necrotic 

along with dermal inflammation which was superficially diffuse and contained 

lymphocytes and histiocytes. Some biopsy samples had dermal inflammation that 

contained neutrophils. Follicular basal cell degeneration with follicular atrophy was 

consistently noted in all histologic sections. The normal control dogs that participated in 

the study were unaffected dogs without family histories of DM and of ages similar to the 

affected dogs. 

Skin samples for microarray and quantitative real time PCR analyses were 

obtained using a 6 mm punch biopsy instrument. Samples were collected from eight 

Shetland Sheepdogs: four dogs with DM (one male and three females; age range: 1 to 7 

years) and four normal dogs (one female and three males; age range: 0.5 to 9 years). 

Two biopsies were taken from each of the dogs with DM: one from a lesional area and a 

second from a non-lesional site (lateral thorax). A single skin sample was taken from the 

lateral thorax of normal dogs. Tissues were stored in RNAlater® (Ambion, Austin, TX, 

USA) until processed.  

Whole blood was collected from the four dogs with DM, three of the normal 

Shetland Sheepdogs and three normal non-Shetland Sheepdogs using standard 

venipuncture procedure. Sera was separated from whole blood and stored at 4 oC until 

used for western blot analyses and immunofluorescence studies.  
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All procedures were approved by the Clinical Research Review Committee of 

Texas A&M University, College of Veterinary Medicine & Biomedical Sciences. 

Microarray  
 
 The Canine 2.0 oligonucleotide microarray used in this study is manufactured by 

Affymetrix (http://www.affymetrix.com/products/arrays/specific/canine_2.affx ; Santa 

Clara, CA, USA)and contains 42,929 probe sets. RNA was isolated from skin by the 

method of Gauthier et al. (1997) and purified using RNeasy Mini columns (Qiagen, 

Chatsworth, CA, USA). Syntheses of first strand cDNA, second strand cDNA, and 

biotin-labelled cRNA were carried out with the linear RNA amplification kit 

MessageAmpTM aRNA (Ambion). Two micrograms of total RNA were used to start the 

single round of amplification. Duplicate experiments were performed for all samples. 

Labelled cRNA was fragmented at 95oC for 35 min in a solution containing 40 mM Tris-

acetate (pH 8.1), 100 mM KOAc, and 30 mM MgOAc. Forty micrograms of fragmented 

cRNA were hybridized to each GeneChip®. The chips were washed, stained and 

scanned as described by Ji et al. (2003).  

GeneChip® images were collected on the high resolution GeneChip Scanner 

3000. Image data were quantified and gene expression values were calculated using 

Affymetrix GeneChip Operating Software. The raw data were filtered to get rid of any 

probesets that had a signal value below 100, and to remove any genes with less than 2-

fold difference. The resulting ~4500 genes were then subjected to a paired t-test with 

Benjamin & Hochberg multiple testing correction (Benjamani and Hochberg, 1995) 

using GeneSpring software (Silicon Genetics, Redwood City, CA, USA). Significance 
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was identified with P-values <0.05. Skin samples from the eight Shetland Sheepdogs 

were analyzed in two separate groups: lesional skin from the four dogs with DM were 

compared to non-lesional skin from the same four dogs (Group 1) and, lesional skin 

from the four DM dogs were compared to non-lesional skin from the same dogs and 

normal skin from four control dogs (Group 2). 

Quantitative Real Time PCR (Q-RT-PCR)  

 RNA was treated with DNA-free DNAse (Ambion, Austin, TX). The primers 

and probe for KRT2A were designed using Primer3 (Rozen and Skaletsey, 2000) and the 

5′ and 3′ ends of the probe were labelled with 6-FAM and Black Hole Quencher™ 

(BHQ), respectively (Biosearch Technologies, Novato, CA, USA). The one-step 

QuantiTect Probe PCR kit (Qiagen, Inc., Valencia, CA) was used to carry out cDNA 

synthesis and Q-RT-PCR for KRT2A. Alternatively, a two-step protocol using TaqMan 

