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ABSTRACT

Magneto-Optical Control of Coherent Nonlinear Processes. (May 2008)

Paul Steve Hsu, B.S., University of National Central University

Chair of Advisory Committee: Dr. George R. Welch

Laser-atom interactions create atomic coherence and large nonlinear atomic po-

larization. We investigate resonant laser-atom interactions to generate large nonlin-

earities and control them using magneto-optical fields. Coherent control of high-order

susceptibilities and magneto-optical rotation are demonstrated. Experiments are sup-

ported by theoretical studies that effectively describe the observed phenomena.

It is shown that a new coherent field, with polarization orthogonal to a weak

signal field, can be parametrically generated via an all-resonant four-wave-mixing

process. This is demonstrated in a double-ladder system having two intermediate

states between a ground and an excited state. It is shown that the parametric-

generation process can be coherently controlled by coupling lasers and magnetic fields.

It is theoretically established that the underlying physics is a resonant three-photon

process with a wide domain of control parameters.

Electromagnetically induced transparency (EIT), where absorption of a weak

probe is suppressed via quantum interference, is demonstrated in a usual three-level

ladder system. It is observed that in contrast with EIT in a usual ladder system,

addition of a second channel helps to suppress the absorption of two weak probe

fields in the double-ladder system. The resulting enhancement of transmission in two

different channels is due to gain caused by three-photon processes.

Coherent control is strongly limited by coherence lifetime, which is the inverse of

the dephasing rate. A lambda-system, having two ground states coupled to a common

excited state by lasers, can generate a new eigen (dark)-state that is transparent to
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incoming fields and hence suppresses fluorescence. However, ground-state dephasing

perturbs the dark state. A new method for measuring the ground-state dephasing

rate from fluorescence signals is proposed and a proof-of-principle experiment demon-

strated.

While two laser fields in a lambda-system are resonant with their respective

transitions, the atomic polarizations are very sensitive to an applied magnetic field.

This effect can be used for optical magnetometry. The degree of sensitivity of the

magnetometer is determined by two competing parameters–atomic density and laser

intensity. It is shown experimentally that the optimal sensitivity reaches saturation,

which is contrary to the idea that sensitivity increases indefinitely with an increase

in the above parameters.
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CHAPTER I

INTRODUCTION

The interaction of light and matter is a lively research area, and has been for at least

two centuries. The early area of this field was wrestling with the nature of light as

rays. By the 17th century, the two rival concepts of corpuscles [1] and waves [2] were

well established. In the 19th century, Maxwell built the foundations of modern field

theory with a detailed account of light as electromagnetic waves. In the 20th century,

the field was revolutionized when Max Plank proposed the important supposition

that the electromagnetic energy could be emitted only in quantized form [3], i.e., the

energy could only be a multiple of an elementary unit E = hν. Later followed Albert

Einstein’s postulation on the rate of emission and absorption of light in the medium

[4]. Therefore the absorption and emission of light could be thought to be a property

of light-matter interaction. By 1913, Bohr applied the fundamental idea of quantiza-

tion of atomic dynamics and was able to predict the position of atomic spectra. Since

then, the light-matter interaction can be completely described in the atomic system.

The two postulates by Plank and Einstein opened a new era of the study of light and

matter interaction, in particular, when the coherent light source became available in

1958 [5]. The use of coherent light, for its ability in the selection of excited atoms

and the preparation of atoms in a coherent superposition of energy states, have found

tremendous applications in the study of light-matter interaction and understanding of

the underlying physics in the interaction. In the last two decades, new developments

have made it possible to control and manipulate the optical properties of atomic en-

sembles via coherent laser light. There are numerous excited phenomena that have

The journal model is IEEE Transactions on Automatic Control.
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been observed such as : coherent population trapping (CPT) [6], electromagneti-

cally induced transparency(EIT) [7], lasing without inversion (LIW) [8, 9, 10], laser

cooling and trapping of neutral atoms [11], Bose-Einstein condensation (BEC) [12],

ultra-slow [13, 14, 15] and superluminal light [16] propagation, and quantum mem-

ories for photons [17, 18]. The foundation of those excitements is atomic coherence.

Therefore, those nonlinear optical processes can be varied via controlling the atomic

coherence. This dissertation addresses the control of atomic coherence in three main

parts: (i) magneto-optical control of nonlinear process in a double-ladder system, (ii)

new method for ground-state dephasing measurement, and (iii)optical magnetometry

with intense laser fields.

A. Interaction of electromagnetic wave with matter

The modern concept of light contains elements of both particle and wave. This prop-

erty is referred to as wave-particle duality. A compatible and unambiguous theoreti-

cal explanation of light and the interaction of light and matter is given by Maxwell’s

electromagnetic theory and the quantum. The combined theory is known as quantum

electrodynamics. In this section, we present the general methods to describe the basic

interaction process between the light and atoms.

1. Maxwell’s equation for the propagation dynamic of a classical EM wave

The electromagnetic field radiation propagation through the medium is governed by

Maxwell’s equations [19]

~∇ · ~D = 0, (1.1)

~∇ · ~B = 0, (1.2)

~∇× ~E +
1

c

∂~B

∂t
= 0, (1.3)
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~∇× ~H − 1

c

∂ ~D

∂t
= 0. (1.4)

Here ~D is the displacement, ~E is the electric field, ~H is the magnetic field, and c is

the speed of light. The electric displacement ~D and magnetic induction ~B are defined

as

~D = ~E + 4π~P, ~B = ~H + 4π ~M, (1.5)

where ~P is the macroscopic polarization of the media and ~M is the magnetization of

the medium. In this dissertation, the systems under consideration are non-magnetic

medium, implying ~M = 0. In this case ~B=~H, and combining the curl equations

(1.3)(1.4) and using (1.5), we get

~∇× ~∇× ~E +
1

c2
∂2

∂t2
(~E + 4π~P) = 0. (1.6)

Moreover, in isotropic media ~D = ǫ~E, where ǫ is the permittivity of the medium.

Therefore from Eq. (1.1), we get ~∇ · ~E = 0. By applying this condition in the triple

product of Eq. (1.6), the equation (1.6) then reduced to

∇2~E− 1

c2
∂2~E

∂t2
=

4π

c2
∂2~P

∂t2
. (1.7)

In the following calculations we consider a plane wave, circularly polarized in the x−y

plane, propagating along the z-direction in the medium

~E(z, t) = ǫ̂E(z, t)eikz−iwt + c.c, (1.8)

where E(z) is the amplitude of the field with a central frequency w, propagation wave

vector ~k (k = |~k|) and the direction of electric field is ǫ̂. For the continues wave laser,

the time dependent of E is negligible.

If the electric field is written as in Eq. (1.8) then the response of medium is given
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by the polarization

~P(z, t) = ǫ̂P(z, t)eikz−iwt + c.c, (1.9)

where P is a slow varying function of position and time. The induced polarization can

be expanded in a Taylor series in the power of the laser field ~E. The αth component

of the polarization is

Pα(z, t) = Pα|E=0 +
∑

β

(
∂Pα

∂Eβ
)

︸ ︷︷ ︸

χ(1)

|E=0Eβ +
1

2!

∑

β,γ

(
∂2Pα

∂Eβ∂Eγ
)

︸ ︷︷ ︸

χ(2)

|E=0EβEγ + · · ··, (1.10)

where the χ(1) and χ(2) are known as the linear susceptibility and the second-order

nonlinear susceptibility, respectively. In conventional (i.e., linear) optics, the induced

polarization depends linearly on the electric field strength, i.e., P = χ(1)E. The high

order susceptibilities, i.e., χ(n)(n ≫ 1withn ∈ N), correspond the nonlinear part of

the induced polarization. However, the investigation of interest in this dissertation is

to determine the response to the medium to a weak field. Hence in this chapter, we

will only deal with the the linear susceptibility. For brevity, the superscript in χ has

been dropped.

The induced macroscopic polarization ~P(z,t) in Eq. (1.9) can be rewritten as

~P(z, t) = ~ǫχ(w)E(z)eikz−iwt + c.c. (1.11)

The susceptibility could be time dependent. However, our concern is only on the

steady state behavior.

Now coming back to the Eq. (1.7) with the field propagation along z-direction

in (1.8), the corresponding Eq. (1.7) can be rewritten as

∂2~E

∂z2
− 1

c2
∂2~E

∂t2
=

4π

c2
∂2~P

∂t2
. (1.12)
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The expressions for ~E and ~P are substituted from Eqs. (1.8) and (1.9) in Eq.

(1.12), we get

∂E
∂z

+
1

c

∂E
∂t

= 2iπkP. (1.13)

In the derivation of Eq.(1.13). The characteristic changes of amplitude and phase

of the electromagnetic wave are slowly varying functions of position compared to the

scale of the optical wavelength, and slowly varying functions of time compared to one

cycle of optical oscillation. In this case we can apply the slowly varying amplitude

approximation [20]:

∂E
∂z

≪ kE , ∂E
∂z

≪ wE , ∂P
∂t

≪ wP, ∂P
∂t

≪ kP. (1.14)

2. Quantum statistics treatment of atomic dynamics

A quantum mechanical state in the atomic system is represented by |ψ〉. The behavior

of |ψ〉 should satisfy the Schrodinger equation [21]

ih̄
∂|ψ〉
∂t

= H|ψ〉, (1.15)

where H is the Hamiltonian operator of the system under study. The physical quan-

tities of interest and their time dependence are determined by the solution of this

equation. An alternative way, especially to deal with atomic spectroscopic problems,

is to consider an operator ρ̂ instead of the state vector |ψ〉. This operator ρ̂ is called

density operator and it is defined as

ρ̂ = |ψ〉〈ψ| =
∑

i,j

ρi,j |i〉〈j|, (1.16)

where |i〉 is a complete set of atomic states and the matric elements is ρi,j = 〈i|ρ̂|j〉.
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Thus

Trρ =
∑

i=j

ρii = 1, (1.17)

which satisfy the statement of conservation of probability. Here the trace Tr of a n-

by-n square matrix is defined to be TrM =
∑

n Mnn. From the Schrodinger equation

(1.15), it can be shown that

∂ρ

∂t
= − i

h̄
[H, ρ], (1.18)

which is known as the Liouville equation of motion for the density matrix [22]. In

Eq. (1.18), the decay of the atomic levels due to spontaneous emission is not in-

cluded. The radiative decay from excited state can be also induced by collisions and

other phenomena. The finite lifetime of atomic levels can be described by adding

phenomenological decay terms to (1.18) [20], thus the Eq. (1.18) becomes

∂ρ

∂t
= − i

h̄
[H, ρ] − 1

2
{Γ, ρ}, (1.19)

where Γ is a relaxation matrix, {Γ, ρ} = Γρ+ ρΓ. The decay rates are determined by

a relaxation matrix Γ as 〈i|Γ|j〉 = γiδij.

The ijth matrix element of Eq. (1.19) is

∂ρij

∂t
= − i

h̄

∑

k

(Hikρkj − ρikHkj) −
1

2

∑

k

(Γikρkj + ρikΓkj). (1.20)

The dynamics of light-atom interaction can be fully described by Eq. (1.20) incorpo-

rated with Eq. (1.13).
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CHAPTER II

STUDY OF RESONANT χ(3) PROCESS IN DOUBLE-LADDER SYSTEM

A. Introduction

In this chapter we theoretically study the interaction of light with atoms for the case

of a simple four-level double-ladder scheme. We use semiclassical theory, assuming a

classical light field and quantized atomic states. The theoretical analysis will focus

on the resonant χ(3) processes in this system.

The chapter is organized as follows. First, we briefly introduce the nonlinear

process in the atomic system, especially in the lambda, ladder and double-ladder

systems. Then we derive the time evolution density matrix elements in a general

double-ladder interaction scheme and analyze the role of χ(3) terms. Further we derive

analytical expressions for the propagation dynamics of the probe fields. Finally, we

summarize and conclude the work in this chapter.

B. Brief review of nonlinear process in the atomic system

Kerr nonlinearity, a well known phenomena that refers to the third-order susceptibili-

ties χ(3) has wide variety of applications such as frequency conversion [23], nonlinear

light control [24, 25, 26] and parametric generations [27] etc. This third-order sus-

ceptibility can be resonantly enhanced, however the linear absorption also increases

as well. With the advent of methods to suppress resonant absorption such as elec-

tromagnetically induced transparency (EIT) [7, 28], the resonant enhancement of

nonlinear process could be achieved at level of a few photons [29, 30]. In a four-level

Λ system, the absorptive part of the enhanced third order nonlinearity can be used to

control two photon absorption and achieve quantum switching [25]. The refractive
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part of the enhanced third order Kerr nonlinearity can be several orders of magnitude

larger than obtained by a conventional three-level scheme, and this can be used for

resonant cross phase modulation (XPM) [26, 31, 32]. Enhancement of resonant [33]

and off-resonant [34, 35] χ(3) processes based on EIT in the double-Λ configuration

have also been experimentally demonstrated.

Nonlinear optical processes can also be enhanced and controlled by using EIT

in a ladder configuration [24, 36, 37, 38]. Tewari and Agarwal [24] have theoreti-

cal studied control of phase matching and nonlinear generation in dense media by

resonant fields in a ladder system. Several experimental and theoretical works have

also been reported by Hakuta et al. [36, 37] on resonant enhancement of nonlinear

optical generation by using EIT in ladder configuration with atomic hydrogen. To

create an additional control channel for absorption and dispersion of the probe field,

researcher have studied an EIT-related atomic system in a double-ladder configura-

tion. Wielandy and Gaeta [39] first experimentally demonstrated the use of quantum

coherence to control the polarization state of a probe field. They reported a large

birefringence and hence a large polarization rotation in a double-ladder system of

85RB. Futher theoretical investigations by Patnaik and Agarwal [40, 41] showed that

the polarization state can be coherently controlled by a strong laser field and a static

magnetic field. In a similar level configuration, Yoon et al. have shown laser-induced

birefringence (LIB) in Ytterbium atoms and they also used the dispersion part of the

LIB signal to stabilize the frequency source for a ring dye laser [42]. In the following,

we will provide a detailed theoretical analysis of a double-ladder system.
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Fig. 1. Diagram showing the energy levels of a double-ladder system.
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C. System and atomic dynamics

In this section we theoretically investigate nonlinear χ(3) processes in a double-ladder

system as shown in Fig. 1. We consider the cascaded transitions |b〉↔|a〉(|a′〉)↔|c〉

that could refer to |j = 0, m = 0〉↔ |j = 1, m = ±1〉↔ |j = 0, m = 0〉 transitions,

with |a〉 and |a′〉 as the magnetic sublevels with m = ±1. A weak probe field Ep

couples the transitions |b〉 to |a〉 and |a′〉, and a drive field Ed couples transition |a〉

and |a′〉 to |c〉. The fields are assumed to be linearly polarized. For simplicity, the

transition m = 0 ↔ m = 0 is dropped and also it is assumed that the population loss

to the m = 0 state by spontaneous emission could be pumped back by an incoherent

pump. Considering the circular polarization component of each field, we have four

monochromatic fields propagating along the z direction with polarization ǫ̂±,

~Ep±(z, t) = Ep±ǫ̂±(z)e−iwp±t+ikp±z + c.c.,

~Ed±(z, t) = Ed±ǫ̂±(z)e−iwd±t+ikd±z + c.c., (2.1)

where the unit polarization vector ǫ̂± corresponds to σ± polarization, Eα represents the

amplitude of the electromagnetic field and kα corresponds to the propagation constant

with central frequency ωα; α→p±, d±. For simplicity, we assume that the two circular

components of probe (drive) fields have the same frequency and propagation constant

ωp+ = ωp− = ωp, kp+ = kp− = kp (ωd+ = ωd− = ωd, kd+ = kd− = kd).

