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ABSTRACT

Giant Resonance Study by °Li Scattering.
(May 2008)
Xinfeng Chen, B.S., Tianjin University; M.S., Institute of Modern Physics, Chinese
Academy of Science

Chair of Advisory Committee: Dr. Dave H. Youngblood

Nuclear incompressibility K, is an important parameter in the nuclear matter equation
of state (EOS). The locations of the isocalar giant monopole resonance (ISGMR) and
giant dipole resonance (ISGDR) of nuclei are directly related to Ky, and thus can give
the most effective constraint on the value of the K,,. In order to determine K,
accurately, a systematic study of the ISGMR and ISGDR over a wide range of nuclei is
necessary. Alpha inelastic scattering at small angles has been successfully used to study
the ISGMR of heavy and medium nuclei where the monopole resonance is concentrated
in a broad peak. For light nuclei (A<40), however, ISGMR strengths are more elusive
because the resonance is fragmented and extends to excitation energies above 35 MeV.
Other processes give a large physical background at high excitation energy in o inelastic
scattering, which makes it difficult to extract strength distributions in this range. As an
isoscalar projectile (N=Z), °Li scattering could be an alternate way to study giant
resonances. A better ratio between the resonance peak and the continuum is expected in
SLi scattering due to the low particle emitting threshold. Another important motivation
for °Li scattering study is to explore the possibility of expanding current research from

stable nuclei to radioactive nuclei with inverse reactions using °Li as a target.

Data for elastic scattering of 240 MeV °Li ions and inelastic scattering to low-lying states
and giant resonances was taken for **Mg, 2*Si and ''°Sn. A data analysis procedure was

developed for double folding calculations. The optical potential parameters for °Li +



v

Mg, °Li + ?*Si and °Li + ''"%Sn scattering systems were obtained by fitting elastic
scattering data. Multipole analyses were carried out for inelastic scattering to high lying
isoscalar giant resonances with multipolarities L=0 - 3. The results for the ISGMR and
ISGQR are in agreement with those obtained with 240 MeV « scattering, however the
agreement for the ISGDR and HEOR is not so good, indicating the uncertainty in
extracting these strengths. This work has shown that 240 MeV °Li scattering is a viable
way to study the ISGMR and ISGQR and can be particularly useful in rare isotope

studies where °Li can be used as the target.
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1. INTRODUCTION

1.1 Nuclear Matter and Nuclear Compressibility

Nuclear matter is a theoretically constructed infinite system of nucleons with a fixed
ratio of neutron to proton numbers and no Coulomb interaction. Study of nuclear matter
is of interest in nuclear physics to test many-body theory as well as in astrophysics to
study supernova collapse and neutron stars. To accurately determine the nuclear matter
(NM) equation of state (EOS), E=E(p), is the main goal of the study of the nuclear
matter. However, it is not an easy task to get information about its properties since
nuclear matter does not exist in the laboratory. There are three important parameters
which characterize nuclear matter: the saturation density, the binding energy, and the
compressibility. The saturation density po= 0.17 fm™ has been obtained from electron
scattering and the binding energy E(py) = —16 MeV was obtained by extrapolating the
masses of finite nuclei and are known with “good accuracy” [1]. The nuclear matter
compressibility, Ky, is directly related to the curvature of the nuclear matter equation of

state [2] at the saturation point. Ky, is defined by:

d*(E/A d*(E/A
_{%rlho_%ﬁ_%;lew
f

K., =K} (1.1)
where E/A is the binding energy per nucleon of the nuclear matter, and kg is the Fermi

momentum and py is the nuclear matter density at the saturation point.

There were quite a few attempts to constrain the nuclear compressibility K, with data
from nuclear physics, such as nuclear masses, nuclear radii and high energy nuclear
collisions, and from astrophysics such as supernova collapse and neutron stars masses
[3]. However, all these attempts could not give an effective constraint on nuclear
compressibility until the isoscalar giant monopole resonance (ISGMR) in nuclei was
discovered [4] and used to determine K,,. The most recent value determined from

comparison with calculations using the Gogny interaction is 231+£5 MeV [5], however

This dissertation follows the style of Physical Review C.



there are both theoretical and experimental issues remaining, some of which are the

subject of this dissertation.

1.2 Nuclear Giant Resonances

Giant resonances are small amplitude, high frequency, collective modes of excitation of
a nucleus. In 1947, Baldwin and Klaiber [6] observed a strong resonance behavior in
photon-induced reactions. This resonance turned out to be the electric isovector giant
dipole resonance (IVGDR). Very soon it was found that these giant resonances were a
general feature of all nuclei. The centroid energy can be described in medium and heavy

nuclei by the relation [7]

E, =31.2A"" +20.6A™"° MeV (1.2)

where A is the nuclear mass for a certain nucleus. Goldhaber and Teller explained this as
a collective vibration of protons against neutrons. In 1972, the isovector giant
quadrupole resonance (IVGQR) was first reported by inelastic electron scattering in *°Zr
[8] and a resonance thought to be the isoscalar giant quadrupole resonance (ISGQR) was
observed in electron scattering [9] and in proton inelastic scattering [10] from spherical
nuclei. Alpha inelastic scattering was later used to definitively identify this as the
ISGQR and to systematically investigate the ISGQR from heavy to light nuclei [11-15].
The shape and width of ISGQR change smoothly from heavy to medium nuclei and the

centroid energy in heavy nuclei can be described by the relation:

E,~63A"° MeV . (1.3)

In 1977, D.H. Youngblood et al. [4] reported the discovery of the ISGMR in '**Sm and
%ph with o inelastic scattering. A systematic study of the properties of ISGMR [16] in

many nuclei was reported later with a centroid energy in heavier nuclei of

E. ~ 76A™"" MeV . (1.4)



The discovery of ISGMR provided an effective way to determine the nuclear
compressibility and K, obtained varied from 180 MeV to 230 MeV depending on the
nucleus used. In 1980, the isoscalar giant dipole resonance (ISGDR) was observed with
172 MeV a inelastic scattering from 2**Pb [17]. The ISGDR centroid can also be related

to the nuclear compressibility.

In the macroscopic liquid drop model, protons and neutrons are treated as independent
fluids. Giant resonances therefore can be described as shape or density oscillations of
nuclei. Giant resonances can be classified into two groups by spin, namely electric
oscillations (AS=0) and magnetic oscillations (AS=1) [18]. They also can be classified
into two groups by isospin, namely isoscalar mode (AT=0) and isovector mode(AT=1).
In isoscalar oscillations, protons and neutrons move in phase, while in isovector
oscillations, protons and neutrons move out of phase. The possible giant oscillation

modes of a nucleus with multipoles L < 2 are illustrated in Fig. 1.1.

From the microscopic point of view, giant resonances can be described as a coherent
superposition of particle-hole excitations resulting from the action of an electromagnetic

operator on the ground state of the nucleus, and for isoscalar transition with L > 2
O =D Y@ L2 (1.5)

The qualitative features of giant resonance can be understood by considering the nuclear
shell model [7, 18]. According to the shell model, the parity of the single particle wave
function in subsequent shells N, N+1, N+2 is alternating, and the energy difference
between subsequent shells AE =7/ =41A""°MeV. Parity conservation requires that
odd L resonance transitions can only happen when AN=1,3,... and even L resonance

transitions can only happen when AN=0, 2, 4,... (see Fig. 1.2). So the resonance energy
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FIG. 1.1 Qualitative picture of giant resonance modes of the nucleus (originally from

[18]).
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FIG. 1.2 Schematic representation of EO, E1, E2 transitions between shell model

states[19].

Table 1.1 Qualitative estimation of energy of giant resonance in nuclear shell model.

Multipolarity AE Multipolarity AE
ISGMR 0 2hw ISGQR 2 (0hw), 2hw
ISGDR 1 (lhw), 3ho ISGOR 3 l1ho,3hw
IVGDR 1 1w

can be estimated as AE=ANx /%@ (as shown in Table 1.1). In a schematic model the

residual particle-hole interaction gives rise to the formation of one strong collective state

which is a coherent superposition of all possible particle-hole interactions of a given

multipolarity and parity. Since the residual p-h interaction is attractive for isoscalar and




repulsive for isovector excitations, the isoscalar resonances will be located below and
the isovector resonances above the unperturbed energy ANx7i@ =ANx41A™"" MeV.
Because of this, the ISGMR and IVGDR are located at approximately the same

excitation energy (see Fig. 1.3).
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FIG. 1.3 Hypothetical centroid energies and strength distributions for different

electric giant resonance modes for a nucleus with mass A~100. The peak

strength for each mode is arbitrary.
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FIG. 1.4 The main experimental tools used to study giant resonances (see Ref. [20]).

The experimental tools used to study different giant resonances are shown in Fig. 1.4
(see [20]). Inelastic scattering of a particles is a strong isoscalar (N = Z) selective probe
which has been the main tool used to study isoscalar giant resonances. Inelastic
scattering of proton [21], deuteron [22] and *He [23] have also been used to study
isoscalar giant resonances. Electron inelastic scattering has some advantages in giant
resonance studies, since the form factor can be calculated accurately and the angular
distribution are often characteristic of the multipolarity, and the physical continuum
background from multi-step excitation is small due to the weak electromagnetic
interaction. However, electron scattering has a large contribution from the radiative tail
which increases background substantially and it excites strongly both isoscalar and
isovector excitations, which particularly affect the study of the ISGMR where the

IVGDR lies at nearly the same energy. To study isovector resonances one needs a probe



which can distinguish between protons and neutrons. Electron scattering and y-
absorption are useful tools for studying the IVGDR, while pion charge exchange
reactions provide an opportunity to study the IVGMR.

1.3 The Compressional Mode Giant Resonance and Nuclear Compressibility

According to the liquid drop model [2], in addition to the surface oscillations, a liquid
drop possesses normal modes of vibration involving compression of the density (sound
wave), which are called compression modes. Among all the nuclear properties which
are potentially affected by the compressibility K, the compression mode of giant
resonances is certainly the most sensitive one. The energy of the compression mode can

be simply related to the compressibility by the following [2]

om (1.6)

where m is the nucleon mass and R, =1.2A"". In compression modes, ISGMR can be

simply viewed as a volume oscillation of the nucleus, while ISGDR may be physically
visualized as a compression wave moving back and forth-akin to a sound wave-in a
nucleus with the volume of the nucleus remaining constant [24]. The ISGDR has been

referred as the “squeezing mode”, in tune with the term “breathing mode” for the GMR.

From a microscopic point of view, both the ISGMR and ISGDR are second-order
effects, which means that the transition operator is related to rzYoo for ISGMR or r3Y10
for ISGDR (to first order, the transition operator for ISGMR is a constant which cannot
induce any transitions from the ground state to excited states, and that for ISGDR

corresponds to the spurious center-of-mass motion).

What one measures in experiments studying the ISGMR and ISGDR are strength
distributions as a function of excitation energy. The energies of the ISGMR and ISGDR
can be expressed as ratios of different moments of the strength distributions, in which

the ki, moment of the strength distribution is:



(1.7)

m, = Z(Eno)k\<n|F|o>f

where E, is the excitation energy of the state |n> and F is the excitation operator for

ISGMR and ISGDR. F may be expressed as [1]

A
F=2 1Y (1.8a)
i=l1
for ISGMR and [1]
A n A 5
F=>1,(F)=2 (Y, —mmY,) (1.8b)
i=l1 i=l1

for ISGDR, where the value of 1 is obtained from the coherent spurious state transition

density[25]. In the scaling model, the mean energy E is defined as[26]:
— Y (E(nlFo)f
3 —_n

m 3E,[(n|Flo)

(1.9)

Then the energies can be expressed in term of an effective compression modulus K4 for

the nucleus of mass A by the formula [26]

_ [r2AK,
E, = W (1.10)

for ISGMR, and

(1.11)

for ISGDR, where m is the nucleon mass, <r2>0 is the average r* over the ground state.

All the information about the nuclear matter compression modulus which can be

extracted from the data is contained in Ka.
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There are two approaches to relate Ka to Kym. In the semi-empirical (macroscopic)
approach, which is similar to the semi-empirical mass formula, K, is expressed as an
expansion with contributions from volume, surface, symmetry and coulomb terms:
2 2
N-Z YA
-1/3

KA = KvoI + Ksurf A + Ksym[ A j + KCoul A4/3 +---. (112)
The determination of the various parameters K; (Ki = Kyol, Kgurf, Ksym, Kcour...) 1s done
by fitting ISGMR data from many nuclei. Ky, is identified with the volume term K.
However, this approach suffers from several ambiguities [27-29]. The first one is related
to the interpretation of the volume term. The assumption

K, =lmK, =K, (1.13)

A—x

holds only if the ISGMR is well described by scaling model. The scaling model may
give a reasonable approximation in some heavy nuclei, but it is not such a good
approximation in light nuclei, which make the interpretation of K, somewhat uncertain.
Also the assumption that the breathing mode is a small amplitude vibration, which is the
basis to derive the Ka expression (1.12) and Ej expression (1.10), is only true for heavy
nuclei. In lighter nuclei, the breathing mode is anharmonic[28]. This further complicates
the interpretation of the various terms in Eq. (1.12). Another ambiguity [27, 29] relates
to the possibly poor convergence of the expansion (1.12), and the fact that it is not clear
whether the variation of K4 over the range of nuclei considered can be well accounted

for by the smooth behavior implied by Eq.(1.10).

In the microscopic approach, the self-consistent Hartree-Fock (HF) random-phase-
approximation (RPA) [2, 30, 31] is used to calculate strength distributions for ISGMR
and ISGDR, with various effective nucleon-nucleon interactions which differ in their
value for K,n. The value of K,, thus can be constrained by comparing the
experimentally extracted strength distributions of ISGMR and ISGDR with those from

HF-RPA calculations. An essential feature of this approach is that the same level of
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approximation is implemented in both finite and infinite systems, and the same

parameterization of the effective interaction is used in both cases.

In the HF approach, the ground state wave function of a nucleus with A nucleons is a
Slater determinant obtained from the single-particle wave function with the assumption
that each nucleon moves in a mean field created by all the nucleons. Thus the ground
state of the nucleus can be approximately expressed in terms of independent single
nucleon motions in the average field. The basic properties of nuclei have been described
successfully with HF theory. The collective motions have been well described within the
RPA theory in terms of coherent particle-hole (p-h) excitations. In the self-consistent
HF-RPA calculation [30], one starts by adopting a specific effective NN interaction Vs,
such as a Skyme interaction, with parameters obtained by fitting the experimental data of
the bulk properties of finite nuclei within HF approximation. Then one solves the RPA
equations, using the p-h interaction Vp, which corresponds to Vi, and calculates the
strength distribution S(E) and the centroid energy associated with a certain scattering

operator F as shown in (1.82a) and (1.8b) for ISGMR and ISGDR.

The analysis of ISGMR with HF-RPA calculations, with Skyme interaction [32],
currently gives a value of compressibility K,,=210-220 MeV, while the analysis of
ISGDR predicts a value of K,,=160-180 MeV. The discrepancy of 20% between the
value of Ky, obtained from ISGMR and that obtained from ISGDR, was a long standing
problem which puzzled people for almost one decade. Shlomo et al. [1, 33, 34] pointed
out that several aspects accounted for the discrepancy: i) the HF-RPA calculations used
to extract strength distributions for giant resonances were not fully self-consistent, which
introduces spurious state mixing (SSM) in the ISGDR and thus brings considerable
uncertainty in determining the strength distribution; ii) The maximum cross-section for
the ISGDR decreases strongly at high energy and may drop below the experimental
sensitivity for excitation energies above 30 MeV, so the missing experimental strength in
high excitation region leads to a reduction of more than 3 MeV in the ISGDR centroid

energy which can significantly affect the comparison between theory and experiment;
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ii1) Current experimental methods adopted to extract the strength distribution, using the
collective model shapes for transition density, tend to overestimate the ISGDR EWSR

by up to 20%, which may shift the centroid energies a few percent.

In addition to HF-RPA approach mentioned above, which is usually denoted as non-
relativistic, a fully consistent relativistic random phase approximation (RRPA)[35],
based on effective mean field Lagrangians with nonlinear meson self-interaction terms,
has been used to calculate ISGMR and ISGDR distributions. A comparison between
experimental and calculated energies of ISGMR points to a value of 250-270 MeV for
Kum, which is 20% higher than the value for K, obtained in the non-relativistic HF-
RPA calculation. Piekarewicz [36] and Shlomo et al. [34, 37, 38] have shown that the
difference in the values of K,,, obtained in the relativistic and non-relativistic models is
mainly due to the differences in the values of the symmetry energy coefficient J and its

slope L associated with these models.

According to Shlomo et al. [34], correction of non-fully consistency in non-relativistic
HF-RPA calculations for ISGMR may change the K, value obtained with the Skyrme
interaction from 210-220 MeV to 230-240MeV, in agreement with that obtained with the
Gogny interaction. It is also possible to build bona fide Skyrme forces where Ky, is
close to the relativistic value, 250-270MeV. Therefore K,,=240+20MeV can be
obtained with non-relativistic fully self-consistant HF-RPA calculation. The uncertainty
of about 20 MeV is mainly due to the uncertainty in the value of the overall shape of the
nuclear matter symmetry energy curve, as a function of density. In order to determine
the Kiym accuratelly, the systematic study of ISGMR over a wide range of (N-Z)/A is
necessary and more information on ISGDR will be also very helpful to check the obtain

Knm.

1.4 Motivations

Alpha inelastic scattering at small angles, including 0°, has been successfully used to

study the ISGMR of heavy and medium nuclei [5] (as shown in Table 1.2) where the
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monopole resonance is concentrated in a broad peak. For light nuclei (A<40), however,
ISGMR strengths are more elusive [39-41] because the resonance is fragmented and
extends to excitation energies above 35 MeV. Unfortunately, other processes, such as
multi-step reactions, give a large physical background at high excitation energy in a

inelastic scattering, which makes it difficult to extract strengths in this range.

Table 1.2 Fractional energy weight sum rule (EWSR) exhausted in the given
excitation energy range for nuclei from light to heavy obtained with o

scattering, with my being ki, moment of the strength distribution (k =-1, 0,

1,3).
E, Energy EWSR

e m/m,  Jm/m,  m/m, 0 Ref.
"C 13.0~45.0 21.9+0.3 ~2745 [41]
160y 11.0~40.0 21.39+0.49 19.63+0.38 24.89+0.59 ~48+10 [42]
Mg 10.0~40.0  21.937933*  2083%5,% 2465703 ~82+9° [39]
i 80~37.0  21.25+0.38  20.13+0.38 23.7+0.7 ~81£10 [40]
“Ca  80~350  183970% 1758040  204270% ~100+11 [43]
Ti  9.0~390 186605 181703 2047704 ~7173 [44]
Ti 9.0~39.0  18.8079%  1833703¢  202570% ~96 114 [44]
SFe  10.0~40.0  183570% 1792707 1957707 ~98 10 [43]
Ni  10.0~40.0  192079%  1870%%3  208170% ~85718 [45]
ONi  10.0~400  18.04703 17557027 1954%07% ~82° 13 [45]
P7r 10.0~350 17817037 175579 18.6970% ~100+12 [46]
cd  100-350 1512707 1496700 1558708 ~88 1021 [47]
"2cd 10.0-350 1450703 14317070 1502707 ~104 0% [47]
280 10.0~35.0 15437010 1523+0.10  16.0570°° ~116 13 [48]
"Sn 10.0~35.0  15.62+0.20°  15.45+0.20°  16.13+0.20° ~112+£15 [49]
280 100350  14.50£0.14 14337007 1496011 ~104+11 [48]
"Sm 10.0~35.0  14.67+0.30°  14.60+0.30°  15.12+0.30° ~92+12 [49]
*®Pb  10.0~35.0  13.77+0.20°  13.69+£0.20°  14.000.20" ~99+15 [49]

a: Ref. [50], b: Ref. [51]
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SLi scattering could be an alternate way to study giant resonances. As an isoscalar
projectile (N = Z), °Li scattering preferentially excites isoscalar resonances as does o
scattering. The low particle emitting threshold for °Li will give a large breakup
probability into dominant channel °Li> o + d. Therefore the contribution of multi-step
processes to the °Li outgoing channel is low, especially at higher excitation energy, and
a better ratio between the resonance peak and the continuum is expected. ISGMR studies
in '*C and **Mg with 156 MeV °Li inelastic scattering have been reported respectively
by W. Eyrich et al. [52] and H. Dennert et al. [53]. However, the low bombarding
energy limited the useful excitation energy range to Ex <30 MeV. We expect 240 MeV
SLj scattering can give us a better opportunity to study giant resonances at higher energy

in light nuclei.

Another important motivation for °Li scattering study is to explore the possibility of
expanding current research from stable nuclei to radioactive nuclei with inverse
reactions. Inverse reactions have to be used because it is impossible to make targets of
these unstable nuclei, so they will be used as projectiles. It is difficult to make a helium

target, but a °Li target is relatively easy to make.

