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ABSTRACT 

 

Mutation in a Light-Regulated Glucan Synthase-Like Gene (GSL12) Displays Light 

Hyper-Responsive and Callose-Deficient Phenotypes in Arabidopsis. (May 2008) 

Bo Hyun Byun, B.S., University of Suwon; M.S., Seoul National University 

Chair of Advisory Committee: Dr. Alan Pepper 

Light is a very important factor affecting every aspect of plant development. 

Plant developmental responses to light are sensitive to the direction, intensity, color, and 

duration of light. Light is perceived by an extensive set of photoreceptors that includes 

the red/far-red light–absorbing phytochromes and blue/UV-A light–absorbing 

cryptochromes.  The Arabidopsis mutant seedling hyper-responsive to light 6 (shl6) has 

exaggerated developmental responses to available light. In the low light, shl6 seedlings 

have a phenotype similar to wild-type plants grown in high light, with short hypocotyls, 

expanded cotyledons, and well-developed first true leaves. In addition, the roots of shl6 

are short and highly branched. The SHL6 gene was mapped to a position on chromosome 

5 between simple sequence length polymorphism (SSLP) markers nga249 and nga151. 

Two cosmid clones from this interval (introduced by Agrobacterium-mediated 

transformation) complemented the shl6 mutant phenotype. One candidate gene identified 

by complementation is a member of the glycosyltransferase family. The sequence of shl6 

mutant differs from wild type Columbia allele of this gene (At5g13000) by a single 

nucleotide substitution in the first exon. This putative SHL6 gene encodes a member of a 

glycan synthase-like (GSL12) gene family that includes callose synthase. The β-1,3-D-
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glucan callose is found in the cell plate of dividing cells, in pollen mother cell walls, and 

pollen tubes. Callose synthase and related genes have not been previously implicated in 

developmental responses to light. We also observed that 90% of Col-0 anthers showed 

high callose deposition, but shl6 mutant did not display callose deposition in the anthers. 

The pollen viability in the shl6 was lower than Col-0. The epidermal cell elongation in 

shl6 hypocotyls was reduced when compared with Col-0. Therefore, we conclude that 

the mutation in light-regulated SHL6/GSL12 was involved in the synthesis of callose as 

well as light signaling. 
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CHAPTER I 

 

INTRODUCTION 
 

Photomorphogenesis 

Being sessile, plants have evolved developmental and physiological responses to 

various environmental factors including wind, temperature, water and light. Light is a 

very important factor that affects every aspect of plant development, including seed 

germination, seedling photomorphogenesis, phototropism, gravitropism, chloroplast 

movement, shade avoidance, circadian rhythms, and flower induction. Plants modulate 

their development in response to the direction, intensity, color, and duration of light. 

After germination, young seedlings have two distinct developments depending on light 

conditions. In the dark, plants follow skotomorphogenesis (or etiolation), which is 

characterized by hypocotyl elongation, an apical hook, undeveloped cotyledons and 

inhibition of chlorophyll and anthocyanin biosynthesis. Once the seedlings are exposed 

to light, they follow photomorphogenesis or de-etiolation; the hypocotyl stops 

elongation, shoot apical meristem is activated, chlorophyll and anthocyanin biosynthesis 

are initiated, and true leaves begin to develop. When plants are exposed to natural light, 

they receive a broad spectrum of light, ranging from UV to far-red light. Light is 

perceived by several photoreceptors.  

 

 

This dissertation follows the style of Plant Physiology. 
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These include the UVA and blue light-absorbing phototropins and cryptochromes, 

and the phytochromes which mainly absorb red and far-red light (designated PHYA to 

PHYE in Arabidopsis) (Gyula et al., 2003; Yamamoto et al., 1998; Quail et al., 1995).  

 

The origin, structure and localization of phytochrome 

Phytochrome stands for “plant color” and the name was created to describe the 

protein pigment that controls photoperiod response and floral induction of certain short-

day plants such as cocklebur and soybean (Garner and Allard, 1920). The phytochromes 

were identified through the observation that the germination of lettuce seeds is induced 

by red (R) light and repressed by far-red (FR) light (Kendrick and Kronenberg, 1994). 

Plant phytochromes, which are 240-kDa chromoprotein, have an amino-terminal domain 

that has four subdomains (P1-P4) and a carboxy-terminal domain that is subdivided into 

a PAS-related domain (PRD) containing two PAS repeats and a histidine-kinase-related 

domain (HKRD) (Montgomery and Lagarias, 2002). Phytochromes have two photo-

reversible forms. Phytochromes predominately absorb the red and far-red wavelengths. 

When the inactive Pr form (Pr: red light absorption form) is expose to red light, it is 

activated by photo-conversion to the biologically active Pfr form (Pfr: far-red absorption 

form) (Quail, 1997). The activated Pfr form converts back to the Pr form by absorbing 

far-red light or undergoes dark reversion in the absence of light (Furuya and Song, 1994; 

Quail, 2002). Phytochromes are of two types based on their stability to light, Type I 

(photo-labile) and Type II (photo-stable). Type I phytochromes are unstable to light; 

since they accumulate in the darkness and are degraded rapidly by being exposed to 
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light, while type II are made in the light (Furuya, 1993). In Arabidodpsis, phyA is a type 

I phytochrome and phyB-E are type II phytochromes (Quail, 1997; Sharrock and Quail, 

2002). The photo-conversion of phytochromes induces their translocation from the 

cytoplasm to the nucleus. For example, phyA is imported into the nucleus in response to 

continuous far-red light (Nagy and Schafer, 2002). A hypomorphic protein made by the 

phyB fails to translocate into the nucleus (Matsushita et al., 2003). The translocation of 

phytochromes into the nucleus has an important role in phytochrome signaling (Quail 

2002).  

 

Phytochrome signaling 

Red light induces the autophosphorylation of oat phyA by attaching to 

chromophore (Yeh and Lagarias, 1998). phyA can also phosphorylate several proteins 

including PKS1 (protein kinase substrate 1) (Frankhauser et al., 1999), Aux/IAA (Colon-

Carmona et al., 2000), cry1, and cry2 (Ahmad et al., 1998) in vitro. Several phytochrome 

signaling domains have been identified through deletion and site directed mutagenesis 

studies. For example, the deletion of phyA residue Ser7 in Arabidopsis phyA led to 

hypersensitivity to the far-red light (Casal et al., 2002). The HKRD domain is also an 

essential signaling region of both phyA and phyB (Krall and Reed, 2000; Fankhauser et 

al., 1999). PKS1 of a number of phyA intermediates interacts with HKRD and can be 

phosphorylated by phyA in vitro (Fankhauser et al., 1999). PKS1 is an inhibitor of phyB, 

and is required for phyA-mediated VLFR responses with enhanced cotyledon opening, 

and inhibition of hypocotyl elongation (Lariguet et al., 2003). An analysis of protein-
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protein interactions involved in phytochrome signaling has identified a number of 

phytochrome-interaction factors (PIFs) including PIF3 and PIF4 (Quail 2002; Kim et al., 

2003). PIF3 and PIF 4 are nuclear localized basic helix-loop-helix (bHLH) proteins and 

are negative regulators of phytochrome signaling (Heim et al., 2003; Toledo-Ortiz et al., 

2003). PIF3 binds to a light-responsive G-box cis-element to express 

skotomorphogenesis genes (Martinez-Garcia et al., 2000). PIF3 acts mainly as a negative 

regulator of phyB-induced signaling (Kim et al., 2003).  

The Pfr form of phytochromes is imported into the nucleus. The Pfr form 

phosphorylates PIF3 and phosphorylated PIF3 is ubiquitinylated and degraded (Al-Sady 

et al., 2006; Bauer et al., 2004). PIF4 also binds to the Pfr form of phyB (Huq and Quail, 

2002) and is involved in shade-avoidance and red light responses (Huq and Quail, 2002; 

Salter et al., 2003).    

  

 The photomorphogenetic mutants involved in light signaling 

Through the use of photomorphogenetic mutants, several genes involved in de-

etiolation have been discovered. These mutants have three distinct classes: cop/det/fus 

(constitutive photomorphogenesis/de-etiolated/fusca), long hypocotyl (hy), and seedling 

hyper-responsive to light (shl).  

In the first class of mutants, dark-grown seedlings have short hypocotyls and 

phenotypes characteristic of light grown plants (Chory et al., 1989; Wei and Deng, 1996; 

Osterlund et al., 1999; Holm and Deng, 1999). As negative regulators of 

photomorphogenesis, cop/det/fus (constitutive photomorphogenesis/de-etiolated/fusca) 
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mutant mimic the phenotype of light-grown seedlings, including open, expanded 

cotyledons, suppression of hypocotyls growth, and anthocyanin accumulation when 

grown in the dark (Koornneef
 
et al., 1980; Chory, 1992; Ang and Deng, 1994; Wei et al.,

 

1994; Pepper and Chory, 1997). For example, in det1 mutants, light-induced genes such 

as those that encode the ribulose bisphosphate carboxylase small (rbcS) and large 

subunits (rbcL) are expressed in the dark. DET1 is a 62kDa protein located in the 

nucleus that functions to repress the promoters of light-regulated genes (Pepper et al., 

1994). The functional form of DET1 is an approximately 350 kDa protein complex with 

Damaged DNA Binding Protein 1 (DDB1) (Schroeder et al., 2002). DET1/DBB1 

complex has a chromatin-remodeling function and in the dark, DET/DDB1 complex 

binds to nonacetylated amino-terminal tails of the core histone H2B in the cortex of the 

nucleosome (Benvenuto et al., 2002; Schroeder et al., 2002). In addition, Schroeder 

(2002) suggested a model that the DET1/DBB1 complex binding to chromatin may 

inhibit access of positive regulators involved in photomorphogenesis in the dark and be 

released by acetylation in the light to stimulate the expression of photoregulated genes, 

such as HY5 and PIP3 (Benvenuto et al., 2002).  

As another key negative regulator, COP1 has three motifs: a ring finger zinc-

binding motif, a coiled-coil domain, and WD-40 repeats (Deng et al., 1992). The coiled-

coil domain of COP1 interacts with the COP1 Interacting Proteins CIP1, CIP4, and CIP7 

(Matsui et al., 1995; Torii et al., 1999; Yamamoto et al., 1998; Yamamoto et al., 2001). 

CIP8 interacts with the ring finger motif of COP1 (Hardtke et al., 2002). COP1 and CIP8 

both have ring finger motifs, characteristic of E3 ubiquitin ligases and the interaction of 
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CIP8 and COP1 participates in proteosome-mediated degradation of two basic 

domain/leucine zipper (bZIP) transcription factors (HY5 and HYH) (Osterlund et al., 

2000; Hardtke et al., 2002; Holm et al., 2002). In addition, COP1 was shown to act with 

an E3 ubiquitin ligase in the  degradation of a number of proteins, including a MYB 

transcription factor (LAF1), and a basic helix-loop-helix (bHLH) transcription factor 

(Saijo et al., 2003; Seo et
 
al., 2003; Jang et al., 2005) that are involved in promoting 

photomorphogenesis (Yang et al., 2005). COP1 subcellular localization depends on light 

signals. The quantitative abundance of COP1 decreases in the nucleus in a manner 

dependent on light intensity, whereas in the dark, COP1 is nuclear localized (von Arnim 

and Deng, 1994; Osterlund and Deng, 1998). COP1 interacting with HY5 acts as a 

putative E3 ubiquitin ligase and targets the degradation of HY5 via the 26S proteosome 

pathway in darkness (Osterlund et al., 2000; Schwechheimer and
 
Deng, 2000). In light, 

COP1 activity is regulated negatively by multiple photoreceptors (Osterlund and Deng, 

1998). The direct interaction of cryptochrome with COP1 is involved in the inactivation 

of COP1 in blue light (Wang et al.,
 
2001; Yang et al., 2001).                                                                                                                       

The second set of mutants is defective in light perception (Koornneef
 
et al., 

1980). These long hypocotyl or hy mutants fail to integrate signals from various multiple 

photoreceptors and have a long hypocotyl phenotype whether they are grown in light or 

darkness (Koornneef
 
et al., 1980). Most hy mutants are defective in photoreceptors or in 

positive regulators of photomorphogenesis. For example, hy8, hy3, and hy4 encode the 

apoproteins of phytochromeA, phytochromeB, and cryptochrome1, respectively. The 

hy5 gene encodes the basic leucine zipper (bZIP) transcription factor that activates the 
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transcription of light-induced genes (Ang et al., 1998). Mutation in Hy5 also cause a 

defect in light-induced inhibition of hypocotyl elongation in all light conditions, 

indicating that HY5 acts downstream of phyA, phyB, chrptochromes, and UV-B 

(Koornneef
 
et al., 1980; Oyama et al., 1997; Ang et al., 1998; Ulm et al.,

 
2004). The hy5 

null mutant also has abnormal root morphology and altered hormone responses (Oyama 

et al., 1997; Cluis
 
et al., 2004). In addition, HY5 is regulated by COP1 via proteosome-

mediated degradation with COP1. Further, HY5 is regulated by UVB Resistance 8 

(UVR8). UVR8 is a UVB-specific signaling component that affects the expression of a 

range of genes essential for UV-B protection (Brown et al., 2005). UVR8 has been 

shown to associate with chromatin in the HY5 promoter region by Chromatin 

immunoprecipitation (ChIP) (Brown et al., 2005).    

 In a previous study, a new third set of photomorphogenic mutants in genes acting 

at the interface of light perception and developmental pathways was screened in 

Arabidopsis. Pepper et al. (2001) isolated recessive light-hyperresponsive mutants in 

eight genetic loci, designated as seedling hyper-responsive to light (shl). Whereas low 

light grown Col-0 seedlings have elongated hypocotyls and open cotyledons, shl 

seedlings showed a phenotype typical of seedlings grown in high-light, with short 

hypocotyls, expanded cotyledons, and significant development of first true leaves in low 

light. shl seedlings have an etiolated phenotype like Col-0 seedlings grown  in darkness. 

To eliminate mutants in the det/cop/fus class and those with severe pleiotropic 

developmental defects, mutant seed pools were “counter-screened” in darkness. SHL 

genes act as negative regulators of photomorphogenesis, but they are functionally 
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distinct from mutants in the det/cop/fus class in that they are hyperresponsive to 

available light, rather than light independent (Chory et al., 1989; Deng et al., 1991; 

Pepper et al., 2001).  

In this study, I identified the gene mutated in one of shl mutants, shl6, by a map-

based cloning approach. We characterized the function of the SHL6 gene at the 

molecular and physiological levels, thus contributing to our understanding the 

relationship between light signaling and plant development.  
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CHAPTER II 

 

IDENTIFICATION OF shl6 MUTANT 

 

Introduction 

Being sessile, plants have evolved developmental and physiological responses to 

various environmental factors such as wind, temperature, water and light. Light is a very 

important factor that affects every aspect of plant development. Plants modulate their 

development in response to the direction, intensity, color, and duration of light. After 

germination, young seedlings have two distinct developments depending on light 

conditions. In the dark, plants follow skotomorphogenesis (or etiolation), which is 

characterized by hypocotyl elongation, an apical hook, undeveloped cotyledons and 

inhibition of chlorophyll and anthocyanin biosynthesis. Once the seedlings are exposed 

to light, they follow photomorphogenesis or de-etiolation; the hypocotyl stops 

elongation, shoot apical meristem is activated, chlorophyll and anthocyanin biosynthesis 

are initiated, and true leaves begin to develop. When plants are exposed to natural light, 

they receive a broad spectrum of light, ranging from UV to far-red light. Light is 

perceived by several photoreceptors. These include the UVA and blue light-absorbing 

phototropins and cryptochromes, and the phytochromes, which mainly absorb red and 

far-red light (designated PHYA to PHYE in Arabidopsis) (Gyula et al., 2003; 

Yamamoto et al., 1998; Quail et al., 1995). 
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Through the use of photomorphogenetic mutants, several genes involved in de-

etiolation have been discovered. These mutants have three distinct classes: cop/det/fus 

(constitutive photomorphogenesis/de-etiolated/fusca), long hypocotyl (hy), and seedling 

hyper-responsive to light (shl). In the first class of mutants, dark-grown seedlings have 

short hypocotyls and characteristic phenotypes of light grown plants (Chory et al., 1989; 

Wei and Deng, 1996; Osterlund et al., 1999; Holm and Deng, 1999). As negative 

regulators of photomorphogenesis, cop/det/fus (constitutive photomorphogenesis/de-

etiolated/fusca) mutant mimic the phenotype of light-grown seedlings, including open, 

expanded cotyledons, suppression of hypocotyl growth, and anthocyanin accumulation 

when grown in the dark (Koornneef
 
et al., 1980; Chory 1992; Ang and Deng, 1994; Wei 

et al.,
 
1994; Pepper and Chory, 1997). For example, in det1 mutants, normally light-

induced genes, such as those that encode ribulose bisphosphate carboxylase small 

(RBCS) and large subunit (rbcL) are expressed in the dark. DET1 is located in the 

nucleus and functions to repress the promoters of the light-regulated genes (Pepper et al., 

1994). In the dark, DET1 binds to nonacetylated amino-terminal tails of the core histone 

H2B in the cortex of the nucleosome (Benvenuto et al., 2002). Thus, DET1 may be 

released by acetylation in the light to stimulate expression of photoregulated genes, such 

as HY5 and PIP3.  

A second set of mutants is defective in light perception (Koornneef
 
et al., 1980). 

These long hypocotyl or hy mutants fail to integrate signals from various multiple 

photoreceptors and have a long hypocotyl phenotype whether they are grown in light or 

darkness. Most of hy mutants are photoreceptors or positive regulators of 
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photomorphogenesis mutations. For example, hy8, hy3, and hy4 encode the apoproteins 

of phytochrome A, phytochrome B, and cryptochrome1, respectively. The hy5 gene 

encodes the basic leucine zipper (bZIP) transcription factor that regulates the 

transcription of light-induced genes (Ang et al., 1998).  

Our laboratory has identified a new third set of photomorphogenic mutants in 

Arabidopsis that are hyper-responsive to available light, designated as seedling hyper-

responsive to light (shl) (Pepper et. al, 2001). In low light, shl seedlings showed a 

phenotype typical of seedlings grown in high-light, with short hypocotyls, expanded 

cotyledons, and significant development of first true leaves when grown in low light. 

One of shl mutants, shl6 was isolated by screening mutagenized seed lines under a 

yellow filter, which partially depletes photomorphogenetically active areas of the light 

spectrum including UV, blue, red and far-red. Unlike other shl mutants (Pepper et. al, 

2001), shl6 mutants also have also short, branched roots.  