The dipole matrix elements corresponding to |c〉 ↔ |i〉 and |i〉 ↔ |b〉 (i = a,a′)

transition are represented by ~℘ci and ~℘ib, respectively. These matrix elements can be

written with their corresponding unit vectors as

~℘ca′ = −℘dǫ̂+, ~℘ca = ℘dǫ̂−,

~℘a′b = −℘pǫ̂−, ~℘ca = ℘pǫ̂+, (2.2)
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where ℘d (℘p) are the dipole moment of drive transitions j = 0 ↔ j = 1 (probe

transitions j = 1 ↔ j = 0). In terms of Fig. 1, the atomic Hamiltonian Ho is written

as

Ho = h̄[ωaAaa + ωa′Aa′a′ + ωcAcc], (2.3)

and the interaction Hamiltonian HI is

HI = −[ ~℘ca · ~Ed−Aca + ~℘ca′ · ~Ed+Aca′ + ~℘ab · ~Ep+Aab + ~℘a′b · ~Ep−Aa′b +H.C.]. (2.4)

Here h̄ωj (j=a,a′,c) corresponds to the energy separation between |j〉 and |b〉, and

Amn=|m〉〈n| represents the atomic transition for m 6= n and atomic population for

m = n. The magnetic sublevles |a〉 and |a′〉 are degenerate in our model, therefore

the ωa′ is the same as ωa (ω′
a=ωa).

The atomic wave function |ψ〉 will satisfy the Schrodinger equation

∂

∂t
|ψ〉 =

−i
h̄
H|ψ〉, (2.5)

where H = Ho + HI is the total Hamiltonian of the system. We perform a unitary

transformation U(t) = exp[iHot/h̄] on the wave function |ψ′〉 = U(t)|ψ〉. From (2.5),

we get

∂

∂t
|ψ′〉 =

−i
h̄
UHIU

†

︸ ︷︷ ︸

H̄

|ψ′〉 =
−i
h̄
H̄|ψ′〉. (2.6)

The Hamiltonian H̄ in the interaction picture is

H̄(t) = −h̄[(Ωd+Aca + Ωd−Aca′)eikdzei∆t + (Ωp+Aab + Ωp−Aa′b)e
ikpzeiδt +

(Ω
′

d+Aca + Ω
′

d−Aca′)e−ikdzei(ωd+ωc)t + (Ω
′

p+Aab + Ω
′

p−Aa′b)e
−ikpzei(ωp+ωa)t

+H.C.], (2.7)
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where ∆ = ωd − ωc is the detuning of the drive field, δ = ωp − ωa is the detuning

of the probe field, and the coupling Rabi frequencies Ωp± and Ωd± of the probe and

drive fields in (2.7) are

Ωp+ =
℘pEp+

h̄
and Ωp− =

−℘pEp−

h̄
,

Ωd− =
℘dEd−

h̄
and Ωd+ =

−℘dEd+

h̄
. (2.8)

The spatial dependent term eikαz (α = p,d) in the Hamiltonian is assumed to be 1 due

to the wavelength ≫ dimension of atom, dipole approximation, i.e., kαz ≪ 1, eikαz ≃ 1

[20].

It may be noted that (2.7) contains two type of terms, the slow varying terms

which the complex exponents multiply Rabi frequencies Ωs and rapidly oscillation

terms, oscillation at a frequencies (ωp + ωa) and (ωd + ωc), associated with Ω
′

s (s

= p±, d±). For a continuous wave laser working at optical frequency Ω
′

s ≪ (ωp +

ωa), (ωd +ωc), then rapidly oscillatory terms are unimportant compared to slow vary-

ing term. These terms can therefore be neglected in the rotating wave approximation

(RWA) [20]. Thus the simplified Hamiltonian can be rewritten as

H̄RWA(t) = −h̄[(Ωd+Aca + Ωd−Aca′)ei∆t + (Ωp+Aab + Ωp−Aa′b)e
iδt +H.C.].(2.9)

The approximate interaction Hamiltonian H̄RWA needs to be transformed back to the

Schrodinger picture, HI,RWA = U †H̄RWAU .

The atomic Hamiltonian H0 is unaffected by the approximation, so the total

Hamiltonian in the Schrdinger picture under the RAW is

HRWA = Ho +HI,RWA

= h̄[ωaAaa + ωa′Aa′a′ + ωcAcc] − h̄[(Ωd+Aca + Ωd−Aca′)e−iωdt

+(Ωp+Aab + Ωp−Aa′b)e
−iωpt +H.C.]. (2.10)
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The equation of motion for the double-ladder system is given by the density-

matrix equation

ρ̇ =
−i
h̄

[HRWA, ρ] + decay terms. (2.11)

We consider spatial evolution of the complex Rabi frequency Ωp± corresponding

to the probe transitions and the atomic polarization P± = N℘pρ± ( ρ+= ρab, ρ−=

ρa′b). Here ρ± corresponds to the density matrix element in probe transition ρab and

ρa′b, and N is the atomic density. The propagation of the field along the z direction

in the medium is governed by the Maxwell-Bloch equation. The field contains the

fast and slow oscillation terms, thus the Maxwell-Bloch equation can be simplified

using slowly varying amplitude approximation as [20]

∂Ωp±

∂z
= iηρ±, (2.12)

where η = kpN℘
2
p / h̄ǫ0.

Note that the density matrix elements for probe and drive transitions also contain

the slow and fast oscillation terms, therefore we need to use RWA transforming ρ→ρ̃

to eliminate the rapid temporal oscillations

ρjb = ρ̃jbe
−iwpt,

ρcj = ρ̃cje
−iwdt,

ρcb = ρ̃cbe
−i(wp+wd)t,

ρj′j′ = ρ̃j′j′, (2.13)

where j = a, a′ and j′ = a, b, c.

The dynamic equations for the atomic system evolution are given by the density
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matrix equations

∂ρcc

∂t
= −2(Γ1 + Γ2)ρcc + iΩd−ρac − iΩ∗

d−ρca + iΩd+ρa′c

−iΩ∗
d+ρca′ ,

∂ρca

∂t
= −(Γ1 + Γ2 + γ1 + i(∆ − ξ))ρca

+iΩd−(ρaa − ρcc) + iΩd+ρa′a − iΩ∗
p+ρcb,

∂ρca′

∂t
= −(Γ1 + Γ2 + γ2 + i(∆ + ξ))ρca′,

+iΩd+(ρa′a′ − ρcc) + iΩd−ρaa′ − iΩ∗
p−ρcb,

∂ρcb

∂t
= −(Γ1 + Γ2 + i(∆ + δ))ρcb

+iΩd−ρab + iΩd+ρa′b − iΩp+ρca − iΩp−ρca′ ,

∂ρaa

∂t
= 2Γ1ρcc − 2γ1ρaa + iΩ∗

d−ρca

−iΩd−ρac + iΩp+ρba − iΩ∗
p+ρab,

∂ρaa′

∂t
= −(γ1 + γ2 + 2iξ)ρaa′ + iΩ∗

d−ρca′

+iΩp+ρba′ − iΩd+ρac − iΩ∗
p−ρab,

∂ρab

∂t
= −(γ1 + i(δ + ξ))ρab + iΩp+(ρbb − ρaa)

+iΩ∗
d−ρcb − iΩp−ρaa′ ,

∂ρa′a′

∂t
= 2Γ2ρcc − 2γ2ρa′a′ + iΩ∗

d+ρca′

−iΩd+ρa′c + iΩp−ρba′ − iΩ∗
p−ρa′b,

∂ρa′b

∂t
= −(γ2 + i(δ − ξ))ρa′b + iΩp−(ρbb − ρa′a′)

+iΩ∗
d+ρcb − iΩp+ρa′a,

∂ρbb

∂t
= 2γ1ρaa + 2γ2ρa′a′ + iΩ∗

p+ρab

−iΩp+ρba + iΩ∗
p−ρa′b − iΩp−ρba′ ,

(2.14)
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where the δ(∆) is the detuning of the probe(drive) field from the line center of the in-

termediate Zeeman states, and 2ξ is the Zeeman splitting created by a static magnetic

field. The Γl and γl (l=1,2) are the rates of spontaneous decay. For simplicity, we

assume Γl=Γ (γl=γ) in the following calculations. To obtain the atomic polarization

P± created by the probe transitions, we calculate the off diagonal coherence terms

ρab and ρa′b. With the assumption of |Ωd±|≫|Ωp±|, the analytical solutions for the

steady state are obtained by solving Eqns. (2.14) are

ρab = Λ
(1)
ab Ωp+ + Λ

(3)
ab Ωp−,

ρa′b = Λ
(1)
a′bΩp− + Λ

(3)
a′bΩp+.

(2.15)

These solutions are obtained to the first order in both weak fields Ωp+ and Ωp−.

Writing the solutions explicitly, we have

ρab = Ωp+
i[|Ωd+|2 + (γ + i(δ − ξ))(2Γ + i(∆ + δ))]

D1
︸ ︷︷ ︸

Λ
(1)
ab

+Ωp−
−iΩ∗

d−Ωd+

D1
︸ ︷︷ ︸

Λ
(3)
ab

, (2.16)

ρa′b = Ωp−
i[|Ωd−|2 + (γ + i(δ + ξ))(2Γ + i(∆ + δ))]

D2
︸ ︷︷ ︸

Λ
(1)

a′b

+Ωp+
−iΩd−Ω∗

d+

D2
︸ ︷︷ ︸

Λ
(3)

a′b

, (2.17)

where

D1 = |Ωd+|2(γ + i(δ + ξ)) + (γ + i(δ − ξ)[|Ωd−|2 + (2Γ + i(∆ + δ))(γ + i(δ + ξ))],

D2 = |Ωd−|2(γ + i(δ − ξ)) + (γ + i(δ + ξ)[|Ωd+|2 + (2Γ + i(∆ + δ))(γ + i(δ − ξ))].

(2.18)

Note that the first terms in both solutions of ραβ correspond to the first order contri-
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bution of the weak field to |α〉↔|β〉 transition. The second term is the zeroth-order

contribution of ραβ which originates from a 3-photon process, for example, Λ
(3)
ab Ωp− is

the zeroth-order term in the expansion of ρab for the field Ωp+ (i.e., Ωp+=0) but the

3-photon process via absorption of Ωp− and Ωd+ followed by stimulated emission in

Ωd− results in the χ(3) process under consideration. Much interesting physics can be

derived from Eqs. (2.16) and (2.17). For example, we can independently study the

χ(1) and χ(3) effects on the two probe transitions in different polarization states. This

can be realized if we consider one of the probe fields to be weak relative to the other.

Let us denote

ρ
(1)
ab = Λ

(1)
ab Ωp+, ρ

(3)
ab = Λ

(3)
ab Ωp−,

ρ
(1)
a′b = Λ

(1)
a′bΩp−, ρ

(3)
a′b = Λ

(3)
a′bΩp+. (2.19)

Such that we have ρab = ρ
(1)
ab + ρ

(3)
ab and ρa′b = ρ

(1)
a′b + ρ

(3)
a′b. Setting Ωp− three order

magnitude smaller than Ωp+, the ρ
(1)
a′b shall be negligible compared to ρ

(3)
a′b. Hence

ρa′b is essentially dominated by ρ
(3)
a′b and ρab is dominated by ρ

(1)
ab , and ρ

(3)
ab can be

negligible. Similar conclusion can be made for Ωp+ ≪ Ωp−. From Eqs. (2.16)(2.17),

we observe that if we set Ωd+=0, ρa′b reduces to ρ
(1)
a′b and given as

ρ
(1)
a′b =

iΩp−

(γ + i(δ − ξ))
(2.20)

that is a typical 2-level Lorentzian absorption profile, where as ρ
(3)
a′b=0. In the presence

of Ωd± the second term ρ
(3)
a′b in (2.17) produces a gain given by

ρ
(3)
a′b =

−iΩp+Ωd−Ω∗
d+

D2
. (2.21)

We plot the imaginary part of ρ
(1)
a′b, ρ

(3)
a′b and ρa′b in the following Fig. 2, where we show

the gain contribution from ρ
(3)
a′b and hence gain in the total Im[ρa′b]. Thus the effect of
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resonant χ(3) process is isolated from the strong χ(1) processes. Comparing Fig. 2 and

Fig. 3, we notice that ρa′b is totally dominated by ρ
(3)
a′b when the Ωd− is applied. Note

that for all the plots we have assumed the drive field to be resonant, and no magnetic

field, i.e., ∆ = 0, ξ = 0. If the scanning probe fields are off resonance, absorption

emerges due to flipping of the sign of Im[ρ
(3)
a′b].

D. Propagation dynamics of the probes

Using the derived analytical solutions (2.16) and (2.17). The Maxwell-Block equations

(7.6) can be rewritten in matrix form as

∂

∂z







Ωp+(z)

Ωp−(z)







≡ iη







Λ
(1)
ab Λ

(3)
ab

Λ
(3)
a′b Λ

(1)
a′b













Ωp+(z)

Ωp−(z)






, (2.22)

The propagation of the probe field can thus be calculated by using the eigenvalue

and eigenfunction method. For simplicity, we have considered ξ=0, i.e, there is no

magnetic field. The solutions for the probes can be obtained from the above equation

as







Ωp+(z)

Ωp−(z)







= C+e
ηλ1z







Ω∗
d−

Ω∗
d+







+ C−e
ηλ2z







−Ωd+

Ωd−






.

(2.23)

Solving for the eigenvalue of the 2×2 matrix we get

λ1 =
−(2Γ + i(∆ + δ))

|Ωd+|2 + |Ωd−|2 + (γ + iδ)(2Γ + i(∆ + δ))
,

λ2 =
−1

γ + iδ
.

(2.24)
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Fig. 2. Plots show the imaginary part of coherence (a) Im[ρ
(1)
a′b] (b) Im[ρ

(3)
a′b] and (c)

Im[ρa′b] as a function of probe detuning in the presence of drive field Ωd+=0

(solid line) and Ωd+=5 (dash line). In all the plots, we have assumed Ωp+=0.1,

Ωp−=10−3×Ωp+, Ωd−=5, Γ=0.3 and ∆ =0. All the frequencies scale in γ.
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and ∆ =0. All the frequencies scale in γ.
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The corresponding eigenfunction calculation leads to

C+ =
Ωp−(0)Ωd+ + Ωp+(0)Ωd−

|Ωd+|2 + |Ωd−|2
,

C− =
Ωp−(0)Ω∗

d− − Ωp+(0)Ω∗
d+

|Ωd+|2 + |Ωd−|2
.

(2.25)

To extract the underlying physics from Eqs. (2.23), we focus on the probe Ωp+(z)

and identify the regions of interest. From Eqs. (2.23), the solutions of Ωp±(z) can be

expanded

Ωp+(z) =
Ωp+(0)|Ωd−|2 + Ωp−(0)Ωd+Ω∗

d−

|Ωd+|2 + |Ωd−|2

×Exp[
−(2Γ + i(∆ + δ))ηz

|Ωd+|2 + |Ωd−|2 + (γ + iδ)(2Γ + i(∆ + δ))
]

︸ ︷︷ ︸

ladder transparency

+
Ωp+(0)|Ωd+|2 − Ωp−(0)Ωd+Ω∗

d−

|Ωd+|2 + |Ωd−|2
× Exp[

−ηz
γ + iδ

]
︸ ︷︷ ︸

2−level absorption

,

(2.26)

Ωp−(z) =
Ωp+(0)Ωd−Ω∗

d+ + Ωp−(0)|Ωd+|2
|Ωd+|2 + |Ωd−|2

×Exp[
−(2Γ + i(∆ + δ))ηz

|Ωd+|2 + |Ωd−|2 + (γ + iδ)(2Γ + i(∆ + δ))
]

︸ ︷︷ ︸

ladder transparency

+
Ωp−(0)|Ωd−|2 − Ωp+(0)Ωd−Ω∗

d+

|Ωd+|2 + |Ωd−|2
× Exp[

−ηz
γ + iδ

]
︸ ︷︷ ︸

2−level absorption

.