1.5 Dissertation Outline

The dissertation consists of five sections. Section 1 presents an introduction of nuclear
matter compressibility K,,, giant resonances, the relation between K, and compression
modes resonances, and current status of K, determination via ISGMR and ISGDR
studies. The motivations to study °Li scattering are also given in this section. The Energy
Weighted Sum Rule (EWSR) and scattering theory are introduced in section 2. Since the
energy weighted sum rule is used as a measurement of the strength of giant resonances,
EWSR and transition density for ISGMR, ISGDR and isoscalar modes with L > 2 are
introduced in this section. Then general scattering theory with DWBA calculations is
presented to give a clear picture about how the cross-section of the scattering system can

be obtained by solving the Schodinger equation. The optical potential in terms of
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empirical Woods-Saxon (W-S) parameterization, which has been widely used to analyze
nuclear elastic scattering, is introduced briefly. Folding model with M3Y nucleon-
nucleon (NN) effective interaction, which is another way to construct the optical
potential in the frame of Feshbach’s reaction theory, is introduced as well as the folding
model with JLM NN effective interaction. The transition potentials for inelastic
scattering are also given in this section. In the end of section 2, different computer codes,
CHENZ2, DFPD4, ECIS, OPTJLM1, used for folding calculations and DWBA
calculation, are introduced and calculations with DFPD4 and ECIS for a known
scattering system are compared to those obtained with DOLFIN and PTOLEMY. In
section 3, the experimental setup of the multipole-dipole-multipole (MDM)
spectrometer, the operation of focal plane detector and electronics are introduced.
Detector calibrations, and the procedure to extract the differential cross-sections data
points from raw data, are also included in this section. Section 4 gives a detailed
description and discussion of the data analysis, which includes: procedure of data
analysis; data analysis of °Li+''®Sn scattering; data analysis of °Li scattering on **Si and

**Mg. Section 5 contains the summary and conclusions.
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2. COLLECTIVE MOTION AND SCATTERING THEORY

The fact that inelastic scattering is appropriate to study giant resonances is based on the
following: a) giant resonances are a collective motion of nuclear excitation; b) inelastic
scattering is very sensitive to coherent, collective motions of the target nucleons and,
many of the characteristic features of the scattering are embodied most simply in
calculations based on the collective model form factor. The collective model will be
introduced in SECTION 2.1, which emphasizes the derivations of transition density and
energy weighted sum rule (EWSR) for giant resonances with different multipolarities. A
general scattering theory is introduced in SECTION 2.2 to provide a framework within
which different physical models can be embedded. The formal solution of the scattering
problem and the distorted wave Born approximation (DWBA) are given in this
SECTION. In SECTION 2.3, the optical potential model used to analyze elastic
scattering in term of W-S potential parameters is introduced briefly. The optical potential
obtained from the folding model calculation with M3Y nucleon-nucleon effective
interaction is described and discussed as well as that obtained with JLM interaction.
Transition potentials for analysis of inelastic scattering are introduced in SECTION 2.4.
Several computer codes used to carry out double folding calculations and DWBA

calculations are introduced in SECTION 2.5.

2.1 Collective Model

The collective model describes nuclear excitations induced by static or dynamic
deformations of the nucleus. The details of the collective model were described by Bohr
and Mottelson [2]. The density and shape vibrations of the nuclei are among the most
easily recognized collective motions, which may occur both as discrete, low-lying states
and as high-lying giant resonance. Isoscalar giant resonances with low multipolarites
such as L = 0 - 3 can be excited simultaneously by inelastic scattering of isoscalar
nuclear probe. The main concern here is to construct the transition density for nuclear

excited states and obtain the EWSR for each multipolarity.
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2.1.1 Deformation and Transition Density for L>2

The basic idea to obtain the transition density is to take a spherically symmetric density
distribution p(r) and introduce certain multipole deformation parameters o, to describe
deformed nucleus. These parameters are dynamic variables of the collective model. A
standard method to introduce the deformation of a nucleus is given below [54].
Assuming an incompressible nucleus with a density distribution p(r) = constant in the
interior and a sharp edge at r = Ry, the deformation is then introduced by making the

edge position angular dependent:

R, = R(0,9) = Ro{l + Zal#Y/{‘(@,(o)} =R, +R(0,9) (2.1)

where L > 2. This above prescription can be easily transferred to a nuclear density

distribution with the Fermi density shape:

p(r.Ry) =—" (2.2)
l1+e 2

where R represents the half-density radius and a is diffusion parameter. A Taylor series

may be used to obtain the deformed density distribution which is

p.0.0)= PTRO.P) = p(rR)+ 3 P {d g R)\Hﬂ} (232)
where
R=R D> a, Y/ (6,9). (2.3b)

On the other hand, the deformed density can always be decomposed in a multipole

expansion

P(r.0,0) = pn(NY,"(6,0)* (2.42)
Im
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where

Pn(1) = [ P(1.6,0)Y,"(0,0)dT, (2.4b)

which actually represents the transition density for inelastic transitions. We know that, if

the density is only a function of (r - Ry) as shown in eq.(2.2), then we have

d"p ,d"p
=(-)"—£ 2.5
dR] D dr" 5

With the first order approximation of (2.3a) and considering Eq.(2.4) and Eq.(2.5), the

transition density can be expressed as

Pn(1) = (et Where f.(r)z—RO[%} (2.6)

2.1.2 Transition Density for Monopole Breathing Mode

Besides nuclear shape vibrations, it is possible that the central density of the nuclear
matter oscillates about its equilibrium value with high frequency, which is referred as
monopole breathing mode. With the simple radial scaling [55]

r-r=r(l-e«,). (2.7)

the transition density can be related to the equilibrium density p(r) by the following

expression

p(r) = Np(r') = p(r) + op(r) (2.8)

where N is the renormalization factor to satisfy the particle number conservation law,

which requires

jap(r)rzdr =0. (2.9)

From Eq.(2.7), we have:
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Np(r'y=Np(r —re,) = Npo(r)— Nre, ’Dd( ) _ p(r)+op(r), (2.10)
so the transition density can be expressed as:

5p(r) = (N —1)p(r) - Nre, d’;(rr) . 2.11)
With the constraint of Eq. (2.9), one can obtain

1
N = ~1-3q, (2.12)
1+ 3¢,

where 30 << 1, and the transition density is

5p(r)~—a0[3p(r)+rdléir)} (2.13)

2.1.3 Energy Weighted Sum Rule (EWSR) and Sum Rule Limit Deformation

It is often useful to apply general relations in the form of sum rules obtained from
algebraic relations between operators to study complex systems like one described by
collective model. For example, the EWSR is often used as a measurement of the strength
of giant resonances. It is defined as a sum of the transition possibilities from ground state
to excited states for certain multipolarity, multiplied respectively by the excitation

energy [2]

1
S(Q) ==(E, - Eo)|(niQo)" = S(0[Q.[H.Q]lo) (2.14)
where n labels the complete set of excited states that can be reached by operating with Q

on the ground state |0> Assuming Q is a one-particle moment depending only on the

spatial coordinates

Q=§Q(ﬁ) (2.15)
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and the interactions do not explicitly depend on the velocity of the particles, The EWSR

can be expressed as

h? w2
21— (V;Q(1))
i2m

S(Q)= <0

O> (2.16)
where m is the mass of the particle. For a multipole field operator

Q= f¥" (@), 2.17)
the EWSR can be evaluated by means of the gradient formula [2] and is obtained as

2L+1 #° df ., f,
. %A<(E) +L(L+1)(?)> (2.18)

S(Q)=

where A is the particle number of the system. With the isoscalar mass operator Qorm (L

>2)[56, 57]
A
Quuu =25 YM (@), (2.19)
i=1
the corresponding EWSR is obtained

KA A
8zm

SQuuu) =5~ LQ@L+1(r*"?), (2.20)

which is approximately independent of assumptions about nuclear structure.

In the macroscopic liquid drop model, assuming the excited nucleus has a continuous
density distribution p(r, R(0,¢)) as discussed in part A, the isoscalar mass operator can

be transformed as

Qun = [TV (0.0)p(r.0.0)dF = [ pi,, (Nr*+dr (2:21)

Substituting Eq. (2.6), we can obtain
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do .. L+2 _
o :-jRod—er g dr = . )ARO<rL ety - (2.22)

In the vibrational model treating the small oscillations in shape about a spherical mean,
the om are now quantal operators that will create or annihilate one quantum or phonon.

The transition probability for the mass multipole operator can then be expressed as

(L+2)
(47)*

B(0 — L) = (L.M|Qy 0)] = AR (r ) 2 (2.23)
where S = KLM |aLM |O>‘2is the amplitude of the oscillation. Assuming the single state

exhausts the total sum rule (see Eq. (2.20)), we get sum rule limits on the deformation

parameters for L > 2

s e 270 L@L? ()

oL=hf = mAE, (L+2)" (r)’ (2.24)
which are useful in inelastic scattering data analysis.
For a L= 0 (monopole) transition, the mass operator is given by

Quo = irizYoo (2.25)

and the corresponding EWSR is obtained by inserting the above expression into

Eq.(2.17) and Eq. (2.18)

Sew = ;:; (r*) (2.26)

where m is nucleon mass and <r*> is average over ground state density. If the excitation
of a single state with excitation energy Ey exhausts EWSR, the sum rule limit
dimensionless amplitude o is obtained by inserting eq.(2.13) into Eq.(2.21) and

following the same procedure as L > 2
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5 27

a, = W . (227)

2.1.4 Transition Density and EWSR for Isoscalar Dipole Mode

The collective formalism to describe isoscalar dipole excitations in electron scattering
was first proposed by Deal et al. [58], and later extended to those excited with hadron
scattering by Harakeh and Dieperink [59]. However, the transition density obtained by
Harakeh and Dieperink is for only one magnetic substate. The total transition density
should be multiplied by a factor of 3. One can see Ref. [59] for the detail about how to
get the EWSR for ISGDR and corresponding sum rule limit transition density. The
results are summarized below.
A

For isoscalar dipole excitation, the first order approximation, i.e., Q,, = Z:I’iY10 , can
i=1

only result in a translation of the center of mass. The second order approximation gives

the ISGDR operator

A
Qo = 21 V1o (2.28)
i=1

and the corresponding EWSR is

KA 25, ,\2
01 _ v 4 _ e~ 2 _ 2
SSW‘32m7,(1 () S (r) —106(r >] (2.29a)
where
2
PR P A (2.29b)
3mAlE, E,

where E, is the excitation energy of the ISGMR and E; is the excitation energy of the
isoscalar quadruple resonance. If the isoscalar dipole EWSR is exhausted by one state,

the transition density of this state is
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B ,» d 5, d d? d
rN=—"-3r—+10r ——(r°)— r—+4— r 2.30
9,(r) c err 3< >dr+g derr dr P (2.302)
where
) 6rxh’ c’

B (2.30b)

AR () - 2 ) - 106(r?)

and B, is the collective coupling parameter and c is the half density radius of the Fermi

mass distribution. In all the above equations, € is very small compared t0<r2> , and for

practical purpose the terms depending on & could be ignored for A > 20.

2.2 Scattering Theory

It was suggested long ago that inelastic scattering from nuclei would preferentially
excite collective states [60, 61] which include discrete, low-lying states and high-lying
giant resonance states. To extract the strength distribution for a giant resonance, it is
necessary to calculate the differential cross section for inelastic scattering with the
DWBA approximation. The details about how to solve the Schodinger equation with
DWBA to get the differential cross section have been thoroughly discussed by Satchler
in Ref. [54]. A general solution and some important assumptions are given in this

section.

2.2.1 THE GENERAL SOLUTION OF THE SCATTERING PROBLEM

Let us consider a 2-body scattering system with a direct nuclear reaction a+ A—>b+B.
Following the notation in Ref. [54], a pair of nuclei a and A is called a partition and
denoted as a, while another pair of nuclei b and B is denoted as partition B. The primed
a’ is used to denote different states of the same partition as a. The total Hamiltonian of

the system for one partition can be expressed as
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H=H,+K,+V, (2-31)

where H, is the internal Hamiltonian for the nuclei a and A, K is the kinetic energy of
their relative motion, V, is the mutual interaction potential. The total wavefunction can

be obtained by solving the Schrodinger equation:

(E-H)¥ =0 (2-32)

where ¥ may be expanded in terms of a complete set of internal states y, , which is

=2 &M, (x,) (2-33)

where the sum runs over all the internal states of partition a.. Since the incident beam is
in the a channel, the wavefunction ¥ contains incoming spherical waves only in the

ground-state o channel but will have outgoing spherical waves in this and all other
channels which are open at the incident energy. It is denoted as \11;”(@) in which (+)

means that we choose outgoing wave and o means it arises from an incident wave in the

a channel. It may also be expanded in terms of the states of partition B:

\Py) = Zé:ﬂ(rﬂ)lr//ﬂ(xﬁ) (2-34)
B
where w;(X,)is wavefunction of internal states in channel B, the function &,(F)

describes the relative motion in the channel 3 and is expressed as

E5(T,) = ([ W) = [y (x,) P dx,, (2-35)

To satisfy boundary conditions, it must have the asymptotic expression
E,(Fy) > e s+ £, (F,, Ea)rie‘k/”ff . (2-36)

B
Asymptotically, the relative momentum Rﬁ has the same direction as T, so
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e (F5.K,) = £, (kﬂ,ka).

The differential cross section for the transition from channel o to channel 3 is defined as

the ratio of rﬁde (the outgoing flux per unit time going into the small area

subtending a small solid angle dQ in channel ) over |J*| (incident flux per unit time

and unit area in channel o)

d JZIr;dQ
Tpa qoy = [To 122 (2.37)
dQ
The probability flux is expressed as
j (D'V.D— OV, 0" )dx (2.38)
2m|

where @ is the wavefunction of a certain channel. For an incident o channel, the

wavefunction @ can be expressed as

D =y, (x,)e" " (2.39)
SO
e|= "% where = MaMa_ (2.40)
/ua ma + M A

For an outgoing B channel, the wavefunction can be expressed as

|k/, Ty
= 0 £ (K k) S 241)
ﬁ'
SO
hk fa(k > a)
30 = p [l  where z, = TeMs_ (2.42)

Ly rﬂ m, + M,
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From (2.37), (2.40) and (2.42), the differential cross section thus is obtained as

dog, _ 1K ‘f
dQ

ks, a) (2.43)

We may obtain an exact expression for the scattering amplitude f,, from Eq.(2.32) with

an appropriate form of the Hamiltonian
(H-BE)Y, =(H,+K,+V,-E)¥; =0. (2.44)
Multiplying Eq. (2.44) by l//;(X ;) from left on both side of equation and integrating over

xp, We get

(E —&p Kﬁ)‘fﬁ(rﬂ) = (l//ﬁ’\/ﬂ ¥,)

(2.45)

Using standard Green function techniques [62, 63] and considering the boundary

condition, the relative wavefunction & (T,) can be expressed as

- o 'kﬁ‘rﬂ '/f‘ .
£,(7)) =" aaﬂa{zﬂhzjj — ‘(yfﬂ[\/ﬂ *)dr,. (2.46)
When r,; >> rﬁ , We may have
T (2.47)

Comparing with the asymptotic expression (2.36), we then have

f g (lzﬁ’iza) = (2/;22 j<eiﬁﬁ'rl}'//ﬁ’vﬁ P > = _(212:;;2] (kﬁ’ka)

= (Mth”e"kﬂ g W (X5 (X4, Ty )P dx dr

(2.48)
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2.2.2 Distorted Wave Born Approximation (DWBA)

Eq. (2.48) gives a formal expression of the transition amplitude, but it is still hard to

evaluate f,, (k ﬁ,lza) since the details of the interaction and wavefunction are unknown.
It is possible to introduce an auxiliary potential U ,(r,) which may be complex and is

only dependent on rg. Then (2.45) becomes

[E —&5 =K, _Uﬂ(rﬂ)]'fﬂ(rﬂ) = ('//ﬂIWPP;) (2.49)
where
W, =V, (7,,%,) ~U ,(x,) (2.50)

is called the residual interaction. The auxiliary potential can be chosen to include the
main part of the average effects of Vg and the effects of the inhomogeneous term on the

right side of (2.49) may be quite small and treated as a perturbation. With the expansion

of ¥ in (2-34), we have
\P;): (‘//ﬂrwﬂ‘wﬂ kﬁ(rﬂ) + Zﬁ(l//ﬂrwﬂ‘wﬁ')gﬂ'(rﬁ) g (2.51)

(‘/’ ; Mﬂ P

in which the diagonal matrix element might be thought as the most important term, since

it does not involve any internal rearrangement of the scattering system. The diagonal

term can vanish if Uz is chosen as the average of Vs over the internal states . To solve

the equation (2.45), we need first neglect the inhomogeneous term on the right side of

(2.45) and solve the equation

[E,— K, -U,(r)]r(K,.F) =0 (2.52)
where y, is known as the distorted wave and describes the elastic scattering of b on B

due to potential Uy Considering the boundary condition that y, asymptotically has the

form of incident plane wave plus outgoing spherical wave
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Z;(lzﬂ9rﬁ) ? e”zﬂ'rﬂ fﬂ(O)(é) 1 eikﬂrﬁ s (2.53)
r
Y

we obtain the solution for the homogeneous equation (2.52) which is well-known from

scattering theory

v, ¥ 4r 01265, m* m >

Zﬁ(kﬂa rﬂ) = Wzlfe 0 fe(kﬂa rﬂ)Y[ (kﬂ)Y[ (rﬁ) > (2-54)
plp tm

where f(k,,r;) is regular solution of the radial equation for (2.52) and &, is a phase

shift dependent on the specific form of potential Uz A formal solution of (2.49) will be

obtained with the application of Green function techniques, which asymptotically can be

expressed as

s ik -F eikar,, H eik/,r/, o= Dy
éﬁ(rﬁ)_)(eka 10O 5, - [ 2 Ky Bl W] i, (2.55)
V4

o

where ;(;(Eﬂ, ry) is the time-reverse of ;(;(Eﬂ, ry) . The scattering amplitude faﬁ(lzﬁ, |Za)

then can be expressed as

o oK) = 620005, =0 [ 2 (Tl W1 M, (2.56)

¥’ in the above equation can be estimated by the following procedures. Like the

expansion in 3 partition, ¥, can also be expanded in terms of internal states of o

partition, as shown in (2.33). Assuming that the most important part of the total wave

function is the elastic wave in the entrance channel, we have

V=& (K, Ty, . (2.57)

By introducing a similar auxiliary potential U, as mentioned above for 3 partition, the
large part of the average effect of interaction V, is included in U, and the residual

interaction W, =V_—U_ is treated as a perturbation. We can measure the elastic
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scattering cross section experimentally and fit it to get the proper U,. The U, we get

represents the average of V, over the internal ground state of a channel, thus we have

W Ww,) =0, &)= zi(K,.T,). (2.58)

The above procedure to estimate V) is called the distorted wave Born approximation

(DWBA) and (2.56) can be transformed as

- - ﬂ I T = o
20K = 100008, ~5 [ 15 Ko E My Wl 2o (R, TR . 2:59)

For inelastic scattering, a+ A— a+ A*, o’ is denoted as inelastic channel. Replacing 3

by a’, we obtain the inelastic scattering amplitude

2% KK = = [ R Wi 2 (K, (2.59b)
and the differential cross section

2

ATt A %
40 DWBA_ka (ZﬂﬁzJ KXoV o ZaWa>

k ' 2
:T[T:#j . (260

2.3 Optical Model and Folding Potential

2.3.1 Optical Model and Woods-Saxon Potential

In the above section, we give a general solution of Schrodinger’s equation for a two-
nucleus scattering system and obtain an expression for the differential cross section for
inelastic scattering with the distorted wave Born approximation. However, in order to
compare with the experimental data, a proper effective potential U(r), like U, mentioned
in last section, must be constructed to include most of the average effect of the
interaction of the system. The potential U(r) must be complex as the imaginary part is
necessary to describe the loss of flux (absorption) into non-elastic channels. An analogy

is light propagation in a semi-transparent medium which has a complex refractive index.
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This is called the optical model of nuclear reactions. As indicated in the above section,
the optical model is a model of the effective interaction, which is used to replace the
complicated many-body problem posed by the interaction of two nuclei with the much
simpler problem of two particles interacting through a potential U(r) which can be used
in a one-body Schrodinger equation such that the asymptotic behavior of its solutions
x(r) describes their elastic scattering. The optical model plays an important role in the
description of nuclear scattering. Not only does it provide an interpretation of elastic
scattering in terms of a potential, it also provides the associated wavefunction for the
relative motion of the colliding pair, which could be used to study the inelastic

scattering.

Usually it is assumed [54], at least for light ion scattering, that the interior of the real
potential ReU(r) is flat and attractive (negative) and, because of the short range of the
nuclear interaction, rises quickly and monotonically to zero in the surface range. Several
analytic forms [64, 65] have been used for ReU(r) to embody this assumption, among
which, Woods-Saxon (W-S) form [66] is the most popular one. W-S form is based on a
plausible assumption that the shape of the optical potential follows the shape of the
target density. Since the Fermi distribution is often used to describe the density of nuclei,

the W-S form potential is usually expressed as

\Y

r-Ry

l+e &

ReU(r)=- (2.61a)

where V, Ry and ay are depth, half radius and surface diffuseness respectively.