Gene Expression Assays (Applied Biosystems (ABI), Foster City, CA) was used to 

validate ADIPOQ and CCL24. cDNA synthesis was accomplished using the High 

Capacity cDNA Reverse Transcription Kit (ABI) and Q-RT-PCR was performed using 

TaqMan Universal PCR Master Mix, no AmpErase uracil DNA glycosylase (Longo et 

al., 1990) (Applied Biosystems). Q-RT-PCR was carried out using a BioRad MyiQ 

Single-Color Real-Time PCR Detection System (BioRad Inc., Hercules, CA). A 

standard curve for primer probe sets was created and the amount of cDNA added to the 

reactions was within this standard curve. All reactions were performed in triplicate and 

quantification of gene expression was achieved by normalization against GAPDH.  
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The comparative Ct method, also known as the 2−∆∆Ct method, where 

∆∆Ct = ∆Ct,sample – ∆Ct,reference,  was used to report the differential gene expression. Like 

for the microarray analysis, skin samples from the eight Shetland Sheepdogs were 

analysed in two separate groups: lesional skin from the four dogs with DM were 

compared to nonlesional skin from the same four dogs (Group 1), and lesional skin from 

the four DM dogs were compared to nonlesional skin from the same dogs and normal 

skin from four control dogs (Group 2). 

Western Blot 

 The sera from ten dogs (four affected Shetland Sheepdogs, three normal Shetland 

Sheepdogs, and three normal non-Shetland Sheepdogs) were tested on western blots 

generated from gels loaded with protein from normal canine skeletal muscle, normal 

canine skin, rat skeletal muscle, and rat liver, as well as with two human cell lines: A431 

carcinoma cells and U-373 MG glioblastoma cells, which both served as positive 

controls for blotting and staining protocols. Total tissue proteins were extracted and 

tissue samples were sonicated in 300 µL of sample buffer containing 10 mm Tris/Cl 

pH 6.8, 4% sodium dodecyl sulphate (SDS), 10% glycerol and 5 mm dithiothreitol. The 

samples were then centrifuged and the supernatant removed. Undissolved tissue was 

discarded after centrifugation. Protein concentrations were determined using the 

bicinchoninic acid assay (Smith et al., 1985), and 30 µg of protein were separated by 

SDS gel electrophoresis and then transferred onto a nitrocellulose membrane (Towbin et 

al., 1979). Non-specific binding was blocked with 5% non-fat milk solution. Incubations 

were then performed with dog sera from affected and normal dogs (diluted 1 : 250 with 
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phosphate buffered saline milk solution) at room temperature for two hours. After 

washing, membranes were incubated at room temperature for one hour with a 

horseradish peroxidase-conjugated secondary antibody (goat anti-dog IgG and IgM, 

diluted 1:1000 with PBS milk) (Kirkegaard & Perry Laboratories (KPL), Inc., 

Gaithersburg, Maryland, USA). Immunoreactivity was detected with 3,3',5,5'-

tetramethylbenzidine membrane peroxidase substrate (Kirkegaard & Perry 

Laboratories). 

Immunofluorescence 

 For immunofluorescence on tissues, 10 µm thick cryostat sections of frozen 

canine skeletal muscle or skin were fixed for five minutes in acetone at -20°C and air-

dried at room temperature for one hour. All canine sera from affected and normal dogs 

were diluted in PBS at 1:100, and were used to stain the sections for 30 minutes at room 

temperature. This was followed by three PBS washes of five minutes each. The 

secondary, goat anti-dog IgG + IgM fluorescein isothiocyanate conjugate was diluted 

1 : 100 in PBS, and incubated with the sections for 30 min at room temperature. This 

was followed by three PBS washes of 5 min each. After the last wash, cells were 

mounted in ProLong Antifade (Molecular Probes, Eugene, OR).  Microscope 

observations were carried out with an Axiophot microscope (Carl Zeiss, Oberkochen, 

Germany) equipped with epi-illumination and specific filters for fluorescein. 

Immunohistochemistry for CD3  
 
 Formalin-fixed paraffin-embedded tissues (skin from normal and affected dogs) 

were sectioned at 5 µm, mounted on silanized slides, deparaffinized and rehydrated. The 
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slides were heated in a coplin jar containing citrate buffer (pH 6) in a 97oC water bath 

for 20 minutes to unmask the antigen. The rehydrated slides were blocked with 3% 

hydrogen peroxide for 15 minutes. Five percent skimmed milk was used as the protein 

block. Slides were incubated with the primary antibody, CD3 (DakoCytomation, 

Carpinteria, CA) at 1:400 for 30 minutes at room temperature. The antigen was detected 

using a biotin-free polymer (MACH 2, Biocare Medical, Concord, CA). DAB (3,3'-

diaminobenzidine) (DakoCytomation, Carpinteria, CA) was used as the chromogen to 

visualize the target antigen (CD3). For each pair of slides, the primary antibody was 

substituted with a universal rabbit control (DakoCytomation, Carpinteria, CA). All slides 

were counterstained with Mayer’s haematoxylin. Slides were evaluated by a veterinary 

pathologist. 

