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ABSTRACT 

 

Giant Resonance Study by 6Li Scattering. 

(May 2008) 

Xinfeng Chen, B.S., Tianjin University; M.S., Institute of Modern Physics, Chinese 

Academy of Science 

Chair of Advisory Committee: Dr. Dave H. Youngblood 

 

Nuclear incompressibility Knm is an important parameter in the nuclear matter equation 

of state (EOS). The locations of the isocalar giant monopole resonance (ISGMR) and 

giant dipole resonance (ISGDR) of nuclei are directly related to Knm and thus can give 

the most effective constraint on the value of the Knm. In order to determine Knm 

accurately, a systematic study of the ISGMR and ISGDR over a wide range of nuclei is 

necessary. Alpha inelastic scattering at small angles has been successfully used to study 

the ISGMR of heavy and medium nuclei where the monopole resonance is concentrated 

in a broad peak. For light nuclei (A<40), however, ISGMR strengths are more elusive 

because the resonance is fragmented and extends to excitation energies above 35 MeV. 

Other processes give a large physical background at high excitation energy in α inelastic 

scattering, which makes it difficult to extract strength distributions in this range. As an 

isoscalar projectile (N=Z), 6Li scattering could be an alternate way to study giant 

resonances. A better ratio between the resonance peak and the continuum is expected in 
6Li scattering due to the low particle emitting threshold. Another important motivation 

for 6Li scattering study is to explore the possibility of expanding current research from 

stable nuclei to radioactive nuclei with inverse reactions using 6Li as a target. 

 

Data for elastic scattering of 240 MeV 6Li ions and inelastic scattering to low-lying states 

and giant resonances was taken for 24Mg, 28Si and 116Sn. A data analysis procedure was 

developed for double folding calculations. The optical potential parameters for 6Li + 
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24Mg, 6Li + 28Si and 6Li + 116Sn scattering systems were obtained by fitting elastic 

scattering data. Multipole analyses were carried out for inelastic scattering to high lying 

isoscalar giant resonances with multipolarities L=0 - 3. The results for the ISGMR and 

ISGQR are in agreement with those obtained with 240 MeV α scattering, however the 

agreement for the ISGDR and HEOR is not so good, indicating the uncertainty in 

extracting these strengths. This work has shown that 240 MeV 6Li scattering is a viable 

way to study the ISGMR and ISGQR and can be particularly useful in rare isotope 

studies where 6Li can be used as the target. 
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1. INTRODUCTION 

1.1 Nuclear Matter and Nuclear Compressibility 

Nuclear matter is a theoretically constructed infinite system of nucleons with a fixed 

ratio of neutron to proton numbers and no Coulomb interaction. Study of nuclear matter 

is of interest in nuclear physics to test many-body theory as well as in astrophysics to 

study supernova collapse and neutron stars. To accurately determine the nuclear matter 

(NM) equation of state (EOS), E=E(ρ), is the main goal of the study of the nuclear 

matter. However, it is not an easy task to get information about its properties since 

nuclear matter does not exist in the laboratory. There are three important parameters 

which characterize nuclear matter: the saturation density, the binding energy, and the 

compressibility.  The saturation density ρ0 = 0.17 fm-3 has been obtained from electron 

scattering and the binding energy E(ρ0) = −16 MeV was obtained by extrapolating the 

masses of finite nuclei and are known with “good accuracy” [1]. The nuclear matter 

compressibility, Knm is directly related to the curvature of the nuclear matter equation of 

state [2] at the saturation point. Knm is defined by: 
 

02

2
2
02

2
2 )/(9)/(

0
ρ

ρ
ρ

d
AEd

dk
AEdkK

fk
f

fnm == ,    (1.1) 

 
where E/A is the binding energy per nucleon of the nuclear matter, and kf0 is the Fermi 

momentum and ρ0 is the nuclear matter density at the saturation point.  
 
There were quite a few attempts to constrain the nuclear compressibility Knm with data 

from nuclear physics, such as nuclear masses, nuclear radii and high energy nuclear 

collisions, and from astrophysics such as supernova collapse and neutron stars masses 

[3]. However, all these attempts could not give an effective constraint on nuclear 

compressibility until the isoscalar giant monopole resonance (ISGMR) in nuclei was 

discovered  [4] and used to determine Knm. The most recent value determined from 

comparison with calculations using the Gogny interaction is 231±5 MeV [5], however 
_____________ 
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there are both theoretical and experimental issues remaining, some of which are the 

subject of this dissertation. 

1.2  Nuclear Giant Resonances 

Giant resonances are small amplitude, high frequency, collective modes of excitation of 

a nucleus. In 1947, Baldwin and Klaiber [6] observed a strong resonance behavior in 

photon-induced reactions. This resonance turned out to be the electric isovector giant 

dipole resonance (IVGDR). Very soon it was found that these giant resonances were a 

general feature of all nuclei. The centroid energy can be described in medium and heavy 

nuclei by the relation [7] 
 

MeVAAEc
6/13/1 6.202.31 −− +=      (1.2) 

 
where A is the nuclear mass for a certain nucleus. Goldhaber and Teller explained this as 

a collective vibration of protons against neutrons. In 1972, the isovector giant 

quadrupole  resonance (IVGQR) was first reported by inelastic electron scattering in 90Zr  

[8] and a resonance thought to be the isoscalar giant quadrupole resonance (ISGQR) was 

observed in electron scattering [9] and in proton inelastic scattering [10] from spherical 

nuclei. Alpha inelastic scattering was later used to definitively identify this as the 

ISGQR and to systematically investigate the ISGQR from heavy to light nuclei [11-15]. 

The shape and width of ISGQR change smoothly from heavy to medium nuclei and the 

centroid energy in heavy nuclei can be described by the relation:  
 

MeVAEc
3/163 −≈ .       (1.3) 

 
In 1977, D.H. Youngblood et al. [4] reported the discovery of the ISGMR in 144Sm and 
208Pb with α inelastic scattering. A systematic study of the properties of ISGMR [16] in 

many nuclei was reported later with a centroid energy in heavier nuclei of  
 

MeVAEC
3/176 −≈ .       (1.4) 
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The discovery of ISGMR provided an  effective way to determine the nuclear 

compressibility and Knm obtained varied from 180 MeV to 230 MeV depending on the 

nucleus used. In 1980, the isoscalar giant dipole resonance (ISGDR) was observed with 

172 MeV α inelastic scattering from 208Pb [17]. The ISGDR centroid can also be related 

to the nuclear compressibility.  
 
In the macroscopic liquid drop model, protons and neutrons are treated as independent 

fluids. Giant resonances therefore can be described as shape or density oscillations of 

nuclei. Giant resonances can be classified into two groups by spin, namely electric 

oscillations (ΔS=0) and magnetic oscillations (ΔS=1) [18]. They also can be classified 

into two groups by isospin, namely isoscalar mode (ΔT=0) and isovector mode(ΔT=1). 

In isoscalar oscillations, protons and neutrons move in phase, while in isovector 

oscillations, protons and neutrons move out of phase. The possible giant oscillation 

modes of a nucleus with multipoles L ≤ 2 are illustrated in Fig. 1.1. 

 

From the microscopic point of view, giant resonances can be described as a coherent 

superposition of particle-hole excitations resulting from the action of an electromagnetic 

operator on the ground state of the nucleus, and for isoscalar transition with L ≥ 2 
 

∑ ≥Ω=
i

LM
L

iLM LYrO 2)( .     (1.5) 

 
The qualitative features of giant resonance can be understood by considering the nuclear 

shell model [7, 18]. According to the shell model, the parity of the single particle wave 

function in subsequent shells N, N+1, N+2 is alternating, and the energy difference 

between subsequent shells 3/141 −==Δ AE ωh MeV. Parity conservation requires that 

odd L resonance transitions can only happen when ΔN=1,3,… and even L resonance 

transitions can only happen when ΔN=0, 2, 4,… (see Fig. 1.2). So the resonance energy  
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FIG. 1.1 Qualitative picture of giant resonance modes of the nucleus (originally from 

[18]). 
 

p

n

n p

p 
n

p 

n 

p 

n 

p 

p 

p 

p 

p 

p 

p 

p 

p 

n 

n 

n 

n 

n 

n 

n 

n 

n 

n p 
ΔS=0,ΔT=0 ΔS=0,ΔT=1 ΔS=1,ΔT=0 ΔS=1,ΔT=1 

L=0 

L=1 

L=2 



 

 

5

 
FIG. 1.2 Schematic representation of E0, E1, E2 transitions between shell model 

states[19].  

 

Table 1.1 Qualitative estimation of energy of giant resonance in nuclear shell model. 

 
 
 
can be estimated as ΔE=ΔN× ωh  (as shown in Table 1.1). In a schematic model the 

residual particle-hole interaction gives rise to the formation of one strong collective state 

which is a coherent superposition of all possible particle-hole interactions of a given 

multipolarity and parity. Since the residual p-h interaction is attractive for isoscalar and 

 Multipolarity ΔE  Multipolarity ΔE 
ISGMR 0 ωh2  ISGQR 2 ( ωh0 ), ωh2  
ISGDR 1 ωω hh 3),1(  ISGOR 3 ωω hh 3,1  
IVGDR 1 ωh1     

N=1 

N=4 

N=3 

N=2 

1f5/2

1p1/2

2p3/2
1f7/2

1d3/2
2s1/2
1d5/2

3s1/2
2d3/2
2d5/2
1g7/2
1g9/2

2p1/2

1p3/2

λπ=0+ 

ΔN=2 
λπ=1− 

ΔN=1
λπ=2+

ΔN=2
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repulsive for isovector excitations,  the isoscalar resonances will be located below and 

the isovector resonances above the unperturbed energy ΔN× ωh  =ΔN×41A-1/3 MeV. 

Because of this, the ISGMR and IVGDR are located at approximately the same 

excitation energy (see Fig. 1.3). 
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FIG. 1.3 Hypothetical centroid energies and strength distributions for different 

electric giant resonance modes for a nucleus with mass A~100. The peak 

strength for each mode is arbitrary. 
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FIG. 1.4 The main experimental tools used to study giant resonances (see Ref. [20]). 
 
 
 
The experimental tools used to study different giant resonances are shown in Fig. 1.4 

(see [20]). Inelastic scattering of α particles is a strong isoscalar (N = Z) selective probe 

which has been the main tool used to study isoscalar giant resonances. Inelastic 

scattering of proton [21], deuteron [22] and 3He [23] have also been used to study 

isoscalar giant resonances. Electron inelastic scattering has some advantages in giant 

resonance studies, since the form factor can be calculated accurately and the angular 

distribution are often characteristic of the multipolarity, and the physical continuum 

background from multi-step excitation is small due to the weak electromagnetic 

interaction. However, electron scattering has a large contribution from the radiative tail 

which increases background substantially and it excites strongly both isoscalar and 

isovector excitations, which particularly affect the study of the ISGMR where the 

IVGDR lies at nearly the same energy. To study isovector resonances one needs a probe 
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which can distinguish between protons and neutrons. Electron scattering and γ-

absorption are useful tools for studying the IVGDR, while pion charge exchange 

reactions provide an opportunity to study the IVGMR. 
 

1.3 The Compressional Mode Giant Resonance and Nuclear Compressibility 

According to the liquid drop model [2], in addition to the surface oscillations, a liquid 

drop possesses normal modes of vibration involving compression of the density (sound 

wave), which are called compression modes.  Among all the nuclear properties which 

are potentially affected by the compressibility Knm, the compression mode of giant 

resonances is certainly the most sensitive one.  The energy of the compression mode can 

be simply related to the compressibility by the following [2] 
 

mR
KE nm

comp 2
0

2

9
h

∝        (1.6) 

 
where m is the nucleon mass and 3/1

0 2.1 AR = . In compression modes, ISGMR can be 

simply viewed as a volume oscillation of the nucleus, while ISGDR may be physically 

visualized as a compression wave moving back and forth-akin to a sound wave-in a 

nucleus with the volume of the nucleus remaining constant [24]. The ISGDR has been 

referred as the “squeezing mode”, in tune with the term “breathing mode” for the GMR.  
 
From a microscopic point of view, both the ISGMR and ISGDR are second-order 

effects, which means that the transition operator is related to r2Y00 for ISGMR or r3Y10 

for ISGDR (to first order, the transition operator for ISGMR is a constant which cannot 

induce any transitions from the ground state to excited states, and that for ISGDR 

corresponds to the spurious center-of-mass motion).  
 
What one measures in experiments studying the ISGMR and ISGDR are strength 

distributions as a function of excitation energy. The energies of the ISGMR and ISGDR 

can be expressed as ratios of different moments of the strength distributions, in which 

the kth moment of the strength distribution is: 
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where En0 is the excitation energy of the state n  and F is the excitation operator for 

ISGMR and ISGDR. F may be expressed as [1] 
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for ISGMR and [1] 
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     (1.8b) 

for ISGDR, where the value of η is obtained from the coherent spurious state transition 

density[25]. In the scaling model, the mean energy E  is defined as[26]: 
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Then the energies can be expressed in term of an effective compression modulus KA for 

the nucleus of mass A by the formula [26] 
 

0

2

2

0 rm
AKE Ah

=        (1.10) 

 
for ISGMR, and 
 

0

2

2

1

)
25
27(

3
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rm

K
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FA ε+
=

h
      (1.11) 

 
for ISGDR, where m is the nucleon mass, 

0

2r is the average r2 over the ground state.  

All the information about the nuclear matter compression modulus which can be 

extracted from the data is contained in KA. 
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There are two approaches to relate KA to Knm. In the semi-empirical (macroscopic) 

approach, which is similar to the semi-empirical mass formula, KA is expressed as an 

expansion with contributions from volume, surface, symmetry and coulomb terms: 
 

⋅⋅⋅++⎟
⎠
⎞

⎜
⎝
⎛ −

++= −
3/4

22
3/1

A
ZK

A
ZNKAKKK CoulsymsurfvolA .  (1.12) 

 
The determination of the various parameters Ki (Ki = Kvol, Ksurf, Ksym, KCoul…) is done 

by fitting ISGMR data from many nuclei. Knm is identified with the volume term Kvol. 

However, this approach suffers from several ambiguities [27-29]. The first one is related 

to the interpretation of the volume term. The assumption 
 

volAAnm KKK ==
∞→

lim        (1.13) 

 
holds only if the ISGMR is well described by scaling model. The scaling model may 

give a reasonable approximation in some heavy nuclei, but it is not such a good 

approximation in light nuclei, which make the interpretation of Kvol somewhat uncertain. 

Also the assumption that the breathing mode is a small amplitude vibration, which is the 

basis to derive the KA expression (1.12) and E0 expression (1.10), is only true for heavy 

nuclei. In lighter nuclei, the breathing mode is anharmonic[28]. This further complicates 

the interpretation of the various terms in Eq. (1.12). Another ambiguity [27, 29] relates 

to the possibly poor convergence of the expansion (1.12), and the fact that it is not clear 

whether the variation of KA over the range of nuclei considered can be well accounted 

for by the smooth behavior implied by Eq.(1.10). 
 
In the microscopic approach, the self-consistent Hartree-Fock (HF) random-phase-

approximation (RPA) [2, 30, 31] is used to calculate strength distributions for ISGMR 

and ISGDR, with various effective nucleon-nucleon interactions which differ in their 

value for Knm. The value of Knm thus can be constrained by comparing the 

experimentally extracted strength distributions of ISGMR and ISGDR with those from 

HF-RPA calculations. An essential feature of this approach is that the same level of 
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approximation is implemented in both finite and infinite systems, and the same 

parameterization of the effective interaction is used in both cases.  
 
In the HF approach, the ground state wave function of a nucleus with A nucleons is a 

Slater determinant obtained from the single-particle wave function with the assumption 

that each nucleon moves in a mean field created by all the nucleons. Thus the ground 

state of the nucleus can be approximately expressed in terms of independent single 

nucleon motions in the average field. The basic properties of nuclei have been described 

successfully with HF theory. The collective motions have been well described within the 

RPA theory in terms of coherent particle-hole (p-h) excitations. In the self-consistent 

HF-RPA calculation [30], one starts by adopting a specific effective NN interaction V12, 

such as a Skyme interaction, with parameters obtained by fitting the experimental data of 

the bulk properties of  finite nuclei within HF approximation. Then one solves the RPA 

equations, using the p-h interaction Vph which corresponds to V12, and calculates the 

strength distribution S(E) and the centroid energy associated with a certain scattering 

operator F as shown in (1.8a) and (1.8b) for ISGMR and ISGDR.  
 
The analysis of ISGMR with HF-RPA calculations, with Skyme interaction [32], 

currently gives a value of compressibility Knm=210-220 MeV, while the analysis of 

ISGDR predicts a value of Knm=160-180 MeV. The discrepancy of 20% between the 

value of Knm obtained from ISGMR and that obtained from ISGDR, was a long standing 

problem which puzzled people for almost one decade. Shlomo et al. [1, 33, 34] pointed 

out that several aspects accounted for the discrepancy: i) the HF-RPA calculations used 

to extract strength distributions for giant resonances were not fully self-consistent, which 

introduces spurious state mixing (SSM) in the ISGDR and thus brings considerable 

uncertainty in determining the strength distribution; ii) The maximum cross-section for 

the ISGDR decreases strongly at high energy and may drop below the experimental 

sensitivity for excitation energies above 30 MeV, so the missing experimental strength in 

high excitation region leads to a reduction of more than 3 MeV in the ISGDR centroid 

energy which can significantly affect the comparison between theory and experiment; 
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iii) Current experimental methods adopted to extract the strength distribution, using the 

collective model shapes for transition density, tend to overestimate the ISGDR EWSR 

by up to 20%, which may shift the centroid energies a few percent.  
 

In addition to HF-RPA approach mentioned above, which is usually denoted as non-

relativistic, a fully consistent relativistic random phase approximation (RRPA)[35], 

based on effective mean field Lagrangians with nonlinear meson self-interaction terms, 

has been used to calculate ISGMR and ISGDR distributions.  A comparison between 

experimental and calculated energies of ISGMR points to a value of 250-270 MeV for 

Knm, which is 20% higher than the value for Knm obtained in the non-relativistic HF-

RPA calculation.  Piekarewicz [36] and Shlomo et al. [34, 37, 38] have shown that the 

difference in the values of Knm obtained in the relativistic and non-relativistic models is 

mainly due to the differences in the values of the symmetry energy coefficient J and its 

slope L associated with these models. 
 

According to Shlomo et al. [34], correction of non-fully consistency in non-relativistic 

HF-RPA calculations for ISGMR may change the Knm value obtained with the Skyrme 

interaction from 210-220 MeV to 230-240MeV, in agreement with that obtained with the 

Gogny interaction.  It is also possible to build bona fide Skyrme forces where Knm is 

close to the relativistic value, 250-270MeV. Therefore Knm=240±20MeV can be 

obtained with non-relativistic fully self-consistant HF-RPA calculation. The uncertainty 

of about 20 MeV is mainly due to the uncertainty in the value of the overall shape of the 

nuclear matter symmetry energy curve, as a function of density. In order to determine 

the Ksym accuratelly, the systematic study of ISGMR over a wide range of (N-Z)/A is 

necessary and more information on ISGDR will be also very helpful to check the obtain 

Knm. 
 