Sometimes a low power of Woods-Saxon shape, such as

r-Ry 2
[1+e & }

is used for ReU(r) to get a satisfactory fit of elastic scattering.

ReU(r) =— (2.61b)
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The absorptive potential ImU(r), the imaginary part of U(r), is usually assumed to have a
“volume” form or a “surface” form. The “volume” form is the same as (2.61a) with
different depth, half radius and surface parameters, W, R; and a;. The surface absorption
is usually taken to be proportional to the derivative of “volume” form, which can be
expressed as

r-Rp

g %

£1+e o J

where Wp, Rp,ap are a set of parameters different with those for volume form. However,

ImU (r) = 4W, (2.62)

if both surface and volume terms are used for the imaginary potential, it is usually
assumed Rp = Ry and ap = a;. The origin of the imaginary potential, and associated
relation to the real part, can be seen most transparently within the framework of

Feshbach’s reaction theory.

2.3.2 Folding Model

According to Feshbach’s theory[67, 68], when an effective interaction or optical
potential is used in the one-body Schrodinger equation to study elastic scattering, we

may write

Ug =Vy + AU =V, +lim = 'VOQ(;J V0 (2.63)
-0 aa’ E-H+le ad

where V is the real interaction between the two nuclei, while o means a pair of internal
state labels 1, j. The prime means the sum over all states o in which at least one nucleus
is excited. The first term V is real and accounts for most of the real part of optical

potential. It is simply expressed as folded potential

Voo =Vg = (¢po¢t0|\/|¢po¢to) > (2.64)
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where 0 denote ground state, p means projectile and t means target, the round brackets
mean integration over the internal coordinates of the two nuclei. It is generally assumed

that the interaction V is a sum of local two-body potentials

V= pztvpt . (2.65)

|

FIG. 2.1 Coordinates relation for folding calculation.

If spin and isospin are ignored for simplicity, the folded potential Voo(R) may be written

as a six-dimension integral

Vao(R) =V (R) = [ dF, [ dF: o, (F,) p(F W, (5. 2y ) (2.66)

where p represents projectile, t represents target and S =7, + R -1, (see Fig. 2.1). The

expression (2.66) involves a six-dimensional integral, which is hard to evaluate in
position space. However, if we work in momentum space with Fourier transformation,
the integral reduces to a product of several one-dimensional integrals and become quite
simple to calculate (see appendix B of Ref. [69]). If v is scalar, does not depend on the
densities of the scattering pairs and the density distributions are spherically symmetric,
the folded potential satisfies some simple relations. Such as, if we define the volume

integral of the function f{(r)

J(f)=4zi f(r)ridr, (2.67)

we have
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JVE) =J(Vp)d(pp)d (o) = AgAd (V). (2.68)

If we define the mean-square radii of function f(r) as

<r2>f _ 1 f(r)dartdr (2.69)

i f(r)dardr

We have

<r2>vF :<r2>p +<r2>t +<r2>vpt- (2.70)

The Pauli principle is not considered when a folded potential is given as in (2.66).
Although the individual internal wave functions in (4.16) are taken to be anti-
symmetrized, the Pauli principle requires the total wavefunction of the scattering system
also to be anti-symmetric under interchange of nucleons between the two nuclei. The
interchange, which is called knock-on exchange, in practice, corresponds to the
exchange of nucleon between target and projectile following their interaction. If this

knock-on exchange effect is included, the two-body interaction will be replaced by

Ve 2>V (1=Pp), (2.71)

where Py is the operator that exchanges all coordinates of these two nucleons. And the

folded potential is replaced by

Voo =Ve(r) = [¢p0¢to %tvpt (1 — Py 1¢p0¢to} =Vp +VE, (2.72)

where Vyp is a direct term which is given in (2.66) and Vg is an exchange term .

The second term AUg in (2.63) is complex and often referred to as the dynamic
polarization potential (DPP). It arises from couplings to the nonelastic channels and
represents transitions to open non-elastic channels. The imaginary part of DPP, known
as absorptive potential, is the origin of the imaginary part of the optical potential. It is

discussed in detail in [67] and references there. Since it is very difficult to calculate
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DDP, a phenomenological W-S potential shape is still widely used to obtain the

imaginary potential.

The real part of DPP comes from virtual excitation. Energetically closed channels can
contribute to the real part of AUg. It depends explicitly upon the energy and is non-local.
However, its contribution to the real part of optical potential is usually much smaller
than folded potential, the leading order approximation. Since DPP is not explicitly
included in the real folded potential, a renormalization (Ng) of the real potential is used
to take into account the DPP contribution. The overall success of folding models with
Nr~1 indicates that in most cases the DPP contribution is very weak. But there is a very
important exception where Nr deviates far from unity. For the scattering of weakly
bound nuclei such as °Li, Li and *Be [69], the elastic data require a large
renormalization of the real folded potential with a factor around 0.6. The reason for the
anomalous behavior of Ny is that the loosely bound nuclei are very easy to break up.
Sakuragi et al. have thoroughly investigated the break up effect of the projectile using
coupled discretized continuum channels (CDCC) techniques [70]. Their calculations
showed that the dynamic polarization potential induced by the coupling with the breakup
channels is a repulsive potential which cancels about 40% of the attractive folding
potential in the nuclear surface region. The break up effect is the real origin of the
renormalization factor Nr in the single channel double folding analysis of the elastic
scattering of loosely bound nuclei. The fact that the Ny is almost constant around
0.5~0.6 implies that the break up effect is almost independent of bombarding energy and

target nucleus.

2.3.3 The M3Y Effective Nucleon-Nucleon Interaction

There are several nucleon-nucleon effective interactions used in the folding model, (such
as JLM interaction, S1Y interaction, M3Y interaction). The M3Y interaction is based on

G-matrix elements of the Reid[71] or Paris [72] NN potential, for which we denote
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them as M3Y-Reid [73] and M3Y-Paris interaction[74]. The spin- and isospin-

independent central term of the M3Y interaction can be expressed as [67, 69]

e—4r e—2.5r
M3Y —Reid : vy, (r)=| 7999 —2134 MeV
4r 2.5r
. a 25" (2.73)
M3Y —Paris : vy, (r) =| 11062 —2538 MeV
4r 2.5r

There are two ways to estimate contributions from the knock-on exchange effect. One
way is to use the zero-range pseudo-potential approximation, in which the knock-on
exchange effect is represented by a d function and the strength Joo(E) [75] is determined
empirically by comparing cross sections for protons scattering from various targets, and
at various energies up to 80 MeV. With the different versions of the interaction, Joo(E)

can be expressed respectively as [67, 69]

M3Y —Reid : J,,(E) ~ —276[1 - 0.005(E / A)]MeVfm’

) (2.74)
M3Y — Paris: J,,(E) = =590[1 - 0.002(E / A)] MeVfm®

where E/A is the bombarding energy per projectile nucleon. Another way is to use the
finite range approximation, in which the knock-on exchange effect is expressed as a sum
of three Yukawa terms which represent the attractive, long-range one pion exchange,
medium range multiple-pion exchange and a short range interaction. The knock-on

exchange can be expressed as

—4r -2.5r -0.7072r

M3Y —Reid : 0, (1) =[46315— —17875  ~7.847-° __MeV
4r 2.5r 0.7072r
4 2.5 0.7072 (2'75)
. . ef r ef ar —0. r
M3Y —Paris: Vv, (r)=[-1524 —518.8 —7.847 MeV
4r 2.5 0.7072r

Although the M3Y-Paris interaction has a much more attractive exchange term than the
M3Y-Reid interaction, the sum of the direct term and exchange term will give similar
folded potentials. This emphasizes the importance of including the knock-on exchange

effect when calculating the folded potential.
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A density dependent M3Y (DDM3Y) effective N-N interaction has been described and
discussed in detail by Dao T. Khoa [76-78]. Generally the density dependent N-N
interaction is assumed to have the separable form,

VD(EX)(paEaS) = g(E)F(p)VD(EX)(S) (2.762)

where g(E) is a energy dependent factor and F(p) is the density dependent function. The

g(E) is a linear function of the bombarding energy E and, for the M3Y-Paris interaction,

g(E)=1-0.003E/a (2.76b)

where a is the mass of projectile. The original DDM3Y interaction [79, 80] assumed an

exponential dependence on the density

F(p) = C[l+aexp(-fp)] (2.77)

A flexible power-law density dependence was also introduced in [76, 81]

F(p)=C(-ap”) (2.78)

and the corresponding interaction is denoted as BDM3Y interaction. The more general
formula [77, 78] which is a hybrid of the DDM3Y and BDM3Y forms can be expressed

as

F(p) = Cll+aexp(-Ap) - 1p] (2.79)

and the corresponding density dependent interaction is denoted as CDM3Y interaction.

2.3.4 Folding Procedure

The procedures used to obtain the folded potential and the details of the folding integral

are described and discussed in Ref. [78]. They are summarized below.

Assuming the interaction V is independent of spin and isospin, the direct term of the

folding potential can be expressed in terms of the one-body spatial densities,
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ViRuA(EsR) = [ 000 () pua(F)Vo (0, E, 9)T,F, (2.80)

where p,,(T,), pan(Fy) are one body mixed densities for the projectile and target
respectively. For elastic scattering, p,,(F,)and p,,(F,)are replaced by p andp,,

ground state densities for projectile and target. The exact expression for the exchange
term cannot be expressed simply since it is non-local. However, if one treats the relative

motion locally as a plane wave, one can get a local approximation for the exchange term

VARUMER) = [ 2y By 4 8)pa (o = Ve (9, E9) exp[‘ﬁf)g deade @8
where K(ﬁ) is the local momentum of relative motion and

K2(R) = 2“& .. -V(E.R)-V.(R) (2.82)

where ¢, =mM,, is the reduced mass, m is the bare nucleon mass and M, = aa+AA is

the reduced mass number, and E;n is the center of mass Energy.
V(E, ﬁ):VD(E, ﬁ) + Ve (E, ﬁ) and V. (ﬁ) are the total nuclear and Coulomb potentials

respectively. It is obvious that (2.81) has a self-consistancy problem because the relative
momentum K is dependent on the total nuclear potential. However, by using a realistic
approximation for the mixed density matrix [82, 83] and after a transformation [78], one

obtains a self-consistent and local exchange potential

v;'ivx,;AEa,ﬁ)=4ng(Ea)£vEx(s)jo(K<R)s/Ma)szdsjfa(r,s> .53
x £ (F = R.S)F [, (F) + oy (F ~ R) P

where

facm (F,8) = Paagan () jl(kFa(A)(r)S) (2.83b)
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in which K, , (r)is local Fermi momentum [83] and

J,(X) =3],(X)/ x =3(sin X — Xcos X)/ X (2.83¢)

With p,,(F,)and p,,(F,) replaced by p,and p,, one can get the exchange term for

elastic scattering.

In the calculation of the direct term, the overlapping density p in F(p) is estimated as the

sum of the ground densities of target and projectile

p=p (1) +p, (1), (2.84)

while in evaluating the exchange term of the folded potential, the overlapping density is
assumed as the sum of the projectile and target densities at the midpoint between the two

nucleons being exchanged

.S . S
p= P +2)+ Py +0). (2.85)
2.3.5 Folding with JLM Effective Interaction

The JLM interaction is a complex, energy and density dependent G-matrix interaction
which is obtained from the Reid soft-core NN potential with the Brueckner-Hartree-Fock
(BHF) approximation [84]. Unlike the M3Y interaction, the JLM interaction can
simultaneously provide both real and imaginary parts of the optical potential. Starting

from the potential for a nucleon of energy E traversing nuclear matter of density p

Uy (0,E) =V (p,E) +iW (p,E) (2.86)

where V and W are real and imaginary parts (For the expressions of V and W, see Ref.
[85]), the density and energy dependent JLM NN effective interaction for heavy ion

scattering can be obtained as

V(p,E)+iW(p,E)

V(p,E) = (2.87)
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The potential for heavy ion collisions thus is given by the folding integral

V(R) = [ pr (1) po (1 V(0. E)S(S) O, dF, (2.88)

where S=r1 + ﬁ—FP , pr is the density of the target and pp is the density of the

projectile. The local density p is estimated with two different approximations. In the first
approximation, the local density is estimated as geometric average of the projectile and

target density
§ § 1/2
ps) = |:pT (F; +E)pp(rp _E)} (2.89)

while in the second approximation, the local density is given as arithmetic average of

the two densities

o [ Sy
p(s)_2|:pT(rT+2)+pP(rP 2):| (2.90)

When the folded potential obtained with the JLM interaction is used to analyze the
elastic scattering data, the quality of the fit can be substantially improved by replacing

the o function in (2.82) by a finite range smearing function [84, 86]

2\ _ L ’ -s?/t?
g(S)—[t\/;j e (2.91)

where t is the range parameter. With the smearing function included, the rms radii of the
folded potential are increased, but the volume integrals do not change since the smearing
functions are normalized to 1. There are substantial renormalization factors required for
both real and imaginary parts of these folded potentials when they are used to analyze

elastic scattering involving loosely bound nuclei, such as °Li and "Li

U (r) = NyVg (1) + Ny Wi (1) (2.92)

As we described previously, breakup is responsible for these renormalizations.
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2.4 Transition Potential

To study giant resonances via inelastic scattering, a transition potential is required to
calculate the differential cross-section for inelastic scattering. Transition potentials for

the deformed potential model and the double folding model are described in this section.

2.4.1 Deformed Optical Potential Model

The deformed potential model has been used for the analysis of inelastic scattering for
many years. The model is based on the simple and plausible assumption that the shape of
optical potential for the scattering pairs follows the shape of the density distribution of
the target and is either statically deformed or undergoing shape oscillations in the same
way [54]. With this assumption, the transition potential can be obtained immediately by
analogy with the transition density introduced in section 2.1. For L>2, the transition

potential is given by [87, 88]

du(r)
dr ’

G, (r)=-5. (2.93)

where the sum rule limit deformation length is given by (2.24). For L =0, the transition

potential is given by[89]

G,(r)= —a{f&U (r)+ r%} (2.94)

where the sum rule limit deformation parameter ay is given by (2.26). For L =1, the

transition potential is given by [59]

Bi| 42 d 5/.2\ d d’ d
G(r)y=—=|3r—+10r ——(r°)— r—+4—)U(r 2.95
(==t 3< >dr+g( a e PO (2.99)

where ¢ is given by (2.29b) and 3, is given by (2.30b).
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The advantage of the deformed potential model is its simplicity, however, the price paid
for this simplicity is that the unambiguous connection between the density deformation

and the potential deformation is no longer available [54].

2.4.2 Folded Potential

Following the formalism of the generalized folding model using the realistic density
dependent nucleon-nucleon interaction [78] mentioned in above section, the nuclear

density for nucleus a in (2.80) and (2.81) can be decomposed into a multipole expansion

Pra(M) = S (IMAM,IM,)C, Ay, ()] (2.96)

Aakta

where C,=+/47 and C, =1 for A#0. A similar expression can be obtained for

nucleus A. For a single excitation of the target nucleus A, the corresponding nuclear

matrix element can be expressed as

(@ (@A V]a(an)) = 3.C,(3,M 244, M, IV, (E,. R)[Wﬂy(ﬁ)} 2.97)

where a means incident scattering channel, o’ means inelastic scattering channel, A’

means single excitation of the target nucleus and

VL(E,.R) =V7(E.,R) +V7(E,.R), (2.98)

where V/?'(E_,R) and V"(E_,R) are direct term and exchange term respectively. To

evaluate the transition potential, there are two options of the density dependence
considered to include the medium correction when density dependent NN interaction is
used[78, 90]: 1) static treatment of the density dependence (SDD) in which only the

ground state densities are included in the folding procedure, i.e.

VD(EX)(p’S) =F(p; + p(;-\)VD(EX)(S) ; (2.99)
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i1) more consistent dynamic treatment of the density dependence (CDD) in which the
effect of density changing due to the excitation is also included, i.e.

(5 +Py)

. . oF
Voex) =| F(05 +p5)+ o 28 Vogx)(S) - (2.100)
0

According to Farid and Satchler[90], the difference between the two options resulted in
20% or less difference in peak cross sections in the case of a scattering to small angles,
particularly relevant to giant resonance studies. The transition potential can be obtained

with above prescriptions and by replacing p,, with p, and p,, with p! in (2.80) and

(2.81). p{ is the transition density of the target from ground state to excited state with L

= L. The transition density used for giant resonance study corresponding to 100%
EWSR for L = 0 was given by (2.13) with deformation parameter given by (2.27), while
that for L = 1 was given by (2.30a) with deformation parameter given by (2.30b) and
those for L > 2 were given by (2.6) with deformation length given by (2.24) in section
2.1.

2.5 Computer Codes

There exist several computer codes to carry out the calculations described above. The
studies of giant resonances with a particles have used PTOLEMY [91] for the DWBA
calculations and DOLFIN [92] to calculate single folding optical and transition
potentials for input to PTOLEMY. For the loosely bound °Li, single folding is not
adequate, and there are several codes available for calculating doubled folded potentials
with different NN effective interactions. We have used DFPD4[93], CHENZ2[94] and
OPTJLM1[95] each of which is described briefly below.

In addition to PTOLEMY the code ECIS[96, 97] is also commonly used for DWBA
calculations. A series of calculations performed with both DPDF4 ECIS and with
DOLFIN _PTOLEMY were carried out to test the codes and our ability to use them.
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2.5.1 DFPD4----Density Dependent Double Folding Calculation

DFPD4 [78, 93] is an unpublished FORTRAN code written by Dr. Dao Tien Khoa used
to calculate potentials with the folding model for both heavy ion (HI) and light ion
elastic and inelastic scattering. The nuclear potential was obtained by folding the
density dependent M3Y NN effective interaction over the ground density of target and
projectile while the transition potential was obtained by folding over the transition
density of the target. With knock-on exchange included, the effective NN interaction has
two terms and so the corresponding folded potential also has a direct term and an
exchange term. A sample input file for DFPD4 is given in Fig. 4.1 to show the

parameters used for the folding calculation.

1
LI&+2851, ELAB=240 MEV, (COM3Y5 K=241) COSMA dens. for &6Li, Fermi dens. for
2851

1 1 s 1 2 3 1 1 2
240. 3. 6.01512 14. 28.0 0.0 3.154  0.00 1.0
o ___0.05  20. 0.1 20. 0.02  18. 0.0026 0.
0.2728  3.7367  1.8204  -3.0
3 {4.332 11061.625 -1524.25 0.
2.7075  -2537.5 -518.75 0.
0.765913 0.000187 -7.847438
0.1 0.0 0.0 0
4 5 3. 0.0 17.
2.0 1.0 1.43121 1.91136 1.0 0.0
5 3. 0.0 17.
2. 1.0 1.43121  1.91136 1.0 0.0
5 0.1 0.0 0.0 0
5 3. 0.0 17.
6 {2. 1.0 1.55 2.07 1.0 0.0
0.1 0.0 0.0 0
2 27.977 0.0 17.
7 {0.2125 2.9132  0.4829 Satchler
0.1 0.0 0.0 0
2 27.977 1.38 17.
8 {0.16?3 2.9132  0.4829
0.1 0.0 0.0 0
2 14. 1.38 17.
0.0837  3.155 0.523

FIG. 2.2 A sample input file of DFPD4. The number 1-8 on the left side represent

different parameters sets explained in the text.

As shown in Fig. 2.2, the parameters for the scattering system, the NN effective
interaction, Coulomb potential, target and projectile density profiles are given in

different parameter sets labeled from 1-8. Parameter set 1 includes the header of the
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scattering system, output and display control, density dependency choice, J* for excited
states of the target nucleus, incident (lab.) energy, charges and masses of projectile and
target, charge radii of the projectile and target etc. Parameter set 2 lists the parameters
C, a, B, y of the density dependent function F(p) [see Eq. (2.79) ] which are shown in
Table 2.1 [77]. The overlap density p is defined as the sum of the projectile density pp

and target densities pr

P=Pr+pr. (2.101)

Parameter set 3 gives the parameters for M3Y NN effective interaction. Parameter set
4 and 5 are the profiles for projectile of mass density and charge density respectively.
Parameter set 6, 7, 8 are profiles respectively for mass density, total transition density
and proton transition density of the target. A very important parameter is delt in set 6, 7,
8 used to give the deformation parameter and control which model is used to get the

transition density for giant resonance.