Results 
 
Microarray 
 
 cRNAs isolated from 12 skin samples (four samples each from lesional and non-

lesional skin of dogs with DM and four from normal dogs) were used to probe the 

Canine 2.0 microarray. This revealed 285 genes from which transcripts were shown to 

be differentially expressed in normal dogs and dogs with DM. Transcripts were 

classified as either up-regulated (transcripts from the lesional skin exhibiting higher 

levels in comparison to the normal tissues), or down-regulated (transcripts from lesional 

skin exhibiting lower levels in comparison to the normal tissues). Two-hundred 

transcripts were up-regulated and 85 were down-regulated. A complete list of these can 

be found at http://www.cvm.tamu.edu/cgr/dm_microarray.htm . A significant number of 



47 
 

the differentially expressed genes in DM-affected dogs were found to be critical for a 

functional immune response. A group of these genes has been listed in Table 2.  

Table 2. A subset of genes important to immune function or involved in dermatologic conditions found to 
be up- or down-regulated in dogs with dermatomyositis 

Symbol Gene name Gene function Fold 
change Group*

ADIPOQ Adiponectin Anti-inflammation 26.3  2 

CCL24 Chemokine ligand 24 Inflammatory response  7.4  2 

HLA-
DMA MHC, class II, DM alpha Immune response  2.0  2 

LCP2 Lymphocyte cytosolic 
protein 2 

T-cell receptor 
signalling pathway  2.4  2 

C1QG Complement component 
1 Q gamma Complement activation  3.2  1 

C2 Complement component 
2 Complement activation  3.4  2 

C1S Complement component 
1S Complement activation  3.7  2 

CCL3 Chemokine ligand 3 Inflammatory response  3.8  2 

C1QG Complement component 
1 Q gamma Complement activation  3.9  2 

C1QA Complement component 
1 Q alpha Complement activation  4.0  2 

CTSS Cathepsin S Immune response  4.3  2 

TCIRG1 T-cell, Immune regulator 
1 

Cellular defence 
response  4.4  2 

IL1F8 Interleukin 1 family, 
member 8 Immune response  4.4  2 

CD48 CD48 antigen Defence response  4.5  2 
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Table 2 continued 

OAS1 2',5'-oligoadenylate 
synthetase 1 

Susceptibility to viral 
infection  4.8  1

IFI44 Interferon-induced protein 44 Response to virus  5.6  2

IFI16 Interferon, gamma inducible 
protein 16 Response to virus  5.7  2

CD16 Fc fragment of IgG Immune response  5.7  2

CCL23 Chemokine ligand 23 Inflammatory response  7.8  2

OASL 2'-5'-oligoadenylate 
synthetase-like Immune response  9.3  1

CD2 CD2 antigen Natural killer cell activation  9.8  2

GPR65 G protein-coupled receptor 65 Immune response 11.0  2

C5R1 Complement component 5, 
receptor 1 Cellular defence response 11.3  2

BF B-factor properdin Alternative complement 
pathway 11.3  2

CD64 Fc fragment of IgG Immune response 15.6  2

KRT2A Keratin 2 Defects cause Ichthyosis 
bullosa of Siemens 20.1  2

IGLV1-51 Immunoglobulin lamba 
variable 1–51 Immune response 22.3  2

LY9 Lymphocyte antigen 9 Humoral defence mechanism 29.5  2

*Group 1: lesional skin from four dogs with dermatomyositis were compared to 
nonlesional skin from the same four dogs; Group 2: lesional skin from four 
dermatomyositis dogs were compared to nonlesional skin from the same dogs and 
normal skin from four control dogs. 

 

Q-RT-PCR 
 
 To verify data from probing of the microarray, three genes from which 

transcripts were shown to be differentially expressed on the array were selected for Q-
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RT-PCR. Two genes, ADIPOQ and CCL24, were down-regulated and the third, KRT2A, 

was up-regulated. Expression patterns generated by the microarray were validated by the 

Q-RT-PCR experiments (Figures 8 and 9). There was no differential pattern of 

expression of GAPDH between samples in the affected and normal sample groups. 