In this chapter, mutant shl6 was back-crossed with wild type Columbia (Col-0) to 

analyze the phenotype of F2 progeny. The light hyper-responsive trait was shown to be 

determined by a single gene. For map-based cloning of the shl6 locus, a mapping 

population was made from the F2 of a cross of the shl6 mutant and the wild type 

Landsberg erecta ecotype (La-er). To identify the SHL6 gene, complementation analysis 

was employed via Agrobacterium-mediated plant transformation.   
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Results 

Isolation of shl6 mutants 

Fifteen independent mutants were isolated from ethyl methane sulfonate (EMS) 

mutagenized plants (Columbia ecotype) screened under low light using the conditions 

described by Pepper et al. (2001). When grown under low light, these mutants showed a 

high light phenotype with short hypocotyl, open cotyledons, and early development of 

the first true leaves. In the dark, however, they were largely similar to wild type with 

respect to hypocotyl elongation, folded cotyledons, and inhibition of chlorophyll and 

anthocyanin biosynthesis. Thus, these mutants were called seedling hyper-responsive to 

light (shl). shl6, one of these mutants, was crossed with the wild type Columbia ecotype 

(Col-0). In the F2 generation, short hypocotyls were 14 and long hypocotyls were 47. 

The observed numbers accepted the principle of segregation (1:3) by a chi-square test 

(χ
2
=16, p<0.5). The result supported the hypothesis that short hypocotyls were caused by 

a single recessive mutation.  

In yellow light (65 µmol m
-2 
s
-1
), shl6 seedlings have a phenotype similar to wild-

type plants grown in high light (110 µmol m
-2 
s
-1
), with short hypocotyls, expanded 

cotyledons, and well-developed first true leaves (Figure 2.1A). Unlike several other shl 

mutants, shl6 had a somewhat shorter hypocotyl in the dark than wild-type (a partially 

de-etiolated phenotype), and thus did not fit the ideal shl phenotypic criteria. However 

the shl6 phenotype showed a very strong light dependence (Figure 2.1A and B). In 

addition, the roots of shl6 were short and highly branched in all light conditions.  
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 A                                   Col-0           shl6 

                    

                   WHITE 

 

 

 

 

                 

                  YELLOW 

 

 

 

 

                     DARK 

 

 

 

 

 

 

  

 

 

Figure 2.1. Early morphological phenotype of shl6 mutants  

 

(A) Seven-day-old shl6 seedlings show differences under high light (110 µmol m
-2 
s
-1
), 

yellow (65 µmol m
-2 
s
-1
), and darkness compared to the wild type (Col-0).  

(B) Hypocotyls were measured in high light (110 µmol m
-2 
s
-1
), yellow (65 µmol m

-2 
s
-1
), 

and darkness. Data presented are mean ± SE (n=25). 

(C) Root growth responses of Col-0 and shl6 seedlings to yellow (65 µmol m
-2 
s
-1
). Data 

presented are mean ± SE (n=12). Bar means 1mm. 
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Figure 2.1. Continued. 
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Identification of the SHL6 gene 

For map-based cloning of the shl6 locus, 500 short-hypocotyl plants were 

selected from the F2 of a cross between the shl6 mutant and the wild type Landsberg 

erecta ecotype (La-er). To do genetic mapping, twenty four genetic markers (Pepper et 

al.,2001) were selected to cover the five Arabidopsis chromosomes. The shl6 mutant was 

linked to simple sequence length polymorphism (SSLP) marker nga225 on chromosome 

5. Fine linkage mapping of the 500 mutant F2 individuals using PCR-based markers 

localized shl6 to the region of chromosome 5 between SSLP markers nga249 and 

nga151 (Figure 2.2A). Using the genomic sequences released by the international 

Arabidopsis genomic Initiative (Sato et al., 1997, Bevan et al., 1998, and AGI, 2000, 

Jander et al., 2002) twelve new additional SSLP markers were developed (Table 2.1). 

The genomic interval containing the shl6 locus was narrowed to a 235Kb genomic 

fragment spanned by bacterial artificial chromosome BAC clones T2L20, T2H18, 

T19L5, and T31B5 (TAMU BAC library; Cai et al., 1995) (Figure 2.2A). 
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Figure 2.2. Map-based cloning of SHL6 

 

(A) SHL6 was mapped to the BAC clone T24H18 on chromosome 5 by analyzing 

recombinants produced from crosses. Positions of known SSLP markers used for 

mapping are indicated. Positions of SSLP markers developed for this work from 

sequence data are labeled by vertical lines. Asterisks (*) indicate sub-cloned BACs. 

(B) Two sub-clones (4B and 10B) complementing shl6 mutant by Agrobacterium-

mediated transformation are indicated.  

(C) Exon/intron structure of SHL6. SHL6 consists of 42 exons (rectangles) and thick 
lines are introns. shl6 caused a Pro-39 to Leu mutation in the first exon of gene 

At5g13000. Two T-DNA insertion lines (SALK_068418 and SAIL_402_B10) are 

indicated by open triangles. 
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Table 2.1. Twelve new SSLP makers on Chromosome 5 

     

     

Marker Name  PCR primer pair Map position 

  5´-forward-3´ and 5´-reverse-3´ Physical 
a
 

F8F6 F5'-GGTATAATGCGTGTATTCG-3'   F8F6 

 R5'-CGTGTGGACATCATAAATGCC-3'   

MJJ3  F5’-GTCCCGTCCAAGGTCATTTA-3’   MJJ3 

 R5’-CTGTTTTCACCGCTAAGTCG-3’    

T31P16 F5'-CTTAAGAATTATGGGAACGGAG-3'  T31P16 

 R5'-GCAGCTAGTGATCGTTAACCCG-3'   

T5K6 F5'-CTTAATAACCCCTCCTCTCTCG-3' (10/-10)
b
 T5K6 

 R5'-TGAAGTTGAAGTAGGTGCTC-3'    

F2I11C F5´-CAACGGATGCGATAGATTACCCA-3´  F2I11 

 R5´-GCC ATT GAA AAG ACT ATT CCA TTC G-3´   

T22P22A F5'-GGAGTTTGCAAACTATTAGACACA-3´ (-6/6)
b
 T22P22 

 R5'-AGTCATTGTTATGCTACTTGAGG-3'   

F14F18 F5'-CAGTTGTTCAGCTACCTATTCAG-3' (-8/8)
b
 F14F18 

 R5'-TCCATGCTACCCAGAAAAGG-3'    

MXC9A  F5´-GCTGATTCAAACCATTCC-3´  (-1/1)
b
 MAX9 

 R5´-GGTAGGTGTGAACATTTTGG-3´    

T2L20 F5´-GCAACCGCCTCTACAATGTC-3´  (1/-1)
b
 T2L20 

 R5´-GGTAGAGCTCCTGGCAACTTA-3´   

T24H18 F5'-AATCGGTCATGGACAAGGGG-3' (8/-8)
b
 T24H18 

 R5'-CTAACGTTCGGTGGTTGAGTGTC-3'   

T19L5A F5´-CCAAGAATGAGATGAGCTCT-3´  (-4/4)
b
 T19L5 

 R5´-GTATGATTAGTGCTCGATCCTC-3´   

T31B5 F5’-CAGCTCAATTAATCCCAGTAACC-3’  T31B5 

  R 5’-CGGTCTCGCAGATACTGTG-3’       

a
 Clone designation         

b
 Cereon data base: INDEL 
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To identify SHL6 gene, four BACs from within this region, T2L20, T2H18, and 

T19L5, were partially digested with HindIII and BamHI, then randomly subcloned into 

T-DNA transformation vector, pCambia 3300 (Broothaerts et al., 2005), which contains 

a BASTA-resistance gene (BAR) as a plant selectable gene and a kanamycin resistance 

gene as a bacterial selection marker (Hajdukiewicz et al., 1994). The set of 65 cosmid-

containing sub-clones from BACs T2L20, T24H18, and T19L5 was transformed into 

Agrobacterium tumefaciens GV3101 then transformed into homozygous shl6 mutant via 

the floral dip method (Clough and Bent, 1998). After self-fertilization of these primary 

(T0) transformants, BASTA-resistant T1 plants were selected, and screened for T2 

seedlings showing wild-type phenotypes under a yellow filter (e.g. complementation). In 

two independent transformations, two adjacent but non-overlapping cosmid clones, 

designated 4B and 10B, from BAC T24H18, complemented the shl6 mutant phenotype 

(Figure 2.3). 4B contains two hypothetical genes, At5g12990 encoding CLV3/ESR 40 

(CLE40) and At5g13000 encoding glucan synthase. However, At5g13000 gene did not 

have a promoter or start codon within the 4B clone. Interestingly, only three of seven 4B 

transformants (43%) complemented homozygous shl6 mutants (Figure 2.3A). 

10B had two complete putative genes, At5g13010 encoding RNA helicase and 

At5g13020 encoding EMSY N-terminal (ENT) domain. The 10B clone also contained 

nucleotides from the promoter region to the second exon of At5g13000. Unlike 4B 

transformants, 100% of 10B transformants complemented shl6 mutants. However, 10B 

transformants only showed a partial complementation phenotype: hypocotyl length of 

10B transformants fell between wild-type (Col-0) and shl6 mutants (Figure 2.3B). 
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Figure 2.3. Complementation analysis of 4B and 10B cosmid clones 

(A) Three of seven (43%) 4B transformants complemented homozygous shl6 mutants. 

(B) Hypocotyl length of 10B transformants fell between Col-0 and shl6 mutants. 10B 

transformants partially complemented shl6 mutants. Data presented are mean ± SE. 
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To determine whether the shl6 mutant contained a point mutation in four 

candidate genes for two cosmid clones (4B and 10B), each 4kb of this whole genomic 

region (approximately 24kb) from both the shl6 mutant and Col-0  was amplified by 

PCR and sequenced via primer walking (Table 2.2). Whereas single strand sequencing 

of three candidate genes, At5g12990, At5g13010, and At5g13020 yielded no difference 

between the mutant and Col-0, the only sequencing of Atg13000 revealed that the 

sequence of shl6 mutant within this genomic region only differed from Col-0 allele by a 

single base-pair change (C to T), which caused a predicted proline to leucine amino acid 

substitution mutation in the first exon of gene At5g13000. The point mutation region of 

SHL6 protein is highly conserved among 12 homologous genes (GSL1-12) in 

Arabidopasis. The At5g13000 gene is discussed in detail at the end of this chapter. 

 

The verification of 4B and 10B transformant lines 

 In the previous data, sequencing showed that the missense mutation was only in 

the At5g13000 gene. Whereas the point mutation was in the portion of the gene 

contained in the 10B clone, most of the gene is 4B clone. The 10B and 4B clones are not 

overlapping. To verify that the gene structure of transformed lines 4B and 10B confirm 

that no Col-0 pollen contamination had covered, we performed PCR with primer sets 

consisting of one primer from border sequences (LB or RB) of T-DNA vector (pCambia 

3300) and the other from genomic sequences using genomic DNA from both 4B and 

10B transformants as a template (Figure 2.4A). 
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 Table 2.2. Primers used for sequencing GSL12 
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The 4B-specific primer pair from 4B clone was used to do PCR with both 4B 

transformants and 10B transformants. Likewise, the 10B-specific primer set was also 

used to do PCR with both 4B and 10B transformants. In the 4B transformants, 4B-

specific primer pair via PCR amplified an expected 1.4 kb DNA fragment. Artifactual 

products were amplified in wild-type Col-0 and the same size DNA fragment was also 

amplified in 10B transformants. 4BR and M13F primers amplified an expected 0.8 kb 

DNA fragment. In addition, 10BF and M13R primer pair also amplified an expected 1.3 

kb DNA fragment and 10BR and M13F primers also amplified an expected 0.7 kb PCR 

products in 10B transformants. 4B and 10B primer pairs did not amplify their DNA 

fragments in 10B and 4B transformants, respectively. Therefore, the 4B and 10B clones 

are adjacent but they are not overlapping. In addition, 4B transformants have only the 4B 

clone and 10B transformants also contains only the 10B clone (Figure 2.4B).  

The previous data revealed the gene spans two clones (4B and 10B), but they are 

not overlapping. To reject another possibility that shl6 complementation by 4B and 10B 

clones may be caused by wild-type Col-0 pollen contamination, we verified that 4B or 

10B transformants are in a homozygous shl6 genotype background. PCR based 

genotyping was performed. Fortunately, the sequences of GSL12 provide an important 

clue to detect homozygous shl6. The genomic sequences, ccatC site that is a mutated 

region in shl6, in Col-0 created a BccI restrict enzyme site, but ccatC to ccatT change in 

shl6 prevented the BccI restriction enzyme reaction (Figure 2.5A).   
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A 

 

 

 

 

B 

 

 

 

 

 

 

 

Figure 2.4.  Verification of T-DNA insertion of 4B and 10B cosmid clones 

 
(A) Primer sets were designated in 4B and 10B clones. M13F, M13R are from border 

sequences (LB or RB) of T-DNA vector (pCambia 3300) and 4BF/4BR, and 10BF/10BR 

are from T-DNA inserted genomic sequences. Bar indicates 1kb.  

(B) Each primer set was used for PCR and 1kb
+
DNA ladder (Invitrogen, USA) was 

used. In independent eight 4B transformants, 4BF primer pair via PCR amplified 1.4kb 

DNA fragment. 4BR and M13F primers amplified 0.8 kb PCR products. 10BF and 

M13R primer pair also amplified 1.3 kb DNA fragment and 10BR and M13F primers 

also amplified 0.7 kb PCR products in eight independent 10B transformants. Asterisks 

(*) indicate artificial DNA products. Col-0 and shl6 were used as controls in the right 

lanes of a 2% agarose gel.  
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As a consequence, Col-0 and the shl6 mutant can be distinguished by BccI 

restriction fragment analysis. BccI-R and BccI-F primers amplified 541bp DNA in Col-0 

and 4B transformants containing the polymorphic BccI recognition site (Figure 2.5A). 

After treatment of BccI restriction enzyme, Col-0 had 141bp, 204bp and 196bp 

fragments, and 4B transformants had 141bp and 400bp DNA fragments (Figure 2.5B). 

10B transformants were also verified by PCR-based genotyping. After amplifying PCR 

products with BccI-R-1 and BccI-F, the PCR products were cut by BccI restriction 

enzyme. Col-0 had 5 different DNA fragments including 136bp, 204bp, 406bp, 358bp 

and 230bp. 10B transformants had 136bp, 610bp, 358bp and 230bp DNA fragments 

(Figure 2.5B). PCR based genotyping comparisons to Columbia showed both 4B and 

10B transformants have homozygous shl6 backgrounds.   

 

Complementation of the shl6 mutant with a full length At5g13000 clone 

The 4B clone had most of the GSL12 gene except for the promoter region to the 

second exon region. The only 10B clone contained the region that is mutated in the first 

exon of the GSL12. Thus, the previous results raise two important questions: (1) how did 

a small DNA fragment in 10B clone complement shl6 mutant, and (2) could full-length 

GSL12 gene complement shl6 mutant.  
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Figure 2.5. Verification of homozygous shl6 mutant 

(A) The genomic sequences, ccatC site that is a mutated region in shl6, in Col-0 created 

a BccI restrict enzyme site. BccI-R and BccI-F primers were used for PCR in 4B 

transformants and Col-0. PCR in 10B transformants and Col-0 was performed by BccI-

R-1 and Bcc-F primers. Asterisks (*) indicated a point mutation in shl6. 

(B) Amplified PCR products in Col-0 and independent eight 4B transformants were 

treated by BccI restriction enzyme. Col-0 had 141bp, 204bp and 196bp, and 4B 
transformants had 141bp and 400bp DNA fragments. PCR products amplified by BccI-

R-1 and BccI-F in Col-0 and independent four 10B transformants were treated by BccI 

restriction enzyme. Col-0 had 5 different DNA fragments including 136bp, 204bp, 

406bp, 358bp and 230bp. 10B transformants had 136bp, 610bp, 358bp and 230bp DNA 

fragments. 204bp and 196 bp DNA fragments were overlapped and they were shown to 

one band. Col-0 and shl6 were used as controls in the right of 2% agarose gel.  
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Eventually, the identification of SHL6 was confirmed by the complementation 

analysis of the full-length GSL12 gene via Agrobacterium-mediated plant transformation 

(Clough and Bent, 1998). To make a full-length GSL12 clone was difficult. Because the 

length of GSL12 is approximately 13kb including promoter, we failed to amplify full-

length GSL12 by PCR. Thus, full-length GSL12 clone was constructed from segment of 

4B clone and modified 10B clone. The 10B clone was reconstructed first by partial 

digestion with SalI restriction enzyme, yielding the segment from the promoter to the 

2nd exon (1.8kb) of GSL12 gene (Figure 2.6). This clone was called a re-constructed 

clone (ReC1). The ReC1 clone was also used to confirm that the small DNA fragment 

included complemented shl6 mutant. As a negative control, only vector was transferred 

into shl6 plants. The hypocotyls of shl6, EV (only vector), ReC1 transgenic, and Col-0 

plants were measured under white (110 µmol m
-2 
s
-1
), yellow (65 µmol m

-2 
s
-1
), and 

darkness (Figure 2.7A and B). As a result, interestingly, transformation with the ReC1 

clone partially complemented shl6 in a manner matching the 10B transformants (Figure 

2.7C).  
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Figure 2.6. ReC1 clone construction 

(A) 4B and 10B BamHI fragments were sub-cloned in pCambia 3300. Partial CLE 40 

(~0.2 kb) and GSL12 (~10 kb) were in 4B clone and 10B contained partial GSl12 

fragment (~1.8 kb), full-length RNA helicase, and ENT domain genes. An asterisk (*) 

indicates a mis-sense mutation in shl6. 

(B) The 10B clone was partially digested by SalI. RNA helicase and ENT domain were 

deleted from 10B clone and GSL12 small fragment (~1.8 kb) was re-ligated. MCS means 

multiple cloning sites. T-LB (T-DNA left border), and T-RB (T-DNA right border) 

(C) Re-constructed clone (ReC) 1 was in pCambia 3300, and transferred into shl6 

mutant plants. T-RB was not shown. 
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Figure 2.7 Complementation analysis of ReC1 clone 

 
(A) and (B) 7-d old shl6, EV (no insert: only vector)), ReC1 transgenic and Col-0 
seedlings were analyzed under high light (110 µmol m

-2 
s
-1
), yellow (65 µmol m

-2 
s
-1
), 

and darkness. 

(C) Hypocotyls of shl6 seedlings grown under yellow were compared with those of 10B 

transgenic seedlings.   Bars mean 1mm. 

 shl6      EV     ReC1    Col-0  shl6      EV     ReC1    Col-0  shl6      EV     ReC1    Col-0 
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Finally, to construct a full-length GSL12 clone in pCAMBIA 3300, partial 

GSL12 fragment from 4B clone was digested by BamHI, and then the digested partial 

GSL12 fragment was inserted adjacent to the 2nd exon of the GSL12 gene BamHI 

fragment in the ReC1 clone (Figure 2.8). The orientation of partial GSL12 fragment was 

confirmed by EcoRI restriction enzyme digestion (Data not shown). Eight independent 

lines transformed by the GSL12 clone completely complemented shl6 in low light 

(Figure 2.9). Therefore, we concluded that this GSL12 (At5g13000) gene is the SHL6 

gene through the transformation analysis of small DNA fragment and full-length GSL12.  