Table 2.1 Parameters of different density dependent functions F(p) of the M3Y-Paris
interaction. Values of the nuclear incompressibility K were obtained from

the Hartree-Fork Calculation of nuclear matter. (originally from the Table

I of the Ref. [77].)

p dependency C o B Y K
type (fm3) (fm3) (MeV)
DDM3Y1 0.2963 3.7231 3.7384 0.0 176
CDM3Y1 0.3429 3.0232 3.5512 0.5 188
CDM3Y2 0.3346 3.0357 3.0685 1.0 204
CDM3Y3 0.2985 3.4528 2.6388 1.5 217
CDM3Y4 0.3052 3.2998 2.3180 2.0 228
CDM3Y5 0.2728 3.7367 1.8294 3.0 241
CDM3Y6 0.2658 3.8033 1.4099 4.0 252
BDM3Y1 1.2521 0.0 0.0 1.7452 270

DFPD4 can be used to calculate the transition potential either for inelastic scattering to
low-lying states or for giant resonances of the target depending on parameter ENX value

chosen in parameter set 1. With parameter ENX = 0, DFPD4 calculate the transition
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potential for low-lying state while, with ENX = excitation energy, DFPD4 calculates
transition potential for giant resonance. For giant resonances with multipolarity L > 2, if
the parameter delt > 0, the Bohr-Mottelson model is used to calculate transition density,
while if delt < 0, the Tassie Model is used to calculate transition density. For giant
resonances with L = 0, the scaling model is used to calculate the transition density if one
chooses delt > 0. For an isoscalar giant resonance with L = 1, Harakeh et al. ’s
expression [59] of transition density is used when one chooses delt < 0. In all the
transition potential calculations for giant resonances, the deformation parameter delt was

set equal to the EWSR limit and was calculated externally.

DFPD4 can also calculate the Coulomb part of the optical and transition potentials. The
Coulomb transition potential is calculated the same as transitional nuclear potential by
the folding model in which the proton transition density of target is used. According to
Khoa et al. [78], the Coulomb potential obtained assuming that both the projectile and
the target have uniform charge distributions is adequate to estimate the coulomb
interaction. So an analytic expression can be used to calculate the Coulomb potential
rather than using the folding model. If the uniform charge radii for projectile and target

are Rp and R, the coulomb potential V. can be expressed as [98]:

Lol B(R:-R2/5)-r’] r<R -R,
ZRT3 P
1 1 3 .
ZpZTeZ 372(RT _Rp)4(RT2 +4RTRp + Ri)?—TO(RT + RP) (RTZ _3RTRp + Ri)-‘,—
Ve R.—R <r<R +R
c R-?Rz i 2 22_1 3 3\2 i ) 5 3_L ) s T P r T+ 0
32(RT Rp) 4(RT+RF,)r +32(RT+Rp)r 162r
Z.Ze
T RT+RPSF.

r

(2.102)

2.5.2 CHENZ2----Density Independent Double Folding Model Calculation

CHEN?2 is an unpublished FORTRAN code [94] which does a density independent
double folding calculation. The M3Y-Reid NN effective interaction is used in the code

and the exchange term is evaluated with a delta function (see Eq. 2.74). Fermi
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distributions obtained from the droplet model were used for the target and projectile
density in the folding calculation. The folding integral was evaluated with a method
which takes advantage of analytical properties of folding involving a &-function [99].

Folded transition potentials for ¢ = 2,3,4can be evaluated with this code. A sample input

file for 240 MeV °Li scattering on ''°Sn is shown in Fig. 2.3.

240.0 6.0 IIncident energy

0.1 301 'h,nmax for r integration

0.1 30 'R_min,R max

0.05 201 'hq,nmaxqg for g integration

0.02 100 'hx,mmax for angle integration

0 litaylor (0=exact multiplole expansion)
0. 0. 0. 3. 6. 'bb2,bb3,bb4 zproj,apro]
0.1385 0.180 0. 50. 11s. 'bb2,bb3,bbd ztarg,atarg
L lrenorm

3 Inr lambda0 number of multipoles
000

022

0 33

FIG. 2.3 A sample input file for CHEN2 to calculate the folding potential for °Li
elastic scattering on ''°Sn and inelastic scattering to low-lying 2" and 3

states of ''°Sn.

2.5.3 OPTJLM1----Double Folding Calculation With the JLM Interaction
OPTJLM1 is a FORTRAN code that does density dependent double folding

calculations with the JLM effective NN interaction, calculates differential cross sections
and fits elastic scattering data with the optical model [95]. The folding procedure with
the JLM interaction has been described above. The densities of the projectile and target
are obtained in a standard spherical Hartree-Fork calculation using the energy density
function of Beiner and Lombard [99, 100]. The folding calculation in OPTJLM1

requires that the files describing input densities of the projectile and target should have a
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certain format. Each density file gives the proton density, first derivative and second
derivative of proton density, then the same for neutron. There are two options for the
density dependence in the folding calculation, one can choose the overlap density p

either as shown in Eq. (2.101), or

P =APpPr - (2.103)

One can read text file README.TXT [95] For the details of calculation.

2.5.4 ECIS----Equations Couplées en Itérations Séquentielles

ECIS is a FORTRAN code for DWBA calculations which can do coupled channel
calculations with the method called Sequential Iteration for Coupled Equation [96, 97].
There are various versions of ECIS and ECIS97 was used in this work. For analysis of
SLi scattering, one can fit elastic scattering data to obtain optical parameters and
calculate the differential cross-section for inelastic scattering to different states of the

target.
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ELi+1168n at 240MeV, W-2 potential fit

« TFFFFFTTFFTTFFFTFFFFFFFFFFFTFFTTFFFEFFFFFFFFFFFFFFF E
& FFRFERE SR R FFFERE Y FFEFRRRETEFFFERRRETEFIFRRERR  Fe e Set:
. 250 6 :
¢ 0.05 20. .00000001 .00000001 . 00000001 :
P 0. + 240.0 0.0 6.00000 116.000  150. :
P10 0.10 50.0 Set :
: %% 2000 :
¢ T &8 1 ] 0.B554 3
¢ o421 1.90E+05  12.44 :
D473 9.95E+04  12.47 :
¢ 32.06 4.03E-03  39.50 Set :
S B T AR D £ 14 S LRIy LU PT P P T L PR PRT PP PO PEPPIEPRP S P EOPIPT LT r
ST SO T | SO NP1
i
Seseseseeeeipetengettagiettagettiqpesttgeettyuasesgunesttanasttanisttanes,
$ 192.000  0.832 0.9463 :
] 1 1 oz o o0 0 -1 -1 :
: 28.5035  1.18333  0.869 } Real potentfal
. 1 1 0 3 0 0 o -1 -1
: } Im. potentlal
] 1 1 o 4 0o o 0o -1 -1
3 Set:
] 1 1 0 7 o o o 1 :
1.0 1.0 .
] 0.10000 56.2093564141  0.20000 56.7897776285 :
Coulomb 0.30000 56.7571463191  0.40000 56.7114624859 :
potentialg| ...... .

FIG. 2.4 Sample input file I for ECIS97 to fit °Li elastic scattering with W-S

potential model.

Fig. 2.4 shows a sample input file I for ECIS97 to fit °Li elastic scattering with the W-S
potential model. In order to understand it better, the input file is divided into several
parameter sets, each set fulfilling mainly one function of the calculation. Set 1 includes
header describing the scattering system, and 100 logical parameters which are used to
specify models used in the calculation, details of the interaction and integration, control
parameters searching, displaying and printing. Set 2 includes the incident energy, the
masses and product of charges of projectile and target, spin, parities and excitation
energies of all the nuclear states considered in the calculation, etc. For the sample input
file considered here, only one state is described in Set 2. Set 3 gives the number of the
input data sets, number of the fitted parameters, and gives experimental data for each
data set. Set 4 gives the fitted parameter ID and searching accuracy. Set 5 specifies the
potential parameters for the real part, the imaginary part and the Coulomb potential. For

optical potential represented by a W-S shape, both the real part and the imaginary part
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have three parameters, i.e. depth Vr), half radius ryo0), and the diffusion parameter ax).
There are two ways to evaluate the Coulomb potential. In the first way, three parameters
are input and the Coulomb potential is calculated by ECIS97. The first parameter is the
product of Z7 and Zp, the charges of the target and projectile. The second parameter is
the charge radius parameter R.. With heavy-ion definition of reduced radii, the

Coulomb radius can be expressed as:

R, =R (A + A) (2.104)

where Arand Ap are masses of target and projectile respectively. The third parameter is
the diffusion parameter a. for charge distribution. With the assumption of uniform

charge distribution, a.=0 and the Coulomb potential can be expressed as:

lZe2(3—(r/RC)2)/RC, for r<R,

V.(r)=12 (2.105)

ze’/r, for r>R..

The Coulomb potential can also be calculated externally by another code, such as
DFPD4, and then input to ECIS97 for further calculation as shown in Fig. 2.4 for

sample input file I.

A sample input file I of ECIS97 for the calculation of the differential cross section for
SLi elastic scattering and inelastic scattering to the low-lying 2" state with the double
folding model is shown in Fig. 2.5. Compared to the input file I shown in Fig. 2.4,
logical parameters in Set 1 are the same. Set 2 and set 3 are almost the same as in Fig. 2.4
except that parameters for two states, instead of one state, are specified in set 2 and two
sets of experiment data are input in set 3. Since no fit is required in this input file, no
parameter set for parameter ID and parameter searching is shown in the input file. Set 4
gives the table of form factor ID and multipolarity for each form factor. Set 5 gives the
potential parameters for the elastic scattering channel in which the real part and
Coulomb potential are obtained from another code, such as DFPD4, while the imaginary

part of the potential is calculated by ECIS itself with the W-S potential model. Set 6
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gives the form factor for inelastic scattering to low-lying 2" state. The format of set 6 is
almost the same as that of set 5. For example, when the external form factor is input as a
subset, such as for real optical and transition potential, the first row of the subset tells the
code which part of the potential is specified in the following section, the second row of
the subset gives the strength factor for the potential and scaling factor for the radius, and
the rest of the subset gives the potential in term of radius and corresponding potential
value. The W-S potential shape or deformed W-S potential model is used for imaginary
potential. The subset for this part includes two rows in which the first row tells the code
which part is specified in the following section and the second row gives three W-S
parameters. However there are some differences between set 5 and 6. The strength

factors in set 6 for both real and Coulomb transition potential obtained from external

code should be multiplied with an additional factor+/1/4x . For imaginary transition

potential with L > 2 in set 6, the first of the three W-S parameters is expressed as:

A

| 2.106
LA (2100

where V; is the depth of the imaginary optical potential and &' is the deformation length.

The second and third W-S parameters are the same as in set 5.
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FIG. 2.5 Sample input file II for ECIS97 to calculate the differential cross section for
SLi elastic scattering and inelastic scattering to the low-lying 2" state of
11°Sn with the double folding model. Real TP stands for real transition
potential, Im. TP stands for imaginary transition potential. Co. TP stands

for Coulomb transition potential.
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2.5.5 Testing DFPD4 and ECIS with the 240 MeV o + '**Sm Scattering System

As a test to verify that our calculations are consistent with a known case, calculations
were carried out for the 240 MeV o + '**Sm system (which had been previously studied
[49]) using both DOLFIN (single folding) and DFPD4 (double folding) to calculate
potentials which were then read into ECIS to calculate cross sections. The results are

then compared to those obtained with DOLFIN and PTOLEMY.

In addition to a general check of our application of these codes, the following questions

are expected to be answered with the test:

1. Given the same nuclear potential parameters, do ECIS and PTOLEMY give the

same differential cross sections?

2. Since sometime a normalization constant was introduced in folding procedure in

L=0 case to compensate for the fact that Y, = (47)""'*[54], is the factor of

(47)7"? required to be multiplied to the strength factor of the transition potential

obtained from DFPD4 for ISGMR to do correct calculation?

3. Since DFPD4 also calculates the Coulomb part of the optical and transition
potential, does it calculate the coulomb transition potential the same way as

PTOLEMY? If not, how does it affect the calculation of cross section?

The real optical potential and nuclear transitional potential for ISGMR with the
excitation energy E,=12.5 MeV was calculated with DOLFIN and then input to ECIS
and PTOLEMY respectively to calculate the differential cross section (The imaginary
potentials were obtained with a deformed potential model calculation as shown in Eq.
(2.94)). The calculations show that PTOLEMY and ECIS give almost the same results
(There are 4% difference in maximum differential cross section, see Table 2.2 and Fig.

2.6) if the strength factor for the transition potential is multiplied by 1/(471)1/ % in the
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ECIS input file. The calculation also verified that the input real and imaginary potential
should have same polarity in the same range, otherwise the angular distribution will have
a phase shift compared to PTOLEMY calculation (see purple curve in Fig. 2.6). The

same conclusion was obtained for the ISGDR case.

DOLFIN + ECIS

=== DOLFIN + ECIS (real TP img. TP: oppsite sign)
= DOLFIN + PTOLEMY 10°
= DFPD4 +ECIS

doQ(mb/sr)

do/dQ(mb/sr)

Bc’ml(deg)

FIG. 2.6 Angular distributions of differential cross sections calculated for a inelastic
scattering to the giant monopole resonance having energy E,=12.5 MeV
with different folding calculations (DOLFIN and DFPD4) and different
coupled channel calculations (PTOLEMY and ECIS).

For GR with L>2 and excitation energy E,=12.5 MeV, using a nuclear and transition
potential obtained by single folding from DOLFIN, ECIS calculations always give a
higher differential cross section at small angles than PTOLEMY calculations (see Fig.
2.7-2.9). However if the Coulomb calculation is turned off, this difference disappears,
which indicates that the difference is due to the different treatment of the Coulomb
interaction in these two codes. For the ECIS calculation, the Coulomb part of the optical
and transition potentials are obtained from DFPD4 calculations (see (2.100) and [78] ),
while for PTOLEMY calculation, they are calculated by the code in which the coulomb
potential is estimated with equation (2.103) and transition potential is evaluated with the

following expression:
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, Where R, =R, +R;,R;, =R.,A"* (2.107)

L R
o 32,2.¢ R T Te
Vc(r)zmﬂcch Ré“

r£+1’ _RC

Table 2.2 Difference in maximum cross section for giant resonance with L=0-4 and

E,=12.5 MeV for 240 MeV o + "*Sm due to different folding analysis

(single folding and double folding).

10

0

0

10

6 (deg)

c.m.

15

Single folding analt\l/ifswd - Double folding arll\e/l[lymi1 - difference in
. ax. ao, . ax. do,
max. do/dQ
L| Folding DWBA (mblsr) Folding DWBA (mbisr) X. do
0| DOLFIN PTOLEMY 601 DFPD4 ECIS 577 4%
1| DOLFIN PTOLEMY 724 DFPD4 ECIS 767 6%
2| DOLFIN PTOLEMY 163 DFPD4 ECIS 178 8%
3| DOLFIN PTOLEMY 249 DFPD4 ECIS 276 10%
4| DOLFIN PTOLEMY 311 DFPD4 ECIS 345 10%
I
N — DFPD4+ ECIS
10°F DOLFIN + ECIS .
C = DOLFIN + PTOLEMY
&
=
£
Ecj 10’ F
s F
=

FIG. 2.7 Angular distributions of differential cross section calculated for a inelastic

scattering to a giant quadrupole resonance with energy E,=12.5 MeV with

different folding calculations (DOLFIN and DFPD4) and different

coupled channel calculations (PTOLEMY and ECIS).

The angular distributions of the differential cross sections obtained from ECIS and

PTOLEMY with single folding potentials (calculated by DOLFIN) are also compared
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to those obtained from ECIS with double folding potentials calculated by DFPD4 for L
= 2, 3, 4 with E,=12.5 MeV (see Fig. 2.7-2.9). There is about 10% difference in
amplitude between the single and double folding calculations (see Table 2.2). Compared
to DOLFIN, DFPD4 has some new features[101], such as, the interaction is scaled by a
kinematic factor to take into account the kinematical transformation of the interaction
from the NN frame to the nucleus-nucleus frame, some improvement in the numerical
interpolation subroutine is incorporated. ECIS also has some difference compared to
PTOLEMY, such as, relativistic kinematics is used in ECIS while non-relativistic
kinematics is used in PTOLEMY, etc., however when ECIS and PTOLEMY are
compared for single folding calculations, the differences are small except at small angles

where the different Coulomb treatment is important.

100 [ T T T

== DOLFIN + PTOLEMY
DOLFIN + ECIS (include Co. )

= DFPD4+ECIS

do/dQ(mb/sr)

9L‘.Il’l.((—leg)
FIG. 2.8 Angular distributions of the differential cross section calculated for o

inelastic scattering to the HEOR resonance at energy E,=12.5 MeV with
different folding calculations (DOLFIN and DFPD4) and different
coupled channel calculations (PTOLEMY and ECIS).
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E = DOLFIN + PTOLEMY
- — DFPD4 + ECIS
r DFDP4 + PTOLEMY

do/dQ(mb/sr)

100 [

0 5 10 ;5
6, (deg)
FIG. 2.9 Angular distributions of the differential cross section for L=4 excitation

calculated for o inelastic scattering to giant resonance energy E,=12.5
MeV with different folding calculations (DOLFIN and DFPD4) and
different coupled channel calculations (PTOLEMY and ECIS).
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3. EXPERIMENT SETUP AND CALIBRATION

3.1 Experiment Setup

Tons of °Li*" from the ECR source were injected into the K500 superconducting
cyclotron for acceleration to 240 MeV and stripped up to 3" charge state in the beam
line. The °Li ions passed through the beam analysis system and bombarded self-
supporting target foils located in the target chamber of the multipole-dipole-multipole
(MDM) spectrometer (see Fig. 3.1). The outgoing particles were detected with the focal
plane detector of the MDM spectrometer. The position, energy and timing information,
after shaping by electronics, were recorded on line with the data acquisition system. The

functions of each part and experimental details are discussed below.

ECR ION K500
SOURCES /CYI:LDTRON
BEAM
ANALYSIS
SYSTEM

1994

MDM SPECTROMETER

1993,2000 35 FEET

FIG. 3.1 The experimental setup of °Li scattering.
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3.1.1 Beam Analysis System

The positive ion beam from the K500 cyclotron has an aberration limited resolution
AE/E of approximately 1/700, while the giant resonance studies require a beam with
moderate resolution (AE/E<1/2000) and free from slit scattering and halo. A beam
analysis system disperses the beam with a magnetic bend, then selects a part of the beam
with slits whose width determines the resolution of the beam that is passed to the target.
The beam analysis system [102]for the Texas A&M K500 cyclotron uses distributed n =
0 dipoles with external quadrupole focusing elements. It provides a dispersion of 19.3
cm per % AP/P with an ultimate aberration limited resolution of AE/E up to 1/2500 for
the full emittance of the beam from the K500 cyclotron. A total of 175° of bend, in
opposite direction 88° and 87° segments, is used with an intermediate focus between the
segments. The first half is used to disperse and limit the beam with the second half
serving to remove slit scattered particles so that a very clean beam can be transported to

the MDM spectrometer for zero degree inelastic scattering measurements.

3.1.2 Multipole-dipole-multipole (MDM) Spectrometer

The MDM spectrometer was constructed at Oxford University in 1982 and later brought
to Texas A&M for use with the K500 cyclotron. It consists of multipole magnet, field
clamp, dipole magnet, another field clamp and another multipole magnet listed in the
order along the beam direction (as shown in the Fig. 3.2) (note: the multipole magnet
after the dipole was not used in these experiments) It has an aberration limited resolution
AE/E of 1/4000, and an 8 msr maximum solid angle (80 mrad for horizontal acceptance
and 100 mrad for vertical acceptance). The details of the design, properties and testing of
MDM spectrometer are given in Ref. [103]. The dipole magnet has a linear gradient
field, and 100° of total bend with a 1.6 m central radius. It provides a large dispersion,
with a low magnification and a high mass-energy product. The advantage of the single
dipole magnet is that it provides simplicity and reliability for operation of MDM under
experimental conditions. The spectrometer provides a horizontal linear magnification

M,=0.4 and a vertical linear magnification M,=5.0.
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When the spectrometer was set at 0°, the beam passed through the beam pipe located on
the high p side of the detector box and stopped in a Faraday cup inserted in a wall (see
Fig. 3.3). In order to protect the detector from radiation damage, shielding consisting of
a layer of lead brick and 24 inch thick plastic and paraffin was put behind the detector to
attenuate the flux of neutrons and gamma rays. When the spectrometer was set at 4°, the
beam was collected in a Faraday cup in the slit box. At 6° and above, the beam was
stopped in a Faraday cup inside the target chamber. When the spectrometer was set at
angles greater than ~ 10°, paraffin and lead shielding were placed between the detector

and the target chamber.
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Particles \ | Plane Detactor
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E: — y
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FIG. 3.3 The layout of the MDM spectrometer with focal plane detector at 0° for

giant resonance measurement.
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3.1.3 Focal Plane Detector for MDM Spectrometer

Scintillator

Tonization Chamber

Cathod Plate

FIG. 3.4 Cross section view of the focal plane detector of MDM spectrometer.

The focal plane detector of the MDM spectrometer [104, 105] must measure position
and angle of the particles entering the detector so that ray tracing can be used to
determine the position where the particle intercepts the focal plane and the angle the path
of the particle makes as it enters the spectrometer (related to the scattering angle). In
addition, the dE/dx (energy loss) and total energy are measured to aid in particle
identification. A cross-section of the detector is shown in Fig. 3.4. There are four 60 cm
long resistive wire counters (spaced at 13.55 cm intervals) to measure horizontal position
from which angle information is derived, an ionization chamber to provide AE signals
and a scintillator on the back to measure total energy and to provide a fast timing signal.

An electrical diagram of the components of the detector is shown in Fig. 3.5.

