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ABSTRACT 

 

Examination of High Resolution Rainfall Products and Satellite Greenness Indices for 

Estimating Patch and Landscape Forage Biomass. (May 2008) 

Jay Peter Angerer, B.S., Texas Tech University; 

M.S., Texas A&M University 

Chair of Advisory Committee:  Dr. X. Ben Wu 

 

Assessment of vegetation productivity on rangelands is needed to assist in timely 

decision making with regard to management of the livestock enterprise as well as to 

protect the natural resource.  Characterization of the vegetation resource over large 

landscapes can be time consuming, expensive and almost impossible to do on a near 

real-time basis.  The overarching goal of this study was to examine available 

technologies for implementing near real-time systems to monitor forage biomass 

available to livestock on a given landscape.  The primary objectives were to examine the 

ability of  the Climate Prediction Center Morphing Product (CMORPH) and Next 

Generation Weather Radar (NEXRAD) rainfall products to detect and estimate rainfall at 

semi-arid sites in West Texas, to verify the ability of a simulation model (PHYGROW) 

to predict herbaceous biomass at selected sites (patches) in a semi-arid landscape using 

NEXRAD rainfall, and to examine the feasibility of using cokriging for integrating 

simulation model output and satellite greenness imagery (NDVI) for producing 

landscape maps of forage biomass in Mongolia’s Gobi region. 

 

The comparison of the NEXRAD and CMORPH rainfall products to gage 

collected rainfall revealed that NEXRAD outperformed the CMORPH rainfall with 

lower estimation bias, lower variability, and higher estimation efficiency.  When 

NEXRAD was used as a driving variable in PHYGROW simulations that were 

calibrated using gage measured rainfall, model performance for estimating forage 

biomass was generally poor when compared to biomass measurements at the sites. 
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However, when model simulations were calibrated using NEXRAD rainfall, 

performance in estimating biomass was substantially better.  A suggested reason for the 

improved performance was that calibration with NEXRAD adjusted the model for the 

general over or underestimation of rainfall by the NEXRAD product.  In the Gobi region 

of Mongolia, the PHYGROW model performed well in predicting forage biomass except 

for overestimations in the Forest Steppe zone.  Cross-validation revealed that cokriging 

of PHYGROW output with NDVI as a covariate performed well during the majority of 

the growing season.  Cokriging of simulation model output and NDVI appears to hold 

promise for producing landscape maps of forage biomass as part of near real-time forage 

monitoring systems. 



 

 

v

ACKNOWLEDGEMENTS 

 

First of all, I would like to sincerely thank Dr. Ben Wu for serving as my committee 

chairman and advisor.  Dr. Wu graciously took over as chairman after the passing of my 

original advisor, Dr. Jerry Stuth.  His willingness to accept me as a student very late in 

my program, as well as his assistance and patience in completing the dissertation is 

greatly appreciated.  I would also like to thank him for introducing me to geostatistics.  

The lectures and project in his Landscape Analysis class initiated my thoughts about 

how to combine simulation modeling and satellite imagery for mapping of forage 

biomass, and provided the basis for the study reported in Chapter IV of this dissertation. 

 

I would also like to thank Dr. Bradford Wilcox, Dr. William Grant, and Dr. 

Raghavan Srinivasan for serving on my committee and their patience during the time it 

took me to complete my program.  Dr. Wilcox, through his suggestion that I study Dr. 

Keith Beven’s hydrological modeling research, provided me with a new perspective on 

simulation modeling.  Dr. Grant’s class was extremely helpful in understanding the 

simulation modeling process.  Dr. Srinivasan’s support and encouragement over the 

years is greatly appreciated. 

 

 I am very grateful for the willingness of the Kelleher and Hayne families to let us 

conduct research on the beautiful Catto-Gage Ranch and for allowing us to install two 

weather stations on their property.  They also provided housing and vehicles during our 

visits to the ranch, and without their support, this research would not have been possible.  

I would also like to sincerely thank Don Keeling, senior ranch manager for the Catto-

Gage, who was instrumental in helping us get the research started at the ranch and for his 

understanding of how this research could be beneficial for livestock production.  Catto-

Gage ranch manager, Brent Charlesworth, provided much needed assistance and 

logistical support, and made our stays at the ranch a pleasant experience.  I would like to 

extend thanks to John Rizzo for coordinating access to the ranch with the family and for 



 

 

vi

his support during the past 4 years.  The assistance of Frank Galvan, Kelly Guynes, and 

other ranch personnel is also appreciated. 

 

The team at the Center for Natural Resources Information Technology is 

outstanding, and they provided valuable expertise and assistance in many aspects for 

these studies. The assistance and support from Dr. Richard Conner and Mr. Wayne 

Hamilton are greatly appreciated.  Dr. Jimmy Wu built the scripts and platform for 

extracting the NEXRAD and CMORPH weather data.  Jim Bucher assisted in 

transferring the plant and soil data into the PHYGROW modeling interface.  Tim Brown 

has been a great friend over the years, helping with soil parameterization and data 

collection.  Jason Jones, Bryce Thomas, and Stephen Prince assisted with data collection 

and weighing samples.  Jennifer Jacobs and Dr. Balaji Narasimhan of the Spatial 

Sciences Laboratory provided advice and information on NEXRAD data. I appreciate 

each of these individuals’ contributions in helping me complete this work. 

 

The Gobi Forage team has been a pleasure to work with and was instrumental in 

the completion of the forage mapping study in Mongolia.  Dr. Doug Tolleson has been a 

good friend and colleague, and made the trips to Mongolia even more enjoyable.  Sean 

Granville-Ross’ management of the project in Mongolia and the hospitality that he and 

his wife Charlie provided during my trips to Mongolia is greatly appreciated.  Dr. 

Dennis Sheehy assisted with data collection and developing sampling strategies, and I 

thoroughly enjoyed our many conversations about Mongolia’s rangelands.  Dr. Tsogoo 

Damdin, Dr. Udval Gombosuren, Bolor-Erdene Lhamsuren, Urgamal Magsar, 

Narangerel Davaasuren, and Tsolmon Namkhainyam put in many long hours in both the 

office and the field to collect data for the PHYGROW modeling and landscape mapping.  

Without their help this work would not have been possible.  Erka and Enkhbat did much 

of the driving to many of the remote sampling locations, and I appreciate their dedication 

and assistance.  Steve Zimmerman, Tim Stewart, Peter Ormel, and many others from 

Mercy Corps Mongolia provided valuable assistance throughout the study.   



 

 

vii

 

I am very grateful to the Texas Water Resources Institute (TWRI) who provided 

funding to purchase the weather stations.  I would also like to thank the The United 

States Agency for International Development (USAID) and the Global Livestock 

Collaborative Research Support Program (GL-CRSP) for their funding and support of 

the study in Mongolia. 

 

I am also deeply indebted to Dr. Jerry Stuth who was instrumental in convincing 

me to pursue a Ph.D. and for giving me the opportunity to work on important rangeland 

issues throughout the world.  Jerry had a limitless imagination and was always willing to 

listen to my ideas, regardless of how harebrained they might be.  His untimely death in 

April 2006 brought sadness to all of us who knew him well, and his contributions and 

support will be missed for a very long time. 

 

I greatly appreciate the support and encouragement that my parents, Jim and 

Vivian, have provided over the years.  I am also grateful for the encouragement and 

support from my brothers (Chris, Doug and Nick), my sister (Barbara) and their families.  

I also appreciate the encouragement and kindness from my wife’s family (Don, Martha, 

Gretcha, and Rob). 

 

Lastly, I would like to express my gratitude and love for my beautiful wife 

SuZan.  She has endured many long hours without me during my data collection trips to 

West Texas and Mongolia, as well as all the time I have spent studying and writing to 

complete my Ph.D.  I will be forever grateful for her love, patience, understanding, 

encouragement and support that she has given me during this long process.  

 



 

 

viii

TABLE OF CONTENTS 

 

             Page 

ABSTRACT ..............................................................................................................  iii 

ACKNOWLEDGEMENTS ......................................................................................  v 

TABLE OF CONTENTS ..........................................................................................  viii 

LIST OF FIGURES...................................................................................................  xi 

LIST OF TABLES ....................................................................................................  xiv 

CHAPTER 

 I INTRODUCTION................................................................................  1 

 II  A COMPARISON OF TWO HIGH-RESOLUTION RAINFALL 
PRODUCTS TO GAGE-MEASURED RAINFALL IN FAR 

  WEST TEXAS .....................................................................................  6 

   Introduction ....................................................................................  6 
   Methods..........................................................................................  10 
    Study Area................................................................................  10 
    High Resolution Rainfall Products...........................................  11
    Automated Weather Stations....................................................  15 
    Statistical Analysis ...................................................................  19 
   Results ............................................................................................  22 
    Rainfall Detection Ability ........................................................  22 
    Rainfall Estimation Ability ......................................................  26
   Discussion ......................................................................................  31
    Rainfall Detection ....................................................................  31 
    Rainfall Estimation...................................................................  34 
 
 III USE OF HIGH RESOLUTION NEXRAD RAINFALL IN 

BIOPHYSICAL MODELING OF FORAGE BIOMASS ON 
RANGELANDS: AN EVALUATION OF MODEL  

  PERFORMANCE ................................................................................  38 
  
  Introduction ..........................................................................................  38 
 
 



 

 

ix

CHAPTER            Page 

  Methods................................................................................................  42 
    Study Area................................................................................  42

  Simulation Model.....................................................................  46 
    Model Parameterization and Evaluation at Weather  
    Stations.....................................................................................  47 
    Model Evaluation of Grazed Location Simulations 
    Using NEXRAD.......................................................................  53 
   Results ............................................................................................  55 
    Simulation with Measured Rainfall .........................................  55 
    Simulation with NEXRAD Rainfall.........................................  60 
    Simulation Using NEXRAD Rainfall on Grazed Sites............  62 
   Discussion ......................................................................................  65 
 
 IV COKRIGING OF BIOPHYISCAL MODEL OUTPUT AND A 
  SATELLITE GREENNESS INDEX TO PREDICT FORAGE  
  BIOMASS IN THE GOBI REGION OF MONGOLIA ......................  70 
 
   Introduction ....................................................................................  70 
   Methods..........................................................................................  74 
    Study Area................................................................................  74 
    Simulation Model.....................................................................  76 
    Site Selection and Model Parameterization ............................  77 
    Climate Data Sources ..............................................................  80 
    Model Calibration and Evaluation ...........................................  82 
    Geostatistical Interpolation ......................................................  82 
    Independent Map Verification .................................................  85 
    Statistical Measures of Performance........................................  86 
   Results ............................................................................................  89 
    Simulation Model Performance ...............................................  89 
    Cokriging of Forage Biomass ..................................................  92 
    Independent Map Verification .................................................  100 
   Discussion ......................................................................................  104 
 
 V SUMMARY .........................................................................................  108 
 
   Ability of NEXRAD and CMORPH to Detect and  
   Estimate Rainfall ............................................................................  109 
   PHYGROW Simulation Model Performance Using  
   NEXRAD Rainfall .........................................................................  110 
   Cokriging to Predict Forage Biomass in the Gobi Region 
   of Mongolia ....................................................................................  111 
 



 

 

x

 
             Page 

REFERENCES..........................................................................................................  114 

APPENDIX A ...........................................................................................................  126 

VITA .........................................................................................................................  127 



 

 

xi

LIST OF FIGURES 

 

FIGURE                                                                                                                        Page 

  
 2.1 Location of the study area in Brewster County, TX ..................................  12 
 

2.2 Landsat Enhanced Thematic Mapper Geocover mosaic image 
 draped over a hillshade representation of the 30-m Digital Elevation  
 Model to provide an aerial view of the changing topography at the  

  study area (outlined in black) near Marathon, TX .....................................  13 
 
 2.3 Average monthly rainfall (mm), average monthly maximum  
  temperature (ºC) and average monthly minimum temperature (ºC)  
  during the period from 1970 to 2000 in Marathon, TX .............................  14 
 
 2.4 Location of the study area and automated weather stations in  
  West Texas in relation to NEXRAD radar locations .................................  16 
 
 2.5  Spatial resolution (grid size) of the A) CMORPH and B) NEXRAD  
   rainfall products in relation to the weather station locations at the  
   study site.....................................................................................................  17 
 
 2.6  Comparison of daily station rainfall (mm) versus the CMORPH  
   rainfall product estimate for the A) West Point station and B) Twin  
   China station located at the study site near Marathon, TX ........................  27 
 
 2.7  Comparison of daily station rainfall (mm) versus the NEXRAD  
   rainfall product estimate for the A) West Point station and B) Twin  
   China station located at the study site near Marathon, TX ........................  28 
 
 2.8  Comparison of daily station rainfall (mm) versus the CMORPH  
   rainfall product estimate for the A) monsoon (June 1 to September  
   30) and B) non-monsoon season (October 1 to May 31) ...........................   30 
 
 2.9  Comparison of daily station rainfall (mm) versus the NEXRAD  
   rainfall product estimate for the A) monsoon (June 1 to September 
    30) and B) non-monsoon season (October 1 to May 31) ...........................  32 
 
 3.1  A Landsat Enhanced Thematic Mapper Geocover mosaic image  
   draped over a hillshade representation of the 30-m Digital  
   Elevation Model to depict the terrain and changing elevation  
   in the study area and surrounding environment .........................................  43 



 

 

xii

 
FIGURE                                                                                                                        Page 

 
 3.2 Average monthly rainfall (mm), average maximum temperatures 
  (ºC), and average minimum temperatures (ºC), during the period  
  from 1970 to 2000 at the official recording station closest to the  
  study area (Marathon, TX) .........................................................................  44 
 
 3.3 Location of automated weather stations and transects used for  
  evaluation of the PHYGROW simulation model for predicting  
  herbaceous biomass on rangeland near Marathon, TX ..............................  48 
 
 3.4 Comparison of A) observed mean herbaceous biomass (kg/ha)  
  measurements to the herbaceous biomass predicted by the  
  PHYGROW simulation model and the corresponding B) cumulative  
  rainfall for two different modeling scenarios at the West Point  
  weather station location..............................................................................  56 
 
 3.5 Comparison of A) observed mean herbaceous biomass (kg/ha)  
  measurements to the herbaceous biomass predicted by the  
  PHYGROW simulation model and the corresponding B) cumulative  
  rainfall (mm) for two different modeling scenarios at the Twin China  
  weather station location..............................................................................  58 
 
 3.6 A comparison of observed mean herbaceous biomass measurements  
  (kg/ha) to those predicted by the PHYGROW model during A)  
  calibration and B) model verification using NEXRAD rainfall.................  63 
 
 4.1 Aimag (province) boundaries and natural zones within the study  
  area in Mongolia.........................................................................................  75 
 
 4.2. Location of monitoring sites (black dots) and independent map  
  verification sites (red triangles) within the study area in the Gobi  
  region of Mongolia.....................................................................................  78 
 

4.3 Relationship between observed forage biomass (kg/ha ± standard  
 error bars) and PHYGROW model predicted forage biomass for  
 monitoring sites that were A) calibrated and B) verified in the  
 Gobi Region of Mongolia ..........................................................................  91 

 
  
 
 



 

 

xiii

 
FIGURE                                                                                                                        Page 

 
 4.4 Semivariance/cross covariance surfaces and the associated  
  empirical variogram/covariogram and fitted spherical models  
  for the A) forage biomass, B) NDVI, and the C) cross-covariance  
  between biomass and NDVI for the period of September 1 to  
  September 15, 2006....................................................................................  95  
 
 4.5 Bimonthly cokriged maps of forage biomass (kg/ha) during the  
  2005 growing season for the Gobi region in Mongolia .............................  101 
 
 4.6 Bimonthly cokriged maps of forage biomass (kg/ha) during the  
  2006 growing season for the Gobi region in Mongolia .............................  102 
 
 4.7 Relationship between observed forage biomass (kg/ha ± standard  
  error bars) and cokriging predicted forage biomass for  
  independent map verification sites in the Gobi region of  
  Mongolia ....................................................................................................  103 



 

 

xiv

LIST OF TABLES 

 

TABLE                                                                                                                         Page 

 
 2.1 Two-way contingency tables (rain or no rain) and contingency  
  statistics for a comparison of the ability of two high resolution 
  rainfall products (CMORPH and NWS) to detect rainfall  
  measured at weather stations near Marathon, TX ......................................  23 
 
 2.2 Two-way contingency tables (rain or no rain) and contingency  
  statistics for a comparison of the ability of two high resolution  
  rainfall products (CMORPH and NEXRAD) to detect rainfall  
  measured during different rainfall seasons (monsoon and  
  non-monsoon) at weather stations near Marathon, TX ..............................  25 
 
 3.1 The percent plant community composition measured on transects  
  located at the West Point and Twin China weather stations near  
  Marathon, TX .............................................................................................  49 
 
 3.2 Statistics for evaluation of the PHYGROW model’s ability 
  to simulate herbaceous biomass production (kg/ha) at the West  
  Point study site near Marathon, TX ...........................................................  57 
 
 3.3 Statistics for evaluation of the PHYGROW model’s ability  
  to simulate herbaceous biomass production (kg/ha) at the Twin  
  China study site near Marathon, TX ..........................................................  59 
 
 3.4 Statistics for calibration and validation performance on the  
  ability of the PHYGROW model, using NEXRAD rainfall, to  
  predict herbaceous biomass at multiple sites across the study  
  area near Marathon, TX .............................................................................  64 
 
 4.1 Statistics for performance assessment of the PHYGROW model to  
  predict forage biomass at monitoring sites established across the  
  Gobi region of Mongolia under model calibration and verification ..........  89 
 
 4.2 Bimonthly statistics for forage biomass predictions from the  
  PHYGROW model at monitoring sites in the Gobi region of  
  Mongolia during the growing season in 2005 and 2006 ............................  92 
 
 

 



 

 

xv

TABLE                                                                                                                         Page 

 
 4.3 Bimonthly statistics for Normalized Difference Vegetation Index  
  (NDVI) in 8 x 8 km grid resolution across the Gobi region of  
  Mongolia during the growing season in 2005 and 2006 ............................  93 
 
 4.4 Pearsons correlation coefficients (r) between PHYGROW  
  Simulated forage biomass and Normalized Difference Vegetation  
  Index values during the 2005 and 2006 growing season for  
  monitoring sites in the Gobi region of Mongolia .......................................  94 
 
 4.5 Parameters for semivariance models used to examine spatial  
  structure in PHYGROW simulated forage biomass, Normalized  
  Difference Vegetation Index (NDVI), and the cross covariance  
  between the forage biomass and NDVI at monitoring sites during  
  bimonthly periods in 2005 and 2006..........................................................  96  
 
 4.6 Cross-validation analysis statistics for cokriging of PHYGROW  
  simulation model and Normalized Difference Vegetation Index  
  (NDVI) data to estimate forage standing crop across the Gobi  
  region of Mongolia during the growing season (June to  
  September) in 2005 and 2006.....................................................................  99 
 
 4.7 Statistics for evaluating the performance of cokriging  
  interpolation of PHYGROW derived biomass at independent  
  map verification sites established across the Gobi region  
  of Mongolia ................................................................................................  103 
 



 

 

1

CHAPTER I 

INTRODUCTION 

 

The ability to characterize the productivity of vegetation over large landscapes can be an 

important component in the assessment of drought impacts, natural resource 

management options, environmental degradation, and economic impacts of changing 

technologies.  However, the time and resources required to conduct accurate assessments 

of vegetation productivity over large landscapes are prohibitive.  Another complicating 

factor is that decisions regarding livestock stocking/destocking may require near real-

time information, especially in the face of drought.  Vegetation productivity assessment 

is almost impossible to conduct over large land areas on a near real-time basis, thus the 

information needed for livestock decision making is not always available when it is 

needed most.  The inability to make stock/destock decisions at critical times could lead 

to vegetation overuse, which in turn, could lead to thresholds being crossed that that 

move the vegetation and soil resources on a trajectory toward degradation (Trimble and 

Mendel 1995; Evans 1998).   

 

Improvements in computing power and capacity, along with near real-time 

production of climate data and remote sensing imagery offer the opportunity to develop 

near real-time systems for monitoring vegetation on rangelands.  In the past, much of the 

climate data available to users was from weather stations generally located in cities and 

towns.  However, these data are not always reflective of the climate in the more remote, 

rangeland areas.  The emergence of technology for estimating precipitation using 

techniques such as cold cloud temperatures (e.g., Herman et al. 1997; Xie and Arkin 

1998) and Doppler radar (e.g., Whiton et al. 1998a,b) have made spatially explicit 

climate data available in these remote areas, thus increasing their potential for use in 

near real-time systems.  

__________ 

This dissertation follows the style and format of Landscape Ecology. 
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Improved computing power and capacity has also increased the use of simulation 

modeling for agriculture systems, including rangelands.  The application of these models 

on rangelands includes simulations for hydrology, soil erosion, plant growth, or 

combinations of these (Bouraoui and Wolfe 1990).  Models that have been used to 

predict plant biomass on rangelands include the Simulation of Production and Utilization 

of Rangelands (SPUR) (Wight and Skiles 1987; Carlson and Thurow 1992), Ekalaka 

Rangeland Hydrology and Yield Model (ERHYM-II) (Wight and Neff 1983), Water 

Erosion Prediction Project (WEPP) (Flanagan and Nearing 1995), Agricultural Land 

Management Alternatives with Numerical Assessment Criteria (ALMANAC) (Kiniry et 

al. 2002), Ecological Dynamics Simulation Model (EDYS) (Childress et al. 2002), and 

the Phytomass Growth Simulator Model (PHYGROW) (Stuth et al. 2003a).  Of these 

models, only the PHYGROW model has been used for near real-time forage monitoring 

(Stuth et al. 2003b; Ryan 2005; Stuth et al. 2005).  Little information is available on how 

these rangeland models perform using the currently available high resolution rainfall 

products and how these compare to performance using measured rainfall at a given site. 

 

A limitation of many forage simulation models is that most provide simulation 

output for a specific point.  Ideally, one would want to simulate as many points (or sites) 

as possible to represent a region or landscape, especially for the determination of 

biomass for livestock decision making.  However, the amount of effort and cost for 

model parameterization on a large number of points can be prohibitive.  An alternative 

approach is to conduct simulations for a number of points and then use geostatistical 

interpolation methods, such as kriging or cokriging, to create surface maps of simulation 

output for a region or landscape (Stuth et al. 2003b; Stuth et al. 2005).  These surface 

maps can then be used represent spatially explicit vegetation production allowing users 

to monitor conditions and to determine livestock stocking rates.  

 

As an interpolation method, ordinary kriging can provide estimates for 

unsampled points by using the weighted linear average of the available samples (Rossi et 
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al. 1994).  Cokriging offers additional advantages over ordinary kriging in that it 

involves the use of a secondary variable (covariate) that is cross-correlated with the 

primary or sample variable of interest.  The secondary variable is usually sampled more 

frequently and regularly (Isaaks and Srivastava 1989), thus allowing estimation of 

unsampled points using both variables.  Remote sensing imagery provides a dense and 

exhaustive data set that can serve as a secondary variable for geostatistical interpolation 

given a correlation between the primary and secondary variable (Dungan 1998).  

Satellite derived vegetation indices, most notably the Normalized Difference Vegetation 

Index (NDVI), have been found to be correlated to vegetation productivity (Tucker et al. 

1985; Tucker and Sellers 1986; Wylie et al. 1991; Sannier et al. 2002; Al-Bakri and 

Taylor 2003; Schino et al. 2003; Pineiro et al. 2006; Wessels et al. 2006), thus making 

these products suitable for use as a secondary variable in geostatistical analysis.  On 

rangelands, NDVI has generally been used as a predictor variable for vegetation biomass 

(e.g., Tucker and Sellers 1986; Al-Bakri and Taylor 2003; Frank and Karn 2003), but 

has not been extensively used as a covariate in geostatistical interpolation of biomass.  