 

SHL6 encodes Glucan Synthase Like (GSL12) gene 

 The putative SHL6 gene encodes glucan synthase-like or callose synthase-like 

(GSL12) gene. Through sequence similarity, twelve putative glucan synthase like 

(GSL1-12) sequences were revealed over the five chromosomes of Arabidopsis (Hong et 

al, 2001a); the 12 GSL genes for these proteins were also annotated independently by a 

group in Stanford (http://cellwall.stanford.edu/gsl/index.shtml). 

GSL1-12 genes have homology with yeast FK506 hypersensitivity (FKS) genes, a 

well characterized β-1,3-glucan synthase (Douglas et al., 1994; Cabib et al., 2001; 

Dijkgraaf et al., 2002).  
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Figure 2.8. Construction of full-length GSL12 clone  
 
(A) 4B sub-cloned by BamHI was digested again by BamHI to get partial GSL12 
fragment (~10 kb). An asterisk (*) indicated a point mutation in shl6. 

(B) ReC1 clone was digested by BamHI and then the digested partial GSL12 fragment 

was inserted into the region by BamHI in the pReC1 clone.  

(C) Full-length GSL12 clone was transferred to shl6 plants via Agrobacterium-mediated 

transformation. MCS means multiple cloning sites. T-LB and RB mean T-DNA left and 

right borders. 
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Figure 2.9.  Complementation analysis of GSL12 

 

(A) 7-d old shl6, GSL12 transgenic and Col-0 seedlings were analyzed under yellow 
(65 µmol m

-2 
s
-1
). A bar = 1mm. 

(B) Hypocotyls of shl6 seedlings grown under yellow filter were compared with those of 

Col-0 seedlings. Data presented are mean ± SE. 
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Partial alignment of the predicted amino acid sequences of the 12 members 

performed by ClustalW 1.83 suggested that the shl6 missense mutation alters a highly 

conserved motif, a proline-rich domain (PRD) (Prosite file, PS50099) (Figure 2.10A). 

GSL genes in Arabidopsis are separated into two groups, one made of genes containing 

2-3 exons (GSL1and GSL5) and the other up to 50 exons (GSL 2,3,4,6,7,8,9, and 10). 

Phylogenetic comparisons suggest that GSL12 is more closely related to GSL6, 3 and 9 

(http://cellwall.genomics.purdue.edu) (Figure 2.10B).  

The predicted protein structure for SHL6 is shown in Figure 2.11. GSL12 is 

approximately 11.3kb in length, has 42 exons based on AGI gene models, and encodes 

an 1889-amino acid protein with a predicted molecular mass of approximately 217 kD. 

Hydropathy analysis of GSL12 using the Kyte-Doolittle method indicated that it is an 

integral membrane protein with 11 transmembrane helices (http://workbench.sdsc.edu) 

(Figure 2.11A). The N terminus (501 amino acids) is hydrophilic and lacks an apparent 

cleavable signal sequence. The predicted protein domain analysis (http://www.ebi.ac.uk 

and http://pfam.sanger.ac.uk) indicates that the N- terminus (91-189 amino acids) 

includes a histidine-containing phosphotransfer (HPT) domain, and the C-terminus 

(1076-1876 amino acids) has a glucan_synthase domain (Figure 2.11B).   
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A 
 

GSL6 _           - --- -- ---- MAQ RRE PD- ---P PPP QR RILR TQ---- --- ---- --T VG SLGE AML DSE  33 
GSL3 _           - --- -- ---- MAQ RKG PD- ---P PPP QR RILR TQ---- --- ---- --T AG NLGE AML DSE  33 
GSL9 _           - --- -- ---- MNQ --- --- ---- -PN RG QILQ TV---- --- ---- --F SH FFPV ASP DSE  26 
G SL1 2_G SL1 2_G SL1 2_G SL1 2_           --- --- ---- MSA TRG GPDQ GPS QPQ QR RIIR TQ---- ---- --- --T AG NLGE S-F DSE  36 
GSL2 _           - --- -- ---- MAQ SST SHD --SG PQG LM RRPS RS---- --- ---- --A AT TVSI EVF DHE  35 
GSL7 _           - --- -- ---- MAS TSS GGR GEDG RPP QM QPVR SMSRKM T-R AGTM MIE HP NEDE RPI DSE  49 
GSL1 1_          - --- -- ---- MEA SSS G-- ---- --- TA ELPR SLSRRA PSR ATTM MID RP NEDA SAM DSE  41 
GSL4 _           M SHE IV PVDP IDV PST SYS RPIL GPR ED SPER ATEFTR S-- ---- LTF RE HVSS EPF DSE  54 
G S L 1 _            - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
G S L 5 _            - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
G S L 8 _            - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
GSL1 0_          - --- -- ---- MSR AES SWE RLVN AAL RR DRTG GV---- --- ---- --- AG GNQS SIV GYV  36 

                                                                       

                                                                                            ****                                                                                                                                                                                                        
GSL6 _           V VPS SL VE-I API LRV ANE VEAS NPR VA --YL CRF--- --- ---- --- -- -YAF EKA HRL  74 
GSL3 _           V VPS SL VE-I API LRV ANE VEAS NPR VA --YL CRF--- --- ---- --- -- -YAF EKA HRL  74 
GSL9 _           L VPS SL HEDI TPI LRV AKD VEDT NPR SL --FL QDLDIK SVD DSIN ILS GH SHAL DKA NEL  84 
G SL1 2_G SL1 2_G SL1 2_G SL1 2_           VV PPPP SSL VE-I API LRV ANEV ESS NPR VA --YL CRF --- ---- --- --- -- -YAF EKA HRL 77 
GSL2 _           V VPA SL GT-I API LRV AAE IEHE RPR VA --YL CRF--- --- ---- --- -- -YAF EKA HRL  76 
GSL7 _           L VPS SL AS-I API LRV AND IDQD NAR VA --YL CRF--- --- ---- --- -- -HAF EKA HRM  90 
GSL1 1_          L VPS SL AS-I API LRV ANE IEKD NPR VA --YL CRF--- --- ---- --- -- -HAF EKA HRM  82 
GSL4 _           R LPA TL ASEI QRF LRI ANL VESE EPR IA --YL CRF--- --- ---- --- -- -HAF EIA HHM  96 
G S L 1 _            - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
G S L 5 _            - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
G S L 8 _            -- - - - -- - - - - - - - - - - - - - - -- - - - - -- - - - - - -- - - - - - - - -- - - - - -- - - - - M A Q N L  5 
GSL1 0_          P SSL SN NRDI DAI LRA ADE IQDE DPN IA RILC E----- --- ---- --- -- -HGY SLA QNL  78 

                                                                            

                                        
                            

B                                                                      

 

 
Figure 2.10. Structure of the SHL6 protein 
 
(A) Partial alignment of the predicted amino acid sequences of the 12 members of the 

Arabidopsis GSL family. Asterisk (*) indicates position of the shl6/gsl12 mutation. 

Multiple alignment of GSL amino acid sequences were done by ClustalW 1.83.  

(B) Phylogenetic tree of putative GSL proteins from Arabidopsis. Bar indicated 0.1 

substitutions per site. 
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Figure 2.11. Predicted transmembrane topology model of AtGSL12 protein in a plasma 

membrane 

 
(A) Hydropathy analysis of GSL12 indicated that it is an integral membrane protein with 

11 transmembrane helices by using Kyte-doolittle method.  

(B) The predicted protein domain analysis displayed that solid black rectangles indicated 

predicted transmembrane domains. A green circle indicates a histidine-containing 

phosphotransfer, HPT, domain (91-189 amino acids) in the N- terminus, and red 

rectangle indicates a glucan_synthase domain (1076-1876 amino acids) in the C-

terminus. A blue star indicates the mutated position in shl6.   
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Discussion 

In this study we describe the isolation and characterization of the Arabidopsis 

shl6 mutant hyper-responsive to light. We used a map-based cloning to locate the SHL6 

gene and identified that complementation places SHL6 in the glucan synthase family.   

 

Identification of SHL6  

To identify photomorphogenetic mutants that are hyper-responsive to available 

light, fifteen mutants were isolated from ethyl methane sulfonate (EMS) mutagenized 

plants (Columbia ecotype) screened under low light (Pepper et. al, 2001). Using a map-

based cloning strategy, we have shown that shl6 is a single recessive mutation, causing a 

high-light growth phenotype: short hypocotyl, open cotyledons, and early development 

of the first true leaves in plants grown under low light (Figure 2.1). Homozygous shl6 

plants also showed short, highly branched roots (Figure 2.1C). The genomic interval 

containing the shl6 locus was narrowed to a 235Kb genomic fragment spanned by 

bacterial artificial chromosome BAC clones T2L20, T2H18, T19L5, and T31B5 through 

fine linkage mapping (Figure 2.2A). Surprisingly, independent transformations with two 

different cosmid clones designated 4B and 10B from BAC T24H18 that include adjacent 

but non-overlapping sequences, complemented the shl6 mutant phenotypes (Figure 

2.2B).  

Sequence analysis of this genomic region for the two cosmid clones via primer 

walking showed that the sequence of shl6 mutant within this genomic region only 

differed from wild type Columbia allele by a single nucleotide substitution, which 
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caused a proline to leucine amino acid substitution mutation in the first exon of gene 

At5g13000 that encodes a glucan synthase-like (GSL) 12 gene. GSL12 is a putative 

callose synthase and unknown protein. Interestingly, the 4B cosmid contains a 5' 

truncated region of GSL12 gene, deleted from the promoter to the second exon. 10B 

cosmid has the promoter region through the second exon of GSL12. Three of seven 

(43%) 4B transformants occasionally complemented homozygous shl6 mutants. While 

the 10B fragment usually complemented, the hypocotyl phenotype of 10B transformants 

was intermediate between wild-type (Col-0) and shl6 mutants. The 10B transformants 

partially complemented shl6 mutants (Figure 2.3). We suggest that the complementation 

with this 4B clone is induced by the endogenous promoter of some gene close to 4B 

fragment. The reason is that less than 50% of 4B transformants have BASTA-resistance, 

but they were not complemented to wild type phenotype. In contrast, all 10B 

transformants containing BASTA-resistance partially complemented shl6 mutants.  

Therefore, we concluded that two independent, not overlapping cosmid clones 

(4B and 10B) complemented shl6 mutant (Figure 2.4-5). shl6 mutant complemented by a 

small DNA fragment of ReC clone (Figure 2.7) may be explained by α-complentation. 

The E. coli enzyme β-galactosidase is a homo-tetramer of the protein product of the lacZ 

gene. Certain mutations in the 5' region of lacZ prevent subunit association. This enzyme 

is non-functional (it will not hydrolyze lactose or other -galactosides). In this type of 

mutants, subunit assembly (and enzyme activity) is restored by the presence of a small 

(26 amino acids) amino-terminal fragment of the lacZ product (Yanisch-Perron et al., 

1985). However, it is still unknown how the small DNA fragment can function.   
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Finally, full-length GSL12 gene complemented shl6 mutant. The P39L amino 

acid change inhibited hypocotyl and root elongation in shl6 mutant under yellow. The 

point mutation region may be a significant motif to regulate hypocotyl and root 

elongation. 

 

SHL6/GSL12 protein is a putative transmembrane protein 

SHL6 encoding GSL12 lacks an apparent cleavable signal sequence and 

hydrophilic in N terminus (501 amino acids) (http://workbench.sdsc.edu). The predicted 

protein domain analysis (http://www.ebi.ac.uk and http://pfam.sanger.ac.uk) displayed 

that the N- terminus (91-189 amino acids) includes a histidine-containing 

phosphotransfer (HPT) domain and the C-terminus (1076-1876 amino acids) has a 

glucan_synthase domain. GSL genes have similar homology with yeast FK506 

hypersensitivity (FKS) genes, a well characterized β-1,3-glucan synthase family 

(Douglas et al., 1994; Cabib et al., 2001; Dijkgraaf et al., 2002). Multiple alignment of 

the predicted amino acid sequences of the 12 members performed by ClustalW 1.83 

suggested the position of the shl6 mutation was within a highly conserved motif, proline-

rich domain (PRD) (Prosite file, PS50099) (Figure 2.10A). It is also suggested based on 

the shl6 phenotype that the mutation in the conserved PRD may be involved in 

hypocotyl and root development.  

 A phylogenetic tree of twelve putative GSL proteins suggested that GSL12 is 

more closely related to GSL6, 3 and 9 (http://cellwall.genomics.perdue.edu) (Figure 

2.10B). Callose synthase and related genes have not been previously implicated in 
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developmental responses to light. How GSL12 is involved in light signaling is addressed 

in the next chapter. 

 

Materials and methods 

Plant materials and growth conditions 

Arabidopsis ecotype Col-0 seeds were obtained from the laboratory stocks of 

Joanne Chory. shl6 mutant was isolated from ethyl methane sulfonate (EMS) 

mutagenized plants (Col-gl) screened under low light (Pepper et al., 2001). shl6 was 

back-crossed twice to wild-type Col-0 and homozygous shl6 mutant was isolated by 

their short hypocotyls in yellow light (65 µmol m
-2 
s
-1
). Seeds were surface-sterilized 

(Chory et al, 1989), resuspended in sterile 0.1% (w/v) phytagar, and then stored 

overnight at 4 °C. Seeds were then plated on Murashige-Skoog plates (1x Murashige-

Skooge salts, 0.8% phytagar, 1XGamborg’s B5 vitamin mixture, 2% (w/v) sucrose). 

Seeds were placed at 25 °C for at least 4h in white light (100 µ molm
-2
s
-1
) and then 

grown in continuous yellow light (65 µmol m
-2 
s
-1
) for 7 days.  

 

Hypocotyl measurements 

For hypocotyl length measurements, seeds were dispersed onto Murashige and 

Skoog plates containing 2% (w/v) sucrose in a 7 mm grid pattern to ensure even spacing. 

Seeds were placed at 25 °C for at least 4h in white light (100 µ molm
-2
s
-1
) prior to 

placement in continuous white light (100 µ molm
-2
s
-1
), low light (30µmolm

-2
s
-1
) and the 

dark for 9 days. Hypocotyl length is determined as the distance between the top of the 
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collet root hairs, to the ‘V’ made by the cotyledon shoulder (Scheres et al., 1994). 

Hypocotyls were straightened using forceps if necessary, and then were measured by 

using a 0.5mm scale ruler, and the mean ± SE calculated for each data set. Hypocotyls of 

seedlings that were growing appressed to the agar media, as well as those with obvious 

developmental abnormalities, were not measured.    

 

Light source 

White light was
 
supplied by an equal mixture of cool-white (CW) and Grow-lux 

wide-spectrum
 
fluorescent bulbs (Sylvania, Danvers, MA). A 2472 yellow-green

 
acrylic 

filter (Polycast Technology, Stamford, CT) with a transmission
 
maximum of ±550 

produced light that was partially depleted in
 
the photomorphogenetically active UV, B, 

R, and FR regions of
 
the spectrum. Dark

 
experiments were performed in a passively 

ventilated dark box. Red light was supplied by CW fluorescence bulbs filtered through a 

Kopp 2-73 red glass filter (Kopp Glass, Pittsburgh, PA, USA). Blue light was supplied 

by CW fluorescent bulbs filtered through a Kopp 5-57 blue filter. Far-red enriched light 

was provided by a 60W incandescent bulb filtered through a Kopp 2-64 glass filter 

(R/FR ratio of ± 0.32). Fluence rates of white, R, and B light were measured
 
with a 

quantum photometer (model LI-189, LI-COR, Lincoln, NE).
 
Fluence rates of FR light 

were measured using a radiometer (model
 
IL1400, International Light, Newburyport, 

MA) with FR probe (model
 
SEL033, International

 
Light).  
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Mapping  

Homozygous shl6 plants in Col-0 background were crossed as females to wild-

type Ler-er. F1 progeny were scored and several F1 plants exhibiting long hypocotyl 

plants under low light were self-pollinated to obtain a F2 progeny. Genomic DNA was 

isolated from F2 progeny exhibiting short hypocotyl plants using the micropreparation 

method described by Pepper and Chory (1997). Initial mapping of shl6 mutant was 

performed using simple sequence
 
length polymorphic (SSLP) markers from The 

Arabidopsis Information
 
Resource (http://www.arabidopsis.org; Bell and Ecker, 1994; 

Lukowitz et al., 2000) and the PCR-based Cleaved Amplified Polymorphic Sequence 

(CAPS) (Konieczny and Ausubel, 1993) markers. Additional markers for
 
fine mapping 

were generated based on the information made available
 
by CEREON (Jander et al., 

2002). Publicly available Arabidopsis sequence and Arabidopsis BAC fingerprint 

database were used to tile the shl6 interval with BACs and develop additional PCR-

based markers (http://www.tigr.org/tdb/at/at.html, and http://www.arabidopsis.org). 

DNA was amplified in 20-µL
 
reactions as described by Bell and Ecker (1994).  

Analysis of SSLP amplification products was performed using 2% standard 

agarose plus 2% Metaphor
®
 agarose (Cambrex, North Brunswick, NJ, USA) gels. 

Samples were electrophoresed at 5.3 V cm
1
 in 0.5× TBE buffer (45 mM Tris-Borate, 

1 mM EDTA, pH 8), with buffer-chilling to 4 °C. When high resolution was required, we 

employed a vertical acrylamide gel electrophoresis system in which samples were 

electrophoresed at 12 V cm
1
 in a 10 cm high × 33 cm wide × 1 mm thick vertical gel 

rig (CBS Scientific, Del Mar, CA, USA) containing 7% polyacrylamide with 10% v/v 
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Spreadex NAB polymer
®
 (Elchrom Scientific, Cham, Switzerland) in 1× TAE buffer 

(45 mM Tris-Acetate, 1 mM EDTA, pH 8).  

 

Sequence analysis 

To sequence the shl6 mutant allele, PCR fragments (approximately 3kb) were 

amplified from genomic DNA of the shl6 mutant and Col-0 to be used as templates for 

direct sequencing. The PCR reaction was used along with TaKaRa LA Taq
TM 

polymerase 

(TaKaRA) that has a superior proofreading function due to a robust 3´-> 5´exonuclease 

activity. Purified PCR products (Qiagen PCR purification kit) were used for sequencing 

reactions using the BigDye
TM

 (Applied Biosystems) protocol. Primers (Table 2.2) were 

designed to produce overlapping sequencing products (approximately 500bp) at ~3kb 

intervals. Sequencing reactions were purified by Sepadex G-50 spin columns and the 

purified sequencing reactions were analyzed by using an Applied Biosystems 3100 

capillary DNA sequencer. The single base difference between SHL6 and shl6 was 

confirmed by re-sequencing from the Col-0 and shl6 templates.  