(2.27)

From the above equations, one observes the following: (i) when the weak probe

field Ωp+ and the strong drive field Ωd− are present and on resonance with their

respective transitions, the probe shows maximum transmission through the medium
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due to the EIT as shown in Fig. 4(a). The high transmission of the probe field can

be understood as due to the creation of the dark state between the states |c〉 and

|b〉. This result can be directly seen from our analytical solution once the 2-level

absorption term is dropped from Eq. (2.26) due to Ωd+=Ωp−=0 and therefore only

the ladder transparency term

Ωp+(z) = Ωp+(0)Exp[
−(2Γ + i(∆ + δ))ηz

|Ωd−|2 + (γ + iδ)(2Γ + i(∆ + δ))
], (2.28)

remains. Furthermore, if we let Ωd−=0 and Ωd+ 6= 0, then Eq. (2.26) reduces to a

typical solution for the two level system

Ωp+(z) = Ωp+(0)Exp[
−ηz
γ + iδ

]. (2.29)

(ii) If a strong resonant drive field Ωd+ is applied to the above ladder-EIT con-

dition in addition to Ωd− (and Ωp−=0), then the dark state created by Ωp+ and Ωd−

is perturbed, increasing the absorption of the probe Ωp+.

The absorption of Ωp+ followed by Ωd− optically pumps the state |c〉 which is

then coherently transferred to the state |a′〉 via the Ωd+ field, inducing the generation

of a χ(3) field Ωp−, shown as solid line in Fig. 4(b).

(iii) Next we consider when all four fields are present, the amplitudes of the

drive fields are the same (Ωd+ = Ωd− = Ωd), the amplitudes of the probe fields

are the same (Ωp+(0) = Ωp−(0) = Ωp(0)), and all the drive fields are resonant to

their respective transitions and probe fields have the same detuning. Under such

conditions, the transmission spectra for the two probe fields are identical due to the

symmetric configuration of the double ladder system, shown in Fig. 4(c). Then Eqs.

(2.26) and (2.27) for two probe fields can be reduced to

Ωp+(z) = Ωp−(z) = Ωp(0)Exp[
−(2Γ + i(δ + ∆))ηz

2|Ωd|2 + (γ + iδ)(2Γ + i(δ + ∆))
]. (2.30)
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The amplitude and width of the transmission spectra of two probe fields is higher

and broader than the transmission spectra of ladder-EIT shown in Fig. 4(a). With two

channels established to generate ladder coherences, the dark state which in the linear

combination of |c〉 and |b〉 becomes more robust with the symmetric configuration in a

double-ladder system. Hence a higher transmission is observed. A detailed discussion

of the enhancement in probe transmission will be discussed elsewhere. The increase

of transmission linewidth due to power broadening originates from the two strong

drive fields coupling to the common excited state |c〉.

From Fig. 4(b), we notice that the maximum transmission of the generated χ(3)

field occurs while the other three fields are on resonance. Therefore, optical control

of the χ(3) process in an all-resonant condition can be achieved as discussed in the

following. To have the probe χ(1) field and the generated χ(3) field separated in

two transitions with different polarization states, we turn off one of the input probe

fields and keep the other three fields (the probe and two drives) on resonance (i.e.,

Ωp−(0)=0; Ωp+(0), Ωd± 6= 0; δ = ∆ = 0). As a further step, assuming that the

optical medium is thin ηz≪γ and the drive field is strong |Ωd+|2 ≫ γΓ, we expand

the exponential terms to first order in their arguments. Thus Eqs. (2.26) and (2.27)

can be simplified to

Ωp+(z) ≈ Ωp+(0)[1 − |Ωd+|2ηz
γ(|Ωd+|2 + |Ωd−|2)

], (2.31)

Ωp−(z) ≈ Ωp+(0)Ωd−Ω∗
d+

|Ωd+|2 + |Ωd−|2
ηz

γ
. (2.32)

In Fig. 5 (a), we present a numerical plot of the intensity of probe field Ωp+ and the

generated χ(3) field Ωp− as a function of the intensity of the drive field |Ωd+|2, when

all fields are on resonance. The high transmission of the probe due to the EIT created
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Fig. 4. Theoretically calculated probe transmission as a function of probe detuning
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Ωd−=1, Ωd+=0; (b) Ωd−=Ωd+=1; (c) Ωd−=Ωd+=1, Ωp−(0)=Ωp+(0)=0.1. All

the frequencies scale in with γ.
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by the strong drive field Ωd− is reduced via the increase of Ωd+. At the same time,

more population is optically pumped to the state |c〉 to generate the χ(3) field. In

Fig. 5(b), when Ωd−=0, only the probe Ωp+ and drive Ωd+ are present. Because the

two fields are not coupled to each other, the probe has low transmission due to the

resonant absorption and no χ(3) field is generated. Applying the drive field Ωd− not

only helps to increase probe transmission, but also generates the χ(3) field through

the three photon resonant process. The Fig. 5 (a) and (b) can be described by using

Eqs. (2.31) and (2.32). The intensities of both the probe and the χ(3) fields have

quadratic dependence on the drive field intensity |Ωd+|2 but with opposite signs, as

shown in above Eqns. (2.31) and (2.32).

In Fig. 5 (a) and (b), we observe that the amplitude of the χ(3) field is maxi-

mum when the amplitudes of the two orthogonal drive fields are the same (Ωd±=Ωd).

To study the optimal generation efficiency of the resonant χ(3) process, we plot the

intensity of output probe and the χ(3) field as a function of the drive field intensity

|Ωd|2, shown in Fig. 5 (c). Initially, larger drive field intensity helps to improve the

transmission of the probe field and increase amplitude of the χ(3) field. However,

when the drive fields are very strong |Ω2
d| ≫ γΓ, the transmission of probe field and

the χ(3) field are saturated. Since the amplitude of two drive field are the same, the

above Eqs. (2.31) and (2.32) can be further simplified to

Ωp+(z) ≈ Ωp+(0)[1 − ηz

2γ
], (2.33)

Ωp−(z) ≈ Ωp+(0)
ηz

2γ
. (2.34)

From Eqs. (2.33) and (2.34) we observe that the output probe field Ωp+ and the χ(3)

field Ωp− both are independent of the strong drive fields. This explains the saturation

behavior of the two probe fields as shown in Fig. 5 (c).
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line) vary with the drive field. In these plots , the input fields Ωp+(0)=1 and

δ=∆=0. In (a) Ωd−=20, Ωd+ is varying, (b) Ωd+=20, Ωd− is varying. (c)

Ωd±=Ωd, Ωd is varying. All the frequencies scale in γ and ηz=0.05.



26

 δ δ

B=0 B=2.5
|Ω  |p+

|Ω  |p+

|Ω   |p-|Ω   |p-

γ

-10 -5 0 5 10

0.00

0.05

0.10
 

 

 

-10 -5 0 5 10

0.00

0.05

0.10

 

 

(a) (b)

Fig. 6. Plots show the probe field Ωp+ (dash line) and generated χ(3) field Ωp− (solid

line) as a function of probe detuning in the presence of (a) B=0 and (b) B=2.5.

Input probe Ωp+(0)=0.1, drive fields Ωd+=Ωd−=1, and ηz=1.5. All the frequen-

cies scale in γ.

The resonant χ(3) process can also be affected by a static magnetic field as shown

in Fig. 6. We discovered that the central frequency of the transmission peak for probe

Ωp+ and the generated field Ωp− remains the same and is unaffected by the magnetic

field. However, the magnetic-field-induced Zeeman level shift leads to a decrease of

population transfer through the resonant three photon process, which results in the

reduction of intensity of the transmission spectrum of the generated field.

E. Summary

We have derived general analytical solutions for the medium polarization correspond-

ing to the two circular polarization of probe fields in a double-ladder system. We

have studied the role of the zeroth-order three-photon terms on our analytical so-
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lution. We also demonstrate that significant gain on the probe transition can be

created through the resonant χ(3) process and the probe polarization can be totally

dominated by the three-photon gain. The analytical solutions for propagation dy-

namic of two probes are derived. A detail analysis for the analytical expressions in

various parameter domain was given. The use of the resonant χ(3) process for field

generation and for optical switching and control can have important applications for

optical communication and networking.
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CHAPTER III

MAGNETO-OPTICAL CONTROL OF PARAMETRIC GENERATION VIA

ALL-RESONANT FOUR-WAVE MIXING PROCESS IN DOUBLE-LADDER

SYSTEM

In chapter II we have theoretically studied the resonant χ(3) process in a double-

ladder system. From our analytical results, a new field can be generated via the

strong resonant χ(3) process. This generation process is also a four-wave mixing

process, because the generated three-photon signal can be only detected in a specific

direction which is defined by the wave vector equation, i.e., ~kg− = ~kp+ + ~kd− − ~kd+

where ~kg− and ~kp+ are the wave vectors for the generated new field and probe, ~kd−

and ~kd+ are the wave vector for two drive fields in different polarization states. To

properly describe the generation process, we use the term four-wave mixing process

instead of the resonant χ(3) process in the following.

In this chapter, we experimentally demonstrate parametric generation of a new

coherent field with a polarization orthogonal to the signal field via an all-resonant

four-wave mixing process in a double-ladder system. We show that the generation of

the coherent field is an efficient resonantly-enhanced process that can be realized in a

fairly dilute medium with relatively weak drive fields. Experimentally, we can control

both the generated field and also the input probe field simultaneously via the optical

fields and by applied magnetic fields.

A. Introduction

Parametric generation of coherent optical fields has been a subject of great interest

for the last couple few decades from both the perspectives of rich fundamental physics

and its wide ranging applications. The underlying non-linear polarization that gov-
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erns the generation process are predominantly either via parametric down conversion

or Raman four-wave mixing. These are typically weak off-resonant processes which

require driving the system by very high intensity lasers to get reasonable signal-to-

noise ratio [27]. However, with the advent of methods to suppress resonant absorption

such as Electromagnetically Induced Transparency (EIT) [28, 38], the resonant en-

hancement of non-linear processes can be achieved even at very low light levels [25].

Recently, coherent generation of a narrow-band field using off-resonant four-wave

mixing (FWM) has been reported in a dense atomic medium [33, 34, 35, 43]. The

spectral width of such a field is shown to be narrowed by the dispersive properties of

the dense medium [35]. However, in certain applications, such as polarization optical

switching [39, 40, 41, 42], a broader spectral width is more useful. Another popular

off-resonant field generation is coherent anti-Stokes Raman scattering (CARS) in a

double-lambda configuration [44]. However, the generation of a signal field is still

limited by the high intensity of the drive field, noise from the off-resonant field, and a

stringent phase matching condition to separate the (generated) anti-Stokes field from

other three fields [44, 45, 46].

In this dissertation, we propose an efficient and highly controllable resonant FWM

process in a double-ladder system to parametrically generate coherent light. In con-

trast to the resonant FWM in a lambda system [35], our system generates the field

with a broader linewidth using relatively low intensity pumps and at a frequency

that is the same as the probe laser. In a related work Zhang et. al. [47] have shown

multiwave mixing and their interferences. However, unlike their work, the generated

field in our system has polarization which is always orthogonal to the probe field, and

hence the signal detection is clean and easy.
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B. Experimental setup

We use a dilute gas cell consisting of Cesium atomic vapor which has a four level

double-ladder configuration, as shown in Fig. 7(a). The probe laser is tuned to the

62S1/2(F=4)→62P3/2(F
′=5) transition and the drive laser to the 62P3/2(F

′=5)→82S1/2

(F=4) (both on the D2 transition). The experimental setup is shown in Fig. 7(b). A

Cs vapor cell of length 5 cm is placed inside a two layer magnetic shield to suppress the

stray magnetic field that is present in the lab. The density of Cs vapor is controlled

with the temperature of the cell. We use a commercial Ti:sapphire laser (Coherent

899, linewidth approximately 500 kHz), tuned to 794.3 nm as the drive laser and an

external cavity diode laser as the probe with its wavelength tuned around 852.2 nm.

The drive laser is focused to a spot size of 500 µm and the probe is focused to

a spot size 200 µm. The probe and drive beams propagate in opposite directions

for approximate two-photon Doppler cancellation. The transmitted probe beam is

separated from the drive field via a 50/50 beam splitter. A compensating half-wave

plate is used to assure that the polarization state is not disturbed by the Brewster

angle from the beam splitter. To measure the transmitted spectrum corresponding to

the left- and right-circularly polarized light, we use two detectors and a quarter-wave

plate oriented at 45◦ to the polarization of the polarized beam splitter (PBS) to form

a balanced detection. The powers in both the probe and drive fields are controlled

by adjusting the half-wave plate before the polarizer. The polarizations of both the

fields can be varied by rotating the polarizer and the quarter-wave plate. Data is

taken by scanning the frequency of the probe laser and recording the transmission of

both the circularly polarized fields at the probe frequency on a digital scope.
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Fig. 8. A 1 µW input probe field σp+ and a 29 mW drive field σd− couple the Cs atoms

with atomic density N=1.1x1011 cm−3. The transmission of the probe and new

generated field σg− is varying with the input σd+ drive power.

C. Nonlinear FWM generation via resonant χ(3) process

1. Optical control of FWM generation

Our main experimental result, shown in Fig. 8, demonstrates efficient generation of

the new field in a polarization orthogonal to that of the probe field. Both the drive

fields are resonant with their respective transitions. If the drive field σd+ is absent,

i.e., only the σp+ and σd− fields are present, then our system reduces to a standard

ladder EIT configuration [38] and hence the probe σp+ transmission is maximum.

When the σd+ drive field is turned on, the onset of the generation of σg− occurs.

The power of the generated field σg− grows with the power of σd+ field. Further, the
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transmission of the probe σp+ and generated field σg− reaches maximum when the

probe is on resonance. The maximum transmitted powers of the probe and new fields

with increasing drive power is shown in Fig. 9. The high transmission of the probe σp+

field in absence of σd+ can be understood as due to creation of a dark state between

states |c〉 and |b〉. However, application of the σd+ perturbs the dark state and thus

the absorption of the probe σp+ increases. Also more atoms are optically pumped

to state |c〉 which is then coherently transferred to the state |a′〉 via the σd+ field

inducing a new source polarization (ρa′b 6= 0) that causes the new field generation.

For an input probe power of 1 µW, the maximum power of the generated field in Fig.

9 is about 0.05 µW, which amounts to a conversion efficiency of 5%. The underlying

physics is further clarified by the following analytical calculation.

We consider the spatial evolution of the field amplitudes represented by the com-

plex Rabi frequencies Ωj± (j=g,p). We assume that the magnitude of Rabi frequencies

of the drive fields |Ωd±|≫ |Ωp+| and also all the applied fields are on resonance to their

respective transitions. Using the slowly varying envelop approximation and dropping

the time dependence for our continuous wave fields, the Maxwell equations from Eq.