Vegetation indices produced through the National Oceanic and Atmospheric 

Administration Advanced Very High Resolution Radiometer (NOAA-AVHRR) and the 

Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data streams have 

high temporal frequency (daily acquisition with 10 to 16 day compositing intervals) 

making them attractive for use in near real-time systems.  The NOAA-AVHRR data has 

a relatively long historical record (1981 to present), global coverage, and a resolution of 

1 km.  This data set has been a major component of early warning systems for Africa 

(Hutchinson 1991; Rowland et al. 2005).  The MODIS data collection is a more recent 

set of products (2000 to present) and is produced at multiple resolutions (250, 500 and 

1000 m).   

 

In many developing countries, infrastructure and funding is not available for 

characterization of vegetation conditions for livestock decision making.  Since livestock  
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is a main component of wealth and livelihoods in many of these countries, shortages in 

forage supply brought about by drought and other climatic disasters can be devastating.  

The ability to characterize the vegetation resource over large land areas on a near real-

time basis can improve lead time for decision making at local, regional, and national 

levels.  Given that products such the NOAA-AVHRR and MODIS vegetation indices, 

along with several of the of the high resolution rainfall products, have global extent the 

ability to develop near real-time systems using these products increases the ability to 

more easily extend them to other areas, thus reducing costs and time of implementation. 

 

 The overall goal of this study was to examine available technologies for 

implementing a near real-time system for monitoring biomass available to livestock on a 

given landscape, thus allowing more precise monitoring of the forage resources to 

improve decision making about animal numbers and the vegetation resource.  The 

specific objectives of this study were:   

1. Examine the correspondence of two different near real-time rainfall products to 

that collected from fixed-location automated weather stations located in the 

Trans Pecos region of Texas (Chapter II).  The rainfall products and resolutions 

were as follows: 

a. National Oceanic and Atmospheric Administration (NOAA) Climate 

Prediction Center Morphing Product (CMORPH) rainfall with 8 km 

resolution. 

b. National Weather Service (NWS), Next Generation Weather Radar 

(NEXRAD) New Precipitation Analysis with 4 km resolution.  

2. Verify the ability of a simulation model (PHYGROW) to predict standing crop of 

herbaceous biomass at selected sites (patches) in the Trans Pecos region of Texas 

using the near real-time rainfall product having the best correspondence with 

measured rainfall (Chapter III).   
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3. Determine the feasibility of using the Normalized Difference Vegetation Index 

(NDVI) as a covariate in cokriging biomass output from a simulation model in 

order to produce landscape maps of herbaceous biomass on a near real-time basis 

in the Gobi region of Mongolia (Chapter IV). 
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CHAPTER II 

A COMPARISON OF TWO HIGH-RESOLUTION RAINFALL PRODUCTS  

TO GAGE-MEASURED RAINFALL IN FAR WEST TEXAS 

 

Introduction 

 

During the past 30 years, efforts have increased to estimate the spatial distribution of 

rainfall to improve flood, drought, and water monitoring and management (Grimes et al. 

1999; Legates 2000; Moon et al. 2004).  Historically, rainfall has been measured in 

gages at point locations and this is generally viewed as the most accurate representation 

of precipitation amounts (Arkin and Meisner 1987; Schmidt et al. 2000).  However, for 

regional remote area monitoring, the spatial distribution of rainfall over the region is 

needed. This becomes problematic where the number of gages is sparse (Grimes et al. 

1999), but has been partially overcome by advances in estimation of precipitation from 

geostationary satellite imagery (e.g., Arkin and Meisner 1987; Herman et al. 1997; Joyce 

et al. 2004) and from radar (e.g., Fulton et al. 1998; Whiton et al. 1998b; Young et al. 

2000) or combinations of these with traditional rain gage measurements (Grimes et al. 

1999; Legates 2000; Seo and Breidenbach 2002; Moon et al. 2004). 

 

Satellite estimation of precipitation generally involves the use of algorithms that 

estimate rainfall based on thermal infrared imagery collected by geostationary satellites 

(Arkin and Meisner 1987; Grimes et al. 1999).  These algorithms calculate the 

temperatures of cloud tops based on the thermal infrared measurements and estimate 

rainfall amounts based on the temperature of the cloud and its duration over a given area 

(Herman et al. 1997).  For example, Arkin and Meisner (1987) developed the GOES 

Precipitation Index which estimates precipitation based on the duration that cold clouds 

occupy a region.  Their algorithm predicts 3 mm of precipitation for each hour that cloud 

top temperatures stay below 235º K within a 2.5 º x 2.5 º moving window.  A limitation 

to this methodology is that it estimates precipitation indirectly and therefore is not 
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calibrated against any known precipitation measurements (Grimes et al. 1999).  Herman 

et al. (1997) developed techniques to overcome this by doing a near real-time bias 

correction between gage collected rainfall and the GOES Precipitation Index.  Grimes et 

al. (1999) notes that the gage correction works well in areas of dense gage networks, but 

it is limited in areas with a low number of gages.  They developed techniques for 

improving satellite rainfall estimates by using historical gage data and an interpolation 

technique that does weighted averaging of the satellite and rainfall data.   

 

A more recent satellite rainfall estimation technique is the Climate Prediction 

Center Morphing Technique (CMORPH) (Joyce et al. 2004).  This method combines 

thermal infrared imaging for cold clouds along with passive microwave data to estimate 

precipitation around the globe every 30 minutes at relatively high resolution (8 km 

pixels).  The algorithm estimates precipitation from passive microwave observations and 

propagates these in time and space using the thermal infrared imagery from 

geostationary satellites.  Joyce et al. (2004) state that the passive microwave data provide 

better estimates of rainfall but their deployment on polar orbiting satellite platforms 

limits their spatial and temporal sampling characteristics.  Conversely, the spatial and 

temporal sampling characteristics are quite good for thermal infrared measurements 

from geostationary satellites, but rainfall estimated from this imagery can be poor, 

especially in areas where the rainfall is orographic rather than convective.  For the 

CMORPH algorithm, the passive microwave and the thermal infrared imagery have been 

combined to take advantage of the overall strengths of each.  Joyce et al. (2004) reported 

that the CMORPH method generally outperformed other passive microwave and thermal 

infrared products and had similar performance to radar for estimating precipitation.  One 

shortcoming of the method noted by the authors was the over-prediction of precipitation 

in areas of ice and snow cover. 

 

Radar estimation of precipitation is a more direct method of precipitation 

measurement when compared to satellite methods in that the information gathered by the 
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radar is related to droplet size rather than some byproduct of precipitation such as cloud 

temperature (Arkin and Meisner 1987).  Radar estimation of precipitation generally 

involves the use of Doppler radars.  Since 1991, the US Government has installed a 

series of these radars across the US under the program known as Next Generation 

Weather Radar system (NEXRAD) (Fulton et al. 1998).  The purpose of this program is 

to gather real-time data on precipitation to improve weather forecasting, flood 

monitoring, and hydrological monitoring (Fulton et al. 1998; Young et al. 1999).   

 

The algorithm for estimating precipitation used by the NEXRAD system is a 

power law relationship between the radar reflectivity and the precipitation amount.  The 

relationship is as follows:  

R = aZb           [2.1] 

where R is rainfall rate (mm/h), a and b are parameters that are adjustable for different 

regions, and Z is the radar reflectivity factor (mm6/m3) (Fulton et al. 1998; Young et al. 

1999).  The Z factor is estimated from the back scatter power measured by the radar and 

is related to the amount of water droplets in the atmosphere (Young et al. 1999).  Radar 

measurement has a dual strategy of estimating rainfall in a 360 degree pattern 

(horizontal) while also measuring the atmosphere at 0.5 to 20 degrees from the horizon 

(vertical).  This hybrid scan attempts to measure rainfall as near to ground level as 

possible while also trying to minimize contamination of precipitation estimates caused 

by ground returns (Young et al. 1999).   

 

Several sources of errors and issues with NEXRAD data have been identified 

that can lead to over or under estimation of precipitation.  Legates (2000) described these 

as 1) errors associated with reflectivity measurements, 2) errors associated with the 

reflectivity/rainfall (Z-R) relationship, and 3) errors associated with below the radar 

beam effects.  Errors associated with reflectivity measurements include ground clutter 

contamination and reflections from atmospheric disturbance which can lead to 

overestimation.  Rain falling on the radar dome and beam widening with increasing 
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distance from the radar can lead to underestimation of precipitation.  Young et al. 

(1999), in a study of NEXRAD in complex terrain, noted underestimation of 

precipitation by NEXRAD and attributed this to the variability in the terrain within the 

radar sampling area, distance from the radar, and ground clutter that resulted in poor 

reception or distortion of the returns to the radar.   

 

With regard to errors associated with the Z-R relationship, variability in the 

dropsize distributions can lead to erratic effects, whereas presence of hail, sleet, and 

snow can lead to overestimates.  Errors associated with below the radar beam effects 

include overestimation of precipitation because of rainfall that evaporates before 

reaching the ground, and over and underestimation resulting from strong horizontal 

winds that cause the precipitation to fall in a location other than where it was measured 

(Legates 2000). 

 

In a semiarid region of New Mexico, Xie et al (2006) found seasonal differences 

in NEXRAD Stage III precipitation estimates when compared to gage data.  The 

NEXRAD system generally overestimated rainfall during the monsoon season (June 1 to 

September 30) and underestimated rainfall during the non-monsoon season (October 1 to 

May 31).  These differences were mainly attributed to how the NEXRAD Stage III 

algorithm software truncates the estimated precipitation during small events (i.e., makes 

events < 0.01 mm/h equal to 0).  Rainfall events tended to be smaller during the non-

monsoon season when compared to the monsoon period, thus leading to the 

underestimation observed in the non-monsoon seasons.  However, on a rainfall 

accumulation basis, the NEXRAD Stage III overestimated total amount of rainfall by 11 

to 88 percent in monsoon season and underestimated rainfall by 18 to 89 percent in the 

non-monsoon season.   

 

Although these high resolution products have errors that, at times, reduce their 

accuracy in predicting rainfall, these high resolution rainfall products may be the only 
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way to access spatially explicit rainfall data, especially in rangelands where the number 

of rainfall gages is sparse.  Also, many of these products are produced on a near real-

time basis, thus making them useful for drought early warning and biophysical modeling 

to assess plant growth and production.  In this study, two different near real-time rainfall 

products (CMORPH and NEXRAD) were compared to that of fixed-location automated 

weather stations located near Marathon in the Trans Pecos region of Texas.  The overall 

goal of this study was to determine which of these products would be most suitable for 

use in biophysical modeling to estimate livestock forage.  The objectives were to 1) 

compare the frequency statistics to assess how well the products predicted the presence 

or absence of precipitation, and 2) examine bias, error, and estimation efficiency 

between the rainfall products and gage measured rainfall in order to assess how these 

rainfall products perform in remote rangeland areas where recording rain gages are 

sparse.   

 

Methods 

 

Study Area 

 

The study was conducted on the Catto-Gage Ranch, approximately 13 km west of 

Marathon, TX (30°12'23.90"N, 103°14'47.26"W; Figure 2.1) in Brewster County.  The 

Catto-Gage is a 172,609 acre working ranch that has been grazed by livestock since the 

mid 1880’s.  Historically, the ranch was primarily a cow calf operation.  However after 

an extended drought during 1999 to 2002, the operation was changed from a cow-calf 

operation to a yearling cattle stocker operation to provide greater flexibility in the 

livestock and grazing management (Don Keeling, personal communication).  The study 

area is currently grazed all months except October and November at stocking rates 

determined by the ranch management.   
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The study area is situated with the Glass Mountains in the northern part and the 

Del Norte Mountains on the western side, with the majority of the land area falling 

within the greater Marathon Basin (Figure 2.2).  The area consists of “high plateaus, 

rugged peaks and sierras, and broad, shallow intermontane valleys” (Smith 2001).  

Elevation at the study area follows a general northwest to southeast gradient with the 

highest elevations in the northwestern portion and the lowest in the southeastern portion 

(Figure 2.2).  Elevation at the site ranges from 988 m to 1940 m.   

 

The climate of the area is semiarid with cool, dry winters and hot summers.  

Temperatures range from an average low of 4º C during the winter months (December to 

March) to an average high of 33º C during the summer months (June to September) 

(Figure 2.3).  Average monthly temperature across all months is 17º C (NCDC 2006).  

Precipitation averages 369 mm with the highest amount occurring during the summer 

months (average of 58 mm/month; Figure 2.3).  On average, the lowest amount of 

precipitation occurs during March (6 mm; Figure 2.3).  Precipitation during the summer  

months is generally from thunderstorms (Powell 1998) that can be of high intensity.  

Snowfall can occur during the winter months, but this form of precipitation generally 

averages less than 2 cm during the winter months (NCDC 2006). 

 

High Resolution Rainfall Products 

 

Two rainfall products were compared to examine their correspondence to fixed-location 

automated rain gages.  The first product was the National Oceanic and Atmospheric 

Administration (NOAA) Climate Prediction Center Morphing Product (CMORPH) 

rainfall (Joyce et al. 2004) (referred to hereafter as “CMORPH product”).  This product 

is produced by NOAA each 24-hour period and represents the accumulated rainfall that 

occurs between 0:00 and 24:00 Greenwich Mean Time (GMT) (24:00 GMT is 

equivalent to 6:00 pm CST).  The CMORPH product was acquired automatically from 

the NOAA servers via internet and downloaded to servers at the Center for Natural  
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Figure 2.1.  Location of the study area in Brewster County, TX. 
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Figure 2.2.  Landsat Enhanced Thematic Mapper Geocover mosaic image (MDA Federal 2004) draped 
over a hillshade representation of the 30-m Digital Elevation Model (USGS 1999) to provide an aerial 
view of the changing topography at the study area (outlined in black) near Marathon, TX.  
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Figure 2.3.  Average monthly rainfall (mm), average monthly maximum temperature (ºC) and average 
monthly minimum temperature (ºC) during the period from 1970 to 2000 in Marathon, TX (NCDC 2006). 
 

Resource Information Technology (CNRIT), Texas A&M University.  The rainfall 

product was delivered as a gridded image that had a geographic range of 130.0º to 65.0º 

West longitude and 22.0º to 50.0º North latitude, and covered the contiguous 48  

states.  Grid cell spacing of the image was 0.07276º in the longitudinal direction and 

0.07277º in the latitudinal direction (approximately 8 km at the equator).   

 

The second product examined was produced by NOAA National Weather 

Service (NWS) and was called the “New Precipitation Analysis” (http://www.srh. 

noaa.gov/rfcshare/precip_analysis_new.php) (referred to hereafter as the “NEXRAD 

product”).  The precipitation for this product is estimated using a multi-sensor approach 

(NOAA 2007) where the WSR-88D NEXRAD radar precipitation estimates are 

compared to reported ground station rainfall measurements and a bias correction is 

calculated to correct the NWS NEXRAD precipitation estimates (P1 protocol as 
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described in Young et al. 2000).  In areas where radar coverage is sparse or non-existent, 

satellite precipitation estimates are used in place of the radar estimates and corrected 

using the ground station data.  The NEXRAD data are processed daily by NWS with the 

accumulation period starting at 12:00 GMT (6 am CST) and ending 24 hours later.  The 

data were made available in shapefile format.  The shapefile contains the NWS 

Hydrologic Rainfall Analysis Project (HRAP) grid cell where the radar has detected 

rainfall and the amount.  Each HRAP grid cell is approximately 4 by 4 km (Reed and 

Maidment 1999).  For the study area, the NEXRAD radar located in Midland, TX 

covered the majority of the site (Figure 2.4).   

 

The NEXRAD product was downloaded from the NWS servers on a daily basis 

and stored in the CNRIT weather database.  The daily data were joined to a master table 

that contained all the HRAP cells for the continental US.  Since the NWS data contains 

only those HRAP cells where rainfall was estimated to occur, any cells not having a 

precipitation estimate were given a zero (0) to indicate that no rainfall occurred in the 

area represented by the HRAP grid cell.   

 

Automated Weather Stations 

 

Two automated weather stations were installed in grazing exclosures on the study area.  

The exclosures were built in 2003 and had been previously subjected to continuous 

grazing by cattle.  One exclosure was located in the north-central part of the study area 

and allowed the automated station to be positioned in both a unique HRAP and 

CMORPH grid cell (Figure 2.5; West Point station).  The second exclosure was located 

in the south-central portion of the study area and also allowed placement of the station in 

unique HRAP and CMORPH grid cells (Figure 2.5; Twin China station).  The distance 

between the two stations was approximately 20 km.   
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Figure 2.4.  Location of the study area and automated weather stations in West Texas in relation to 
NEXRAD radar locations. 
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Figure 2.5.  Spatial resolution (grid size) of the A) CMORPH and B) NEXRAD rainfall products in 
relation to the weather station locations at the study site. 
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Each automated weather station was equipped with an 8-inch orifice tipping 

bucket rain gage (Texas Electronics TE525WS, 2.54 mm/tip), a combination 

temperature and relative humidity probe enclosed in a gill radiation shield (Campbell 

Scientific CS215), a pyranometer for solar radiation measurement (LiCor 200X), and a 

wind anemometer (RM Young Wind Sentry 3101) for wind speed and direction 

measurement.  Each of these instruments was wired to a Campbell CR10X datalogger 

that allowed continuous measurement of these climate variables.  The CR10X was 

programmed to take measurements each minute.  The minutely readings were averaged 

(or summed for rainfall) by the CR10X software and hourly measurements for each 

climate variable were stored by the datalogger.  At the end of each 24-hour period (12:00 

am to 11:59 pm CST), the hourly measurement of climate variables were averaged or 

summed by the CR10X software to produce 24-hour measurements.  At periodic 

intervals, the hourly and 24-hour measurements were downloaded from the CR10X and 

stored in a database at CNRIT for subsequent comparison to the high resolution rainfall 

products.  

 

Scripting tools were developed to extract both the CMORPH and NEXRAD 

precipitation data for a given latitude and longitude.  The CMORPH and NEXRAD data 

were extracted for the location of each automated weather station in the study area.  To 

allow comparisons of gage rainfall to that of the NEXRAD and CMORPH rainfall 

products, the hourly rain gage data from the weather stations was aggregated to match 

the accumulation periods of both the NEXRAD and CMORPH rainfall products.  For 

example, to match the CMORPH rainfall on August 2, the hourly station data was 

summed from 6:01 pm on August 1 to 6:00 pm on August 2.  For the NEXRAD data, the 

station rainfall measurements for August 2 represented the sum of the hourly station data 

from 6:01 am on August 1 to 6:00 am on August 2. 

 

The CMORPH rainfall product that provided coverage of the study area did not 

become available for use until February 2004.  Therefore, for the analyses in this study, 
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the time period for all data sources (CMORPH, NEXRAD, and station gages) begins 

February 1, 2004 and continues to March 31, 2007. 

 

Statistical Analysis 

 

A two-way contingency table with a rain/no rain contingency was used to compare 

rainfall detection for each rainfall product.  Analyses were conducted by product 

(CMORPH vs. NEXRAD), product and location (West Point station vs. Twin China 

station; Figure 2.5), and product and season (monsoon and non-monsoon; June 1 to 

September 30 and October 1 to May 31, respectively).  For the two-way contingency 

analyses, the following variables were defined: 

• if rainfall was measured at the station and also was detected by the rainfall 

product, this was defined as a “hit”; 

• if rainfall occurred at the station, but was not detected by the rainfall product, this 

was a “miss”; 

•  if rainfall was detected by the rainfall product, but none was measured at the 

station, this was defined as a “false alarm”; 

• if no rainfall was measured at the station and none was detected by the rainfall 

product, this was defined as a “correct negative”. 

 

Using the above variables from the contingency tables, a set of statistics (Stanski 

et al. 1989; Johnson and Olsen 1998) were calculated to examine the ability of the 

rainfall products to detect rainfall at the study area.  These were as follows: 

daystotal
negativescorrecthitsAccuracy +

=         [2.2] 

misseshits
alarmsfalsehitsScoreBias

+
+

=         [2.3] 

misseshits
hits Detection ofy Probabilit
+

=        [2.4] 
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alarmsfalsehits
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hits Index  SuccessCritical
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=     [2.9] 

 

For the above statistics, accuracy provides an indication of the fraction of the 

days that the rainfall product correctly estimated both the presence and absence of 

rainfall as observed at the weather stations.  Values range between 0 and 1 with a 1 

being perfect detection of the presence and absence of rainfall.  Bias score is a ratio of 

the frequency of rainfall days detected by the rainfall product versus that of days in 

which rainfall was observed at the station.  For bias scores less than 1, the rainfall 

product would have a tendency to detect less days of rainfall than the number of days in 

which rainfall was observed at the station.  Bias scores greater than 1 indicate the 

opposite.  Probability of detection (POD) is the fraction of days where rainfall was 

correctly detected by the rainfall product when rain was observed at the station.  The 

POD can range between 0 and 1 with 1 being perfect detection of rainfall by the product.  

The false alarm ratio (FAR) provides an indication of the fraction of days in which the 

rainfall product detected rainfall when none was observed at the station.  Values can 

range between 0 and 1 with a value of 0 indicating no false alarms.  Probability of false 

detection (POFD) indicates the fraction of days that the product detected rainfall 

compared to total number of days when no rain was observed at the station.  Scores can 

range between 0 and 1 with a value of 0 indicating perfect correspondence between the 

product and station.  The critical success index (CSI) provides an indication of the 

number of days that rainfall were correctly detected by the rainfall product compared to 
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total number of days where rainfall was observed at the station (hits and misses) or 

incorrectly detected by the rainfall product (false alarms).  It is similar to accuracy, but 

does not include days where no rainfall was detected by both the station and the product 

(correct negatives).  Values of 1 indicate perfect detection of rainfall by the product.  

Lastly, the equitable threat score (ETS) provides an indication of how well the rainfall 

product detected rainfall correctly compared to random chance.  ETS scores near 0 

would indicate that the product had no skill in detecting rainfall.  Scores near 1 would 

indicate near perfect detection of rainfall by the product. 

 

To assess the ability of the rainfall products to estimate rainfall amounts, the time 

series data for each product, station, and location comparisons were examined for total 

difference in rainfall amount, estimation bias, estimation efficiency, slope, and root 

mean square difference.  Total difference (TD) in rainfall is simply the subtraction of the 

sum of the total station rainfall during the time series from the sum of the total product 

rainfall estimated during the same time series.  Estimation bias (BIAS) reflects the 

normalized difference between the precipitation product estimate and fixed weather 

station data and is equated as follows (Jayakrishnan et al. 2004; Moon et al. 2004):   

100×=
Total Station

Total  Station- Total Product Rainfall(%) BIAS                [2.10] 

Positive estimation bias values indicate the overestimation by the rainfall product 

compared to the station gages whereas negative values indicate the opposite.   

Estimation efficiency (EE) is a measure of the deviation from a 1:1 line between station 

precipitation and the precipitation product estimate and is calculated as follows (Nash 

and Sutcliffe 1970; Jayakrishnan et al. 2004; Moon et al. 2004): 
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Where Ri is the station gage precipitation for day i, Wi is the precipitation product 

rainfall total in the grid cell where the station is located for day i, Rm is the average 

station gage precipitation over all days, and n is the total number of days.  A value of 1 
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would reflect a perfect correspondence between the station data and the rainfall product.  