 

Complementation analysis 

To test complementation, the first clone (pRC) was re-constructed by SalI 

digestion yielding from the promoter to the 2nd exon (1.8kb) of GSL12 gene that the 

10B contains. Thus, the pRC clone was constructed by deletion the rest of the fragment 

except for the promoter region and the second exon region of the GSL12 from inserted 

genomic sequences of the 10B clone. The second clone (pGSL12) has the full-length of 
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the GSL12 genomic sequence (13kb) of Columbia. To make pGSL12 clone into 

pCAMBIA 3300, partial GSL12 fragment in 4B clone was digested by BamHI, and then 

the digested partial GSL12 fragment was inserted into the next to the 2nd exon of the 

GSL12 gene digested by BamHI in the pReC1 clone (Figure 2.6). Two reconstructed 

clones (pRC and pGSL12) were moved into Agrobacterium tumefaciens GV3101 

(Koncz et al., 1983) by electroporation, and were used to transform Arabidopsis 

shl6/shl6 mutants via the floral dip method (Clough and Bent, 1998). Primary seeds from 

transformed plants were planted to soil and were selected by BASTA after 8weeks. For 

hypocotyl analysis, T2 seeds harvested from selected BASTA-resistant shl6 plants were 

dispersed onto MS plates containing 2% (w/v) sucrose. T2 seeds were placed at 25 °C for 

at least 4h in white light (100 µ molm
-2
s
-1
) prior to placement in low light (30µmolm

-2
s
-

1
) for 9 days.      
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CHAPTER III 

 

MOLECULAR CHARACTERIZATION OF SHL6 

 

Introduction 

Our laboratory has identified a new third set of photomorphogenic mutants in 

Arabidopsis that are hyper-responsive to available light, designated as seedling hyper-

responsive to light (shl) (Pepper et. al, 2001). In low light, shl seedlings showed a 

phenotype typical of seedlings grown in high-light, with short hypocotyls, expanded 

cotyledons, and significant development of first true leaves when grown in low light. 

One of shl mutants, shl6 was isolated by screening mutagenized seed lines under a 

yellow filter.  

In the previous chapter, we mentioned that shl6 was caused by a single recessive 

mutation. In yellow light (65 µmol m
-2 
s
-1
), shl6 seedlings have short hypocotyls, 

expanded cotyledons, and well-developed first true leaves. In addition, the roots of shl6 

were short and highly branched in all light conditions. shl6 mutant was mapped to the 

region of chromosome 5 between SSLP markers nga249 and nga151. Further, the 

sequence of shl6 mutant revealed that a single base-pair was different from Col-0 allele, 

which caused a predicted proline to leucine amino acid substitution mutation in the first 

exon of a glucan synthase-like 12 (GSL12) gene (At5g13000). Finally, SHL6 was 

identified by the complementation analysis of the full-length GSL12 via Agrobacterium-
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mediated plant transformation (Clough and Bent, 1998). We concluded that SHL6 

encodes GSL12 (At5g13000) gene.  

In this chapter, we showed that SHL6 is regulated by light via several approaches. 

Light is also an important factor for transition from vegetative to reproductive growth, 

called flowering time because the timing of flowering is strictly modulated by the 

direction, intensity, color, and duration of light (Simpson and Dean, 2002). Arabidopsis 

is a facultative long-day plant because flower initiation is accelerated under long-day 

photoperiod but delayed under short-day photoperiod (Searle and Coupland, 2004).  

The molecular mechanism of flowering regulation by light has been well described 

in Arabidopsis. The flowering time is partially regulated by the CONSTANTS (CO; a 

zinc finger transcriptor factor) protein that plays a critical role in the photoperiodic 

flowering pathway. The abundance of CO mRNA was reduced in phyA and cry2 mutants 

but was increased in phyB mutant (Cerdan and Chory, 2003). It has been recently 

suggested that CO protein is subject to posttranscriptial regulation by light signals, and 

different photoreceptors act in modulating of CO activity (Valverde et al., 2004). In this 

model, CRY2 and PHYA stabilize the CO protein under blue and far-red light, but 

PHYB destabilizes CO protein under red light to generate the shade avoidance response. 

The stabilized CO induces the expression of another flowering regulator, FLOWERING 

LOCUS T (FT; a small protein with similarity to RAF-kinase inhibitor), which is the 

proximal inducer of flowering (Kardailsky
 
et al., 1999; Kobayashi et al., 1999). 

Furthermore, we also examined responses induced by red, far-red, and blue light in 

wild type (Col-0) and shl6 mutant seedlings to determine whether the shl6 mutants have 
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altered hypocotyl morphology in a particular wavelength of light. To examine whether 

transcript levels of SHL6 are regulated
 
in Col-0 and shl6 seedlings grown under dark, 

yellow, red, and high light, the mRNA levels of SHL6 was examined by quantitative RT-

PCR, using gene-specific primers. Flowering time as a developmental process involved 

by light was observed in shl6 compared with Col-0 plants. Finally, we determined 

whether transcript levels of SHL6 are regulated by organ specificity in seedlings by 

using quantitative RT-PCR.  

 

Results 

shl6 mutant exhibits hyper-responsiveness to multiple wavelength conditions in seedling 

development 

In the previous experiments, the hypocotyl length of 7-d-old shl6 mutant and 

wild type (Col-0) seedlings grown under dark, white (110 µmol m
-2 
s
-1
), and yellow (65 

µmol m
-2 
s
-1
) were measured (Figure 2.1). The hypocotyl elongation of shl6 mutants was 

significantly inhibited and the first true leaf of shl6 developed earlier than Col-0 under 

yellow light. shl6 had an etiolated phenotype, but with only partially inhibited hypocotyl 

elongation under dark conditions. 
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To determine whether the shl6 mutants have altered morphology in response to a 

particular wave length among blue, red, and far-red light that could be related to CRY 

and PHY, we examined the growth of 5-d-old seedlings under multiple wave lengths 

such as red, far-red, and blue light. As a result, the red, far-red, and blue light conditions 

induced a reduction in the hypocotyl elongation of the shl6 mutant compared with Col-0 

and the shl6 mutant seedlings also showed shorter hypocotyls compared with Col-0 

seedlings over the ranges of red, far-red, and blue fluence rates (Figure 3.1A). 

To determine which light wavelengths more significantly affect the hypocotyl 

elongation of the shl6 mutant, the hypocotyl length of shl6 and Col-0 in red, far-red and 

blue light conditions was normalized to the hypocotyl length of shl6 and Col-0, 

respectively in the dark. Differences of the normalized shl6 hypocotyls from normalized 

Col-0 hypocotyls showed an average of 27.5 % reduction in red, 20 % reduction in far-

red, and 17.5 % reduction in blue light (Figure 3.1B). Thus, this normalization data 

suggested shl6 seedlings exhibited most hyper-responsiveness to red light.    
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Figure 3.1. shl6 hyper-responsive hypocotyl growth in red, far-red, and blue light 
 

(A) Hypocotyl growth response of 5-d-old Col-0 and shl6 mutants under various fluence 

rates of constant red, far-red, and blue light. Data are presented as mean±SE (n=28).  

(B) Hypocotyl lengths were normalized to hypocotyl length in the dark under various 

flucence rates of constant red, far-red, and blue light. Each point represents the 

normalized mean ± SE of the seedlings grown for 5 d. Red, blue, and far-red light 

fluences are measured in µmol m
-2 
s
-1 
unit. Error bars represent the SE after each shl6 and 

Col-0 seedling was normalized to the average hypocotyls length of shl6 and Col-0 

seedlings, respectively grown in the dark. 
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. 49 

SHL6 transcript accumulation is light-regulated 

In the dark, Col-0 seedlings follow etiolation, which is characterized by 

hypocotyl elongation, an apical hook, undeveloped cotyledons and inhibition of 

chlorophyll and anthocyanin biosynthesis. Once the seedlings are exposed to light, they 

follow photomorphogenesis; the hypocotyl stops elongation, and true leaves begin to 

develop. When plants are exposed to natural light, light is perceived by several 

photoreceptors including the UVA and blue light-absorbing phototropins and 

cryptochromes, and the phytochromes which mainly absorb red and far-red (Gyula et al., 

2003; Yamamoto et al., 1998; Quail et al., 1995). Thus, we examined whether transcript 

levels of SHL6 are regulated
 
during etiolation and photomorphogenesis in 5-d-old Col-0 

seedlings grown under dark, white (110 µmol
 
m

–2
 s

–1
), yellow (65µmol

 
m

–2
 s

–1
), and red 

(22µmol
 
m

–2
 s

–1
) light by quantitative real time reverse transcriptase (RT)-PCR, using a 

gene-specific primer pair. The SHL6 transcript levels were found
 
to be induced two-fold 

in Col-0 seedlings grown in the dark compared to light-grown seedlings grown in 

different light conditions such as white, yellow, and red light (Figure 3.2A).  

In the previous experiments, we examined the hypocotyl growth responses of 

Col-0 and shl6 to red, far-red, and blue light at a relatively broad range of light 

intensities and showed that shl6 seedlings were hyper-responsive to red, far-red, and 

blue light conditions (Figure 3.2A). However, red light had a greater effect on shl6 

hypocotyl growth after normalization (Figure 3.1B). Therefore, we next determined 

whether SHL6 expression was altered in 5-d-old shl6 seedlings. qRT-PCR analysis 

showed that the transcript level of SHL6 in the shl6 mutant was reduced more in dark 
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and red than in Col-0, but SHL6 mRNA expression levels in shl6 seedlings grown in 

white, and yellow light were similar to those in the Col-0 seedlings, even hypocotyl 

elongation of the shl6 mutant was more reduced than that of Col-0. To confirm that the 

expression of SHL6 mRNA is responsible for transgenic GSL12 complemented by a 

full-length SHL6, qRT-PCR was performed in the same light conditions (Figure 3.2B). 

The reduction in transcript accumulation in shl6 mutants was eliminated by GSL12 

transgenic seedlings and the expression of mRNA in transgenic GSL12 seedlings was 

higher than that in Col-0 because transgenic GSL12 plants contain both the endogenous 

genomic GSL12 gene and exogenous GSL12 DNA fragment from T-DNA insertion 

(Figure 3.2B). The expression levels (∆Ct) of the SHL6 transcript were calculated by 

subtracting the Ct for EF1a primer from each Ct for tissue samples (Table 3.1). Higher -∆ 

Ct values for SHL6 in dark, white, yellow, and red light indicated higher expression of 

SHL6 because the SHL6 transcript was more highly expressed than control EF1a gene.  
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A 

 
 

B 

•  
 
 
 
Figure 3.2. Expression levels of SHL6 
 

(A) and (B) mRNA expression levels of SHL6 in 5-d-old Col-0, shl6, and transgenic 

GSL12 seedlings under different light conditions including yellow (65µmol
 
m

–2
 s

–1
) red 

(22µmol
 
m

–2
 s

–1
), and white (110µmol

 
m

–2
 s

–1
). Expression of genes was analyzed by 

qRT-PCR reactions. Higher a -∆ Ct value for SHL6 mRNA indicated higher an 

expression level because the SHL6 transcript was more highly expressed than control 

EF1a gene. Error bars indicate standard deviation of ∆ Ct values calculated by (σ
2 
gene + 

σ
2 
control) 

1/2
. 
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The shl6 plants flower early in both long and short days 

Flowering time is strictly modulated by the direction, intensity, color, and 

duration of light (Simpson and Dean, 2002). Arabidopsis is a facultative long day plant 

that flowers earlier in long day (16-h light/8-h dark) than in short days (8-h light/16-h 

dark). To determine whether SHL6 is involved in the regulation of flowering time, the 

shl6 mutant plants were compared to Col-0 during growth under both long-days and 

short-days, respectively. We found that shl6 plants flowered earlier than Col-0 plants in 

both long and short days (Figure 3.3). Whereas wild type plants started flowering after 

the formation of 15±1.1 leaves, the shl6 mutants flower after producing 9.6±1.1 leaves in 

long-days. The shl6 mutant plants started flowering after 30±2.6 leaves and Col-0 plants 

flower after producing 37± 4.8 leaves in short days. The data of shl6 in short-days 

showed significantly earlier flowering compared with Col-0 (t-test, p<0.01). 
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A  
     Short-days 

 
 
 

B  
     Long-days 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3. The shl6 plants flower early relative to Col-0 in both long and short days  
 
(A) and (B) Graphs represent mean (±SD) number of rosette and cauline leaves at bolting 

for Col-0, and shl6 plants grown under short day conditions (8-h light/16-h dark) and 

long day conditions (16-h light/8-h dark). Error bars indicate SD (standard deviation) 

(n=10). 
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Organ-specific gene expression 

In low light, Col-0 seedlings elongated hypocotyls and opened cotyledons 

(Pepper et al., 2001). To determine whether transcript levels of SHL6 are regulated in an 

organ specific manner in seedlings, SHL6 mRNA levels were examined by quantitative 

RT-PCR, using a gene-specific primer pair. An EF1a primer pair was used as the 

constitutively expressed internal control.  

Total RNA was extracted from the cotyledons, hypocotyls, and roots of 5-d-old 

Col-0 seedlings grown in low light (22µmol
-2
sec

-1
), and then cDNAs were made by 

reverse transcription and used as templates for qRT-PCR with a gene-specific primer 

pair for SHL6. The SHL6 transcript was more highly expressed than the control EF1a 

gene, and ubiquitously, to a detectable level, in cotyledons, hypocotyls, and roots. 

However, it was relatively more abundant in the cotyledon (2-fold induction) (Figure 

3.4). The expression levels (∆Ct) of the SHL6 transcript were calculated by subtracting 

the Ct for EF1a primer from each Ct for tissue samples. Higher -∆ Ct value for SHL6 in 

cotyledons, hypocoyls, and roots indicated a higher expression level because the SHL6 

transcript was more highly expressed than the control EF1a gene.  
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Figure 3.4. SHL6 mRNA expression levels in organs of Col-0 seedlings  
 
RNA was extracted from each tissue: cotyledons, hypocotyls, and roots of 5-d-old 

seedlings. Expression of genes was analyzed in quantitative RT-PCR reactions. Higher a 
-∆Ct value for SHL6 mRNA indicated higher an expression level because the SHL6 

transcript was more highly expressed than control EF1a gene. Error bars indicate 

standard deviation of ∆Ct value calculated by (σ
2 
gene + σ

2 
control) 

1/2
. 
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Discussion  

In this study we provided molecular genetic evidence for that SHL6, a gene 

encodes a glucan synthase-like 12 (GSL12) that has a role in regulation of light 

signaling.  

 

SHL6/GSL12 is regulated to multiple wave lengths of light  

The shl6 seedlings also showed shorter hypocotyls compared with Col-0 

seedlings over the ranges of the red, far-red, blue fluence rates used (Figure 3.1A). 

However, normalization data account for relative hypocotyl elongation showed shl6 

seedlings are most hyper-responsive to red light (Figure 3.1B). Since plants homozygous 

for shl6 exhibited hyper-responsiveness to multiple wave lengths of light, these results 

suggest that the normal allele of SHL6 acts as a negative regulator of photomormogentic 

growth.  

Furthermore, the mRNA levels of SHL6 examined by quantitative RT-PCR 

showed two-fold induction in Col-0 seedlings grown in dark in comparison to white, 

yellow, and red light (Figure 3.2A). It is suggested that SHL6/GSL12 may be involved in 

hypocotyl elongation in the dark by transferring cell wall components including glucose 

to synthesize callose. AtGSL6 (CALS1) closely related to SHL6 sequences is involved in 

cell plate formation (Hong et al., 2001b). To build the cell plate at cytokinesis, amount 

callose needs to be deposited with in a few minutes after the tubulovescular network 

(Samuels et al., 1995; Verma, 2001). Hong and his colleagues (2001) suggested a model 

that UDP-glucose transferase (UGT1) acts in transferring UDP-glucose from sucrose 
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synthase (SuSy) to the glucose (callose) synthase complex for rapid synthesis of callose. 

Therefore, light- regulated hypocotyl elongation by SHL6 may be related to callose 

involved in cell plate formation. 

qRT-PCR analysis showed that the transcript level of SHL6 in the shl6 mutant 

was reduced in dark and red grown shl6 seedlings in comparison to wild-type. However, 

interestingly, SHL6 mRNA levels in shl6 seedlings grown in white and also in yellow 

light were similar to those in the Col-0 seedlings although hypocotyl elongation of shl6 

mutant was reduced more than in Col-0 plants. The reduction in transcript accumulation 

in shl6 mutants was eliminated by GSL12 transgenic seedlings. Expression of mRNA in 

GSL12 seedlings was higher than that in Col-0 because GSL12 plants contain both an 

endogenous genomic GSL12 gene and an exogenous GSL12 DNA fragment from T-

DNA insertion (Figure 3.2B). These results showed that the transcript levels were 

affected by post-transcriptional regulation although shl6 was a point mutation. One 

possibility is that the reduction in transcript accumulation in shl6 mutants is caused by 

an nonsense or missense-mediated RNA decay system (Nyström-Lahti et al., 1999; 

Pertea et al., 2007) and missense-mediated RNA decay might be regulated by light. 

Exonic splicing enhancers (ESEs) are discrete sequences within exons that promote both 

constitutive and regulated splicing (Blencowe, 2000). ESEs can be disrupted by single 

nonsense, missense, and translationally silent point mutation (Liu et al., 2001). Coding-

region single nucleotide polymorphisms (cSNPs) within an ESE may affect the patterns 

or efficiency of mRNA splicing (Liu et al., 2001; Cargill et al., 1999). It is possible that 

the point-mutated region in SHL6 may contain ESE domains.  
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shl6 mutant flowers early in both short-day and long-day periods  

Arabidopsis is a facultative long day plant that flowers earlier in long day (16-h 

light/8-h dark) than in short days (8-h light/16-h dark). We found that the shl6 plants 

flowered earlier than Col-0 plants in both long and short days (Figure 3.4). PHYA and 

CRY2 promoted flowering in both long-day and short-day photoperiods (Guo et al., 

1998; Mockler et al., 2003), whereas phyB seedlings have an elongated, early flowering 

phenotype characteristic of the shade-avoidance of wild-type seedlings grown under a 

low R/FR light (Smith and Whitelam, 1997). CO and FT proteins modulated by 

photoreceptors (PHYA and CRY2) promote flowering (Kardailsky
 
et al., 1999; 

Kobayashi et al., 1999). Therefore, SHL6 may act as a negative regulator in 

photomorphogenesis to suppress down-stream genes (CO and FT) of photoreceptors.  