(1.14) can be written for the Rabi frequencies of the probe and generated field as

∂zΩp+ = −ηIm[ρab], ∂zΩg− = −ηIm[ρa′b]. (3.1)

Here η=(3/4π)Nλ2γ is equivalent to the inverse of the optical depth; N is the atomic

density; λ is wavelength. We can use Eqs. (2.16) and (2.17) to calculate coherences

ρij under the aforesaid conditions as

Im[ρab] =
Ωp+

γ

|Ωd+|2 + 2γΓ

|Ωd+|2 + |Ωd−|2 + 2γΓ
, (3.2)

Im[ρa′b] = −Ωp+

γ

Ωd−Ω∗
d+

|Ωd+|2 + |Ωd−|2 + 2γΓ
. (3.3)
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Fig. 9. The corresponding data from Fig. 8 when all fields (probe and two drive fields)

are on resonance. The dashed lines are a simple theoretical fit using Eqs. (3.4)

and (3.5).
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Note that we have ignored the real parts of the coherences as we consider all the fields

to be on resonance with their respective transitions–where Re[ρab]=Re[ρa′b]=0.

If we consider that the absorption of the probe to be small due to the EIT created

by the strong drive field σd−, the spatial evolution of the Rabi frequency of the probe

and the new field along the z direction can be expressed as

Ωp+(z)

Ωp+(0)
≈ 1 − ηz

|Ωd+|2 + 2γΓ

γ(|Ωd+|2 + |Ωd−|2 + 2γΓ)
, (3.4)

Ωg−(z)

Ωp+(0)
≈ ηz

Ωd−Ω∗
d+

γ(|Ωd+|2 + |Ωd−|2 + 2γΓ)
. (3.5)

From Eq. (3.5), it is clear that the new field’s amplitude is proportional to the

amplitude of the input probe field and atomic density. Therefore, a higher power of

the new field can be achieved by simultaneously increasing the input probe power

and atomic density. Further, from Eqs. (3.4) and (3.5), both the probe field and

new field have quadratic dependence, but with opposite sign, on the drive field σd+.

The experimental results shown in Fig. 9 qualitatively agree with Eqs. (3.4) and

(3.5). As the Doppler broadening of both σp+ and σg− fields and also absorption of

the σg− field are ignored, the theoretical plots give higher estimates compared to the

experiment. Both the new field and probe field can be controlled via the amplitude as

well as the phase of the two drive fields by considering the complex Rabi frequencies

as in Eq. (3.5), not shown in the figure. Further, it is interesting to note that the

frequency and width of the transmission spectra of the new generated field (several

tens of MHz) are the same as the probe field. The frequency of new field and the

probe are the same due to the symmetric configuration of the double-ladder system.

The broader spectral feature of new field comes from the resonant FWM process in

the Doppler broadened medium which will be discussed elsewhere.

The experimental data shown in Fig. 9 can not be quantitatively matched by
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Eqs. (3.4) and (3.5) due to not considering the Doppler and FWM signal absorption.

To quantitatively match experimental results, we use the analytical solution Eqs.

(2.26) and (2.27) which consider the absorption and three-photon gain for both probe

and FWM signal. Equations. (2.26) and (2.27) for FWM process can be re-written

as

Ωp+(z) = Ωp+(0){ |Ωd−|2
|Ωd+|2 + |Ωd−|2

Exp[
−2Γηz

|Ωd+|2 + |Ωd−|2 + 2γΓ
]

+
|Ωd+|2

|Ωd+|2 + |Ωd−|2
Exp[

−ηz
γ

]}, (3.6)

Ωg−(z) =
Ωp+(0)Ωd−Ω∗

d+

|Ωd+|2 + |Ωd−|2
{Exp[

−2Γηz

|Ωd+|2 + |Ωd−|2 + 2γΓ)
]

−Exp[
−ηz
γ

]}. (3.7)

By using Eqs. (3.6) and (3.7) with parameter P1, P2 and P3 to optimize the beam

profile and coupling conditions, atomic density in the multilevel system and Rabi

frequency for drive field (P1·Ωp+(0), P2·ηz and P3·|Ωd±|2). Using Eqs. (3.6) and (3.7)

to match the experimental data is better than using the simple reduced solutions Eqs.

(3.4) and (3.5), shown in Fig. 10. By analyzing the value of P1, P2 and P3, we can get

a good physical picture of (i) how well is our simple comprehensive model working on

the complicated multilevel system and (ii) to understand the experimental coupling

condition for the probe and drive which is very difficult to measure accurately. A

detailed analysis will be discussed in Ref [48].

From the above experimental results, we also discover that the maximum gen-

eration of the σp− field occurs while the power of two drive fields, σd− and σd+, are

the same. It is known that the combined two equal-amplitude circular components in

orthogonal polarization states can be seen as a linearly polarized field. To optimize
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the new field generation through the resonant χ(3) process, we therefore gradually

increase the linear drive power as shown in Fig. 11. The saturation of the probe

transmission while the linear drive field is strong agrees with Eq. (2.33). However,

the transmission saturation of the generated field which is described by Eq. (2.34) is

not observed due to the limited the drive power. A detailed analysis of the use of Eqs

(3.6) and (3.7) to match the experimental results will also be discussed in Ref [48].
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2. Control of FWM generation using a magnetic field

Next we demonstrate the control of this resonant χ(3) process with a static magnetic

field. For 133Cs atom D2 line, a 1 gauss magnetic field causes a Zeeman sublevel shift

by ∼ 1 MHz [49]. In Fig. 12(a), the probe σp+ field and generated field σp− show

maximum transmission when the probe and a linear drive field are on resonance.

Once a magnetic field is applied to the system, the transmission spectra of both fields

shifts and the amplitude of the σp− field decreases. Selected data are shown in Fig.

12 (b)-(d). From our theoretical simulations, shown in Fig. 6, the center frequency of

the transmission peak of σp+ and σg− is not affected by the Zeeman shift. However,

in our experimental results, we observe that transmission peak positions of the two

fields are functions of magnetic field, shown in Fig. 13. From Fig. 13, the frequency

shifting of σp+ and σg− depend quadratically on the magnetic field. The shift of

the transmission peak for both probe fields might result from the induced magnetic

dipole moment by the large magnetic field, and this effect can be very strong when

the system contains higher excited state optical transitions, e.g., atomic energy level

8S. Further investigation will be discussed in Ref [48].
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CHAPTER IV

TWO CHANNEL PROBE TRANSMISSION ENHANCEMENT OF DOUBLE-EIT

VIA RESONANT χ(3) PROCESS IN A DOUBLE-LADDER SYSTEM

A. Introduction

Electromagnetically Induced transparency (EIT) is an usually thought of as the effect

of inducing transparency with a weak probe field in an absorbing medium due to

the presence of a strong coupling field on a linked transition. Three popular level

schemes for EIT are V, lambda and ladder systems. The induced transparency of

lambda and ladder systems is due to population trapping in which the population

is transferred into a dark state [28, 38]. Unlike lambda and ladder systems, the

induced transparency of the V-type EIT is due to enhanced stimulated emission

by the interference of the two optical fields [50]. This controlling of the probe

transparency by strong coupling light can have many useful applications in optical

communications. To have an additional controllable optical channel, double-EIT has

been proposed for controlling two independent probe channels. The applications of

double-EIT for magneto-optical rotation, cross phase modulation and polarization

phase gate with a tripod atomic system have been discussed in Ref [51, 52]. The

double-EIT in a double lambda system is also used for enhanced frequency conversion

of nonadiabatic pulses via a four-wave mixing(FWM) process [53] and polarization

qubit phase gate [54]. Five level schemes have been proposed to generate double-EIT

and optimal cross phase modulation for two slow light pulses with matched group

velocities in 87Rb [55].

The quality of EIT is determined by the interruption of the dark state which

directly relates to the dark-state dephasing rate. Compared to EIT in a lambda sys-
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tem, the induced transparency in the ladder-type atomic system is relative low due to

the larger dephasing rate [38]. Moreover, in contrast to EIT in lambda configuration,

the relatively low transmission of ladder-type EIT restricts the applications for two

channel optical communications.

In this chapter, we experimentally observed that in contrast with EIT in a usual

ladder system, the addition of a second channel helps to suppress the absorption of

two weak probe fields under double-EIT condition in the double-ladder configuration.

We demonstrated that the resulting enhancement of transmission in two different

channels is due to new gain caused by the underlying three-photon processes. Our

results showed that the transmission of both probe fields is 8% higher than that of

the probe in a standard EIT system. We consider these results to have important

applications to new types of polarization switching. Whether the probe transmission

enhancement of double-EIT exists in the various different systems, i.e., tripod, double-

lambda, is analyzed in the Appendix B.

The arrangement of this chapter as follows: a brief review of double-EIT in

the atomic system in Sec. II. In Sec. III, we theoretically analyze the transmission

enhancement of double-EIT in contrast to the ladder EIT in the double-ladder system.

The theoretical prediction of probe transmission enhancement of double-EIT in a

double-ladder system can be experimentally verified in Sec. IV. Finally, we summarize

in Sec. V.

B. Theoretical analysis of double-EIT and EIT in double-ladder scheme

The theoretical calculations for the density matrix and field propagation for double-

ladder system has been developed in Chapter II. We use the notation r=Ωd+/Ωd−

and Ωd−=Ω. We rewrite the density element equations Eqs. (2.16) and (2.17) for the
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probe transitions

ρab = Ωp+ i[r
2|Ω|2 + (γ + iδ))(2Γ + i(∆ + δ))]/D

︸ ︷︷ ︸

Λ
(1)
ab

−Ωp− ir|Ω|2/D
︸ ︷︷ ︸

Λ
(3)
ab

, (4.1)

ρa′b = Ωp− i[|Ω|2 + (γ + iδ)(2Γ + i(∆ + δ))]/D
︸ ︷︷ ︸

Λ
(1)

a′b

−Ωp+ ir|Ω|2/D
︸ ︷︷ ︸

Λ
(3)

a′b

.

where

D = (γ + iδ)[|Ω|2(1 + r2) + (γ + iδ)(2Γ + i(∆ + δ))] (4.2)

The Rabi frequency of the output probe field from Eqs. (2.26) and (2.27) can be

also rewritten as

Ωp+(z) =
rΩp−(0)Ω + Ωp+(0)Ω

|Ω|2(1 + r2)
Exp[

−(2Γ + i(∆ + δ))ηz

|Ω|2(1 + r2) + (γ + iδ)(2Γ + i(∆ + δ))
]

+
Ωp−(0)Ω∗ − rΩp+(0)Ω∗

|Ω|2(1 + r2)
Exp[

−ηz
γ + iδ

],

(4.3)

Ωp−(z) =
rΩp−(0)Ω + Ωp+(0)Ω

|Ω|2(1 + r2)
Exp[

−(2Γ + i(∆ + δ))ηz

|Ω|2(1 + r2) + (γ + iδ)(2Γ + i(∆ + δ))
]

+
Ωp−(0)Ω∗ − rΩp+(0)Ω∗

|Ω|2(1 + r2)
Exp[

−ηz
γ + iδ

].

(4.4)

In the following, we discuss the coherences ρab and ρa′b under the two conditions

r=0 and r=1, and demonstrate that in contrast with EIT in a ladder system (r=0

condition) that both probes in the symmetric double-EIT condition (r=1) have higher

transmission. For r=0 and ∆=0 condition, the two weak probes Ωp± and the one drive
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Fig. 14. Energy diagram of condition: (a) r=0, EIT (Ωp+) + two-level systems (Ωp−)

(b) r=1, double-EIT system (Ωp±).

Ωd− are resonant with their respective transitions, shown in Fig. 14 (a). The steady-

state solution of Eqs. (4.1) and (4.2) for the two probe transitions can be reduced

to

ρab = Ωp+
i(2Γ + iδ)

|Ω|2 + (γ + iδ)(2Γ + iδ)
︸ ︷︷ ︸

ladder EIT

, (4.5)

ρa′b = Ωp−
i

γ + iδ
︸ ︷︷ ︸

two−level

. (4.6)

Equation (4.5) shows a typical solution for EIT in ladder configuration, and Eq.

(4.6) shows a typical solution for a two-level system. These Eqs. (4.5) and (4.6)

show that the strong drive field (Ω) only interacts with the coupled probe field (Ωp+),

and it obviously has no effect to the uncoupled probe transition ρa′b. Because the
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density-matrix solutions for the probe transitions are obtained from the first-order

expansion of the weak probe field, the high order terms of the weak probe interaction

are ignored. Therefore, even the weak probes couple to a common ground state, and

the first-order expansion solutions still show that there is no interference between the

two weak fields.

For the r=1, ∆=0 condition (four fields are present) the amplitude of the weak

probe fields are the same (Ωp±=Ωp), the amplitudes of the drive fields are also the

same (Ωd±=Ω), and the drive fields are resonant with their respective to transitions,

and probes have the same detuning, shown in Fig. 14 (b). Under such conditions,

the coherence terms for the two probe transitions are the same (ρab=ρa′b) and can be

expressed as

ρab = Ωp{
i[|Ω|2 + (γ + iδ)(2Γ + iδ)]

(γ + iδ)[2|Ω|2 + (γ + iδ)(2Γ + iδ)]
︸ ︷︷ ︸

one photon term

− i|Ω|2
(γ + iδ)[2|Ω|2 + (γ + iδ)(2Γ + iδ)]
︸ ︷︷ ︸

three photon term

}

= Ωp{
i(2Γ + iδ)

2|Ω|2 + (γ + iδ)(2Γ + iδ)
︸ ︷︷ ︸

double−EIT

}. (4.7)

Equation (4.7) shows that ρab is a linear combination of a one-photon term and

three-photon term, and the form of Eq. (4.7) is similar to the solution of ladder EIT

shown in Eq. (4.5). Eq. (4.7) shows the EIT for both probe channels, and the four

fields form a double-EIT in a symmetric double-ladder configuration. We find that

the denominator of Eq. (4.7) is larger than the denominator of Eq. (4.5) while the

numerator for these two equations are the same, which means the transparency of

the two probe in double-EIT condition is better than the transparency in ladder-EIT
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condition. To explore the underlying physics, we analyze the role of the Λ
(1)
ab and Λ

(3)
ab

terms in the imaginary part of ρab under EIT in ladder configuration and the double-

EIT in a symmetric double-ladder configuration, shown in Fig. 15. In Fig. 15 (a), the

Λ
(1)
ab for ladder-EIT shows minimum absorption while the weak probe and the strong

drive are present. The large transmission of the probe field can be understood as due

to creation of a dark state between state |c〉 and |b〉 created by the drive field Ωd and

probe field Ωp+ [28, 38]. By then applying another strong drive Ωd coupling state

|a′〉 and |c〉 to form double-EIT in a double-ladder configuration, the original dark

state is perturbed by the additional drive field which leads to increase of the resonant

one photon absorption. Since the coherence terms for both probe transitions are the

same, the probe in the orthogonal polarization state also has the same absorption.

However, the absorbed population from the probe in the orthogonal polarization state

is optically pumped to the state |c〉 which is then coherently transferred to state |a〉

via the resonant three photon χ(3) process. The increase of one photon absorption

in the Λ
(1)
ab of double-EIT can be over compensated by the gain from the resonant

χ(3) process, shown in Fig. 15 (b). Therefore, the double-EIT in the symmetric

double-ladder configuration has better absorption suppression than ladder-EIT at all

resonant condition, shown in Fig. 15 (c).

We also calculate the normalized transmission of the output probe field by using

Eqs. (4.3) and (4.4) for the above ladder-EIT and double-EIT conditions, shown in

Fig. 16. The calculations also show that the probe in the double-EIT configuration

has higher transmission and broader transmission linewidth than the EIT in ladder

configuration.
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Fig. 15. Plot to show the absorption Im ρab vs δ for EIT and double EIT in the

double-ladder configuration. (a) Im Λ
(1)
ab (b) Im Λ

(3)
ab (c) Im ρab. Ωp±=0.2,

Ωd±=3.5 for double EIT and Ωp+=0.2, Ωd−=3.5 for ladder-EIT, ∆=0. All the

frequencies scale in with γ.
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Fig. 16. The graph (a) and (b) are, respectively, the calculated probe transmission

spectra with the parameters of (a) Ωp+=0.2, Ωd−=3.5, ∆=0 (b) Ωp±=0.2,

Ωd±=3.5, ∆=0, η=0.05. All the frequencies scale in with γ.