1.4 Motivations 

Alpha inelastic scattering at small angles, including 00, has been successfully used to 

study the ISGMR of heavy and medium nuclei [5] (as shown in Table 1.2) where the 
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monopole resonance is concentrated in a broad peak. For light nuclei (A<40), however, 

ISGMR strengths are more elusive [39-41] because the resonance is fragmented and 

extends to excitation energies above 35 MeV. Unfortunately, other processes, such as 

multi-step reactions, give a large physical background at high excitation energy in α 

inelastic scattering, which makes it difficult to extract strengths in this range. 
 
 

Table 1.2 Fractional energy weight sum rule (EWSR) exhausted in the given 

excitation energy range for nuclei from light to heavy obtained with α 

scattering, with mk being kth moment of the strength distribution (k = -1, 0, 

1, 3). 

 
Ex Energy 

range 
(MeV) 

01 / mm  11 / −mm  13 / mm  EWSR 
(%) Ref. 

12C 13.0~45.0 21.9±0.3   ~27±5  [41] 
16O 11.0~40.0 21.39±0.49 19.63±0.38 24.89±0.59 ~48±10  [42] 

24Mg 10.0~40.0 33.0
25.093.21 +

−
a 20.83 28.0

22.0−
a 24.65 53.0

31.0
+
−

a ~82±9a [39] 

28Si 8.0~37.0 21.25±0.38 20.13±0.38 23.7±0.7 ~81±10  [40] 

40Ca 8.0~35.0 18.39 49.0
35.0

+
−  17.58±0.40 20.42 89.0

36.0
+
−  ~100±11  [43] 

46Ti 9.0~39.0 18.66 65.0
25.0

+
−  18.1 5.0

2.0
+
−  20.47 41.1

49.0
+
−  ~71 15

12
+
−   [44] 

48Ti 9.0~39.0 18.80 45.0
18.0

+
−  18.33 36.0

15.0
+
−  20.25 99.0

28.0
+
−  ~96 14

12
+
−   [44] 

56Fe 10.0~40.0 18.35 33.0
19.0

+
−  17.92 26.0

15.0
+
−  19.57 73.0

16.0
+
−  ~98 14

10
+
−  [45] 

58Ni 10.0~40.0 19.20 44.0
19.0

+
−  18.70 34.0

17.0
+
−  20.81 90.0

28.0
+
−  ~85 13

10
+
−  [45] 

60Ni 10.0~40.0 18.04 35.0
23.0

+
−  17.55 27.0

17.0
+
−  19.54 78.0

23.0
+
−  ~82 13

11
+
−  [45] 

90Zr 10.0~35.0 17.81 32.0
20.0

+
−  17.55 25.0

18.0
+
−  18.69 65.0

30.0
+
−  ~100±12 [46] 

110Cd 10.0~35.0 15.12 21.0
11.0

+
−  14.96 13.0

12.0
+
−  15.58 40.0

09.0
+
−  ~88 21.0

13.0
+
−  [47] 

112Cd 10.0~35.0 14.50 32.0
16.0

+
−  14.31 20.0

17.,0
+
−  15.02 37.0

12.0
+
−  ~104 23.0

13.0
+
−  [47] 

112Sn 10.0~35.0 15.43 11.0
10.0

+
−  15.23±0.10 16.05 26.0

14.0
+
−  ~116 13

18
+
−  [48] 

116Sn 10.0~35.0 15.62±0.20b 15.45±0.20b 16.13±0.20b ~112±15 [49] 
124Sn 10.0~35.0 14.50±0.14 14.33 17.0

14.0
+
−  14.96 11.0

10.0
+
−  ~104±11 [48] 

144Sm 10.0~35.0 14.67±0.30b 14.60±0.30b 15.12±0.30b ~92±12 [49] 
208Pb 10.0~35.0 13.77±0.20b 13.69±0.20b 14.00±0.20b ~99±15 [49] 

a: Ref. [50],  b: Ref. [51] 
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6Li scattering could be an alternate way to study giant resonances. As an isoscalar 

projectile (N = Z), 6Li scattering preferentially excites isoscalar resonances as does α 

scattering.  The low particle emitting threshold for 6Li will give a large breakup 

probability into dominant channel 6Li  α + d. Therefore the contribution of multi-step 

processes to the 6Li outgoing channel is low, especially at higher excitation energy, and 

a better ratio between the resonance peak and the continuum is expected. ISGMR studies 

in 12C and 24Mg with 156 MeV 6Li inelastic scattering have been reported respectively 

by W. Eyrich et al. [52] and H. Dennert et al. [53]. However, the low bombarding 

energy limited the useful excitation energy range to Ex ≤ 30 MeV. We expect 240 MeV 
6Li scattering can give us a better opportunity to study giant resonances at higher energy 

in light nuclei. 

 

Another important motivation for 6Li scattering study is to explore the possibility of 

expanding current research from stable nuclei to radioactive nuclei with inverse 

reactions. Inverse reactions have to be used because it is impossible to make targets of 

these unstable nuclei, so they will be used as projectiles. It is difficult to make a helium 

target, but a 6Li target is relatively easy to make. 
 

1.5 Dissertation Outline 

The dissertation consists of five sections. Section 1 presents an introduction of nuclear 

matter compressibility Knm, giant resonances, the relation between Knm and compression 

modes resonances, and current status of Knm determination via ISGMR and ISGDR 

studies. The motivations to study 6Li scattering are also given in this section. The Energy 

Weighted Sum Rule (EWSR) and scattering theory are introduced in section 2. Since the 

energy weighted sum rule is used as a measurement of the strength of giant resonances, 

EWSR and transition density for ISGMR, ISGDR and isoscalar modes with L ≥ 2 are 

introduced in this section. Then general scattering theory with DWBA calculations is 

presented to give a clear picture about how the cross-section of the scattering system can 

be obtained by solving the Schödinger equation. The optical potential in terms of 
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empirical Woods-Saxon (W-S) parameterization, which has been widely used to analyze 

nuclear elastic scattering, is introduced briefly. Folding model with M3Y nucleon-

nucleon (NN) effective interaction, which is another way to construct the optical 

potential in the frame of Feshbach’s reaction theory, is introduced as well as the folding 

model with JLM NN effective interaction. The transition potentials for inelastic 

scattering are also given in this section. In the end of section 2, different computer codes, 

CHEN2, DFPD4, ECIS, OPTJLM1, used for folding calculations and DWBA 

calculation, are introduced and calculations with DFPD4 and ECIS for a known 

scattering system are compared to those obtained with DOLFIN and PTOLEMY. In 

section 3, the experimental setup of the multipole-dipole-multipole (MDM) 

spectrometer, the operation of focal plane detector and electronics are introduced. 

Detector calibrations, and the procedure to extract the differential cross-sections data 

points from raw data, are also included in this section. Section 4 gives a detailed 

description and discussion of the data analysis, which includes: procedure of data 

analysis; data analysis of 6Li+116Sn scattering; data analysis of 6Li scattering on 28Si and 
24Mg. Section 5 contains the summary and conclusions.  
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2. COLLECTIVE MOTION AND SCATTERING THEORY 

The fact that inelastic scattering is appropriate to study giant resonances is based on the 

following: a) giant resonances are a collective motion of nuclear excitation; b) inelastic 

scattering is very sensitive to coherent, collective motions of the target nucleons and, 

many of the characteristic features of the scattering are embodied most simply in 

calculations based on the collective model form factor. The collective model will be 

introduced in SECTION 2.1, which emphasizes the derivations of transition density and 

energy weighted sum rule (EWSR) for giant resonances with different multipolarities. A 

general scattering theory is introduced in SECTION 2.2 to provide a framework within 

which different physical models can be embedded. The formal solution of the scattering 

problem and the distorted wave Born approximation (DWBA) are given in this 

SECTION. In SECTION 2.3, the optical potential model used to analyze elastic 

scattering in term of W-S potential parameters is introduced briefly. The optical potential 

obtained from the folding model calculation with M3Y nucleon-nucleon effective 

interaction is described and discussed as well as that obtained with JLM interaction. 

Transition potentials for analysis of inelastic scattering are introduced in SECTION 2.4. 

Several computer codes used to carry out double folding calculations and DWBA 

calculations are introduced in SECTION 2.5. 

 

2.1 Collective Model  

The collective model describes nuclear excitations induced by static or dynamic 

deformations of the nucleus. The details of the collective model were described by Bohr 

and Mottelson [2]. The density and shape vibrations of the nuclei are among the most 

easily recognized collective motions, which may occur both as discrete, low-lying states 

and as high-lying giant resonance. Isoscalar giant resonances with low multipolarites 

such as L = 0 - 3 can be excited simultaneously by inelastic scattering of isoscalar 

nuclear probe. The main concern here is to construct the transition density for nuclear 

excited states and obtain the EWSR for each multipolarity. 
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2.1.1 Deformation and Transition Density for L≥2 

The basic idea to obtain the transition density is to take a spherically symmetric density 

distribution ρ(r) and introduce certain multipole deformation parameters αλμ to describe 

deformed nucleus. These parameters are dynamic variables of the collective model. A 

standard method to introduce the deformation of a nucleus is given below [54]. 

Assuming an incompressible nucleus with a density distribution ρ(r) = constant in the 

interior and a sharp edge at r = R0, the deformation is then introduced by making the 

edge position angular dependent: 
 

),(),(1),( 000 ϕθδϕθαϕθ
λμ

μ
λλμ RRYRRR +=⎥

⎦

⎤
⎢
⎣

⎡
+=→ ∑   (2.1) 

where L ≥ 2. This above prescription can be easily transferred to a nuclear density 

distribution with the Fermi density shape: 
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where R0 represents the half-density radius and a is diffusion parameter. A Taylor series 

may be used to obtain the deformed density distribution which is  
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where  
 

∑=
λμ

μ
λλμ ϕθαδ ),(0 YRR .      (2.3b) 

 
On the other hand, the deformed density can always be decomposed in a multipole 

expansion 
 

∑=
lm

m
llm Yrr *),()(),,( ϕθρϕθρ      (2.4a) 
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where 
 

∫= rdYrr m
llm

ˆ),(),,()( rϕθϕθρρ ,     (2.4b) 
 
which actually represents the transition density for inelastic transitions. We know that, if 

the density is only a function of (r - R0) as shown in eq.(2.2), then we have 
 

n

n
n

n

n

dr
d

dR
d ρρ )1(

0

−= .       (2.5) 

 
With the first order approximation of (2.3a) and considering Eq.(2.4) and Eq.(2.5), the 

transition density can be expressed as 
 

⎥⎦
⎤

⎢⎣
⎡−==

dr
RrdRrfwhererfr llmllm

),()(,)()( 0
0

ραρ .   (2.6) 

 
 

2.1.2 Transition Density for Monopole Breathing Mode 

Besides nuclear shape vibrations, it is possible that the central density of the nuclear 

matter oscillates about its equilibrium value with high frequency, which is referred as 

monopole breathing mode. With the simple radial scaling [55] 

)1(' 0α−=→ rrr ,       (2.7) 
 
 the transition density can be related to the equilibrium density ρ(r) by the following 

expression  

 
)()()'()( rrrNr δρρρρ +=→      (2.8) 

 
where N is the renormalization factor to satisfy the particle number conservation law, 

which requires 
 

∫ = 0)( 2drrrδρ .       (2.9) 
 
From Eq.(2.7), we have: 
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)()()()()()'( 00 rr
dr

rdNrrNrrNrN δρρραραρρ +=−≈−= , (2.10) 

so the transition density can be expressed as: 
 

dr
rdNrrNr )()()1()( 0

ραρδρ −−= .     (2.11) 

With the constraint of Eq. (2.9), one can obtain 
 

0
0

31
31
1 α

α
−≈

+
=N        (2.12) 

 
where 3α0 << 1, and the transition density is 
 

⎥⎦
⎤

⎢⎣
⎡ +−≈

dr
rdrrr )()(3)( 0

ρραδρ .     (2.13) 

 
 

2.1.3 Energy Weighted Sum Rule (EWSR) and Sum Rule Limit Deformation 

It is often useful to apply general relations in the form of sum rules obtained from 

algebraic relations between operators to study complex systems like one described by 

collective model. For example, the EWSR is often used as a measurement of the strength 

of giant resonances. It is defined as a sum of the transition possibilities from ground state 

to excited states for certain multipolarity, multiplied respectively by the excitation 

energy [2] 
 

[ ][ ]0,,0
2
10)()(

2
0 QHQQnEEQS

n n =−≡ ∑    (2.14) 

where n labels the complete set of excited states that can be reached by operating with Q 

on the ground state 0 . Assuming Q is a one-particle moment depending only on the 

spatial coordinates 
 

∑=
i

irQQ )(r         (2.15) 
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and the interactions do not explicitly depend on the velocity of the particles, The EWSR 

can be expressed as 
 

0))((
2

0)( 2
2

∑ ∇=
i

ii rQ
m

QS rh
     (2.16) 

 
where m is the mass of the particle. For a multipole field operator 
 

∑ Ω=
i

i
M

Li YrfQ )()( ,       (2.17) 

 
the EWSR can be evaluated by means of the gradient formula [2] and is obtained as 
 

22
2

))(1()(
24

12)(
r
fLL

dr
dfA

m
LQS ++

+
=

h

π
    (2.18) 

 
where A is the particle number of the system. With the isoscalar mass operator Q0LM (L 

≥ 2) [56, 57] 
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iLM YrQ
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the corresponding EWSR is obtained  

222
2

0 )12(
8

)( −+= L
LM rLL

m
AQS

π
h

,     (2.20) 

 
which is approximately independent of assumptions about nuclear structure.  
 
In the macroscopic liquid drop model, assuming the excited nucleus has a continuous 

density distribution ρ(r, R(θ,ϕ)) as discussed in part A, the isoscalar mass operator can 

be transformed as 
 

∫∫ +== drrrrdrYrQ L
LM

M
L

L
LM

2
0 )(),,(),( ρϕθρϕθ r

.   (2.21) 

 
Substituting Eq. (2.6), we can obtain  
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LM
L

LM
L

LM rARLdrr
dr
dRQ α

π
αρ 1

0
2

00 4
)2( −+ +

=−= ∫ .  (2.22) 

 
In the vibrational model treating the small oscillations in shape about a spherical mean, 

the αLM are now quantal operators that will create or annihilate one quantum or phonon. 

The transition probability for the mass multipole operator can then be expressed as 
 

2212
0

2
2

22

0 )4(
)2(0,)0( L

L
LM rRALQMLLB β

π
−+

==→   (2.23) 

where 
22 0LML LM αβ = is the amplitude of the oscillation. Assuming the single state 

exhausts the total sum rule (see Eq. (2.20)), we get sum rule limits on the deformation 

parameters for L ≥ 2  
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which are useful in inelastic scattering data analysis. 
 
For a L= 0 (monopole) transition, the mass operator is given by  
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2
000 YrQ

A

i
i∑

=

=          (2.25) 

 
and the corresponding EWSR is obtained by inserting the above expression into 

Eq.(2.17) and  Eq. (2.18) 
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where m is nucleon mass and <r2> is average over ground state density. If the excitation 

of a single state with excitation energy Ex exhausts EWSR, the sum rule limit 

dimensionless amplitude α0 is obtained by inserting eq.(2.13) into Eq.(2.21) and 

following the same procedure as L ≥ 2 
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2.1.4 Transition Density and EWSR for  Isoscalar Dipole Mode 

The collective formalism to describe isoscalar dipole excitations in electron scattering 

was first proposed by Deal et al. [58], and later extended to those excited with hadron 

scattering by Harakeh and  Dieperink [59]. However, the transition density obtained by 

Harakeh and Dieperink is for only one magnetic substate. The total transition density 

should be multiplied by a factor of 3.  One can see Ref. [59] for the detail about how to 

get the EWSR for ISGDR and corresponding sum rule limit transition density. The 

results are summarized below. 
 

For isoscalar dipole excitation, the first order approximation, i.e., ∑
=

=
A

i
iYrQ

1
10010 , can 

only result in a translation of the center of mass. The second order approximation gives 

the ISGDR operator 
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and the corresponding EWSR is  
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where  
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where E0 is the excitation energy of the ISGMR and E2 is the excitation energy of the 

isoscalar quadruple resonance. If the isoscalar dipole EWSR is exhausted by one state, 

the transition density of this state is 
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where 
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and β1 is the collective coupling parameter and c is the half density radius of the Fermi 

mass distribution. In all the above equations, ε is very small compared to 2r , and for 

practical purpose the terms depending on ε could be ignored for A ≥ 20.  
 

2.2 Scattering Theory 

 
It was suggested long ago that inelastic scattering from nuclei would preferentially 

excite collective states [60, 61] which include discrete, low-lying states and high-lying 

giant resonance states. To extract the strength distribution for a giant resonance, it is 

necessary to calculate the differential cross section for inelastic scattering with the 

DWBA approximation. The details about how to solve the Schödinger equation with 

DWBA to get the differential cross section have been thoroughly discussed by Satchler 

in Ref. [54]. A general solution and some important assumptions are given in this 

section. 
 

2.2.1 THE GENERAL SOLUTION OF THE SCATTERING PROBLEM 

Let us consider a 2-body scattering system with a direct nuclear reaction BbAa +→+ . 

Following the notation in Ref. [54], a pair of nuclei a and A is called a partition and 

denoted as α, while another pair of nuclei b and B is denoted as partition β. The primed 

α’ is used to denote different states of the same partition as α. The total Hamiltonian of 

the system for one partition can be expressed as 
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ααα VKHH ++=        (2-31) 
 
where αH  is the internal Hamiltonian for the nuclei a and A, αK is the kinetic energy of 

their relative motion, αV is the mutual interaction potential. The total wavefunction can 

be obtained by solving the Schrödinger equation: 
 

0)( =Ψ− HE         (2-32) 
 
where Ψ may be expanded in terms of a complete set of internal states αψ , which is 

 

∑=Ψ
α

αααα ψξ )()( xrr        (2-33) 

 
where the sum runs over all the internal states of partition α. Since the incident beam is 

in the α channel, the wavefunction Ψ contains incoming spherical waves only in the 

ground-state α channel but will have outgoing spherical waves in this and all other 

channels which are open at the incident energy. It is denoted as )()(
αα k
r

+Ψ  in which (+) 

means that we choose outgoing wave and α means it arises from an incident wave in the 

α channel. It may also be expanded in terms of the states of partition β: 
 

∑=Ψ +

β
ββββα ψξ )()()( xrr       (2-34) 

where )( ββψ x is wavefunction of internal states in channel β, the function )( ββξ rr  

describes the relative motion in the channel β and is expressed as 
 

∫ ++ Ψ≡Ψ= βαββαβββ ψψξ dxxr )(*)( )()()(r .    (2-35) 
 
To satisfy boundary conditions, it must have the asymptotic expression 
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Asymptotically, the relative momentum βk
r

has the same direction as βr
r , so 
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The differential cross section for the transition from channel α to channel β is defined as 

the ratio of  ΩdrJo
2

β
β  (the outgoing flux per unit time going into the small area 

subtending a small solid angle dΩ in channel β) over α
iJ  (incident flux per unit time 

and unit area in channel α) 
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The probability flux is expressed as 
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where Φ is the wavefunction of a certain channel. For an incident α channel, the 

wavefunction Φ can be expressed as 
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For an outgoing β channel, the wavefunction can be expressed as 
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From (2.37), (2.40) and (2.42), the differential cross section thus is obtained as 
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We may obtain an exact expression for the scattering amplitude βαf from Eq.(2.32) with 

an appropriate form of the Hamiltonian 
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Multiplying Eq. (2.44) by )(*
ββψ x from left on both side of equation and integrating over 

xβ, we get 

)()()( +Ψ=−− αββββββ ψξε VrKE .     (2.45) 
 
Using standard Green function techniques [62, 63] and considering the boundary 

condition, the relative wavefunction )( ββξ rr can be expressed as  
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When '

ββ rr >> , we may have  
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Comparing with the asymptotic expression (2.36), we then have 
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2.2.2 Distorted Wave Born Approximation (DWBA) 
 
Eq. (2.48) gives a formal expression of the transition amplitude, but it is still hard to 

evaluate ),( αββα kkf
rr

 since the details of the interaction and wavefunction are unknown. 