In addition, CO and FT proteins are expressed specifically in vascular bundles of 

leaves (Takada and Goto, 2003). Furthermore, the CO and FT protein acts in vascular 

bundles to induce photoperiodic flowering (An et al., 2004). PHYB and CRY2 

photoreceptors are expressed in vascular bundles, epidermal, and mesophyll in 

cotyledons, unlike CO and FT (Somers and Quail,
 
1995; Goosey et al., 1997; Toth et al., 

2001).  

The examination of the functional site of PHYB for the regulation of flowering has 

demonstrated that PHYB-GFP expressed in mesophyll cells regulates flowering, but 

PHYB-GFP expressed in vascular bundles does not (Endo et al., 2005). In addition, FT 

expression in vascular bundles was suppressed by PHYB-GFP expressed in mesophyll 

cells (Endo et al., 2005). CRY2-GFP fusion protein with tissue-specific promoters was 
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analyzed by the regulation of flowering. CRY2-GFP expression in vascular bundles 

advanced flowering by promoting the expression of FT (Endo et al., 2007). Hence, Endo 

et al. (2007) suggested that CRY2 and PHYB function in different tissues within the 

leaf, but coordinately regulate flowering in response to light signaling.  

The expression of one member of GSL family genes in Arabidopsis, 

(AtGSL2:GUS) was also detected in the vascular tissues of cotyledons, hypocortyls, and 

roots of transgenic plants (Dong et al., 2005). The SHL6 transcript was more highly 

expressed than the control EF1a gene, in all tissues tested, including cotyledon, 

hypocotyl, and root: however, it was more relatively abundant in the cotyledon (Figure 

3.4).  

Therefore, SHL6 transcrtipts may be expressed in vascular tissues of cotyledon, 

hypocotyl, and root. It is suggested that SHL6 transcripts were highly expressed in 

cotyledons because vascular tissues are more abundant in cotyledons than in hypocotyls 

and roots. Another reason is that light is perceived by leaves (Knott, 1934; Endo, 2007), 

so light-regulated SHL6 mRNA could be expressed in cotyledons higher than in roots 

and hypocotyls.  
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Materials and methods  

Plant materials and growth conditions 

Arabidopsis ecotype Col-0 seeds were obtained from the laboratory stocks of 

Joanne Chory. The shl6 mutant was back-crossed twice to wild-type Col-0 and 

homozygous shl6 mutant was isolated by their short hypocotyls in low light (24µmolm
-

2
s
-1
). Seeds were surface sterilized (Chory et al, 1989), resuspended in sterile 0.1% (w/v) 

phytagar, and then stored overnight at 4 °C. Seeds were then plated on Murashige-Skoog 

plates (1x Murashige-Skooge salts, 0.8% phytagar, 1XGamborg’s B5 vitamin mixture, 

2% (w/v) sucrose). Seeds were placed at 25 °C for at least 4h in white light (100 µ 

molm
-2
s
-1
) and then grown in continuous low light (30µmolm

-2
s
-1
) for 9 days.  

 

Hypocotyl measurements 

For hypocotyl length measurements, seeds were dispersed onto Murashige and 

Skoog plates containing 2% (w/v) sucrose in a 7 mm grid pattern to ensure even spacing. 

Seeds were placed at 25 °C for at least 4h in white light (100 µ molm
-2
s
-1
) prior to 

placement in continuous white light (100 µ molm
-2
s
-1
), low light (30µmolm

-2
s
-1
) and the 

dark for 9 days. Hypocotyl length is determined as the distance between the top of the 

collet root hairs, to the ‘V’ made by the cotyledon shoulder (Scheres et al., 1994). 

Hypocotyls were straightened using forceps if necessary, and then were measured by 

using 0.5mm scale ruler, and the mean ± SE calculated for each data set. Hypocotyls of 

seedlings that were growing appressed to the agar media, as well as those with obvious 

developmental abnormalities, were not measured.   
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Light source  

White light was
 
supplied by an equal mixture of cool-white (CW) and Grow-lux 

wide-spectrum
 
fluorescent bulbs (Sylvania, Danvers, MA). A 2472 yellow-green

 
acrylic 

filter (Polycast Technology, Stamford, CT) with a transmission
 
maximum of ±550 

produced light that was partially depleted in
 
the photomorphogenetically active UV, B, 

R, and FR regions of
 
the spectrum. Dark

 
experiments were performed in a passively 

ventilated dark box. Red light was supplied by CW fluorescence bulbs filter through a 

Kopp 2-73 red glass filter (Kopp Glass, Pittsburgh, PA, USA). Blue light was supplied 

by CW fluorescent bulbs filtered through a Kopp 5-57 blue filter. Far-red enriched light 

was provided by a 60W incandescent bulb filtered through a Kopp 2-64 glass filter 

(R/FR ratio of ± 0.32). Fluence rates of white, R, and B light were measured
 
with a 

quantum photometer (model LI-189, LI-COR, Lincoln, NE).
 
Fluence rates of FR light 

were measured using a radiometer (model
 
IL1400, International Light, Newburyport, 

MA) with FR probe (model
 
SEL033, International

 
Light).  

 

Expression analysis by quantitative RT-PCR 

To study the expression of SHL6 gene in Arabidopsis, RNA was isolated with the 

Qiagen Plant RNeasy RNA extraction kit. RNA samples were isolated from Col-0, shl6 

mutant, and transformant GSL12. Seedlings where grown as previously described under 

continuous white light (110 µmolm
-2
s
-1
), yellow light (70 µmolm

-2
s
-1
), red light (22 

µmolm
-2
s
-1
), and in the dark. As an additional experiment, RNA samples were collected 

from flower bud, mature flower, silique, leaf, stem, and root tissues. Amount of RNA 
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was measured by using Beckman DU60 Spectrophotometer and quality of the RNA was 

tested by agarose gel electrophoresis. To remove genomic DNA, DNAseI treatment 

(DNA freeTM kit, Ambion, Austin, TX) was used. 400 ng of RNA was reverse transcribed 

by using SuperScript
TM 

III First-Strand Synthesis SuperMix (Invitrogen, USA). The 

resulting single stranded cDNA was thereafter used as template in quantitative real-time 

PCR (qRT-PCR) reactions. qRT-PCR was performed with POWER SYBR
®
 Green PCR 

master mix (Applied Biosystem, USA)  with an ABI 7900HT real-time (RT) PCR 

machine. The cDNA was normalized relative to the level of constitutively expressed 

(elongation factor a1) EF1a gene (EF930-F, 5'-

TCGAATCCTCAAAACTCTATCCGCA-3'; EF930-R, 5'-

GGAGAAGAAACGAAGCTATAACACG-3') as a control. qRT-PCR reactions were 

carried out with a gene specific primer for SHL6 (CS-F, 5'-

TATCCTTGCCTTTATGCCCACAGGTT-3'; CS-R,5'-

TGATCCCCAGAATCCTGCTCTATGA-3') in a volume of 10 µl. The PCR program 

was as follows: incubation for 2 min at 50 °C, then 2 min at 95 °C, and 60°C for 1 

minute. To verify the amplification of single PCR products, it was followed by 40 cycles 

of denaturation at 94 °C for 15 s, annealing at 60 °C for 15 s and a 2% ramping to 95°C.  

All measurements were repeated twice. To check non-specific amplification products, 

amplified fragments were analyzed by 2% agarose gel electrophoresis and then digested 

by a unique restriction enzyme (HinfI) site in the CS primers.  
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Flowering time experiments 

Flowering time was analyzed in both short-day and long-day conditions. Seeds 

were soak in 0.1% phytoagar solution, cold-treated for 3d at 4°C, and transplanted with 

even spacing into pots containing the same compost sand mixture. The pots were moved 

to a growth room maintained at 22°C for measuring flowering time. Seeds were grown 

under a 16-h light/ 8-h dark photoperiod for long days and an 8-h light/16-h dark 

photoperiod for short days. Flowering time was determined by counting the total of 

number of rosette and cauline leaves at bolting.   
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CHAPTER IV 

 

PHENOTYPICAL CHARACTERIZATION OF SHL6 

 

Introduction 

Arabidopsis plants homozygous for the mutation shl6 are hyper-responsive to 

available light. It is one of a number of mutants designated as seedling hyper-responsive 

to light (shl) (Pepper et. al, 2001). In low light, shl6 seedlings have a phenotype typical 

of seedlings grown in high-light. That is they have short hypocotyls, expanded 

cotyledons, and significant development of the first true leaves even when grown in low 

light. SHL6 was mapped to the region of chromosome 5 between SSLP markers nga249 

and nga151. Further, the DNA sequence of the shl6 mutation revealed that a single base-

pair difference from the wild-type Col-0 allele causes a predicted proline to leucine 

amino acid substitution mutation in the first exon of a glucan synthase like gene 12 

(GSL12) (At5g13000). SHL6 was identified by complementation using the full-length 

GSL12 via Agrobacterium-mediated plant transformation (Clough and Bent, 1998).  

In the previous chapter, in order to further our understanding of the role of SHL6 

encoding GSL12 in photomorphogenesis, we characterized SHL6 molecular functions. 

The shl6 mutant seedlings showed hyper-responsiveness to red, far-red, and blue light. 

The transcript level of SHL6 was regulated
 
in Col-0 and shl6 seedlings grown under 

dark, yellow, red, and white light. The shl6 plants flowered early in the both short-days 

and long-days. SHL6 expression was highly induced in the cotyledons. 
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In this chapter, as the first approach, we used SALK and SAIL lines (Alonso et 

al., 2003) containing T-DNA inserts in the candidate genes in order to investigate the 

loss of function mutant of SHL6.  

In addition, we have used several approaches to further our understanding of the 

physiological role of SHL6 as an enzyme involved in callose synthesis.  

Callose, a β-1,3-glucan, is widely distributed in higher plants and carries out 

several important functions during normal plant growth and development (Aspinall and 

Kessler, 1957). Callose is readily detected in tissue sections, including sieve plates of 

phloem elements, pollen mother cells, pollen grain, and pollen tubes through UV-light 

induced florescence after dying with aniline blue (Stone and Clarke, 1992). Callose is 

also localized at the cell plate, and in plasmodesmata, root hairs, cotton seed hairs, and 

spiral thickenings in tracheids (Stone and Clarke, 1992). In addition, the deposition of 

callose is induced by wounding, pathogen infection, and physiological stress (Jacobs et 

al., 2003; Kauss, 1996; Stone and Clarke, 1992).  

Callose is synthesized by callose synthases encoded by a family of glucan 

synthase-like genes (GSL) (Cui et al., 2001; Doblin et al., 2001; Hong et
 
al., 2001a; 

Østergaard et al., 2002).  GSL genes have homology with yeast K506 hypersensitivity 

(FKS) genes that encode the catalytic subunit of β-1,3-glucan synthase (Douglas et al., 

1994; Cabib et al., 2001; Dijkgraaf et al., 2002). Through sequence similarity, twelve 

GSL (AtGSL1-12) genes have been identified in Arabidopsis (Richmond and Somerville, 

2000; Hong et al, 2001); the genes for these proteins were also annotated independently 

by a group in Stanford (http://cellwall.stanford.edu/gsl/index.shtml). CSL1 (GSL6) and 
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CSL12 (GSL5) have been localized at the site of cell plate formation and to the site of 

pathogen infection, respectively (Hong et al., 2001a; Jacobs et al., 2003; Nishimura 

et al., 2003). 

Recently, mutation analysis of callose synthase genes in Arabidopsis indicated 

the function of callose at the molecular level. cals5(gsl2) mutants exhibited male sterility 

and lacked the normal callose wall affecting the exine pattern of the microspores. It was 

suggested that CalS5 (AtGSL2) is responsible for the synthesis of callose in the 

temporary callose wall of the microspores and is essential for exine formation during 

microsporogenesis (Dong et al., 2005). Two closely related and linked genes, GSL1 and 

GSL5 play a redundant but essential role in both sporophyte and pollen development and 

their protein are localized in pollen mother cell walls and pollen tubes (Enns et al., 2005 

and Dong et al, 2005). However, Nishikawa and colleagues (2005) published that three 

additional cals5 alleles have shown altered exine patterns, but the mutants produce 

fertile pollen. In addition, one of these alleles (cals5-3) led to successful fertilization in 

self-pollinated plants, although the mutant also lacked detectable callose in its pollen 

tubes. The results suggested that callose is essential for pollen wall patterning, but not 

required for pollen tube function (Nishikawa et al., 2005).  

Here, we also attempted to determine whether SHL6 is involved in callose 

synthesis by observing callose deposition and pollen viability because pollen grains 

temporally make callose cell wall. Finally, we examined call wall elongation in 

seedlings to prove whether SHL6 is an enzyme of the callose synthesis complex that is 

involved in cell division. Finally, we determined whether the transcriptional level of 
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SHL6 is regulated in these tissues because abnormal morphologies are observed in 

flowers, siliques, roots, leaves, and stems. 

 

Results 

The phenotypical characterization of SALK and SAIL knock-out insertion in At5g13000 

In a separate effort to determine effects of the loss of function of SHL6, nine 

mutant lines with T-DNA insertions in candidate genes At5g13000, At5g13010, and 

At5g13020 were obtained from sequenced-indexed mutant collections, designated 

SALK (Salk Institute Genomic Analysis Laboratory; http://signal.salk.edu/cgi-

bin/tdnaexpress) and SAIL (Syngenta Arabidopsis Insertion Library; 

http://www.tmri.org/en/partnership/sail_collection.aspx.) (Table 4.1) (Alonso et al., 

2003). The SALK and SAIL T-DNA seed collections were generated from T-DNA 

insertion mutagenesis of Arabidopsis Col-0. To verify homozygous T-DNA lines from 

the pool of seeds, two primer pairs were designed. One primer pair was gene-specific 

primers (GSP-F and GSP-R) and the other primer pair was a T-DNA left border primer 

(LBaI) paired with GSP-F or GSP-R (Figure 4.1A). The homozygous SALK and SAIL 

mutant hypocotyls were also measured in low light to find the light hyper-responsive 

phenotype similar to shl6.  

PCR with the two primer pairs using target DNA from SALK_019541 and 

SALK_062354 lines that have T-DNA insertions in an exon or intron in the At5g13010 

(RNA helicase) did not reveal any homozygous lines. No homozygous progeny were 

detected among F2 progeny of confirmed heterozygous parents. The implication is 
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homozygosity for T-DNA insertion in At5g13010 created a lethal phenotype. Although a 

homozygous T-DNA insertion in the exon of the At5g13020 (ENT domain) was found, 

the homozygous mutants did not have the shl6 mutant phenotypes in low light. However 

a SALK_068418 line inserted in an intron in At5g13000 (glucan synthase-like) showed 

a hypocotyl length phenotype intermediate between Columbia and the shl6 in low light. 

Crosses between verified homozygous SALK_068418 and the homozygous shl6 

produced F1 progeny with an incomplete or partial complementation phenotype: the 

hypocotyls of F1 progeny complemented shl6, but the root phenotype of F1 progeny did 

not complement shl6 in low light and had short roots (Figure 4.1B; Table 4.1).  

 

Table 4.1. Tested SALK and SAIL T-DNA lines 
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Figure 4.1. Verification of SALK T-DNA insertion and crosses to shl6  
 
(A) To confirm the presence of the expected T-DNA insertion, PCR was used. LBa1 and 

LBb1 were used for border primers of T-DNA. GSP-R and GSP-F are gene specific 

primers. If a SALK has a wild type genotype, product is amplified only by GSP primers. 

A heterozygous genotype (HZ) has two PCR products, one from wild type and the other 

from homozygous genotype (HM). A homozygous genotype is only amplified by LBa1 

or LBb1 and GSP-F primers.  

(B) In crosses between verified homozygous SALK_068418 and homozygous shl6, the 

hypocotyl length of F1 progeny was same as that of Col-0, but the root phenotype of F1 

progeny was shorter than that of Col-0. Data represent mean ±SE (n=11). 
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  A 

 

  B 

 

 

The shl6/gsl12 mutant displays multiple developmental phenotypes in Arabidopsis 
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In the previous data, germinating shl6 plants displayed a phenotype in high light 

(110 µmol m
-2 
s
-1
), yellow (65 µmol m

-2 
s
-1
), and darkness that

 
were visible on petri 

dishes in 7-d-old seedlings (Figure 2.1). Compared to Col-0, shl6 seedlings showed a 

reduction
 
in hypocotyl and root growth in the yellow light.  

The Col-0 petal and silique lengths were used to determine relative differences 

displayed by the shl6 mutant plants. Once
 
plants were transferred to soil, the observable 

differences between
 
wild-type (Col-0) and shl6 mutant phenotype were maintained. The 

mean petal length in ten-week-old Col-0 plants was 3.3 ±0.25 mm and that of shl6 

mutant plants was 2.25±0.26 mm (Figure 4.2A). The silique length of shl6 mutant plants 

was variable (Figure 4.2B). Twenty siliques of Col-0 and shl6 plants were collected and 

measured. The silique length (7.65±1.57 mm) of shl6 was less than that of Col-0 

(12.8±1.2 mm). Most of the siliques in shl6 mutant plants contained no or only few 

seeds (data not shown). Corrected probability (p<0.005) values indicate statistical 

significance of the differences in mean petal and silique lengths between Col-0 and shl6, 

as determined by t-test analysis. Values below p=0.05 were considered as being 

statistically significant for differences in petal and silique lengths between Col-0 and 

shl6 mutant plants.  
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A 

        
 
B 

           
 
 
 
 
Figure 4.2. Flower and silique morphology of SHL6 
 

Mature flowers and siliques from Col-0 and shl6 mutant plants were compared. 

(A) The mean petal length of shl6 (2.25±0.26 mm) was highly reduced when compared 

to Col-0 (3.3 ±0.25 mm) (t-test, p<0.005) (n=10). Bar=1 mm 

(B) The mean siliquelength of shl6 (7.65±1.57 mm) were smaller than Col-0 (12.8±1.2 

mm) (t-test, p<0.005). Error bars indicate SD (standard deviation) (n=20). Bar=5mm 
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Effects of shl6 mutant on anther morphology and callose deposition 

The mutation in SHL6 also causes a dramatic reduction in
 
fertility. Reciprocal 

crosses between shl6 and wild-type plants (Col-0) were usually successful when shl6 

plants were pollinated, but failed when shl6 was used
 
as the pollen donor,

 
indicating 

reduced male fertility. The shl6 mutant plants developed abnormal flowers with 

abnormal heart-shaped anthers (Figure 4.3A) and were partially or completely sterile. 