Values greater than 0 would indicate that a positive relationship exists between the 

station data and rainfall product and that the rainfall product data could be used as a 

good estimate for the station location.  Values less than 0 indicate a low correspondence 

between the station data and rainfall product and that an average of the station data 

would be a better predictor of the rainfall at the station location than the rainfall product 

estimates (Moon et al. 2004).  Root mean square difference (RMSD) is a measure of the 

average magnitude of the difference between the rainfall product and the station gage 

data.  It is calculated as follows: 
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n

i ii∑=
−

= 1
2

       [2.12] 

Linear regression with a zero intercept was conducted to examine slope for the rainfall 

products versus the station data.  The linear regression and estimation efficiency 

analyses were performed on a conditional dataset where days when no rainfall was 

detected by both the rainfall product and the station (i.e., correct negatives as defined 

above) were excluded from the analysis.  Inclusion of days where no rainfall was 

detected by both the rainfall product and the station inflates the statistics in favor of the 

rainfall product, thus reducing the quality assessment (Jayakrishnan et al. 2004).   

 

Results 

 

Rainfall Detection Ability 

 

The rainfall products differed in their ability to detect rainfall at the study site.  An 

examination of the rainfall product and station location contingencies had very similar 

results to that of the product only (both station locations combined) contingency 

analysis, therefore the rainfall product results without regard to location are presented.  

The NEXRAD product was slightly more accurate at detecting both rain and no rain at 

the study site compared to CMORPH (0.88 versus 0.82 respectively; Table 2.1).  Both 
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products had a tendency to detect rainfall on a greater number of days than what was 

observed at the weather stations as indicated by their frequency bias scores with the 

CMORPH product detecting a greater number of days of rainfall than the NEXRAD 

product (Table 2.1).  Both products had similar ability to detect rainfall when rainfall 

was observed at the stations, with the probability of detection being 0.78 for CMORPH 

versus 0.80 for the NEXRAD product (Table 2.1).  However, the CMORPH product had 

the tendency to detect a higher number of days of rainfall than what was detected at the 

stations (i.e., more false alarms) when compared to the NEXRAD product (Table 2.1).  

This resulted in a higher probability of false detection for the CMORPH product when 

compared to the NEXRAD product (Table 2.1).   

 

The CSI provides an indication of the correspondence between the number of 

events where rainfall was detected by the product versus that observed at the weather 

stations.  Index values near 1 indicate that the rainfall products had high success in  

 
Table 2.1.  Two-way contingency tables (rain or no rain) and contingency statistics for a comparison of the 
ability of two high resolution rainfall products (CMORPH and NWS) to detect rainfall measured at 
weather stations near Marathon, TX. 
   

Station   Station  
 

Rain No Rain   Rain 
No 
Rain 

Rain 326 307 Rain 334 180 
CMORPH No 

Rain 92 1547 
NEXRAD No 

Rain 86 1676 
Total Days   2272  2276 

       
Contingency Statistic   CMORPH   NEXRAD 
Accuracy   0.82    0.88 
Frequency Bias   1.51    1.22 
Probability of Detection   0.78    0.80 
False Alarm Ratio   0.48    0.35 
Probability of False Detection  0.17    0.10 
Critical Success Index   0.45    0.56 
Equitable Threat Score    0.34    0.47 
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detecting rainfall and a value of zero indicates no success.  Both the NEXRAD and  

CMORPH products had moderate success in detecting rainfall at the station sites with 

the NEXRAD product having a higher success rate (0.56 and 0.45, respectively; Table 

2.1).   

 

In contrast to the CSI, the equitable threat score provides an indication of how 

well the rainfall products correctly detected rainfall at the station site accounting for rain 

events that could have been detected due to random chance.  Values near 1 indicate 

perfect skill in detecting rainfall and values less than 0.33 indicate low predictability.  

The CMORPH rainfall product had relatively low predictability (0.34) once random 

chance was accounted for, whereas the NEXRAD product had moderate predictability 

(0.47).  However, both products equitable threat scores were lower than the critical 

success index indicating that, in this instance, accounting for random chance was 

important for assessing skill of the products to detect rainfall at these sites.   

 

The contingency analysis was conducted for the rainfall products on a seasonal 

basis (monsoon and non-monsoon).  In general, the seasonal contingency statistics 

(Table 2.2) for the product-season comparison followed the same general trend of the 

statistics of the product-only comparisons (Table 2.1) with the NEXRAD product having 

relatively better contingency statistics than CMORPH.  However, some seasonal 

differences existed among the rainfall products.  Both the CMORPH and NEXRAD 

products had higher accuracy in detecting both the presence and absence of rainfall 

during the non-monsoon season although this may be inflated by the greater number of 

days during the non-monsoon season.  Accuracy, as calculated in the contingency 

analysis, is strongly influenced by the category with the greatest frequency of events 

(Stanski et al. 1989).  In this case, the days where both the product and station detected 

no rainfall (correct negatives) was much greater during the non-monsoon season for both 

products.  The probability of detection may be a more appropriate statistic for the 

seasonal comparison as it is influenced only by “hits” and “misses” which have 
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comparable totals for the product-season comparisons (Table 2.2).  For both the 

CMORPH and NEXRAD products, the probability of detection was higher during the 

monsoon season compared to the non-monsoon season.   

 

Individually, the products differed seasonally.  The NEXRAD product during the 

non-monsoon season has slightly higher accuracy, lower bias, and lower probability of 

false detection when compared to the monsoon season (Table 2.2).  However, during the 

monsoon season, a greater percentage of the rainfall events were correctly detected 

(95%) compared to the non-monsoon season (65%) (Table 2.2).  The CMORPH product 

exhibited similar trends with higher accuracy, slightly lower bias, and lower probability 

of false detection during the non-monsoon season (Table 2.2).  Probability of detection 

was also lower in the non-monsoon season compared to the monsoon season (Table 2.2). 

 
Table 2.2.  Two-way contingency tables (rain or no rain) and contingency statistics for a comparison of the 
ability of two high resolution rainfall products (CMORPH and NEXRAD) to detect rainfall measured 
during different rainfall seasons (monsoon and non-monsoon) at weather stations near Marathon, TX. 
   

Station   Station 
 
 

Rain No Rain   Rain No Rain 
Rain 165 138 Rain 174 97 

Monsoon    CMORPH No 
Rain 31 338 

NEX-
RAD No 

Rain 10 391 
Total Days   672   672 

Station   Station  
 Rain No Rain   Rain No Rain 

Rain 161 169 Rain 160 83 Non-
Monsoon CMORPH No 

Rain 61 1209 

NEX-
RAD No 

Rain 76 1285 
Total Days   1600  1604 

       

  CMORPH   NEXRAD 

Contingency Statistic  Monsoon 
Non- 

Monsoon   Monsoon 
Non- 

Monsoon 
Accuracy  0.75 0.86   0.84 0.90 
Frequency Bias  1.55 1.49   1.47 1.03 
Probability of Detection  0.84 0.73   0.95 0.68 
False Alarm Ratio  0.46 0.51   0.36 0.34 
Probability of False Detection 0.29 0.12   0.20 0.06 
Critical Success Index  0.49 0.41   0.62 0.50 
Equitable Threat Score   0.31 0.33   0.48 0.44 
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Rainfall Estimation Ability 

 

The ability of the rainfall products to correctly estimate the amount of rainfall was 

highly contrasting.  For both station locations, the CMORPH product estimated 

substantially more precipitation than what was measured at the station gages (Figure 

2.6).  An examination of estimation biases indicated that the CMORPH product 

overestimated rainfall amounts by 50% (765 mm) at the West Point location and by 41% 

(613 mm) at the Twin China location for the entire time series (Figure 2.6).  In contrast, 

the NEXRAD product at the West Point location overestimated rainfall by 7% (102 mm) 

whereas rainfall was underestimated at the Twin China location by 9% (-141 mm) 

(Figure 2.7).   

 

As expected, linear regression on the conditional data with respect to zero rain 

indicated a positive relationship between the station rainfall and that estimated by the 

rainfall product, with each product and location having slopes greater than 0.65 (Figure 

2.6 and Figure 2.7).  The proportion of the variability explained by the linear regression 

model was greatest for the NEXRAD product at both station locations when compared to 

the CMORPH product (r2 values of 0.60 to 0.67 for the NEXRAD product and 0.40 to 

0.47 for the CMORPH product; Figure 2.6 and Figure 2.7).  Root mean square 

differences were lower for the NEXRAD product at both locations (6.7 to 7.1 mm) when 

compared to the CMORPH product (9.4 to 9.5 mm) indicating an almost 40% greater 

amount of variability in the CMORPH rainfall (Figure 2.6 and Figure 2.7) compared to 

the NEXRAD rainfall. 

 

Estimation efficiency was very poor for the CMORPH product at both locations 

with the West Point site having a negative estimation efficiency (-0.17) and the Twin 

China site exhibiting a value near 0 (Figure 2.6).  Estimation efficiency was much 

greater for the NEXRAD product which exhibited a value 0.50 for the Twin China  
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Figure 2.6. Comparison of daily station rainfall (mm) versus the CMORPH rainfall product estimate for 
the A) West Point station and B) Twin China station located at the study site near Marathon, TX.  Data 
used were conditional with respect to zero rain (i.e., all station-product pairs with zeros on the same day 
were dropped from the analysis).  Comparison statistics include no-intercept regression slope and r2, total 
difference in absolute amounts of rainfall (TD; mm), root mean squared difference in (RMSD; mm), 
percent bias (BIAS) and estimation efficiency (EE).  Dotted line represents 1:1 line.  
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Figure 2.7. Comparison of daily station rainfall (mm) versus the NEXRAD rainfall product estimate for 
the A) West Point station and B) Twin China station located at the study site near Marathon, TX.  Data 
used were conditional with respect to zero rain (i.e., all station-product pairs with zeros on the same day 
were dropped from the analysis).  Comparison statistics include no-intercept regression slope and r2, total 
difference in absolute amounts of rainfall (TD; mm), root mean squared difference (RMSD; mm), percent 
bias (BIAS) and estimation efficiency (EE). Dotted line represents 1:1 line.  



 

 

29

station and 0.53 for the West Point Station locations (Figure 2.7).  The low estimation 

efficiency for the CMORPH was likely the result of several extreme over or under 

predictions of rainfall by the CMORPH product.  There were several instances where the 

rainfall predicted by CMORPH and that measured at the station differed by 45 to 70 

mm.  The NEXRAD product exhibited several instances of extreme over or under 

prediction of rainfall; however, the NEXRAD product had smaller absolute differences 

that ranged from 30 to 48 mm.   

 

For the NEXRAD product, there were strong location differences in estimation 

of rainfall.  At the West Point station, in the northern portion of the study area, the 

NEXRAD product overestimated rainfall amounts by 6.7% compared to a 9.4% 

underestimation of rainfall at the Twin China station (Figure 2.7).  The variability in 

rainfall was also slightly lower at the West Point location with a root mean square 

difference of 6.7 mm compared to 7.1 mm at the Twin China station.  A possible reason 

for these differences is that the Twin China station is just beyond the extent boundary for 

the NEXRAD radar coverage (Figure 2.4) which could have led to poor signal returns 

from this site.   

 

Seasonal differences were also apparent for the high resolution rainfall products.  

For both locations combined, CMORPH overestimated rainfall by 59% during the 

monsoon season compared to 29% during the non-monsoon season (Figure 2.8) as 

indicated by the estimation bias.  For the NEXRAD product, rainfall was overestimated 

by 1% in the monsoon season whereas it was underestimated by 4% during the non-

monsoon season (Figure 2.9).  Like the differences described above for location, 

CMORPH overestimated precipitation at substantially higher amounts than the 

NEXRAD product for both seasons.  

 

The CMORPH product during the monsoon season had the greatest degree of 

variability in estimating precipitation at the two stations as indicated by the low r2 (0.38) 
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Figure 2.8.  Comparison of daily station rainfall (mm) versus the CMORPH rainfall product estimate for 
the A) monsoon (June 1 to September 30) and B) non-monsoon season (October 1 to May 31).  Data used 
were conditional with respect to zero rain (i.e., all station-product pairs with zeros on the same day were 
dropped from the analysis).  Comparison statistics include no-intercept regression slope and r2, total 
difference in absolute amounts of rainfall (TD; mm), root mean squared difference (RMSD; mm), percent 
bias (BIAS) and estimation efficiency (EE).  Dotted line represents 1:1 line.  
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and the relatively high root mean squared difference (11.7) (Figure 2.8).  For the non-

monsoon season, the CMORPH product exhibited lower variability than during the 

monsoon season (r2 =0.55 and RMSD =7.0 mm; Figure 2.8).  This was only slightly 

higher than the amount of variability exhibited by the NEXRAD product during the non-

monsoon season (r2 = 0.60 and RMSD=56.1 mm; Figure 2.9). 

 

Estimation efficiency was lowest for the CMORPH product during the monsoon 

season (Figure 2.8) with a value of -0.32 indicating that CMORPH’s skill of estimating 

rainfall was extremely poor during this season.  Estimation efficiency was greater for 

CMORPH during the non-monsoon season (Figure 2.8).  However this was less than that 

of the NEXRAD product regardless of season (Figure 2.9).  The NEXRAD product’s 

estimation efficiency was better in the monsoon season compared to the non-monsoon.   

 

Discussion    

 

Rainfall Detection 

 

The ability to detect the presence of rainfall at the study site varied among the high 

resolution rainfall products examined in this study.  In general, the NEXRAD radar 

product performed better than the CMORPH product with higher accuracy in detecting 

events, less over-prediction of the number of rainfall events, less false alarms, and higher 

skill scores (CSI and ETS) than CMORPH (Table 2.1).  In the initial validation of the 

CMORPH product across the entire United States, Joyce et al. (2004) noted that 

CMORPH had a higher average rates of false alarms than radar.  However, in contrast to 

this study, they observed an overall higher probability of detection for CMORPH when 

compared to radar, but state that inclusion of mountainous areas in the western US where 

radar coverage suffers from terrain blockages may have factored into the lower detection 

for radar.  Joyce et al. (2004) also report equitable threat scores ranging from 0.37 to 

0.43 for the CMORPH validation which were higher than that observed in this study 
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Figure 2.9. Comparison of daily station rainfall (mm) versus the NEXRAD rainfall product estimate for 
the A) monsoon (June 1 to September 30) and B) non-monsoon season (October 1 to May 31).  Data used 
were conditional with respect to zero rain (i.e., all station-product pairs with zeros on the same day were 
dropped from the analysis).  Comparison statistics include no-intercept regression slope and r2, total 
difference in absolute amounts of rainfall (TD; mm), root mean squared difference (RMSD; in mm), 
percent bias (BIAS) and estimation efficiency (EE). Dotted line represents 1:1 line.  
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(0.34; Table 2.1).  Possible reasons for these differences are that the CMORPH 

validation included over 7,000 stations across the US and the time period for the 

validation was much shorter (June to November 2003) than this study.   

 

Seasonal differences in the ability to detect rainfall by the products were apparent 

for this study site.  Both products exhibited greater probability of detection in the 

monsoon season with the NEXRAD product have the highest probability of detection.  

Joyce et al. (2004) reported similar trends of higher probability of detection for both 

radar and CMORPH in summer months (June to August; comparable to monsoon period 

in this study) than in the fall period (September to November; early part of non-monsoon 

period in this study).  At mid-latitudes in Australia, Ebert et al. (2007) reported that 

CMORPH had greater probability of detection in the summer period (December – 

February) than in the winter period (June to August).  They attributed this difference to 

the lower number of convective rainfall events during the winter period that are not as 

easily detected by the infrared and passive microwave sensors on satellites used for 

CMORPH data collection.  In a study of NEXRAD Stage III radar (a precursor to the 

NEXRAD product used in this study that employs an alternative methodology for gage 

correcting the radar data [Young et al. 2000]) in central New Mexico, Xie et al. (2006) 

noted a similar pattern with higher probability of detection in the monsoon compared to 

the non-monsoon season as was found in this study.  McCollum et al. (2002), in another 

study using NEXRAD Stage III radar data, reported a decline in the detection capability 

of the radar data from warm summer months to the colder winter months.  They 

attributed this to the seasonal differences in the type of rainfall events with less 

convection type events and more shallow, stratiform type events during the cooler winter 

months.  The NEXRAD radar is less capable of detecting stratiform type of events due 

to beam overshoot. 
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Rainfall Estimation 

 

An understanding of the estimation ability of the high resolution rainfall products is 

needed to assess the quality of these products for use as driving variables in biophysical 

models.  The use of a product with consistent over or under estimation of rainfall could 

lead to erroneous predictions by the model.  In this study, the NEXRAD product 

generally performed better than the CMORPH product in its ability to estimate rainfall.  

The NEXRAD product had lower estimation bias and lower variability by station 

location (Figures 3.3 and 3.4) and season (Figure 2.8 and 3.6).  CMORPH in this study 

overestimated rainfall by 58% (2.9 mm/event overestimate on average) in the monsoon 

season and by 29% (1 mm/event overestimate on average) in the non-monsoon season 

(Figure 2.8) compared to the NEXRAD radar product that had overestimates of 1.3 

percent in monsoon months (0.08 mm/event overestimate on average) and 4.3 percent 

underestimate of rainfall in the non-monsoon season (0.19 mm/event underestimate on 

average) (Figure 2.9).  In slight contrast to the results at this study site,  Joyce et al. 

(2004) reported that in a comparison of CMORPH and radar estimates to gage data, 

NEXRAD radar generally underestimated rainfall across the continental US in most 

months and CMORPH generally overestimated rainfall in most months, especially 

during the summer (June to August).  They also found that root mean square differences 

for CMORPH and radar across the continental US generally tracked each other with 

values of 6 to 10 mm for the summer months and 3 to 7 mm in the fall (September to 

November).  In the study reported here, the NEXRAD radar product had much lower 

root mean square difference in the monsoon season (summer) than the CMORPH 

product (7.0 mm vs., 11.7 mm, respectively); however, the non-monsoon season had 

more comparable differences (6.1 mm vs. 7.0 mm, respectively).  In a study comparing 

the performance of satellite rainfall products, rainfall prediction models, and radar for 

the continental US, Ebert et al. (2007) found that NEXRAD radar, when compared to 

gage data, generally underestimated rainfall during the winter months (January to 
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March) except in the central plains region of the US, and that infrared/passive 

microwave (IR/PMW) products (CMORPH included) also underestimated rainfall 

except in the mountainous regions in the northwestern US.  In the summer months (June 

to August), both radar and IR/PMW products overestimated rainfall by 2-3 mm, on 

average, throughout the central and south-central US.  They attributed this to rain gages 

possibly missing the short-lived convective storms that occur in the summertime in this 

region that are better detected by the radar and the IR/PMW products.   

 

On a location basis, the NEXRAD product had variable estimation statistics at 

the study site even though the stations were only 20 km apart.  The NEXRAD radar 

product overestimated rainfall by 6.7% at the West Point station and underestimated 

rainfall at by 9.4% the Twin China station (Figure 2.7).  Estimation efficiency and root 

mean square differences were similar between the two station locations.  For other 

studies on the performance of NEXRAD radar, the results are mixed with regard to 

overestimation or underestimation of rainfall and appear to be related to multiple issues 

including ground features in relation to radar location/elevation (Smith et al. 1996; 

Young et al. 1999), stage of NEXRAD processing (Young et al. 1999; Young et al. 

2000; Jayakrishnan et al. 2004; Wang et al. 2008), storm type (Xie et al. 2006; Wang et 

al. 2008) and spatial resolution differences between the radar grid and the rain gage 

(Ciach and Krajewski 1999; Wang et al. 2008).  For example, Young et al. (1999), in a 

study of NEXRAD Stage II performance in mountainous terrain, found consistent 

underestimation of precipitation by radar and attributed these differences to radar beam 

blockage, ground returns, and non-detection of rainfall by the radar.  Jayakrishnan et al. 

(2004), in a study of NEXRAD Stage III in the Texas-Gulf Basin, found that the radar 

product generally underestimated rainfall in the first 3 years of the study (1995 to 1997) 

but gradually began overestimating rainfall at a larger number of sites in the last 2 years 

of the study (1998 to 1999).  They attributed this to changes in the NEXRAD processing 

algorithm over time and stated that although there was this increased tendency of 

overestimation, the algorithms had improved during the study period with an increased 
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percentage of the stations having estimation biases of within ±20%.  In a recent study in 

the Texas Hill County using the same NEXRAD product as used in this study, Wang et 

al. (2008) reported overall underestimates of 7% but noted that estimations were variable 

between the uniform and non-uniform (more spatially heterogeneous) events.   

 

At this study site, beam blockage and radar range problems could certainly have 

affected the estimates.  The radar coverage at the study site is from the Midland, TX 

radar (Figure 2.4) and the Glass Mountains are in the path between the radar and study 

site.  With regard to radar range, the West Point station falls within the ring of coverage 

of the Midland radar (Figure 2.4).  However, the Twin China station is just beyond the 

outer general range of coverage, therefore the rainfall may have been estimated from 

gage corrected satellite data (NOAA 2007).  The differences in the statistics for these 

two NEXRAD grids with a relatively short distance between them provides an indication 

that significant local variation in precipitation estimates is an issue that may need to be 

considered when using this product in biophysical modeling where gage and radar 

coverage are sparse.  

 

The CMORPH product was more consistent statistically between the two station 

locations examined in this study (Figure 2.6).  However, the large overestimation of 

rainfall by this product would make it unsuitable for use in forage biophysical modeling 

at this site.  The low estimation efficiency by this product is partially due to several 

extreme overestimates between the CMORPH estimate and that measured at the station.  

Overestimation of rainfall by CMORPH and other satellite-derived products has been 

attributed to detection of rainfall by the satellite, but the rainfall evaporates before 

reaching the ground surface (McCollum et al. 2000; McCollum et al. 2002; Janowiak 

2005).  This is most evident in summer months in the arid and semiarid portions of the 

US when convective storms are more prevalent.  McCollum et al. (2000) state that cloud 

bases for convective clouds in drier areas are generally higher than those formed in 
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moist environments which can lead to greater evaporation of the falling rain, thus 

leading to less precipitation reaching the soil surface.   

 

Although CMORPH consistently overestimated rainfall throughout the year at 

this study site, there was a substantial difference in monsoon versus non-monsoon 

rainfall estimation which could be attributed to rainfall evaporation during convective 

storms.  During the monsoon season when convective storms were prevalent, CMORPH 

overestimated rainfall by 59% compared to 29% during the non-monsoon season (Figure 

2.8).  Variability in the rainfall estimates was also higher in the monsoon season (Figure 

2.8).  The consistent overestimation of rainfall by CMORPH at this study site would 

make this product unsuitable for use in biophysical modeling of livestock forage.  Of 

particular concern would be the large overestimation of rainfall in summer months 

during the growing season for most of the forage plant species which could lead to 

overestimation of forage amounts.  To make this product more useful for biophysical 

modeling, bias corrections using the rain gage network like that done for NEXRAD 

products could reduce overestimation. 

 



 

 

38

CHAPTER III 

USE OF HIGH RESOLUTION NEXRAD RAINFALL IN BIOPHYSICAL 

MODELING OF FORAGE BIOMASS ON RANGELANDS: 

AN EVALUATION OF MODEL PERFORMANCE 

 

Introduction 

 

In order to properly assess the number of grazing animals that can be allocated to a given 

area for a given amount of time (i.e. stocking rate), an assessment of the vegetation 

resource is needed to determine the amount of plant biomass available for grazing 

(Holechek et al. 1995).  In order to maximize the number of grazing animals, while at 

the same time minimizing the impacts to the vegetation resource, one would need to 

conduct periodic assessments of the vegetation resource so that animal numbers could be 

modified given the condition of the resource (e.g., reduce numbers during drought).  