 

Fold Change Trends in Q-RT-PCR and Microarray Analysis
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Figure 8. Significant fold change (greater than twofold and P < 0.05) for ADIPOQ, CCL24, and KRT2A 
for Group 2 (lesional skin from four dogs with dermatomyositis were compared to nonlesional skin from 
the same four dermatomyositis dogs and four normal dogs) based on microarray analysis and quantitative 
RT-PCR. 
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Q-RT-PCR Data for Group 1 and Group 2
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Figure 9.  Significant fold change (greater than twofold and P < 0.05) for ADIPOQ, CCL24, and KRT2A 
for Group 1 (lesional skin from four dogs with dermatomyositis were compared to nonlesional skin from 
the same four dogs) and Group 2 (lesional skin from four dogs with dermatomyositis were compared to 
nonlesional skin from the same four dermatomyositis dogs and four normal dogs) based on quantitative 
RT-PCR. 

 
Western Blot and Immunofluorescence 

 Western blot and immunofluorescence analyses were carried out using sera from 

four Shetland Sheepdogs with DM, three normal Shetland Sheepdogs, and three normal 

non-Shetland Sheepdogs to determine whether sera from affected dogs contain 

antibodies recognizing tissue proteins (i.e. normal canine skeletal muscle, normal canine 

skin, rat skeletal muscle, rat liver). All sera appeared to contain antibodies recognizing 

proteins on the blot, but there were no obvious differences in banding patterns between 

the sera from dogs with DM and normal dogs.  
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 The immunofluorescence analysis showed that muscle cells stained with the sera 

of both control and affected animals. Small blood vessel sections were also stained on 

skin sections, and again there was no obvious difference in the staining patterns or 

intensities between the sera of control versus affected dogs. 

Immunohistochemistry for CD3 

 Analysis of CD3 stained tissue sections revealed a mild T-cell infiltrate in DM 

lesions compared to normal dog skin. A mild infiltrate of lymphocytes, some staining 

positively with CD3 immunohistochemical stain, were present in the superficial dermis. 

There was no dramatic T-cell activation in the dog skin lesions, in contrary to that 

reported in humans (Caproni et al., 2004). 

Discussion 

 To identify candidate genes and pathways involved in DM, transcript profiles 

were generated for affected and normal dogs through microarray analysis. This revealed 

differential expression of 285 genes. A previous linkage analysis study suggested that a 

locus affecting the canine DM phenotype may be located near marker FH3570 on 

chromosome 35 (CFA 35) (Clark et al., 2005). Unfortunately, no differentially expressed 

genes were located on CFA35. 

A significant number of the differentially expressed genes in DM-affected dogs 

are critical for a functional immune response (Table 2), supporting the hypothesis that 

DM is an immune-mediated disease. Many of these genes are also implicated in human 

autoimmune disorders, such as lupus erythematosus, X-linked agammaglobulinemia 

type 1, muscular dystrophy, and complement deficiencies (i.e., C1q, C2, and C1s). The 



52 
 

different levels of mRNAs in our dogs, along with the association of these genes and/or 

the differential expression of these genes in human autoimmune diseases, lends further 

support that this is an autoimmune disorder in the dog despite the absence of disease 

specific autoantibodies. In humans, lupus erythematosus has been associated with 

defects in FCGR3A and C1QA (Kyogoku et al., 2002; Racila et al., 2003). More 

specifically, single nucleotide polymorphisms in C1QA have been associated with 

subacute cutaneous lupus erythematosus (Racila et al., 2003). The dogs in this study 

exhibited an up-regulation of both FCGR3A and C1QA. An up-regulation in BTK was 

also observed in DM-affected dogs. This is intriguing because in humans, mutations in 

BTK are the cause of X-linked agammaglobulinemia type 1, a humoral 

immunodeficiency disease that leads to defects in the maturation of B-cells. A lack of 

mature B-cells may lead to recurrent bacterial infections such as dermatitis 

(Aghamohammadi et al., 2006), which is a common occurrence in DM-affected dogs. 