C. Experimental results

Our main experimental results, shown in Fig. 17(a) and (b), demonstrate the en-

hancement of the transmission signal of double-EIT in a double-ladder configuration

compared to EIT in the ladder configuration. In Fig. 17(a), the strong drive field

σd− is resonant with its respective transition and the weak probe σp+ is tuned near

the resonance. While the probe σp+ is resonant with the drive field, the normalized

probe transmission reaches a maximum of ∼73% due to the EIT in the ladder config-

uration [38]. By then applying an additional probe σp− and drive σd+ with the same

field intensity as the σp+ and σd−, respectively, to form double-EIT in a symmetric

double ladder configuration. The transmission spectrum for the probe σp± are almost

the same due to the symmetric configuration for the probe field. We discover that

the maximum normalized transmission of the probe field in the double-EIT system is

increased to ∼81%. We also note that the linewidth of probe transmission spectrum
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of the double-EIT is 10 MHz broader than the linewidth in ladder-EIT system. The

experimental results of the probe transmission enhancement qualitatively agree with

our theoretical prediction calculated by Eqs. (4.3) and (4.4). The broader probe

spectrum of double-EIT system is due to power broadening of 82S1/2(F=4) energy

levels by the the two strong drive fields σd± [56].

Although the data qualitatively agree with our theoretical calculations, we can-

not accurately fit our experimental data. To do so, we would need to consider the

multilevel system and residual Doppler broadening effect. Besides, the pump and

probe fields are tightly focused into the 5 cm long cell. So the fields are nonuniform

inside the atomic medium. Hence it is very difficult to convert the power of the field

into the Rabi frequency [38].

To date, the simple four-level double-ladder system has been experimentally real-

ized by complicated multilevel system with Rb [39, 42, 57] and Cs [58, 59]. However,

the experimental results can only qualitatively agree with the theoretical calculation.

Quantitative agreement between theory and experiment is still not achieved, particu-

larly under the condition when two strong drives in different orthogonal polarizations

are applied. Because the experimental results are contributed from multilevel sys-

tems, the double-ladder, Y and inverted-Y configurations all need to be considered

into theoretical calculation. From our experiment, we found that the multilevel sys-

tem is dominated by the double-ladder system. However, to quantitative fit our

experimental results, the other two systems should be also included into our calcula-

tions. A detailed discussion for the study of the role of Y and inverted-Y systems in

our experiment will be discussed elsewhere.
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Fig. 17. Measured probe transmission vs probe detuning δ for the (a) ladder-EIT con-

dition at probe σp+ power 1 µW and coupling drive σd− power 29 mW (b)

double-EIT condition at probe power 1 µW for both σp± and coupling drive

29 mW for both σd±, atomic density N=3x1010 cm−3.

D. Summary

To conclude, we have theoretically studied the enhancement of probe transparency of

double-EIT in the double-ladder system. We have shown that this enhancement is due

to the large resonant χ(3) effect. We have presented a proof-of-principle experiment

that is in conformity with our theoretical calculation.
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CHAPTER V

WIDTH OF ELECTROMAGNETICALLY INDUCED TRANSPARENCY

RESONANCE IN ATOMIC LADDER SYSTEM

Coherence preparation by lasers of atomic media and quantum interference in the

amplitudes of optical transitions, have made revolutionary changes in many well-

studied nonlinear process such as parametric- and second-harmonic generation as

well as four-wave mixing [59, 60, 61, 62]. The efficiency of these process can be very

high at extremely low input power [25]. Electromagnetically induced transparency

(EIT) plays a key role in these nonlinear processes. EIT has also been proposed to

various different applications, for example, gain and lasing without inversion [63, 64],

small and compact atomic clocks [65] and the storage of quantum information [66, 67].

The EIT resonance is one of the important results of atomic coherence that

can be easily measured experimentally. The study of the EIT width leads to better

understanding of the influence of different processes on the atomic coherence [7, 68].

Among them the are relaxation and collisional rates [69], spontaneous transfer of

coherence [70], radiation trapping [71], and Doppler broadening.

The linear behavior [72, 73, 74] and nonlinear [75] behavior of the EIT width

in a lambda configuration on the laser drive field has been experimentally and the-

oretically studied in recent years. However, the EIT width in a ladder configuration

has only been theoretically discussed in Ref [38]. In this chapter, we present an

experimental study of ladder-EIT width in Doppler-broadened Cs vapor for a wide

range of intensities of the drive field. From our measurement, we find good qualitative

agreement between the theory and experiment. However, the residual Doppler width

in the system is 3 times less than the theoretical prediction in Ref [38].
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A. Experimental setup

Our three-level ladder system is experimentally realized by a Cs atom vapor cell with

the energy levels shown in Fig. 18. The probe laser is tuned near the 62S1/2(F=4)→

62P3/2(F
′=5) D2 transition at a wavelength 852.2 nm, and drive field is tuned near the

62P3/2(F
′=5)→ 82S1/2(F=4) transition at a wavelength 794.3 nm. The experimental

setup is shown in Fig. 28. The length of the Cs vapor cell is 5 cm and it is placed

inside a two-layer magnetic shield to suppress the laboratory magnetic field. The

density of Cs vapor is controlled by the temperature of the cell. The transition of

drive field is driven by a single frequency (linewidth of 500 KHz) Ti:sapphre laser

and the laser beam is focused to a spot size of 500 µm. The probe transition is
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driven by a external cavity diode laser(ECDL) focused to a spot size 200 µm. Two

photon Doppler cancellation is achieved with counterpropagating probe and drive

beams. The transmitted probe beam is separated with a 50/50 beam splitter and

then measure by a photodetector.

B. Analysis and experimental results

If the drive σd− and probe σp+ both are resonant with respective to their transitions,

the transmission of the probe is maximum, shown in Fig. 20. It is a typical EIT

condition [38], and the large transmission is due to the creation of a dark state

between states |b〉 and |c〉 by the probe and drive field. The medium polarization of

probe field P = Nρab, where the N is atomic density and ρab is the density element

of the probe transition. To obtain the medium polarization, we calculate ρab [20]

ρab = Ωp
i(Γ + i(δ + ∆))

|Ωd|2 + (Γ + i(∆ + δ))(γ + iδ)
, (5.1)

where γ(Γ) is the radiative decay for the probe(drive) transition, δ (∆) is the frequency

detuning for probe (drive) field. Equation (5.1) is the solution for the steady state,
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N=2.6x1010cm−3. The drive power is 15 mW and input probe power is 1 µW.

The red line is Lorentzian fitting.
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and the Doppler effect is not included. To give a more clear picture, the full expression

for the Doppler broadened susceptibility in our system corresponding to the probe

field is given by

ρab = Ωp
i(Γ + i(δv + ∆v))

|Ωd|2 + (Γ + i(∆v + δv))(γ + iδv)
, (5.2)

where, ∆v = ∆ + ~kd · ~v and δv = δ − ~kp · ~v, ~v is the velocity of atom, and ~kp (~kd)

is the wavevector of probe (drive) field. As the wavelengths of the probe (852.2 nm)

and drive (794.3 nm) are very different, the residual two-photon Doppler term (~kd −
~kp) · ~v is still significantly large in the resonant ladder configuration. Therefore, the

contribution of residual Doppler broadening to the EIT linewidth is not negligible.

The EIT linewidth ΓEIT in the ladder configuration can be simply written as

ΓEIT =
|Ωd|2
γ

+ Γ + δWd, (5.3)

where the Wd is the residual Doppler broadening. For a purely Doppler-broadened

medium, the full width at half maximum of the absorption profile is [38]

Wd =
2wp

c
u
√
ln2. (5.4)

Where wp is the probe frequency, c is light speed and u is the atomic velocity. The

residual Doppler width of the two photon transition with wavelength mismatching

condition is [38]

δwd = Wd(
wp − wd

wp
), (5.5)

where wd is drive frequency.

We experimentally studied the lineshape of the EIT resonance for various drive

power. Fig. 20 shows a good Lorentzian fit for the EIT lineshape profile. Therefore,

the EIT linewidth can be obtained from the Lorentzian fitting. The measured EIT

linewidth is linearly dependent on the drive power, shown in Fig. 21. When the drive
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Fig. 21. Drive power vs the EIT spectra linewidth at the atomic density

N=2.6x1010cm−3 and input probe power 1 µW.

power is below 5 mW, the EIT linewidth is saturated at 17 MHz. The minimum ΓEIT

obtained from the experiment is only the sum of δWd and Γ, and the power broadening

term |Ωd|2 is negligible due to |Ωd|2 ≪ γ. However, the theoretical residual Doppler

δWd calculated by Eqs. (5.4) and (5.5) is ∼ 45 MHz, which is 2.5 times larger than

the EIT linewidth measured from our experiment. In this dissertation, we report this

result and a further detailed theoretical explanation will be discussed elsewhere.
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CHAPTER VI

MEASUREMENT OF GROUND-STATE DECOHERENCE VIA

INTERRUPTION OF COHERENT POPULATION TRAPPING

A. Introduction

Coherent control is usually limited by the coherence lifetime, which is the inverse

of the dephasing rate. For improving the ability to control atomic polarization co-

herently, it is important to know the value of various decoherence rates. A lambda-

system, having two ground states coupled to a common excited state by lasers can

generate a coherent eigen (dark)-state that is transparent to the incoming fields and,

hence, suppresses fluorescence from the excited state. However, ground-state dephas-

ing perturbs the dark state, leading to an increase in fluorescence. In this chapter, we

theoretically study the role of ground-state coherence on the the fluorescence from the

excited state in a lambda system under continuous-wave excitation. From our ana-

lytical calculations, we suggested the use of this strong dependence of fluorescence on

the ground-state dephasing as a new method for measuring ground-state dephasing

rates. The theory and a proof-of-principle experiment using 87Rb vapor are given.

The outline of this chapter as follows: brief review for dephasing measurement

methods in Sec. II. We describe the system and derive dynamical equation in Sec.

III. In Sec. IV, we present numerical results to show how the excited-state population

is affected due to interruption of coherent population trapping(CPT) by ground-state

decoherences. We also derive an analytical formula to understand the numerical

result, and also to demonstrate the possibility of measuring various ground-state

decoherence rates. In Sec. V, we present the results of a proof-of-principle experiment

using a 87Rb vapor cell with results that are in good agreement with the theory.
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Finally, we summarize and conclude in Sec. VI.

B. Brief introduction for dephasing measurement methods

A popular method for determining the dephasing of the ground states is via Ra-

man scattering because the linewidth of the scattering process is determined by the

effective decay of the coherence between the initial and final states [76]. Similar in-

formation can be obtained from coherent anti-Stokes Raman scattering (CARS) [77]

because the CARS lineshape is related to the Raman lineshape [78, 79, 80]. All

this typically assumes pump and probe fields so that the resulting physical process is

described by the third order susceptibility. Compared to conventional Raman scatter-

ing, CARS is capable of high spectral resolution. However, it is limited by a stringent

phase matching requirement. In what follows, we show how coherent population

trapping (CPT) [6] can be used for the determination of the dephasing rates.

Further, the method we propose also enables one to determine the nonradiative

rates which might come about from thermally stimulated processes [81]. As is well

known, a dark state forms when no decay processes other than radiative decay are

considered [20]. However, the dark state starts becoming bright due to nonradiative

processes. Clearly the interruption of the dark state could be a sensitive method

of studying nonradiative processes. This is reminiscent of studies in interferometry

where the interferometer is tuned to a dark fringe. It has been observed in an earlier

study that CPT is also very sensitive to internal parameters of the atom such as

spontaneous emission linewidths [82].



60

a

b

c

Ω

Ω

p

d

∆

γ
bc

γ
ab

γ
ac

Γc
Γb

Fig. 22. A three level lambda system with ground state coherence dephasing γbc and

also non-radiative decays Γb and Γc in the ground state. The spontaneous

decay from a↔ b (a↔ c) is given by γab (γac). The pump field Ωp is detuned

by ∆ from the a ↔ c transition and the drive field Ωd is on resonance with

the a↔ b transition.
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C. The system and the dynamics

We consider a three level lambda system having all various possible decays such as

coherence dephasing γbc and non-radiative decays Γb and Γc. The source of coherence

dephasing can be due to collisions in gas cells [83] or phonon induced in solids [84], and

the non-radiative decays could be incoherent pumpings between the ground states via

thermal excitations in gas cells (particularly when the ground states are degenerate

or near degenerate) or crystal field induced decays [81]. Two lasers couple the two

ground states with the excited state. The pump (drive) laser couples the a ↔ c

(a ↔ b) transition with a Rabi frequency 2Ωp = ℘acEp/h̄ (2Ωd = ℘abEd/h̄). Here

℘ij = 〈i|℘|j〉 represents the dipole moment corresponding to the |i〉 ↔ |j〉 transition.

In the following we briefly outline the derivation of dynamical equations.

The interaction Hamiltonian in the rotating wave approximation (RWA) can be

written as [20]

HI = −h̄Ω[r|a〉〈c|e−iωpt + |a〉〈b|e−iωdt + H.c.] (6.1)

where ωp (ωd) represents the central frequency of the pump (drive) field. We use

the notation r = Ωp/Ωd and Ωd = Ω. The unperturbed Hamiltonian for this system

(shown in Fig. 22) can be written as

H0 = h̄ωac|a〉〈a| + h̄ωbc|b〉〈b| (6.2)

where h̄ωij is the energy separation between the states |i〉 ↔ |j〉. The equation of

motion for the lambda system is given by the density matrix equation

∂ρ

∂t
= − i

h̄
[H0 + HI , ρ] + decay terms. (6.3)

Next we make the following transformation ρ → ρ̃ to eliminate the rapid temporal
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oscillations

ρab → ρ̃ab exp[−iωdt]

ρac → ρ̃ac exp[−iωpt]

ρbc → ρ̃bc exp[−i(ωp − ωd)t]

and ρii → ρ̃ii . (6.4)

Thus the equations for the density matrix elements with natural decay, ground state

dephasing and non-radiative decay rates are

∂ρaa

∂t
= −2(γab + γac)ρaa + iΩρba − iΩ∗ρab + irΩρca

−ir∗Ω∗ρac

∂ρab

∂t
= −(γab + γac + Γb/2)ρab − iΩ(ρaa − ρbb)

+irΩρcb

∂ρac

∂t
= −(γab + γac + Γc/2 + i∆)ρac + iΩρbc

−irΩ(ρaa − ρcc)

∂ρbb

∂t
= −Γbρbb + Γcρcc + 2γabρaa − iΩρba + iΩ∗ρab

∂ρbc

∂t
= −(γbc + (Γb + Γc)/2 + i∆)ρbc + iΩ∗ρac − irΩρba

∂ρcc

∂t
= −Γcρcc + Γbρbb + 2γacρaa − irΩρca + ir∗Ω∗ρac .

(6.5)

Here Γb (Γc) is the non-radiative decay from state b to c (c to b), 2γij are the decay

rates from |i〉 → |j〉 , γbc is the dephasing rate of the Raman coherence and ∆ is

the pump field detuning (see Fig. 22). In the following section we solve the above

dynamical equation to determine how fluorescence is affected by all these decay rates.
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D. Results and discussions

We have numerically solved Eqs. (6.5) and plotted the steady state excited state pop-

ulation ρaa in Fig. 23. This depicts how the fluorescence from the atom depends on

pump field detuning. We see that when both fields Ωb and Ωc are on resonance, the

population reaches minimum for a zero dephasing rate γbc and non-radiative decay

rates Γb and Γc. This is clearly due to CPT. However for finite γbc and Γb = Γc = Γ,

the CPT is perturbed and hence population from the dark state (anti-symmetric su-

perposition of ground state) partially transfers to the bright state (symmetric super-

position of the ground states). Thus the excited state gets populated by its coupling

to the bright state and hence starts fluorescing. In what follows, we will show how this

significant variation in the fluorescence signal at resonance could be used to measure

the ground state decoherence rates.