However, the process of determining carrying capacity and stocking rate is time 

consuming, and for large areas, can be very costly and labor intensive.  To overcome 

some of these issues, rangeland scientists have developed methods to predict plant 

biomass using models. These include relatively simple correlative models, more 

complex biophysical models, remote sensing techniques, or various combinations of 

these.   

 

Correlative models are generally simple models that use one or more variables to 

predict biomass using regression methods.  For example, O'Connor et al. (2001), using a 

stepwise regression model, found that precipitation and species composition accounted 

for 66% of the variation in plant biomass in a semi-arid grassland in South Africa.  In the 

California annual grasslands, Duncan and Woodmansee (1975) reported that rainfall in 

October, December and May had the highest predictability when used in a linear 

regression to predict grass biomass.  Drawbacks of these types of correlative models 

include lack of confidence in the predictions when the bounds of the original data are 
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exceeded (Ott and Longnecker 2001) and the inability to delineate the processes 

underlying the prediction (Grant et al. 1997).  These models also have limitations when 

applying them at sites other than where they were originally developed (Bouraoui and 

Wolfe 1990).   

 

With the increased capacity and accessibility to computers and programming 

languages in recent years, the development of more complex models for simulating 

biomass production on rangelands has occurred.  These simulation models have differing 

levels of complexity and many are designed to not only simulate biomass production, 

but to examine other aspects such as hydrology, erosion, livestock production, and/or 

economics in an integrated, interacting framework.  This framework allows users to 

examine ecosystem processes and management alternatives, and to predict response to 

differing alternatives (Wight and Skiles 1987; Bouraoui and Wolfe 1990; Carlson and 

Thurow 1996).   

 

Examples of these multipurpose rangeland simulation models include the 

Ekalaka Rangeland Hydrology and Yield Model (ERHYM-II) (Wight and Neff 1983) , 

the Simulation of Production and Utilization of Rangelands (SPUR) model (Wight and 

Skiles 1987), and the Phytomass Growth Simulator (PHYGROW) model (Stuth et al. 

2003a).  The ERHYM-II model simulates biomass production using a relationship 

between actual-to-potential evapotranspiration and potential biomass yield where 

biomass yield is maximized when actual-to-potential evapotranspiration is 1 (water non-

limiting conditions) (Wight and Neff 1983).  SPUR is a physically-based model having 

integrated climate, hydrology, plant, animal, and economic modules and had been 

modified over time to improve functionality (Carlson and Thurow 1992; Hanson et al. 

1992; Foy et al. 1999; Pierson et al. 2001).  It has been evaluated in several different 

locations to ascertain its ability to predict biomass production in both pasture (Corson et 

al. 2006) and rangeland plant communities (Pierson et al. 2001; Teague and Foy 2004).  

The PHYGROW model simulates biomass production, selective grazing by multiple 
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kinds/classes of livestock, and changes in stocking rates brought about by changing 

forage conditions.  PHYGROW has been used as part of bioeconomic studies for climate 

change (Butt et al. 2005), forage forecasting (Alhamad 2002; Alhamad et al. 2007) and 

is the foundation model for the regional drought early warning system on grazinglands in 

East Africa (Stuth et al. 2003b; Ryan 2005; Stuth et al. 2005). 

  

With the increased availability of satellite remote sensing data, models have been 

developed that use remote sensing products to predict biomass on rangelands.  As with 

the biophysical simulation models, the level of complexity varies among the different 

models with some using a strictly correlative approach, whereas others combine 

biophysical modeling with remote sensing products as inputs. Correlative models 

generally involve prediction of biomass using regression relationships between the 

remote sensing product and biomass collected from ground measurements (e.g., Dungan 

1998; Thoma et al. 2002; Al-Bakri and Taylor 2003; Frank and Karn 2003; Kogan et al. 

2004).  For example, Tucker et al. (1983) used both a linear and logarithmic regression 

between the Normalized Difference Vegetation Index (NDVI) and ground collected 

biomass data to predict biomass in the Sahel region of Senegal.  The more complex 

models have involved the combination of biophysical models and various remote 

sensing inputs.  For example, Reeves et al. (2001) used fraction of absorbed 

photosynthetically active radiation (fAPAR) and leaf area index (LAI) products from the 

MODIS system with a light use efficiency model to estimate aboveground net primary 

productivity (ANPP) on rangelands in the northwestern US.  Hunt and Miyake (2006) 

used a similar light use efficiency model to estimate biomass and available forage in 

order to predict stocking rates within 1 km2 cells for the entire state of Wyoming.   

 

The increased availability of remote sensing products for use as driving variables 

in biophysical simulation modeling offers many opportunities for monitoring and 

decision support on rangelands.  Advances in remote sensing products that predict 

rainfall on a spatially explicit basis are especially attractive since reporting rain gauges 
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in rangeland areas are sparse and rainfall is generally one of the major factors limiting 

forage productivity for livestock.  In the previous chapter (Chapter II), two remotely 

sensed rainfall products were examined for their ability to detect and estimate rainfall, 

and to assess their suitability for use in biophysical modeling on rangelands.  The Next 

Generation Weather Radar system (NEXRAD) (Fulton et al. 1998) product was 

determined to be the most suitable because of lower estimation bias, higher detection 

ability, and higher estimation efficiency when compared to the CMORPH (Joyce et al. 

2004) rainfall product.  From a modeling standpoint, the NEXRAD product has been 

used mostly for hydrological studies and monitoring (e.g., Young et al. 2000; Ajami et 

al. 2004; Moon et al. 2004; Kalin and Hantush 2006).  To date, few studies have been 

conducted to evaluate the use of NEXRAD data as a driving variable for biophysical 

modeling of forage biomass on rangelands.   

 

For this study, the overall goal was to evaluate the ability of a biophysical 

simulation model (PHYGROW) to accurately predict herbaceous biomass on a 

heterogeneous semiarid landscape in the Trans-Pecos ecoregion of Texas using the 

NEXRAD rainfall product as a driving variable.  The objectives of the study were to: 1) 

calibrate the PHYGROW model and evaluate its performance for predicting herbaceous 

biomass at two ungrazed sites (patches) using rainfall measured from automated rain 

gages located at the sites; 2) evaluate the calibrated PHYGROW model’s performance 

when NEXRAD rainfall was substituted for that measured at the sites and compare to 

simulation results for gage-measured rainfall; and 3) evaluate the model’s performance 

using NEXRAD data at multiple grazed locations representing the dominant plant 

communities across the study area landscape.  
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Methods 

 

Study Area 

 

The study was conducted on the Catto-Gage Ranch, approximately 13 km west of 

Marathon, TX (30°12'23.90"N, 103°14'47.26"W; Figure 2.1) in Brewster county.  The 

Catto-Gage is a 69852 ha (172,609 acre) working ranch that has been grazed by 

livestock since the mid 1880’s.  Historically, the ranch was primarily a cow calf 

operation.  However after an extended drought during 1999 to 2002, the operation was 

changed from a cow-calf operation to a yearling cattle stocker operation to provide 

greater flexibility in the livestock and grazing management (Don Keeling, personal 

communication).  The study area is currently grazed all months except October and 

November at stocking rates determined by the ranch management.   

 

The study area is situated with the Glass Mountains in the northern part and the 

Del Norte Mountains on the western side, with the majority of the land area falling 

within the greater Marathon Basin (Figure 3.1).  The area consists of “high plateaus, 

rugged peaks and sierras, and broad, shallow intermontane valleys” (Smith 2001).  

Elevation at the study area follows a general northwest to southeast gradient with the 

highest elevations in the northwestern portion and the lowest elevations in the 

southeastern portion (Figure 3.1).  Elevation at the site ranges from 988 m to 1940 m.   

 

The climate of the area is semiarid with cool, dry winters and hot summers.  

Temperatures range from an average low of 4º C during the winter months (December to 

March) to an average high of 33º C during the summer months (June to September) 

(Figure 2.3).  Average monthly temperature across all months is 17º C (NCDC 2006).  

Precipitation averages 369 mm with the highest amount occurring during the summer 

months (average of 58 mm/month) (Figure 3.2).  On average, the lowest amount of 

precipitation occurs during March (6 mm) (Figure 3.2).  Precipitation during the summer   
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Figure 3.1.  A Landsat Enhanced Thematic Mapper Geocover mosaic image (MDA Federal 2004) draped 
over a hillshade representation of the 30-m Digital Elevation Model (USGS 1999) to depict the terrain and 
changing elevation in the study area and surrounding environment. 
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Figure 3.2.  Average monthly rainfall (mm), average maximum temperatures (ºC), and average minimum 
temperatures (ºC), during the period from 1970 to 2000 at the official recording station closest to the study 
area (Marathon, TX) (NCDC 2006). 
 
 
months is generally from thunderstorms (Powell 1998) that can be of high intensity.  

Snowfall can occur during the winter months, but this form of precipitation generally 

averages less than 2 cm during the winter months (NCDC 2006). 

 

Native vegetation in the study area is diverse due to the strong elevational 

gradient (Figure 3.1) and differing soil parent materials.  Powell (1998) describes 5 

distinct vegetation types that can occur in the Trans-Pecos region of Texas: 1) Oak-

Pinyon-Juniper Woodlands, 2) Grasslands, 3) Chihuahuan Desert Scrub, 4) Conifer 

Forest, and 5) Riparian Communities.  Of these, the first three can be found in the study 

area.  In the Glass and Del Norte Mountains (northern and northwestern portions of the 

study area), the Oak-Pinyon-Juniper woodlands predominate.  In elevations ranging 

from 1200 to 1500 m, pinyon pine (Pinus ponderosa), Mohr oak (Quercus mohriana) 

and redberry juniper (Juniperus coahuilensis) are common tree and shrub species.  Black 
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grama (Bouteloua eriopoda), bush muhly (Muhlenbergia porteri), hairy grama 

(Bouteloua hirsuta), and sideoats grama (Bouteloua curtipendula) are common grasses.  

The dominant soil in these areas is the Altuda series (Soil Survey Staff 2007). 

 

The valleys, plains, and basins in the study area can be divided into two distinct 

regions that represent the Grassland and the Chihuahuan Desert Scrub vegetation types.  

In the north central and central portion of the study area, the Grassland type is present as 

these areas are mostly open grasslands interspersed with small shrubs.  In the south 

central and southern part of the study area, the Chihuahuan Desert Scrub vegetation type 

is present with the valley and plains vegetation being primarily shrublands, with some 

open grasslands in basins. These distinct vegetation types are primarily caused by the 

increased aridity along the elevational gradient in the study area.   

 

In the Grassland vegetation type found in the central portion of the study area, 

the dominant grass species are bush muhly (Muhlenbergia porteri) cane bluestem 

(Bothriochloa barbinodis), burrograss (Scleropogon brevifolius), hairy grama 

(Bouteloua hirsuta), black grama (Bouteloua eriopoda) and sideoats grama (Bouteloua 

curtipendula).  Dominant forbs include gray globemallow (Sphaeralcea incana), desert 

eveningprimrose (Oenothera primiveris) and dogweed species (Dyssodia spp.).  

Common shrubs include gregg dalea (Dalea greggii), feather dalea (Dalea formosa), 

javelinabush (Condalia ericoides),  broom snakeweed (Gutierrezia sarothrae) and 

agarito (Mahonia trifoliolata).  Dominant soils include the Crossen, Cienega, Stovall, 

Boracho, Paisano, Espy and Musquiz series (Soil Survey Staff 2007).   

 

In the southern and south-central region of the study area where the Chihuahuan 

Desert Scrub is the dominant type, shrub species include creosotebush (Larrea 

tridentata) tarbush (Flourensia cernua), catclaw acacia (Acacia greggii), mesquite 

(Prosopis glandulosa), whitebrush (Aloysia gratissima), mariola (Parthenium incanum) 

and range ratany (Krameria erecta).  Grasses include tanglehead (Scleropogon 
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brevifolius), hairy grama (Bouteloua hirsuta), black grama (Bouteloua eriopoda) 

sideoats grama (Bouteloua curtipendula), low woollygrass (Dasyochloa pulchella) and 

purple threeawn (Aristida purpurea).  Common soils in this area include the Bullis, 

Catto, Crossen, Paisano, and Stovall series (Soil Survey Staff 2007).   

 

Simulation Model 

 

The Phytomass Growth Simulation Model (PHYGROW) (Stuth et al. 2003a) was 

selected for evaluation to predict herbaceous biomass at the study site.  PHYGROW is a 

point model that contains 4 integrated submodels: climate, soil, plant growth and 

grazing.  The model simulates a soil water balance, multi species/functional group plant 

growth, and livestock grazing on a daily time step.  PHYGROW, at its core, is a light use 

efficiency model (Montieth 1972; Montieth 1977) that simulates plant growth under 

water non-limiting (optimal conditions).  The model then discounts plant growth based 

on the amount of water stress, temperature stress, and livestock grazing demand based 

on the input climate variables and model parameters.  

 

The model contains parameters for soil surface and layer information, plant 

species and community data, livestock grazing management and stocking rates, and is 

driven by daily climate data (Stuth et al. 2003b).  The soil subcomponent of the model 

has 13 unique parameters that include soil depth, bulk density, infiltration, and water 

holding capacity variables.  The plant subcomponent can be parameterized for individual 

species or functional groups.  Plant community composition parameters include initial 

standing crop, percent basal cover for grasses, frequency of forbs, and canopy cover of 

shrubs and trees.  For each individual plant species/functional group in the model, there 

are 27 parameters including minimum, optimal and maximum temperatures for growth, 

radiation use efficiency, leaf area index, leaf and wood turnover, leaf and wood 

decomposition, and canopy water movement.  The grazing subcomponent of the model 

has 19 variables related to each kind/class of grazing animal including forage intake, 
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stocking rate, and grazing preference class for each plant species parameterized in the 

model.  Lastly, the climate subcomponent has 6 variables which include year, day, 

maximum and minimum temperature, rainfall and solar radiation. 

 

Model Parameterization and Evaluation at Weather Stations 

 

To gather the necessary plant community parameters for the PHYGROW model, a 

permanent 100-m vegetation transect was established within each exclosures and near  

(< 100 m) the automated weather stations (Figure 3.3).  Along each transect, a modified 

point-frame method (Ryan 2005) was used to collect percent basal cover of grasses, 

frequency of forbs, and shrub canopy cover.  This was done by placing the modified 

point frame on the soil surface at 1-m increments along the transect.  Each point on the 

frame was examined to determine if the point intersected the basal area of a grass 

species, plant litter, bare ground, or rock.  If a basal area of a grass species was 

encountered, this was recorded as a “hit”.  Within a 5 x 5-cm quadrat around each point, 

each presence of a unique forb species was defined as a “hit”.  If a shrub or tree canopy 

intersected in an upward, perpendicular line from the point, the shrub or tree species was 

recorded as a “hit”.  Along each transect, a total of 500 points were sampled.  The “hits” 

of grass, forbs, and shrub/tree species were divided by the total possible hits (500) and 

these values were entered as the plant community composition variable in the 

PHYGROW model (Table 3.1).   

 

Herbaceous biomass at each transect was measured at the time of transect 

establishment and approximately every 3 to 4 months thereafter during the period from 

March 2004 to January 2007.  A 0.25 or 0.50-m2 quadrat was placed at 10-m increments 

along the 100-m transect (n=10 sample size per transect).  Within each quadrat, the 

herbaceous biomass (grass and forbs, but not shrubs or trees) was clipped to a 1-cm 

stubble height.  The clipped biomass was placed in paper bags and taken back to the  
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Figure 3.3.  Location of automated weather stations and transects used for evaluation of the PHYGROW 
simulation model for predicting herbaceous biomass on rangeland near Marathon, TX.
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Table 3.1.  The percent plant community composition measured on transects located at the West Point and 
Twin China weather stations near Marathon, TX.  
  

Species/ 
Functional Group Scientific name 

Growth 
Habit 

Community 
Composition 

(%) 
 
West Point Station 

   

desert baileya Baileya multiradiata  Forb 0.58 
cane bluestem Bothriochloa barbinodis Grass 0.19 
sideoats grama Bouteloua curtipendula  Grass 0.39 
black grama Bouteloua eriopoda  Grass 2.72 
hairy grama Bouteloua hirsuta  Grass 1.36 
cool season forb  Forb 2.14 
low woollygrass Dasyochloa pulchella Grass 0.19 
broom snakeweed Gutierrezia sarothrae  Shrub 1.94 
curlymesquite Hilaria belangeri  Grass 1.17 
bush muhly Muhlenbergia porteri Grass 1.17 
desert eveningprimrose Oenothera primiveris Forb 2.14 
prickly pear species Opuntia  Shrub 1.75 
wooly plantain Plantago patagonica  Forb 0.19 
slim tridens Tridens muticus Grass 0.19 
warm season forb  Grass 0.19 
yucca species Yucca  Shrub 0.19 
    
Twin China Station    
catclaw acacia Acacia greggii Shrub 5.25 
whitebrush Aloysia gratissima Shrub 3.00 
purple threeawn Aristida purpurea  Grass 0.38 
fourwing saltbush Atriplex canescens. Shrub 0.38 
sideoats grama Bouteloua curtipendula. Grass 0.38 
slender grama Bouteloua repens Grass 0.19 
cool season forb  Forb 0.19 
low woollygrass Dasyochloa pulchella Grass 0.19 
vine ephedra Ephedra pedunculata Shrub 1.50 
tarbush Flourensia cernua  Shrub 7.88 
elbowbush Forestiera pubescens  Shrub 0.38 
range ratany Krameria erecta Shrub 1.13 
creosotebush Larrea tridentate Shrub 6.57 
bush muhly Muhlenbergia porteri Grass 0.38 
tasajillo Opuntia leptocaulis  Shrub 0.94 
halls panicum Panicum hallii  Grass 0.19 
mesquite Prosopis glandulosa Shrub 3.19 



 

 

50

laboratory and dried in a forced air oven at 60º C for 48 hours.  After drying, the samples 

were weighed with a digital scale.  The sample weights were then multiplied by the 

appropriate plot factor in relation to the quadrat size to convert the biomass to kg/ha 

units.  The 10 samples were averaged and the mean was used for comparison to the 

simulation model output for each sampling date. 

 

To parameterize the soil components in PHYGROW for each transect location, 

the soil series was identified using the digital version of the Brewster County Soil 

Survey (Soil Survey Staff 2007) for the latitude and longitude of each transect.  

Parameters needed for PHYGROW were extracted from the soil survey database for 

each soil series.  When a needed parameter was missing from the soil survey data, the 

Map Unit Use File software (MUUF) (Baumer et al. 1987) was used to estimate the 

parameter.   

 

The hourly weather data collected at the weather stations was processed to 

produce a daily climate dataset for each transect site.  Daily climate variables included 

minimum temperature, maximum temperature, rainfall, and solar radiation.  The hourly 

rainfall data for each station were summed to match the production schedule for the 

NEXRAD rainfall product (see Chapter II for details).   

 

The calibration procedure for PHYGROW involved running the model with the 

climate data and comparing the modeled herbaceous biomass output to that measured 

during the first 2-3 biomass clipping dates in time sequence. If the model output fell 

within ± 1 standard error of the mean for the herbaceous biomass measured on the 

transect, the model was considered calibrated.  If the model output fell outside ± 1 

standard error of the measured data, parameters were adjusted to in an attempt to move 

the modeled biomass estimate to within the standard error.  This process was repeated 

for each time period data was collected until the model was considered calibrated.  

Parameter adjustments were generally limited to species maximum rooting depths, green 
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and dead leaf turnover rates, and surface soil layer thickness (influences depth of soil 

water evaporation).  After the model was considered calibrated, the parameters were no 

longer adjusted and the data were used to evaluate model performance during 

subsequent herbaceous biomass clipping events (model verification). 

 

For the weather station sites, two different modeling scenarios were evaluated.  

The first was to conduct simulations using the actual rainfall measured at the sites to 

evaluate the model performance in two very different plant communities (Table 3.1).  In 

this scenario, the PHYGROW model was calibrated and the model output for herbaceous 

biomass was compared to that clipped, over time, in the transects adjacent to the weather 

station for the period from March 2004 to January 2007.  The second scenario was 

designed to assess how well the calibrated model performed at each site using NEXRAD 

rainfall (extracted from the appropriate NEXRAD grid cell) in place of the weather 

station rainfall (for information on the NEXRAD product and procedures for acquiring 

and extracting the data, see Chapter II).  All other parameters and climate data were kept 

the same as that used in the first scenario.  Each scenario was evaluated using the 

statistics described below. 

 

The means and standard deviations of the simulated and observed herbaceous 

biomass were calculated and linear regression was used to examine model predictive 

strength (Carlson and Thurow 1996).  Difference statistics were calculated to examine 

bias and variability between the simulated and observed data.  These statistics included 

percent estimation bias (BIAS), mean bias error (MBE), mean absolute error (MAE), 

and root mean square difference (RMSD).  Estimation bias reflects the normalized 

difference between the simulation model output and the observed data and is expressed 

as follows:   

100(%) ×
−

=
O

O PBIAS           [3.1] 
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where P  is the mean of the simulation model predictions and O  is the mean for the 

observed predictions.  Positive estimation bias values indicate the overestimation of 

biomass by the simulation model whereas negative values indicate the opposite.  Mean 

bias error provides an indication of the average magnitude of the over-prediction or 

under-prediction by the simulation model in the units of the biomass (kg/ha) (Andales et 

al. 2005).  It is calculated as: 

( )
n

OP
MBE

n

i ii∑=
−

= 1              [3.2] 

where Pi is the ith predicted value, Oi is the ith for observed value and n is the number of  

simulated and observed data pairs.  Mean absolute error provides an indication of the 

average absolute difference between the simulated and observed values in the series of 

data pairs being evaluated and is calculated as (Legates and McCabe Jr. 1999):  

n
OP

MAE
n

i ii∑=
−

= 1                [3.3] 

Root mean square difference (RMSD) is a measure of the average magnitude of the 

difference between the simulation and observed biomass data in the units of the data 

(kg/ha).  RMSD is similar to MAE error, however it is more sensitive to extreme 

differences between the simulation and observed data (Willmott 1982).  It is generally 

greater than MAE and the degree of difference is related to the number of outliers in the 

data (Legates and McCabe Jr. 1999).  RMSD is calculated as follows: 

( )
n

PO
RMSD

n

i ii∑=
−

= 1
2

            [3.4] 

 

Relative error measures (goodness-of-fit measures) were also used to evaluate 

performance of the PHYGROW simulation model at the weather station sites.  These 

included estimation efficiency (EE) (Nash and Sutcliffe 1970; Legates and McCabe Jr. 

1999) and the index of agreement (d) (Willmott. et al. 1985; Legates and McCabe Jr. 

1999).  Estimation efficiency is a measure of the deviation from a 1:1 line between 

simulation model output and the observed data and is calculated as: 
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2

0.1              [3.5] 

An EE value of 1 would reflect a perfect correspondence between the simulated output 

and the measured data.  Values greater than 0 would indicate that a positive relationship 

exists between the simulation output and the observed data and that the simulation data 

could be used as a good estimate for the location where the observed data was collected.  

Values less than 0 indicate a low correspondence between the simulation output and the 

observed data suggesting that the mean of the observed data would serve as a better 

predictor than the simulation model output (Legates and McCabe Jr. 1999; Moon et al. 

2004).  The index of agreement is measure of the tightness between the simulation 

predictions and the observed data to a 1:1 line (Willmott. et al. 1985; Andales et al. 

2005) and is expressed as follows: 

( )
( )∑
∑

=

=

−+−

−
−=

n

i ii

n

i ii

OOOP
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d

1

2
1

2

0.1               [3.6] 

Values of d can range from 0 to 1 with a 1 indicating perfect agreement between the 

simulation output and the observed data.   