It is possible to introduce an auxiliary potential  )( ββ rU which may be complex and is 

only dependent on rβ. Then (2.45) becomes 
 

[ ] ( )+Ψ=−−− αβββββββ ψξε WrrUKE )()( r
    (2.49) 

 
where  
 

)(),( ββββββ xUxrVW −=
r

      (2.50) 
 
is called the residual interaction. The auxiliary potential can be chosen to include the 

main part of the average effects of Vβ and the effects of the inhomogeneous term on the 

right side of (2.49) may be quite small and treated as a perturbation.  With the expansion 

of +Ψα in (2-34), we have 

 
( ) ( ) ( )∑

≠

+ +=Ψ
ββ

ββββββββββαββ ξψψξψψψ
'

'' )()( rWrWW rr ,  (2.51) 

in which the diagonal matrix element might be thought as the most important term, since 

it does not involve any internal rearrangement of the scattering system. The diagonal 

term can vanish if Uβ is chosen as the average of Vβ over the internal states βψ . To solve 

the equation (2.45), we need first neglect the inhomogeneous term on the right side of 

(2.45) and solve the equation 
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    (2.52) 
  
where +

βχ  is known as the distorted wave and describes the elastic scattering of b on B 

due to potential Uβ. Considering the boundary condition that +
βχ  asymptotically has the 

form of incident plane wave plus outgoing spherical wave 
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we obtain the solution for the homogeneous equation (2.52) which is well-known from 

scattering theory 
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where ),( ββ rkfl  is regular solution of the radial equation for (2.52) and lδ  is a phase 

shift dependent on the specific form of potential Uβ. A formal solution of (2.49) will be 

obtained with the application of Green function techniques, which asymptotically can be 

expressed as 
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where ),( βββχ rk rr

−  is the time-reverse of ),( βββχ rk rr
+ . The scattering amplitude ),( αβαβ kkf

rr
  

then can be expressed as 
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+Ψα  in the above equation can be estimated by the following procedures. Like the 

expansion in β partition, +Ψα   can also be expanded in terms of internal states of α 

partition, as shown in (2.33). Assuming that the most important part of the total wave 

function is the elastic wave in the entrance channel, we have  
 

ααααα ψξ ),( rk rr
++ ≈Ψ .       (2.57) 

 
By introducing a similar auxiliary potential Uα as mentioned above for β partition, the 

large part of the average effect of interaction Vα is included in Uα and the residual 

interaction ααα UVW −=  is treated as a perturbation. We can measure the elastic 
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scattering cross section experimentally and fit it to get the proper Uα. The Uα we get 

represents the average of Vα over the internal ground state of a channel, thus we have 
 

),()(,0)( ααααααα χξψψ rkrW rrr +≈≈ .     (2.58) 
 
The above procedure to estimate +Ψα   is called the distorted wave Born approximation 

(DWBA) and (2.56) can be transformed as 
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For inelastic scattering, *AaAa +→+ , α’ is denoted as inelastic channel. Replacing β 

by α’, we obtain the inelastic scattering amplitude 
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and the differential cross section 
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2.3 Optical Model and Folding Potential 

2.3.1 Optical Model and Woods-Saxon Potential 

In the above section, we give a general solution of Schrödinger’s equation for a two-

nucleus scattering system and obtain an expression for the differential cross section for 

inelastic scattering with the distorted wave Born approximation. However, in order to 

compare with the experimental data, a proper effective potential U(r), like Ua mentioned 

in last section, must be constructed to include most of the average effect of the 

interaction of the system. The potential U(r) must be complex as the imaginary part is 

necessary to describe the loss of flux (absorption) into non-elastic channels. An analogy 

is light propagation in a semi-transparent medium which has a complex refractive index. 
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This is called the optical model of nuclear reactions. As indicated in the above section, 

the optical model is a model of the effective interaction, which is used to replace the 

complicated many-body problem posed by the interaction of two nuclei with the much 

simpler problem of two particles interacting through a potential U(r) which can be used 

in a one-body Schrödinger equation such that the asymptotic behavior of its solutions 

χ(r) describes their elastic scattering. The optical model plays an important role in the 

description of nuclear scattering. Not only does it provide an interpretation of elastic 

scattering in terms of a potential, it also provides the associated wavefunction for the 

relative motion of the colliding pair, which could be used to study the inelastic 

scattering. 
 
Usually it is assumed [54], at least for light ion scattering, that the interior of the real 

potential ReU(r) is flat and attractive (negative) and, because of the short range of the 

nuclear interaction, rises quickly and monotonically to zero in the surface range. Several 

analytic forms [64, 65] have been used for ReU(r) to embody this assumption, among 

which, Woods-Saxon (W-S) form [66] is the most popular one. W-S form is based on a 

plausible assumption that the shape of the optical potential follows the shape of the 

target density. Since the Fermi distribution is often used to describe the density of nuclei, 

the W-S form potential is usually expressed as 
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where V, RV and aV are depth, half radius and surface diffuseness respectively. 

Sometimes a low power of Woods-Saxon shape, such as 
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 is used for ReU(r) to get a satisfactory fit of elastic scattering.  
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The absorptive potential ImU(r), the imaginary part of U(r), is usually assumed to have a 

“volume” form or a “surface” form. The “volume” form is the same as (2.61a) with 

different depth, half radius and surface parameters, W, RI and aI. The surface absorption 

is usually taken to be proportional to the derivative of “volume” form, which can be 

expressed as 
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where WD, RD,aD are a set of parameters different with those for volume form. However, 

if both surface and volume terms are used for the imaginary potential, it is usually 

assumed RD = RI and aD = aI. The origin of the imaginary potential, and associated 

relation to the real part, can be seen most transparently within the framework of 

Feshbach’s reaction theory. 
 

2.3.2 Folding Model 

 
According to Feshbach’s theory[67, 68], when an effective interaction or optical 

potential is used in the one-body Schrödinger equation to study elastic scattering, we 

may write 
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where V is the real interaction between the two nuclei, while α means a pair of internal 

state labels i, j. The prime means the sum over all states α in which at least one nucleus 

is excited.  The first term V00 is real and accounts for most of the real part of optical 

potential. It is simply expressed as folded potential 
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where 0 denote ground state, p means projectile and t means target, the round brackets 

mean integration over the internal coordinates of the two nuclei.  It is generally assumed 

that the interaction V is a sum of local two-body potentials 
 

∑=
pt
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FIG. 2.1 Coordinates relation for folding calculation. 
 
If spin and isospin are ignored for simplicity, the folded potential V00(R) may be written 

as a six-dimension integral 
 

 ),,()()()()(00 tppttpptpF svrrrdrdRVRV ρρρρ rrrrr
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where p represents projectile, t represents target and tp rRrs rrrr

−+=  (see Fig. 2.1). The 

expression (2.66) involves a six-dimensional integral, which is hard to evaluate in 

position space. However, if we work in momentum space with Fourier transformation, 

the integral reduces to a product of several one-dimensional integrals and become quite 

simple to calculate (see appendix B of  Ref. [69]). If vpt is scalar, does not depend on the 

densities of the scattering pairs and the density distributions are spherically symmetric, 

the folded potential satisfies some simple relations. Such as, if we define the volume 

integral of the function f(r) 
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)()()()()( pttptpptF vJAAJJvJVJ == ρρ .    (2.68) 
 
If we define the mean-square radii of function f(r) as 
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We have 
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The Pauli principle is not considered when a folded potential is given as in (2.66). 

Although the individual internal wave functions in (4.16) are taken to be anti-

symmetrized, the Pauli principle requires the total wavefunction of the scattering system 

also to be anti-symmetric under interchange of nucleons between the two nuclei. The 

interchange, which is called knock-on exchange, in practice, corresponds to the 

exchange of nucleon between target and projectile following their interaction. If this 

knock-on exchange effect is included, the two-body interaction will be replaced by 
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where Ppt is the operator that exchanges all coordinates of these two nucleons. And the 

folded potential is replaced by 
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where VD is a direct term which is given in (2.66) and VE is  an exchange term . 
 
 The second term ΔUE in (2.63) is complex and often referred to as the dynamic 

polarization potential (DPP). It arises from couplings to the nonelastic channels and 

represents transitions to open non-elastic channels. The imaginary part of DPP, known 

as absorptive potential, is the origin of the imaginary part of the optical potential. It is 

discussed in detail in [67] and references there. Since it is very difficult to calculate 
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DDP, a phenomenological W-S potential shape is still widely used to obtain the 

imaginary potential.  
 
The real part of DPP comes from virtual excitation. Energetically closed channels can 

contribute to the real part of ΔUE. It depends explicitly upon the energy and is non-local. 

However, its contribution to the real part of optical potential is usually much smaller 

than folded potential, the leading order approximation. Since DPP is not explicitly 

included in the real folded potential, a renormalization (NR) of the real potential is used 

to take into account the DPP contribution. The overall success of folding models with 

NR~1 indicates that in most cases the DPP contribution is very weak. But there is a very 

important exception where NR deviates far from unity. For the scattering of weakly 

bound nuclei such as 6Li, 7Li and 8Be [69], the elastic data require a large 

renormalization of the real folded potential with a factor around 0.6. The reason for the 

anomalous behavior of NR is that the loosely bound nuclei are very easy to break up. 

Sakuragi et al. have thoroughly investigated the break up effect of the projectile using 

coupled discretized continuum channels (CDCC) techniques [70]. Their calculations 

showed that the dynamic polarization potential induced by the coupling with the breakup 

channels is a repulsive potential which cancels about 40% of the attractive folding 

potential in the nuclear surface region. The break up effect is the real origin of the 

renormalization factor NR in the single channel double folding analysis of the elastic 

scattering of loosely bound nuclei. The fact that the NR is almost constant around 

0.5~0.6 implies that the break up effect is almost independent of bombarding energy and 

target nucleus. 
 

2.3.3 The M3Y Effective Nucleon-Nucleon Interaction 

There are several nucleon-nucleon effective interactions used in the folding model, (such 

as JLM interaction, S1Y interaction, M3Y interaction). The M3Y interaction is based on 

G-matrix elements of the Reid[71]  or Paris [72] NN potential, for which we denote 
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them as M3Y-Reid [73] and M3Y-Paris interaction[74].  The spin- and isospin-

independent central term of the M3Y interaction can be expressed as [67, 69] 
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There are two ways to estimate contributions from the knock-on exchange effect. One 

way is to use the zero-range pseudo-potential approximation, in which the knock-on 

exchange effect is represented by a δ function and the strength J00(E) [75] is determined 

empirically by comparing cross sections for protons scattering from various targets, and 

at various energies up to 80 MeV. With the different versions of the interaction, J00(E) 

can be expressed respectively as [67, 69] 
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where E/A is the bombarding energy per projectile nucleon. Another way is to use the 

finite range approximation, in which the knock-on exchange effect is expressed as a sum 

of three Yukawa terms which represent the attractive, long-range one pion exchange, 

medium range multiple-pion exchange and a short range interaction. The knock-on 

exchange can be expressed as 
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Although the M3Y-Paris interaction has a much more attractive exchange term than the 

M3Y-Reid interaction, the sum of the direct term and exchange term will give similar 

folded potentials. This emphasizes the importance of including the knock-on exchange 

effect when calculating the folded potential. 
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A density dependent M3Y (DDM3Y) effective N-N interaction has been described and 

discussed in detail by Dao T. Khoa [76-78]. Generally the density dependent N-N 

interaction is assumed to have the separable form, 
 

 )()()(),,( )()( svFEgsEv EXDEXD ρρ =      (2.76a) 
  
where g(E) is a energy dependent factor and F(ρ) is the density dependent function. The 

g(E) is a linear function of the bombarding energy E and, for the M3Y-Paris interaction, 
 

aEEg /003.01)( −=        (2.76b) 
 
where a is the mass of projectile. The original DDM3Y interaction [79, 80] assumed an 

exponential dependence on the density 
 

 [ ])exp(1)( βραρ −+= CF .      (2.77) 
 
A flexible power-law density dependence was also introduced in [76, 81]  
 

 )1()( βαρρ −= CF        (2.78) 
 
and the corresponding interaction is denoted as BDM3Y interaction. The more general 

formula [77, 78] which is a hybrid of the DDM3Y and BDM3Y forms can be expressed 

as 
 

 [ ]γρβραρ −−+= )exp(1)( CF      (2.79) 
 
and the corresponding density dependent interaction is denoted as CDM3Y interaction. 
 

2.3.4 Folding Procedure  

The procedures used  to obtain the folded potential and the details of  the folding integral 

are described and discussed in Ref. [78]. They are summarized below.  
 
Assuming the interaction V is independent of spin and isospin, the direct term of the 

folding potential can be expressed in terms of the one-body spatial densities, 
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AaDAAAaaa
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',' ρρρ ,     (2.80) 

 
where )(),( '' AAAaaa rr rr ρρ  are one body mixed densities for the projectile and target 

respectively. For elastic scattering, )(' aaa rrρ and )(' AAA rrρ are replaced by pρ and tρ , 

ground state densities for projectile and target.  The exact expression for the exchange 

term cannot be expressed simply since it is non-local. However, if one treats the relative 

motion locally as a plane wave, one can get a local approximation for the exchange term 
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where )(RK

rr
is the local momentum of relative motion and 
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    (2.82) 

 

where ααμ Mm=  is the reduced mass, m is the bare nucleon mass and 
Aa

AaM
+

=α is 

the reduced mass number, and Ec.m. is the center of mass Energy. 

( ) ),(),(, REVREVREV EXD

rrr
+=  and )(RVC

r
 are the total nuclear and Coulomb potentials 

respectively. It is obvious that (2.81) has a self-consistancy problem because the relative 

momentum K is dependent on the total nuclear potential.  However, by using a realistic 

approximation for the mixed density matrix [82, 83] and after a transformation [78], one 

obtains a self-consistent and local exchange potential  
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where 
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in which )()( rk AFa is local Fermi momentum [83] and 

 
2

11 /)cos(sin3/)(3)(ˆ xxxxxxjxj −== .    (2.83c) 
 
With )(' aaa rrρ and )(' AAA rrρ replaced by pρ and tρ , one can get the exchange term for 

elastic scattering.  
 
In the calculation of the direct term, the overlapping density ρ in F(ρ) is estimated as the 

sum of the ground densities of target and projectile 
 

)()( pptt rr rr ρρρ += ,       (2.84) 
 
while in evaluating the exchange term of the folded potential, the overlapping density is 

assumed as the sum of the projectile and target densities at the midpoint between the two 

nucleons being exchanged 
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2.3.5 Folding with JLM Effective Interaction 
 
The JLM interaction is a complex, energy and density dependent G-matrix interaction 

which is obtained from the Reid soft-core NN potential with the Brueckner-Hartree-Fock 

(BHF) approximation [84].  Unlike the M3Y interaction, the JLM interaction can 

simultaneously provide both real and imaginary parts of the optical potential. Starting 

from the potential for a nucleon of energy E traversing nuclear matter of density ρ  
 

),(),(),( EiWEVEU NM ρρρ +=      (2.86) 
 
where V and W are real and imaginary parts (For the expressions of V and W, see Ref. 

[85]), the density and energy dependent JLM NN effective interaction for heavy ion 

scattering can be obtained as 
 

ρ
ρρρ ),(),(),( EiWEVEv +

= .     (2.87) 
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The potential for heavy ion collisions thus is given by the folding integral 
 

∫= PTPPTT rdrdsEvrrRV rrr)(),()()()( δρρρ     (2.88) 

 
where PT rRrs rrrr

−+= , ρT is the density of the target and ρP is the density of the 

projectile. The local density ρ is estimated with two different approximations. In the first 

approximation, the local density is estimated as geometric average of the projectile and 

target density 
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 while in the second approximation, the local density is given as arithmetic average of 

the two densities 
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When the folded potential obtained with the JLM interaction is used to analyze the 

elastic scattering data, the quality of the fit can be substantially improved by replacing 

the δ function in (2.82) by a finite range smearing function [84, 86] 
 

22 /
31)( tse

t
sg −⎟

⎠
⎞

⎜
⎝
⎛=

π
r

       (2.91) 

 
where t is the range parameter. With the smearing function included, the rms radii of the 

folded potential are increased, but the volume integrals do not change since the smearing 

functions are normalized to 1. There are substantial renormalization factors required for 

both real and imaginary parts of these folded potentials when they are used to analyze 

elastic scattering involving loosely bound nuclei, such as 6Li and 7Li 
 

)()()( rWiNrVNrU foldWfoldV += .     (2.92) 
 
 As we described previously, breakup is responsible for these renormalizations. 
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2.4 Transition Potential 

To study giant resonances via inelastic scattering, a transition potential is required to 

calculate the differential cross-section for inelastic scattering. Transition potentials for 

the deformed potential model and the double folding model are described in this section. 
 

2.4.1 Deformed Optical Potential Model 

The deformed potential model has been used for the analysis of inelastic scattering for 

many years. The model is based on the simple and plausible assumption that the shape of 

optical potential for the scattering pairs follows the shape of the density distribution of 

the target and is either statically deformed or undergoing shape oscillations in the same 

way [54]. With this assumption, the transition potential can be obtained immediately by 

analogy with the transition density introduced in section 2.1. For 2≥L , the transition 

potential is given by [87, 88] 
 

,)()(
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rdUrG LL δ−=      (2.93) 

 
where the sum rule limit deformation length is given by (2.24). For 0=L , the transition 

potential is given by[89] 
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where the sum rule limit deformation parameter α0 is given by (2.26). For 1=L , the 

transition potential is given by [59] 
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where ε is given by (2.29b) and β1 is given by (2.30b). 
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The advantage of the deformed potential model is its simplicity, however, the price paid 

for this simplicity is that the unambiguous connection between the density deformation 

and the potential deformation is no longer available [54]. 
 