Gas 1onization chambers [106] have been used for many years to determine the energy
loss of charged particles. The simplest ionization chamber has two plane parallel
electrodes in a gaseous medium with an electrostatic field between them. The electrons
freed by the ionization are collected on the positive plate. However, the positive ions
produced in the ionization, which have mobility 1000 times slower than electrons,
induce a charge on the anode. This causes a pulse from the anode to have a nonlinear

response to the energy loss in the gas chamber. O.R. Frisch [107] suggested that a grid
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(usually called a Frisch Grid) fixed at a voltage lower than the anode and placed near the
anode but between the anode and cathode would screen the effects of positive ions (as
shown in Fig. 3.6) from the anode. The drift field in the ionization chamber is then
determined by the voltage between the Frisch grid and the cathode. However some of
the drifting electrons will be collected on the Frisch grid, reducing the signal on the
anode. The details of the design of grid ionization chambers were given by Bunemann,

et al. [106] and the main criteria used in building the chamber are summarized below.

Assuming the applied potentials are V, on the cathode, Vg on Frisch grid wires and Vp
on the anode (now called the collector plate), the inefficiency of the shielding is defined
as [106]

de, d

~ log( d j for V, -V, =const, (3.1)
dE, 27p 2ar

o=

where E,, is the field between the grid and collector plate and Eq is the field induced by
the positive charges created in the ionization region between the Frisch grid and the
cathode. On the other hand, the condition on potential difference for zero grid

interception (transparency) can be expressed as[106]

Vp _Vg > p+ pp+2|p (32)
V.-V, a-ap-2p

g a

where p :2T7zr and | zzi(i p° —logp), a is the distance between cathode and the
V4

Frisch grid.
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FIG. 3.5 Diagram of electrical circuit to provide HV for each component and to
obtain signals from ionization chamber and wire counters (originally from

H.L. Clark [108] ).
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O Ld 4 e Vg

Va

FIG. 3.6 Diagram of ionization chamber with Frisch grid. The blue plate on the top is

the anode, the orange plate on the bottom is the cathode and the pink
circles are Frisch grid wires. r is the radius of the Frisch grid wire, p is the
distance between the Frisch grid and the anode and d is the pitch of the
Frisch grid wires. Va, Vg, V, are the electric potentials for cathode, Frisch
grid wires and anode respectively. Black dots means the actual distance
between cathode and Frisch grid is much large than that shown in the

figure.

The balance between small o for efficient shielding and high transparency depends on
proper choice of d, the pitch of the Frisch grid wire, p, the distance between the Frisch
grid and the collector plate, and the high voltages on the cathode and Frisch grid. For the
ionization chamber in the MDM focal plane detector, the radius of the Frisch Grid wire
(BE copper alloy) r = 50.8 um, the pitch d = 1.5 mm, p = 15 mm, a = 105 mm. Negative
3000 V was applied to the cathode, while negative 667 V was distributed on Frisch grid

wires and the anode was grounded through a 200MQ resistence. So the inefficiency o

\Y
=0.025 and Vp £ =0.25>0.22, where 0.22 is the condition limit for zero grid

b a

interception. The electric circuits for the ionization chamber are shown in Fig. (3.5).

The resistive wire counters [109] measure position by charge division. The charge
collected at each end of a resistive wire is proportional to the distance from the point the

charge is injected to the other end. Assume a resistive wire with total length L and two
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ends A and B. If a certain charge is injected at C, somewhere on the wire, and Qa and Qg

are detected at end A and end B respectively, the distance AC then can be expressed as

Ac=— | (3.3)
Qa+Qs

The resistive wire used in the wire counter is STABLOHM 675, obtained from
California Fine Wire Company, with diameter of 0.0007 inch and R = 1678 QO/FT. The
four wire counters are mounted directly above the ionization chamber. As a particle
passes through the ionization chamber beneath the wire counters, electrons released by
the ionization drift toward the Frisch grid and pass through the Frisch grid and some
eventually drift into the avalanche region of the wire counter through the gap between
the AE plates. Four small grids between the wire counters and Frisch Grid are used to
shield the Frisch Grid from the large number of positive ions generated in the avalanche

region.

The detector was filled with a mixture of 97% isobutane gas and 3% Dimethoxymethane
alcohol (http://www.sigma-aldrich.com) with the gas pressure typically set at 150 torr. It
has been shown [110-112] that isobutane has two advantages over argon-methane
mixtures for hybrid counter use: a greater stopping power and less multiple scattering.
The alcohol is used to clean the wires. Gas flows continuously through the detector to
avoid the contamination in the detector which results from the impurity of the gas and
ionization processes (ionization changes the properties of the gas). The details of the gas
control system are shown in Fig. (3.7). Isobutane gas from the gas bottle passes through
a 247C MFC gas flow controller and is split into two flows. About 94% of the gas goes
directly to a gas mixer, while ~ 6% of the gas bubbles through the alcohol bottle and
then flows to the gas mixer containing ~3% alcohol. The isobutane-alcohol mixture then
passes through an electric valve to the detector. The pressure at the inlet to the detector is
maintained at 600 torr by dynamically adjusting the opening of an electric valve

controlled with MKS 250B controller. The gas mixture flow through the detector and
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then is pumped out with a roughing pump. The pressure in the detector chamber is

maintained by an electric valve on the pump out flow with another MKS 250 controller.

Roughing pump P 0~10V
D | MKS 250
ELEC. [T controller
G6 B2 VALVE | 070V ~150 Torr
0~10 V Z o
G5

MKS 250B - L @

controller 0-10 V ELEC. g

VALVE —

~600 Torr G4 o

=

G3 VENT A
G MFC1
~590 Torr ~94%
A
B2

G2 VENTG2 Gl —
MFC2 247C MFC n @©
-6% [ 4-channel gas flow g 5

control c
—~ O
Q O
. S =
CH1: 250 cc/min 1)) %

CH2: 140 cc/min

T~ 20F

FIG. 3.7 The gas control system for MDM focal plane detector (from H.L. Clark
[113])).

A 25.4um thick Poly-Aramid foil is used as front window and a 0.25mm Mylar foil is
used as back window in the detector. For 240 MeV °Li particles, the energy loss in the
front window is about 500 keV and the energy loss in the back window is 4~5 MeV. A
Smm BC400 plastic scintillator on the back of the detector is used to provide energy loss
and fast timing signals. The thickness of 5mm is chosen to allow separation of the °Li
particles from o particle and deuterons. Compared to inorganic crystal scintillation
detectors, a plastic scintillator offers a very fast signal with a decay constant of about
2~3 ns and a high light output. It comes in many sizes and shapes and can be easily

machined. For the MDM focal plane detector, a conical Lucite light guide was glued to
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one end of the scintillator and coupled to a HAMAMATSU H1949 photon-multiplier
tube (PMT).

3.1.4 Electronics and Data Acquisition System

There are two kinds of high voltage (HV) supplies needed for the detector. The
photomultiplier tubes used for the monitor detector inside the target chamber and for the
scintillator behind the focal plane detector require several mA of current and the
Tennelec TC 952 was used for these. The BERTAN 375P(N) was used for applications
that draw no or very little current, such as HV for the position wires, the cathode, the
beam pipe correction field and the shell. The voltages applied to various elements of the
detector and typical currents for the 240 MeV °Li scattering experiments are listed in
Table 3.1. The diagram of electronics of signal processing and the data acquisition

system is shown in Fig. 3.8.

Table 3.1 The voltages applied to different components of the detector and typical
current for 240 MeV °Li scattering.

Beam

Wirel  Wire2 Wire3 Wire4 Cathode pipe Shell Monitor PMT
HV for
Elastic 1662 1661 1664 1664 -3000 -2230 199 -652 -1680
()
HYV for
Inelastic 1663 1663 1662 1663 -3000 -2230 202 -709 -1680
M)
typical several  several

OpA OpA OpA  OpA  161pA 43.1pA  20pA

current mA mA
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FIG. 3.8 The diagram of electronics of signal processing and the data acquisition
system. The preamplifiers used for wire counters are modified
CANBERRA 2004 preamplifiers.

side and AE signals are CANBERRA

The preamplifiers used for Cathode,
2004 preamplifiers. The

preamplifier used for the dynode signal is the ORTEC 113 preamplifiler.

During the experiment, the signal of the phototube dynode from plastic scintillator
provided an energy loss signal while the phototube anode signal provided a fast timing
trigger for each event. A TENNELEC TC 455 constant-fraction discriminator (CFD)
was used to convert the anode signal into logic signal. Noise was rejected by setting the

threshold higher than the noise level. The output of the CFD, together with the logic
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signal from a random (in time) pulse generator and a veto signal from a CBD 8210
module (veto signal is given when the module is busy transfering data to the front end
computer and can not accept signals from ADC’s) were added by a coincident logic unit
ORTEC 755 and then passed through the GG8000 to produce gate signals with
adjustable width for ADC’s. Eight charge signals collected from left and right ends of
the 4 wire detectors, a AE signal from collector plate, and a cathode signal went through
CANBERRA 2004 preamplifiers and were converted into negative unipolar voltage
pulses for which the peak amplitude was linearly proportional to the charge input. The
outputs of the preamplifiers were sent to ORTEC 571 or 671 spectroscopy amplifiers,
shaped into Gaussian pulses and then converted into digital signals by AD413 or
ADS811. The dynode signal first went through an ORTEC 113 preamplifier and was sent
to an ORTEC 571 spectroscopy amplifier and then converted into a digital signal by
ADS8I11. All the digitalized signals were passed on by branch highway cable from
CAMAC crate to VME front end, which consists of a VME crate with a CBD 8210
module and a Motorola MVME 712/M Ethernet interface module. A Dell PowerEdge
1650 computer worked as a front end host server connected with the electronics through
optical fiber for data acquisition. Another DELL PowerEdge 2950 was used to analyze

data on-line as well as to store data on disk for off-line analysis.

3.1.5 Experimental Details

The targets were self-supporting foils, 9.9 mg/cm? thick enriched to 95% in ''°Sn, 7.56
mg/cm’ thick natural Si and 4.35 mg/cm” thick enriched to 99% **Mg. The thickness of
the Sn target was determined by measuring the energy loss of a 240 MeV o beam
passing through the target. The thickness’s of Si and Mg targets were determined by
measuring the energy loss of the 240 MeV °Li beam passing through the target. The
procedure for each target thickness measurement was as follows : a) measure the
position in the focal plane of the particles without a target in place; b) measure the
position with the beam passing through the center of the target; c) repeat a) again (to

check the beam stability); d) measure the position with the beam passing through the
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upper part of the target (to check the uniformity of the target). °Li inelastic scattering
was measured over an excitation energy range from several MeV to 60 MeV to obtain
giant resonance data. °Li elastic scattering was also measured to extract optical potential
parameters. The magnet field settings, the spectrometer angles and the slit openings used

in both elastic and inelastic scattering are listed in Table 3.2.

Table 3.2 The spectrometer angles and magnetic field settings used for measuring the
elastic scattering and inelastic scattering for ''°Sn, **Si and **Mg. The

numbers in parenthesis are the slit opening used (horizontal x vertical in

degree).
116Sn ZSSi 24Mg
Elastic GR Elastic GR FElastic GR
Dipole Field 11001.0 10679.5 11001.0 10679.5 11001.0 10679.5
(Gauss)
Quad. Field 7546 7550 7546 7550 7546 7550
(Gauss)
50,70, 9° 50.7°, 9°
5.7, 0° (4°x29) (4°%29)
(4 X2 ) 110, 110,
0 11°,13°,15°,  0°,4° 131;105 g 0°, 4° 131;105 ’ 0°, 4°, 6°
wee 170190010, @ex4)  ohho o @exa) onje  (#x4)
o 5 ro 700 19°,21°, 19°21°,
23°,26°,29°, . o
3he 350 23°, 23°,
4% 4% 26°,29°, 26°,29°,
320,350 320,350
(40 X4O) (4OX 40)

3.2 Detector Calibration and Data Processing

3.2.1 Position Calibration

Data were taken for the elastic scattering of °Li from '*C using an entrance slit for the
spectrometer that had 5 narrow vertical openings, spaced to correspond to -2°, -1°, 0°,
1°, 2° relative to the central ray (see Fig. 3.9) entering the spectrometer. This was
repeated for sixteen dipole-field settings such that the focal plane positions of the °Li

ions spanned the useful length of the detector. The positions of the centroids of peaks for
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each wire counter were obtained for all sixteen dipole-field setting (channel numbers).
They were then compared with RAYTRACE [114] predictions of the position (in
centimeters) to obtain the relation between the channel number and position (in

centimeters) along the focal plane for each of the four wire detectors.

20 19 % 19 2°

P Yac

Wire 4
4

Wire 3

Focal plane X14

Wire 2

_ Ray ¢
Wire 1 y
Ll ylc »l

FIG. 3.9 Figure at the top left is a schematic of the collimator used to obtain angle
calibrations and calibrations of channel number versus position for each of
the resistive wires. The figure on the bottom left is a spectrum taken with
this collimator showing the calculated angle. The figure on the right shows
schematically the four resistive wires and the parameters defining a ray

and the location of the focal plane.

3.2.2 Angle Calibration

An angle calibration was obtained by measuring inelastic scattering of °Li from '*C
providing particles covering the entire detector using the same collimator in the opening

to the spectrometer as for the position calibration (see Fig. 3.9). The angle in the detector
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for each ray was calculated from the positions of the ray measured on two resistive wires
(usually wirel and wire 4 are chosen for angle calculations). For example, as shown in
Fig. 3.9, ray C is one ray with detector angle Op., for which y;. and y4. are the positions
measured by wirel and wire 4 respectively. Assuming the distance between wire 1 and

wire 4 is x41, the angle Op, for ray ¢ can be expressed as:

tan @, = Y1e Vi (3.4)
X4y

This angle measured at the detector and the position of this ray along the focal plane are
then used to calculate the angle that the particle traveled away from the target relative to
the beam. This angle relative to the beam at the target is then converted into an integer
between 0- 4096 for plotting in spectra. From the resultant angle spectrum, the centroid
channels for the five peaks corresponding to the openings in the slit are obtained and

fitted with a linear expression:
g =a+b-N, (3.5)

where 6, =-2°,-1°,0°,1°,2° , N; is the centroid channel for each peak in the angle

spectrum and a and b are fitted parameters for angle calibration.

Both 4°x2° (horizontal and vertical angle acceptances of 4° and 2° respectively) and
4°x4° solid angle defining slits were used in experiments. Each data set was divided into
10 angle bins (as shown in Fig 3.10) so that each angle bin corresponded to AO ~0.4°.
The average angle for each angle bin was obtained by integrating over the height of the
height of the slit and the width of the angle bin. Assuming the ith angle bin is divided

into many small areas S; and 6; is the angle extended from center of the small area to the

center of the target, the average angle i for the angle bin can be approximately

expressed as:

5 - &5 (3.6)
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polar angle relative to the beam direction. The area between adjacent
horizontal lines represents one angle bin for which the average angle was

obtained by Eq.(3.8).

3.2.3 Energy Calibration

Energy calibrations for elastic scattering were obtained from the position calibration.
With RAYTRACE calculations, the relation between the particles momentum and
position on focal plane had been obtained. So the position spectrum could be converted
into a momentum spectrum with position calibration and then converted into an energy
spectrum with relativistic kinematics. The energy calibrations for inelastic scattering to
the giant resonance region were obtained by measuring inelastic scattering on '°C, **Mg
and “Si with the spectrometer set at 4°, at the actual field settings used in the
experiments. The positions of the 3" state at E,=10.18+0.02 MeV and 2" states with
E,=18.67+0.05, 20.43+0.05 MeV[115] in **Si, the 2" states with E,= 12.86+0.05,
17.36+0.05 MeV[115] in **Mg and, and 3" states with E,= 9.641+0.005, 18.35+0.05

MeV[116] in '*C were used for calibration. During the experiment, calibration runs with
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a **Mg target were done before and after the data runs for each spectrometer angle to

check the calibration using the 13.68+0.05 MeV 0" state.

3.2.4 Data Processing

The raw data files for each run were sorted into ten position spectra corresponding to ten
angle bins. The position spectra were then converted into excitation energy spectra. The
experimental differential cross section for a given excitation energy and angle bin was

obtained with the following expression:

d_O'_ N' Y xDT
dQQ IN; Q/Z xTxAQ

where N’ is the reaction number per second, | is the flux of incident particles, Nt is the

(3.7)

number of target nuclei per unit area, Y is the number of events in a particular angle bin
and excitation energy range, DT is the correction for the dead time of electronics and
computer and includes the detector efficiency, Q is the total charge of the beam collected
by the Faraday cup, Zp is the charge of the incident particle, T is the thickness of the
target and AQ is the solid angle. The average angle in the lab system was calculated with
Eq.(3.8) and converted into center of mass angle with relativistic kinematics for further
data analysis. The angular distributions of absolute differential cross section for °Li +
1681 elastic scattering and inelastic scattering to 2* and 3~ low-lying states of ''°Sn are
shown in Fig. (3.11). The angular distributions of absolute differential cross section for
SLi +*Si elastic scattering and inelastic scattering to 2" and 3~ low-lying states of **Si are
shown in Fig. (3.12). The angular distributions of absolute differential cross section for
Mg elastic scattering and inelastic scattering to the first 2” state in **Mg are shown in

Fig. (3.13).
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4. DATA ANALYSIS AND RESULTS’

In this section, the data analysis is described and discussed thoroughly in detail. Section
4.2 describes the analysis of elastic scattering of 240 MeV °Li from ''°Sn with the
optical model where optical parameters were obtained by fitting the elastic scattering
data with a W-S potential and a folded potential. The cross sections of inelastic
scattering to low-lying 2" and 3 states were also obtained and used to check the optical
potential parameters by comparing to DWBA calculations. The parameters were then
used to calculate differential cross sections for inelastic scattering to giant resonances
The strength distribution was extracted and compared to those obtained by alpha
inelastic scattering. In section 4.3, analysis of elastic and inelastic scattering of 240 MeV

%Li on **Si and **Mg is discussed.

4.1 Data Analysis Procedure

The data analysis procedure with the double folding model calculation is shown in Fig.
4.1. The elastic scattering data was fitted by ECIS with the real and Coulomb potential
obtained from DFDP4, and with W-S imaginary potential. Optical parameters obtained
from fitting were checked by comparing to inelastic scattering to low-lying states. The
optical parameters together with transition potential calculated by DFPD4 for L =0 - 4
sum rule limit were input to ECIS to get the angular distributions of the differential
cross section. The angular distributions for L = 0 — 4 were then read to spread sheet
fit.xls [117]. The inelastic scattering data for giant resonance were input to spread sheet
analysis.xls [117], where a suitable background was chosen and the GR excitation
energy range was split into many small energy bins. An angular distribution of
differential cross section was obtained for each energy bin. The spread sheet fit.xls

automatically accesses analysis.xIs to get angular distributions of the cross sections over

"Part of this section was reprinted with permission from X. Chen, et al., Physical Review
C 76, 054606 (2007), copyright (2007) by American Phyical Society.
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the GR region. L = 0 — 3 strength distribution were obtained by fitting the GR data with

the calculated cross sections of sum rule limits for each multipolarity.

; : . :)
Elastic scattering DFPD4 calculation | =
4 v :
Elastic de/dQ Transition potential .
angular distribution L=0,1,2,3.4 . lE’;
: . , =
Fit with ECIS =»( Optical para. sp  ECIS calculation || £
: ¥ 1z
. <
= | Angular distribution for | =
Inelastic =» Analysis.xls | = | sum rule limit(L=0,....4) | =
‘ ;IIIII IIIIIIIIIIIIIIIII:J
Inelastic scattering

Fit.xls

It

Strength distribution ‘

for L=0,1,2,3

FIG. 4.1 Block diagram of the data analysis procedure.

The DFPD4 calculations of transition potentials were usually time consuming because as
many one hundred of calculations have to be done for L = 0 — 4 over GR excitation
range from approximately 8 MeV to 40 MeV with 1 MeV interval. Each calculation took
roughly 6~7 minutes on Dell Poweredge computer with double Intel (R) 2.4GHz CPU.
A computer code df_ecis_avg.py, written with PYTHON script, was used to control the
calculations. =~ The code fulfilled the following functions: calculate deformation
parameters corresponding to sum rule limits for L = 0 — 4 for a given energy; calculates
transition potential with DFPD4 for a certain multipolarity for a given energy (The
initial energy point and the energy interval is specified by input parameter file

df_ecis_avg.in); calculate differential cross section with ECIS for a certain multipolarity
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and do solid angle correction; output array of differential cross sections in terms of

excitation energy and center of mass angle.

The matter deformation parameters A3~ for multipolarities L = 0 — 4 were obtained from

the EWSR limit definition (see section 2). The deformation length & for imaginary

transition potential given for L > 2 are obtained with the assumption

O = PnC =5 : (4.1)

The deformation parameters A" for imaginary transition potential for L = 0, 1 are

obtained with the assumption [59, 118]

Br'c= B (A + A (4.2)

where At and Ap are the mass of the target and projectile respectively.