 

Model Evaluation of Grazed Location Simulations Using NEXRAD 

 

An additional 60 sites were selected across the study area (Figure 3.3) to evaluate the 

ability of the PHYGROW model to predict herbaceous biomass at the patch scale using 

the NEXRAD rainfall product.  These sites were dispersed across the study area and 

located in the major plant communities.  The NRCS ecological site map (Soil Survey 

Staff 2007) was used, along with Landsat satellite imagery, to identify possible sample 

locations prior to going to the field.  Once in the field, the areas identified from the soil 

and Landsat maps were visited and a determination was made in the field as to whether 

the site was suitable for sampling.  Once a site was identified, a GPS was used to record 

the start and end of a 100-m transect. Plant species composition and cover, along with 
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herbaceous biomass data, were collected from each transect using the modified point 

frame procedure described above for the weather station locations.  These data were 

used to parameterize the plant communities for the PHYGROW simulations.   

 

After transects were established at each of the 60 sites, the majority of the site 

were revisited at least once during the period from March 2004 to March 2007 to collect 

additional herbaceous biomass measurements for model evaluation. The methodology 

for collecting herbaceous biomass was the same as described above for the weather 

station locations.   

 

Soil data for parameterization of the PHYGROW model simulations at the 60 

sites was extracted from the Brewster County, TX soil survey in the same manner as that 

described above for the weather station locations.  Since these sites were grazed by 

cattle, the grazing module of PHYGROW was parameterized using the pasture stocking 

rate information provided by the Catto-Gage Ranch management.  

 

The simulations for the grazed sites were conducted using NEXRAD data as the 

rainfall source.  The same procedure for calibration described above for the weather 

station locations was used for each site.  Because the number of sample dates for model 

evaluation at each site was small (n=2 to 5), the data pairs for simulated and observed 

herbaceous biomass were pooled.  The performance of the PHYGROW model was then 

assessed on the pooled data set using the statistics described above for the weather 

stations.  
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Results 

 

Simulation with Measured Rainfall  

 

At the West Point weather station location (Figure 3.3), the plant community can be 

described as a desert grassland with black grama (Bouteloua eriopoda), bush muhly 

(Muhlenbergia porteri), and curlymesquite (Hilaria belangeri) as the dominant grass 

species (Table 3.1).  The simulation for this plant community, using rainfall collected 

from the weather station at the site, required the first three sampling dates to calibrate the 

model (Figure 3.4A).  After this, model parameters were no longer adjusted.  For the 

entire time series, the average herbaceous biomass measured at the site was 1054 kg/ha 

whereas the average predicted by the PHYGROW model was 964 kg/ha.  This resulted 

in an overall 8.57% under-prediction in herbaceous biomass by the model (Table 3.2).  

The standard deviation for the simulated herbaceous biomass (sds) was slightly higher 

than that for the observed biomass (sdo) showing there was more variability in the model 

estimates for these observation dates (Table 3.2).  The root mean square difference 

(RMSD) between the simulated and observed data was 246 kg/ha, which was only 

slightly higher than the mean absolute error (MAE) (213 kg/ha; Table 3.2), providing an 

indication that there were few extreme differences between the model output and the 

herbaceous biomass at this site.  However, the model did have a tendency to under-

predict biomass during the spring (May) in 2004 and during mid-winter (January) in 

both 2006 and 2007 (Figure 3.4A).  

 

Linear regression indicated a reasonable correspondence between the simulated 

biomass and that measured at the site with the 72% of the variability in the measured 

biomass explained by the simulation model results (Table 3.2).  Model estimation 

efficiency (EE) and the index of agreement (d) also provided evidence that the 

simulation model had moderate to good skill in predicting herbaceous biomass at the site 

(EE = 0.58 and d = 0.91; Table 3.2).  
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Figure 3.4.  Comparison of A) observed mean herbaceous biomass (kg/ha) measurements to the 
herbaceous biomass predicted by the PHYGROW simulation model and the corresponding B) cumulative 
rainfall (mm) for two different modeling scenarios at the West Point weather station location. Scenarios 
evaluated were 1) simulation using rainfall collected at the study site (Station) and 2) simulation using 
NEXRAD rainfall for the study site location (NEXRAD).  Bars on observed values represent the standard 
error of the mean.   
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Table 3.2.  Statistics for evaluation of the PHYGROW model’s ability to simulate herbaceous biomass 
production (kg/ha) at the West Point study site near Marathon, TX.  Two different modeling scenarios 
were evaluated: 1) simulation using rainfall collected at the study site (station simulation) and 2) 
simulation using NEXRAD rainfall for the study site location (NEXRAD simulation). 
 

Statistic 

Scenario 1 
 

Station 
Simulation vs. 

Observed 

 
Scenario 2 

 
NEXRAD 

Simulation 
vs. Observed 

Observed Mean (kg/ha) 1054 1054 
Simulated Mean (kg/ha) 964 1041 
1sdo (kg/ha) 401 401 
sds (kg/ha) 452 532 
Bias (%) -9 -1 
MBE (kg/ha) -90 -13 
MAE (kg/ha) 213 332 
RMSD (kg/ha) 246 424 
r2 0.72 0.33 
EE 0.58 -0.23 
d 0.91 0.75 
n 11 11 

1sdo = standard deviation for observed; sds = standard deviation for simulation; MBE = Mean Bias Error; MAE = Mean Absolute 
Error; RMSD = Root Mean Square Difference; r2 = coefficient of determination; EE = estimation efficiency; d = index of agreement; 
n = number of samples  
 
 

At the Twin China site (Figure 3.3), the plant community can be characterized as 

a creosotebush (Larrea tridentata) and tarbush (Flourensia cernua) shrubland 

interspersed with grasses such as sideoats grama (Bouteloua curtipendulata) and bush 

muhly (Muhlenbergia porteri) (Table 3.1).  The observed herbaceous biomass data 

during the study period was highly variable with standard errors for the sampling dates 

ranging from 70 to 300 kg/ha.  This was due to the large amount of bareground between 

the herbaceous plant species growing at the site.  Over the time series, the observed 

herbaceous biomass averaged 260 kg/ha (Table 3.3).   

 

The simulation for the Twin China site, using rainfall data collected from the 

weather station, also required the first three collection dates to calibrate the model 

(Figure 3.5A). The herbaceous biomass predicted by the simulation model averaged 254 

kg/ha exhibiting a slight negative bias of approximately 2% (Table 3.3).  The RMSD 

during the time series was 74 kg/ha (Table 3.3).  The greatest differences between the 



 

 

58

 
Figure 3.5.  Comparison of A) observed mean herbaceous biomass (kg/ha) measurements versus the 
herbaceous biomass predicted by the PHYGROW simulation model and B) the corresponding cumulative 
rainfall (mm) for two different modeling scenarios at the Twin China weather station location.  Scenarios 
evaluated were 1) simulation using rainfall collected at the study site (Station) and 2) simulation using 
NEXRAD rainfall for the study site location (NEXRAD).  Bars on observed values represent the standard 
error of the mean.   
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Table 3.3.  Statistics for evaluation of the PHYGROW model’s ability to simulate herbaceous biomass 
production (kg/ha) at the Twin China study site near Marathon, TX.  Two different modeling comparisons 
were evaluated: 1) simulation using rainfall collected at the study site (station simulation) and 2) 
simulation using NEXRAD rainfall for the study site location (NEXRAD simulation). 
 

Statistic 

Scenario 1 
 

Station 
Simulation vs. 

Observed 

Scenario 2 

NEXRAD 
Simulation vs. 

Observed 
Observed Mean (kg/ha) 260 260 
Simulated Mean (kg/ha) 254 188 
1sdo (kg/ha) 99 99 
sds (kg/ha) 71 93 
Bias (%) -2 -28 
MBE (kg/ha) -5 -72 
MAE (kg/ha) 58 96 
RMSD (kg/ha) 74 121 
r2 0.38 0.18 
EE 0.37 -0.68 
d 0.74 0.60 
n 10 10 

1sdo = standard deviation for observed; sds = standard deviation for simulation; MBE = Mean Bias Error; MAE = Mean Absolute 
Error; RMSD = Root Mean Square Difference; r2 = coefficient of determination; EE = estimation efficiency; d = index of agreement; 
n = number of samples  
 
 
model predictions and the observed biomass occurred during January 2006 when the 

model under-predicted biomass by 122 kg/ha and during August 2006 when the model 

over-predicted biomass by 151 kg/ha (Figure 3.5A).   

 

Linear regression indicated a weak correspondence between the simulated and 

observed herbaceous biomass with only 38% of the variability in the observed biomass 

being explained by the simulation model output (Table 3.3).  EE was also low (0.37); 

however, it does show that the simulation model was a slightly better predictor than the 

overall mean of the observed herbaceous biomass.  The d index was 0.74 indicating a 

moderate correspondence of the simulation model predictions and the observed data to a 

1:1 line. 
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Simulation with NEXRAD Rainfall 
 

At the West Point location, replacement of the station rainfall with NEXRAD rainfall 

into the calibrated model resulted in a different pattern of herbaceous biomass 

production response when compared to both the observed data and the station simulation 

(Figure 3.4A).  Although the average biomass between the NEXRAD simulation and the 

observed data were similar (1041 vs. 1054 kg/ha, respectively), the variability in the 

NEXRAD simulation predictions was almost 33% greater than the observed data as 

indicated by the standard deviations (Table 3.2).  The variability between the simulated 

biomass and that measured at the site was high with a RMSD of 424 kg/ha.  This was an 

almost 75% increase in that seen for the simulation using rainfall collected at the site 

(Table 3.2).  Goodness-of-fit statistics were low with a linear regression r2 of 0.33 and an 

EE of -0.23 (Table 3.2).  The negative EE indicates that the variability in the NEXRAD 

simulation was so large, that the mean of the observed herbaceous biomass would be a 

better predictor of biomass than the NEXRAD simulation.  The d index indicated a 

moderate correspondence (0.75) between the NEXRAD simulation and observed data, 

and was lower than that observed for the station simulation (Table 3.2).   

 

The differences in herbaceous biomass between the simulations using NEXRAD 

rainfall and the rainfall collected at the site appear to be due to differences in the timing 

and amounts of precipitation in the NEXRAD product since all other model parameters 

were unchanged.  An examination of the rainfall amounts during the 30 days prior to 

when a large divergence occurred between the model outputs for NEXRAD and the 

station data (e.g., October 2003, June 2005, and September 2006) reveals that the 

NEXRAD and the station rainfall differed by 25 to 40 mm of rainfall in each instance.  

However, when the NEXRAD rainfall tracked the station rainfall more closely, such as it 

did during the first 9 months of the 2004 to 2005 monsoon cycle (June 1, 2004 to May 

31, 2005), the amount of biomass predicted by the model using NEXRAD data was 

almost identical to the biomass predicted by the station rainfall model.  This provides an 

indication of the sensitivity of the model to the timing and amount of rainfall and that a 
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series of over- or under-predictions of rainfall by the NEXRAD product can lead to 

substantially different predictions in biomass.   

 

At the Twin China site, the replacement of the station rainfall with the NEXRAD 

rainfall also led to a different and more variable pattern of herbaceous biomass 

prediction.  Biomass predictions from the NEXRAD simulation were generally lower 

than the station rainfall biomass predictions for almost the entire time series (Figure 

3.5A) with an overall estimation bias of -28% (Table 3.3).  The herbaceous biomass in 

the NEXRAD simulation average 188 kg/ha for the time series whereas that measured 

on site was 260 kg/ha.  The MAE and the RMSD were 96 and 121 kg/ha respectively, 

which represented and almost 63% increase in variability when compared to the station 

simulation (Table 3.3).  Like that observed at the West Point site, the use of the 

NEXRAD rainfall in the simulation reduced the goodness-of-fit statistics.  The EE 

statistic was most affected with a value of -0.68 for the NEXRAD simulation compared 

to 0.37 for the station simulation (Table 3.3).  Since the EE statistic is sensitive to large 

outliers, the relatively large under-prediction of herbaceous biomass by the NEXRAD 

simulation during most of 2004 and 2006 led to this reduced EE value.   

 

As was observed at the West Point site, the timing and amount of rainfall 

strongly influenced the differences seen between the NEXRAD and station rainfall 

simulations.  During September through October 2003, the NEXRAD rainfall 

underestimated rainfall at the site by almost 140 mm (Figure 3.5B).  However, this large 

difference in rainfall resulted in only a 50 kg/ha difference in the herbaceous biomass 

when compared to the station simulations (Figure 3.5A).  Because this site is dominated 

by shrub species, and grasses and forbs comprise only a small proportion of the 

community composition (Table 3.1), the grasses and forbs have a limited potential to 

respond to the additional water in the model.   
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During the period from June 2005 to August 2006, the NEXRAD simulation also 

had a large deviation in herbaceous biomass when compared to both the measured 

biomass and the station rainfall simulation. (Figure 3.5A).  NEXRAD underestimated 

rainfall by 26 mm during May 2005 and this appears to be what triggered the trajectory 

change for the NEXRAD simulation.   

 

 Simulation Using NEXRAD Rainfall on Grazed Sites  

 

The PHYGROW model was parameterized for 60 sites (Figure 3.3) across the study area 

that represented the major plant communities accessible to grazing by livestock.  

NEXRAD rainfall data were used to drive the PHYGROW model.  Since there were not 

enough observations from each site to examine model performance individually, the 

PHYGROW simulated and observed data pairs were pooled across sites for evaluation.   

 

Approximately half of the sites required two observation dates to calibrate the 

model.  Approximately a third of the sites required no calibration after the first data 

collection and 10 percent required three observation dates to calibrate.  Across all sites 

and collection dates in the calibration data set, the observed herbaceous biomass 

averaged 917 kg/ha. The average herbaceous biomass predicted by the simulation model 

was 851 kg/ha, which resulted in a negative bias of 7% for the calibration (Table 3.4).  

The variability in the data for both the observed and simulated biomass was high, but 

was similar (sdo = 886 and sds = 832; Table 3.4).  The RMSD was about 63% greater 

than the MAE (Table 3.4), indicating that several extreme outliers were increasing the 

variability between the observed and simulated biomass (Figure 3.6A).  These extreme 

outliers were mostly associated with large under-predictions of biomass (700 to 900 

kg/ha) by the simulation model during the early portion of the growing season in May 

2004.  This same trend was also observed at the West Point site (Figure 3.4A). 

 



 

 

63

 

Figure 3.6.  A comparison of observed mean herbaceous biomass measurements (kg/ha) to those predicted 
by the PHYGROW model during A) calibration and B) model verification using NEXRAD rainfall.  Bars 
on observation mean indicate standard error.  
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Table 3.4.  Statistics for calibration and validation performance on the ability of the PHYGROW model, 
using NEXRAD rainfall, to predict herbaceous biomass at multiple sites across the study area near 
Marathon, TX.  
 

Statistic Calibration Verification 
Observed Mean (kg/ha) 917 917 
Simulated Mean (kg/ha) 851 907 
1sdo (kg/ha) 886 851 
sds (kg/ha) 832 774 
Bias (%) -7 -1 
MBE (kg/ha) -66 -9 
MAE (kg/ha) 206 208 
RMSD (kg/ha) 333 320 
r2 0.86 0.88 
EE 0.86 0.88 
d 0.96 0.97 
n 98 82 

1sdo = standard deviation for observed; sds = standard deviation for simulation; MBE = Mean Bias Error; MAE = Mean Absolute 
Error; RMSD = Root Mean Square Difference; r2 = coefficient of determination; EE = estimation efficiency; d = index of agreement; 
n = number of samples  
 

The relative error statistics for the model calibration across the grazed sites were 

good.  Linear regression analysis revealed a good correspondence between the observed 

and simulated biomass with 86% of the variability in observed biomass explained by the 

simulation predictions (Table 3.4).  The EE and d index were also quite high (0.86 and 

0.97, respectively) indicating that the observed and simulated biomass pairs generally 

conformed to the 1:1 line.   

 

Model verification statistics were quite similar to the calibration statistics across 

all grazed sites (Table 3.4).  The observed herbaceous biomass was 917 kg/ha which, 

surprisingly, was the same as the observed mean for the calibration set.  For the 

verification, PHYGROW continued to under-predict herbaceous biomass; however, the 

percentage was less than in the calibration (1% vs. 7%, respectively; Table 3.4).  The 

variability between observed and simulated biomass in the verification was less than the 

calibration (RMSD of 320 kg/ha vs. 333 kg/ha, respectively).  This reduced variability 
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could also be seen in the percent difference between the RMSD and the MAE which was 

55% for the model verification (Table 3.4).  The EE and r2 statistics were both slightly 

higher for the model verification compared to the calibration. The d index did not change 

(Table 3.4).  The model verification statistics indicate that across all sites the calibrated 

PHYGROW model did quite well in predicting herbaceous biomass. 

 

Several obvious outliers can be seen in the verification data set (Figure 3.6B).  

One cluster of 4 data pairs was examined where PHYGROW over-predicted the biomass 

by more than 600 kg/ha (Figure 3.6B, lower left quadrant).  Three of the 4 sites 

represented data collected during August 2006 and the other was collected in January 

2007.  Notations on the data sheets for these sites indicated moderate to heavy utilization 

of the herbaceous biomass by livestock.  Since the grazing algorithm in PHYGROW is 

parameterized using stocking rates for the entire pasture, the model is not able to capture 

localized overgrazing that may occur on the site being modeled; therefore, this could 

lead to large outliers on verification sites. 

 

Discussion 

 

The PHYGROW simulation model’s performance, using rainfall data collected at the 

site, was moderately low to good depending on the performance measure (EE or d) and 

the site examined (Table 3.2 and 4.3).  Both the West Point and Twin China sites had 

sampling dates where the model had relatively large over or under-predictions of the 

herbaceous biomass which reduced the performance measures.  Assessing the source of 

these differences becomes problematic since the differences were not consistent in the 

time series or across sites.  The source of these differences may be associated with 

inadequacies in the model algorithms, parameterization, sampling methodology for the 

observed data, or combinations of these.  In some cases, the model appears to lag 

observed conditions by 20 to 30 days (e.g., May 2004 and August 2006 at the West Point 

site; Fig 4.2A).  This may reflect problems with the model algorithm in not being able to 
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respond as quickly to conditions as plants do in nature.  A higher temporal frequency in 

biomass sampling coupled with soil moisture monitoring may be an approach to 

gathering the data needed for model improvement.   

 

The response of the PHYGROW model to the replacement of the site measured 

rainfall with NEXRAD was surprising.  The NEXRAD simulations resulted in very 

different temporal curves in biomass change when compared to the station simulations.  

It appears that differences of greater than 25 mm between the NEXRAD and station 

rainfall during a 30 day time period resulted in PHYGROW predicting very different 

trajectories of biomass growth (Figure 3.4A and 3.5A).  These trajectory changes 

occurred during October 2003, May 2005, and October 2006 at both sites and seem to 

correspond to the start of the growing season or with growth in the latter part of the 

growing season prior to winter.  In each case where NEXRAD simulation changed 

trajectory from the station simulation, it later caught up and the biomass estimates 

between the two simulations were comparable.   

 

Bias trends in the comparison statistics for each site follow the results of the 

location comparison of NEXRAD rainfall to station rainfall described in Chapter II.  In 

that study, NEXRAD rainfall had a tendency to overestimate rainfall at the West Point 

site by 7% and underestimate rainfall at the Twin China site by 9% (Figure 2.7).  A 

comparison of the change in bias for the station simulation versus the NEXRAD 

simulation at the West Point site shows that the bias increased from -9.0% to -1.0% 

(Table 3.2) confirming the overestimation of rainfall by NEXRAD translated into 

increased biomass production.  For the Twin China Site, the bias decreased from -2.08% 

to -27.67% (Table 3.3) indicating the underestimation of NEXRAD reduced biomass.   

 

The seasonal differences in rainfall bias for the NEXRAD product described in 

Chapter II are not as easily to discern with the simulation results.  The seasonal statistics 

for NEXRAD indicate that it overestimated rainfall by 1.3% in the monsoon season 
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(June 1 to September 30) and underestimated rainfall by 4.3% (Figure 2.9).  The 

differences in biomass predictions between NEXRAD and station rainfall seemed to be 

influenced most by the rainfall in a 30 day window near the end of the monsoon period 

(May) or the start of the monsoon period (October) (Figure 3.4 and 3.5) rather than the 

differences in the total amount of rainfall that occurred during the season. 

 

The performance measures were reduced for the NEXRAD simulation when 

compared to the station rainfall (Table 3.2 and 3.3).  The variability in the NEXRAD 

simulation increased substantially at both sites with RMSD increasing by 72% at the 

West Point site and by 63% at the Twin China site.  The increased variability reduced 

the goodness-of-fit measures, especially EE which became < 0 for both sites indicating 

that the variability in the NEXRAD simulation data was much greater than the observed 

biomass data (Table 3.2 and 3.3).  Based on the EE statistic alone, one could conclude 

that the use of NEXRAD rainfall in PHYGROW simulations for predicting biomass 

does not provide any additional skill and using the mean of the observed biomass would 

be a more appropriate predictor (Wilcox et al. 1990; Legates and McCabe Jr. 1999).  The 

index of agreement statistic (d) was reduced for the NEXRAD simulation at both sites, 

but not as drastically as the EE (Table 3.2 and 3.3).  It continued to show a reasonable 

agreement between the NEXRAD rainfall simulation and the observed herbaceous 

biomass.   

 

The performance of the PHYGROW simulations on grazed locations using 

NEXRAD rainfall is somewhat in conflict with the performance at the weather station 

locations.  EE and d for both calibration and validation were greater than that observed 

for the NEXRAD simulations at the West Point site and the Twin China (Table 3.2, 3.3, 

and 3.4)  Possible explanations for this include calibration procedures and sensitivity of 

the performance statistics to the range of biomass values in the data pairs.  With regard 

to the calibration procedure, all of the grazed sites were calibrated using NEXRAD 

weather data.  For sites where NEXRAD might consistently over or underestimate 
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rainfall, calibrating the model using the NEXRAD data could overcome this bias 

because variables in the model are adjusted accordingly to match the first data 

collections points.  A potential pitfall of calibration with NEXRAD, especially in 

biomass prediction for near real-time drought early warning or stocking rate assessment, 

would be when the NEXRAD rainfall estimation is inconsistent.  Uncertainty increases 

in not knowing how the model would respond, especially during those critical windows 

when differences in the actual rainfall and the NEXRAD estimate can cause the biomass 

to take a different trajectory in the model simulation as seen at the West Point and Twin 

China sites. 

 

A second reason for the differences in model performance statistics between the 

grazed and ungrazed sites is likely related the greater range of biomass values and 

sample size for the grazed sites versus the ungrazed station locations.  The EE and d 

statistics are sensitive to extreme values (Legates and McCabe Jr. 1999) and increased 

data pairs reduce the effect of individual outliers.  For example, if the data pairs for the 

grazed site verification data are split along the mean value of 917 kg/ha (Table 3.4), and 

the EE and d values are recalculated separately for the data pairs on either side of the 

mean, the overall performance statistics drop.  For those data pairs with biomass less 

than the 917 kg/ha average, the EE was reduced to 0.62 and the d reduced to 0.88.  

These values become comparable to the performance measures for the simulations using 

station rainfall at the West Point site (Table 3.2).  For the data pairs above 917 kg/ha, the 

EE was 0.83 and the d index was 0.95, indicating good correspondence between the 

NEXRAD simulations and the observed biomass at the sites with higher productivity.   