2.4.2 Folded Potential 

Following the formalism of the generalized folding model using the realistic density 

dependent nucleon-nucleon interaction [78] mentioned in above section, the nuclear 

density for nucleus a in (2.80) and (2.81) can be decomposed into a multipole expansion 
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where π40 =C  and 1=λC  for 0≠λ . A similar expression can be obtained for 

nucleus A. For a single excitation of the target nucleus A, the corresponding nuclear 

matrix element can be expressed as 
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where α means incident scattering channel, α’ means inelastic scattering channel, A’ 

means single excitation of the target nucleus and  
 

),(),(),( )()( REVREVREV EX
a

D
αλλαλ += ,     (2.98) 

 
where ),()( REV D

αλ  and ),()( REV EX
αλ  are direct term and exchange term respectively. To 

evaluate the transition potential, there are two options of the density dependence 

considered to include the medium correction when density dependent NN interaction is 

used[78, 90]: i) static treatment of the density dependence (SDD) in which only the 

ground state densities are included in the folding procedure, i.e. 
 

)()(),( )(00)( svFsv EXD
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EXD ρρρ += ;     (2.99) 
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ii) more consistent dynamic treatment of the density dependence (CDD) in which the 

effect of density changing due to the excitation is also included, i.e. 
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 According to Farid and Satchler[90], the difference between the two options resulted in 

20% or less difference in peak cross sections in the case of α scattering to small angles, 

particularly relevant to giant resonance studies. The transition potential can be obtained 

with above prescriptions and by replacing  'aaρ  with pρ  and 'AAρ  with λρt  in (2.80) and 

(2.81). λρt is the transition density of the target from ground state to excited state with L 

= λ . The transition density used for giant resonance study corresponding to 100% 

EWSR for L = 0 was given by (2.13) with deformation parameter given by (2.27), while 

that for L = 1 was given by (2.30a) with deformation parameter given by (2.30b) and 

those for L ≥ 2 were given by (2.6) with deformation length given by (2.24) in section 

2.1. 
 

2.5 Computer Codes 

There exist several computer codes to carry out the calculations described above.  The 

studies of giant resonances with α particles have used PTOLEMY [91] for the DWBA 

calculations and DOLFIN [92] to calculate single folding optical and transition 

potentials for input to PTOLEMY. For the loosely bound 6Li, single folding is not 

adequate, and there are several codes available for calculating doubled folded potentials 

with different NN effective interactions.  We have used  DFPD4[93], CHEN2[94] and 

OPTJLM1[95] each of which is described briefly below.   
 

In addition to PTOLEMY the code ECIS[96, 97] is also commonly used for DWBA 

calculations.  A series of calculations performed with both DPDF4_ECIS and with 

DOLFIN_PTOLEMY were carried out to test the codes and our ability to use them. 
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2.5.1 DFPD4----Density Dependent Double Folding Calculation 

DFPD4 [78, 93] is an unpublished FORTRAN code written by Dr. Dao Tien Khoa used 

to calculate potentials with the folding model for both heavy ion (HI) and light ion 

elastic and inelastic scattering.  The nuclear potential was obtained by folding the 

density dependent M3Y NN effective interaction over the ground density of target and 

projectile while the transition potential was obtained by folding over the transition 

density of the target. With knock-on exchange included, the effective NN interaction has 

two terms and so the corresponding folded potential also has a direct term and an 

exchange term. A sample  input file for DFPD4 is given in Fig. 4.1 to show the 

parameters used for the folding calculation.  

 
FIG. 2.2 A sample input file of DFPD4. The number 1-8 on the left side represent 

different parameters sets explained in the text. 
 

As shown in Fig. 2.2, the parameters for the scattering system, the NN effective 

interaction, Coulomb potential, target and projectile density profiles are given in 

different parameter sets labeled from 1-8. Parameter set 1 includes the header of the 
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scattering system, output and display control, density dependency choice, Jπ for excited 

states of the target nucleus, incident (lab.) energy, charges and masses of projectile and 

target, charge radii of the projectile and target etc. Parameter set 2 lists the parameters 

C, α, β, γ of the density dependent function F(ρ) [see Eq. (2.79) ] which are shown in 

Table 2.1 [77]. The overlap density ρ is defined as the sum of the projectile density ρP 

and target densities ρT   

 

PT ρρρ += .         (2.101) 
 
Parameter set 3 gives the parameters for M3Y NN effective interaction. Parameter set 

4 and 5 are the profiles for projectile of mass density and charge density respectively. 

Parameter set 6, 7, 8 are profiles respectively for mass density, total transition density 

and proton transition density of the target. A very important parameter is delt in set 6, 7, 

8 used to give the deformation parameter and control which model is used to get the 

transition density for giant resonance.   
 
Table 2.1 Parameters of different density dependent functions F(ρ) of the M3Y-Paris 

interaction. Values of the nuclear incompressibility K were obtained from 

the Hartree-Fork Calculation of nuclear matter. (originally from the Table 

I of the Ref. [77].) 
 
ρ dependency 

type C α β 
(fm3) 

γ 
(fm3) 

K 
(MeV) 

DDM3Y1 0.2963 3.7231 3.7384 0.0 176 
CDM3Y1 0.3429 3.0232 3.5512 0.5 188 
CDM3Y2 0.3346 3.0357 3.0685 1.0 204 
CDM3Y3 0.2985 3.4528 2.6388 1.5 217 
CDM3Y4 0.3052 3.2998 2.3180 2.0 228 
CDM3Y5 0.2728 3.7367 1.8294 3.0 241 
CDM3Y6 0.2658 3.8033 1.4099 4.0 252 
BDM3Y1 1.2521 0.0 0.0 1.7452 270 

 
 
DFPD4 can be used to calculate the transition potential either for inelastic scattering to 

low-lying states or for giant resonances of the target depending on parameter ENX value 

chosen in parameter set 1. With parameter ENX = 0, DFPD4 calculate the transition 
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potential for low-lying state while, with ENX = excitation energy, DFPD4 calculates 

transition potential for giant resonance.  For giant resonances with multipolarity L ≥ 2, if  

the parameter delt > 0, the Bohr-Mottelson model is used to calculate transition density, 

while if delt < 0, the Tassie Model is used to calculate transition density. For giant 

resonances with L = 0, the scaling model is used to calculate the transition density if one 

chooses delt > 0. For an isoscalar giant resonance with L = 1, Harakeh et al. ’s 

expression [59] of transition density is used when one chooses delt < 0. In all the 

transition potential calculations for giant resonances, the deformation parameter delt was 

set equal to the EWSR limit and was calculated externally. 
 
DFPD4 can also calculate the Coulomb part of the optical and transition potentials.  The 

Coulomb transition potential is calculated the same as transitional nuclear potential by 

the folding model in which the proton transition density of target is used. According to 

Khoa et al. [78], the Coulomb potential obtained assuming that both the projectile and 

the target have uniform charge distributions is adequate to estimate the coulomb 

interaction. So an analytic expression can be used to calculate the Coulomb potential 

rather than using the folding model. If the uniform charge radii for projectile and target 

are RP and RT, the coulomb potential Vc  can be expressed as [98]: 
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2.5.2 CHEN2----Density Independent Double Folding Model Calculation 

CHEN2 is an unpublished FORTRAN code [94] which does a density independent 

double folding calculation. The M3Y-Reid NN effective interaction is used in the code 

and the exchange term is evaluated with a delta function (see Eq. 2.74). Fermi 



 

 

46

distributions obtained from the droplet model were used for the target and projectile 

density in the folding calculation. The folding integral was evaluated with a method 

which takes advantage of analytical properties of folding involving a δ-function [99].  

Folded transition potentials for 4,3,2=l can be evaluated with this code.  A sample input 

file for 240 MeV 6Li scattering on 116Sn is shown in Fig. 2.3. 
 

 
FIG. 2.3 A sample input file for CHEN2 to calculate the folding potential for 6Li 

elastic scattering on 116Sn and inelastic scattering to low-lying 2+ and 3- 

states of 116Sn.  
 
 

2.5.3 OPTJLM1----Double Folding Calculation With the JLM Interaction 

OPTJLM1 is a FORTRAN code that does density dependent double folding 

calculations with the JLM effective NN  interaction, calculates differential cross sections 

and fits elastic scattering data with the optical model [95].  The folding procedure with 

the JLM interaction has been described above. The densities of the projectile and target 

are obtained in a standard spherical Hartree-Fork calculation using the energy density 

function of Beiner and Lombard [99, 100]. The folding calculation in OPTJLM1 

requires that the files describing input densities of the projectile and target should have a 
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certain format. Each density file gives the proton density, first derivative and second 

derivative of proton density, then the same for neutron. There are two options for the 

density dependence in the folding calculation, one can choose the overlap density ρ 

either as shown in Eq. (2.101), or 
 

TPρρρ = .        (2.103) 
 
One can read text file README.TXT [95] For the details of calculation. 
 

2.5.4 ECIS----Equations Couplées en Itérations Séquentielles 

ECIS is a FORTRAN code for DWBA calculations which can do coupled channel 

calculations with the method called Sequential Iteration for Coupled Equation [96, 97]. 

There are various versions of ECIS and ECIS97 was used in this work. For analysis of 
6Li scattering, one can fit elastic scattering data to obtain optical parameters and 

calculate the differential cross-section for inelastic scattering to different states of the 

target.  
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FIG. 2.4 Sample input file I for ECIS97 to fit 6Li elastic scattering with W-S 

potential model. 
 
Fig. 2.4 shows a sample input file I for ECIS97 to fit 6Li elastic scattering with the W-S 

potential model. In order to understand it better, the input file is divided into several 

parameter sets, each set fulfilling mainly one function of the calculation. Set 1 includes 

header describing the scattering system, and 100 logical parameters which are used to 

specify models used in the calculation, details of the interaction and integration, control 

parameters searching, displaying and printing. Set 2 includes the incident energy, the 

masses and product of charges of projectile and target, spin, parities and excitation 

energies of all the nuclear states considered in the calculation, etc. For the sample input 

file considered here, only one state is described in Set 2. Set 3 gives the number of the 

input data sets, number of the fitted parameters, and gives experimental data for each 

data set. Set 4 gives the fitted parameter ID and searching accuracy. Set 5 specifies the 

potential parameters for the real part, the imaginary part and the Coulomb potential. For 

optical potential represented by a W-S shape, both the real part and the imaginary part 

Set 

Set 

Set 
Set 

Set 

Coulomb 
potential 

Real potential 

Im. potential 
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have three parameters, i.e. depth VR(I), half radius rr0(I0), and the  diffusion parameter ar(I). 

There are two ways to evaluate the Coulomb potential. In the first way, three parameters 

are input and the Coulomb potential is calculated by ECIS97.  The first parameter is the 

product of ZT and ZP, the charges of the target and projectile. The second parameter is 

the charge radius parameter Rc0. With heavy-ion definition of reduced radii, the 

Coulomb radius can be expressed as: 
 

)( 3/13/1
0 PTcc AARR +=        (2.104) 

 
where AT and AP are masses of target and projectile respectively. The third parameter is 

the diffusion parameter ac for charge distribution. With the assumption of uniform 

charge distribution, ac=0 and the Coulomb potential can be expressed as: 
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The Coulomb potential can also be calculated externally by another code, such as 

DFPD4, and then input to ECIS97 for further calculation as shown in Fig. 2.4 for 

sample input file I. 
 
 A sample input file II of ECIS97 for the calculation of the differential cross section for 
6Li elastic scattering and inelastic scattering to the low-lying 2+ state with the double 

folding model is shown in Fig. 2.5. Compared to the input file I shown in Fig. 2.4, 

logical parameters in set 1 are the same. Set 2 and set 3 are almost the same as in Fig. 2.4 

except that parameters for two states, instead of one state, are specified in set 2 and two 

sets of experiment data are input in set 3. Since no fit is required in this input file, no 

parameter set for parameter ID and parameter searching is shown in the input file. Set 4 

gives the table of form factor ID and multipolarity for each form factor. Set 5 gives the 

potential parameters for the elastic scattering channel in which the real part and 

Coulomb potential are obtained from another code, such as DFPD4, while the imaginary 

part of the potential is calculated by ECIS itself with the W-S potential model. Set 6 



 

 

50

gives the form factor for inelastic scattering to low-lying 2+ state. The format of set 6 is 

almost the same as that of set 5. For example, when the external form factor is input as a 

subset, such as for real optical and transition potential, the first row of the subset tells the 

code which part of the potential is specified in the following section, the second row of 

the subset gives the strength factor for the potential and scaling factor for the radius, and 

the rest of the subset gives the potential in term of radius and corresponding potential 

value. The W-S potential shape or deformed W-S potential model is used for imaginary 

potential. The subset for this part includes two rows in which the first row tells the code 

which part is specified in the following section and the second row gives three W-S 

parameters. However there are some differences between set 5 and 6. The strength 

factors in set 6 for both real and Coulomb transition potential obtained from external 

code should be multiplied with an additional factor π4/1 . For imaginary transition 

potential with L ≥ 2 in set 6, the first of the three W-S parameters is expressed as: 
 

3/1
0 Ti

i
i Ar

VU
l

l δ
=        (2.106) 

 
where Vi is the depth of the imaginary optical potential and lδ is the deformation length. 

The second and third W-S parameters are the same as in set 5.  
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FIG. 2.5 Sample input file II for ECIS97 to calculate the differential cross section for 

6Li elastic scattering and inelastic scattering to the low-lying 2+ state of 
116Sn with the double folding model. Real TP stands for real transition 

potential, Im. TP stands for imaginary transition potential. Co. TP stands 

for Coulomb transition potential. 
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2.5.5 Testing DFPD4 and ECIS with the 240 MeV α + 144Sm Scattering System 

.As a test to verify that our calculations are consistent with a known case, calculations 

were carried out for the 240 MeV α + 144Sm system (which had been previously studied 

[49]) using both DOLFIN (single folding) and DFPD4 (double folding) to calculate 

potentials which were then read into ECIS to calculate cross sections. The results are 

then compared to those obtained with DOLFIN and PTOLEMY. 
 
In addition to a general check of our application of these codes, the following questions 

are expected to be answered with the test: 
 

1. Given the same nuclear potential parameters, do ECIS and PTOLEMY give the 

same differential cross sections? 

 

2. Since sometime a normalization constant was introduced in folding procedure in 

L=0 case to compensate for the fact that 2/10
0 )4( −= πY [54], is the factor of 

2/1)4( −π required to be multiplied to the strength factor of the transition potential 

obtained from DFPD4 for ISGMR to do correct calculation? 

 

3. Since DFPD4 also calculates the Coulomb part of the optical and transition 

potential, does it calculate the coulomb transition potential the same way as 

PTOLEMY? If not, how does it affect the calculation of cross section? 
 
The real optical potential and nuclear transitional potential for ISGMR with the 

excitation energy Ex=12.5 MeV was calculated with DOLFIN and then input to ECIS 

and PTOLEMY respectively to calculate the differential cross section (The imaginary 

potentials were obtained with a deformed potential model calculation as shown in Eq. 

(2.94)). The calculations show that PTOLEMY and ECIS give almost the same results 

(There are 4% difference in maximum differential cross section, see Table 2.2 and Fig. 

2.6) if the strength factor for the transition potential is multiplied by 1/(4π)1/2 in the 
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ECIS input file. The calculation also verified that the input real and imaginary potential 

should have same polarity in the same range, otherwise the angular distribution will have 

a phase shift compared to PTOLEMY calculation (see purple curve in Fig. 2.6).  The 

same conclusion was obtained for the ISGDR case. 
 

 
 
FIG. 2.6 Angular distributions of differential cross sections calculated for α inelastic 

scattering to the giant monopole resonance having energy Ex=12.5 MeV 

with different folding calculations (DOLFIN and DFPD4) and different 

coupled channel calculations (PTOLEMY and ECIS).  

 

For GR with L≥2 and excitation energy Ex=12.5 MeV, using a nuclear and transition 

potential obtained by single folding from DOLFIN, ECIS calculations always give a 

higher differential cross section at small angles than PTOLEMY calculations (see Fig. 

2.7-2.9).  However if the Coulomb calculation is turned off, this difference disappears, 

which indicates that the difference is due to the different treatment of the Coulomb 

interaction in these two codes. For the ECIS calculation, the Coulomb part of the optical 

and transition potentials are obtained from DFPD4 calculations (see (2.100) and [78] ), 

while for PTOLEMY calculation,  they are calculated by the code in which the coulomb 

potential is estimated with equation (2.103) and transition potential is evaluated with the 

following expression: 
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Table 2.2 Difference in maximum cross section for giant resonance with L=0-4 and 

Ex=12.5 MeV for 240 MeV α + 144Sm due to different folding analysis 

(single folding and double folding). 

 Single folding analysis Double folding analysis 

L Folding DWBA Max. dσ/dΩ 
(mb/sr) Folding DWBA Max. dσ/dΩ 

(mb/sr) 

difference in 
max. dσ/dΩ 

0 DOLFIN PTOLEMY 601 DFPD4 ECIS 577 4% 
1 DOLFIN PTOLEMY 724 DFPD4 ECIS 767 6% 
2 DOLFIN PTOLEMY 163 DFPD4 ECIS 178 8% 
3 DOLFIN PTOLEMY 249 DFPD4 ECIS 276 10% 
4 DOLFIN PTOLEMY 311 DFPD4 ECIS 345 10% 
 
 

 
FIG. 2.7 Angular distributions of differential cross section calculated for α inelastic 

scattering to a giant quadrupole resonance  with energy Ex=12.5 MeV with 

different folding calculations (DOLFIN and DFPD4) and different 

coupled channel calculations (PTOLEMY and ECIS). 
 
The angular distributions of the differential cross sections obtained from ECIS and 

PTOLEMY with single folding potentials (calculated by DOLFIN) are also compared 
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to those obtained from ECIS with double folding potentials calculated by DFPD4 for L 

= 2, 3, 4 with Ex=12.5 MeV (see Fig. 2.7-2.9). There is about 10% difference in 

amplitude between the single and double folding calculations (see Table 2.2). Compared 

to DOLFIN, DFPD4 has some new features[101], such as, the interaction is scaled by a 

kinematic factor to take into account the kinematical transformation of the interaction 

from the NN frame to the nucleus-nucleus frame, some improvement in the numerical 

interpolation subroutine is incorporated. ECIS also has some difference compared to 

PTOLEMY, such as, relativistic kinematics is used in ECIS while non-relativistic 

kinematics is used in PTOLEMY, etc., however when ECIS and PTOLEMY are 

compared for single folding calculations, the differences are small except at small angles 

where the different Coulomb treatment is important.  
 

 
FIG. 2.8 Angular distributions of the  differential cross section calculated for α 

inelastic scattering to the HEOR resonance at energy Ex=12.5 MeV with 

different folding calculations (DOLFIN and DFPD4) and different 

coupled channel calculations (PTOLEMY and ECIS). 
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FIG. 2.9 Angular distributions of the differential cross section for  L=4 excitation 

calculated for α inelastic scattering to giant resonance  energy Ex=12.5 

MeV with different folding calculations (DOLFIN and DFPD4) and 

different coupled channel calculations (PTOLEMY and ECIS). 
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3. EXPERIMENT SETUP AND CALIBRATION 

3.1 Experiment Setup 

Ions of 6Li2+ from the ECR source were injected into the K500 superconducting 

cyclotron for acceleration to 240 MeV and stripped up to 3+ charge state in the beam 

line. The 6Li ions passed through the beam analysis system and bombarded self-

supporting target foils located in the target chamber of the multipole-dipole-multipole 

(MDM) spectrometer (see Fig. 3.1). The outgoing particles were detected with the focal 

plane detector of the MDM spectrometer. The position, energy and timing information, 

after shaping by electronics, were recorded on line with the data acquisition system. The 

functions of each part and experimental details are discussed below. 