4.2 240 MeV °Li Scattering on ''°Sn

4.2.1 Elastic Scattering

Elastic scattering data of °Li + ''°Sn were fitted by the W-S phenomenological potential
model and potentials derived from double folding. Fermi distributions obtained from
droplet model calculations [94] were used for target and projectile density in the density
independent folding (DIF) calculation. In the density dependent folding (DDF)
calculation, a Fermi distribution was used for the ground state of 116Sn, with the
parameters obtained from Ref. [88], and the °Li ground state density was obtained from
proton scattering with the cluster-orbital shell-model approximation (COSMA)[119].

The proton and the neutron densities of °Li were expressed as:

exp(-r’/a’) 2exp(-r’/b?) 3.,Y
pmp = NC 72'3/28.3 + Nv 372_3/2b5 AI’2 +B I’2 _Ebz > (4~3)
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where N.= 2.0, Ny, = 1.0, a=1.55,b=2.07, A= 1.0 and B = 0.0. The density parameters

used in the folding calculations are listed in Table 4.1.

Table 4.1 Density parameters for the folding calculations. Fermi parameters c¢ (half
density radius) and a (diffuseness) are given for the matter distribution. Ry,
and Rcoy stand for mean square root radii for matter distribution and

Coulomb interaction respectively.

model density form Nucleus c(fm) a(fm) R(fm) Reou(fm)
DIF Fermi[94] °Li 1.508 0.5 2.195 2.195
Fermi[94] 1egn 5.469 0.5 4.626 4.626
DDF COSMA[119] °Li — — 2.444 1.833*
Fermi[88] "1°Sn 5.49 0.515 4.663 4.253*

*Uniform charge distribution is used in the calculations to estimate the

Coulomb interaction for elastic scattering.

Elastic scattering fits with W-S phenomenological potentials were carried out with

ECIS. The W-S potential has the 3-parameter form:

V() =V /[1+exp((r-R,))/a)l, R, =r(A"”+A"), (4.4)

where At is the mass number of the target and A, is the mass number of projectile. The

real and imaginary parts have the same form except the parameter values are different.

Satchler and Khoa [118] found that better fits to the measurements including those taken
at angles beyond the Fraunhofer diffraction region were obtained by a hybrid model in
which the real interaction was obtained with folding and the imaginary part was
represented by a Woods-Saxon potential. So in this work, only the real parts of the
optical potentials were obtained by a folding procedure with both the DIF model and the
DDF model. The DDF folding calculations were carried out with the folding code
DFPD4 [93], while the DIF calculations were carried out with CHEN2 [94], and the
differential cross sections were obtained with ECIS. In the DIF calculation, the Reid

version of the M3Y NN interaction was used and the knock-on exchange contribution
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was represented by zero-range approximation which is a 6 function with strength shown
in Eq. (2.74). In the DDF calculation, the Paris version M3Y NN interaction was used
and the knock-on exchange effect was represented by a finite range approximation

shown in Eq. (2.75). The density dependent function is expressed as [77]:

F(p)=0.2658(1 +3.8033¢ 7 — 4.0p). (4.5)

There is also a weak energy dependence included in the density dependent NN effective
interaction, which is used to reproduce the empirical energy dependence of the nucleon-

nucleus optical potential [76] and is expressed as following:

g(g) ~1-0.003¢ (4.6)

where ¢ is the bombarding energy per nucleon (in MeV). The direct term and exchange

term of the NN effective interaction in the DDF calculation thus are expressed as

VD(EX)(paga ry= g(g)F(p)VD(EX)(r) . 4.7

The optical potential parameter sets obtained from both folding model fits as well as the
W-S fit are listed in Table 4.2. The calculated angular distributions for the ratio between
absolute differential nuclear cross section and Rutherford cross section are plotted along
with elastic scattering data in Fig. 4.2. The (real potential) renormalization factors in
both folding calculation are around 0.65, consistent with earlier folding analysis of °Li
scattering [69, 120]. The real parts of the potentials obtained from the different models
are plotted in Fig. 4.3, where the folded potentials are multiplied by the renormalization
factor Ny obtained from the fits of elastic scattering data. The amplitudes of the
potentials are quite different for smaller radii, however they overlap well for radii in the
surface region (R~7.4 fm is roughly the sum of radii of the projectile and target),
indicating that peripheral collisions dominate in the angular range studied here. From
Fig. 4.2 it is apparent that even an additional 10" (out to 40°) could have improved the
parameterization and such larger angles measurements would help to determine the

amplitude of interior potential.
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The quality of fit of elastic scattering and inelastic scattering to low-lying 2" and 3 states

is estimated by y?, defined by:

s L &[o@)™ @)™ |
i _N;{ Ao(9) } @9

where N is the number of data points, o(6;)* is the ith calculated cross section, o(6;)™"

is the experimental cross section and Ac(6;) is the corresponding uncertainty. The y?
obtained from W-S model fit is not significantly different than those obtained from
folding model fits. Since there have been no °Li + ''°Sn scattering data reported before,
the optical parameter sets from Ref. [120] for 210 MeV °Li scattering on *°Zr and ***Pb
are also shown in Table 4.3 for comparison. Farid and Hassanain [120] obtained their ¥*
assuming the *°Zr and ***Pb data have uniform 10% error. In order to compare the fit for
P7r and our ''°Sn, y*> was recalculated for ''®Sn by assuming the data have 10%
uncertainty. The calculations show that W-S model fit for ''°Sn data (%* ~5.16) is better
than the W-S fit for *°Zr data (3 ~8.3), while fits with double folding models for ''°Sn

(x> ~5.18) and *°Zr (y* ~4.9) have approximately the same quality.

Table 4.2 Optical parameters sets obtained from the analysis of °Li scattering. W-S
means Woods-Saxon potential. DIF means density independent folded
potential and DDF means density dependent folded potential. * means that

1/3
Rv(w)=r0(i0)AT .

EeLi Potential Vv To A W o a Jy Jw , ..
W W e N ey ) dm ey @ RV GRY T b
240  '%Sp W-S 1959 0.825 0934 2798 1.178 0.823 2543 91.4 0.77 2885
DIF 0.637 39.99  1.075 0992 2344 1064  1.19 3031
DDF 0.659 2877 1.151  0.905 202.1 89.9 0.98 2956
210 *zZr W-S 177 11827 0939 3130 1.627° 0810 257.0 106.0 8.3 2618
[8] DIF 0.70 3130 1.596° 0917  263.0  103.0 49 2744
W-S 2240 1.104" 1.001 3510 1.518" 0.824  259.0 93.0 0.6 3536

208py,
DIF 0.60 3140 15377 0.842 2240 86.0 1.8 3582
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FIG. 4.2 Experimental angular distribution of the cross-section (relative to Rutherford

cross section) and fits for °Li+''®Sn elastic scattering using W-S potential,

DIF potential and DDF potential parameters are shown. The error bars

indicate statistical and systematic errors.
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FIG. 4.3 Real optical potentials obtained from W-S, DIF, DDF models. For DIF
model, the dash and dot curve shows the folded potential obtained from
CHEN?2 multiplied by renormalization factor Ng=0.637. For DDF model,
the black curve shows the folded potential obtained from DFPD4
multiplied by renormalization factor Ng =0.659. The inset has the vertical

scale expanded to show the region of overlap.

The volume integral of optical potentials per interacting nucleon pair were determined

by the relation
1
Jow =5 [V(OW(n)dz 4.9)
) Ap

where V(r) and W(r) are the real and imaginary parts of the optical potential and At and
Ap are the mass numbers of the target and projectile. Based on folding model analysis of
light HI elastic scattering with density independent S1Y NN interaction at intermediate
energy [121], Satchler obtained a qualitative expression for the volume integral per

nucleon pair with linear energy dependence:
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IS = -259(1-0.005E / A,) (4.10)

where E is the incident energy and A, is the mass of the projectile. For 240 MeV SLi
scattering, J,°'Y=207 MeVfm’. Even earlier, Gupta and Murthy [122] proposed a semi-
empirical formula for the real volume integrals based on nucleon-nucleus optical
potential derived from the JLM interaction. The volume integral given by the semi-
empirical formula is both energy dependent and target mass dependent. The value of
volume integral will slowly decrease as the incident energy and target mass increase. For
240 MeV °Li scattering on 116Sn, J,"™ =217 MeVfm®. On the other hand, Nadasen et al.
[123] analyzed 210 MeV °Li scattering on *°Zr with W-S potential model and suggested
an empirical logarithmic energy dependence form for the volume integral per nucleon

pair:

W =J,-BInE 4.11)

where J;=855+30 MeVfm®, p=113+5 MeVfm’, and E is the incident energy of the
projectile. For 240 MeV °Li scattering, J," =236 MeVfm’.

These are compared with those obtained in this experiment in Fig. 4.4. The volume
integral obtained with W-S potential model and DIF model are close to the calculation
based on Nadasen et al.''s formula, while DDF calculation is closer to Satchler's
expression and Gupta and Murthy's expression. The volume integral per nucleon pair for
240 MeV °Li scattering on ''°Sn should be slightly smaller than that of 210 MeV °Li
scattering on *°Zr because it has a higher incident energy and a heavier target and that is

seen for both the W-S model and folding model calculations.
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[123], Gupta and Murthy’s expression obtained with JLM effective
interaction [122] and Satchler’s expression obtained with S1Y effective
NN interaction[121] respectively. Volume integrals obtained from
Ref.[120] for 210 MeV °Li scattering on *°Zr are also plotted in the figure

for comparison.
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FIG. 4.5 The differential cross-sections calculated with deformed potential model and

folding models for inelastic scattering to the 1.29 MeV 2 state of ''®Sn
along with the data points are plotted versus average center of mass angle.
The B(E2) values used for DP, DIF and DDF models calculations are best
fit values of 0.229, 0.182, 0.233 ¢’b” respectively. The error bars represent

statistical and systematic errors.
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FIG. 4.6 The differential cross-sections calculated with deformed potential model and
folding models for inelastic scattering to the 2.27 MeV 3™ state of ''°Sn
along with the data points are plotted versus average center of mass angle.
The B(E3) value used for DP, DIF and DDF models calculations are best
fit values of 0.116, 0.101, 0.133 ¢’b’ respectively. The error bars represent

statistical and systematic errors.

The DWBA calculations with deformed potential model and folding models for low-
lying 2" and 3™ states of ''°Sn were carried out with ECIS. The angular distributions of
the cross sections with different models for 2" and 3~ states are plotted in Fig. 4.5 and
Fig. 4.6 along with the data. For the folding model calculations, the mass deformation
length and coulomb deformation length were assumed to be the same, and in deformed
potential model calculations the potential deformation length and coulomb deformation
length were assumed to be the same. In DIF model calculation, the real transitional
potentials for 2" and 3 states were generated with CHEN2 and the imaginary part was
obtained by the DP model, while in the DDF calculation, the real transitional potentials

were generated by DFPD4 and the imaginary parts were obtained by DP model. The best
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fit B(EL) values for 2" and 3 states with different model calculations were extracted by
fitting the inelastic scattering cross section and are listed in Table 4.3. There are two
errors given for each fitted B(EL) value. The superscript one represents statistical error
which comes from the fit of inelastic scattering cross sections and is about 3-4% of the
fitted value. The subscript one represents the total error including both statistical error

and systematic error which is about 10% of the fitted value.

The results are compared with B(EL) values obtained using electron inelastic scattering
[124, 125] and o inelastic scattering [126], and also are compared with the adopted
B(E2) [127] and B(E3)[128] values in Table III. The B(E2) and B(E3) values obtained
with DP and DDF model in this work agree within errors with adopted values, and the
values obtained from electron inelastic scattering and o inelastic scattering. It is
interesting that B(EL) values obtained with DP and DDF model are very close to those
obtained from a inelastic scattering. DIF model calculations do not agree with either
adopted B(EL) values or B(EL) values obtained from electron scattering or o scattering.
Since the scattering process explored here is peripheral, lack of the density dependence
for NN interaction may not be adequate to explain the discrepancy. The density used for
the projectile in DIF calculation, a Fermi distribution obtained from the droplet model
which gives a radius significantly smaller than the known °Li radius[69], may not be

suitable for the projectile since °Li is a loosely bound light heavy ion.



Table 4.3 The best fit B(EL) value for 2+ and 3- states of 116Sn obtained with W-S,
DIF and DDF models. Adopted values of B(E2) and B(E3), as well as
values extracted from o inelastic scattering and from electron scattering,
are shown in the table. For B(EL) values obtained from 6Li scattering, the
superscript errors represent statistical errors, while the subscript errors
represent total errors including statistical and systematic errors. For o
scattering, DIWS represents potential from density-independent single

folding, while DDWS represents potential from density-dependent single
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folding.
=2 E,=129MeV  J™=3", E,=2.27 MeV

work Model B(E2)(e’bY) B(E3)(e’b’)
present DP 0.229%0'654 0.1163501,
DIF 0.182551 0.10 155,
DDF 0.233350 0.1333501

o scattering® DP 0.231+0.023 0.114+0.012

DIWS 0.231+0.023 0.134+0.014

DDWS 0.231+0.023 0.134+0.014

e scattering EM 0.229+0.015° 0.120+0.015°

Adopted Value 0.209:£0.006° 0.132+0.018°

a: Ref. [124], b: Ref. [125], c: Ref. [126], d: Ref. [127], e: Ref. [128]

4.2.2 Giant Resonance Analysis

.. . . 11 .
SLi inelastic scattering on ''°Sn to giant resonance range was measured at spectrometer

angle 0° and 4°. The excitation energy spectrum for each angle bin was stored in spread

sheet analysis.xls. The spectrum was divided into a peak and continuum, where the

continuum was assumed to have the shape of a straight line at high excitation joining

onto a Fermi shape at low excitation energy to model particle threshold effects as shown

in Eq. (4.12) [129]:
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(4.12)

where A and B are determined from a fit to the high excitation region (39~49 MeV), Ey,
and C are adjusted to model the behavior of the spectrum near the particle threshold, and
Yy is adjusted so that the continuum obtained is zero just below the particle threshold (
6~7 MeV). The excitation energy range was divided in many energy bins with bin width
no more than 2 MeV. The angular distributions of differential cross section for the peak

and continuum of each energy bin were obtained and sorted in the spread sheet.

""°Sn giant resonance data was analyzed first with the deformed potential model. A
sample of giant resonance spectrum is shown in Fig. 4.7. Angular distributions for a 2.0
MeV wide bin centered at Ex=15.6 MeV of the giant resonance peak and the continuum
are shown in Fig. 4.8 along with DWBA fits. The distributions of the energy weighted
sum rule (EWSR) strength obtained for ISGMR, ISGDR, ISGQR, and ISGOR of 165n
are shown in Fig. 4.9. The peak positions of the ISGMR and ISGQR strength
distribution are consistent with those obtained from o inelastic scattering, but there are
some differences in sum rule strength. This may be due to different continuum choices
or the simplicity of the deformed potential model. No matter how the continuum was
chosen, unlike other multipolarities, the strength of ISGDR was always much higher
than 100% of the EWSR. H.L. Clark, et al. [130] have pointed out that the predicted
cross section for the ISGDR is very sensitive to the imaginary component of the optical

and transition potential.
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Sn cross section for a 2 MeV wide bin

centered at the excitation energy indicated on the figure (in MeV) for °Li

inelastic scattering for GR peak and the continuum. The line through the

data points indicates the multipole fits. Contributions of each multipole are

shown.
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SLi inelastic scattering using the deformed potential model (blue color)
with those obtained from o inelastic scattering[5] using a folding

potential (pink color).

15Sn giant resonance data were then analyzed with the double folding model. The
optical potential parameter set for analysis of the ''°Sn inelastic scattering data is the
folded potential obtained with DDF model (as shown in Table 4.3). The transition
potentials for L = 0—4 transitions were calculated with DFPD4 for the excitation range
from 8 MeV — 40 MeV in 1 MeV steps. The corresponding angular distributions of
differential cross section were obtained with ECIS (see Fig.4.10). A set of angular
distributions for L = 0 — 4 with E,=15.0 MeV are shown in Fig. 4.11. The angular
distributions for L = 0 peak at 0° and are well distinguished from others. Two sample
excitation energy spectra at average center of mass angle 1.08° and 5.87° with

continuum choice are shown in Fig. 4.12. A set of sample angular distributions for 1.6
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MeV wide bins centered at Ex = 12.62, 22.20, 30.17 MeV for the giant resonance peak
and the continuum are shown in Fig. 4.13 along with DWBA fits. The multipole
decomposition analysis techniques used here were described in detail in Ref. [39, 40,
129, 131]. The isovector giant dipole resonance (IVGDR) contributions were calculated
from the known distributions [132] and were fixed in the fits. The strength distributions
obtained for ISGMR, ISGDR, ISGQR, and ISGOR of 16gn are plotted as blue curves

with Gaussian fits plotted in dark green curve in Fig. 4.14.

The strength distributions obtained for E0-E3 are compared with those obtained with a
inelastic scattering [49] which are plotted as red curves. The parameters obtained for EO,
E2 and E3 excitation are given in Table 4.4 and those for E1 excitation are given in
Table 4.5 and are compared to those from Ref. [49, 133]. There are two centroid
energies listed in Table 4.4. Following the notation in Ref. [49], the first one is defined
as m;/my which is described in section 1 and the second one is the peak position of
Gaussian fit. I" is the full width at half maximum (FWHM) for Gaussian fit, while I'* is
equivalent FWHM for m;/m, obtained by multiplying the rms width by a factor of 2.348

rms width = \/ZI(E _ =) S(E) (4.13)
iEIS(Ei)

where E, is the centroid energy, E; is the average energy of each energy bin and S(E;) is

the corresponding strength distribution.
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the E3 contributions by the brown lines, E4 contributions by the dark

green lines and the isovector E1 contributions by the dark blue lines.

99



100

Table 4.4 E0, E2, E3 multipole parameters obtained for ''®Sn in this work compared

to those obtained from analysis of a scattering.

240 MeV °Li scattering 240 MeV a scattering

m;/mg r* Gaussian fit T EWSR Ref. m,;/my r* EWSR

(MeV) (MeV) (MeV) (MeV) (%) : (MeV) (MeV) (%)
1035 10.85 127 [49]  1585£020  527:025 112415

B0 15397033 6.107983 15.58:0.19 546018  106*

[133]  15.940.5% 117412
E2 14347026 6.901078 14094027 5484035 94*14 [49] 13504035 504030 10812
—0.20 —0.18 - [133] 140.5% 10310
By 21660021 10874023 |6s8 [49] 23.3+0.8 109<0.6 7012
[133] 21805 7.120.5 6710

I'* means equivalent FWMH obtained by multiplying the rms width by a factor of
2.348.

Table 4.5 ISGDR parameters obtained for ''®Sn in this work compared to those

obtained from analysis of a scattering.

Peakl Gauss. r EWSR Peak2 Gauss. r EWSR Total
(MeV) (MeV) (%) (MeV) (MeV) (%) EWSR(%)
0.20 0.26
this work 15.3240.20 556107 66+10 21.73£0.20 2,807 52134 11847
[49] 14.38£0.25 584030 2313 25.540.60 12.0£0.6 6115 88420

[133] 14.7+0.5 3.8+1.2 13+4 23.0£0.6 8.7+1.2 3311 4611
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The errors for the centroid energy and rms width listed in Table 4.4 were calculated
considering the possible error sources shown in Table 4.6. The beam energy uncertainty
gives very little error on excitation energy calibration as a 5 MeV difference in beam
energy gives a 0.004 MeV difference in kinematic calculations for excitation energy.
The standard deviation from the states used to do energy calibration contributes ~ 0.06
MeV of the total error. The error from the energy calibration slope, obtained by varying
the minimum y” by unit 1, varies with the excitation energy. The error from uncertainty
of the 0" state of **Mg which is used to adjust the energy calibration for 0 degree spectra
is around 0.06 MeV. The error caused by choosing different widths of energy bins is ~
0.1 MeV. The target thickness uncertainty gives about ~0.04 MeV error. All the errors,
combined with statistic fitting error, give the total error for each centroid energy and rms
width.

Table 4.6 Error estimated for centroid energy and rms width.

erTor source excitation energy error (MeV)
beam Energy uncertainty (£5MeV) 0.004
Calibration Standard deviation 0.06
Calibration Slope error Varied with excitation Energy
*Mg(0", 13.86MeV) 0.06
energy bin effect 0.1
target thickness uncertainty 0.04
Statistic fitting error Varied with centroid energy

The EO strength distribution obtained in this work corresponds to 106737 % of the EO

EWSR with a centroid (mi/mg) energy 15.39%03; MeV and equivalent width 6.10%%;

MeV. The Gaussian fit of the EO strength distribution gives a centroid of
15.58+0.19 MeV and a width of 5.46+0.18 MeV, which is in good agreement with
112+15% of the EO EWSR given in Ref. [49] with a centroid of 15.85+0.20 MeV and a
width of 5.27+0.25 MeV.

The E2 strength extracted in this work corresponds to 94*13% of the E2 EWSR with a

centroid energy of 14347938 MeV and an equivalent width 6.907%78 MeV. The Gaussian
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fit of the E2 strength distribution gives a centroid of 14.09+0.27 MeV and a width of
5.48+0.35 MeV, which is in agreement with that given in Ref. [49] which corresponds to
108+12% of the E2 EWSR with a centroid of 13.50+0.35 MeV and a width of 5.00+0.30
MeV, and also in agreement with that given in Ref. [133] which corresponds to

103+£10% of E2 EWSR with a centroid energy of 14+0.5 MeV.