To isolate the roles of ground state dephasing and non-radiative decay we have

plotted ρaa in Fig. 23(A) assuming the non-radiative decay Γb = Γc = 0, and in

Fig. 23(B) we have shown the excited state population when only non-radiative decay

is present but Γbc = 0. Clearly, γbc affects the fluorescence only around resonance as it

only disturbs the coherence created in the ground state. As a result, some population

is made available at the bright state to couple to the excited state via the laser field

and hence start fluorescing. Clearly for larger γbc , we find stronger fluorescence at

∆ = 0. However, the non-radiative decays affect the fluorescence profile even for the

wide off-resonant field because Γb and Γc incoherently mix populations in the ground

state in addition to causing ground state decoherence.

To understand the above argument, we have calculated ρaa analytically for both

resonant and off-resonant cases in the limit of intense lasers. In the following we

present the solutions with non-radiative decay between ground states included in the
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Fig. 23. The excited population for various values of ground state dephasing γbc and

non-radiative decays Γb and Γc . The dependence of two decays are illustrated

in (A) Γb = Γc = Γ = 0 and (B) γbc = 0. In all the plots, we have assumed

γab = γac = γ, the laser Rabi frequency Ω = 5γ and r = 1.

calculation, and assuming that Ω ≫ γab , γac , γbc ,Γb ,Γc . For r = 1 and Γb = Γb = Γ,

γab = γac = γ, the steady state solution of Eq. (2.14) for the off-resonant pump laser

(∆ 6= 0) is obtained as

ρaa =
A1(4Ω4A2 + ∆4Γ) + ∆2Ω2{4γA1 + 2Γ(2γ + γbc) + 3Γ2}

A1{4Ω4(3A2 + 4γ) + ∆4A3} + ∆2Ω2{2A3(4γ + A2) + 3Γ2} (6.6)

where

A1 = 4γ + Γ, A2 = Γ + γbc , and A3 = 2γ + 3Γ. (6.7)

This analytical result agrees very well with the numerical result presented above.

Clearly in Fig. 23(A), the value of ρaa at resonance (i.e., ∆ = 0) is given by ρaa ≡

γbc/(3γbc+4γ). For γbc ≪ γ, the excited state population under the condition of CPT

depends linearly on γbc , i.e., ρaa ≈ γbc/(4γ). Similarly, in Fig. 23(B), ρaa at ∆ = 0 is
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given by ρaa = (Γb + Γc)/[3(Γb + Γc) + 8γ].

Further we get a more general result for the resonant pumping. Again, we have

considered strong pump and drive lasers but r 6= 1 (Ωp 6= Ωd). We could even keep

unequal non-radiative decays between the ground states Γb 6= Γd. The solution for

this case is obtained as

ρaa =
Γbr

4 + 2γbcr
2 + Γc

Γb(1 + 2r4) + Γc(2 + r4) + 6γbcr2 + 2γ(1 + r2)2
. (6.8)

Assuming there is no coherence dephasing in the system (i.e., γbc = 0), the above

expression reduces to that obtained in Ref. [80]. For r = 1, the above equation

further simplifies to

ρaa =
2γbc + Γb + Γc

3(2γbc + Γb + Γc) + 8γ
. (6.9)

This matches exactly with the numerical results presented above. Next, in Fig. 24 we

show a numerical plot of how ρaa varies with the change in ratios of the intensities r2,

when both the fields are on resonance. These plots match perfectly with the above

analytical result. It should be noted that these analytical results also hold well for

r = 0 as long as Ω is assumed to be strong.

Equation (6.8) is very important, as it can be written as a linear equation in

terms of the decoherence rates γbc , Γb and Γc , given by

κ1Γb + κ2Γc + κ3γbc + κ0 = 0 (6.10)

where

κ1 = (1 + 2r4)ρaa − r4, κ2 = (2 + r4)ρaa − 1

κ3 = 2r2(3ρaa − 1), and κ0 = 2γ(1 + r2)2ρaa . (6.11)

The coefficients κi are functions of measurable quantities such as the ratio of inten-
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ratio r2. Here γab = γac = γ and Ω = 5γ. Both pump and drive fields are on

resonance here.
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sities (r2) of the two applied fields and the excited state population which is propor-

tional to the fluorescence intensity. In an experiment, that would mean we need three

values of ρaa for different r2 to determine all three ground state decoherence rates.

In this spirit, we can observe in Fig. 24 that indeed ρaa depends very strongly on γbc

and Γi (i = b, c). In the plot we have normalized the ρaa with their corresponding

values at r = 0.

It may be noted that this method should be valid for varieties of systems having

the generic model of a three-level lambda scheme. Some possible systems of interest

could be atoms in a buffer gas [85], molecules doped in solid [86, 87, 88, 89], or

multilevel quantum dots [90, 91].

E. The experiment

In this section we present the results of a proof-of-principle experiment that agrees

qualitatively with the above discussions. At the end of this section we discuss in

detail some limits in implementing the exact idea in 87Rb gas.

The experimental setup is shown schematically in Fig. 25. An external cavity

diode laser (ECDL) is tuned to the 5S1/2(F = 2) → 5P1/2(F = 1) transition of the Rb

D1 line. The laser linewidth is about 100 kHz. The laser beam is split into two by a

50/50 beam splitter, the polarization of one of the beams is rotated by a λ/2 wave

plate, and these two orthogonal linearly polarized beams are then combined with a

polarizing beam splitter(PBS). After the combined beam passes through λ/4 wave

plate, the beam is a combination of two orthogonal circularly polarized components.

These components couple two Zeeman ground state sublevels to the single excited

state as shown in Fig. 25b. Thus compared to the model in Fig. 22, the right-circular

polarization component would correspond to Ωp and the left-circular polarization
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diode laser; BS, beam splitter; PBS, polarized beam splitter; PD, photodiode

detector. The experimental set up to detect the fluorescence as a function

of intensity ratio r2. (b) The hyperfine Zeeman sublevel transitions of 87Rb

under consideration.
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component would correspond to Ωd. The intensity for the left- and right-circular

polarization components can be attenuated by placing polarizers after the λ/2 wave

plate. The laser beam diameter can be controlled with a telescope beam expander.

The beam then passes through a cylindrical glass cell of length 10 cm containing

rubidium vapor. At room temperature, the Rb density is approximately 8×109 cm−3.

The laser power in each beam at the entrance of the Rb cell is approximately

3 mW. The fluorescence signal is registered with an Amplified Si Detector (PDA55)

with 10 MHz frequency bandwidth. Fluorescence is detected at the side of the cell,

perpendicular to the laser propagation direction. Care is taken to minimize residual

scattered light from the glass wall of the cell. To compensate for this scattered light,

the signal is measured when the laser is detuned far away from resonance so there

is no fluorescence, and this background is subtracted from the fluorescence signal.

In the experiment, we measure the fluorescence emission from the excited state for

various ratios of intensities r2. To minimize the experimental uncertainty, we fix the

intensity of the left circular polarized component Ωd as the reference beam and only

varied the intensity for the right circular component Ωp .

The different laser beam diameters D give rise to different ground state dephasing

rates because the thermally moving atoms spend more time on the average in a

larger beam. Coherence is lost when the atoms collide with the walls, and thus in a

larger beam one would expect a lower rate of dephasing collisions. So the maximum

coherence time (and so the minimum γbc) is determined by the laser beam diameter.

We present here data sets for two different values of D. Since the total number of

atoms contributing to the fluorescence changes with the beam diameter, we have

normalized the fluorescence signals by their corresponding values at r = 0. Further,

the number of atoms in the interaction region for a given beam diameter is same for

both r = 0 and r 6= 0. Thus, the normalized fluorescence becomes independent of
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number of atoms participating in the fluorescence. The results are shown in Fig. 26.

These agree qualitatively with the behavior shown in Fig. 24 calculated from the three

level model.

Although the data agree qualitatively with the analytical calculations, we cannot

derive accurate values for the dephasing rates. To do so, we would need to extract

ρaa from the data which would require calibrating the measured fluorescence to the

total fluorescence from the atoms. One way of performing this calibration would be

to incoherently pump the excited state and detect the fluorescence with a detector of

known efficiency. However such pumping in 87Rb would also excite the other upper

(or lower) hyperfine components. (The upper 5P1/2(F = 2) state considered here is

only 800 MHz from the 5P1/2(F = 1) state, and only partially resolved due to the

inhomogeneous Doppler broadening of 500 MHz). Therefore, our theory would be

exact for systems having reasonably isolated ground and excited states.

It may also be noted that the model system for the theoretical calculation given

in Sec. III corresponds to a closed system. However, the proof-of-principle experiment

on 87Rb gas cell corresponds to an open system. It has been observed that the CPT

resonance strongly depends on the strength of the driving field in an open system [92].

It is well known that the population loss in the cell due to finite time of flight of the

gaseous atoms through the interaction region (laser beam) contributes as an additional

effective ground state dephasing rate [93, 94], though the dynamic population itself

is not affected as much 1. The aforsaid underlying principle, thus, remains same for

both closed and open systems in the determination of the collisional dephasing rate,

except that one has to account for the finite time of flight of gas atoms. The average

1The effect of time of flight in the open system is discussed in the appendix C.
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time of flight can be determined as

tflight = D

√

3kBT

Ma
, (6.12)

where D is the diameter of the laser beam, T is the temprature of the cell, Ma is mass

of the atom and kB is the Boltzmann constant. Therefore, the actual value of the

collisional dephasing rates in gas cell would be given by subtracting (tflight)
−1 from

the experimentally measured value of the ground state dephasing.

F. Summary and conclusion

We have examined the role of ground state decoherence rates on the fluorescence in a

resonant three level lambda system. We have shown that the fluorescence is strongly

affected by the ground state decoherence due to interruption of the coherent popu-

lation trapping. We have theoretically demonstrated how to exploit this sensitivity

to measure ground state decoherence rates including the non-radiative decays via an

analytical solution. We have presented a proof of principle experiment that is in

conformity with our theoretical calculation. We have noted that this method should

work well for a wide variety of systems.
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CHAPTER VII

NONLINEAR MAGNETO-OPTIC POLARIZATION ROTATION WITH

INTENSE LASER FIELDS

A. Introduction

There is interest in improving the sensitivity of polarization spectroscopy measure-

ments [95, 96], both for fundamental reasons and for practical reasons such as optical

magnetometry [97]. The sensitivity of optical pumping magnetometers (OPMs) has

already achieved 10−9G/
√

Hz under laboratory conditions [98, 99]. In such devices,

the Zeeman level shift measurements are based on light absorption [94], but the sen-

sitivity is limited if the absorption is strong. Scully and Fleischhauer et al. [100, 101]

proposed a high-sensitivity optical magnetometer based on electromagnetic induced

transparency (EIT) where the high dispersion at an EIT resonance can dramatically

improve the sensitivity of magnetic field measurements by suppression of the absorp-

tion via quantum interference.

We describe nonlinear magneto-optic polarization rotation as follows. Consider

two circularly polarized electromagnetic waves near atomic resonance in a Λ configu-

ration as shown in Fig. 27. When the two frequencies are in Raman (two-photon) res-

onance, a “dark-state” is created that is associated with electro-magnetically induced

transparency [6, 28]. The atoms are optically pumped into a coherent superposition

of ground-state Zeeman sublevels that is accompanied by very steep dispersion. This

dispersion gives rise to such effects as enhanced index of refraction [100, 102] and

ultra slow light [13, 14, 15]. Therefore, even a small shift of magnetic sublevels can

result in a large change in the refractive indices for the two circular components, so

that they acquire different optical phase shifts after traversing the length of the cell.
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This phase difference results in rotation of the polarization of linear polarized light

exiting the cell with respect to the direction it entered with. This effect is known as

nonlinear magneto-optical rotation (NMOR). If χ+(χ−) represents the susceptibility

of the birefringent medium corresponding to the right (left) circular component of

the probe, the rotation angle, for small absorption, is given by

φ = πkpl(χ− − χ+) (7.1)

where kp corresponds to the propagation vector of the probe and l is the length of

the medium along the direction of propagation.

Fig. 27. Simplified three level Λ diagram for experimental condition

The use of NMOR for magnetometry in optical thin and thick media has been

extensively studied [103, 104, 105]. This work shows that the ground state coherence

dephasing plays an important role in decreasing sensitivity. Various methods have

been used to reduce the dephasing rate such as high-quality anti-relaxation walls [98,

104] and buffer gas [103]. These methods can effectively increase the lifetime of

ground-state coherence, greatly improving magnetic field sensitivity. For example,

Ref. [104] demonstrates sensitivity of 3 × 10−12 G/
√

Hz. Further high-sensitivity
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work has been done using optical pump-probe magnetometry [106, 107].

The usual limit on the smallest Zeeman level shift that can determined is from

the signal-to-noise ratio. It was pointed out by Fleischhauer et al. [101] that the limit

of the detectable magnetic field shift is determined by two fundamental restrictions:

photon counting error, due to the vacuum fluctuation of the laser field (shot noise),

and coupling the laser field to nonresonant levels (ac-Stark shifts). Compensation of

ac-Stark shifts has been studied experimentally [108]. Based on the shot noise limit

the smallest detectable magnetic field δBz, has been written as [104]

δBz =
1

√

Nph

(
∂φ

∂Bz
)−1. (7.2)

where Nph is the number of photons counted.

Shot noise can be reduced by increasing the laser intensity, but this results in

broadening of the EIT resonance which decreases the polarization rate. Ref. [101]

proposed that the sensitivity of an optical magnetometer could be improved by si-

multaneously increasing both laser-field intensity and atomic density. This approach

was studied for a limited range of laser intensity in [103]. However, it is found that

radiation trapping effects limit the polarization rotation by introducing a new type

of dephasing [71].

In this dissertation, we show that there is an optimal intensity and density for

the system to achieve the ultimate shot-noise-limited magnetic field sensitivity. The

outline of the chapter is as follows: The experimental setup and results are presented

in Sec. II. We describe our system, derive dynamical equations and show our numerical

results in Sec. III. The analysis for our experimental measurements and summary in

Sec. VI and Sec. V, respectively.
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Fig. 28. Diagram showing the experimental setup

B. Experimental setup and measurement

Our experimental setup is shown in Fig. 28. A Topica DLX 110 high-power tunable

single mode diode laser is tuned to the transition 795 nm 5S1/2 (F=2) → 5P1/2 (F ′=1)

transition of the rubidium D1 line, shown in Fig. 27. The laser propagates through a

high quality polarizer P1 which produces linear polarization, then through a cylindri-

cal glass cell of length L = 5.0 cm and diameter D = 2.5 cm containing isotopically

enhanced Rb87. The laser power can be accurately controlled by a polarizer with a

half-wave plate. To control the beam diameter, a beam expander may be placed after

the polarizer. The atomic density of Rb87 is controlled by the temperature of the

coldest spot of the cell, which is installed in a temperature controlled double layer

magnetic shield. A longitudinal magnetic field is created by a solenoid installed in-

side the inner magnetic shield. A polarization analyzer P2 is placed after the cell and

titled 45 degrees with respect to the polarizer. Photodiodes PD1 and PD2 detect the

light from both channels of the analyzer, allowing simultaneous measurements of the

polarization rotation angle φ and transmitted laser power.