Another gene of importance that is up-regulated in DM-affected dogs is SGCA. In 

humans, defects in SGCA are a cause of childhood autosomal recessive muscular 

dystrophy and limb-girdle muscular dystrophy type 2D (Romero et al., 1994; Angelini et 

al., 1998).  An important gene, ADIPOQ, was down-regulated by 26.3 fold in DM-

affected dogs. ADIPOQ has a similar crystal structure to the tumor necrosis factor (TNF) 

family, a group of proteins important in the control of inflammation, adaptive immunity, 

and apoptosis. ADIPOQ is also a close homolog of the complement protein C1q 

(Shapiro and Scherer, 1998). C1QA and several other complement genes were 

differentially regulated in affected dogs. Interestingly, humans with complement 
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deficiencies may develop several disorders including DM (Agnello, 1978; Ross and 

Densen, 1984).  

Autoantibodies are present in the sera of some humans with DM. Specifically, 

autoantibody anti-Mi2 has the strongest association with human DM, finding it almost 

exclusively in DM patients; however, it is present in <20% of US patients. A novel 

autoantibody, anti-p155, was present in 29% of patients with juvenile DM and appears to 

be more common than other autoantibodies (Targoff, 1993). Neither autoantibody has 

been specifically investigated in the dog and this is something that can be investigated in 

future studies. Western blot analyses were carried out to identify any antibody(ies) that 

may be present in the sera of affected dogs. Sera from ten dogs were blotted against 

normal skin and skeletal muscle from dog and mouse. Western blots did not show any 

obvious differences in banding patterns between the sera of normal and affected dogs. 

We cannot exclude the possibility that some antibodies were unable to recognize protein 

epitopes that were denatured by SDS during the procedure. We therefore examined 

whether these same sera contained autoantibodies by staining cellular structures using 

tissue sections. The results showed that sera from both normal and affected dogs 

contained antibodies that produce vascular staining of similar intensities. It is not 

unexpected that the sera of normal dogs contain antibodies recognizing native as well as 

denatured proteins because the presence of such antibodies in many animals that are 

apparently free of autoimmune diseases is well-documented (Yildiz et al., 1980; Guilbert 

et al., 1982; Serre et al., 1987). Pathogenic autoantibodies, on the other hand, are present 

in the sera of human patients with DM but not normal individuals. Our results suggest 
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that the sera of dogs affected by DM do not contain such pathogenic antibodies. 

Although autoantibodies have been associated with human DM (Targoff, 1993; Arnett et 

al., 1996; Okada et al., 2003), myositis-specific autoantibodies are not commonly found 

in juvenile DM patients (Feldman et al., 1996; Rider and Miller, 1997). If a specific gene 

of interest was identified, future studies may find the use of purified immunoglobulin to 

that protein more informative than sera. 

Immunohistological staining of affected and normal skin samples was used to 

assess the difference in immune and inflammatory complexes in lesional canine skin. 

Specifically, immunohistological staining focused on CD3 population of cells that 

infiltrate DM skin lesions. Autoreactive T-cells in autoimmune diseases, such as type I 

diabetes, have been shown to infiltrate and target multiple autoantigens (Han et al., 

2005). Comparison was made to normal skin in order to determine if there was an 

infiltrate of T cells in DM lesions. CD3 positive cells were found in skin lesions of DM 

but not in a dramatic manner (data not shown) as has been reported in human cases of 

DM (Caproni et al., 2004). 

The potential limitation to this study relates to the data obtained from the 

microarray analysis. Microarray analysis showed 285 differentially regulated transcripts 

between skin from DM affected dogs and skin from normal dogs. This represents a 

rather large number of genes to investigate and it is unknown if differences in transcript 

levels are the primary cause(s) of the disease, or are merely secondary effects (i.e., the 

genetic response to the disease). Therefore, selection of genes as candidates for being the 

cause(s) of DM is difficult based solely on microarray data. In addition, the statistical 
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method used to analyze our microarray data was the Benjamin and Hochberg multiple 

testing correction. This is not the most stringent test that could be used. The more 

stringent Bonferroni multiple testing correction could be used in the future to further 

analyze the data. We chose to use the Benjamin and Hochberg multiple testing 

correction in order to identify genes of biological significance to further investigate by 

Q-RT-PCR and immunobiological studies. 

Future studies should include analysis of complement in the Shetland Sheepdog. 