 

 
FIG. 3.1 The experimental setup of 6Li scattering. 
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3.1.1 Beam Analysis System 

The positive ion beam from the K500 cyclotron has an aberration limited resolution 

ΔE/E of approximately 1/700, while the giant resonance studies require a beam with 

moderate resolution (ΔE/E<1/2000) and free from slit scattering and halo. A beam 

analysis system disperses the beam with a magnetic bend, then selects a part of the beam 

with slits whose width determines the resolution of the beam that is passed to the target. 

The beam analysis system [102]for the Texas A&M K500 cyclotron uses distributed n = 

0 dipoles with external quadrupole focusing elements. It provides a dispersion of 19.3 

cm per % ΔP/P with an ultimate aberration limited resolution of ΔE/E up to 1/2500 for 

the full emittance of the beam from the K500 cyclotron. A total of 175° of bend, in 

opposite direction 88° and 87° segments, is used with an intermediate focus between the 

segments. The first half is used to disperse and limit the beam with the second half 

serving to remove slit scattered particles so that a very clean beam can be transported to 

the MDM spectrometer for zero degree inelastic scattering measurements. 

3.1.2 Multipole-dipole-multipole (MDM) Spectrometer 

The MDM spectrometer was constructed at Oxford University in 1982 and later brought 

to Texas A&M for use with the K500 cyclotron. It consists of multipole magnet, field 

clamp, dipole magnet, another field clamp and another multipole magnet listed in the 

order along the beam direction (as shown in the Fig. 3.2) (note: the multipole magnet 

after the dipole was not used in these experiments) It has an aberration limited resolution 

ΔE/E of 1/4000, and an 8 msr maximum solid angle (80 mrad for horizontal acceptance 

and 100 mrad for vertical acceptance). The details of the design, properties and testing of 

MDM spectrometer are given in Ref. [103]. The dipole magnet has a linear gradient 

field, and 100° of total bend with a 1.6 m central radius. It provides a large dispersion, 

with a low magnification and a high mass-energy product. The advantage of the single 

dipole magnet is that it provides simplicity and reliability for operation of MDM under 

experimental conditions. The spectrometer provides a horizontal linear magnification 

Mx=0.4 and a vertical linear magnification My=5.0. 
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When the spectrometer was set at 0°, the beam passed through the beam pipe located on 

the high ρ side of the detector box and stopped in a Faraday cup inserted in a wall (see 

Fig. 3.3). In order to protect the detector from radiation damage, shielding consisting of 

a layer of lead brick and 24 inch thick plastic and paraffin was put behind the detector to 

attenuate the flux of neutrons and gamma rays. When the spectrometer was set at 4°, the 

beam was collected in a Faraday cup in the slit box. At 6° and above, the beam was 

stopped in a Faraday cup inside the target chamber.   When the spectrometer was set at 

angles greater than ~ 10°, paraffin and lead shielding were placed between the detector 

and the target chamber. 
 

 
FIG. 3.3 The layout of the MDM spectrometer with focal plane detector at 0° for 

giant resonance measurement. 
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3.1.3 Focal Plane Detector for MDM Spectrometer 

 

 
FIG. 3.4 Cross section view of the focal plane detector of MDM spectrometer. 
 
The focal plane detector of the MDM spectrometer [104, 105] must measure position 

and angle of the particles entering the detector so that ray tracing can be used to 

determine the position where the particle intercepts the focal plane and the angle the path 

of the particle makes as it enters the spectrometer (related to the scattering angle).  In 

addition, the dE/dx (energy loss) and total energy are measured to aid in particle 

identification. A cross-section of the detector is shown in Fig. 3.4. There are four 60 cm 

long resistive wire counters (spaced at 13.55 cm intervals) to measure horizontal position 

from which angle information is derived, an ionization chamber to provide ΔE signals 

and a scintillator on the back to measure total energy and to provide a fast timing signal. 

An electrical diagram of the components of the detector is shown in Fig. 3.5. 
 
Gas ionization chambers [106] have been used for many years to  determine the energy 

loss of charged particles. The simplest ionization chamber has two plane parallel 

electrodes in a gaseous medium with an electrostatic field between them. The electrons 

freed by the ionization are collected on the positive plate.   However, the positive ions 

produced in the ionization, which have mobility 1000 times slower than electrons, 

induce a charge on the anode. This causes a pulse from the anode to have a nonlinear 

response to the energy loss in the gas chamber. O.R. Frisch [107] suggested that a grid 
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(usually called a Frisch Grid) fixed at a voltage lower than the anode and placed near the 

anode but between the anode and cathode would screen the effects of positive ions (as 

shown in Fig. 3.6) from the anode. The drift field in the ionization chamber is then 

determined by the voltage between the Frisch grid and the cathode.   However some of 

the drifting electrons will be collected on the Frisch grid, reducing the signal on the 

anode. The details of the design of grid ionization chambers were given by Bunemann, 

et al. [106] and the main criteria used in building the chamber are summarized below. 

 

Assuming the applied potentials are Va on the cathode, Vg on Frisch grid wires and Vp 

on the anode (now called the collector plate), the inefficiency of the shielding is defined 

as [106]  
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where Ep is the field between the grid and collector plate and EQ is the field induced by 

the positive charges created in the ionization region between the Frisch grid and the 

cathode. On the other hand, the condition on potential difference for zero grid 

interception (transparency) can be expressed as[106] 
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dl , a is the distance between cathode and the 

Frisch grid. 
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FIG. 3.5 Diagram of electrical circuit to provide HV for each component and to 

obtain signals from ionization chamber and wire counters (originally from 

H.L. Clark [108] ). 
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FIG. 3.6 Diagram of ionization chamber with Frisch grid. The blue plate on the top is 

the anode, the orange plate on the bottom is the cathode and the pink 

circles are Frisch grid wires. r is the radius of the Frisch grid wire, p is the 

distance between the Frisch grid and the anode and d is the pitch of the 

Frisch grid wires. Va, Vg, Vp are the electric potentials for cathode, Frisch 

grid wires and anode respectively. Black dots means the actual distance 

between cathode and Frisch grid is much large than that shown in the 

figure. 
 
 
The balance between small σ for efficient shielding and high transparency depends on 

proper choice of d, the pitch of the Frisch grid wire, p, the distance between the Frisch 

grid and the collector plate, and the high voltages on the cathode and Frisch grid. For the 

ionization chamber in the MDM focal plane detector, the radius of the Frisch Grid wire 

(BE copper alloy) r = 50.8 μm, the pitch d = 1.5 mm, p = 15 mm, a = 105 mm. Negative 

3000 V was applied to the cathode, while negative 667 V was distributed on Frisch grid 

wires and the anode was grounded through a 200MΩ resistence. So the inefficiency σ 

=0.025 and 22.025.0 >=
−
−

ab

gp

VV
VV

, where 0.22 is the condition limit for zero grid 

interception. The electric circuits for the ionization chamber are shown in Fig. (3.5).  
 
The resistive wire counters [109] measure position by charge division. The charge 

collected at each end of a resistive wire is proportional to the distance from the point the 

charge is injected to the other end. Assume a resistive wire with total length L and two 
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ends A and B. If a certain charge is injected at C, somewhere on the wire, and QA and QB 

are detected at end A and end B respectively, the distance AC then can be expressed as 
 

L
QQ

QAC
BA

B

+
= .         (3.3) 

 
The resistive wire used in the wire counter is STABLOHM 675, obtained from 

California Fine Wire Company, with diameter of 0.0007 inch and R = 1678 Ω/FT.  The 

four wire counters are mounted directly above the ionization chamber. As a particle 

passes through the ionization chamber beneath the wire counters, electrons released by 

the ionization drift toward the Frisch grid and pass through the Frisch grid and some 

eventually drift into the avalanche region of the wire counter through the gap between 

the ΔE plates. Four small grids between the wire counters and Frisch Grid are used to 

shield the Frisch Grid from the large number of positive ions generated in the avalanche 

region.  
 
The detector was filled with a mixture of 97% isobutane gas and 3% Dimethoxymethane 

alcohol (http://www.sigma-aldrich.com) with the gas pressure typically set at 150 torr. It 

has been shown [110-112] that isobutane has two advantages over argon-methane 

mixtures for hybrid counter use: a greater stopping power and less multiple scattering. 

The alcohol is used to clean the wires. Gas flows continuously through the detector to 

avoid the contamination in the detector which results from the impurity of the gas and 

ionization processes (ionization changes the properties of the gas). The details of the gas 

control system are shown in Fig. (3.7). Isobutane gas from the gas bottle passes through 

a 247C MFC gas flow controller and is split into two flows. About 94%  of the gas goes 

directly to a gas mixer, while ~ 6% of the gas bubbles through the alcohol bottle and 

then flows to the gas mixer containing  ~3% alcohol. The isobutane-alcohol mixture then 

passes through an electric valve to the detector. The pressure at the inlet to the detector is 

maintained at 600 torr by dynamically adjusting the opening of an electric valve 

controlled with MKS 250B controller. The gas mixture flow through the detector and 
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then is pumped out with a roughing pump. The pressure in the detector chamber is 

maintained by an electric valve on the pump out flow with another MKS 250 controller.  

 
 
 
FIG. 3.7 The gas control system for MDM focal plane detector (from H.L. Clark 

[113]). 
 
A 25.4μm thick Poly-Aramid foil is used as front window and a 0.25mm Mylar foil is 

used as back window in the detector. For 240 MeV 6Li particles, the energy loss in the 

front window is about 500 keV and the energy loss in the back window is 4~5 MeV. A 

5mm BC400 plastic scintillator on the back of the detector is used to provide energy loss 

and fast timing signals. The thickness of 5mm is chosen to allow separation of the 6Li 

particles from α particle and deuterons. Compared to inorganic crystal scintillation 

detectors, a plastic scintillator offers a very fast signal with a decay constant of about 

2~3 ns and a high light output. It comes in many sizes and shapes and can be easily 

machined. For the MDM focal plane detector, a conical Lucite light guide was glued to 
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one end of the scintillator and coupled to a HAMAMATSU H1949 photon-multiplier 

tube (PMT).  
 

3.1.4 Electronics and Data Acquisition System 

There are two kinds of high voltage (HV) supplies needed for the detector. The 

photomultiplier tubes used for the monitor detector inside the target chamber and for the 

scintillator behind the focal plane detector require several mA of current and the 

Tennelec TC 952 was used for these.  The BERTAN 375P(N) was used for applications 

that draw no or very little current, such as HV for the position  wires, the cathode, the  

beam pipe correction field and the shell.  The voltages applied to various elements of the 

detector and typical currents for the 240 MeV 6Li scattering experiments are listed in 

Table 3.1. The diagram of electronics of signal processing and the data acquisition 

system is shown in Fig. 3.8. 
 
 
Table 3.1 The voltages applied to different components of the detector and typical 

current for 240 MeV 6Li scattering. 

 Wire1 Wire2 Wire3 Wire4 Cathode Beam 
pipe Shell Monitor PMT 

HV for 
Elastic 

(V) 
1662 1661 1664 1664 -3000 -2230 199 -652 -1680 

HV for 
Inelastic 

(V) 
1663 1663 1662 1663 -3000 -2230 202 -709 -1680 

typical 
current 0 μA 0 μA 0 μA 0 μA 16.1 μA 43.1 μA 20 μA several 

mA 
several 

mA 
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FIG. 3.8 The diagram of electronics of signal processing and the data acquisition 

system. The preamplifiers used for wire counters are modified 

CANBERRA 2004 preamplifiers.  The preamplifiers used for Cathode, 

side and ΔE signals are CANBERRA 2004 preamplifiers. The 

preamplifier used for the dynode signal is the ORTEC 113 preamplifiler. 
 
 
During the experiment, the signal of the phototube dynode from plastic scintillator 

provided an energy loss signal while the phototube anode signal provided a fast timing 

trigger for each event. A TENNELEC TC 455 constant-fraction discriminator (CFD) 

was used to convert the anode signal into logic signal. Noise was rejected by setting the 

threshold higher than the noise level. The output of the CFD, together with the logic 

Wire 1L 

Wire 2L 

Wire 2R 

Wire 4R 

Cathode 

ΔE 

SIDE 

dynode 

Anode sig. 

Wire 4L 

Wire 3R 

Wire 3L 

Wire 1R 

Pre. Amp. 

Pre. Amp. 

Pre. Amp. 

Pre. Amp. 

Pre. Amp. 

Pre. Amp. 

Pre. Amp. 

Pre. Amp. 

Pre. Amp. 

Pre. Amp. 

Pre. Amp. 

Pre. Amp. 

Amp.

Amp.

Amp.

Amp.

Amp.

Amp.

Amp.

Amp.

Amp.

Amp.

Amp.

Amp.

ADC
811 

ADC
413 

ADC
413 

CFD(TC455) 

Fan in/out 
Lecory 429A 

Tail pulse 
generator 

Gate & Delay 
ORTEC 416A

Logic Unit 
(PS755) 

Gate & Delay 
ORTEC 416A 

Counter 
(TC532)

Fan in/out 
Lecory 429A Counter 

(TC532)

Gate 
(GG8000) 

NIM

ECL

NIM 

ECL 

busy 

veto

M
otorola M

VM
E 

712/M
 Ethernet 

interface 

C
B

D
 8210 

B
ranch highw

ay 

Front end com
puter

Back end computer

VME 



 

 

69

signal from a random (in time) pulse generator and a veto signal from a CBD 8210 

module (veto signal is given when the module is busy transfering data to the front end 

computer and can not accept signals from ADC’s) were added by a coincident logic unit 

ORTEC 755 and then passed through the GG8000 to produce gate signals with 

adjustable width for ADC’s. Eight charge signals collected from left and right ends of 

the 4 wire detectors, a ΔE signal from collector plate, and a cathode signal went through 

CANBERRA 2004 preamplifiers and were converted into negative unipolar voltage 

pulses for which the peak amplitude was linearly proportional to the charge input. The 

outputs of the preamplifiers were sent to ORTEC 571 or 671 spectroscopy amplifiers, 

shaped into Gaussian pulses and then converted into digital signals by AD413 or 

AD811. The dynode signal first went through an ORTEC 113 preamplifier and was sent 

to an ORTEC 571 spectroscopy amplifier and then converted into a digital signal by 

AD811. All the digitalized signals were passed on by branch highway cable from 

CAMAC crate to VME front end, which consists of a VME crate with a CBD 8210 

module and a Motorola MVME 712/M Ethernet interface module. A Dell PowerEdge 

1650 computer worked as a front end host server connected with the electronics through 

optical fiber for data acquisition. Another DELL PowerEdge 2950 was used to analyze 

data on-line as well as to store data on disk for off-line analysis. 
 

3.1.5  Experimental Details 

 The targets were self-supporting foils, 9.9 mg/cm2 thick enriched to 95% in 116Sn, 7.56 

mg/cm2 thick natural Si and 4.35 mg/cm2 thick enriched to 99% 24Mg. The thickness of 

the Sn target was determined by measuring the energy loss of a 240 MeV α beam 

passing through the target. The thickness’s of Si and Mg targets were determined by 

measuring the energy loss of the 240 MeV 6Li beam passing through the target. The 

procedure for each target thickness measurement was as follows : a) measure the 

position in the focal plane of the particles without a target in place; b) measure the 

position with the beam passing through the center of the target; c) repeat a) again (to 

check the beam stability); d) measure the position with the beam passing through the 
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upper part of the target (to check the uniformity of the target). 6Li inelastic scattering 

was measured over an excitation energy range from several MeV to 60 MeV to obtain 

giant resonance data. 6Li elastic scattering was also measured to extract optical potential 

parameters. The magnet field settings, the spectrometer angles and the slit openings used 

in both elastic and inelastic scattering are listed in Table 3.2. 
 
Table 3.2 The spectrometer angles and magnetic field settings used for measuring the 

elastic scattering and inelastic scattering for 116Sn, 28Si and 24Mg. The 

numbers in parenthesis are the slit opening used (horizontal × vertical in 

degree). 

 116Sn 28Si 24Mg 
 Elastic GR Elastic GR Elastic GR 

Dipole Field 
(Gauss) 11001.0 10679.5 11001.0 10679.5 11001.0 10679.5 

Quad. Field 
(Gauss) 7546 7550 7546 7550 7546 7550 

θspec 

5°, 7°, 9° 
(4°×2°) 

 
11°, 13°,15°, 
17°, 19°,21°, 
23°, 26°,29°, 

32°, 35° 
(4°×4°) 

0°, 4° 
(4°×4°) 

5°, 7°, 9° 
(4°×2°) 

 
11°, 

13°,15°, 
17°, 

19°,21°, 
23°, 

26°,29°, 
32°, 35° 
(4°×4°) 

0°, 4° 
(4°×4°) 

5°, 7°, 9° 
(4°×2°) 

 
11°, 

13°,15°, 
17°, 

19°,21°, 
23°, 

26°,29°, 
32°, 35° 
(4°×4°) 

0°, 4°, 6° 
(4°×4°) 

 
 
 

3.2  Detector Calibration and Data Processing 

3.2.1 Position Calibration 

Data were taken for the elastic scattering of 6Li from 12C using an entrance slit for the 

spectrometer that had 5 narrow vertical openings, spaced to correspond to -2°, -1°, 0°, 

1°, 2° relative to the central ray (see Fig. 3.9) entering the spectrometer.  This was 

repeated for sixteen dipole-field settings such that the focal plane positions of the 6Li 

ions spanned the useful length of the detector. The positions of the centroids of peaks for 
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each wire counter were obtained for all sixteen dipole-field setting (channel numbers).  

They were then compared with RAYTRACE [114] predictions of the position (in 

centimeters) to obtain the relation between the channel number and position (in 

centimeters) along the focal plane for each of the four wire detectors.  
 

  
FIG. 3.9 Figure at the top left is a schematic of the collimator used to obtain angle 

calibrations and calibrations of channel number versus position for each of 

the resistive wires. The figure on the bottom left is a spectrum taken with 

this collimator showing the calculated angle. The figure on the right shows 

schematically the four resistive wires and the parameters defining a ray 

and the location of the focal plane. 

 

3.2.2 Angle Calibration 

An angle calibration was obtained by measuring inelastic scattering of 6Li from 12C 

providing particles covering the entire detector using the same collimator in the opening 

to the spectrometer as for the position calibration (see Fig. 3.9). The angle in the detector 
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for each ray was calculated from the positions of the ray measured on two resistive wires 

(usually wire1 and wire 4 are chosen for angle calculations). For example, as shown in 

Fig. 3.9, ray c is one ray with detector angle θDc, for which y1c and y4c are the positions 

measured by wire1 and wire 4 respectively. Assuming the distance between wire 1 and 

wire 4 is x41, the angle θDc for ray c can be expressed as: 
 

41

14tan
x

yy cc
Dc

−
=θ .       (3.4) 

This angle measured at the detector and the position of this ray along the focal plane are 

then used to calculate the angle that the particle traveled away from the target relative to 

the beam. This angle relative to the beam at the target is then converted into an integer 

between 0- 4096 for plotting in spectra. From the resultant angle spectrum, the centroid 

channels for the five peaks corresponding to the openings in the slit are obtained and 

fitted with a linear expression: 
 

ii Nba ⋅+=θ         (3.5) 
 
where 20000 2,1,0,1,2 −−=iθ  , Ni is the centroid channel for each peak in the angle 

spectrum and a and b are fitted parameters for angle calibration. 
 