 

The results for the grazed sites that were calibrated using the NEXRAD rainfall 

look promising for prediction of herbaceous biomass at the patch scale on semiarid 

landscapes.  However, the stark differences in biomass predictions that were seen for the 

NEXRAD simulations at the weather station sites (Figure 3.4 and 4.3) suggest the need 

for additional research to assess performance over a longer period of time.  More 
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frequent temporal sampling at selected sites would be recommended to address the 

reliability of the NEXRAD simulations especially during and after the time periods 

where different trajectories in biomass production were detected (start of monsoon and 

end of monsoon period).  This information will be needed to fully understand the 

ramifications for using PHYGROW with NEXRAD rainfall in a drought early warning 

system or near real-time stocking rate assessment.  Overestimations by the model could 

lead to erroneous recommendations for increasing animal numbers, which in turn could 

lead to degradation of the resource due to overgrazing.  In the case of drought, 

overestimation could lead to keeping animals longer than the forage can support (again 

leading to degradation) and underestimation could lead to ranchers selling animals when 

they did not need to, thus increasing their operating costs.  Additional study could assist 

in reducing these uncertainties. 
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CHAPTER IV 

COKRIGING OF BIOPHYISCAL MODEL OUTPUT AND A 

SATELLITE GREENNESS INDEX TO PREDICT FORAGE 

BIOMASS IN THE GOBI REGION OF MONGOLIA 

 

Introduction 

 

The ability to characterize the vegetation productivity over large landscapes can be an 

important component in the assessment of drought impacts, natural resource 

management options, environmental degradation, and economic impacts of changing 

technologies.  For pastoralists, an understanding of the vegetation productivity in the 

surrounding landscape can assist in determining whether to move, buy or sell animals, 

and assess the level of risk for decision making.  However, the time and resources 

required to conduct accurate assessments of vegetation productivity over large 

landscapes are prohibitive, and in many developing countries such as Mongolia, the 

infrastructure and funding do not exist for large-scale characterization.  Another 

complicating factor is that decisions regarding livestock movement and stocking/de-

stocking may require near real-time information, especially in the face of drought.  

Vegetation productivity assessment is almost impossible to conduct over large land areas 

on a near real-time basis, thus the information needed for livestock related decisions is 

not always available when it is needed most.  The inability to make decisions at critical 

times could lead to vegetation overuse, which in turn, could lead to rangeland 

degradation (Weber et al. 2000).   

 

Improvements in computing power and capacity, along with near real-time 

production of climate data and remote sensing imagery offer the opportunity to develop 

near real-time systems for monitoring vegetation on rangelands.  Improved computing 

power and availability of climate data has increased the use of simulation modeling for 

near real-time monitoring in agriculture systems, including rangelands (e.g., Nain et al. 
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2002; Stuth et al. 2005).  A limitation of many rangeland simulation models is that most 

provide simulation output for a specific point.  Ideally, one would want to simulate as 

many points (or sites) as possible to represent a region or landscape, especially for the 

determination of vegetation productivity across the landscape.  However, the amount of 

effort and cost for gathering the data essential for model parameterization on a large 

number of monitoring points can be prohibitive.  Geostatistical interpolation methods 

such as kriging and cokriging provide the opportunity to extend data collected or 

simulated for a given set of points to unsampled areas by taking advantage of spatial 

correlations in the data (Isaaks and Srivastava 1989; Rossi et al. 1994).  

 

As an interpolation method, kriging can provide estimates for unsampled points 

by using the weighted linear average of the available samples (Rossi et al. 1994).  

Ordinary kriging is often described as the Best Linear Unbiased Estimator (B.L.U.E.; 

Isaaks and Srivastava 1989).  It is "best" because the variance of the errors is minimized, 

linear because the estimates are weighted linear combinations of the sample data, and 

unbiased in that the average error is equal to zero.  Goovaerts (1998) states that one of 

the primary advantages of kriging over other interpolation techniques such as inverse 

distance weighting is that kriging accounts for the pattern of spatial variability (both 

range and direction) through semivariogram modeling. 

  

Cokriging involves the use of a secondary variable (covariate) that is cross-

correlated with the primary or sample variable of interest and offers additional 

advantages over ordinary kriging.  The secondary variable is usually sampled more 

frequently and/or regularly, thus allowing estimation at unsampled points using both 

variables (Isaaks and Srivastava 1989; Goovaerts 1998).  Generally, the greater the 

degree of spatial and cross-correlation that exists between the primary and secondary 

variables being analyzed, the greater the benefit of using cokriging over kriging 

(Goovaerts 1998).  This can aid in minimizing the error variance of the estimation 

(Isaaks and Srivastava 1989). 
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Kriging and cokriging have been used for a variety of applications including 

mapping of ore bodies in mining (Journel and Huijbregts 1978), mapping and estimating 

soil physical and chemical properties(Gloaguen et al. 2001; Bekele et al. 2003; Ersahin 

2003; Mueller and Pierce 2003),  and soil erosion monitoring (Wang et al. 2003).  

Kriging and cokriging methods have also been employed to estimate plant biomass and 

other plant parameters on croplands (Atkinson et al. 1994; Dobermann and Ping 2004; 

Chokmani et al. 2005), forested lands (King et al. 2003; Nanos et al. 2004), and 

grazinglands (Mutanga and Rugege 2006).   

 

With regard to cokriging in these instances, data from remotely sensed images 

were used as a covariate in the analysis.  Remote sensing imagery provides a dense and 

exhaustive data set that can serve as a secondary variable for geostatistical interpolation 

given a correlation between the primary and secondary variable (Dungan 1998).  

Satellite derived vegetation indices (i.e., greenness indices), most notably the 

Normalized Difference Vegetation Index (NDVI), have been found to be correlated to 

vegetation productivity (Tucker et al. 1985; Tucker and Sellers 1986; Wylie et al. 1991; 

Sannier et al. 2002; Al-Bakri and Taylor 2003; Schino et al. 2003; Pineiro et al. 2006; 

Wessels et al. 2006), thus making these products suitable for use as a secondary variable 

in geostatistical analysis.  On rangelands, NDVI has generally been used as a predictor 

variable for vegetation biomass (e.g., Tucker and Sellers 1986; Al-Bakri and Taylor 

2003; Frank and Karn 2003), but has not been extensively used as a covariate in 

geostatistical interpolation of biomass.  Vegetation indices produced through the 

National Oceanic and Atmospheric Administration Advanced Very High Resolution 

Radiometer (NOAA-AVHRR) and the Moderate Resolution Imaging Spectroradiometer 

(MODIS) satellite data streams have high temporal frequency (daily acquisition with 10 

to 16 day compositing intervals) making them attractive for use in near real-time 

systems.  The NOAA-AVHRR data has a relatively long historical record (1981 to 

present), global coverage, and a resolution of 1 km.  This data set has been a major 
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component of drought and famine early warning systems for Africa (Hutchinson 1991; 

Rowland et al. 2005).  

 

The assessment of vegetation productivity on a near real-time basis is especially 

important in Mongolia where drought and winter disasters (dzud) that deplete vegetation 

resources represent a major risk confronting nomadic livestock producers.  During the 

period from 1999 to 2001, as much as 35% of the nation’s livestock was lost to drought 

and winter disasters.  In the Gobi region of the country, livestock mortality reached 50%, 

with many households losing entire herds (Siurua and Swift 2002).  Since the majority of 

the livestock producers are semi-nomadic (Bedunah and Schmidt 2004), knowledge of 

the surrounding forage conditions is critical for making decisions about livestock, 

especially during drought (Kogan et al. 2004).  Currently, the majority of herders 

respond to drought by moving animals to another location, but the movement is not 

always coordinated due to the lack of information about vegetation condition, thus 

leading to increased animal numbers in non-drought affected areas.  In 2004, a study was 

implemented in the Gobi region of Mongolia to examine the feasibility of developing a 

forage monitoring system that would provide near real-time spatial and temporal 

assessment of livestock forage conditions. The objectives of this study were to 1) assess 

the ability of the PHYGROW forage simulation model to accurately predict forage 

biomass at selected sites across the landscape using a near real-time, high resolution 

rainfall product, and 2) determine the feasibility of using the geostatistical tool of 

cokriging to integrate simulation model output with satellite greenness indices (NDVI) 

to produce landscape level maps of forage production across the region.   
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Methods 

 

Study Area 

 

Mongolia is a landlocked country having a land area of over 1.5 million square 

kilometers of which of which over 90% is rangelands.  Livestock producers are 

generally semi-nomadic herders who extensively graze their animals in surrounding 

regions during the spring, summer, and fall, then return to protected camps for the winter 

months (Bedunah and Schmidt 2004).  Sheep and goats are the predominant kinds of 

livestock, followed by cattle, horses, yaks and camels. 

 

Mongolia’s climate is continental with extremely cold, dry winters and warm 

summers.  Precipitation generally occurs in the form of rainfall during the summer 

months (June – August) which coincides with the general growing season for most 

plants.  The country-wide average temperature is 20º C during the summer months and   

-24 º C during the winter months.  Precipitation is most abundant in the northern regions 

of the country averaging 200 to 350 mm per year and least abundant in the southern 

regions which average 100 to 200 mm.  A large portion of the country is prone to 

extreme winter disasters (dzuds) which are periods of intensely cold temperatures (<-40 º 

C) accompanied by snow and/or ice.  They usually follow periods of summer drought 

which can lead to large losses of livestock because animals are in poor condition and 

cannot survive the extreme temperatures.  The most recent large-scale occurrence of 

dzud in Mongolia was during 1999 to 2001 (Siurua & Swift 2002). 

 

This study was conducted in the Gobi region of Mongolia (Figure 4.1).  The 

study area included the administrative aimags (provinces) of Gobi Altai, Bayankhongor, 

Ovorkhangai, Omnogobi, Dundgobi, Dornogobi, Gobi Sumber, and Tov (Figure 4.1).  

The area can be classified into 5 natural zones (Yunatov et al. 1979) that generally 

follow the north to south elevational gradient and include the High Mountain, Mountain 



  

75

 
Fi

gu
re

 4
.1

.  
A

im
ag

 (p
ro

vi
nc

e)
 b

ou
nd

ar
ie

s a
nd

 n
at

ur
al

 z
on

es
 w

ith
in

 th
e 

st
ud

y 
ar

ea
 in

 M
on

go
lia

.  
Th

e 
fiv

e 
na

tu
ra

l z
on

es
 g

en
er

al
ly

 fo
llo

w
 th

e 
no

rth
 to

 
so

ut
h 

gr
ad

ie
nt

 o
f e

le
va

tio
n 

w
ith

in
 th

e 
st

ud
y 

ar
ea

. 



 

 

76

Taiga (Forest), Forest Steppe, Steppe, and Gobi Desert zones.  The High Mountain zone 

represents areas above the tree line and consists mainly of tundra vegetation.  The 

Mountain Taiga zone is dominated by forest species, mainly Siberian larch (Larix 

sibirica) and Siberian pine (Pinus sibirica).  The Forest Steppe zone represents a 

transition between the Mountain Taiga and Steppe zones and consists of grasslands 

interspersed with forested areas.  Trees such as Siberian larch (Larix sibirica) and 

Siberian pine (Pinus sibirica) can be found on north slopes and Stipa and Festuca 

grasses on southern slopes.  The Steppe zone consists of grasslands dominated by Stipa,  

and Cliestogenes grass species and Artemisia forbs and have the largest concentration of 

livestock production within the study area.  The Gobi Desert zone is the most arid zone 

(<200 mm of precipitation) and with the dominant plants consisting of Stipa and Allium 

species and sub-shrubs such as Caragayna and Amygdalus species. 

 

Simulation Model 

 

The Phytomass Growth Simulation Model (PHYGROW) (Stuth et al. 2003a) was used 

for the prediction of forage biomass for monitoring sites within the study region.  

PHYGROW is a point model that contains 4 integrated submodels: climate, soil, plant 

growth and grazing.  The model simulates a soil water balance, multi species/functional 

group plant growth, and livestock grazing on a daily time step.  PHYGROW is based on 

the light use efficiency model concept (Montieth 1972; Montieth 1977) that simulates 

plant growth under water non-limiting (optimal conditions).  The model then discounts 

plant growth based on the amount of water stress (calculated from the water balance), 

temperature stress (based on species temperature tolerances for growth), and livestock 

grazing demand.   

 

The model contains parameters for soil surface and layer information, plant 

species and community data, livestock grazing management and stocking rates, and is 

driven by daily climate data (Stuth et al. 2003a).  The soil subcomponent of the model 
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has 13 unique parameters that include soil depth, bulk density, infiltration, and water 

holding capacity variables.  The plant subcomponent can be parameterized for individual 

species or functional groups.  Plant community composition parameters include initial 

standing crop, percent basal cover for grasses, frequency of forbs, and canopy cover of 

shrubs and trees.  For each individual plant species/functional group in the model, there 

are 27 parameters including minimum, optimal and maximum temperatures for growth, 

radiation use efficiency, leaf area index, leaf and wood turnover, leaf and wood 

decomposition, and canopy water movement.  The grazing subcomponent of the model 

has 19 variables related to each kind/class of grazing animal including forage intake, 

stocking rate, and grazing preference class for each plant species parameterized in the 

model.  Lastly, the climate subcomponent has 6 variables which include year, day, 

maximum and minimum temperature, rainfall and solar radiation. 

 

Site Selection and Model Parameterization  

 

A series of monitoring sites were established across the study area.  Sites were chosen 

randomly from a grid representing the resolution of the CMORPH rainfall data.  To 

insure that sites would be accessible, grids were stratified by selecting those that were 

within 30 km of roads.  From the stratified grids, a subset of grids was randomly selected 

within each aimag (Figure 4.1) with the number of grids proportional to the land area of 

the aimag.  Within each randomly selected grid, the dominant plant community was 

identified through field reconnaissance and a permanent vegetation transect was 

established.  Due to the large geographic area, the transects were installed in phases with 

the first phase occurring in the Gobi Altai, Bayankhongor, and Ovorkhangai aimags 

during 2004 (Figure 4.2).  In 2005, transects were established in Omnogobi, Dundgobi, 

Gobisumber, and Dornogobi aimags.  Transects in the Tov aimag were established in 

2006.  A total of 243 monitoring sites were installed across the region (Figure 4.2). 
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To gather the necessary plant community parameters for the PHYGROW model 

at each monitoring site, a modified point-frame method (Ryan 2005) was used to collect 

percent basal cover of grasses, frequency of forbs, and shrub canopy cover along each 

permanent transect.  Transect lengths ranged from 100 to 500m with the lengths varying 

based on vegetation cover and plant spacing at the sites.  Sites having sparse vegetation 

and low plant cover had longer transects.   

 

Along each transect, the modified point frame was placed on the soil surface and 

each point on the frame was examined to determine if it intersected the basal area of a 

grass species, plant litter, bare ground, or rock.  If a basal area of a grass species was 

encountered, this was recorded as a “hit”.  Within a 5 x 5-cm quadrat around each point, 

each presence of a unique forb species was defined as a “hit”.  If a shrub or tree canopy 

intersected an upward, perpendicular line from the point, the shrub or tree species was 

recorded as a “hit”.  A total of 250 to 500 points were sampled with the number varying 

based on conditions the vegetation cover and plant spacing.  The “hits” of grass, forbs, 

and shrub/tree species were divided by the total possible hits and these values were 

entered as the plant community composition variable in the PHYGROW model.   

 

Herbaceous biomass at each transect was measured at the time of transect 

establishment and at least once more during the period from March 2004 to October 

2007.  A 0.25 or 0.50-m2 quadrat was placed at equal increments along the transect 

(n=10 sample size per transect) and the herbaceous biomass (grass and forbs) was 

clipped to a 1-cm stubble height.  If shrubs were located within the quadrat and they 

were palatable to livestock, the current year’s growth was clipped from the plant.  The 

clipped biomass was placed in paper bags and taken back to the laboratory and dried in a 

forced air oven at 60º C for 48 hours.  After drying, the samples were weighed with a 

digital scale.  The sample weights were then multiplied by the appropriate plot factor in 
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relation to the quadrat size to convert the biomass to kg/ha units.  The 10 samples were 

averaged and the mean was used for comparison to the simulation model output for each 

sampling date. 

 

Plant species and functional group parameters for the species encountered during 

transect establishment were acquired from published literature and online databases such 

as EcoCrop (FAO 1994) and the Global Leaf Area Index Database (Scurlock et al. 

2001).  When no information could be found for a species, an expert judgment was made 

based on the plant genus, functional group, and information on growth characteristics 

gathered from plant experts in Mongolia. 

 

To parameterize the soil components in PHYGROW for each monitoring site, 

soil information was acquired from the Mongolia National Soil Laboratory and through 

consultations with the national soil scientists.  When parameters for soil were 

incomplete, they were estimated from texture using a soil parameter estimation tool 

(Saxton et al. 1986).   

 

Stocking rate information was calculated from soum (district) censuses of 

livestock that were conducted during each year of the study.  The total number of each 

kind of livestock was divided by the land area of the soum and this number was used as 

the stocking rate parameter in PHYGROW.  Seasonal dry matter intake for each kind of 

livestock was determined through consultation with ruminant nutrition scientists with the 

Mongolian Agriculture University Research Institute for Animal Husbandry (RIAH). 

 

Climate Data Sources  

 

The National Oceanic and Atmospheric Administration (NOAA) Climate Prediction 

Center Morphing Product (CMORPH) rainfall (Joyce et al. 2004) (referred to hereafter 

as the “CMORPH product”) was chosen for use as a driving variable in the forage 
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simulation modeling.  This product is produced by NOAA each 24-hour period and 

represents the accumulated rainfall that occurs between 0:00 and 24:00 Greenwich Mean 

Time (GMT) (24:00 GMT is equivalent to 6:00 pm CST).  The CMORPH product was 

acquired automatically from the NOAA servers via internet and downloaded to servers 

at the Center for Natural Resource Information Technology (CNRIT), Texas A&M 

University.  The rainfall product was delivered as a gridded image that had a geographic 

range of 80.0º to 120.0º East longitude and 40.0º to 55.0º North latitude, covering the 

entire country of Mongolia and portions of northern China and southern Russia.  Grid 

cell spacing of the image was 0.07276º in the longitudinal direction and 0.07277º in the 

latitudinal direction (approximately 8 km at the equator).  During the initial comparisons 

of CMORPH rainfall estimates to station rainfall collected in Mongolia, it was 

discovered that the product was overestimating rainfall in many locations within the 

study area, especially in the Steppe and Forest Steppe zones.  Large overestimations 

occurred during the summer months (peak rainfall) and may have been related to the 

known problem with CMORPH and other satellite rainfall products where rainfall is 

detected but none reaches the surface because of evaporation (Janowiak 2005) (see 

discussion on CMORPH in Chapter II).  A daily bias correction was calculated and 

applied to the product using rainfall data collected from approximately 200 weather 

stations within the Mongolia CMORPH domain.  The station data were acquired on a 

near real-time basis from NOAA as part of the Global Telecommunications System 

(GTS) data feed.  GTS is a world-wide network of climate monitoring stations that 

provide data to the World Meteorological Organization (WMO) as part of the World 

Weather Watch system.  The bias-adjusted CMORPH data were used for PHYGROW 

simulation modeling.   

 

Temperature data for the model was acquired from the NOAA Global Data 

Assimilation System (GDAS) which produces daily maximum and minimum 

temperature surfaces for the entire globe.  Resolution of the data is 1 degree at the 

equator (approximately 110 km).   
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Model Calibration and Evaluation 

 

The calibration procedure for PHYGROW involved running the model with the climate 

data and comparing the simulated forage biomass output to that measured during the 

transect establishment and subsequent biomass clipping at later dates.  If the model 

output fell within ± 1 standard error of the mean for the herbaceous biomass measured 

on the transect, the model was considered calibrated for that data collection period.  If 

the model output fell outside ± 1 standard error of the measured data, parameters were 

adjusted to in an attempt to move the modeled biomass estimate to within the standard 

error.  This process was repeated for each time period data was collected until the model 

was considered calibrated.  Model parameter adjustments for calibration were generally 

limited to species maximum rooting depths, green and dead leaf turnover rates, and soil 

layer thickness at the surface (influences depth of soil water evaporation).  After the 

model was considered calibrated, the model parameters for a site were no longer 

adjusted and the data were used to evaluate model performance during subsequent 

forage biomass clipping events (model verification). 

 

Geostatistical Interpolation 

 

The bimonthly average forage biomass estimated by the PHYGROW model for each of 

the monitoring sites was subjected to the geostatistical methods of ordinary kriging and 

cokriging to determine the feasibility of mapping herbaceous biomass at the landscape 

scale.  Ordinary kriging is an interpolation procedure that predicts the values at 

unsampled points through a weighted linear averaging of surrounding sampled points 

(Rossi et al. 1994).  The ordinary kriging estimator can be expressed as:  

∑
=

=
n

i
ii xZxZ

1
0

* )()( λ  [4.1] 
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where )( 0
* xZ represents the value that is to be estimated at the unsampled point 0x , 

)( ixZ are the values at sampled points, and iλ are the weights for the sampled points 

(Isaaks and Srivastava 1989; Rossi et al. 1994).  The weights for the linear averaging are 

influenced by the degree of spatial correlation (continuity) between points.  Spatial 

continuity can be modeled using semivariance (or variogram) modeling.  Semivariance 

modeling is based on random function theory and allows an examination of sample 

variability in both direction and distance (Rossi et al. 1994).  Semivariance can be 

expressed as:  

[ ]∑
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1

2* ()(
)(2
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hN

i
ii h)xzxz

hN
hγ  [4.2] 

where )(* hγ is the estimated semivariance for separation (lag) distance h, )(hN is the 

number of pairs of sample points that are separated by distance h, )(xz is the value of the 

sample at location x, and )( hxz +  is the value of another sample at some direction and 

distance (h) away from x)z(  (Rossi et al. 1994).  The semivariance can be plotted 

against distance classes (lags) in the form of a variogram to examine the spatial 

structure.  In modeling the spatial structure, the functional form of the model must be 

positive definitive to insure that only one stable solution exists (Isaaks and Srivastava 

1989).  Only a few of these positive definite models are commonly used and they 

include the 1) nugget effect model, 2) spherical model, 3) exponential model, 4) 

Gaussian model, and 5) linear model.  Linear combinations of these models, which are 

also positive definite, can be used to model more complex variograms. 

 

Cokriging is a kriging method that involves the use of secondary variables (or 

covariates) that are spatially cross-correlated with the primary variable that is being 

estimated (Isaaks and Srivastava 1989).  In cokriging, the semivariance analysis is 

conducted on both the primary and secondary variables in the same manner as for 

kriging.  However, to capture the cross-correlation between the primary and secondary 

variables, the cross-semivariance is computed in the following functional form:  
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where )(*
12 hγ is the estimated cross semivariance between the primary variable and the 

secondary variable, )(hN is the number of pairs of sample points that are separated by 

lag distance h, 1Z is the value of the primary variable at locations x and h+x , 2Z is the 

value of the secondary variable at these same locations (Hudak et al. 2002; Ersahin 

2003). 

 

For a primary variable 1Z  and a secondary variable 2Z , the cokriging model 

estimates Z* for location x in the following functional form: 
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where )( 0
* xZ is the cokriging estimated value for the primary variable, 

1kλ and 
2kλ are 

the weights for the n1 primary and n2 secondary data, respectively, and 
1kx and 

2kx are the 

locations of the primary and secondary variables, respectively.  The size of n1 and n2 are 

defined when the search neighborhoods for the primary and secondary variable are set in 

the cokriging analysis (Hudak et al. 2002; Bekele et al. 2003).  