In our experiment we consider the effect of different laser beam diameters and on

different intensities of the laser. Because there is no buffer gas or wall coatings in our

cell, changing the beam diameter changes the amount of time which the atoms interact
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with the laser (time of flight), and therefore changes the ground state dephasing rate

γ0. Increasing the beam diameter leads to a smaller ground state dephasing rate and

should enhance the ground state coherence resulting in better sensitivity.

Figure 29 shows the experimental rotation rate as a function of density for two

different beam diameters (d = 2 mm and d = 4 mm) and different laser intensi-

ties. The polarization rotation rate dφ/dB is obtained by measuring the polarization

rotation for very small changes of magnetic field, such that small changes in the

polarization rotation are proportional to small changes in magnetic field. The indi-

vidual curves show that for a fixed intensity, the rotation rate increases with density,

reaches a maximum value, and rolls off rapidly with increasing density. The maxi-

mum value increases with intensity. This tendency of the individual curves has been

explained [71]. However, the overall profiles of the rotation rate for larger intensities

and densities from the linear region(Ω≤γ) to the nonlinear region(Ω>>γ) has not

been previously explored.

For each value of the intensity, there is therefore a density where the rotation

rate is maximum. Figure 30(A) shows the maximum rotation rate as a function of

intensity for the two different beam diameters used above. The inset shows the density

for which the maximum rotation rate is reached as a function of intensity. We can

relate the maximum rotation rate to magnetic field sensitivity with Eq. (7.2). This

calculated sensitivity is shown in Fig. 30(B). We see that the sensitivity improves

(drops) as the intensity is increased, but reaches a limiting value. The limiting value

is improved by increasing the beam diameter (and increasing the interaction time of

the atoms with the laser). It is important to note that each point (each different

intensity) is measured at the density for which the rotation rate is maximum.

These data demonstrate the interplay of increasing rotation rate and increased

transmission on the sensitivity calculated by Eq. (7.2). From our measurements we



78

Fig. 29. Rotation rate dφ/dB due to the nonlinear Faraday effect as a function of

atomic density for the beam diameter (A) d = 2 mm and (B) d = 4 mm for

different intensities. Dashed lines are guides.
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find that the maximum rotation rates for different intensities are observed when the

transmission is around 2 to 5%. However, the density for which we calculate optimal

sensitivity corresponds to a much higher transmission. This is shown in Fig. 31

for the rotation data with I = 64 mW/cm2 and diameter d = 2 mm. The inset

shows the transmission for this same condition. We clearly see that the optimum

sensitivity does not occur at the same point as the maximum rotation rate. In other

words the two factors of Eq. (7.2) optimize at different densities. For our data, the

optimal sensitivity occurs on the order of ≃ 50% transmission. Figure 31(B) shows

the optimal sensitivity for each intensity at their optimal densities. Both optimal

sensitivity curves for different beam diameters are saturated when the light intensities

for d = 2 mm (d = 4 mm) beam diameters are greater than 128 mW/cm2 at atomic

density 0.9×1012 cm−3 (56 mW/cm2 at atomic density 1.58×1012 cm−3).

C. System and dynamics

In this section we theoretically investigate the saturation of the rotation rate ∂φ/∂B

and also the sensitivity δBz . We consider a monochromatic field ~E(z, t) with field

polarization along ê

~E(z, t) = êE(z)eikz−iωt + c.c. (7.3)

propagating inside a medium consisting of atoms having a three level scheme as shown

in Fig. 27. Here E(z) is the field amplitude and k corresponds to the propagation

constant with central frequency ω. The propagation of the field along the z-direction

in the medium is governed by the Maxwell-Bloch equation

∂2 ~E

∂z2
− 1

c2
∂2 ~E

∂t2
=

1

ǫ0c2
∂2 ~P

∂t2
. (7.4)

Assuming the same phase dependence for the polarization of the medium ~P =
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Fig. 31. Sensitivity as function of density for intensity I = 64 mW/cm2 and diameter

d = 2 mm. The plot shows the optimal sensitivity is not the same as the

maximum rotation rate point. The inset shows the transmission(Iout/Iin)

versus density. (B) The optimal sensitivity for each intensity. (a) A Dashed

guiding line indicates d = 2 mm beam diameter, (b) a solid line indicates

d = 4 mm beam diameter.



82

êPeikz−iωt + c.c. as for the field Ê given in Eq. (7.3), and using the slowly varying

amplitude and phase approximations, we find

∂E
∂z

=
ik

2ǫ0
P . (7.5)

Considering the atom-field interaction, the Rabi frequencies Ωc = ℘acEc/2h̄, Ωb =

℘abEb/2h̄ and atomic polarization P = N℘ρṪhe above propagation equations can be

written as

∂Ωc

∂z
= iηcρac (7.6)

∂Ωb

∂z
= iηbρab (7.7)

where ηb = kbN℘
2
ab/(h̄ǫ0) , ηc = kcN℘

2
ac/(h̄ǫ0) , and N is the atomic density. The

equations for the density matrix elements of the three-level lambda system under

consideration are

∂ρaa

∂t
= −2(γ1 + γ2)ρaa + iΩbρba − iΩ∗

bρab

+iΩcρca − iΩ∗
bρac (7.8)

∂ρab

∂t
= −(γ1 + γ2 + iδ1)ρab − iΩb(ρaa − ρbb)

+iΩcρcb (7.9)

∂ρac

∂t
= −(γ1 + γ2 + iδ2)ρac + iΩbρbc

−iΩc(ρaa − ρcc) (7.10)

∂ρbb

∂t
= 2γ1ρaa − iΩcρba + iΩ∗

cρab (7.11)

∂ρbc

∂t
= −(γ0 + i(δ2 − δ1))ρbc

+iΩ∗
bρac − iΩbρba (7.12)

∂ρcc

∂t
= 2γ2ρaa − iΩcρca + iΩ∗

cρac. (7.13)
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Note that δ1 and δ2 are the detunings of the Eb and Ec fields respectively. The

conservation of population gives

ρaa + ρbb + ρcc = 1. (7.14)

We calculate the stationary solutions of the density matrix equations by consid-

ering two photon detuning δ1 = −δ2 = δ and γ1 = γ2 = γ , then the full analytical

expression for the atomic polarization can be obtained:

ρab = iΩb
|Ωc|2γ((|Ωc|2 + |Ωb|2)(γ0 − i2δ) + (2γ + iδ)(γ2

0 + 4δ2))

D1

ρac = iΩc
|Ωb|2γ((|Ωc|2 + |Ωb|2)(γ0 + i2δ) + (2γ − iδ)(γ2

0 + 4δ2))

D2
, (7.15)

where

D1 = γ(|Ωc|6 + |Ωb|6) + |Ωc|4(3|Ωb|2(γ + γ0) + A)

+|Ωb|4(3|Ωc|2(γ + γ0) + A) + |Ωb|2(B + C|Ωc|2) + |Ωc|2B

D2 = γ(|Ωc|6 + |Ωb|6) + |Ωc|4(3|Ωb|2(γ + γ0) + A)

+|Ωb|4(3|Ωc|2(γ + γ0) + A) + |Ωb|2(B + C|Ωc|2) + |Ωc|2B

A = 4γ(γγ0 − δ2)

B = γ(4γ2 + δ2)(γ2
0 + 4δ2)

C = 2γ(4γγ0 + 3γ2
0 + 8δ2) (7.16)

To find physical meaning from this, we examine the solution under certain lim-

iting conditions. In the strong field limit where both Ωb and Ωc are much larger than

γ and δ the atomic polarizations are

ρab =
Ωb|Ωc|2γ(2δ + iγ0)

γ(|Ωb|4 + |Ωc|4) + |Ωb|2|Ωc|2(2γ + 3γ0)
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ρac =
Ωc|Ωb|2γ(−2δ + iγ0)

γ(|Ωb|4 + |Ωc|4) + |Ωb|2|Ωc|2(2γ + 3γ0)
(7.17)

In the weak field limit where γ is much greater than Ωb , Ωc , and γ0 the polar-

izations are

ρab =
iΩb|Ωc|2γ(2γ + iδ)(γ2

0 + 4δ2)

(|Ωb|2 + |Ωc|2)γ(4γ2 + δ2)(γ2
0 + 4δ2)

ρac =
iΩc|Ωb|2γ(2γ − iδ)(γ2

0 + 4δ2)

(|Ωb|2 + |Ωc|2)γ(4γ2 + δ2)(γ2
0 + 4δ2)

(7.18)

Thus solutions of Eqs. (7.6) and (7.7) along with Eqs. (7.15) describe the spatial

evolution of the fields inside the medium. To study these solutions, we have performed

numerical simulations where the rotation rates are determined by taking the difference

of nonlinear Faraday spectra with Bz = ±2 mG (same as the experimental condition)

and Bz = ±10 µG. The numerical results for the rotation rate are the same for both

magnetic field regions except for the low transmission part. By using the smaller

Bz the rotation rates always increase with density, and are similar to the analytical

results obtained from Ref. [101, 105], that is:

dφ(L)

dB
|B→0 =

2µB

h̄γ0
ln | Iin

Iout
|. (7.19)

where Iin and Iout are the intensities of the laser before and after the atomic cell, µB

is the Bohr magneton and γ0 is the decay rate of ground-state Zeeman coherence.

However, our experimental measurement shows that the rotation rates drop in the

low transmission region (below ≈ 4%) which qualitatively agrees with the numerical

result using large Bz. Hence, our numerical simulations for the rotation rate are

based on large Bz. The discussion of this unexpected dropping effect will be discussed

elsewhere.

Our simulations focus on the intensity and density effects on the rotation rates
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(a)

(b)

Fig. 32. (a) Plot of rotation slope vs density for different laser Rabi frequency |Ω|.
Here γ0 = 0.001γ, and Ωb = Ωc, Ω = Ωb + Ωc. Squares: |Ω|=2γ, Circles:

|Ω|=4γ Triangles: |Ω|=8γ. (b) Sensitivity corresponding to the same data as

in (a).
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and sensitivities. Figure 32(a) shows the rotation rate increases with density but

that after passing a certain density it drops rapidly. The maximum rotation is the

same for each intensity with the same transmission rate at different densities. The

corresponding sensitivity shows that the higher the density and the intensity the

better the sensitivity. Our numerical calculations, without considering inhomogeneous

Doppler broadening and the incoherent pumping, qualitatively agree with previous

experimental results [104, 103]. However, the saturation of the optimal sensitivity

at high intensity and the varying maximum rotation rates still cannot be explained

from our numerical simulations. We will give a physical interpretation by using

our numerical results along with consideration of incoherent pumping effects in the

following section.

D. Analysis

As we have seen in the experimental results and numerical simulations, for a con-

stant field intensity higher densities can lead to larger rotation rates (as in Fig. 29),

but also leads to increased absorption of the input field. As the atomic density is

increased, radiation trapping becomes an important factor [71]. Radiation trapping

has a destructive effect on the atomic spin orientation produced by optical pumping,

so it can easily spoil the ground-state coherence created by the two coupling lasers

polarizations which leads to the absorption increase [109, 110].

The exact solution of the system is extremely complicated and involves 13 mag-

netic sublevels of the ground and excited hyperfine states for the D1 line of Rb87. To

obtain a qualitative understanding, we consider the simplified three-level system in

our previous analysis, and include an incoherent pumping rate for radiation trapping
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Fig. 33. The scaled incoherent pumping rate R/γ0 for laser beam diameter d = 2 mm

as in Ref. [71]

dφ(z)

dB
|B→0 =

2µB

h̄(γ0 +R)
ln | Iin

Iout

| (7.20)

where R is the incoherent pumping rate which can be determined from measuring the

rotation rate dφ/dB and transmission rate Iout/Iin. The result, based on the data

presented earlier, is shown in in Fig. 33. For the case of a beam diameter d = 2 mm,

the rate of incoherent pumping becomes larger than the ground state dephasing rate

γ0 ∼ 20 KHz at a density of 0.8×1012 cm−3. In the transmission region (Iout/Iin

> 60%), the increase rate of rotation rate (dφ/dB) with density is higher than the

decrease rate of the square root of the number of transmitted photons
√

Nph, which

leads to a greater sensitivity. Once the density is high enough, both rotation rate
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and transmission suffer from the increase of decoherence rate owing to the radiation

trapping effect, the sensitivity is getting worse with the increasing density, shown in

Fig. 31(A).

From the numerical simulation, we conclude that the higher density and intensity

can always lead to better sensitivity, shown in Fig. 32(B). However, in the real system,

higher the density, higher the incoherent pumping rate R, shown in Fig. 33. The

incoherent pumping will not only increase the absorption but also reduce the rotation

rate, which suppresses both parameters of the sensitivity. Therefore, the contribution

to the increase of sensitivity from the higher intensity and density is evened out by

the decoherence from the incoherent pumping. Consequently, the optimal sensitivity

curves exhibit the saturated behavior, shown in Fig. 31(B). Larger beam size results

in smaller ground state dephasing rate which helps to preserve longer ground state

coherence and reduce numbers of spontaneous emitting photons, which can reduce

the radiation trapping effect. Therefore, the optimal density for larger beam size is

greater than the smaller beam size.

The simulation also shows, under the condition without considering incoherent

pumping and Doppler broadening, the maximum rotation rate for each intensity at

an optimal density is almost the same, shown in Fig. 32(A). The experimental data

do not agree with our simulation and following is our explanation: Higher the density

can lead to larger rotation rate, therefore, higher the intensity can help to reach higher

density which results in the larger maximum rotation rate. However, the ac-Stark shift

and incoherent pumping increases with the intensity and density, respectively. The

maximum rotation rate can not always increase with the higher density and intensity,

so it saturate at a optimal intensity and density, see Fig. 30(A). The corresponding

sensitivity of the maximum rotation rate data also shows a saturation behavior by

the intensity, which is similar to the optimal sensitivity curve. The fluctuations of the
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data results from the low transmission of the signal into the detector, thus the shot

noise level is relative high compared to the sensitivity data at high transmission. In

low laser intensity region, the rotation rates and transmission rates increase with the

laser intensity which lead to greater sensitivity, then after passing a certain intensity

and density, the reduction of the maximum rotation rate and the loss of transmission

rate due to incoherent pumping results in the sensitivities of the maximum rotation

rate being saturated in the relatively low light intensity region.

E. Summary

We have reported an experimental study of the nonlinear Faraday effect for relatively

high input laser intensity and varying density. We have formulated an analytic theory

valid both in the linear and nonlinear regimes, and have shown how the previous ex-

perimental results are qualitatively matched by our theoretical calculations. We have

investigated the saturation of optimal sensitivity. Moreover, behavior of the maxi-

mum rotation rate at different intensities has been observed and the corresponding

sensitivity curve has been presented. These results can be explained by our numerical

calculations associated with incoherent pumping due radiation trapping. To date, the

limitation of sensitivity via increasing the laser intensity and density has not been

fully explored, so our experimental results can be very useful for choosing the optimal

laser intensity and density for and EIT-based magnetometer.
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CHAPTER VIII

SUMMARY AND CONCLUSION

The main results of this work are concluded in the following:

1. There is a large control parameter domain for strong resonant χ(3) processes

in a double-ladder system, such as the amplitude and phase of optical drive fields,

magnetic fields etc [58]. The derived analytical solutions and theoretical analysis of

the double-ladder model provides an excellent understanding of physical properties

of the atomic system.