Both 4°×2° (horizontal and vertical angle acceptances of 4° and 2° respectively) and 

4°×4° solid angle defining slits were used in experiments. Each data set was divided into 

10 angle bins (as shown in Fig 3.10) so that each angle bin corresponded to Δθ ≈ 0.4°. 

The average angle for each angle bin was obtained by integrating over the height of the 

height of the slit and the width of the angle bin. Assuming the ith angle bin is divided 

into many small areas Sj and θj is the angle extended from center of the small area to the 

center of the target, the average angle iθ for the angle bin can be approximately 

expressed as: 
 

∑
∑=

j

jj
i

S
S θ

θ         (3.6) 
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FIG. 3.10 The figure shows a 4°× 4° slit opening with each circle showing the same 

polar angle relative to the beam direction. The area between adjacent 

horizontal lines represents one angle bin for which the average angle was 

obtained by Eq.(3.8).   
 

3.2.3 Energy Calibration 

Energy calibrations for elastic scattering were obtained from the position calibration. 

With RAYTRACE calculations, the relation between the particles momentum and 

position on focal plane had been obtained. So the position spectrum could be converted 

into a momentum spectrum with position calibration and then converted into an energy 

spectrum with relativistic kinematics. The energy calibrations for inelastic scattering to 

the giant resonance region were obtained by measuring inelastic scattering on 12C, 24Mg 

and 28Si with the spectrometer set at 4o, at the actual field settings used in the 

experiments. The positions of the 3- state at Ex=10.18±0.02 MeV and 2+ states with 

Ex=18.67±0.05, 20.43±0.05 MeV[115] in 28Si, the 2+ states with Ex= 12.86±0.05, 

17.36±0.05 MeV[115] in 24Mg and, and 3- states with Ex= 9.641±0.005, 18.35±0.05 

MeV[116] in 12C were used for calibration. During the experiment, calibration runs with 

2.0° -2.0°  -0.4° 1.2° 0.4° -1.2° 

0.0° -0.8° -1.6° 1.6° 0.8° 
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a 24Mg target were done before and after the data runs for each spectrometer angle to 

check the calibration using the 13.68±0.05 MeV 0+ state. 
 

3.2.4 Data Processing 

The raw data files for each run were sorted into ten position spectra corresponding to ten 

angle bins. The position spectra were then converted into excitation energy spectra. The 

experimental differential cross section for a given excitation energy and angle bin was 

obtained with the following expression: 
 

ΔΩ××
×

==
Ω TZQ

DTY
IN
N

d
d

pT /
'σ

       (3.7) 

where N’ is the reaction number per second, I is the flux of incident particles, NT is the 

number of target nuclei per unit area, Y is the number of events in a particular  angle bin 

and excitation energy range, DT is the correction  for the dead time of electronics and 

computer and includes the detector efficiency, Q is the total charge of the beam collected 

by the Faraday cup, ZP is the charge of the incident particle, T is the thickness of the 

target and ΔΩ is the solid angle. The average angle in the lab system was calculated with 

Eq.(3.8) and converted into center of mass angle with relativistic kinematics for further 

data analysis. The angular distributions of absolute differential cross section for 6Li + 
116Sn elastic scattering and inelastic scattering to 2+ and 3- low-lying states of 116Sn are 

shown in Fig. (3.11). The angular distributions of absolute differential cross section for 
6Li +28Si elastic scattering and inelastic scattering to 2+ and 3- low-lying states of 28Si are 

shown in Fig. (3.12). The angular distributions of absolute differential cross section for 
24Mg elastic scattering and inelastic scattering to the first 2+ state  in 24Mg are shown in 

Fig. (3.13).   
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FIG. 3.11 The angular distributions of absolute differential cross section for 6Li + 

116Sn elastic scattering and inelastic scattering to 2+ 1.29 MeV and 3- 2.27 

MeV states in 116Sn are shown. The error bars shown represent statistical 

plus systematic errors. 



 

 

76

 

 

 
FIG. 3.12 The angular distributions of absolute differential cross section for 6Li +28Si 

elastic scattering and inelastic scattering to 2+ 1.78 MeV and 3- 6.89 MeV 

states in 28Si are shown. The error bars shown represent statistical plus 

systematic errors. 
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FIG. 3.13 The angular distributions of absolute differential cross section for 24Mg 

elastic scattering and inelastic scattering to 2+ 1.37 MeV state in 24Mg. 

The error bars shown represent statistical plus systematic errors. 
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4. DATA ANALYSIS AND RESULTS* 

In this section, the data analysis is described and discussed thoroughly in detail. Section 

4.2 describes the analysis of elastic scattering of 240 MeV 6Li from 116Sn with the 

optical model where optical parameters were obtained by fitting the elastic scattering 

data with a W-S potential and a folded potential.  The cross sections of inelastic 

scattering to low-lying 2+ and 3- states were also obtained and used to check the optical 

potential parameters by comparing to DWBA calculations. The parameters were then 

used to calculate differential cross sections for inelastic scattering to giant resonances. 

The strength distribution was extracted and compared to those obtained by alpha 

inelastic scattering. In section 4.3, analysis of elastic and inelastic scattering of 240 MeV 
6Li on 28Si and 24Mg is discussed.  

 

4.1 Data Analysis Procedure 

The data analysis procedure with the double folding model calculation is shown in Fig. 

4.1. The elastic scattering data was fitted by ECIS with the real and Coulomb potential 

obtained from DFDP4, and with W-S imaginary potential. Optical parameters obtained 

from fitting were checked by comparing to inelastic scattering to low-lying states. The 

optical parameters together with transition potential calculated by DFPD4 for L = 0 - 4 

sum rule limit were input to ECIS to get the angular distributions of the differential 

cross section. The angular distributions for L = 0 − 4 were then read to spread sheet 

fit.xls [117]. The inelastic scattering data for giant resonance were input to spread sheet 

analysis.xls [117], where a suitable background was chosen and the GR excitation 

energy range was split into many small energy bins. An angular distribution of 

differential cross section was obtained for each energy bin. The spread sheet fit.xls 

automatically accesses analysis.xls to get angular distributions of the cross sections over 

                                                 
*Part of this section was reprinted with permission from X. Chen, et al., Physical Review 
C 76, 054606 (2007), copyright (2007) by American Phyical Society. 
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the GR region. L = 0 − 3  strength distribution were obtained by fitting the GR data with 

the calculated cross sections of sum rule limits for each multipolarity. 

 

 
 
FIG. 4.1 Block diagram of the data analysis procedure. 
  
The DFPD4 calculations of transition potentials were usually time consuming because as 

many one hundred of calculations have to be done for L = 0 − 4 over GR excitation 

range from approximately 8 MeV to 40 MeV with 1 MeV interval. Each calculation took 

roughly 6~7 minutes on Dell Poweredge computer with double Intel (R) 2.4GHz CPU. 

A computer code df_ecis_avg.py, written with PYTHON script, was used to control the 

calculations.  The code fulfilled the following functions: calculate deformation 

parameters corresponding to sum rule limits for L = 0 − 4 for a given energy; calculates 

transition potential with DFPD4 for a certain multipolarity for a given energy (The 

initial energy point and the energy interval is specified by input parameter file 

df_ecis_avg.in); calculate differential cross section with ECIS for a certain multipolarity 

Elastic dσ/dΩ 
 angular distribution 

Strength distribution 
for L=0,1,2,3  

Elastic scattering 

Inelastic 
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and do solid angle correction; output array of differential cross sections in terms of 

excitation energy and center of mass angle.  
 
The matter deformation parameters L

mβ for multipolarities L = 0 − 4 were obtained from 

the EWSR limit definition (see section 2). The deformation length L
iδ for imaginary 

transition potential given for 2≥L are obtained with the assumption 
 

L
i

L
m

L
m c δβδ ==  .     (4.1) 

 
The deformation parameters L

iβ for imaginary transition potential for L = 0, 1 are 

obtained with the assumption [59, 118] 
 

)( 3/13/1
0

1,01,0
PTiim AArc += ββ      (4.2) 

 
where AT and AP are the mass of the target and projectile respectively.  
 

4.2 240 MeV 6Li Scattering on 116Sn 

4.2.1 Elastic Scattering 

Elastic scattering data of 6Li + 116Sn were fitted by the W-S phenomenological potential 

model and potentials derived from double folding. Fermi distributions obtained from 

droplet model calculations [94] were used for target and projectile density in the density 

independent folding (DIF) calculation. In the density dependent folding (DDF) 

calculation, a Fermi distribution was used for the ground state of 116Sn, with the 

parameters obtained from Ref. [88], and the 6Li ground state density was obtained from 

proton scattering with the cluster-orbital shell-model approximation (COSMA)[119]. 

The proton and the neutron densities of 6Li were expressed as:  
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where Nc= 2.0, Nv = 1.0, a = 1.55, b = 2.07, A = 1.0 and B = 0.0. The density parameters 

used in the folding calculations are listed in Table 4.1. 
 
 
Table 4.1 Density parameters for the folding calculations.  Fermi parameters c (half 

density radius) and a (diffuseness) are given for the matter distribution. Rm 

and RCoul stand for mean square root radii for matter distribution and 

Coulomb interaction respectively. 

model density form Nucleus c(fm) a(fm) Rm(fm) RCoul(fm) 

DIF Fermi[94] 6Li 1.508 0.5 2.195 2.195 
 Fermi[94] 116Sn 5.469 0.5 4.626 4.626 

DDF COSMA[119] 6Li ▬▬ ▬▬ 2.444 1.833* 
 Fermi[88] 116Sn 5.49 0.515 4.663 4.253* 

*Uniform charge distribution is used in the calculations to estimate the 

Coulomb interaction for elastic scattering. 

 

Elastic scattering fits with W-S phenomenological potentials were carried out with 

ECIS. The W-S potential has the 3-parameter form: 
 

),()],/)exp((1/[)( 3/13/1
0 PTVV AArRaRrVrV +=−+=   (4.4) 

 
where AT is the mass number of the target and Ap is the mass number of projectile. The 

real and imaginary parts have the same form except the parameter values are different. 
 
Satchler and Khoa [118] found that better fits to the measurements including those taken 

at angles beyond the Fraunhofer diffraction region were obtained by a hybrid model in 

which the real interaction was obtained with folding and the imaginary part was 

represented by a Woods-Saxon potential.  So in this work, only the real parts of the 

optical potentials were obtained by a folding procedure with both the DIF model and the 

DDF model. The DDF folding calculations were carried out with the folding code 

DFPD4 [93], while the DIF calculations were carried out with CHEN2 [94], and the 

differential cross sections were obtained with ECIS. In the DIF calculation, the Reid 

version of the M3Y NN interaction was used and the knock-on exchange contribution 
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was represented by zero-range approximation which is a δ function with strength shown 

in Eq. (2.74). In the DDF calculation, the Paris version M3Y NN interaction was used 

and the knock-on exchange effect was represented by a finite range approximation 

shown in Eq. (2.75). The density dependent function is expressed as [77]:  
 

( )ρρ ρ 0.48033.312658.0)( 4099.1 −+= −eF .                                                             (4.5) 
 
There is also a weak energy dependence included in the density dependent NN effective 

interaction, which is used to reproduce the empirical energy dependence of the nucleon-

nucleus optical potential [76] and is expressed as following: 
 

εε 003.01)( −≈g        (4.6) 
 
where ε is the bombarding energy per nucleon (in MeV). The direct term and exchange 

term of the NN effective interaction in the DDF calculation thus are expressed as 
 

)()()(),,( )()( rvFgrv EXDEXD ρεερ = .      (4.7) 
 
The optical potential parameter sets obtained from both folding model fits as well as the 

W-S fit are listed in Table 4.2.  The calculated angular distributions for the ratio between 

absolute differential nuclear cross section and Rutherford cross section are plotted along 

with elastic scattering data in Fig. 4.2. The (real potential) renormalization factors in 

both folding calculation are around 0.65, consistent with earlier folding analysis of 6Li 

scattering [69, 120]. The real parts of the potentials obtained from the different models 

are plotted in Fig. 4.3, where the folded potentials are multiplied by the renormalization 

factor NR obtained from the fits of elastic scattering data. The amplitudes of the 

potentials are quite different for smaller radii, however they overlap well for radii in the 

surface region (R~7.4 fm is roughly the sum of radii of the projectile and target), 

indicating that peripheral collisions dominate in the angular range studied here. From 

Fig. 4.2 it is apparent that even an additional 10° (out to 40°) could have improved the 

parameterization and such larger angles measurements would help to determine the 

amplitude of interior potential.  
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The quality of fit of elastic scattering and inelastic scattering to low-lying 2+ and 3- states 

is estimated by χ2, defined by: 
2
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where N is the number of data points, σ(θi)cal is the ith calculated cross section, σ(θi)exp 

is the experimental cross section and Δσ(θi) is the corresponding uncertainty. The χ2 

obtained from W-S model fit is not significantly different than those obtained from 

folding model fits. Since there have been no 6Li + 116Sn scattering data reported before, 

the optical parameter sets from Ref. [120] for 210 MeV 6Li scattering on 90Zr and 208Pb 

are also shown in Table 4.3 for comparison. Farid and Hassanain [120] obtained their χ2 

assuming the 90Zr and 208Pb data have uniform 10% error. In order to compare the fit for 
90Zr and our 116Sn, χ2  was recalculated for 116Sn by assuming the data have 10% 

uncertainty.  The calculations show that W-S model fit for 116Sn data (χ2 ~5.16) is better 

than the W-S fit for 90Zr data (χ2 ~8.3), while fits with double folding models for 116Sn 

(χ2 ~5.18) and 90Zr (χ2 ~4.9) have approximately the same quality. 

 

Table 4.2 Optical parameters sets obtained from the analysis of 6Li scattering. W-S 

means Woods-Saxon potential. DIF means density independent folded 

potential and DDF means density dependent folded potential. * means that 

Rv(w)=r0(i0)AT
1/3. 

E6Li 
(Me
V) 

target Potential 
type NR V 

(MeV)
r0  

(fm) 
A 

(fm) 
W 

(MeV) 
rI0 

(fm) 
aI 

(fm) 

Jv  
(MeV
fm3) 

Jw 
(MeV 
fm3) 

χ2 σr 
(mb) 

W-S  195.9 0.825 0.934 27.98 1.178 0.823 254.3 91.4 0.77 2885 
DIF 0.637    39.99 1.075 0.992 234.4 106.4 1.19 3031 

240 
 
 

116Sn 
 
 DDF 0.659    28.77 1.151 0.905 202.1 89.9 0.98 2956 

W-S  177 1.182* 0.939 31.30 1.627* 0.810 257.0 106.0 8.3 2618 90Zr 
 DIF 0.70    31.30 1.596* 0.917 263.0 103.0 4.9 2744 

W-S  224.0 1.104* 1.001 35.10 1.518* 0.824 259.0 93.0 0.6 3536 

210 
[8] 

 
 
 

208Pb 
 DIF 0.60    31.40 1.537* 0.842 224.0 86.0 1.8 3582 
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FIG. 4.2 Experimental angular distribution of the cross-section (relative to Rutherford 

cross section) and fits for 6Li+116Sn elastic scattering using W-S potential, 

DIF potential and DDF potential parameters are shown. The error bars 

indicate statistical and systematic errors.   
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FIG. 4.3 Real optical potentials obtained from W-S, DIF, DDF models. For DIF 

model, the dash and dot curve shows the folded potential obtained from 

CHEN2 multiplied by renormalization factor NR=0.637. For DDF model, 

the black curve shows the folded potential obtained from DFPD4 

multiplied by renormalization factor NR =0.659. The inset has the vertical 

scale expanded to show the region of overlap. 
 
 
The volume integral of optical potentials per interacting nucleon pair were determined 

by the relation 
 

∫= τdrWrV
AA

J
pT

WV )(),(1
,       (4.9) 

 
where V(r) and W(r) are the real and imaginary parts of the optical potential and AT and 

AP are the mass numbers of the target and projectile. Based on folding model analysis of 

light HI elastic scattering with density independent S1Y NN interaction at intermediate 

energy [121], Satchler obtained a qualitative expression for the volume integral per 

nucleon pair with linear energy dependence: 
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)/005.01(2591
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V AEJ −−=       (4.10) 
 

where E is the incident energy and Ap is the mass of the projectile. For 240 MeV 6Li 

scattering, Jv
S1Y=207 MeVfm3. Even earlier, Gupta and Murthy [122] proposed a semi-

empirical formula for the real volume integrals based on nucleon-nucleus optical 

potential derived from the JLM interaction. The volume integral given by the semi-

empirical formula is both energy dependent and target mass dependent. The value of 

volume integral will slowly decrease as the incident energy and target mass increase. For 

240 MeV 6Li scattering on 116Sn, Jv
JLM = 217 MeVfm3. On the other hand, Nadasen et al. 

[123] analyzed 210 MeV 6Li scattering on 90Zr with W-S potential model and suggested 

an empirical logarithmic energy dependence form for the volume integral per nucleon 

pair: 
 

EJJ WS
V ln0 β−=        (4.11) 

 
where J0=855±30 MeVfm3, β=113±5 MeVfm3, and E is the incident energy of the 

projectile. For 240 MeV 6Li scattering,  Jv
WS=236 MeVfm3.  

 
These are compared with those obtained in this experiment in Fig. 4.4. The volume 

integral obtained with W-S potential model and DIF model are close to the calculation 

based on Nadasen et al.'s formula, while DDF calculation is closer to Satchler's 

expression and Gupta and Murthy's expression. The volume integral per nucleon pair for 

240 MeV 6Li scattering on 116Sn should be slightly smaller than that of 210 MeV 6Li 

scattering on 90Zr because it has a higher incident energy and a heavier target and that is 

seen for both the W-S model and folding model calculations. 
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FIG. 4.4 The volume integral for real part of optical potential obtained with W-S 

model, DIF model and DDF model. The curves with dash, solid and dash-

dot represent Nadasen et al.’s expression obtained with W-S potential 

[123], Gupta and Murthy’s expression obtained with JLM effective 

interaction [122] and Satchler’s expression obtained with S1Y effective 

NN interaction[121] respectively. Volume integrals obtained from 

Ref.[120] for 210 MeV 6Li scattering on 90Zr are also plotted in the figure 

for comparison. 
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FIG. 4.5 The differential cross-sections calculated with deformed potential model and 

folding models for inelastic scattering to the 1.29 MeV 2+ state of 116Sn 

along with the data points are plotted versus average center of mass angle. 