The E3 strength extracted in this work corresponds to 116+11% of the E3 EWSR, which
is much larger than 70+£12% identified in Ref. [49] and 67+10% extracted in Ref. [133].
The centroid energy obtained in this work agrees with that given in Ref. [133] while the
equivalent width agrees with that given in Ref. [49].

The ISGDR strength extracted in both °Li and a. scattering is split into two peaks and the

position of the lower peaks are similar, but otherwise there are significant differences.

The ISGDR strength extracted in this work corresponds to 1187, % of the E1l EWSR

whereas 88% of the EWSR was identified with a scattering. The strength extracted
from °Li scattering is larger but very little strength is seen above E,=27 MeV, while
significant strength was seen with a scattering above 27 MeV. When fitted with two
Gaussians, the low energy peak strength corresponds to 66£10% of the E1 EWSR with a
centroid of 15.32+0.20 MeV and a width (FWHM) of 5567933 MeV, the high energy

peak strength corresponds to 527, % of the EWSR with a centroid energy of

21.73+0.20 MeV and a width (FWHM) of 2.87928MeV, while, in o scattering [49], the

low energy peak corresponds to 25+15% of the E1 EWSR with a centroid of 14.38+0.25
MeV and a width (FWHM) of 5.84+0.30 MeV, the high energy peak corresponds to
61+15% of the EWSR with a centroid energy of 25.50+0.60 MeV and width (FWHM)
of 12.0+£0.6 MeV. Youngblood et al. pointed out in a series of papers [46, 49, 134] that
the El strength distributions are quite sensitive to continuum choices. The large

difference in E1 strength shown here may come from different continuum choices.
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4.3 240 MeV °Li Scattering on **Si and **Mg

4.3.1 °Li Elastic Scattering on **Si and **Mg

The W-S model as well as double folding models were used in analysis of elastic
scattering on **Si and **Mg. The best fit optical parameters of the W-S potential are
listed in Table 4.7. In the folding model analysis, two different NN effective interactions
( M3Y [73] and JLM [84] ) were used to get the folded potential. Folding calculation |
(FCI) used a density dependent M3Y NN interaction described in detail by D.T. Khoa
[78], while folding calculation Il (FCII) used the JLM effective interaction described by
F. Carstoiu et al. [135], L. Trache et al. [85] and the references in these two papers.
Two different density forms, Fermi distribution and Hartree Fork (HF) density [100],
were used for the target ground density during the folding procedures (see Table 4.8).
The cluster-orbital shell-model approximation [119] form was used for °Li ground
density (see Eq.(4.3)) with FCI. FCI was carried out with DFPD4 and elastic scattering
data were fitted with ECIS. The optical parameters obtained are listed in Table 4.9. FCII
and the elastic scattering fit were carried out with OPTJLM1. HF densities were used
for both target and projectile. The optical parameters are listed in Table 4.10. The
angular distributions of the cross-sections calculated with different models are plotted
along with the data in Fig. 4.15 for **Mg and Fig. 4.16 for **Si. Both FCI and FCII give

almost the same quality fits for each nucleus.
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Table 4.7 Optical parameters obtained from analysis of °Li elastic scattering on **Si

and **Mg with the W-S potential.

Target \% Iy a W Tio H 1, Ty or

(MeV)  (fm) (fm) (MeV) (fm) (fm) (MeVfin®) (MeVfim®) (mb) °
S 14334 0720 0937 32.13  1.004 0.921 261.18 125.40 1650 1.43
*Mg 11452 0.762  0.879 34518 0.956 1.027 2444 138.2 1680 1.14

Table 4.8 Density parameters for different density choices. Denl and Den2 are Fermi

distributions. Ry, Ry, R, Ren means the root mean square radii of the

calculated proton, neutron, mass and charge distributions respectively.

Density Po C A R, R, R, Ry
target choice (fm) (fm) (fm) (fm) (fm) (fm) (fm)
Denl™ 0.17 2995 0478 2922 2922 2922 3.040
“Mg  Den2!™ 0.166 2979 0523 3.017 3.017 3.017 3.040
HF — — - 2928 2906 2917 3.000
Denl!"™ 0.175 3.15 0475 3.010 3.010 3.010 3.875
®Si penm2!" 0.167 3.155 0523 3.123 3.123  3.123 3.154
HF — — — 3059 3.031 3.045 3.132
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Table 4.9 Optical model parameters obtained from fits of elastic scattering with
folding calculation I. N; is the renormalization factor for the real potential.
S; is the scaling factor for the real potential radius. W, rj, a; are W-S
parameters for the imaginary potentials. J, and J,, are the volume integral
per nucleon pair for the real and imaginary potentials respectively. o; is

the total reaction cross section.

Target  N-Nint (feegsgf; N: S (M\ZV) ro(fm) - a(fm) (Mei;fm3) (Mei‘/me3) (nc;l;)) 4
CDM3Y6 Denl  0.824  1.062 587 0731  1.204 242 154 1799 1.038
CDM3Y5 Denl 0823  1.062 5867 0731 1204 242 154 1799 1.039

“Mg  CDM3Y4 Denl 0822 1062 5873 07311 1204 242 154 1799 1.039
CDM3Y5  HF 0766  1.055  59.14 0728 1208 240 155 1803 1.042
CDM3Y5 Den2 0846  1.079 5792  0.737  1.198 242 154 1793 1.032
CDM3Y5 Denl 0887 1.0624 4133 09049  1.048 256 136 1757 1461

¥Si  CDM3Y5 Den2 0924  1.083 4138 09049  1.046 258 136 1755 1.439
CDM3Y5 HF 0933 1.059  41.85 09011  1.051 257 137 1761 1.485

Table 4.10 Optical potential parameters obtained from the fit of elastic scattering with
folding calculation Il .N; and N,, are the normalization factor for the real
and imaginary potential respectively. t; and t,, are range parameters for the

real and imaginary potential respectively.

N-N target t; N ty Jy Jw or 2
int. density r (fm) v (fm) (MeVfm®) (MeVfm’) (mb) X

Mg JLM HF 0519 0.9559 0862 2.586 237 144 1803 1.6
28gi JLM HF 0546 09165 0.825 2.4275 248 137 1734 1.94

Target




107

A scaling factor on the radius of the real optical potential is necessary to fit the elastic
scattering for both **Mg and **Si when FCI is used. Different density choices (as shown
in Table 4.8) will slightly change the value of the scaling factor (as shown in Table 4.9.),
but do not eliminate the factor. Different types of density dependent M3Y interactions
such as CDM3Y4, CDM3Y5, CDM3Y6 (see Table 2.1) give almost the same scaling
factors for **Mg elastic scattering. One possible reason for this factor could be the
density used in the density dependent function. The density is defined as the sum of the
densities of target and projectile, which may over-estimate the nuclear matter density in
certain regions. The fit to elastic scattering with the JLM folding calculation does not
need the scaling factor on the radius. However there is an adjustable smearing factor t in
the smearing function which greatly increases the ability of the folding form factor to
simulate the radial dependence of DPP [135]. FCl was used to analyze inelastic
scattering for convenience, because DFPD4 can generate the transition density for

inelastic scattering and calculate the transition potentials.

The volume integrals of real parts of the optical potentials for °Li scattering on **Si and
*Mg were calculated for each of the potentials obtained. The difference of the volume
integrals obtained for **Si with different models is less than 13 MeV-fm’ while the
difference for **Mg is less than 5 MeV-fin’. The results are shown and compared with
Nadasen et al.’s expression, Gupta and Murthy’s expression and Satchler’s expression in
Fig. 4.17. The volume integrals obtained with different models for **Si are consistent
with or close to Nadasen et al.’s prediction and Gupta and Murthy’s prediction, while
the volume integrals for **Mg lic below these two predictions and above Satchler’s
prediction. (note: Since Satchler’s prediction is based on the different target and
projectile systems[121], as large as 50 MeVfm® uncertainty was found in previous

folding model analysis of 210 MeV SLi scattering [120]).
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FIG. 4.15 Experimental angular distribution of the cross-section (relative to
Rutherford cross section) and fits for °Li + **Mg elastic scattering using
W-S potential (blue curve), folding potential with CDM3Y6 NN
interaction (black curve) and folding potential with JLM NN interaction

(green) are shown. The error bars indicate statistical and systematic errors.
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FIG. 4.16 Experimental angular distribution of the cross-section (relative to

Rutherford cross section) and fits for °Li + *Si elastic scattering using W-
S potential (blue curve), folding potential with CDM3Y5 NN interaction
(black curve) and folding potential with JLM NN interaction (green) are

shown. The error bars indicate statistical and systematic errors.
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FIG. 4.17 The volume integral of the real part of the optical potential for °Li
scattering on 8Si and 24Mg obtained with W-S model, folding model with
JLM and M3Y effective NN interactions. The brown curve represents
Nadasen et al.’s expression obtained with W-S potential [16]. The blue
and red curves represent Gupta and Murthy’s expression for **Mg and **Si
obtained with JLM effective interaction [40]. The pink curve represents
Satchler’s expression obtained with S1Y effective NN interaction [27].
Volume integrals obtained from Ref. [8] for 210 MeV °Li scattering on

283 are also plotted in the figure for comparison.

DWBA calculations for °Li inelastic scattering to the low-lying 2 state of **Mg and to
low-lying 2" and 3~ states of **Si were carried out with the optical parameter sets
obtained by deformed potential model and folding model I. The CDM3YS5 density
dependent NN interaction was used here and the Den1 form (as shown in Table 4.8) was

chosen as the target density for both **Mg and **Si. The transition potentials were
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calculated with DFPD4 and the cross sections were calculated with ECIS. The mass
deformation parameters for the 2" and 3° states were obtained from electromagnetic
B(EL) values by assuming that the mass and coulomb deformation lengths are the same.
The best fit B(EL) values for the 2* and 3" states of **Si and the 2" state of 24Mg were
extracted by fitting the inelastic scattering cross section and are listed in Table 4.11. The
fitted B(E2) values obtained for the **Si 2" state and **Mg 2" state obtained with the
folding model calculations agree with the adopted value and with the value from electron
scattering. The fitted B(E3) value for the **Si 3™ state does not agree with the adopted
value, but it agrees with the value from electron scattering [136]. The B(EL) values
obtained with the deformed potential model are all smaller than the adopted value or the
value from electron scattering. This is consistent with Beene et al.’s conclusion [137].
The calculated angular distribution for the 2* state in **Mg is plotted in Fig. 4.18 along
with the data. The calculated angular distributions for 2 and 3 states of **Si are plotted

in Fig. 4.19 and Fig. 4.20 respectively along with data.

Table 4.11 The best fit B(EL) values for 2+ and 3- states of **Si and 2+ state of **Mg
obtained with the deformed potential model and the double folding model.
Adopted values of B(E2) and B(E3), as well as values extracted from
electron scattering, are shown in the table. For B(EL) values obtained
from °Li scattering, the superscript errors represent statistical errors, while
the subscript errors represent total errors including statistical and

systematic errors.

ngi szi 24Mg
Work Model =2", E,=1.779MeV J"=3", E,=6.888 MeV J=2", E,=1.369 MeV
or ode

B(E2)(c’b?) B(E3)(e’b’) B(E2)(e’b?)
Present DP 0.022920.0003 0.00135:0.00002 0.03170%004
DDF 0.0318%09004 0.0031 1209000 0.0465%0000

Siﬁf;‘:;‘g EM 0.0337£0.0030"'3%] 0.003870.00075[131 0.0420£0.0025137

Adopted 0.032620.0012 [127) 0.0042+0.0005!127] 0.0432+0.00111128]

Value
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FIG. 4.18 The angular distributions of the differential cross sections for inelastic
scattering to the 2 state of **Mg calculated with different scaled potentials
along with the data points are plotted versus average center of mass angle.
The pink curve shows the one with the potential scaled on radius and the
blue curve represents the one scaled on density and M3Y NN effective

interaction. The B(E2) value used was 0.0432 ¢’b?. [127].
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FIG. 4.19 The angular distributions of the differential cross sections for inelastic
scattering to the low-lying 2 state of **Si with different scaled potentials
along with the data points are plotted versus average center of mass angle.
The black curve shows the result when the radius of the potential is scaled
and the green curve shows the result when the density and the M3Y NN
effective interaction are scaled, both calculations using the same
deformation length & for the real and imaginary potential. The blue curve
shows the result when the radius of the potential is scaled and the orange
curve shows the result when the density and the M3Y NN effective
interaction are scaled, both calculations using the same deformation
parameter  for the real and imaginary potential. The B(E2) value used
was 0.0326 ¢’b”[127].
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FIG. 4.20 The angular distributions of the differential cross sections for inelastic
scattering to the low-lying 3 state of **Si calculated with different scaled
potentials along with the data points are plotted versus average center of
mass angle. The black curve shows the result when the radius of the
potential is scaled and the green curve shows the result when the density
and the M3Y NN effective interaction are scaled, both calculations using
the same deformation lengths & for the real and imaginary potential. The
blue curve shows the result when the radius of the potential is scaled and
the pink curve shows the result when the density and the M3Y NN
effective interaction are scaled, both calculations using the same
deformation parameter B for the real and imaginary potentials. The
B(E3) value used was 0.0042 ¢*b” [128].
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One assumption made in the DWBA calculations with ECIS for low-lying states of **Si
and **Mg was that the input real folded transition potentials had the same scaling factor
on radius as the real folded optical potentials do. There is no justification for doing this.
The scaling effect on inelastic scattering data analysis was further investigated by
scaling the parameters of M3Y NN effective interactions, the parameters of the target
and projectile, instead of scaling the radius. The folded potential and transition potential
for °Li scattering on **Mg and inelastic scattering to the 2" state at 1.369 MeV were
calculated with scaling on the density and the effective interaction. Then it was
compared with those potentials scaled on radius (see Fig. 4.21). Although the peak
values of the potentials are different, the potentials obtained with scaled density and NN
interaction and the potentials with scaled radius overlap well in the surface range. The
angular distribution of the differential cross sections for inelastic scattering to the 2"
state of **Mg was calculated with scaled potentials and the results are shown in figure
4.18. Those for inelastic scattering to low-lying 2" and 3™ states of **Si were also
calculated and shown in Fig. 4.19 and Fig. 4.20. All the calculations show that the
scaling on density and effective interaction gives almost the same quality of agreement
with the data as scaling on the radius of the potential. So for convenience the potentials

scaled on the radius were used in analysis of giant resonance data.
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FIG. 4.21 The upper figure shows the original potential, potential scaled on radius,

and potential scaled on density and M3Y effective interaction for °Li
elastic scattering on **Mg. The lower figure shows the transition potential
(TP) obtained from DFPD4, TP scaled on radius and the TP scaled on
density and M3Y effective interaction for °Li inelastic scattering to 2"

1.369 MeV state of **Mg.
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4.3.2 Analysis of °Li Inelastic Scattering on **Si

Inelastic scattering of °Li from **Si excited into the giant resonance region was measured
with the spectrometer at 0° and 4°. The data analysis procedure was described in
SECTION 4.1. The folding optical potential obtained with the CDM3Y5 NN interaction
and with density denl (as shown in Table 4.9) were used to analyze **Si giant resonance
data. Sample excitation energy spectra for **Si with average center of mass angles 1.3°
and 6.4° are shown in Fig. 4.22 with pink curves representing the continuum choices.
Angular distributions of differential cross sections for the giant resonance peak and
background are shown in Fig. 4.23 along with DWBA fits for three energy bins with
average excitation energies 10.14 MeV, 20.46 MeV and 29.14 MeV.

The EO, E1, E2 and E3 strength distributions obtained are shown in Fig. 4.24 along with
those obtained from o scattering. The multipole parameters obtained for **Si are
summarized and compared with those from a scattering in Table 4.12. The centroid,

(m1/m0), rms width and percentage of the EWSR are calculated for the total excitation
range measured (8 to 40 MeV), as well as the ranges 8 to 22.4 MeV and 22.4 to 40 MeV.

The EO strength distribution extracted in this work agrees well with that obtained from

o scattering[40] (see Fig. 4.24). The strength extracted for total excitation range

corresponds to 80733 % of the EO EWSR with a centroid of 20.597%7 MeV and an rms

width 5.78713% MeV, in good agreement with that observed in o scattering which

corresponds to 74+10% of the EO EWSR with a centroid of 21.46+0.38 MeV and an
rms width 6.3+0.6 MeV (Note: 74+10% was obtained fitting only the GR peak in o

scattering , and an additional 7% was obtained in the continuum fit resulting in 81+10%

of the EO EWSR as shown in Ref. [40]).
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FIG. 4.22 Sample spectra for **Si at average center of mass angle 1.3° and 6.4°. The

pink curves are the continuum chosen for the analysis.
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FIG. 4.23 Angular distributions of the cross section for °Li inelastic scattering from

281 for 0.8 MeV wide bins centered at E«=10.14, 20.46, 29.14 MeV along

with DWBA fits. The left column shows those for the giant resonance

peak while the right column shows those for the continuum. The pink lines

through the data show the fits. The EO contribution is shown by the red

line, the isoscalar El contribution by the light blue line, the E2

contributions by the purple lines, the E3 contributions by the brown lines

and E4 contributions by the dark green lines.
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Table 4.12 Multipole parameters obtained for **Si in this work compared to those

obtained from analysis of a scattering.

This work o scattering [40]
E, range rms width EWSR E, range m;/mg rms width o
Mev)  m/mo(MeV) ey (%) (MeV) (MeV) (MeV) EWSR (%)
E0 80224 17.60£0.17  2.67£0.17 48+6 8.0-22.5 17.27:038  3.04£0.6 3844
+0.73 +1.34 +30
24400 2722800 3t a1 225400 28224038  3.75+0.6 37+4
+0.78 +1.34 +35 +0.38
8.0-40.0 20597078 s th3% 80733 80400 21467038 6.3+0.6 74+10
El 80224 169017 3771978 404 8.0-22.5 15.3£0.60 475407 8£0.8
+0.34 +0.74 +19
24400 27277038 260078 38t]0 225400  27.56:0.60  3.05:0.7 740.7
-0.41 +0.74 +21
8.0-40.0 2177080 st 0TE sat? 8.0-40.0 19.27+0.60 6.9+0.7 1544
E2 80224 17250.17  3.02£0.23 475 8.0-22.5 16.59+0.25 35406 47£5
224400 20227030 3812023 646 225400  27.212025 2.98£0.6 1842
8.0-40.0 22697023 6942023 111216 8.0-40.0 18.53+0.25 4.7+0.6 6549
E3  80-224 12947045 6.5420.18 4 8.0-22.5 13.31£0.25 4.5720.6 740.7
224400  32.1540.17  448:0.18 2743 225400  33.32£025 3.48£0.6 3403
8.0-40.0 27712024 8.09:0.18 31t] 8.0-40.0 16.3£0.25 9.2240.6 1041

6
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FIG. 4.24 The dark blue curves show EO,Elél\l/I,e ]?2 and E3 strength distributions for **Si
obtained from analysis of °Li inelastic scattering. The red curves show
those obtained with o inelastic scattering [40]. Error bars represent the
uncertainty due to the fitting of the angular distributions and different

choices of the continuum.
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The E2 strength extracted for 8 MeV < E; < 22.4 MeV in this work corresponds to
47+5% of the E2 EWSR with a centroid of 17.25+ 0.17 MeV and an rms width
3.02+0.23 MeV, in good agreement with that obtained from a scattering corresponding
to 47+£5% of the E2 EWSR with a centroid of 16.59+0.25 MeV and an rms width of
3.540.6 MeV. Above 22 MeV, however, the E2 strength extracted from °Li scattering is
higher than that obtained from o scattering, 64+6% of the E2 EWSR compared to
18+2% given in Ref.[40].

A total of 84%71 % of the E1 EWSR was identified in this work whereas only 15+4% was
identified in o scattering and there is a peak around 26.0 MeV which dose not show up
in o scattering. The total strength obtained corresponds to 84*2! %, which is much higher

than 15+4% given in Ref.[40]. However, it is interesting to note that, if the strength
obtained from o scattering is multiplied by a factor of 5.2, its overall profile overlaps

well with that obtained in this work (see Fig. 4.25).

0.15

o 15%x5.19 ZSSi
SLi: 85%

0.1 1

0.05 -

Fraction E1 EWSR/MeV

E,(MeV)

FIG. 4.25 The El strength distribution obtained from analysis of °Li scattering
compared to that obtained from analysis of a scattering [40] multiplied by

a factor of 5.20.
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E3 strength corresponding to only about 30% of the E3 EWSR was identified, most

above 22 MeV,-compared to that observed in a scattering [40] corresponding to 10% of
the E3 EWSR, most of which was below E, = 22 MeV.