 

The forage biomass from the PHYGROW simulation model for the monitoring 

sites was used as the primary variable in the kriging and cokriging analyses.  For the 

secondary variable, the NDVIg product of the Global Inventory Modeling and Mapping 

Studies (Tucker et al. 2005), was acquired from the National Atmospheric and Space 

Administration (NASA).  The NDVIg has a spatial resolution of 8 km (at the equator) 

and is a global product produced twice per month.  The NDVI values for each half 

month represent a composite of maximum daily NDVI value that occurred in each 

individual pixel during the period.  The images were acquired and stored on the CNRIT 

server and ArcGIS software (ESRI 2005a) was used to extract the NDVI data from all 

pixels within the study area.   
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For each bimonthly period of the NDVI images during the growing season in 

2005 and 2006, the forage biomass predicted by the PHYGROW model was averaged 

for each of the monitoring sites and collocated with the NDVI.  Pearson’s correlation 

coefficients were calculated to assess the degree of the linear relationship between the 

forage biomass and NDVI.  Statistical significance of the correlations was assessed using 

the CRH modified t-test (Clifford et al. 1989) option in the PASSaGE software 

(Rosenberg 2000).  The CRH modified t-test adjusts the degrees of freedom for the 

degree of autocorrelation in the data since the presence of autocorrelation violates the 

independence assumption.  The modified degrees of freedom are then used in the 

significance test for the correlations (Rosenberg 2000).   

 

Semivariance modeling and subsequent ordinary kriging and cokriging were 

conducted using the Geostatistical Analyst extension in the ArcGIS 9 software (ESRI 

2005b).  Semivariance modeling included selection of an appropriate positive-definite 

model (exponential, spherical, or Gaussian) that best matched the spatial structure for the 

forage biomass and the NDVI.  Because of the north to south gradient of elevation in the 

study area, anisotropy (i.e. different spatial structure in different directions) was 

examined.  Kriging and cokriging were conducted with the selected variogram models 

and a landscape map of forage production was produced for each bimonthly period 

during the growing season (June to September) in 2005 and 2006.  Cross validation 

(Isaaks and Srivastava 1989) was conducted for each of the chosen kriging and cokriging 

semivariance models to assess performance and accuracy of the interpolation procedure 

for the landscape maps of forage biomass. 

 

Independent Map Verification 

 

A set of independent sites were established within the study area for an independent 

verification of the interpolated maps.  The sites were chosen randomly using the same 
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methodology as described above for the monitoring sites.  A total of 164 map 

verification sites were established during 2005 and 2006 in 6 of the 8 aimags (Figure 

4.2).  Tov and Dornogobi aimags were not sampled due to logistical constraints.  At each 

of the sites, a transect was established using the same procedures as for the monitoring 

sites.  The forage biomass samples (n=10) collected at each site were taken back to the 

laboratory for oven-drying and weighing.  The forage biomass samples weights were 

averaged and then paired with the forage estimate from the interpolated maps for the 

time period when the forage biomass was collected.  The observed forage biomass was 

then compared statistically to the interpolated values to assess how well the interpolated 

maps performed in predicting biomass in unsampled areas.   

 

Statistical Measures of Performance 

 

The PHYGROW model calibration and validation data, the interpolated map cross-

validation, and the independent map verification data sets were each subjected to a series 

of calculations to assess error and performance.  Means and standard deviations for 

predicted and observed forage biomass for each data set were calculated and linear 

regression was used to examine model predictive strength (r2) (Carlson and Thurow 

1996).  Difference statistics were calculated to examine bias and variability between the 

prediction and observed data.  These statistics included percent estimation bias (BIAS), 

mean bias error (MBE), mean absolute error (MAE), and root mean square difference 

(RMSD).  Estimation bias reflects the normalized difference between the simulation 

model output and the observed data and is expressed as follows:   

100(%) ×
−

=
O

O PBIAS            [4.5] 

where P  is the mean of the predictions and O  is the mean for the observed data.  

Positive estimation bias values indicate the overestimation of biomass by the simulation 

model whereas negative values indicate the opposite.  Mean bias error provides an 

indication of the average magnitude of the over-prediction or under-prediction by the 
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simulation model in the units of the biomass (kg/ha) (Andales et al. 2005).  It is 

calculated as: 

( )
n

OP
MBE

n

i ii∑=
−

= 1                         [4.6] 

where Pi is the ith predicted value, Oi is the ith for observed value and n is the number of 

predicted and observed data pairs.  Mean absolute error provides an indication of the 

average absolute difference between the predicted and observed values in the series of 

data pairs being evaluated and is calculated as (Legates and McCabe Jr. 1999):  

n
OP

MAE
n

i ii∑=
−

= 1                         [4.7] 

Root mean square difference (RMSD) is a measure of the average magnitude of the 

difference between the predicted and observed biomass data in the units of the data 

(kg/ha).  RMSD is similar to MAE error, however it is more sensitive to extreme 

differences between the simulation and observed data (Willmott 1982).  It is generally 

greater than MAE and the degree of difference is related to the number of outliers in the 

data (Legates and McCabe Jr. 1999).  RMSD is calculated as follows: 
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            [4.8] 

 

Relative error measures (goodness-of-fit measures) were also used to evaluate 

performance of the model calibration, model validation, cross-validation of the 

interpolated maps, and independent verification of the interpolated maps.  Relative error 

measures included estimation efficiency (EE) (Nash and Sutcliffe 1970; Legates and 

McCabe Jr. 1999) and the index of agreement (d) (Willmott. et al. 1985; Legates and 

McCabe Jr. 1999).  Estimation efficiency is a measure of the deviation from a 1:1 line 

between predicted and the observed data and is calculated as: 
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An EE value of 1 would reflect a perfect correspondence between the predicted biomass 

and the measured data.  Values greater than 0 would indicate that a positive relationship 

exists between the predicted and the observed data and that the predicted data is a good 

estimate of the observed data.  Values less than 0 indicate a low correspondence between 

the predicted and observed data suggesting that the mean of the observed data would 

serve as a better predictor than the method used to predict biomass (Legates and McCabe 

Jr. 1999; Moon et al. 2004).  The index of agreement is measure of the tightness between 

the predicted and observed data to a 1:1 line (Willmott. et al. 1985; Andales et al. 2005) 

and is expressed as follows: 
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Values of d can range from 0 to 1 with a 1 indicating perfect agreement between the 

simulation output and the observed data.   

 

To determine whether cokriging with NDVI improves the prediction of forage 

biomass across the landscape compared to kriging, relative improvement was assessed.  

Relative improvement (RI) assesses the improvement in precision of evaluated methods 

compared to a reference method (Bekele et al. 2003; Dobermann and Ping 2004) and is 

calculated as: 

100×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

R

ER

RMSE
RMSERMSERI          [4.11] 

where RMSER and RMSEE represent the root mean square errors for the reference 

method (kriging in this case) and the evaluation method (cokriging with NDVI), 

respectively.   
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Results 

 

Simulation Model Performance 

 

For calibration of the PHYGROW model, the majority of the sites in the region were 

accepted as calibrated after the second biomass sampling.  Approximately 10% of the 

sites required three sampling events for calibration.  Across all sites and collection dates, 

the PHYGROW model predictions of forage biomass averaged 157 kg/ha which was 1 

kg/ha greater than the average biomass measured across all sites (Table 4.1).  The 

variability across sites and sampling dates was high for both the simulation model 

predictions and the observed biomass.  The standard deviation for the observed forage 

biomass was of equal magnitude to the observed mean, but the simulation model 

estimates were more variable with the standard deviation slightly larger than the mean 

(Table 4.1).  Mean absolute error (MAE) and root mean squared difference (RMSD) 

were 61 and 93 kg/ha, respectively.  The RMSD was 52% greater than the MAE 

indicating the presence of large outliers in the calibration data set.  Several of the larger  
 

Table 4.1.  Statistics for performance assessment of the PHYGROW model to predict forage biomass at 
monitoring sites established across the Gobi region of Mongolia under model calibration and verification. 
  

Statistic Calibration Verification 
Observed Mean (kg/ha) 156 133 
Simulated Mean (kg/ha) 157 115 
1sdo (kg/ha) 157 181 
sds (kg/ha) 171 185 
Bias (%) 0.6 -14 
MBE (kg/ha) 1 -18 
MAE (kg/ha) 61 59 
RMSD (kg/ha) 93 94 
r2 0.71 0.76 
EE 0.70 0.74 
d 0.91 0.93 
n 459 117 

1sdo = standard deviation for observed; sds = standard deviation for simulation; MBE = Mean Bias Error; MAE = Mean Absolute 
Error; RMSD = Root Mean Square Difference; r2 = coefficient of determination; EE = estimation efficiency; d = index of agreement; 
n = number of samples  



 

 

90

outliers (Figure 4.3) were associated with sites located in the Forest Steppe zones 

(Figure 4.1) where the model had a tendency to overpredict biomass compared to the 

observed.   

 

Performance statistics indicated that the PHYGROW model did a reasonably 

good job of estimating forage biomass under calibration.  Linear regression analysis 

revealed a good correspondence between the observed and simulated biomass (Figure 

4.3A) with 71 % of the variability in observed biomass explained by the simulation 

predictions (Table 4.1).  Estimation efficiency (EE) was 0.70 and the index of agreement 

(d) was 0.91 indicating general conformance of the data pairs to the 1:1 line (Table 4.1 

and Figure 4.3) and that the model had reasonably good skill in predicting forage 

biomass under calibration.   

 

For model verification, the number of predicted and observed data pairs across 

all sites was much reduced compared to calibration due to short length of the study.  For 

model verification, PHYGROW had a tendency to underestimate forage biomass across 

sites by 14% with an overall mean bias error (MBE) of -18 kg/ha (Table 4.1).  The 

variability in both the observed and PHYGROW predicted biomass, as indicated by their 

standard deviations, was high and was much greater than for calibration.  However, the 

MAE and RMSD for verification and calibration were very similar (Table 4.1).  Several 

large outliers existed in the verification data pairs (Figure 4.3B) and these were sites 

located in the Forest Steppe and Steppe areas of the Ovorkhangai aimag (Figure 4.1).   

 

Performance measures indicated that the model performed reasonably well under 

verification.  Linear regression analysis indicated a good correspondence between the 

PHYGROW predicted biomass and the observed data (r2 = 0.76; Figure 4.3B).  EE and d 

statistics also indicated good correspondence and were slightly higher than that observed 

under calibration. 



 

 

91

 
Figure 4.3.  Relationship between observed forage biomass (kg/ha ± standard error bars) and PHYGROW 
model predicted forage biomass for monitoring sites that were A) calibrated and B) verified in the Gobi 
Region of Mongolia.  Dotted line represents 1:1 line.  
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Cokriging of Forage Biomass 

 

For the 2005 and 2006 growing seasons, average forage biomass during each bimonthly 

period (corresponding to NDVI image delivery) increased each period until it peaked in 

late August/early September and then began do decline (Table 4.2).  Standard deviations 

also increased; however, the coefficient of variability indicated greater variability in 

predicted biomass across sites at the beginning and end of the growing season than 

during the middle (Table 4.2).  Mean biomass and variability were also greater in 2006 

for most of the time periods when compared to 2005 (Table 4.2). 

 

Mean NDVI , across the study area during both 2005 and 2006, was lowest 

during the start of the growing season in June, increased during June and July, peaked in  

August and then began to decline (Table 4.3).  The peaks in NDVI were slightly earlier 

than that of the PHYGROW predicted forage biomass (Tables 4.2 and 4.3).  Like forage, 

 
Table 4.2.  Bimonthly statistics for forage biomass predictions from the PHYGROW model at monitoring 
sites in the Gobi region of Mongolia during the growing season in 2005 and 2006.   
 

 
 

2005 Statistics 

Statistic 
June  
1-15 

June 
16-30 

July 
1-15 

July 
16-31 

August 
1-15 

August 
16-31 

Sept  
1-15 

Sept 
16-30 

Mean  48 85 134 170 217 243 244 220 
1sd  58 97 145 185 237 272 276 263 
Maximum 368 665 1182 1563 1748 1826 1772 1670 
Minimum 0 0 0 0 0 0 0 0 
CV (%) 122 114 108 108 109 112 113 120 
n 243 243 243 243 243 243 243 243 

 
2006 Statistics 

 
June 
 1-15 

June 
16-30 

July 
1-15 

July 
16-31 

August 
1-15 

August 
16-31 

Sept  
1-15 

Sept 
16-30 

Mean 35 68 116 180 231 245 235 214 
sd  64 97 149 213 268 293 292 276 
Maximum 497 846 1184 1552 1726 1775 1705 1680 
Minimum 0 0 0 0 0 0 0 0 
CV (%) 180 144 128 118 116 119 124 129 
n 243 243 243 243 243 243 243 243 

1sd = standard deviation; CV = coefficient of variation; n= sample size 
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Table 4.3.  Bimonthly statistics for Normalized Difference Vegetation Index (NDVI) in 8 x 8 km grid 
resolution across the Gobi region of Mongolia during the growing season in 2005 and 2006.   
 

 
 

2005 Statistics 

Statistic 
June  
1-15 

June 
16-30 

July 
1-15 

July 
16-31 

August 
1-15 

August 
16-31 

Sept  
1-15 

Sept 
16-30 

Mean  0.128 0.141 0.157 0.155 0.177 0.190 0.172 0.148 
1sd  0.125 0.179 0.202 0.205 0.212 0.195 0.161 0.113 
Maximum 0.780 1.000 1.000 1.000 1.000 0.921 0.842 0.623 
Minimum 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
CV (%) 98 126 129 133 120 102 94 76 
n 0.128 0.141 0.157 0.155 0.177 0.190 0.172 0.148 

 
2006 Statistics 

 
June 
 1-15 

June 
16-30 

July 
1-15 

July 
16-31 

August 
1-15 

August 
16-31 

Sept  
1-15 

Sept 
16-30 

Mean 0.126 0.131 0.167 0.195 0.214 0.200 0.183 0.139 
sd  0.124 0.154 0.193 0.211 0.217 0.187 0.158 0.105 
Maximum 0.942 0.805 0.883 1.000 1.000 0.900 0.790 0.690 
Minimum 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
CV (%) 98 118 116 108 102 94 87 76 
n 0.126 0.131 0.167 0.195 0.214 0.200 0.183 0.139 

1sd = standard deviation; CV = coefficient of variation; n= sample size 

 

the NDVI was quite variable over time.  However variability was greater during late 

June and July for both years.  Similar to forage biomass, NDVI was generally higher in 

2006 when compared to 2005.  However, in contrast to the forage, the NDVI variability 

was generally greater in 2005 than in 2006. 

 

Pearson’s correlation analysis generally indicated a moderately high correlation 

between simulated forage biomass and NDVI for most of the growing season.  

Correlations were lowest (r =0.45) at the start of the growing season during both years 

(Table 4.4).  Correlation increased between the two variables as the season progressed 

with correlations ranging from 0.73 to 0.76 during late July to early September.  

Correlation was greatest during late July in 2005 and in early September during 2006. 

(Table 4.4).  Correlations between biomass and NDVI were slightly greater in 2006 

when compared to 2005. 
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To examine spatial structure of the forage biomass and NDVI, semivariance 

analysis was conducted. For both forage and NDVI, a spherical model best represented 

the structure in the isotropic empirical semivariogram.  Although anisotropy was 

detected for both forage biomass and NDVI (Figure 4.4, semivariance surfaces), model 

performance statistics generally did not indicate any better fit for anisotropic models 

than for the isotropic form.  Therefore, the results presented here are for the isotropic 

model. 

 

For forage biomass, the range of spatial structure increased as the growing season 

progressed (Table 4.5).  During the beginning of the growing season, the effective range 

of spatial dependence was approximately 500 km during both years (Table 4.5).  As the 

amount of biomass increased and peaked, the range of spatial dependence increased to 

approximately 650 km in 2005, and 690 km in 2006.  Figure 4.5A provides an example 

of a fitted variogram model for forage biomass during the September 1 to 15, 2006 time 

period. 

 
Table 4.4.  Pearsons correlation coefficients (r) between PHYGROW simulated forage biomass and 
Normalized Difference Vegetation Index values during the 2005 and 2006 growing season for monitoring 
sites in the Gobi region of Mongolia.  Time periods represent production periods for NDVI images.  All 
correlations were significant (p<0.05) after adjustment of the degrees of freedom for autocorrelation in the 
data using the CRH modified t-test (Clifford et al. 1989). 
 

    Year 

Time period 2005 2006 
June 1 – 15 0.45 0.45 
June 16 – 30 0.60 0.57 
July 1 – 15 0.68 0.71 
July 16 – 31 0.74 0.75 
August 1 – 15 0.73 0.74 
August 16 – 31 0.73 0.74 
September 1 – 15 0.71 0.76 
September 16-30 0.67 0.68 
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Figure 4.4.  Semivariance/cross covariance surfaces and the associated empirical variogram/covariogram 
and fitted spherical models for the A) forage biomass, B) NDVI, and the C) cross-covariance between 
biomass and NDVI for the period of September 1 to September 15, 2006.   
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Table 4.5.  Parameters for semivariance models used to examine spatial structure in PHYGROW 
simulated forage biomass, Normalized Difference Vegetation Index (NDVI), and the cross covariance 
between the forage biomass and NDVI at monitoring sites during bimonthly periods in 2005 and 2006.  
Each empirical variogram was fit using a spherical model with lag sizes for 36000 m (36 km).   
 

 

Forage Biomass 
Variogram 

Model 

 
NDVI 

Variogram 
Model 

Cross 
Covariance 

Model  

Time Period 1Co 2Co+C 
3C/ 

(Co+C) Co Co+C 
C/ 

(Co+C)     4C 5A 
 
2005         
June 1-15 1644 4040 0.59 0 0.012 1 2.7 502068 
June 16-30 2860 10922 0.74 0 0.027 1 8.4 502068 
July 1-15 4543 27649 0.84 0 0.045 1 11.8 644490 
July 16-31 6344 44264 0.86 0 0.046 1 17.4 611470 
August 1-15 9320 78947 0.88 0 0.050 1 24.0 640350 
August 16-31 13334 104658 0.87 0 0.042 1 26.9 628595 
September 1-15 15122 109574 0.86 0 0.027 1 21.7 642253 
September 16-30 14737 99277 0.85 0 0.014 1 13.8 649663 
 
2006      

 
  

June 1-15 996 4543 0.78 0 0.013 1 3.5 502068 
June 16-30 2304 10362 0.78 0 0.020 1 6.9 502068 
July 1-15 3825 26746 0.86 0 0.037 1 14.0 574310 
July 16-31 5625 64587 0.91 0 0.054 1 19.7 693339 
August 1-15 10518 103227 0.90 0 0.055 1 27.5 677355 
August 16-31 13922 124334 0.89 0 0.040 1 25.4 671308 
September 1-15 15313 122586 0.88 0 0.028 1 21.5 663446 
September 16-30 13630 110719 0.88 0 0.012 1 12.5 667412 

1Co = nugget variance 
2Co+C = Sill or overall variance  
3C/(Co+C) = proportion of sill variance explained by spatial structure  
4 C = Partial sill or variance explained by spatial structure 
5A = Range of spatial structure (m) 
 
 

The relative contribution of the spatial structure to the overall variance in forage 

biomass also increased as the growing season progressed (Table 4.5).  For example, 

during the time period of June 1 to 15, 2005, the range of spatial dependence accounted 

for 59% of the total variance.  After this date, the proportion of total variance explained 

by spatial structure increased 74 to 88% in 2005, and 78 to 90% in 2006, coinciding with 

the peaks in biomass (Table 4.5).  The overall variance in biomass during these same 

time periods also increased indicating an increase in spatial variability as the growing 

season progressed (Table 4.5). 
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The variance not accounted for by the spatial structure is referred to as the nugget 

variance and provides an indication of the microscale variation and/or measurement 

error in the data (Isaaks and Srivastava 1989).  For the early portion of the growing 

season in both years, the nugget variance made up a larger proportion of the overall 

variance than during other sampling dates.  This implies a greater degree of variability in 

the forage biomass at scales less than the first lag (36 km) used for the semivariance 

modeling of forage biomass.  

 

Like forage biomass, the overall variance in NDVI was lowest at the beginning 

of the growing season and progressively increased until peak NDVI in August of both 

years implying that the spatial variability in NDVI was greatest during this time period.  

The fitted variogram models for NDVI resulted in nugget variances of 0 for all time 

periods.  Thus, the spatial structure accounted for 100% of the overall variance in NDVI 

(Table 4.5).  Figure 4.4B provides an example fitted model for the empirical variogram 

for NDVI and its associated semivariance surface for the September 1 to 15, 2006 time 

period.  

 
The cross-covariance between forage biomass and NDVI displayed a similar 

pattern of change as that for biomass and NDVI individually.  Cross covariance was 

lowest at the beginning of the growing season and increased until early August and then 

declined in both years (Table 4.5). 

 

Using the fitted variogram models, kriging and cokriging were conducted for 

each time period and cross-validations were conducted to evaluate performance of the 

interpolations.  Performance statistics between the kriging and cokriging interpolations 

were very similar.  However, an examination of the Relative Improvement (RI) statistic 

for assessing the improvement in RMSD with cokriging generally indicated that 

cokriging was slightly better than kriging with a 1 to 5% reduction in RMSD (Table 4.6).  
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Therefore, only the results for cokriging will be presented.  The performance statistics 

for kriging are provided in Appendix A.1.   

 

Cross validation analysis indicated that cokriging generally resulted in a slight 

underprediction (1-4%) of forage biomass over time (Table 4.6).  RMSD and MAE were 

lowest at the beginning of the growing season each year and increased throughout the 

growing season until peak biomass in August (Table 4.6).  However, the proportion of 

RMSD and MAE in relation to the mean forage biomass was higher (0.82 to 1.4) at the 

start and end of the growing season than at peak forage biomass (0.7 to 0.8) indicating 

higher variability in the biomass estimates during these periods.  Although the RMSD  

for cokriging cross-validations for July to September were higher than that observed for 

the PHYGROW model calibration and verification (RMSD = 93 and 94 kg/ha,  

respectively) the proportion of error relative to the means were similar (Table 4.1 and 

4.6). 

 

During the month of June in both years, the goodness-of-fit statistics for the 

cokriging cross-validation were low (Table 4.6).  The EE statistics were negative, 

implying that the overall mean for the PHYGROW simulated biomass was a better 

predictor of biomass than the cokriging model.  The low performance during the month 

of June generally corresponded to when the nugget variance made up a greater 

proportion of the overall variance compared to the other time periods (Table 4.5).  

Apparently, the variability in adjacent samples was quite high during the early part of the 

growing season and reduced the prediction capability of the cokriging model. Goodness-

of-fit statistics were improved for the July, August, and September months in both years, 

but slightly more so during 2006.  Linear regression r2 and the d index values 

approached that observed for PHYGROW model calibration and validation (Table 4.1 

and 4.6).  However, the EE statistics were much lower for the cokriging (Table 4.6) 

when compared to the PHYGROW model calibration and validation (Table 4.1).  The  
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Table 4.6.  Cross-validation analysis statistics for cokriging of PHYGROW simulation model and 
Normalized Difference Vegetation Index (NDVI) data to estimate forage standing crop across the Gobi 
region of Mongolia during the growing season (June to September) in 2005 and 2006.  Time periods noted 
below represent production periods for the NDVI product.   
 