The B(E2) values used for DP, DIF and DDF models calculations are best 

fit values of 0.229, 0.182, 0.233 e2b2 respectively. The error bars represent 

statistical and systematic errors. 
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FIG. 4.6 The differential cross-sections calculated with deformed potential model and 

folding models for inelastic scattering to the 2.27 MeV 3- state of 116Sn 

along with the data points are plotted versus average center of mass angle. 

The B(E3) value used for DP, DIF and DDF models calculations are best 

fit values of 0.116, 0.101, 0.133 e2b3 respectively. The error bars represent 

statistical and systematic errors. 
 
The DWBA calculations with deformed potential model and folding models for low-

lying 2+ and 3- states of 116Sn were carried out with ECIS. The angular distributions of 

the cross sections with different models for 2+ and 3- states are plotted in Fig. 4.5 and 

Fig. 4.6 along with the data. For the folding model calculations, the mass deformation 

length and coulomb deformation length were assumed to be the same, and in deformed 

potential model calculations the potential deformation length and coulomb deformation 

length were assumed to be the same. In DIF model calculation, the real transitional 

potentials for 2+ and 3- states were generated with CHEN2 and the imaginary part was 

obtained by the DP model, while in the DDF calculation, the real transitional potentials 

were generated by DFPD4 and the imaginary parts were obtained by DP model. The best 
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fit B(EL) values for 2+ and 3- states with different model calculations were extracted by 

fitting the inelastic scattering cross section and are listed in Table 4.3. There are two 

errors given for each fitted B(EL) value. The superscript one represents statistical error 

which comes from the fit of inelastic scattering cross sections and is about 3-4% of the 

fitted value. The subscript one represents the total error including both statistical error 

and systematic error which is about 10% of the fitted value.  
 
The results are compared with B(EL) values obtained using electron inelastic scattering 

[124, 125] and α  inelastic scattering [126], and also are compared with the adopted 

B(E2) [127] and B(E3)[128] values in Table III. The B(E2) and B(E3) values obtained 

with DP and DDF model in this work agree within errors with adopted values, and the 

values obtained from electron inelastic scattering and α inelastic scattering. It is 

interesting that B(EL) values obtained with DP and DDF model are very close to those 

obtained from α inelastic scattering. DIF model calculations do not agree with either 

adopted B(EL) values or B(EL) values obtained  from electron scattering or α scattering. 

Since the scattering process explored here is peripheral, lack of the density dependence 

for NN interaction may not be adequate to explain the discrepancy. The density used for 

the projectile in DIF calculation, a Fermi distribution obtained from the droplet model 

which gives a radius significantly smaller than the known 6Li radius[69], may not be 

suitable for the projectile since 6Li is a loosely bound light heavy ion. 
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Table 4.3 The best fit B(EL) value for 2+ and 3- states of 116Sn obtained with W-S, 

DIF and DDF models. Adopted values of B(E2) and B(E3), as well as 

values extracted from α inelastic scattering and from electron scattering, 

are shown in the table. For B(EL) values obtained from 6Li scattering, the 

superscript errors represent statistical errors, while the subscript errors 

represent total errors including statistical and systematic errors. For α 

scattering, DIWS represents potential from density-independent single 

folding, while DDWS represents potential from density-dependent single 

folding. 

Jπ=2+, Ex=1.29 MeV Jπ=3-, Ex=2.27 MeV  

work 

 

Model B(E2)(e2b2) B(E3)(e2b3) 

present DP 007.0
024.0229.0 ±

±  003.0
012.0116.0 ±

±  

 DIF 006.0
019.0182.0 ±

±  003.0
011.0101.0 ±

±  

 DDF 007.0
024.0233.0 ±

±  004.0
014.0133.0 ±

±  

α scatteringc DP 0.231±0.023 0.114±0.012 

 DIWS 0.231±0.023 0.134±0.014 

 DDWS 0.231±0.023 0.134±0.014 

e scattering EM 0.229±0.015a 0.120±0.015b 

 Adopted Value 0.209±0.006d 0.132±0.018e 

a: Ref. [124], b: Ref. [125], c: Ref. [126], d: Ref. [127], e: Ref. [128] 
 

4.2.2 Giant Resonance Analysis 
6Li inelastic scattering on 116Sn to giant resonance range was measured at spectrometer 

angle 0° and 4°. The excitation energy spectrum for each angle bin was stored in spread 

sheet analysis.xls. The spectrum was divided into a peak and continuum, where the 

continuum was assumed to have the shape of a straight line at high excitation joining 

onto a Fermi shape at low excitation energy to model particle threshold effects as shown 

in Eq. (4.12) [129]: 
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where A and B are determined from a fit to the high excitation region (39~49 MeV), Eth 

and C are adjusted to model the behavior of the spectrum near the particle threshold, and 

Y0 is adjusted so that the continuum obtained is zero just below the particle threshold ( 

6~7 MeV). The excitation energy range was divided in many energy bins with bin width 

no more than 2 MeV. The angular distributions of differential cross section for the peak 

and continuum of each energy bin were obtained and sorted in the spread sheet. 
 
116Sn giant resonance data was analyzed first with the deformed potential model. A 

sample of giant resonance spectrum is shown in Fig. 4.7. Angular distributions for a 2.0 

MeV wide bin centered at Ex=15.6 MeV of the giant resonance peak and the continuum 

are shown in Fig. 4.8 along with DWBA fits. The distributions of the energy weighted 

sum rule (EWSR) strength obtained for ISGMR, ISGDR, ISGQR, and ISGOR of 116Sn 

are shown in Fig. 4.9. The peak positions of the ISGMR and ISGQR strength 

distribution are consistent with those obtained from α inelastic scattering, but there are 

some differences in sum rule strength. This may be due to different continuum choices 

or the simplicity of the deformed potential model. No matter how the continuum was 

chosen, unlike other multipolarities, the strength of ISGDR was always much higher 

than 100% of the EWSR. H.L. Clark, et al. [130] have pointed out that the predicted 

cross section for the ISGDR is very sensitive to the imaginary component of the optical 

and transition potential. 
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FIG. 4.7 Inelastic 6Li spectrum for 116Sn at θavg=1.080. The yellow line shows the 

continuum chosen for the analysis. 
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FIG. 4.8 The angular distributions of the 116Sn cross section for a 2 MeV wide bin 

centered at the excitation energy indicated on the figure (in MeV) for 6Li 

inelastic scattering for GR peak and the continuum. The line through the 

data points indicates the multipole fits. Contributions of each multipole are 

shown. 
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FIG. 4.9 Comparison of the  strength distribution for E0, E1, E2, E3 extracted from 
6Li inelastic scattering using the deformed potential model (blue color) 

with those obtained from α inelastic scattering[5]  using a folding 

potential  (pink color).  
 
116Sn giant resonance data were then analyzed with the double folding model. The 

optical potential parameter set for analysis of the 116Sn inelastic scattering data is the 

folded potential obtained with DDF model (as shown in Table 4.3). The transition 

potentials for L = 0−4 transitions were calculated with DFPD4 for the excitation range 

from 8 MeV – 40 MeV in 1 MeV steps. The corresponding angular distributions of 

differential cross section were obtained with ECIS (see Fig.4.10). A set of angular 

distributions for L = 0 − 4 with Ex=15.0 MeV are shown in Fig. 4.11. The angular 

distributions for L = 0 peak at 0° and are well distinguished from others. Two sample 

excitation energy spectra at average center of mass angle 1.08° and 5.87° with 

continuum choice are shown in Fig. 4.12. A set of sample angular distributions for 1.6 
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MeV wide bins centered at Ex = 12.62, 22.20, 30.17 MeV for the giant resonance peak 

and the continuum are shown in Fig. 4.13 along with DWBA fits. The multipole 

decomposition analysis techniques used here were described in detail in Ref. [39, 40, 

129, 131]. The isovector giant dipole resonance (IVGDR) contributions were calculated 

from the known distributions [132] and were fixed in the fits. The strength distributions 

obtained for ISGMR, ISGDR, ISGQR, and ISGOR of 116Sn are plotted as blue curves 

with Gaussian fits plotted in dark green curve in Fig. 4.14.  
 
The strength distributions obtained for E0-E3 are compared with those obtained with α 

inelastic scattering [49] which are plotted as red curves. The parameters obtained for E0, 

E2 and E3 excitation are given in Table 4.4 and those for E1 excitation are given in 

Table 4.5 and are compared to those from Ref. [49, 133]. There are two centroid 

energies listed in Table 4.4. Following the notation in Ref. [49], the first one is defined 

as m1/m0 which is described in section 1 and the second one is the peak position of 

Gaussian fit. Γ is the full width at half maximum (FWHM) for Gaussian fit, while Γ* is 

equivalent FWHM for m1/m0 obtained by multiplying the rms width by a factor of 2.348  
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     (4.13) 

 

where Ec is the centroid energy, Ei is the average energy of each energy bin and S(Ei) is 

the corresponding strength distribution.  
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FIG. 4.10 Angular distributions of differential cross sections for 240 MeV 6Li 

inelastic scattering from 116Sn for 100% sum rule with L = 0−4 over the 

excitation energy range 8 - 40 MeV in 2 MeV intervals. 
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FIG. 4.11 Angular distributions of differential cross section for 240 MeV 6Li inelastic 

scattering from 116Sn with L = 0 - 4 for excitation energy Ex=15.0 MeV. 
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FIG.4.12 Sample excitation spectra at average center of mass angle 1.1° and 5.9° for 

116Sn. The pink curves are the continuum chosen for the analysis. 
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FIG. 4.13 Angular distributions of the crosssection for inelastic scattering from 116Sn 

for 1.6 MeV wide bin centered at Ex=12.62, 22.20, 30.17 MeV of the giant 

resonance peak and the continuum along with DWBA fits. The left side 

figures are angular distributions for giant resonance peak and the right side 

figures are those for continuum. The pink lines through the data show the 

fits. The E0 contribution is shown by the red line, the isoscalar E1 

contribution by the light blue line, the E2 contributions by the purple lines, 

the E3 contributions by the brown lines, E4 contributions by the dark 

green lines and the isovector E1 contributions by the dark blue lines.   
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Table 4.4 E0, E2, E3 multipole parameters obtained for 116Sn in this work compared 

to those obtained from analysis of α scattering. 

 
 240 MeV  6Li scattering 240 MeV α scattering 

 m1/m0 
(MeV) 

Γ* 
(MeV) 

Gaussian fit 
(MeV) 

Γ  
(MeV) 

EWSR 
(%) Ref. m1/m0 

(MeV) 
Γ* 

(MeV) 
EWSR 

(%) 

[49] 20.085.15 ±  5.27±0.25 112±15 E0 35.0
20.039.15 +

−  85.0
34.010.6 +

−  15.58±0.19 18.046.5 ±  27
11106+

−  
[133] 15.9±0.5*  117±12 
[49] 13.50±0.35 5.0±0.30 108±12 E2 26.0

20.034.14 +
−  78.0

18.090.6 +
−  14.09±0.27 5.48±0.35 14

1094+
−  

[133] 14±0.5*  103±10 
  [49] 23.3±0.8 10.9±0.6 70±12 E3 21.66±0.21 10.87±0.23 
  

116±8 
[133] 21.8±0.5 7.1±0.5 67±10 

Γ*  means equivalent FWMH obtained by multiplying the rms width by a factor of 

2.348. 

 

Table 4.5 ISGDR parameters obtained for 116Sn in this work compared to those 

obtained from analysis of α scattering. 

  
Peak1 Gauss. 

(MeV) 
Γ 

(MeV) 
EWSR 

(%) 
Peak2 Gauss. 

(MeV) 
Γ  

(MeV) 
EWSR 

(%) 
Total 

EWSR(%) 

this work 15.32±0.20 
20.0
19.056.5 +

−  66±10 21.73±0.20 
26.0
28.080.2 +

−  20
1452+

−  20
14118+

−  

[49] 14.38±0.25 5.84±0.30 25±15 25.5±0.60 12.0±0.6 61±15 88±20 

[133] 14.7±0.5 3.8±1.2 13±4 23.0±0.6 8.7±1.2 33±11 46±11 
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FIG. 4.14 E0, E1, E2 and E3 Strength distributions for 116Sn obtained from analysis 

of 6Li inelastic scattering (blue curve). The red curve was obtained with α 

inelastic scattering [49]. Error bars represent the uncertainty due to the 

fitting of the angular distributions and different choices of the continuum. 
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The errors for the centroid energy and rms width listed in Table 4.4 were calculated 

considering the possible error sources shown in Table 4.6.  The beam energy uncertainty 

gives very little error on excitation energy calibration as a 5 MeV difference in beam 

energy gives a 0.004 MeV difference in kinematic calculations for excitation energy. 

The standard deviation from the states used to do energy calibration contributes ~ 0.06 

MeV of the total error.  The error from the energy calibration slope, obtained by varying 

the minimum χ2 by unit 1, varies with the excitation energy. The error from uncertainty 

of the 0+ state of 24Mg which is used to adjust the energy calibration for 0 degree spectra 

is around 0.06 MeV. The error caused by choosing different widths of energy bins is ~ 

0.1 MeV. The target thickness uncertainty gives about ~0.04 MeV error. All the errors, 

combined with statistic fitting error, give the total error for each centroid energy and rms 

width. 
 
Table 4.6 Error estimated for centroid energy and rms width. 

error source  excitation energy error (MeV) 
beam Energy uncertainty (±5MeV) 0.004 

Calibration  Standard deviation 0.06 
Calibration Slope error Varied with excitation Energy 

24Mg(0+, 13.86MeV) 0.06 
energy bin effect 0.1 

target thickness uncertainty 0.04 
Statistic fitting error Varied with centroid energy 

 
The E0 strength distribution obtained in this work corresponds to 27

11106+
− % of the E0 

EWSR with a centroid (m1/m0) energy 35.0
20.039.15 +

− MeV and equivalent width 85.0
34.010.6 +

−  

MeV. The Gaussian fit of the E0 strength distribution gives a centroid of 

19.058.15 ± MeV and a width of 5.46±0.18 MeV, which is in good agreement with 

112±15% of the E0 EWSR given in Ref. [49] with a centroid of 15.85±0.20 MeV and a 

width of 5.27±0.25 MeV.  
 
The E2 strength extracted in this work corresponds to 14

1094+
− % of the E2 EWSR with a 

centroid energy of 26.0
20.034.14 +

− MeV and an equivalent width 78.0
18.090.6 +

− MeV. The Gaussian 
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fit of the E2 strength distribution gives a centroid of 14.09±0.27 MeV and a width of 

5.48±0.35 MeV, which is in agreement with that given in Ref. [49] which corresponds to 

108±12% of the E2 EWSR with a centroid of 13.50±0.35 MeV and a width of 5.00±0.30 

MeV, and also in agreement with that given in Ref. [133] which corresponds to 

103±10% of E2 EWSR with a centroid energy of 14±0.5 MeV.  
 
The E3 strength extracted in this work corresponds to 116±11% of the E3 EWSR, which 

is much larger than 70±12% identified in Ref. [49] and 67±10% extracted in Ref. [133]. 

The centroid energy obtained in this work agrees with that given in Ref. [133] while the 

equivalent width agrees with that given in Ref. [49]. 
 
The ISGDR strength extracted in both 6Li and α scattering is split into two peaks and the 

position of the lower peaks are similar, but otherwise there are significant differences. 

The ISGDR strength extracted in this work corresponds to 20
14118+

−  % of the E1 EWSR 

whereas 88% of the EWSR was identified with  α scattering. The strength extracted 

from 6Li scattering is larger but very little strength is seen above Ex=27 MeV, while 

significant strength was seen with α scattering above 27 MeV. When fitted with two 

Gaussians, the low energy peak strength corresponds to 66±10% of the E1 EWSR with a 

centroid of 15.32±0.20 MeV and a width (FWHM) of 20.0
19.056.5 +

− MeV, the high energy 

peak strength corresponds to 20
1452+

−  % of the EWSR with a centroid energy of 

21.73±0.20 MeV and a width (FWHM) of 26.0
28.08.2 +

− MeV, while, in α scattering [49], the 

low energy peak corresponds to 25±15% of the E1 EWSR with a centroid of 14.38±0.25 

MeV and a width (FWHM) of 5.84±0.30 MeV, the high energy peak corresponds to 

61±15% of the EWSR with a centroid energy of 25.50±0.60 MeV and width (FWHM) 

of 12.0±0.6 MeV. Youngblood et al. pointed out in a series of papers [46, 49, 134] that 

the E1 strength distributions are quite sensitive to continuum choices. The large 

difference in E1 strength shown here may come from different continuum choices. 
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4.3 240 MeV 6Li Scattering on 28Si and 24Mg 

4.3.1 6Li Elastic Scattering on 28Si and 24Mg. 

The W-S model as well as double folding models were used in analysis of elastic 

scattering on 28Si and 24Mg. The best fit optical parameters of the W-S potential are 

listed in Table 4.7. In the folding model analysis, two different NN effective interactions 

( M3Y [73] and JLM [84] ) were used to get the folded potential. Folding calculation I 

(FCI) used a density dependent M3Y NN interaction described in detail by D.T. Khoa 

[78], while folding calculation II (FCII) used the JLM effective interaction described by 

F. Carstoiu et al. [135], L. Trache et al. [85] and the references in these two papers.  

Two different density forms, Fermi distribution and Hartree Fork (HF) density [100], 

were used for the target ground density during the folding procedures (see Table 4.8).  

The cluster-orbital shell-model approximation [119] form was used for 6Li ground 

density (see Eq.(4.3)) with FCI. FCI was carried out with DFPD4 and elastic scattering 

data were fitted with ECIS. The optical parameters obtained are listed in Table 4.9. FCII 

and the elastic scattering fit were carried out with OPTJLM1. HF densities were used 

for both target and projectile. The optical parameters are listed in Table 4.10.  The 

angular distributions of the cross-sections calculated with different models are plotted 

along with the data in Fig. 4.15 for 24Mg and Fig. 4.16 for 28Si. Both FCI and FCII give 

almost the same quality fits for each nucleus.  
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Table 4.7 Optical parameters obtained from analysis of 6Li elastic scattering on 28Si 

and 24Mg with the W-S  potential. 

Target V 
(MeV) 

r0 
(fm) 

a 
(fm) 

W 
(MeV) 

ri0 
(fm) 

ai 
(fm) 

Jv 
(MeVfm3) 

Jw 
(MeVfm3) 

σr 
(mb) χ2 

28Si 143.34 0.720 0.937 32.13 1.004 0.921 261.18 125.40 1650 1.43 
24Mg 114.52 0.762 0.879 34.518 0.956 1.027 244.4 138.2 1680 1.14 

 
 

 

 

 

Table 4.8 Density parameters for different density choices. Den1 and Den2 are Fermi 

distributions. Rp, Rn, Rm, Rch means the root mean square radii of the 

calculated proton, neutron, mass and charge distributions respectively. 

target 
Density 
choice 

ρ0 
(fm) 

C 
(fm) 

A 
(fm) 

Rp 
(fm) 

Rn 
(fm) 

Rm 
(fm) 

Rch 
(fm) 

Den1[18] 0.17 2.995 0.478 2.922 2.922 2.922 3.040 
Den2[19] 0.166 2.979 0.523 3.017 3.017 3.017 3.040 24Mg 

HF − − − 2.928 2.906 2.917 3.000 
Den1[18] 0.175 3.15 0.475 3.010 3.010 3.010 3.875 
Den2[19] 0.167 3.155 0.523 3.123 3.123 3.123 3.154 28Si 

HF − − − 3.059 3.031 3.045 3.132 
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Table 4.9 Optical model parameters obtained from fits of elastic scattering with 

folding calculation I. Nr is the renormalization factor for the real potential. 