2. It was shown that a new coherent field, with polarization orthogonal to a weak

probe field, can be parametrically generated via an all-resonant four-wave-mixing

(FWM) process in a double-ladder system [59]. The FWM is resonantly enhanced

using EIT in the ladder configuration; therefore, generation of this new field can be

realized even in a fairly dilute medium having at least 5% conversion efficiency. We

showed experimentally [59] and theoretically [48] that the parametric generation pro-

cess can be coherently controlled by coupling lasers and magnetic fields. We also

showed that the interesting underlying physics is a resonant three-photon process

with a wide domain of control parameters.

3. We experimentally observed that in contrast with EIT in a usual ladder

system, the addition of a second channel helps to suppress the absorption of two

weak probe fields in the double-ladder configuration [111]. We demonstrated that

the resulting enhancement of transmission in two different channels is due to new

gain caused by the underlying three-photon processes. Our results showed that the

transmission of both probe fields is 8% higher than that of the probe in a standard
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EIT system. We consider these results to have important applications to new types

of polarization switching.

4. We observed ladder-EIT linewidth in a Doppler broadened atomic system

that is a factor of 3 smaller than the theoretical prediction.

5. Any coherent control is strongly limited by the coherence lifetime, which is

the inverse of the dephasing rate. For improving the ability to control atomic po-

larization coherently, it is important to know the value of various decoherence rates.

A lambda-system, having two ground states coupled to a common excited state by

lasers can generate a coherent eigen (dark)-state that is transparent to the incoming

fields and, hence, suppresses fluorescence from the excited state. However, ground-

state dephasing perturbs the dark state, leading to an increase in fluorescence. From

our analytical calculations, we suggested the use of this strong dependence of fluo-

rescence on the ground-state dephasing as a new method for measuring ground-state

dephasing rates. The theory and a proof-of-principle experiment using 87Rb vapor

are presented in Ref [69].

6. When the two laser fields in a lambda-system are resonant with their re-

spective transitions, the atomic polarization is very sensitive to the applied magnetic

field that can be used for optical magnetometry. To date, the sensitivity of the best

optical magnetometer based on atomic systems can reach ≈3x1012 G/
√
Hz at room

temperature, which is superior to the sensitivity of present state-of-the-art devices.

The degree of sensitivity of such optical magnetometers is determined by two com-

peting parameters–atomic density and laser intensity. Early theoretical predictions

showed that the sensitivity could be improved by increasing the laser intensity and
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atomic density. However, we showed experimentally [112] that the optimal sensi-

tivity reaches saturation, and does not increase indefinitely with an increase in the

above parameters. We have shown that the underlying physics is the re-absorption

and re-emission of the spontaneously emitted photons in the optically thick medium,

which increase the ground-state dephasing rate, leading to reduction of the benefit of

increasing the above two parameters. Our work helps to optimize the laser intensity

and atomic density and obtain optimal sensitivity of the optical magnetometer.
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APPENDIX A

DIODE LASER

Forty years ago, Robert N. Hall and his team at General Electric research center

invented the first diode laser [113]. Since then this small and compact coherent light

source has been widely used both in industry and science. Comprehensive reviews of

basic properties and the spectroscopic applications of diode lasers have been discussed

in Ref [113]; for that reason we provide the specific information concerning the diode

laser system used in the experiments.

We use a single mode laser diode operating at the wavelength 852 nm. The

laser diode has an anti-reflection (AR) coating on the front facet of the diode with

reflection below 0.05%. The diode is thermostabilized to ensure reliable operation

and to reduce the drift of the laser frequency due to the temperature fluctuations.

Since the laser linewidth for the free-running diode laser is quite broad, ∼ 25 MHz, it

can be improved by using a frequency selective optical feedback system [114]. In our

experiment, we use an external cavity in Littrow configuration, shown in Fig. 34, to

reduce the linewidth and improve the wavelength selectivity. The AR coating of the

laser diode can increase the effect of the external feedback. The emission from the

laser is collimated and coupled to a diffraction grating. The first order diffraction is

coupled into laser diode as optical feedback. Wavelength tuning can be performed by

rotation of the grating. Although we have not performed a precision laser linewidth

measurement for our system, its value from the Doppler-free spectroscopy measure-

ment can be estimated at about 1 MHz, which is below the radiative width of the Cs

transitions (γ = 2π · 5.3 MHz). The spacial beam profile of the diode laser system

is ellipse due to the geometry of the diode chip. To obtain a Gaussian beam profile,
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Diffraction grating on PZT

laser diode

Anamorphic

prisms

Fig. 34. The photo of the external cavity diode laser used in the experiment.

the symmetry of the laser beam may be adjusted by a pair of anamorphic prisms

[115]. To avoid retro-reflections from various surfaces, a Faraday isolator [116, 117]

is placed after the laser. The maximum laser power available from external cavity

diode laser system is Pmzx ≃ 10 mW with the beam size D=2 mm.
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APPENDIX B

DOUBLE-EIT AND EIT COMPARISON IN THE DIFFERENT ATOMIC

SYSTEM

A. Double-lambda system

|c>

|b>|b'>

|a>

p2Ωp1Ω

δ

d1Ωd2Ω

Γ Γ

γ γ

Fig. 35. Diagram showing the energy level of double-lambda system
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We consider a four-level double-lambda system, shown in Fig. 35. The probe(drive)

transition is |b〉 → |i〉(|b′〉 → |i〉), i=a,c. The interaction Hamiltonian in rotation wave

approximation (RAW) can be written as [20]

HI = −h̄[Ωp2|c〉〈b|e−iwp1t + Ωp2|a〉〈b|e−iwp2t + Ωd1|a〉〈b′|e−iwd1t +

Ωd2|c〉〈b′|e−iwd2t + h.c.]. (B.1)

Using standard semiclassical methods (see, e.g. [20]), we find the following equations

of motion for the matrix elements of the atomic density operator:

∂ρab

∂t
= −iΩp1 − (γ + iδ)ρab − iΩd1ρb′b + iΩp2ρac

∂ρcb

∂t
= −iΩp2 − (Γ + iδ)ρcb − iΩd2ρb′b + iΩp1ρca

∂ρb′b

∂t
= −(γb′b + iδ)ρb′b + iΩp1ρb′a − iΩ∗

d1ρab + iΩp2ρb′c − iΩ∗
d2ρcb (B.2)

As we show below, as long as we are only interested in the solution of system to lowest

order in the weak probe field. The off-diagonal elements for probe transition can be

solved from Eqns. (B.2) as

ρab =
iΩp1

iδ + γ
[
(iδ + γb′b)(iδ + γ)(iδ + Γ) + (iδ + γ)|Ωd2|2

D
]

−iΩp2Ωd1Ω
∗
d2

D

(B.3)

ρcb =
iΩp2

iδ + γ
[
(iδ + γb′b)(iδ + γ)(iδ + Γ) + (iδ + Γ)|Ωd1|2

D
]

−iΩp2Ω
∗
d1Ωd2

D
(B.4)
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where

D = (iδ + γb′b)(iδ + γ)(iδ + Γ) + (iδ + Γ)|Ωd1|2 + (iδ + γ)|Ωd2|2

(B.5)

Assuming Ωp1 = Ωp2 = Ωp, Ωd1 = Ωd2 = Ωd and γ = Γ for double-EIT case, under

such condition, ρab = ρa′b. Then we compare EIT and double-EIT in lambda system

in the resonant condition

ρdouble−EIT
ab =

iΩpγb′bγ

γb′bγ2 + 2γ|Ωd|2

ρEIT
ab =

iΩpγb′bγ

γb′bγ2 + γ|Ωd|2
(B.6)

The results show that the coherence term ρab of double-EIT in the double-lambda

configuration have larger denominator compared to the EIT in lambda configuration.

Therefore, the better transparency for double-EIT in double-lambda system can be

expected. Physically, we can also see this kind of double-lambda scheme, shown in

Fig. 35, as folded double-ladder scheme. Therefore, we prove the similar behavior of

two-channel transmission enhancement can also exist in the double-lambda system.

B. Tripod system

We consider a four-level tripod system, shown in Fig. 36. The probe (drive) laser

couple the transition |i〉 → |a〉 (|c〉 → |a〉); i = b, b′. The Rabi frequency of the

correspond probe (drive) transition is Ωp± = ℘p±Ep±/2h̄ (Ωd = ℘dEd±/2h̄), ℘p+=℘ab,

℘p−=℘ab′ , ℘d=℘ac. Here Eα is the amplitude of electromagnetic field and ℘α is the

dipole moment, α= p±, d. The Hamiltonian in rotation wave approximation (RAW)
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can be written as [20]

H = H0 + HI

= h̄[wc|c〉〈c| + wa||a〉〈b| + wb′||b′〉〈b′| + wb||b〉〈b|]

−h̄[Ωp+|a〉〈b|e−iwpt + Ωp−|a〉〈b′|e−iwpt

+Ωd|a〉〈c|e−iwdt + h.c.], (B.7)

where wi is the transition frequency between the levels |i〉 and absolute ground state

and wp (wd) represents the central frequency of probe (drive) field. The equation of

motion for the tripod system is given by the density-matrix equation

∂ρ

∂t
= − i

h̄
[H, ρ] + decay terms. (B.8)

Next we use the slowly varying amplitude approximations transforming ρ→ρ̃ to elim-

inate the rapid temporal oscillations

ρab = ρ̃abe
−iwpt,

ρab′ = ˜ρab′e
−iwpt,

ρac = ρ̃ace
−i(wd)t,

ρii = ρ̃ii. (B.9)

Thus by applying standard semiclassical methods [20], we find the following

dynamic equations for density matrix elements:

∂ρaa

∂t
= i[Ω∗

p+ρba − Ωp+ρab + Ω∗
p−ρb′a − Ωdρab′ + Ω∗

dρca − Ωdρac]

−3γρaa,

∂ρbb

∂t
= i[Ωp+ρab − Ω∗

p+ρba] + 2γρaa
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∂ρb′b′

∂t
= i[Ωp−ρab′ − Ω∗

p−ρb′a] + 2γρaa

∂ρcc

∂t
= i[Ωdρac − Ω∗

dρca] + 2γρaa

∂ρab

∂t
= i[δρab + Ω∗

p+(ρbb − ρaa) + Ω∗
p−ρb′b + Ω∗

dρcb] − 3γρab

∂ρab′

∂t
= i[δρab′ + Ω∗

p−(ρb′b′ − ρaa) + Ω∗
p+ρbb′ + Ω∗

dρcb′] − 3γρab′

∂ρac

∂t
= i[∆ρac + Ω∗

d(ρcc − ρaa) + Ω∗
p+ρbc + Ω∗

p−ρb′c] − 3γρac

∂ρbb′

∂t
= i[Ωp+ρab′ − Ω∗

p−ρba] − γbb′ρbb′

∂ρbc

∂t
= i[Ωp+ρac − Ω∗

dρba − (∆ − δ)ρbc] − γbcρbc

∂ρb′c

∂t
= i[Ωp−ρac − Ω∗

dρb′a − (∆ − δ)ρb′c] − γb′cρb′c (B.10)

Here the δ (∆) is the detuning for the probe(drive) field, γ is the rate of radiative

decay and γbb′, γbc and γb′c are the dephasing rate. For simplicity, we assume the drive

field is on resonance in the following calculation, ∆=0.

The off diagonal coherence terms ρab and ρab′ can be obtained by using the

solutions of Eqs. (B.10). With the assumption of |Ωd|≫|Ωp±|, the analytical solutions

for the probe transitions are obtained to the first order in both weak fields Ωp+ and

Ωp− as

ρab =
Ωp+(iγbc − δ)

(|Ωd|2 + 2γγbc − δ2) + i(2γ + γbc)δ
, (B.11)

ρab′ =
Ωp−(iγb′c − δ)

(|Ωd|2 + 2γγb′c − δ2) + i(2γ + γb′c)δ
. (B.12)

The analytical solutions, ρab and ρab′ , for the off diagonal coherence are EIT

solution. We find out the coherence term in a tripod system is the same for both the

EIT and double-EIT case.
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APPENDIX C

OPEN SYSTEM MODEL TO DESCRIBE TIME OF FLIGHT EFFECT

In this appendix we describe briefly the open system considerations for the system

of our interest. The system to describe the effect of artificial decays due to finite time

of interaction of the atoms during the time of flight through the laser beams could

be modelled as shown in the Fig. 37. Correspondingly our equations of motion (6.5)

will be modified to

∂ρaa

∂t
= −2(γab + γac + γE)ρaa + iΩρba − iΩ∗ρab

+irΩρca − ir∗Ω∗ρac

∂ρab

∂t
= −(γab + γac + 2γE + Γb/2)ρab − iΩ(ρaa − ρbb)

+irΩρcb

∂ρac

∂t
= −(γab + γac + 2γE + Γc/2 + i∆)ρac + iΩρbc

−irΩ(ρaa − ρcc)

∂ρbb

∂t
= R− 2γEρbb − Γbρbb + Γcρcc + 2γabρaa − iΩρba

+iΩ∗ρab

∂ρbc

∂t
= −(2γE + γbc + (Γb + Γc)/2 + i∆)ρbc + iΩ∗ρac

−irΩρba

∂ρcc

∂t
= R− 2γEρcc − Γcρcc + Γbρbb + 2γacρaa − irΩρca

+ir∗Ω∗ρac . (C.1)

Here, R is the rate at which atoms enter into interaction region and γE is the effective

decay of the atomic population due to exit of atoms from the interaction region given
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by (tflight)
−1. Here tflight is flight time of atom through the laser beams. Demanding

that in steady state the total change in poulation should be zero, i.e.,

∂ρaa

∂t
+
∂ρbb

∂t
+
∂ρcc

∂t
= 0, (C.2)

gives

ρaa + ρbb + ρcc =
R

γE
. (C.3)

Thus to restrict any build up of population in the interaction region, we need the

condition R = γE . Now we make a very approximate estimate as in the following.

1. Since the time of flight is order of miliseconds as compared to spontaneous decay

time of order of nanoseconds, we can drop γE compared to γij in the equations for

ρaa, ρab and ρac.

2. Moreover, as we are working under the CPT condtion, if we assume ρbb ≈ ρcc ≈ 0.5

(and also using the condition that R = γE), the first two terms in both equations for

ρbb and ρcc will cancel with each other.

Thus all the above equations in (C.1) reduce to exactly the same form as in closed

system Eqs. (2.14), except for the equation for ground state coherence ρbc, because

γE is comparable to γbc. Therefore, in our calculation the time of flight induced decay

primarily affects the dephasing and the population decay is not affected as much.
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Fig. 36. Diagram showing the energy level of tripod system
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Fig. 37. (Color online) The model for an open system. Here R is the rate at which

atoms enter into interaction region and γE is the effective decay of the atomic

population due to exit of atoms from the interaction region.



117

VITA

Name: Paul Steve Hsu

Address: Department of Physics, Texas A&M University, College Station,

Tx, 77843-4242.

E-mail: p-hsu@tamu.edu; phsu4031@yahoo.com

Education:

Ph. D. in Physics, Texas A&M University (May 2008).

B.S., Physics, National Central University, Taiwan (July 2001).

Work Experience:

1. Internship in the AFRL, Dayton OH (6/2007-12/2007).

2. Visiting scholar at Wright State University, Dayton, OH (2007/8-2007/12).

3. Research and teaching assistant at Physics Dept., Texas A&M University

(2002/9-2007/5).

4. Research assistant in the at Physics Dept., National Central University

(9/2000-6/2002).

5. Computer lab assistant in the National Central University(6/1998-6/1999).

Awards and Honors:

1. National Research Council (NRC) Postdoctoral Research Award

(Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton OH).

2. Research week winner among the best 3 at Texas A&M.

3. GPA:3.8/4.0 (in Texas A&M Ph. D program).

4. Creativity research awards of undergraduate project competition from NSF

(Taiwan).

The typist for this dissertation was Paul Steve Hsu