 
 

2005 Cross-validation 

Statistic 
June  
1-15 

June 
16-30 

July 
1-15 

July 
16-31 

August 
1-15 

August 
16-31 

Sept  
1-15 

Sept 
16-30 

Simulation Mean 
(kg/ha) 48 85 134 170 217 243 244 220 
Cokriged Map 
Mean (kg/ha) 47 82 132 169 213 238 240 216 
1sdo (kg/ha) 58 97 145 185 237 272 276 263 
sds (kg/ha) 30 65 107 144 192 217 220 207 
Bias (%) -2 -3 -2 -1 -2 -2 -1 -2 
MBE (kg/ha) -1 -2 -2 -1 -3 -4 -4 -4 
MAE (kg/ha) 36 50 64 77 93 104 105 102 
RMSD (kg/ha) 50 71 96 117 145 170 180 170 
R2 0.26 0.46 0.56 0.60 0.63 0.61 0.58 0.58 
EE -1.75 -0.20 0.19 0.34 0.43 0.38 0.33 0.32 
d 0.63 0.79 0.84 0.86 0.88 0.87 0.85 0.85 
n 243 243 243 243 243 243 243 243 
RI (%) 1.04 4.32 2.89 3.23 1.64 0.86 -1.20 0.23 

 
2006 Cross-validation 

 
June 
 1-15 

June 
16-30 

July 
1-15 

July 
16-31 

August 
1-15 

August 
16-31 

Sept  
1-15 

Sept 
16-30 

Simulation Mean 
(kg/ha) 35 68 116 180 231 245 235 214 
Cokriged Map 
Mean (kg/ha) 34 65 113 175 226 241 233 211 
1sdo (kg/ha) 64 97 149 213 268 293 292 276 
sds (kg/ha) 41 63 112 170 216 237 239 225 
Bias (%) -4 -3 -3 -2 -2 -2 -1 -2 
MBE (kg/ha) -1 -2 -3 -4 -5 -4 -3 -4 
MAE (kg/ha) 29 45 61 79 102 108 106 100 
RMSD (kg/ha) 49 73 94 123 158 169 165 158 
R2 0.40 0.43 0.60 0.67 0.65 0.67 0.68 0.67 
EE -0.43 -0.34 0.28 0.47 0.46 0.49 0.52 0.51 
d 0.75 0.76 0.86 0.89 0.88 0.89 0.90 0.89 
n 243 243 243 243 243 243 243 243 
RI (%) -1.97 0.26 4.52 3.36 1.48 2.10 2.18 1.24 

1sdo = standard deviation for model simulated biomass; sds = standard deviation for cokriged biomass; MBE = Mean Bias Error; 
MAE = Mean Absolute Error; RMSD = Root Mean Square Difference; r2 = coefficient of determination; EE = estimation efficiency; 
d = index of agreement; n = number of samples; RI = Relative improvement over kriging 
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EE statistics is sensitive to extreme outliers (Legates and McCabe Jr. 1999) and this 

leads to an overall reduction in this statistic.  An examination of the monitoring site 

 locations having the greatest differences in predicted and observed values in the 

cokriging cross-validation revealed extreme differences for 8-9 locations in the Forest 

Steppe and Steppe regions in the Tov and Ovorkhangai aimags (Figure 4.2).  These 

included several of the monitoring sites that were found to be outliers in the PHYGROW 

model calibration and validation.   

 

Overall, the cross-validation results indicated that cokriging had moderate to 

good utility in interpolating biomass during the months of July, August and September, 

and low skill during June, the early portion of the growing season.  Examples of the 

interpolated maps for each of the bimonthly time periods are presented in Figure 4.5 

(2005) and Figure 4.6 (2006).   

 

Independent Map Verification 

 

A comparison of the biomass estimates from the cokriging interpolated maps to that of 

the biomass measured at 167 independent monitoring sites (Figure 4.2) revealed that 

interpolation of the PHYGROW model forage biomass resulted in an overall 14% 

underestimation of forage biomass (Table 4.7).  RMSD and MAE were larger than that 

observed for PHYGROW model calibration/verification and cokriging cross-validation 

in terms of both the absolute amount and the proportion of error relative to the observed 

mean (Tables 4.1, 4.6, and 4.7).  Goodness-of-fit statistics showed an overall low 

performance for cokriging of PHYGROW model biomass with a linear regression r2 of 

0.37, EE of 0.34, and a d index of 0.74.  There were several sets of extreme deviations 

from the 1:1 line that reduced the overall performance of the map verification (Figure  

4.7).  The majority of these sites were situated in the northern regions of the study area 

in the High Mountain and Forest Steppe zones in the Bayankhongor and Ovorkhangai 

aimags (Figure 4.2).   



 

 

101

 
Figure 4.5.  Bimonthly cokriged maps of forage biomass (kg/ha) during the 2005 growing season for the 
Gobi region in Mongolia.  Cross validation statistics for each map can be found in Table 4.6. 
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Figure 4.6.  Bimonthly cokriged maps of forage biomass (kg/ha) during the 2006 growing season for the 
Gobi region in Mongolia.  Cross validation statistics for each map can be found in Table 4.6. 
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Table 4.7.  Statistics for evaluating the performance of cokriging interpolation of PHYGROW derived 
biomass at independent map verification sites established across the Gobi region of Mongolia.  
 

Statistic Map Verification 
Observed Mean (kg/ha) 189 
Cokriged Map Mean (kg/ha) 163 
1sdo (kg/ha) 220 
sds (kg/ha) 162 
Bias (%) -14 
MBE (kg/ha) -26 
MAE (kg/ha) 115 
RMSD (kg/ha) 178 
r2 0.37 
EE 0.34 
d 0.74 
n 164 

1sdo = standard deviation for simulation output; sds = standard deviation for cokriged map data ; MBE = Mean Bias Error;  
MAE = Mean Absolute Error; RMSD = Root Mean Square Difference; r2 = coefficient of determination; EE = estimation  
efficiency; d = index of agreement; n = number of samples  
 
 

 
Figure 4.7. Relationship between observed forage biomass (kg/ha ± standard error bars) and cokriging 
predicted forage biomass for independent map verification sites in the Gobi region of Mongolia.  Dotted 
line represents 1:1 line. 
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Discussion 

 

The PHYGROW model performed reasonably well in predicting forage biomass at the 

majority of the monitoring sites (Table 4.1, Figure 4.3).  Although the verification data 

was not extensive due to the short time frame of the study and the large geographic area 

covered, initial results showed good correspondence between the model predicted 

biomass and that measured in the field.  An examination of outliers in both the 

calibration and verification datasets indicated that monitoring sites located in the in the 

northern portions of the study area had erratic correspondence between modeled biomass 

and that measured in the field. These sites were generally located in the Forest Steppe 

zone and its transition into the Steppe zone (Figure 4.1).  Although these sites were 

considered calibrated, it appears that additional and more frequent data needs to be 

collected to improve model predictions.  The model generally overestimated biomass at 

these sites.  Possible reasons for overestimation include misparameterization of soils at 

the site and problems with the CMORPH estimation of rainfall. With regard to 

misparameterization of soils, the soils at the sites were identified using a national soil 

map with 1:1,000,000 scale.  Within this Forest Steppe zone, the topography, geology, 

and aspect are highly variable, so the soil chosen for use in the model may not have been 

appropriate for the site.  The PHYGROW model is also sensitive to the depth of bedrock 

or indurated layer.  Information from the soil survey descriptions on depth to bedrock 

may not have been appropriate.  Future monitoring at these sites should include a more 

complete soil characterization to rule soil out as a possible problem in the model.   

 

Discrepancies between the CMORPH predicted rainfall and what was actually 

received at the site could lead to large differences between the model predicted and 

observed biomass at the site.  The PHYGROW model predictions are very sensitive to 

the timing and amounts of precipitation (see discussion in Chapter III).  CMORPH has a 

general tendency to overestimate rainfall (see discussion in Chapter II), and although the 

CMORPH rainfall used in this study had a bias correction, it may not have adequately 
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corrected the overestimate, thus leading to higher biomass estimates by the PHYGROW 

model.  A daily examination of the CMORPH rainfall images for anomalous rainfall 

cells might prove helpful to identify areas where the rainfall may not be adequately 

corrected by the bias correction.  Because there is a lack of rain gauges in the Forest 

Steppe areas, future monitoring may need to include collection of rainfall at these sites to 

eliminate CMORPH as a potential reason for poor model performance.   

 

Cross-validation indicated that for cokriging of the PHYGROW output with 

NDVI as a covariate performed well during the months of July, August, and September 

with performance measures slightly less than the PHYGROW model calibration and 

verification performance measures (Tables 4.1 and 4.6).  The exception to this was the 

EE statistic which was lower due to its sensitivity to extreme outliers.  The outliers 

identified in the cross-validation analysis were sites located in the Forest Steppe and its 

transition into the Steppe zone in the northern portions of the Tov and Ovorkhangai 

aimags.  Cokriging underestimated forage at these sites biomass by 300 to 500 kg/ha.  

The majority of these outliers were sites identified as outliers in the PHYGROW model 

validation.  Future improvements to the model calibration at the sites identified as 

outliers should improve the overall cokriging performance.  Since the mountainous 

terrain in the Forest Steppe is highly variable with grassland meadow vegetation on 

southern exposures and Siberian larch (Larix sibirica)/Siberian pine (Pinus sibirica) 

forests on the northern exposures (Gunin et al. 1999), increasing the number of 

monitoring sites in these areas would also improve the cokriging estimates.   

 

The poor performance of the cokriging interpolation at the start of the growing 

season during both years (Table 4.6) appears to be related to a greater amount of 

variability in the PHYGROW model estimates during that period.  The nugget variances 

in the semivariance modeling of forage biomass were proportionally larger during the 

start of the growing season when compared to the other time periods indicating a larger 

degree of spatial variability in the forage biomass at distances less than the first lag in 
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the semivariogram model (36 km).  As the nugget variance increases, the weights for the 

weighted averaging in the cokriging become more equitable leading to estimates for 

points during interpolation to be more like simple averages (Isaaks and Srivastava 1989).  

Therefore as the nugget variance increases relative to the overall variance, the effect of 

spatial continuity in the cokriging estimates are much reduced.  

 

The higher degree of variability in biomass estimates during the early growing 

season appears to be an issue with differential timing for plants to start growth in the 

PHYGROW model. Since the majority of the monitoring sites had biomass amounts 

near zero for forbs and grasses after the winter months, biomass production generally 

does not begin until rainfall is received. Since each monitoring site was established in a 

separate CMORPH rainfall grid, and given the sensitivity of the PHYGROW model to 

rainfall at the beginning of the growing season (see discussion in Chapter III), biomass 

production in the model could be quite different at sites that are short distances apart.  As 

the growing season progresses and rainfall increases, the productivity between sites 

close together may become more synchronized with each other.  Additional field 

sampling with a higher frequency of forage biomass collection, coupled with rainfall 

measurement at selected groups of sites could assist in better defining the source of 

variability and improve model calibrations. 

 

The relative improvement in error reduction in using cokriging of biomass with 

NDVI compared to kriging of biomass alone (Table 4.6) was less than expected given 

the moderately high correlation between NDVI and forage. Dungan (1998), in a study 

using a synthetic dataset to examine biomass estimation methods, noted that vegetation 

quantity predictability with cokriging increased as the correlation between the primary 

and secondary variable increases.  Mutanga and Rugege (2006) in a study comparing 

kriging and cokriging with NDVI to estimate biomass at Kruger National Park, South 

Africa, found a relative improvement of 21% with cokriging.  The fact that NDVI did 

improve predictions somewhat is encouraging.  Improvement in PHYGROW model 
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predictions of biomass in the Forest Steppe zones would likely improve the correlations 

between NDVI and forage biomass, thus leading to further reduction in error compared 

to kriging only.   

 

The performance of cokriging as assessed through independent verification was 

low (Table 4.7); however, the performance results did show that some skill existed in the 

cokriging of forage biomass in the region (e.g., the positive EE statistic).  The problems 

associated with uncertainty in the biomass predictions by the PHYGROW model at sites 

in the northern portion of the study area carried through to the cokriging, resulting in 

poor estimates of biomass.  Another issue may be related to the scale of the transects 

(100 to 500 m) versus the scale of the rainfall and NDVI grids (8 km).  Additional data 

may need to be collected in the future to address whether the transects are representative 

of the large grids, especially in the northern regions of the study area.  An additional 

positive benefit of the independent map verification is that is allowed and identification 

of areas where the greatest deviations in biomass predictions occurred, thus assisting in 

identifying new areas where monitoring sites could be installed in the future to improve 

model and cokriging predictions.   

 

The overall methodology of geostatistically integrating the PHYGROW model 

output with NDVI to produce landscape maps of forage biomass shows promise for 

implementing as a near real-time system for drought monitoring in Mongolia.  

Improvements in the calibration of the PHYGROW model for sites in the northern 

regions, as well as more rigorous validation at selected sites across should help reduce  

the uncertainty in PHYGROW model predictions, and therefore improve accuracy of the 

interpolated maps.  Cokriging by natural zone is another option that could be examined 

to strengthen the predictions within the individual zones across the region 
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CHAPTER V 

SUMMARY 

 

Assessment of vegetation productivity on rangelands is needed to assist in timely 

decision making with regard to management of the livestock enterprise as well as to 

protect the natural resource.  Characterization of the vegetation resource over large 

landscapes can be time consuming, expensive and almost impossible to do on a near 

real-time basis.  Recent advances in computer capacity, remote sensing, and climate data 

availability, provide the necessary tools and framework to develop systems for 

monitoring vegetation on a near real-time basis.  Given that many of the remote sensing 

and climate products are available globally, developing near real-time systems using 

these products increases the ability to more easily extend them to other areas, thus 

reducing costs and time of implementation.   

 

This study was implemented with the overarching goal of examining available 

technologies for implementing a near real-time system to monitoring biomass available 

to livestock on a given landscape, thus allowing improved monitoring of the forage 

resources to assist in decision making.  This study had three objectives 1) examine the 

ability of the Climate Prediction Center Morphing Product (CMORPH) and Next 

Generation Weather Radar (NEXRAD) rainfall products to detect and estimate rainfall at 

a semi-arid site in West Texas, 2) verify the ability of a simulation model (PHYGROW) 

to predict herbaceous biomass at selected sites (patches) in a semi-arid landscape using 

NEXRAD rainfall and 3) examine the feasibility of using cokriging for integrating 

simulation model (PHYGROW) output and satellite greenness imagery (NDVI) to 

predict herbaceous biomass across the landscape in the Gobi region of Mongolia.  The 

overall results and conclusions regarding each of these objectives are summarized 

below. 

 

 



 

 

109

Ability of NEXRAD and CMORPH to Detect and Estimate Rainfall  

 

The rainfall from the NEXRAD and CMORPH products were compared to rainfall 

collected at two automated weather stations in West Texas to assess the products ability 

for detection and estimation of rainfall at the study site and their suitability for use in 

biophysical modeling.  Frequency statistics, bias, error, and estimation efficiency were 

used to for the comparisons.   

 

At the West Texas study site, the NEXRAD rainfall product outperformed the 

CMORPH rainfall in terms of both rainfall detection and estimation.  NEXRAD had 

higher accuracy in detecting events, less over-prediction of the number of rainfall events, 

less false alarms, and higher skill scores than CMORPH.  From a rainfall estimation 

standpoint, NEXRAD had lower estimation bias, lower variability, higher temporal 

correlations, and higher estimation efficiency than CMORPH.  These traits make the 

NEXRAD product more suitable for use in biophysical modeling compared to 

CMORPH.  

 

Seasonal differences were apparent in the rainfall detection and estimates for 

both products.  Each had higher probability of detection and overestimation of rainfall in 

the monsoon season (June 1 to September 30) compared to the non-monsoon season 

(October 1 to May 31).  CMORPH overestimated rainfall in both seasons but had greater 

overestimation in the monsoon period.  Overestimation by CMORPH in the monsoon 

season may be related to detection of rainfall from convective events where the rainfall 

evaporates before it reaches the soil surface. 

 

Location effects were apparent with the NEXRAD product with the two stations 

having opposite trends in estimation even though the sites were 20 km apart.  This may 

be related to radar beam blockage and radar range effects.  Although this study used a 

very limited number of rain gages for comparison to the rainfall products, it does 
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highlight the local variation that can exist in these rainfall products.  Before using these 

products in biophysical modeling, it may be useful to conduct local validation in order to 

understand the variability, especially in areas where reporting rain gage networks are 

sparse. 

 

PHYGROW Simulation Model Performance Using NEXRAD Rainfall 

 

The PHYGROW biophysical simulation model was evaluated to assess its performance 

in accurately predicting herbaceous biomass at selected sites in West Texas using the 

NEXRAD rainfall product as a driving variable.  The model was first evaluated at the 

location of two weather stations and calibrated using the rainfall collected from the 

station gages.  The model was then evaluated after substituting the gage collected 

rainfall with NEXRAD rainfall.  Lastly the model was evaluated using NEXRAD data at 

multiple grazed locations representing the dominant plant communities across the study 

area.  

 

The PHYGROW model’s performance, using rainfall data collected at the 

weather stations, was moderate to good depending on the performance measure 

evaluated (estimation efficiency or index of agreement) and the location examined.  At 

both station locations, the PHYGROW model generally tracked the biomass measured at 

the site, but during several periods lagged the observed data by 20 to 30 days.  

Additional study is recommended to address these issues to improve model performance.   

 

The replacement of station collected rainfall with NEXRAD rainfall in the 

calibrated PHYGROW model resulted in poor model performance when compared to the 

observed biomass data at the two weather station sites.  The variability in the predictions 

increased and the goodness-of-fit statistics dropped, especially for the estimation 

efficiency statistic.  A comparison of the biomass predictions for the NEXRAD and the 

station simulations indicated that where the NEXRAD and station simulations diverged, 
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rainfall differences in the 30 days prior to divergence were 25 mm or more. The 

PHYGROW model appeared to be most sensitive to these differences at the beginning or 

the end of the monsoon period.   

 

The results of the PHYGROW simulations on the multiple grazed sites using 

NEXRAD precipitation indicated good correspondence between simulated biomass and 

that measured at 60 sites across the study area.  These results were much better than 

those observed with the NEXRAD rainfall at the weather station sites.  Possible reasons 

for these differences could be that the multiple grazed site simulations were calibrated 

with the NEXRAD rainfall, whereas the simulations with NEXRAD at the station sites 

used models calibrated with rainfall from the station.  Parameter adjustment during 

calibration for the NEXRAD simulations on grazed sites may have adjusted for 

consistent over or underestimation of rainfall by the NEXRAD product.  A second 

reason is that the sample size and range of the data pairs were greater for the evaluation 

at the grazed sites, thus reducing the impact of single outliers in the overall evaluation of 

model performance on the grazed sites. 

 

Results of PHYGROW simulations calibrated with and using NEXRAD 

corresponded well with the herbaceous biomass collected at multiple sites across a 

heterogeneous semi-arid landscape and the methodology looks promising for predicting 

biomass at the patch scale on a near real-time basis.  However, additional research is 

needed to better understand the uncertainties in forage predictions associated with the 

patterns of over and underestimation of rainfall by the NEXRAD product.  

 
Cokriging to Predict Forage Biomass in the Gobi Region of Mongolia 
 
This study was implemented in the Gobi region of Mongolia to examine the feasibility 

of developing a forage monitoring system that could provide near real-time spatial and 

temporal assessment of livestock forage conditions. As part of this assessment the 

PHYGROW simulation model was evaluated to determine its ability to predict forage 
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biomass at selected sites across the landscape using a near real-time, high resolution 

rainfall (CMORPH).  A second objective was to evaluate methodology for using the 

geostatistical technique of cokriging to integrate PHYGROW model output with NDVI 

to produce landscape maps of forage biomass that could be produced on a near real-time 

basis. 

 

The PHYGROW model performed reasonably well in predicting forage biomass 

at the majority of the monitoring sites across the Gobi region.  Site that had reduced 

performance generally overpredicted biomass and were located in the Forest Steppe 

zones in the northern portions of the study area.  Poor performance at these sites was 

attributed to misparameterization of soils at the site and problems with the CMORPH 

estimation of rainfall.  Additional and more frequent monitoring is needed at these sites 

to assist in improving model calibration. 

 

Cross-validation indicated that cokriging of PHYGROW output with NDVI as a 

covariate performed well during the months of July, August, and September with 

performance measures slightly less than the PHYGROW model calibration and 

verification performance measures.  The exception to this was the estimation efficiency 

statistic which is sensitive to extreme outliers.  The majority of the outliers were located 

in the Forest Steppe zone and several were identified previously as outliers in the 

PHYGROW model verification.   

 

The performance of cokriging as assessed through an independent verification 

was low with extreme outliers in the data again occurring in the Forest Steppe zone.  The 

problems associated with uncertainty in the biomass predictions by the PHYGROW 

model at sites in the northern portion of the study area carried through to the cokriging, 

resulting in poor estimates of biomass in the northern regions of the study area. 
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The overall methodology of geostatistically integrating the PHYGROW model 

output with NDVI to produce landscape maps of forage biomass shows promise for 

implementing as a near real-time system for drought monitoring in Mongolia.  

Improvements in the calibration of the PHYGROW model for sites in the northern 

regions, as well as more rigorous validation at selected sites across should help reduce 

the uncertainty in PHYGROW model predictions, and therefore improve accuracy of the 

interpolated maps.   
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APPENDIX A 
 
Appendix A.1.  Cross-validation analysis statistics for kriging of PHYGROW simulation model output to 
estimate forage standing crop across the Gobi region of Mongolia during the growing seasons (June to 
September) in 2005 and 2006.   
 

   
 

2005 Cross-validation 

Statistic 

 
June  
1-15 

June 
16-30 

July 
1-15 

July 
16-31 

August 
1-15 

August 
16-31 

Sept  
1-15 

Sept 
16-30 

Simulation 
Mean (kg/ha) 48 85 134 170 217 243 244 220 
Cokriged Map 
Mean (kg/ha) 47 84 133 169 215 241 242 218 
1sdo (kg/ha) 58 97 145 185 237 272 276 263 
sds (kg/ha) 30 63 106 140 187 215 214 202 
Bias (%) -1 -1 -1 -1 -1 -1 -1 -1 
MBE (kg/ha) 0 -1 -1 -1 -2 -1 -2 -2 
MAE (kg/ha) 36 52 65 78 93 103 105 99 
RMSD (kg/ha) 51 74 99 121 147 172 177 170 
r2 0.24 0.41 0.53 0.57 0.61 0.60 0.59 0.58 
EE -1.84 -0.39 0.13 0.25 0.38 0.36 0.31 0.29 
d 0.62 0.76 0.83 0.85 0.87 0.86 0.85 0.85 
n 243 243 243 243 243 243 243 243 

        
2006 Cross-validation 

 

 
June 
 1-15 

June 
16-30 

July 
1-15 

July 
16-31 

August 
1-15 

August 
16-31 

Sept  
1-15 

Sept 
16-30 

Simulation 
Mean (kg/ha) 35 68 116 180 231 245 235 214 
Cokriged Map 
Mean (kg/ha) 34 66 114 178 229 244 234 213 
1sdo (kg/ha) 64 97 149 213 268 293 292 276 
sds (kg/ha) 41 64 109 167 210 233 236 223 
Bias (%) -3 -2 -2 -1 -1 -1 -1 -1 
MBE (kg/ha) -1 -2 -2 -2 -2 -1 -1 -1 
MAE (kg/ha) 29 45 63 81 103 109 106 98 
RMSD (kg/ha) 48 74 99 127 160 172 169 160 
r2 0.42 0.42 0.56 0.64 0.64 0.65 0.67 0.67 
EE -0.41 -0.35 0.18 0.42 0.41 0.45 0.49 0.49 
d 0.76 0.76 0.84 0.88 0.88 0.88 0.89 0.89 
n 243 243 243 243 243 243 243 243 

1sdo = standard deviation for model simulated biomass; sds = standard deviation for cokriged biomass; MBE = Mean Bias Error; 
MAE = Mean Absolute Error; RMSD = Root Mean Square Difference; r2 = coefficient of determination; EE = estimation efficiency; 
d = index of agreement; n = number of samples 
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