To determine whether these abnormal anthers were caused by defective callose, 

0.01% aniline blue was used to stain callose (Worrall et al., 1992). Stained callose was 

observed under a microscope (Olympus, BX51) with fluorescence and UV (a standard 

U-mnu2) filters. Whereas 90% of anthers of wild type plants showed high callose 

deposition, callose was not observed in anthers of shl6 mutant plants (Figure 4.3B). The 

callose deposition region contained vascular bundle and connective tissue (Goldberg et 

al., 1993). To examine callose deposition in pollen tube, self-pollinated pistils were 

stained by 0.01% aniline blue. The callose plug appeared in the pollen tube of both Col-0 

and shl6 mutant, but the size of callose plug of shl6 was smaller than Col-0 (Figure 4.3C, 

D). Although pollen tubes from self-pollinated pistils were observed, most of callose 

plugs of shl6 were smaller than those of Col-0 (Data not shown).  
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A                                                                B 
      Fluorescence         UV                           Fluorescence           UV        

              
              
                          COL-0                                                             shl6 
 
C                                                                       D 
     Col-0                Col-0 under UV                     shl6               shl6 under UV 

           
 

 
Figure 4.3. Determination of callose deposition in anthers and pollen tubes 
 
(A) Most anthers of Col-0 flowers showed high callose deposition in the middle of 

anthers stained with 0.01% aniline blue. 

(B) Abnormal anthers in shl6 flowers were associated with the diminished callose. Self-

pollinated pistils in Col-0 and shl6 were stained using 0.01% aniline blue.  

(C) and (D) The callose plug appeared in the pollen tube of both Col-0 and shl6. 
Stained callose (arrow) was observed under a microscope with fluorescence and UV 

filters. (A) and (B) were observed under 10X Objective and (C) and (D) under 40X 

objective. 
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Pollen viability in the shl6 mutant plants 

The partial male sterility seen at pollination may be caused by the abnormal 

anther structure and differences in callose deposition in anthers of Col-0 and shl6 mutant 

plants (Figure 4.3). To determine how many pollen grains in the malformed anthers were 

viable, fluorescein diacetate (FDA) (Heslop-Harrison, J. and Heslop-Harrison, Y., 1970; 

Regan and Moffatt, 1990) was used to measure pollen viability. Viable grains in both 

Col-0 and shl6 glowed yellow from the inside illuminating sperm and vegetative nuclei 

when view under a microscope (Olympus, BX51) with fluorescence and UV (a standard 

U-mnu2) filters (Figure 4.4A, B). Many pollen grains in shl6 mutant were small and 

collapsed. Unlike normal pollen grains, collapsed pollens did not glow yellow when 

observed under a UV filter microscope (Figure 4.4B). To measure pollen viability, the 

fraction of pollen grains stained by FDA was scored. At least 100 pollen grains were 

counted in each of four replicates. The survival ratios gained from the four replicates 

were averaged. In this experiments, the pollen viability in shl6 was (48%) lower than 

that in Col-0 (87%) (Figure 4.4C).  
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A 
                Col-0                                             Col-0 under UV     

                                 
 
B           shl6                                                    shl6 under UV 

                           
 
C 

                       
 
 
Figure 4.4. Pollen viability in the shl6 mutant 
 
(A) and (B) Viable pollen grains in Col-0 and shl6 anthers glowed under a UV filter 
microscope filter.  

(C) Average pollen viability of pollen grains was examined. Pollen viability in Col-0 

was 87±3.6% and shl6 was 48±10.7%. Error bars indicate SD (standard deviation). The 

pollen grains were observed under 40X objective. 
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The short-hypocotyl phenotype in shl6 mutant is caused by a reduction in cell size  

In the previous experiments, we observed that 7-d-old shl6 seedlings had shorter 

hypocotyls than wild type under low light (24 µmol
 
m

–2
 s

–1
) (Figure 2.1). To investigate 

the cellular basis of the short-hypocotyls in low light-grown shl6 seedlings,
 
both the shl6 

and Col-0 hypocotyls were used for agarose imprints to evaluate epidermal
 
cell 

morphology (Mathur and Koncz, 1997). The average epidermal cell length in hypocotyls 

of 5-d-old seedlings was shown in Figure 4.5. The length of the
 
epidermal cells by 

agarose impression revealed that
 
the shl6 cell length (0.28±0.06 mm) were reduced in 

their longitudinal length compared
 
with Col-0 (0.44±0.18 mm) (Figure 4.5). In the graph, 

corrected probability (p<0.005) values indicated the statistical significance of the 

differences in mean hypocotyl cell length between Col-0 and shl6, as determined by t-

test analysis. Values below p=0.05 were considered as being statistically significant for 

differences in hypocotyl length between Col-0 and shl6 mutant seedlings.  
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A 

             
 

                                                  Col-0                               shl6 
 

B 

 
 
 

Figure 4.5. Measurement of hypocotyl cell length 

 
(A) Col-0 and shl6 seedlings were grown under low light (24 µmol

 
m

–2
 s

–1
) for 5 days.  

Epidermal cells of hypocotyls were examined by agarose impression. Images of agarose 

impression from seedlings grown under low light were displayed at actual size for 

measurment.  
(B) Average cell length was measured in the agarose imprints. The mean hypocotyl cell 

length in Col-0 was 0.44±0.18 mm and shl6 was 0.28±0.06 mm (t-test, p<0.005).  Error 

bars represent SD (standard deviation) (n=10) Bars=0.1mm. 
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Transcript analysis of SHL6 in various organs 

One of the 12 putative callose synthase family genes, GSL5,was abundantly 

expressed in flowers (Østergaard et al., 2002). GSL1, which is closely linked to GSL5 

and GSL5 also were subsequently found to be expressed in all tissues including roots, 

leaves, siliques, stems, and flowers (Enns et al., 2005). Therefore, it was of interest to 

determine whether transcript levels of SHL6 are also regulated by organ specificity. 

Expression was examined by quantitative RT-PCR, using a gene-specific primer for 

SHL6. Total RNA was extracted from the flower buds, mature flowers, siliques, stems, 

leaves, and roots of 90-d Col-0 and shl6 plants grown in long days (16-h light/ 8-h dark), 

and then cDNA was made by reverse transcription and used as templates for qRT-PCR. 

A specific primer for the constitutively expressed gene EF1a was used as internal 

control.  

 The SHL6/GSL12 transcript in flower buds, mature flowers, siliques, stems, 

leaves, and roots tissues was more highly expressed than the control EF1a gene. 

However, the SHL6/GSL12 transcript level in roots was 4-fold higher than flower buds, 

mature flowers, stems, or leaves (Figure 4.6A, Table 4.2). In addition, 90-d old shl6 

mutant plants showed pleiotropic phenotypes different from Col-0 plants. The shl6 

plants displayed abnormal development in flowers, siliques, and stems as seen in figures 

4.1 and 4.5, as well as in leaves and roots (data not shown). The shl6 stems were bent 

and weak (Figure 4.7A). The mean stem length of shl6 mutant plants (21.8±3.5 cm) was 

shorter than that of Col-0 (28.3±3.4 cm) (Figure 4.7B). To determine whether SHL6 
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expression is altered in the shl6 mutant tissues including flower buds, mature flowers, 

siliques, stems, leaves, and roots, qRT-PCR analysis was applied.  

The transcript level of SHL6/GSL12 in the shl6 mutant was reduced in those 

tissues compared to Col-0. However, the SHL6 mRNA in the shl6 plants in root and 

stem was reduced to a much greater extent than in mature flower, silique, and leaf tissues 

(Figure 4.6B). The expression levels (∆Ct) of the SHL6 transcript were calculated by 

subtracting the Ct for EF1a primer from each Ct for tissue samples. The higher -∆Ct 

values for SHL6 in those tissues indicates higher expressions of SHL6 because the SHL6 

transcript was more highly expressed than control EF1a gene.  

 

Table 4.2. Ct values for genes analyzed using RT-PCR 

     

                      Col-0 shl6 

Gene Tissue 
a
 Average Ct

b
  StDv

c
 Average Ct  StDv 

 FB 23.94 0.06 24.35 0.24 

 MF 25.23 0.06 24.77 0.12 

SHL6/GSL12 Siliq 26.96 0.14 28.50 0.26 

 Stem  25.88 0.10 29.21 0.70 

 Leaf 27.01 0.11 27.81 0.22 

  Root 25.19 0.35 0.19 0.14 

  FB 25.35 0.14 25.50 0.04 

 MF 26.47 0.08 25.44 0.07 

EF1a Siliq 29.00 0.49 29.71 0.12 

 Stem  27.42 0.04 29.99 0.34 

 Leaf 29.64 1.07 29.04 0.42 

  Root 28.65 0.05 27.49 0.25 
a 
FB (Flower Buds), MF ( Mature Flowers), Siliq. (Siliques), Stem (Stems), Leaf (Leaves), Root (Roots) 

b
 Average Ct Values for 3-4 replicates      

c 
Standard Deviation for 3-4 replicates     
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Figure 4.6. Transcription levels of SHL6 in various Arabidopsis organs  
 

(A) RNAs were extracted from various tissues including flower buds (FB), mature 

flowers (MF), siliques (Siliq), stems, leaves, and roots of Col-0 plants grown 90-d in the 

long-days.  
(B) The SHL6 transcript expression in Col-0 plants was compared to those in shl6 

mutant plants. Expression of genes was analyzed by quantitative RT-PCR reactions.  
The higher -∆Ct value for SHL6 in all tissues indicates a higher expression level because 

the SHL6 transcript was more highly expressed than the control EF1a gene. Error bars 
indicate standard deviation of ∆Ct value calculated by (σ

2
gene+σ

2
control) 

1/2
.  
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Figure 4.7.  Measurement of stem length 

(A) Col-0 and shl6 plants were grown under low light (24 µmol
 
m

–2
 s

–1
) for 90 days.  

Images of Arabidopsis plants grown in a long day chamber are displayed. 
(B) Stem lengths were measured from rosette leaves to the top. The mean stem length 

was measured using a ruler. Error bars represent SD (standard deviation) (n=15). 
Bar=5cm.    
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Discussion  

In this study, we provided phenotypical characterization for the normal role of 

SHL6 which encodes a glucan synthase-like (GSL12) gene involved in callose synthesis. 

Mutants lacking normal SHL6 expression led to partial male sterility, altered levels of 

expression and altered morphology. 

 

The role of SHL6 in root development 

GSL1 and GSL5 as GSL family genes in Arabidopsis are linked, within 8cM of 

each other. Enns and his colleagues (2005) recently reported that GSL5 gene was 

necessary for normal development. The gsl1-1/gsl1-1 gsl5/+ mutant lines appeared 

normal; however, the plants from the gsl1-1/+gsl5/gsl5 mutant lines had extremely small 

rosette leaves, shorter primary roots, flowers and siliques.   

We used a loss of function mutant, a SALK_068418 T-DNA insertion line in an 

intron in the SHL6 to characterize the shl6 mutation. Plants homozygous for this T-

DNA-gsl12 allele showed intermediate hypocotyl phenotype between Col-0 and shl6 

which can be explained by diminished expression due to the insertion occurring in an 

intron. However, crosses between homozygous SALK_068418 plants and homozygous 

shl6 mutants produce F1 progeny that showed that short hypocotyl was complemented, 

but root phenotype was not complemented in low light (Figure 4.1B). Although the 

complemented hypocotyl phenotype was expected due to the T-DNA being inserted in 

an intron, the failed complementation in root of F1 progeny suggests that that the 

shl6/gsl12 is indeed an allele of SHL6/GSL12 gene which includes a T-DNA insertion in 
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SALK_068418 plants, and implicates this gene in normal root development. 

Interestingly, shl6/gsl12 seedlings showed different hypocotyl elongation depending on 

light intensity, but had light-independent short roots.    

 

The role of SHL6 in anther development 

In flowering plants, the anthers contain highly specialized reproductive and 

somatic cells that are required for male fertility. In flowering plants, male meiosis and 

male gametophyte development occur in the anther (Goldberg et al., 1993; Ma, 2005; 

McCormick, 1993). In developing anthers of angiosperm, microsporocytes produce a 

temporal cell wall of callose between the primary cell wall and the plasma membrane 

(Currier and Webster, 1964). It is believed that the callose wall is formed temporarily to 

prevent cell cohesion and fusion. At the end of meiosis, the callose cell wall is degraded 

by β-1,3-glucanase (callase) and microspores are released in the locular space (Steiglitz, 

1977; Steiglitz and Stern, 1973).  

We described here that homozygous shl6 plants had smaller flowers, and siliques. 

The mutation also caused a dramatic reduction in
 
male fertility. This was supported by a 

previous report concerning GSL2 (CalS5), one of 12 GSL genes in Arabidopsis (Dong et 

al., 2005). Knockout mutations of the GSL2 (CalS5) gene by T-DNA insertion also had 

short siliques and flowers. The homozygous gsl2 (cals5) mutant plants resulted in a 

severe reduction in male fertility (Dong et al., 2005). Consistent with their function, the 

shl6 mutant plants developed abnormal flowers with heart-shaped anthers (Figure 4.3A) 

and were partially or completely sterile. Whereas 90% of anthers of Col-0 plants showed 
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high callose deposition, callose was not observed in anthers of the shl6 mutant plants 

(Figure 4.3B). The callose deposition region contained vascular bundle and connective 

tissues (Goldberg et al., 1993). Therefore, we measured pollen viability in both Col-0 

and the shl6 mutant for the next step. 

 

The role of SHL6 in pollen development 

The timing of callose wall formation and degradation is pivotal for normal pollen 

development as shown by the effects of several mutants that alter the callose cell wall of 

Petunia (Izhar and Frankel, 1971; Warmke and Overman, 1972). Dong et al., 2005 

described that callose synthesized by GSL2 (CalS5) is essential for the development of 

pollen walls required for fertile pollen in Arabidopsis. 

The collapsed, unviable pollen grains in both Col-0 and shl6 were distinguished 

from viable grains that glowed yellow under a microscope (Olympus, BX51) with 

fluorescence and UV (a standard U-mnu2) filters (Figure 4.4A, and B). Whereas 52% of 

the pollen grains in the shl6/gsl12 mutant were small and collapsed, 87% of the pollen 

grains in Col-0 were viable (Figure 4.4C). It is suggested that low pollen viability in shl6 

may be caused by a deficiency in SHL6. However, it remains unproven that low viability 

is directly related to decreased callose cell wall formation during pollen development or 

frequent formation of abnormal heart-shaped anthers lacking callose deposition (Figure 

4.3).     

 

 



. 87 

The role of SHL6 for cell elongation 

Yeast K506 hypersensitivity (FKS) genes homologous with GSLs in Arabidopsis 

encode the catalytic subunit of β-1,3-glucan synthase (Douglas et al., 1994; Cabib et al., 

2001; Dijkgraaf et al., 2002). FKS1 expression is cell cycle regulated and more
 
abundant 

during vegetative growth. In Arabidopsis, CalS1(AtGSL6) interacts with two cell plate-

associated proteins, phragmoplastin and a UDP-glucose transferase and was found in the 

cell plate of dividing cells by localization of the GFP-tagged CalS1 protein (Verma and 

Hong, 2001; Hong et al., 2001a, 2001b). It is possible that CalS1 forms a complex at the 

cell plate (Hong et al., 2001a). 

The cells in shl6 hypocotyls were reduced in their longitudinal length compared
 

with Col-0 hypocotyls (Figure 4.5). These results show that the differences in hypocotyl 

length reflect differences in both cell length and cell elongation. The hypocotyl and cell 

measurements suggested that the SHL6 gene directly effects hypocotyl cell elongation. 

In the future, the SHL6 subcellular localization detected via GFP-tagged SHL6 protein 

may prove whether SHL6 is another cell plate-specific callose synthase involved in 

callose deposition at the forming cell plate. This would suggest that reduced epidermal 

cell length in shl6 mutant hypocotyls is caused by abnormal cell division involved in cell 

plate formation.  
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Transcriptional regulation of SHL6 in the various organs of the Col-0 and the shl6 

mutant plants   

The transcript levels of GSL1 and GSL5 have been characterized previously by 

RT-PCR (Enns et al., 2005). The two genes were expressed in all organs including root, 

young rosette, rosette, cauline leaf, stem, bud cluster, and silique (Enns et al., 2005). 

However, when the transcript level of SHL6 in Col-0 plants was compared by 

quantitative RT-PCR, the SHL6 transcripts were differently regulated. In roots, the SHL6 

expression was 4-fold higher than in flower buds, mature flowers, stems, and leaves 

(Figure 4.6A).  

The SHL6 expression level was also altered in the shl6 mutant. The transcript 

level of SHL6 in the shl6 mutant was decreased in flower buds, mature flowers, stems, 

leaves, and roots compared to Col-0. Furthermore, the transcript levels of SHL6 in the 

shl6 roots and stems were more highly reduced than those in Col-0 (Figure 4.6B). In the 

previous data, the loss-of function mutant in SHL6 showed abnormal development in 

flowers, siliques, stems, roots, and leaves (Figure 4.2). The results suggest that reduced 

SHL6 transcripts may be involved in abnormal phenotypes in multiple stages of 

development.  
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Materials and methods 

Plant materials and growth conditions 

Arabidopsis ecotype Col-gl1 seed were obtained from Lehle Seeds (Round Rock, 

TX). The mutant Col-gl1 line shl6 was previously mutagenized by ethyl methane 

sulfonate (EMS) and screened under low light (Pepper et al., 2001). Arabidopsis ecotype 

Col-0 seeds were obtained from the laboratory stocks of Joanne Chory. shl6 mutant was 

back-crossed twice to WT Col-0 and homozygous shl6 mutant was isolated by their 

short hypocotyls in low light (24µmolm
-2
s
-1
).  

Seeds were surface sterilized (Chory et al, 1989), resuspended in sterile 0.1% 

(w/v) phytagar, and then chilled for overnight at 4 °C. Seedlings were germinated at 

23°C ±0.5°C under 8-h light/16-h dark photoperiod for 10d. Uniformly sized seedlings 

were moved to a 16-h light/8-h dark growth room and then grown with even spacing into 

pots containing the same compost/ sand mixture for phenotype analysis. 

 

Expression analysis by quantitative RT-PCR 

To study the expression of SHL6 gene in Arabidopsis, RNA was isolated with the 

Qiagen Plant RNeasy RNA extraction kit. RNA samples were isolated from Col-0, shl6 

mutant, and transformant GSL12. Seedlings were grown as previously described under 

continuous white light (110 µmolm
-2
s
-1
), yellow light (70 µmolm

-2
s
-1
), red (22 µmolm

-2
s
-

1
), and in the dark (Figure 4.2). As an additional experiment, RNA samples were 

collected from flower bud, mature flower, silique, leaf, stem, and root (Figure 4.6). 