In the most recent paper on >*Si, Youngblood et al. [134] reported a new analysis of o
inelastic scattering data with the assumption that all of the cross sections are due to
multipole processes in the excitation range Ex <42 MeV. No continuum was subtracted.
The analysis showed that EO strength extracted is only weakly dependent on the
assumption made about the continuum. The EO strength obtained, 74 + 7% of the EO
EWSR, the centroid energy (m;/mg) 20.89 &+ 0.38 MeV and rms width 5.9 + 0.6 MeV all
agree within the errors with those from Ref.[40] and from this work (see Fig. 4.26). For
other multipolarities, especially for E1 excitation, the continuum choice does affect
considerably the strength extracted. E2 strength reported in that paper corresponding to
102+11% of the E2 EWSR with a centroid of 18.77+0.35 MeV and rms width of
5.45+0.20 MeV, contrasts sharply with results of Ref. [40] (see Fig. 4.27). The
percentage of E2 EWSR reported in that paper agree with 111+16% extracted in °Li
scattering, but not much strength was seen from ~27< Ex < 35 MeV(see Fig. 4.27). The
E3 strength reported in that paper corresponding to 81+8% of the E3 EWSR between 23
and 39 MeV, and is much higher than that extracted in this work (see Fig. 4.28).
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FIG. 4.27 E2 strength distribution obtained from analysis of °Li scattering compared
to those obtained from analysis of o scattering without continuum
subtraction [134] (purple curve) and with continuum subtraction [40] (red

curve).
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subtraction [134] (purple curve) and with continuum subtraction[40] (red

curve).

4.3.3 Analysis of °Li Inelastic Scattering on **Mg

Inelastic scattering of °Li from **Mg excited into the giant resonance region was
measured with the spectrometer at 0°, 4° and 6°. The data analysis procedure was
described in SECTION 4.1. The folding optical potential obtained with the CDM3Y5
NN interaction and with density denl (as shown in Table 4.8) were used to analyze **Mg
giant resonance data. Sample excitation energy spectra for >*Mg with average center of
mass angles 1.3°, 4.7° and 9.5° are shown in Fig. 4.29 with pink curves representing the
continuum choices. Angular distributions of differential cross sections for the giant
resonance peak and background are shown in Fig. 4.30 along with DWBA fits for three
energy bins with average excitation energies 12.94 MeV, 20.08 MeV and 28.75 MeV.

The EO, E1, E2 and E3 strength distributions obtained are shown in Fig. 4.31 and Fig.

4.32 along with those obtained from two different analyses of o scattering. The
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multipole parameters obtained for **Mg are summarized and compared with those from
a scattering and 156 MeV °Li scattering in Table 4.13. The centroid, (m;/myo), rms width
and percentage of the EWSR are calculated for the total excitation range measured (8 to

40 MeV), as well as for the ranges ~10 to 20 MeV.

The EO strength for Mg extracted in the energy range 9 to 40 MeV in this work 106*3%

% of the EO EWSR, is in agreement within the errors with those obtained in o scattering
72+£10% given in Ref. [39] and 82+9% given by new analysis of o scattering [50].
Dennert et al. [53] reported 97+25% of the EO EWSR for the region Ex = 10 - 23 MeV
obtained with 156 MeV °Li scattering. However, Youngblood et al. [39] pointed out that
Dennert et al. used a non-conventional normalization of the DWBA to the angular
distribution (see Fig. 3 in Ref. [53]), in which the peak of data for EO strength is about a
factor of 2 below the peak of the DWBA calculation. This resulted in the EO strength
being about a factor of 2 higher. If Dennert et al.’s result is divided by this factor of 2,
the adjusted EO strength in the range Ex = 10 - 20.2 MeV corresponds to 34+3% of the
EO EWSR with a centroid energy 16.66+0.5 MeV and rms width 2.48+0.5 MeV, which
is in excellent agreement with the strength obtained in this work corresponding to
35+5% of the EO EWSR with a centroid energy 16.88+0.17 MeV and rms width
2.13+£0.17 MeV (see Fig. 4.33 and Table 4.13). S. Peru et al. [140] used the quasi-
particle Random Phase approximation (QRPA) based on Hartree-Fock-Bogolyubov
states (HFB) obtained with the Gogny D1S effective force [141, 142], to calculate the
ISGMR strength distribution for **Mg. The results are shown in Fig. 4.34 along with the
strength distribution obtained in this work. It is also interesting to see that, if the strength
distribution obtained in the new analysis of a scattering data is multiplied by a factor of
1.7, it will overlap the strength obtained in this work (see Fig. 4.35) in the range Ex = 16
- 30 MeV.
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is contamination caused by °Li scattering on Hydrogen.
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FIG. 4.30 Angular distributions of the cross section for inelastic scattering from **Mg

for 0.8 MeV wide bin centered at Ex=12.94, 20.08, 28.75 MeV along with

DWBA fits. The left column shows those for the giant resonance peak

while the right column shows those for the continuum. The pink lines

through the data show the fits. The EO contribution is shown by the red

line, the isoscalar El contribution by the light blue line, the E2

contributions by the purple lines, the E3 contributions by the brown lines

and E4 contributions by the dark green lines.
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Table 4.13 Multipole parameters obtained for **Mg in this work compared to those

obtained from analysis of o scattering and from previous 156 MeV °Li

scattering.
°Li scattering a scattering
Ref E, energy m;/mg rms width EWSR Ref E, range m;/mg rms width EWSR
' (MeV) (MeV) (MeV) (%) T (MeV) (MeV) (MeV) (%)
- 10.2-20.6  16.88717 2.13£0.17 3545 10.1-20.9 16.3120.6* 2.62:+0.74 27+4
This 0.17 [39]
work  ¢6.38.6 21.35%937 4.9879%8 10634 9.0-41.0 21.0£0.6 7.3+1.2 7210
10.2-20.4 16.44793% 2.4879%% 24+4
[53] 100202  16.66=0.5 2.48+0.5 343 | [50] oss o
+0. +0.
9.0-41.0 21.93*933 6.53704] 82+9
10.1-20.9 14.68+2.21 3.14+0.97 1274
102206  14.757929 2.2940.17 103 | [39] iy
This 9.0-41.0 18.8+1.7 6.7+1.0 2719
work 10.2-20.4 16.1279% 3334968 165
8.6-38.6 26.561937 6.42192 84731 | [50] o o
9.0-41.0 22,7053 6.19*0% 65+8
- * * +5
102-20.6  1579£0.17  2.58+0.17  30&4 | [39] 10-1-209 15.0720.6 2.0720.6 S
This 9.0-41.0 16.9+0.6 3.4+0.6 72410
work 102204  15.56£0.18 2.9370% 3624
8.6-38.6 20.2379%3 6.29793% 76+14 | [50] ois o5
+0. +0.
9.0-41.0 19.927018 7.25702 8949
. [39]  9.0-41.0 25.2+1.0 4.5+1.2 317
Tg;i 86386  18.54"L% 5.85792% 3
W [50]  9.0-41.0 25.43%931 831703 4245

*. assume the uncertainty is the same as in the total energy range
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FIG. 4.33 EO strength distribution obtained for **Mg in this work compared to that
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The E2 strength extracted for 24Mg in this work corresponding to 7613 % of the E2
EWSR with a centroid energy of 20237933 MeV and an rms width of 6.29%03¢ MeV, is
in agreement with that obtained with a new analysis of the a data which corresponds to
89+9% of the E2 EWSR with a centroid of 19.92+0.18 MeV and an rms width of
7.25*933 MeV. The percentage of the E2 EWSR obtained also agrees with 72+10% of

the E2 EWSR given in Ref. [39], however, the strength given in Ref. [39] has a lower
centroid energy of 16.9+0.6 MeV and a much smaller rms width of 3.4+0.6 MeV. E2
strength in excitation range Ex = 10.2 - 20.6 MeV corresponds to 30+4% of the E2
EWSR with a centroid of 15.79+0.17 MeV and an rms width of 2.58+0.17, in agreement

with that obtained in new analysis of o scattering data which corresponds to 36+4% of
the E2 EWSR with a centroid of 15.56+0.17 MeV and an rms width of 2.93 0% (see
Table 4.13).
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The total isoscalar E1 strength corresponds to 8473} % of the E1 EWSR, which is much

higher than 2772%% given in Ref. [39] (note: the original value 8172$% in Table IV of

Ref. [39] should be divided by 3 due to the transition density correction for ISGDR). In
the new analysis of a scattering data, the E1 strength obtained corresponds to 65+8% of
the E1 EWSR, which agrees with this work, but it has a lower centroid energy (see Table
4.13). E1 strength for excitation range Eyx =10-20MeV corresponding to 10+£3% of the

E1 EWSR with a centroid energy 14.757939 MeV and rms width 2.29+0.17, is in

agreement within error with the one given in Ref. [39] which corresponds to 12*1!% of

E1 EWSR with a centroid of 14.68+2.21 MeV and rms width 3.14+0.97 MeV.

E3 strength corresponding to only about 3% of the E3 EWSR was identified, compared
to those observed in a scattering corresponding to 31% of the E3 EWSR given in Ref.
[39] and 42% of the E3 EWSR given by the new analysis of a scattering.



135

5. SUMMARY, DISCUSSION AND CONCLUSIONS

Elastic and inelastic scattering of 240 MeV °Li ions from ''°Sn, **Si and **Mg was
studied as a possible alternate tool for investigating giant resonances in nuclei. The
distorted-wave Born approximation was used to calculate expected cross-sections and
angular distributions using optical potentials obtained from fitting the elastic scattering
data. Results obtained with Woods-Saxon phenomenological potentials and potentials
obtained by folding the density distributions of the projectile and target with JLM and
M3Y NN interactions were compared. It has been shown that it is necessary to use
folding model calculations for hadronic scattering to get B(EL) values for low-lying

excited states [118, 137] that consistently agree with those from electron scattering.

In previous giant resonance work at this laboratory using o scattering, single folding
calculations had been used, so computer codes were obtained to carry out the double
folding calculations and procedures had to be developed to make these calculations for
SLi scattering. Optical and transition potentials were obtained by folding with the code
DFPD4 and DWBA calculations were carried out with ECIS. DFPD4 was modified to
calculate the transition density for monopole and isoscalar dipole giant resonances. A
PYTHON code df_ecis_avg.py was written to control the folding calculations, DWBA

calculations, angle averaging, etc.

To check consistency with previous data analyses and verify DFPD4 and ECIS
operation, calculations were carried out for the 240 MeV o + '**Sm scattering system
(which had been previously studied [49] experimentally) using both DOLFIN (single
folding model calculation) and DFPD4 (double folding model calculation with M3Y-
Paris NN effective interaction) to calculate potentials which were then read into ECIS to
calculate cross sections. The results were compared to those obtained with DOLFIN and
PTOLEMY. About 10% difference was found for maximum differential cross section
for excitations with L=2, 3, 4 and about 4% difference was found for L=0 due to

differences in single folding and double folding models, difference in numerical
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interpolations in folding code and difference in Coulomb potential treatments. This
suggests a minimum ~10% uncertainty in experimental giant resonance strengths due to

the uncertainties in the DWBA calculations.

Experimental cross sections obtained for elastic scattering of °Li ions from **Mg, **Si
and ''°Sn were fit with cross sections calculated with the optical model using Woods-
Saxon phenomenological potentials and real potentials obtained from double folding
models with and without density dependence. The folded potentials had to be
renormalized by a substantial factor N; (N;~0.65 for 116gn ,~ 0.85 for 28Gi and ~0.9 for
*Mg) to fit the elastic scattering data, consistent with earlier °Li scattering studies[69,
120]. Best fit B(EL) values were then obtained for the low-lying 2" and 3" states by
fitting the experimental cross sections for inelastic excitation of these states with those
calculated by DWBA. For ''°Sn, the B(EL) values obtained using the deformed
potential model as well as from density dependent folding calculations agree well with
adopted values and with those from electron inelastic scattering and o inelastic
scattering. Those obtained with the density independent folding model calculations do
not reproduce the electromagnetic B(EL) values, which suggests that density dependent
calculations may be required. The B(EL) values obtained for low lying states in **Mg
and **Si using density dependent folding calculations agreed with those obtained from
electron scattering whereas those obtained using deformed potential calculations did not,

consistent with Beene et al.’s conclusion [137].

Multipole decompositions of the data for the giant resonance region of **Mg, **Si and
1%Sn were carried out with calculations using the density dependent double folding
model. In addition a decomposition of the ''°Sn data was done with calculations using

the deformed potential model.

The ISGMR and ISGQR strength distributions obtained for ''°Sn with both calculations
are in agreement with those obtained by inelastic o scattering. The ISGDR strength

obtained using the deformed potential model calculations corresponded to ~500% of the
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E1 EWSR whereas strength corresponding to 1187, % was obtained using double

folding calculations. Only 88+20% of the ISGDR EWSR was identified in a scattering.
In a scattering studies it was found that the ISGDR cross section obtained with the
deformed potential model was extremely sensitive to optical model parameters [130] and
this suggests it is true in °Li scattering as well. As in the a scattering studies, the
strength was split between two peaks qualitatively consistent with theoretical predictions
[143-145]. The HEOR distribution obtained has about the same shape as that from o
scattering, but the strength obtained (116+13%) is much greater than that obtained from
a scattering and the ~75% [146] expected for the HEOR.

The EO strength in **Si identified in this work is in good agreement with that identified
with inelastic o scattering[40, 134]. The E2 strength identified below Ex = 22 MeV is in
agreement with that reported in inelastic o scattering where a continuum was subtracted
[40], but is smaller than that obtained when the strength in the continuum was included
[134]. The E2 strength obtained in this work in the excitation range Ex ~ 22 — 40 MeV
is considerably larger than that obtained in either a scattering analysis. The differences
between the °Li and o scattering results (both of which within the errors identify strength
corresponding to ~100% of the E2 EWSR) are an indication of the inherent uncertainties
in identifying multipole strength when a significant continuum must also be accounted
for. This is more apparent comparing the El strengths obtained from °Li (85% of the
EWSR) and a scattering (15% of the EWSR). The E1 EWSR strength distribution given
in Ref. [40], if multiplied by a factor of 5, overlaps nicely that obtained in this work in
the range Ex ~ 15 — 30 MeV. In inelastic a scattering, it has been noted that ISGDR
strength is very sensitive to assumptions about the continuum [10], as illustrated by the

different distributions reported in Ref.’s [9] and [10].

In this work, strength corresponding to 1062 % of the EO0 EWSR was identified in

*Mg, compared to 72+10 % identified in a scattering Ref. [39, 53], however the

distributions were very similar and the centroid energies are in agreement. The EO
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strength obtained in this work for excitation range E,= 10-22 MeV is in excellent
agreement with the adjusted Dennert et al.’s result [53], but above ~ 22 MeV the EO
strength obtained by Dennert et al. rapidly went to 0, probably due to the lower
bombarding energy (156 MeV). The E2 strength obtained in this work is in agreement
with that obtained in a new analysis of the a data [50]. The E1 strength obtained is in
agreement with that from a scattering below Ex~ 30 MeV, but considerably more E1
strength is seen in the °Li scattering between E, = 30 and 40 MeV. Strength
corresponding to only 3% of the E3 EWSR was identified in °Li scattering compared to

42% identified in o scattering .

It is useful to summarize the comparisons between the results from °Li scattering and
those obtained from a scattering for the ISGMR, ISGDR and ISGQR respectively. Table
5.1 shows the comparisons for the ISGMR. The total strength and the centroids obtained
by °Li scattering for ''°Sn, **Si and **Mg are all in agreement those obtained with a
scattering. Table 5.2 shows the comparisons for the ISGQR. The total strengths and the
centroids obtained for ''°Sn and **Mg are also in agreement with o scattering, while

more strength is observed above E,=22 MeV in**Si compared to o scattering.

Table 5.1 Comparisons of fractional energy weight sum rule (EWSR) and energy
moments between this work and previous works for ISGMR. Ep

represents bombarding energy.

Scattering Es

" E interval Jmy/mg m; /mg Jyms/my EWSR
ype (MeV) (MeV) (%)
(MeV) (MeVv) (MeV)
Mg o B 240 9.0-41.0 21.0£0.6 72410
o 240 9.0-41.0 20.83 1028 21934033 24.65 033 82+9
: : -3 -0.22 79-0.25 05 _p31
o453 156 10.0-23.16 17.6£0.5 18.3+0.5 18.6+0.5 97+15
°Li 0.32 0.37 0.53
' 240 8.6-38.6 20587055 2135705 2310703 106
3gi a4 240 8.0-40.0 20.13+0.38 21.25+0.38 23.7+0.70 81x10
o 134 240 8.0-40.0 20.89+0.38 74+7
°Li 0.61 0.78 1.58 35
: 240 8.0-40.0 19.85 00 2059705 2270703 80 5
1egn o ¥ 240 5.0-35.0 15.45+0.20 15.6240.20 16.13+0.20 112415
°Li 0.30 0.35 0.59
' 240 8.0-31.0 1507705 15397050 1612703 10670
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Table 5.2 Comparison of the strength and m;/my between this work and previous

works for ISGQR.
E, range Scattering type m;/mg EWSR Ref.
(MeV) (MeV) (%)

240 MeV o 14.0+0.50 10310 [49]

16gy ~8-30 240 MeV g . 13.50+0.35 108+12 L133]
240 MeV °Li 14.34 igég 94 jg This work

8 240 MeV o 16.59+0.35 47+5 [40]
. 240 MeV °Li 17.25+0.17 47+5 This work

Si 240 MeV a 27212025 1842 [40]
~22-40 240 MeV °Li +0.20 64+6 This work

29227

10020  240MeVa 15.56+0.18 36+4 [50]
" 240 MeV °Li 15.79+0.17 30+4 This work

Mg 240 MeV a 19.92+0.18 8949 [50]
~9-40 240 MeV °Li 2023702 7614 This work

The results obtained from °Li scattering do not agree with those obtained from o
scattering for the ISGDR. We have known from previous analysis of a scattering that
the ISGDR is sensitive to the potential parameters [130], and also very sensitive to the
physical continuum choice [134]. The fact that ISGDR strength for ''°Sn, **Si and **Mg
can not be reproduced well in the °Li scattering, strengthens the above conclusion.
However, there are some common characteristics between the ISGDR strength obtained
in °Li and o scattering, such as, the ISGDR strength for ''°Sn extracted in both °Li and o
scattering is split into two peaks; the ISGDR strength for 8Si obtained in o scattering
has the same energy distribution as that extracted in °Li scattering below E,= 30 MeV;
the ISGDR strength for 24Mg below Ex =25 MeV obtained with a scattering is in

agreement with that extracted in °Li scattering.

As shown in Table 5.3, the predicted peak differential cross sections for EQ excitation in
28Si with °Li scattering and with a scattering at E, = 15 MeV are about the same, but the
SLi cross section decreases much faster at higher excitation than does the o cross

section. Also the peak cross sections for the excitation of the other multipoles is
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considerably lower in o scattering than in °Li scattering, so that particularly at higher
excitation, monopole strength is surpressed relative to the other multipoles in °Li
scattering. Fig. 5.1 shows an excitation energy spectra obtained in °Li scattering at O,
= 1.3° compared to one obtained in alpha scattering at 6., = 1.2°. The differential cross
section for °Li scattering goes below that for alpha scattering around 40 MeV,
suggesting that the processes that make up the continuum are lower in °Li scattering. In
the excitation energy range from 5 — 40 MeV, the continua chosen for °Li scattering
(black curve) and a scattering (green curve) are more or less the same, the difference of
the differential cross sections between a and °Li scattering is due to other L = 1 — 3
excitations rather than EO excitation, which indicate that °Li scattering may not be a
better way to study the ISGMR than a scattering for high excitation energy range
(~30—40 MeV).

Table 5.3 The maximum differential cross section obtained with DWBA calculations

for **Si with L = 0 — 3 excitation in o and °Li inelastic scattering.

Max. do/dQ in °Li inelastic scattering Max. do/dQ in o inelastic scattering
(mb/sr) (mb/sr)

EMeV)  L=0 L=1 L=2 L=3 L=0 L=1 L=2 L=3
15 361 460 331 428 343 170 228 206
30 214 32.1 66.6 143 53.7 29.4 69.0 823
35 7.25 13.0 35.4 89.5 25.8 16.5 47.3 61.4
40 2.29 5.54 17.8 49.9 11.3 8.9 322 49.0
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FIG. 5.1 The excitation energy spectra obtained in °Li scattering (blue curve) at O .
= 1.3° and in a scattering (red curve) at O.,. = 1.2°. The black curve is
the continuum for o scattering spectrum while the green one is for °Li

scattering.

To summarize this research, data for elastic and inelastic scattering of 240 MeV °Li ions
exciting low lying states and giant resonances was taken on **Mg, **Si, and ''°Sn.
Parameters and techniques were developed for double folding calculations and multipole
analyses were carried out for high lying isoscalar L = 0 - 3 strength. The results for the
ISGMR and ISGQR are in agreement with those obtained by 240 MeV o scattering,
however the agreement for the ISGDR and HEOR is not so good, indicating the
uncertainty in extracting these strengths. This work has shown that 240 MeV °Li
scattering is a viable way to study the ISGMR and ISGQR and can be particular useful

in rare isotope studies where °Li can be used as the target.
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