Complement deficiencies have been documented in humans with DM (Agnello, 1978; 

Ross and Densen, 1984). Because of the association between DM and complement 

deficiencies, Hargis et al. determined complement concentrations in seven dogs affected 

with DM and 22 control dogs (1988). This revealed no differences between the affected 

collies and normal collies. However, there was a significant difference in the 

concentrations of C2 between all collies and non-collie control dogs. This is intriguing 

because Shetland Sheepdogs and collies are the two most common breeds to present 

with DM. To date, complement concentrations have not been characterized in Shetland 

Sheepdogs with DM. Future studies aimed to characterize the complement 

concentrations in affected and normal Shetland Sheepdogs, as well as in various other 

breeds are needed. Evaluating other breeds will help determine if there is also a 

deficiency in the Shetland Sheepdog and collie that may predispose these breeds to 

immune-related disorders. Future canine DM studies could be extremely beneficial to 

elucidating both canine and human DM since there is a lack of understanding of the 

pathogenesis of this disease. 
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CHAPTER V 

SUMMARY 

 Presented herein is research on two canine traits that are models for human 

diseases: merle coat patterning and dermatomyositis. The availability of the sequence of 

the canine genome and genetic tools, such as naturally-occurring microsatellite markers 

and detailed linkage maps, has made the search for disease genes in the domestic dog 

more feasible and less time-consuming. In recent years, the study of canine hereditary 

diseases has revealed the genetic cause of multiple human hereditary diseases. Because 

of the high sequence similarity between the human and the dog, identification of disease 

genes in one organism can facilitate studies in the other.  

 Waardenburg Syndrome (WS) is an autosomal dominant auditory-pigmentation 

disorder in humans (1 per 40,000 live births) that accounts for 2% of all cases of 

congenital deafness. The phenotype of WS patients is quite similar to that observed in 

dogs which are heterozygous or homozygous for an allele at the merle locus. The genetic 

bases for all cases/types of WS have not been determined. Chapter II discusses the 

identification of the mutation causative for the merle phenotype in the domestic dog. A 

short interspersed nucleotide element (SINE) insertion at the boundary of intron 10/exon 

11 of SILV was identified and found to segregate with the merle phenotype in multiple 

breeds of the dog. Because of the phenotypic similarity between dogs with merle coat 

patterning and humans having WS, the identification of the role of SILV in the merle 

phenotype of the dog makes it an ideal candidate gene to investigate in human WS. A 

genetic test was created for the merle locus that can help responsible breeders of merle 
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dogs prevent undesirable double merle progeny by allowing them to 1) distinguish merle 

dogs from non-merle dogs in light-colored dogs that show little contrast between areas 

of dilution and full pigmentation; 2) classify harlequin Great Danes as single or double 

merle and 3) identify cryptic merles.  

 The discovery of the mutation causative for the merle phenotype in the domestic 

dog also served to shed light on canine SINEs. Our knowledge of SINEs has increased 

greatly in recent years, largely due to the assembly of whole genome sequences. Chapter 

III discusses the structure of canine SINEs and the unique features of the SINE that 

causes merle patterning, as well as the effect of the SINE on the cDNA of SILV . Both 

chapters II and III highlight the genetic cause of merle and discuss the phenotype that is 

commonly found in the Shetland Sheepdog, the breed in which our initial discovery of 

the merle locus was made. In addition, we used the availability of these dogs, in 

conjunction with other genetic tools, to study DM, a dermatologic condition that occurs 

commonly in the Shetland Sheepdog.  

 Chapter IV discusses the gene transcript profiling and immunobiology of 

dermatomyositis, a hereditary disease that affects Shetland Sheepdogs. With the use of 

microarray analysis, 285 gene transcripts, many of which are involved in immune 

function, were found to be differentially regulated between affected and unaffected 

Shetland Sheepdogs. Also reported are western blot, immunohistochemistry, and 

immunofluorescence analyses, which demonstrate the similarity between the staining 

patterns of sera from normal and affected dogs. Chapter IV suggests that canine DM is a 

disease that may be immune-mediated, although specific disease-associated 
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autoantibodies were not detected. Further studies on DM could help elucidate the roles 

of genes which are important in immune-mediated diseases in both the dog and the 

human.  

 In conclusion, this work discusses the first mutation described in SILV resulting in 

a disease phenotype and evidence to suggest a critical role for SILV in normal 

mammalian development. Through the investigation of SILV, more evidence has been 

revealed for the role of canine SINEs in pigmentation and disease. In addition, this work 

also highlights important gene transcript profiling and immunobiology studies on 

dermatomyositis in the Shetland Sheepdog that are beneficial in understanding the 

pathogenesis of this disease in both the dog and the human. 
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