Amount of RNA was measured by using Beckman DU60 Spectrophotometer and quality 
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of the RNA was tested by agarose gel electrophoresis. To remove genomic DNA, 

DNAseI treatment (DNA free
TM

 kit, Ambion, Austin, TX) was used. 400 ng of RNA 

was reverse transcribed by using SuperScript
TM 

III First-Strand Synthesis SuperMix 

(Invitrogen, USA). The resulting single stranded cDNA was thereafter used as template 

in quantitative real-time PCR (qRT-PCR) reactions. qRT-PCR was performed with 

POWER SYBR
®
 Green PCR master mix (Applied Biosystem, USA)  with an ABI 

7900HT real-time (RT) PCR machine. The cDNA was normalized in dependence of the 

level of constitutively expressed (elongation factor a1) EF1a gene (EF930-F, 5'-

TCGAATCCTCAAAACTCTATCCGCA-3'; EF930-R, 5'-

GGAGAAGAAACGAAGCTATAACACG-3') as a control. qRT-PCR reactions were 

carried out with a gene specific primer for SHL6 (CS-F, 5'-

TATCCTTGCCTTTATGCCCACAGGTT-3'; CS-R,5'-

TGATCCCCAGAATCCTGCTCTATGA-3') in a volume of 10 µl. The PCR program 

was as follows: incubation for 2 min at 50 °C, then 2 min at 95 °C, and 60°C for 1 

minute. To verify the amplification of single PCR products, it was followed by 40 cycles 

of denaturation at 94 °C for 15 s, annealing at 60 °C for 15 s and a 2% ramping to 95°C.  

All measurements were repeated twice. To check non-specific amplification products, 

amplified fragments were analyzed by 2% agarose gel electrophoresis and then digested 

by a unique restrict enzyme (HinfI) in the CS primers.  
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Callose staining in pollen tube and anthers  

For staining callose in pollen tubes, pistils and anthers were submerged in about 

250µl acetic acid fixed for 1.5 hours. Tissue was left in fixative overnight. Tissue was 

softened by submerging into 1 M NaOH solution overnight. Softened tissue was gently 

washed 3 times with 50 mM KPO4 buffer. The tissue was stained with 200µl of 0.01% 

aniline blue for 5-10 minutes (Worrall, et al., 1992). The stained tissue was transferred to 

a slide, mounting media added, and observed under a microscope (Olympus, BX51) with 

fluorescence and UV (a standard U-mnu2: excitation filter= 360-420nm;emission= 

420nm) filters. Images were applied by a Magnafire Application Software 2.0 (Karl 

Storz Imaging). 

 

Pollen viability assay 

Anthers were stained in fluorescein diacetate (FDA) solution and observed by a 

fluorescent microscope using a UV filter (Heslop-Harrison, J. and Heslop-Harrison, Y., 

1970). Stock solution of FDA in acetate was poured into 10ml of 10% sucrose solution 

drop-by-drop until the color turned grayish or milky. Pollen was placed on a 

hemacytometer slide by rubbing, tipping, or scratching grains out of anthers. One to two 

drops of the 10% sucrose and FDA solution was added and left for three minutes. The 

grains were covered by a coverslip and observed under a fluorescent microscope using a 

UV filter. Viable grains glowed a bright yellow from the inside illuminating sperm and 

vegetative nuclei. At least 100 pollen grains were counted in each of four replicates. 

Data was indicated by mean ±SD (standard deviation). 
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Analysis of hypocotyl cell growth 

To observe the epidermal cell size and shape of 5-d-old shl6 and Col-0 seedling 

grown under low light condition (24µmolm
-2
s
-1
), the method of epidermal imprints using 

agarose was used (Mathur and Koncz, 1997). Hypocotyls were dissected from seedlings 

and quickly laid out on the 3% low melting point agarose on a glass surface. It was 

placed at 4°C for five minutes in refrigerator to solidify the agarose. The hypocotyls 

were peeled away from the agarose and images of the impression were photographed 

using a ZeissM
2
BIO fluorescence combination zoom stereo/compound microscope 

equipped with a Zeiss AxioCam color digital camera. Pictures of the hypocotyls 

impression were taken using the Zeiss Axio Vision software version 3.0.6. A 

hemacytometer was used to convert pixels to actual µm. Adobe Photoshop 7.0 was used 

to analyzed the images of hypocotyl cells.   
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CHAPTER V 

 

CONCLUSIONS 

Plant development is influenced by various environmental conditions. One of the 

most important factors is light quantity, quality, and duration. Plants have evolved 

several different photoreceptors for light perception and use light as the energy source 

for their growth. Plants implement developmental program depending on light, a process 

called “photomorphogenesis”. Dr. Pepper and his colleagues (2001) have identified 

mutations in genes acting at the interface of light perception and developmental 

pathway-“downstream” from the photoreceptors and photoreceptor-specific signaling 

elements. They isolated recessive light-hyper-responsive mutants in eight genetic loci, 

designated as seedling hyper-responsive to light (shl).   

 In this study, the primary goal was to identify a gene related to shl6, one of the 

shl mutants by using map-based cloning and to characterize the role of the gene to 

further our understanding of photomorphogenesis.   

 The Arabidopsis mutant shl6 has developmental responses that are exaggerated 

on exposure to available light. In the low light, shl6 seedlings have short hypocotyls, 

expanded cotyledons, and well-developed first true leaves. In addition, the roots of shl6 

are short and highly branched. The SHL6 gene was mapped to a position on chromosome 

5 between single sequence length polymorphism (SSLP) markers nga249 and nga151 

via map-based cloning. We showed that SHL6 gene encodes a glucan synthase like 

(GSL12). In addition, the role of SHL6 in light signaling was elucidated. The 
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transcriptional level of SHL6 was regulated
 
in Col-0 and the shl6 seedlings grown under 

dark, yellow, red, and white light. The timing of flowering is under strict control of the 

light environment (Simpson and Dean, 2002). Mutant shl6 plants flowered early in the 

both short-days and long-days. SHL6 expression was highly induced in the cotyledons. 

Another purpose of this research was to investigate the function of SHL6, a gene 

that encodes a callose synthase like (GSL12) and its role in the synthesis of callose. 

Positive evidence included observations showing: 1) Callose was highly deposited in the 

vascular bundle and connective tissues of Col-0 anthers, but not in the same tissues of 

shl6 anthers. 2) Pollen grains temporally make callose as part of cell wall during 

microsporogenesis (Dong et al., 2005). The pollen viability is low in shl6 when 

compared to Col-0. 3) Callose is also localized at the cell plate (Hong et al., 2001a). The 

reduced epidermal cell length in shl6 hypocotyls may be caused by abnormal cell 

division involved in cell plate formation. Therefore, light regulated SHL6 is also 

involved in callose synthesis. 

  Here, a model of the role of SHL6 coupling light signaling and the synthesis of 

callose is proposed. Time of flowering is a good example to understand light signaling. 

The shl6 mutant plants flower early when grown under both long days and short days. 

The SHL6 may be a negative regulator of key flowering regulators, FLOWERING 

LOCUS T (FT) and CONSTANS (CO). FT, CO, and PHYTOCHROME AND 

FLOWERING TIME (PFT1) are flowering regulators that act downstream of PHYB 

(Cerdan and Chory, 2003; Holliday et al., 2003; Valverde et al., 2004). Expression of FT 

in the vascular bundles was suppressed by PHYB-GFP expressed in the mesophyll and 
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increased by CRY2-GFP expressed vascular bundles (Endo et al., 2005 and 2007). These 

results revealed that a novel mechanism of inter-tissue signaling from mesophyll to 

vascular bundles is a critical step for the regulation of flowering by PHYB. However, it 

is unknown how a protein in a cell is regulated by an exogenous signal. SHL6, as an 

intermediate signal molecule may be working between PHYB and FT proteins (Figure 

5.1).  

Three reasons to support this hypothesis are suggested. The first is that SHL6 

mRNA expression in shl6 mutant seedlings was substantially reduced in red light 

(Figure 3.2). It implicates that SHL6 may be regulated by PHYB. The second reason is 

that SHL6 is highly expressed in cotyledons (Figure 3.4). Although we do not have proof 

that SHL6 is expressed in vascular bundles, the expression of one member of the GSL 

gene family in Arabidopsis, (AtGSL2:GUS) was detected in the vascular tissues of 

cotyledons, hypocortyls, and roots of transgenic plants (Dong et al., 2005).  

 

Future studies 

How is SHL6 gene regulated in the light signaling pathway? 

 The first future study is to determine that SHL6 is directly or indirectly regulated 

in the light signal pathway. HY5 acts as one of downstream genes of PHYA, PHYB, 

cryptochromes (CRY1 and CRY2), and UV-B (Ang and Deng, 1994).  HY5 encoding a 

constitutively nuclear bZIP transcription factor is a positive regulator in 

photomorphogenesis (Hardtke and Deng, 2000). 
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Figure 5.1. A model of the role of SHL6 involved in flowering time. 

PHYA and CRY2 seem to induce CO activity. CO protein directly activates FT 

expression to promote flowering. FT mRNA expression is also repressed by PHYB. The 

placement of SHL6 is deduced from the work presented here. PHYB-regulated SHL6 

may suppress flowering. 

 
 

 

 

SHL6 
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Whereas hy5 hypocotyls elongated in all light conditions (Oyama et al., 1997; 

Cluis
 
et al., 2004), shl6 hypocotyls were inhibited under low light. Therefore, to see 

whether SHL6 and HY5 interacted in vivo, we will generate double mutants (shl6/shl6 

hy5/hy5) through crossing shl6 and hy5. The shl6/hy5 hypocotyls measured under low 

light will elucidate SHL6 acts as a downstream or upstream gene of HY5.  

 

How is SHL6 gene involved in the flowering pathway?  

 We demonstrated that SHL6 is involved in photoperiodic flowering, one of plant 

responses affected by the light signaling pathway because the shl6 plants flowered early 

in both long-days and short-days. To identify how SHL6 as a negative regulator 

suppresses flowering, an alternative strategie will be performed.  

To determine whether the SHL6 expression affects CO and FT transcripts 

promoting flowering, the abundance of CO and FT mRNA will be calculated in wild 

type Col-0 and shl6 plants via qRT-PCR. The abundance of CO mRNA was reduced in 

phyA and cry2 mutants, but was increased in phyB mutant (Cerdan and Chory, 2003). 

Thus, SHL6 hyper-responsive to red light will show that SHL6, one of downstream genes 

of PHYB directly inhibits the CO and FT mRNA expression in shl6 plants.  

 

 

 

 

 



. 98 

LITERATURE CITED 
 
Ahmad M, Jarillo JA, Smirnova O, Cashmore AR (1998). The CRY1 blue light 
photoreceptor of Arabidopsis interacts with phytochrome A in vitro. Mol Cell 1, 939–
948 

 
Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, 
Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, 
Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, 
Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-
Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, 
Zeko A, Crosby WL, Berry CC, Ecker JR (2003). Genome-wide insertional 

mutagenesis of Arabidopsis thaliana. Science 310, 653-657 
  
Al-Sady B, Ni W, Kircher S, Schäfer E and Quail PH (2006). Photoactivated 

phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated 

degradation. Mol Cell 23, 439–446 
 
An H, Roussot C, Suarez-Lopez P, Corbesier L, Vincent C, Pineiro M, Hepworth S, 
Mouradov A, Justin S, Turnbull C, Coupland G (2004). CONSTANS acts in the 

phloem to regulate a systemic signal that induces photoperiodic flowering of 

Arabidopsis. Development 131, 3615–3626 
 
Ang LH, Deng XW (1994). Regulatory hierarchy of photomorphogenic loci: Allele-

specific and light-dependent interaction between the HY5 and COP1 loci. Plant Cell 6, 
613-628 

 
Ang LH, Chattopadhyay S, Wei N, Oyyama T, Okada K, Batschauer A, Deng XW 
(1998). Molecular interaction between COP1 and HY5 defines a regulatory switch for 

light control of Arabidopsis development. Mol Cell 1, 213-222 
 

Aspinall GO, Kessler G (1957). The Structure of Callose from the Grape Vine, Chem. 

Ind., London, p.1296  

 
Bauer D, Viczián A, Kircher S, Nobis T, Nitschke R, Kunkel T, Panigrahi KC, 
Adám E, Fejes E, Schäfer E, Nagy F (2004). Constitutive photomorphogenesis 1 and 

multiple photoreceptors control degradation of phytochrome interacting factor 3, a 

transcription factor required for light signaling in Arabidopsis. Plant Cell 16, 1433-1445 
 
Bell CJ, Ecker JR (1994). Assignment of 30 microsatellite loci to the linkage map of 

Arabidopsis. 19, 137-144 
Benvenuto G, Foormiggini F, Laflamme P, Malakhov M, Bowler C (2002) The 
photomorphogenesis regulator DET1 binds the amino-terminal tail of histone H2B in a 

nucleosome context. Curr Biol 12, 1529-1534 



. 99 

 
Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R,  
Cerdan PD, Chory J (2003). Regulation of flowering time by light quality. Nature 423, 
881–885 

 
Bevan M, Bancroft I, Chalwatzis N (1998). Analysis of 1.9Mb of contiguous sequence 

from chromosome 4 of Arabidopsis thaliana. Nature 391, 485-488 
 

Blencowe BJ (2000) Exonic splicing enhancers: mechanism of action, diversity and role 

in human genetic diseases. Trends Biochem Sci 25, 106-110  
 

Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LM, Yang W, Mayer JE, 
Roa-Rodrigues C, Jefferson RA (2005). Gene transfer to plants by diverse species of 
bacteria. Nature 433, 629-633.  
 

Brown BA, Cloix C, Jiang GH, Kaiserli E, Herzyk P, Kliebenstein DJ, Jenkins GI 
(2005). A UV-B-specific signaling component orchestrates plant UV protection. Proc 

Natl Acad Sci USA 102, 18225-18230 
 
Cabib E, Roh DH, Schmidt M, Crotti LB, Varma A (2001). The yeast cell wall and 
septum as paradigms of cell growth and morphogenesis. J Biol Chem 276, 19679–19682 
 
Cai L, Taylor JF, Wing RA, Gallagher DS, Woo SS, Davis SK (1995). Construction 

and characterization of a bovine bacterial artificial chromosome library. Genomics 29, 
413-425 

 
Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, Shaw N, Lane CR, 
Lim EP, Kalyanaraman N, Nemesh J, Ziaugra L, Friedland L, Rolfe A, 
Warrington J, Lipshutz R, Daley GQ, Lander ES (1999). Characterization of single-
nucleotide polymorphisms in coding regions of human genes. Nat Genet 22, 231-238 
 
Casal JJ, Davis SJ, Kirchenbauer D, Viczian A, Yanovsky MJ (2002). The serine-
rich N-terminal domain of oat phytochrome A helps regulate light responses and 

subnuclear localization of the photoreceptor. Plant Physiol 129, 1127–1137  
 
Cerdan PD, Chory J (2003). Regulation of flowering time by light quality. Nature 423, 
881-885 

 

Chory J, Peto C, Feinbaum R, Pratt L, Ausubel F (1989). Arabidopsis thaliana 
mutant that develops as a light-grown plant in the absence of light. Cell 58, 991-999 
 
Chory J (1992). A genetic model for light-regulated seedling development in 

Arabidopsis. Development 115, 337-354 
 



. 100 

Clough SJ, Bent AF (1998). Floral dip: a simplified method for Agrobacterium-

mediated transformation of Arabidopsis thaliana. Plant J 16, 735-743 
 
Cluis CP, Mouchel CF, Hardtke CS (2004). The Arabidopsis transcription factor HY5 
integrates light and hormone signaling pathways. Plant J 38, 332–347 
 
Colon-Carmona A, Chen DL, Yeh KC, Abel S (2000). Aux/IAA proteins are 
phosphorylated by phytochrome in vitro. Plant Physiol 124, 1728–1738  
 
Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona 
S, Gissot L, Turnbull C, Coupland G (2007). FT protein movement contributes to 

long-distance signaling in floral induction of Arabidopsis. Science 316, 1030-1033. 
 
Cui XJ, Shin HS, Song C, Laosinchai W, Amano Y, Brown RM (2001). A putative 

plant homolog of the yeast -1,3-glucan synthase subunit FKS1 from cotton (Gossypium 

hirsutum L.) fibers. Planta 213, 223–230 
 
Currier HB, Webster DH (1964). Callose formation and subsequent disappearance: 

Studies in ultrasound stimulation. Plant Physiol 39, 843-847 
 
Deng XW, Matsui M, Wei N, Wagner D, Chu AM, Feldmann KA, Quail PH (1992). 

COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif 

and a G beta homologous domain. Cell 71, 791-801 
 

Deng XW, Caspar T, Quail PH (1991). Cop1: a regulatory locus involved in light-
controlled development and gene expression in Arabidopsis. Genes Dev 5, 1172-1182 
 

Dijkgraaf GJ, Abe M, Ohya Y, Bussey H (2002). Mutations in Fks1p affect the cell 

wall content of -1,3- and -1,6-glucan in Saccharomyces cerevisiae. Yeast 19, 671–690 
 
Doblin MS, De Melis L, Newbigin E, Bacic A, Read SM (2001). Pollen tubes of 

Nicotiana alata express two genes from different -glucan synthase families. Plant 

Physiol 125, 2040–2052 
 
Dong X, Hong Z, Sivaramakrishnan M, Mahfouz M, Verma DP (2005). Callose 
synthase (CalS5) is required for exine formation during microgametogenesis and for 

pollen viability in Arabidopsis. Plant J 42, 315–328  
 
Douglas CM, Foor F, Marrinan JA, Morin N, Nielsen JB, Dahl AM, Mazur P, 
Baginsky W, Li W, el-Sherbeini M (1994). The Saccharomyces cerevisiae Fks1 (Etg1) 

gene encodes an integral membrane protein which is a subunit of (1 3)- -D-glucan 

synthase. Proc. Natl. Acad. Sci. USA 91, 12907–12911 
 



. 101 

Endo M, Mochizuki N, Suzuki T, Nagatani A (2007). CRYPTOCHROME2 in 

vascular bundles regulates flowering in Arabodopsis. Plant Cell 19, 84-93 
 
Endo M, Nakamura S, Araki T, Mochizuki N, Nagatani A (2005). Phytochrome B in 

the mesophyll delays flowering by suppressing FLOWERING LOCUS T expression in 

Arabidopsis vascular bundles. Plant Cell 17, 1941–1952 
 
Enns LC, Kanaoka MM, Torii KU, Comai L, Okada K, Cleland RE (2005). Two 
callose synthases, GSL1 and GSL5, play an essential and redundant role in plant and 

pollen development and in fertility. Plant Mol Biol 58, 333-349 
 
Fankhauser C, Yeh KC, Lagarias JC, Zhang H, Elich TD, Chory J (1999). PKS1, a 
substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. 

Science 284, 1539–1541  
 
Furuya M (1993). Phytochromes; their molecular species, gene family and functions. 

Annu. Rev. Plant Physiol. Plant Mol Biol 44, 617-645 
 
Furuya M, Song PS (1994). Assembly and properties of holophytochrome. In 

Photomorphogenesis in Plants, R.E. Kendrick and G.H.M. Kronenberg, eds, (Dordrecht, 

Netherlands:Kluwer Academic Publishers), pp. 105-140 

 
Garner WW, Allard HA (1920). Effect of the relative length of day and night and other 
factors of the environment on growth and reproduction in plants. J. Agric. Res. 18, 553-
606. 

 
Goosey L, Palecanda L, Sharrock RA (1997). Differential patterns of expression of the 
Arabidopsis PHYB, PHYD, and PHYE phytochrome genes. Plant Physiol 115, 959–969 
 
Goldberg, R., Beals, T.P. and Sanders, P.M. (1993). Anther development: basic 

principles and practical applications. Plant Cell 5, 1217–1229 
 
Guo H, Yang H, Mockler TC, Lin C (1998). Regulation of flowering time by 

Arabidopsis photoreceptors. Science 27, 1360–1363 
 
Gyula P, Schafer E, Nagy F (2003). Light perception and signaling in higher plants. 
Curr. Opin. Plant Biol 6, 446-452 
 
Hajdukiewicz P, Svab Z, Maliga P (1994). The small, versatile pPZP family of 

Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25, 989-994 
 
Hardtke CS, Deng XW (2000). The cell biology of the COP/DET/FUS proteins. 
Regulating proteolysis in photomorphogenesis and beyond? Plant Physiol. 124, 1548-57.   
 



. 102 

Hardtke CS, Okamoto H, Stoop-Myer C, Deng XW (2002). Biochemical evidence for 

ubiquitin ligase activity of the Arabidopsis COP1 interacting protein 8 (CIP8). Plant J 

30, 385-394 
 
Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC (2003). The 
basic helix-loop-helix transcription factor family in plants: a genome-wide study of 

protein structure and functional diversity. Mol Biol Evol 20, 735–747  
 
Heslop-Harrison J, Heslop-Harrison Y (1970). Evaluation of pollen viability by 
enzymatically induced fluorescence: intracellular hydrolysis of fluorescein diacetate. 

Stain Tech 45, 115–120 
 
Holliday KJ, Salter MG, Thingnaes E, Whitelam GC (2003). Phytochrome control of 

flowering is temperature sensitive and correlates with expression of the floral integrator 

FT. Plant J 33, 875-885 
 
Holm M, Deng XW (1999). Structural organization and interactions of COP1, a light-

regulated developmental switch. Plant Mol Biol 41, 151–158  
 
Holm M, Ma LG, Qu LJ, Deng XW (2002). Two interacting bZIP proteins are direct 

targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. 

Genes Dev 16, 1247–1259 
 
Hong ZL, Delauney AJ, Verma DPS (2001a). A cell plate–specific callose synthase 
and its interaction with phragmoplastin. Plant Cell 13, 755–768  
 
Hong ZL, Zhang ZM, Olson JM, Verma DPS (2001b). A novel UDP-glucose 
transferase is part of the callose synthase complex and interacts with phragmoplastin at 

the forming cell plate. Plant Cell 13, 769-779 
 
Huq E, Quail PH (2002). PIF4, a phytochrome-interacting bHLH factor, functions as a 

negative regulator of phytochrome B signaling in Arabidopsis. EMBO J 21, 2441–2450  
 
Izhar S, Frankel R (1971). Mechanism of male sterility in Petunia: the relationship 

between pH, callase activity in the anthers, and the breakdown of the microsporogenesis. 

Theor. Appl. Genet 41, 104–108 
 
Jacobs AK, Lipka V, Burton RA, Panstruga R, Strizhov N, Schulze-Lefert P, 
Fincher GB (2003). An Arabidopsis callose synthase, GSL5, is required for wound and 
papillary callose formation. Plant Cell 15, 2503-2513 
 
Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL (2002). 
Arabidopsis map-based cloning in the post-genomic era. Plant Physiol 129, 440–450 
 



. 103 

Jang IC, Yang JY, Seo HS, Chua NH (2005). HFR1 is targeted by COP1 E3 ligase for 

post-translational proteolysis during phytochrome A signaling. Genes Dev 19, 593–602 
 
Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory 
J, Harrison MJ, Weigel D (1999). Activation tagging of the floral inducer FT. Science 
286, 1962–1965 
 
Kauss H,  Smallwood M, Knox JP, Bowles DJ (1996). Membranes, Callose synthesis, 

Specialized Functions in Plants, BIOS Scientific Publishers, Oxford, pp. 77–92 

 
Kendrick RE, Kronenberg GHM (1994). Photomorphogenesis in Plants. Dordrecht, 

Neth. Kluwer.  

 
Kim J, Yi H, Choi G, Shin B, Song, PS (2003). Functional characterization of 
phytochrome interacting factor 3 in phytochrome-mediated light signal transduction. 

Plant Cell 15, 2399–2407  
 
Knott JE (1934). Effect of localized photoperiod on spinach. Proc Soc Hort Sci 31, 
152–154 

 
Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999). A pair of related genes 
with antagonistic roles in mediating flowering signals. Science 286, 1960–1962 
 
Koncz C, De Greve H, Andre D, Deboeck F, Van Montagu M, Schell J (1983). The 
opine synthase genes carried by Ti plasmids contain all signals necessary for expression 

in plants. EMBO J 3, 1029-1037 
 

Konieczny A, Ausubel FM (1993). A procedure for mapping Arabidopsis mutations 

using co-dominant ecotype-specific PCR-based markers. Plant J 4, 403-410 
 
Koornneef M, Rolff E, Spruit CJP (1980). Genetic control of light-inhibited hypocotyl 
elongation in Arabidopsis thaliana. Z. Pflanzenphysiol 100, 147-160 
 
Krall L, Reed JW (2000). The histidine kinase-related domain participates in 

phytochrome B function but is dispensible. Proc Natl Acad.  Sci USA 97, 8169-8174 
 
Lariguet P, Boccalandro HE, Alonso JM, Ecker JR, Chory J (2003). A growth 
regulatory loop that provides homeostasis to phytochromeA signaling. Plant Cell 15, 
2966–2978  

 
Lukowits W, Gillmor CS, Scheible WR (2000). Positional cloning in Arabidopsis. 
Why it feels good to have a genome initiative working for you. Plant Physiol 123, 795-
805 

 



. 104 

Ma H (2005). Molecular genetic analyses of microsporogenesis and 

microgametogenesis in flowering plants. Annu Rev Plant Biol 56, 393–434 
 
Mathur J, Koncz C (1997). Method for preparation of epidermal imprints using 

agarose. Biotechniques 22, 280-282 
 
Martinez-Garcia JF, Huq E, Quail PH (2000). Direct targeting of light signals to a 

promoter element-bound transcription factor. Science 288, 859–863  
 
Matsui M, Stoop CD, von Arnim AG, Wei N, Deng XW (1995). Arabidopsis COP1 

protein specifically interacts in vitro with a cytoskeleton-associated protein, CIP1. Proc 

Natl Acad Sci USA 92, 4239–4243 
 
Matsushits T, Mochizuki N, Nagatani A (2003). Dimers of N-terminal domain of 

phytochrome B are functional in the nucleus. Nature 424, 571-574 
 
McCormick S (1993). Male gametophyte development. Plant Cell 5, 1265–1275 
 
Mockler T, Yang H, Yu X, Parikh D, Cheng YC, Dolan S, Lin C (2003). Regulation 
of photoperiodic flowering by Arabidopsis photoreceptors. Proc Natl Acad Sci USA 

100, 2140–2145 
 
Montgomery BL, Lagarias JC (2002). Phytochrome ancestry: sensors of bilins and 

light. Trends Plant Sci 7, 357-366 
 
Nagy F, Schafer E (2002). Phytochromes control phtomorphogenesis by differentially 

regulated, interacting signaling pathways in higher plants. Annu. Rev. Plant Mol Biol 53, 
329-355 

 
Nishikawa S, Zinkl GM, Swanson RJ, Maruyama D, Preuss D (2005). Callose (beta-
1,3 glucan) is essential for Arabidopsis pollen wall patterning, but not tube growth. 

BMC Plant Biol.5, 22-30 
 
Nishimura MT, Stein M, Hou BH, Vogel JP, Edwards H, Somerville SC (2003). 
Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science 

301, 969–972 
 
Nystrom-Lahti M, Holmberg M, Fidalgo P, Salovaara R, de la Chapelle A, Jiricny 
J, Peltomaki P (1999). Missense and nonsense mutation in codon 659 of MLH1 cause 

aberrant splicing of messenger RNA in HNPCC kindreds. Genes Chr Cancer 26, 372-
375 

 
Østergaard L, Petersen M, Mattsson O, Mundy J (2002). An Arabidopsis callose 
synthase. Plant Mol Biol 49, 559–566 



. 105 

Osterlund MT, Ang LH, Deng XW (1999). The role of COP1 in repression of 

Arabidopsis photomorphogenic development. Trends Cell Biol 9, 113–118 
 
Osterlund MT, Deng XW (1998). Multiple photoreceptors mediate the light-induced 

reduction of GUS-COP1 from Arabidopsis hypocotyl nuclei. Plant J 16, 201–208 
 

Osterlund MT, Hardtke CS, Wei N, Deng XW (2000). Targeted destabilization of 

HY5 during light-regulated development of Arabidopsis. Nature 405, 462–466 
 
Oyama T, Shimura Y, Okada K (1997). The Arabidopsis HY5 gene encodes a bZIP 

protein that regulates stimulus-induced development of root and hypocotyls. Genes Dev 

11, 2983–2994 
 
Pepper AE, Chory J (1997). Extragenic suppressors of the Arabidopsis det1 mutant 

identify elements of flowering-time and light-response regulatory pathways. Genetics 

145, 1125-1137 
 
Pepper AE, Delaney T, Washburn T, Poole D, Chory J (1994). DET1, a negative 
regulator of light-mediated development and gene expression in Arabidopsis, encodes a 

novel nuclear-localized protein. Cell 78, 109-116 
 

Pepper AE, Seong-Kim M, Hebst SM, Ivey KN, Kwak SJ, Broyles DE (2001). shl, a 
new set of Arabidopsis mutants with exaggerated developmental responses to available 

red, far-red, and blue light. Plant Physiol 127, 295-304 
 
Pertea M, Mount SM, Salzberg SL (2007). A computational survey of candidate 

exonic splicing enhancer motifs in the model plant Arabidopsis thaliana. BMC 

Bioinformatics 8, 159-167 
 

Quail PH (2002). Phytochrom photosensory signaling network. Nat. Rev. Mol. Cell 

Biol 3, 85-93 
 
Quail PH (1997). An emerging molecular map of the phytochromes. Plant Cell Environ 

20, 657-666 
 
Quail PH, Boylan MT, Parks BM, Short TW, Xu Y, Wagner D (1995). 
Phytochromes: photosensory perception and signal transduction. Science 268, 675-680 
 
Regan SM, Moffatt BA (1990). Cytochemical analysis of pollen development in wild-

type Arabidopsis and a male-sterile mutant. Plant Cell 2, 877-889 
 
Saijo Y, Sullivan JA, Wang H, Yang J, Shen Y, Rubio V, Ma L, Hoecker U, Deng 
XW (2003). The COP1-SPA1 interaction defines a critical step in phytochrome A-

mediated regulation of HY5 activity. Genes Dev 17, 2642–2647 



. 106 

Salter MG, Franklin KA, Whitelam GC (2003). Gating of the rapid shade-avoidance 
response by the circadian clock in plants. Nature 426, 680–683  
 
Samuels AL, Giddings TH, Staehelin LA (1995). Cytokinesis in tobacco BY-2 and 
root tip cells: a new model of cell plate formation in higher plants. J Cell Biol 130, 1345-
1357 
 
Sato S, Kotani H, Nakamura Y, Kaneko T, Asamizu E, Fukami M, Miyajima N, 
Tabata S (1997). Structural analysis of Arabidopsis thaliana chromosome 5. I. 

Sequence features of the 1.6 Mb regions covered by twenty physically assigned P1 

clones. DNA Res 4, 215-230 
 
Scheres B, Wolkenfelt H, Willemsen V, Terlouw M, Lawson E, Dean C, Weisbeek P 
(1994). Embryonic origin of the Arabidopsis primary root and root meristem initials. 

Development 120, 2475-2487 
 
Schroeder DF, Gahrtz M, Maxwell BB, Cook RK, Kan JM, Alonso JM, Ecker JR 
Chory J (2002). De-etiolated 1 and damaged DNA binding protein 1 interact to regulate 

Arabidopsis photomorphogenesis. Curr Biol 12, 1462–1472 
 
Schwechheimer C, Deng XW (2000). The COP/DET/FUS proteins: regulators of 

eukaryotic growth and development. Semin Cell Dev Biol 11, 495–503 
 
Searle, I, Coupland G (2004). Induction of flowering by seasonal changes in 

photoperiod. EMBO J 23, 1217-1222 
 
Seo HS, Yang JY, Ishikawa M, Bolle C, Ballesteros ML, Chua NH (2003). LAF1 
ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature 

423, 995–999 
 
Sharrock RA, Clark T (2002). Patterns of expression and normalized levels of the five 

Arabidopsis phytochromes. Plant Physiol 130, 442-456  
 
Simpson GG, Dean C (2002). Arabidopsis, the Rosetta stone of flowering time? 

Science 296, 285–289 
 
Sivaguru M, Fujiwara T, Samaj J, Baluska F, Yang Z, Osawa H, Maeda T, Mori T, 
Volkmann D, Matsumoto H (2000). Aluminum-induced 1-->3-beta-D-glucan inhibits 

cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of 

aluminum toxicity in plants. Plant Physiol 124, 991-1006 
Somers DE, Quail PH (1995). Temporal and spatial expression patterns of PHYA and 

PHYB genes in Arabidopsis. Plant J 7, 413–427 
 



. 107 

Steiglitz H (1977). Role of β-1,3-glucanase in postmeiotic microspore release. Dev Biol 

57, 87–97 
 
Stieglitz H, Stern H (1973). Regulation of β-1,3-glucanase activity in developing 

anthers of Lilium. Dev Biol 34, 169–173 
 
Stone BA, Clarke AE (1992). Chemistry and Biology of (1 3)- -D-Glucans. La Trobe 

University Press, Victoria, Australia 

 
Takada S, Goto K (2003). TERMINAL FLOWER2, an Arabidopsis homolog of 

HETEROCHROMATIN PROTEIN1, counteracts the activation of FLOWERING 

LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. 

Plant Cell 15, 2856–2865 
 
The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the 

flowering plant Arabidopsis thaliana. Nature 408, 796-815 
 
Toledo-Ortiz G, Huq E, Quail PH (2003). The Arabidopsis basic/helix-loop-helix 

transcription factor family. Plant Cell 15, 1749–1770  
 
Torii KU, Stoop-Myer CD, Okamoto H, Coleman JE, Matsui M, Deng XW (1999). 

The RING finger motif of photomorphogenic repressor COP1 specifically interacts with 

the RING-H2 motif of novel Arabidopsis protein. J Biol Chem 274, 27674–27681 
 
Toth R, Kevei E, Hall A, Millar AJ, Nagy F, Kozma-Bognar L (2001). Circadian 
clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis. 

Plant Physiol 127, 1607–1616 
 
Ulm R, Baumann A, Oravecz A, Máté Z, Ádám É, Oakeley EJ, Schäfer E, Nagy F 
(2004). Genome-wide analysis of gene expression reveals function of the bZIP 

transcription factor HY5 in the UV-B response of Arabidopsis. Proc Natl Acad Sci USA 

101, 1397–1402 
 
Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G (2004). 
Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 

303, 1003–1006 
 
Verma DPS (2001). Cytokinesis and building of the cell plate in plants. Annu Rev Plant 
Physiol Plant Mol Biol 52, 751-784 
 
Verma DPS, Hong Z (2001). Plant callose synthase complexes. Plant Mol Biol 47, 693-
701 

 



. 108 

Von Arnim AG, Deng XW (1994). Light inactivation of Arabidopsis 

photomorphogenic repressor COP1 involves a cell-specific regulation of its 

nucleocytoplasmic partitioning. Cell 79, 1035–1045 
 
Wang H, Ma LG, Li JM, Zhao HY, Deng XW (2001). Direct interaction of 

Arabidopsis cryptochromes with COP1 in light control development. Science 294, 154–
158 

 
Warmke HE Overman MA (1972) Cytoplasmic male sterility in sorghum. 1. Callose 

behavior in fertile and sterile anthers. J Hered 63, 103–108 
 
Wei N, Deng XW (1996). The role of the COP/DET/FUS genes in light control of 

Arabidopsis seedling development. Plant Physiol 112, 871–878 
 
Wei N, Kwok SF, von Arnim AG, Lee A, McNellis TW, Piekos B, Deng XW (1994). 

Arabidopsis COP8, COP10, and COP11 genes are involved in repression of 

photomorphogenic development in darkness. Plant Cell 6, 629-643 
 
Worrall D, Hird DL, Hodge T, Paul W, Draper J (1992). Premature dissolution of the 

micosporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell 4, 759-
771  

 
Yamamoto YY, Deng X, Matui M (2001). Cip4, a new COP1 target, is a nucleus-
localized positive regulator of Arabidopsis photomorphogenesis. Plant Cell 13, 399-411 
 

Yamamoto YY, Matsui M, Ang LH, Deng WD 
(1998). Role of a COP1 interactive 

protein in mediating light-regulated gene expression in Arabidopsis. Plant Cell 10, 1083-
1094 

 
Yang HQ, Tang RH, Cashmore AR (2001). The signaling mechanism of Arabidopsis 

CRY1 involves direct interaction with COP1. Plant Cell 13, 2573–2587 
 
Yang J, Lin R, Sullivan J, Hoecker U, Liu B, Xu L, Deng XW, Wang H (2005). 

Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for 

light signaling in Arabidopsis. Plant Cell 17, 804–821 
 
Yanisch-Perron C, Vieira J, Messing J (1985). Improved M13 phage cloning vectors 

and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 
103-109 

  

Yeh KC, Lagarias JC (1998). Eukaryotic phytochromes: light-regulated 

serine/threonine protein kinases with histidine kinase ancestry. Proc Natl Acad Sci USA 

95, 13976-13981   
 



. 109 

VITA 

 

 

Name:  Bo Hyun Byun 

Address: 1094 Wellington Street, Apt # 1002 

  Halifax, NS B3H 2Z9 

  CANADA 

Email Address: bbyun@bio.tamu.edu  

Education: B.S., Genetic Engineering, University of Suwon, 1996 

  M.S., Seoul National University, 1998 

  Ph.D. Texas A&M University, 2008  

 