Sr is the scaling factor for the real potential radius. W, ri0, ai are W-S 

parameters for the imaginary potentials. Jv and Jw are the volume integral 

per nucleon pair for the real and imaginary potentials respectively. σr is 

the total reaction cross section.  

Target N-N int Target 
density Nr Sr 

W 
(MeV) ri0(fm) ai(fm) Jv 

(MeVfm3) 
Jw 

(MeVfm3) 
σr 

(mb) χ2 

CDM3Y6 Den1 0.824 1.062 58.7 0.731 1.204 242 154 1799 1.038 

CDM3Y5 Den1 0.823 1.062 58.67 0.731 1.204 242 154 1799 1.039 

CDM3Y4 Den1 0.822 1.062 58.73 0.7311 1.204 242 154 1799 1.039 

CDM3Y5 HF 0.766 1.055 59.14 0.728 1.208 240 155 1803 1.042 

24Mg 

CDM3Y5 Den2 0.846 1.079 57.92 0.737 1.198 242 154 1793 1.032 

CDM3Y5 Den1 0.887 1.0624 41.33 0.9049 1.048 256 136 1757 1.461 

CDM3Y5 Den2 0.924 1.083 41.38 0.9049 1.046 258 136 1755 1.439 
28Si 

CDM3Y5 HF 0.933 1.059 41.85 0.9011 1.051 257 137 1761 1.485 
 
 
 
 
 
Table 4.10 Optical potential parameters obtained from the fit of elastic scattering with 

folding calculation II .Nr and Nw are the normalization factor for the real 

and imaginary potential respectively. tr and tw are range parameters for the 

real and imaginary potential respectively.  

Target N-N 
int. 

target 
density Nr 

tr 
(fm) Nw tw 

(fm) 
Jv 

(MeVfm3) 
Jw 

(MeVfm3) 
σr 

(mb) χ2 

24Mg JLM HF 0.519 0.9559 0.862 2.586 237 144 1803 1.6 
28Si JLM HF 0.546 0.9165 0.825 2.4275 248 137 1734 1.94 
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A scaling factor on the radius of the real optical potential is necessary to fit the elastic 

scattering for both 24Mg and 28Si when FCI is used. Different density choices (as shown 

in Table 4.8) will slightly change the value of the scaling factor (as shown in Table 4.9.), 

but do not eliminate the factor. Different types of density dependent M3Y interactions 

such as CDM3Y4, CDM3Y5, CDM3Y6 (see Table 2.1) give almost the same scaling 

factors for 24Mg elastic scattering. One possible reason for this factor could be the 

density used in the density dependent function. The density is defined as the sum of the 

densities of target and projectile, which may over-estimate the nuclear matter density in 

certain regions. The fit to elastic scattering with the JLM folding calculation does not 

need the scaling factor on the radius. However there is an adjustable smearing factor t in 

the smearing function which greatly increases the ability of the folding form factor to 

simulate the radial dependence of DPP [135]. FCI was used to analyze inelastic 

scattering for convenience, because DFPD4 can generate the transition density for 

inelastic scattering and calculate the transition potentials.  

 

The volume integrals of real parts of the optical potentials for 6Li scattering on 28Si and 
24Mg were calculated for each of the potentials obtained. The difference of the volume 

integrals obtained for 28Si with different models is less than 13 MeV·fm3 while the 

difference for 24Mg is less than 5 MeV·fm3. The results are shown and compared with 

Nadasen et al.’s expression, Gupta and Murthy’s expression and Satchler’s expression in 

Fig. 4.17. The volume integrals obtained with different models for 28Si are consistent 

with or close to Nadasen et al.’s prediction and Gupta and Murthy’s prediction, while 

the volume integrals for 24Mg lie below these two predictions and above Satchler’s 

prediction. (note: Since Satchler’s prediction is based on the different target and 

projectile systems[121], as large as 50 MeVfm3 uncertainty was found in previous 

folding model analysis of 210 MeV 6Li scattering [120]).  
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FIG. 4.15 Experimental angular distribution of the cross-section (relative to 

Rutherford cross section) and fits for 6Li + 24Mg elastic scattering using 

W-S potential (blue curve), folding potential with CDM3Y6 NN 

interaction (black curve) and folding potential with JLM NN interaction 

(green) are shown. The error bars indicate statistical and systematic errors.   
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FIG. 4.16 Experimental angular distribution of the cross-section (relative to 

Rutherford cross section) and fits for 6Li + 28Si elastic scattering using W-

S potential (blue curve), folding potential with CDM3Y5 NN interaction 

(black curve) and folding potential with JLM NN interaction (green) are 

shown. The error bars indicate statistical and systematic errors.   
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FIG. 4.17 The volume integral of the real part of the optical potential for 6Li 

scattering on 28Si and 24Mg obtained with W-S model, folding model with 

JLM and M3Y effective NN interactions. The brown curve represents 

Nadasen et al.’s expression obtained with W-S potential [16]. The blue 

and red curves represent Gupta and Murthy’s expression for 24Mg and 28Si 

obtained with JLM effective interaction [40]. The pink curve represents 

Satchler’s expression obtained with S1Y effective NN interaction [27]. 

Volume integrals obtained from Ref. [8] for 210 MeV 6Li scattering on 
28Si are also plotted in the figure for comparison. 

 
 

DWBA calculations for 6Li inelastic scattering to the low-lying 2+ state of 24Mg and to 

low-lying 2+ and 3- states of 28Si were carried out with the optical parameter sets 

obtained by deformed potential model and folding model I.  The CDM3Y5 density 

dependent NN interaction was used here and the Den1 form (as shown in Table 4.8) was 

chosen as the target density for both 24Mg and 28Si. The transition potentials were 
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calculated with DFPD4 and the cross sections were calculated with ECIS. The mass 

deformation parameters for the 2+ and 3- states were obtained from electromagnetic 

B(EL) values by assuming that the mass and coulomb deformation lengths are the same. 

The best fit B(EL) values for the 2+ and 3- states of 28Si and the 2+ state of 24Mg were 

extracted by fitting the inelastic scattering cross section and are listed in Table 4.11. The 

fitted B(E2) values obtained for the  28Si 2+ state and 24Mg 2+ state obtained with the 

folding model calculations agree with the adopted value and with the value from electron 

scattering. The fitted B(E3) value for the 28Si 3- state does not agree with the adopted 

value, but it agrees with the value from electron scattering [136]. The B(EL) values 

obtained with the deformed potential model are all smaller than the adopted value or the 

value from electron scattering. This is consistent with Beene et al.’s conclusion [137].   

The calculated angular distribution for the 2+ state in 24Mg is plotted in Fig. 4.18 along 

with the data. The calculated angular distributions for 2+ and 3- states of 28Si are plotted 

in Fig. 4.19 and Fig. 4.20 respectively along with data.  
 

Table 4.11 The best fit B(EL) values for 2+ and 3- states of 28Si and 2+ state of 24Mg  

obtained with the deformed potential model and the double folding model. 

Adopted values of B(E2) and B(E3), as well as values extracted  from 

electron scattering, are shown in the table. For B(EL) values obtained 

from 6Li scattering, the superscript errors represent statistical errors, while 

the subscript errors represent total errors including statistical and 

systematic errors. 
28Si 

Jπ=2+, Ex=1.779MeV 

28Si 

Jπ=3-, Ex=6.888 MeV 

24Mg 

Jπ=2+, Ex=1.369 MeV 
 

Work 

 

Model 
B(E2)(e2b2) B(E3)(e2b3) B(E2)(e2b2) 

Present DP 0003.0
0023.00229.0 ±

±  00002.0
00014.000135.0 ±

±  0004.0
0032.00317.0 ±

±  

 DDF 0004.0
0032.00318.0 ±

±  00005.0
00031.000311.0 ±

±  0006.0
0047.00465.0 ±

±  

electron 
scattering EM 0.0337±0.0030[138] 0.00387±0.00075[136] 0.0420±0.0025[139] 

 Adopted 
Value 0.0326±0.0012 [127] 0.0042±0.0005[127] 0.0432±0.0011[128] 
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FIG. 4.18 The angular distributions of the differential cross sections for inelastic 

scattering to the 2+ state of 24Mg calculated with different scaled potentials 

along with the data points are plotted versus average center of mass angle. 

The pink curve shows the one with the potential scaled on radius and the 

blue curve represents the one scaled on density and M3Y NN effective 

interaction. The B(E2) value used was 0.0432 e2b2. [127]. 
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FIG. 4.19 The angular distributions of the differential cross sections for inelastic 

scattering to the low-lying 2+ state of 28Si with different scaled potentials 

along with the data points are plotted versus average center of mass angle. 

The black curve shows the result when the radius of the potential is scaled 

and the green curve shows the result when the density and the M3Y NN 

effective interaction are scaled, both calculations using the same 

deformation length δ for the real and imaginary potential. The blue curve 

shows the result when the radius of the potential is scaled and the orange 

curve shows the result when the density and the M3Y NN effective 

interaction are scaled, both calculations using the same deformation 

parameter β for the real and imaginary potential. The B(E2) value used 

was 0.0326 e2b2 [127]. 
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FIG. 4.20 The angular distributions of the differential cross sections for inelastic 

scattering to the low-lying 3- state of 28Si calculated with different scaled 

potentials along with the data points are plotted versus average center of 

mass angle. The black curve shows the result when the radius of the 

potential is scaled and the green curve shows the result when the density 

and the M3Y NN effective interaction are scaled, both calculations using 

the same deformation lengths δ for the real and imaginary potential. The 

blue curve shows the result when the radius of the potential is scaled and 

the pink curve shows the result when the density and the M3Y NN 

effective interaction are scaled, both calculations using the same 

deformation parameter β for the real and imaginary potentials. The 

B(E3) value used was 0.0042 e2b3 [128]. 
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One assumption made in the DWBA calculations with ECIS for low-lying states of 28Si 

and 24Mg was that the input real folded transition potentials had the same scaling factor 

on radius as the real folded optical potentials do.   There is no justification for doing this.  

The scaling effect on inelastic scattering data analysis was further investigated by 

scaling the parameters of M3Y NN effective interactions, the parameters of the target 

and projectile, instead of scaling the radius. The folded potential and transition potential 

for 6Li scattering on 24Mg and inelastic scattering to the 2+ state at 1.369 MeV were 

calculated with scaling on the density and the effective interaction. Then it was 

compared with those potentials scaled on radius (see Fig. 4.21). Although the peak 

values of the potentials are different, the potentials obtained with scaled density and NN 

interaction and the potentials with scaled radius overlap well in the surface range. The 

angular distribution of the differential cross sections for inelastic scattering to the 2+ 

state of 24Mg was calculated with scaled potentials and the results are shown in figure 

4.18. Those for inelastic scattering to low-lying 2+ and 3- states of 28Si were also 

calculated and shown in Fig. 4.19 and Fig. 4.20. All the calculations show that the 

scaling on density and effective interaction gives almost the same quality of agreement 

with the data as scaling on the radius of the potential. So for convenience the potentials 

scaled on the radius were used in analysis of giant resonance data.  
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FIG. 4.21 The upper figure shows the original potential, potential scaled on radius, 

and potential scaled on density and M3Y effective interaction for 6Li 

elastic scattering on 24Mg. The lower figure shows the transition potential 

(TP) obtained from DFPD4, TP scaled on radius and the TP scaled on 

density and M3Y effective interaction for 6Li inelastic scattering to 2+ 

1.369 MeV state of 24Mg. 
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4.3.2 Analysis of 6Li Inelastic Scattering on 28Si 

Inelastic scattering of 6Li from 28Si excited into the giant resonance region was measured 

with the spectrometer at 0° and 4°. The data analysis procedure was described in 

SECTION 4.1. The folding optical potential obtained with the CDM3Y5 NN interaction 

and with density den1 (as shown in Table 4.9) were used to analyze 28Si giant resonance 

data. Sample excitation energy spectra for 28Si with average center of mass angles 1.3° 

and 6.4° are shown in Fig. 4.22 with pink curves representing the continuum choices. 

Angular distributions of differential cross sections for the giant resonance peak and 

background are shown in Fig. 4.23 along with DWBA fits for three energy bins with 

average excitation energies 10.14 MeV, 20.46 MeV and 29.14 MeV.  
 
The E0, E1, E2 and E3 strength distributions obtained are shown in Fig. 4.24 along with 

those obtained from α scattering. The multipole parameters obtained for 28Si are 

summarized and compared with those from α scattering in Table 4.12. The centroid, 

(m1/m0), rms width and percentage of the EWSR are calculated for the total excitation 

range measured (8 to 40 MeV), as well as the ranges 8 to 22.4 MeV and 22.4 to 40 MeV. 

 

The E0 strength distribution extracted in this work agrees well with that obtained from 

α scattering[40] (see Fig. 4.24). The strength extracted for total excitation range 

corresponds to 35
2080+

−  % of the E0 EWSR with a centroid of 78.0
33.059.20 +

− MeV and an rms 

width 5.78 34.1
34.0

+
−  MeV, in good agreement with that observed in α scattering which 

corresponds to 74±10% of  the E0 EWSR with a centroid of 21.46±0.38 MeV and an 

rms width 6.3±0.6 MeV (Note: 74±10% was obtained fitting only the GR peak in α 

scattering , and an additional 7% was obtained in the continuum fit resulting in 81±10% 

of the E0 EWSR as shown in Ref. [40]).  
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FIG. 4.22 Sample spectra for 28Si at average center of mass angle 1.3° and 6.4°. The 

pink curves are the continuum chosen for the analysis. 
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FIG. 4.23 Angular distributions of the cross section for 6Li inelastic scattering from 

28Si for 0.8 MeV wide bins centered at Ex=10.14, 20.46, 29.14 MeV along 

with DWBA fits. The left column shows those for the giant resonance 

peak while the right column shows those for the continuum. The pink lines 

through the data show the fits. The E0 contribution is shown by the red 

line, the isoscalar E1 contribution by the light blue line, the E2 

contributions by the purple lines, the E3 contributions by the brown lines 

and E4 contributions by the dark green lines. 
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Table 4.12 Multipole parameters obtained for 28Si in this work compared to those 

obtained from analysis of α scattering. 
 This work α scattering [40] 

 Ex range 
(MeV) m1/m0 (MeV) rms width 

(MeV) 
EWSR 

(%) 
Ex range 
(MeV) 

m1/m0 
(MeV) 

rms width 
(MeV) EWSR (%) 

E0 8.0-22.4 17.60±0.17 2.67±0.17 48±6 8.0-22.5 17.27±0.38 3.04±0.6 38±4 

 22.4-40.0 73.0
25.072.27 +

−  3.21 34.1
34.0

+
−  30

1331+
−  22.5-40.0 28.22±0.38 3.75±0.6 37±4 

 8.0-40.0 78.0
33.059.20 +

−  5.78 34.1
34.0

+
−  35

2080+
−  8.0-40.0 38.0

38.046.21 +
−  6.3±0.6 74±10 

E1 8.0-22.4 16.9±0.17 3.77 74.0
19.0

+
−  40±4 8.0-22.5 15.3±0.60 4.75±0.7 8±0.8 

 22.4-40.0 34.0
20.027.27 +

−  2.69 74.0
19.0

+
−  19

1038+
−  22.5-40.0 27.56±0.60 3.05±0.7 7±0.7 

 8.0-40.0 41.0
24.017.21 −

−  5.87 74.0
19.0

+
−  21

1184+
−  8.0-40.0 19.27±0.60 6.9±0.7 15±4 

E2 8.0-22.4 17.25±0.17 3.02±0.23 47±5 8.0-22.5 16.59±0.25 3.5±0.6 47±5 

 22.4-40.0 20.0
19.022.29 +

−  3.81±0.23 64±6 22.5-40.0 27.21±0.25 2.98±0.6 18±2 

 8.0-40.0 23.0
20.069.22 +

−  6.94±0.23 111±16 8.0-40.0 18.53±0.25 4.7±0.6 65±9 

E3 8.0-22.4 25.0
19.094.12 +

−  6.54±0.18 5
14+

−  8.0-22.5 13.31±0.25 4.57±0.6 7±0.7 

 22.4-40.0 32.15±0.17 4.48±0.18 27±3 22.5-40.0 33.32±0.25 3.48±0.6 3±0.3 

 8.0-40.0 27.71±0.24 8.09±0.18 7
631+

−  8.0-40.0 16.3±0.25 9.22±0.6 10±1 
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FIG. 4.24 The dark blue curves show E0, E1, E2 and E3 strength distributions for 28Si 

obtained from analysis of 6Li inelastic scattering. The red curves  show 

those obtained with α inelastic scattering [40]. Error bars represent the 

uncertainty due to the fitting of the angular distributions and different 

choices of the continuum. 
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The E2 strength extracted for 8 MeV < Ex < 22.4 MeV in this work corresponds to 

47±5% of the E2 EWSR with a centroid of  17.25± 0.17 MeV and an rms width 

3.02±0.23 MeV, in good agreement with that obtained from α scattering corresponding 

to 47±5% of the E2 EWSR with a centroid of 16.59±0.25 MeV and an rms width of 

3.5±0.6 MeV. Above 22 MeV, however, the E2 strength extracted from 6Li scattering is 

higher than that obtained from α scattering, 64±6% of the E2 EWSR compared to 

18±2% given in Ref.[40]. 
 
 A total of 21

1184+
− % of the E1 EWSR was identified in this work whereas only 15±4% was 

identified in α scattering and there is a peak around 26.0 MeV which dose not show up 

in α scattering. The total strength obtained corresponds to 21
1184+

− %, which is much higher 

than 15±4% given in Ref.[40]. However, it is interesting to note that, if the strength 

obtained from α scattering is multiplied by a factor of 5.2, its overall profile overlaps 

well with that obtained in this work (see Fig. 4.25). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 4.25 The E1 strength distribution obtained from analysis of 6Li scattering 

compared to that obtained from analysis of α scattering [40] multiplied by 

a factor of 5.20. 
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 E3 strength corresponding to only about 30% of the E3 EWSR was identified, most 

above 22 MeV, compared to that observed in α scattering [40] corresponding to 10% of 

the E3 EWSR, most of which was below Ex = 22 MeV. 
 
In the most recent paper on 28Si, Youngblood et al. [134] reported a new analysis of  α 

inelastic scattering data with the assumption that all of the cross sections are due to 

multipole processes in the excitation range Ex < 42 MeV. No continuum was subtracted.  

The analysis showed that E0 strength extracted is only weakly dependent on the 

assumption made about the continuum. The E0 strength obtained, 74 ± 7% of the E0 

EWSR, the centroid energy (m1/m0) 20.89 ± 0.38 MeV and rms width 5.9 ± 0.6 MeV all 

agree within the errors with those from Ref.[40] and from this work (see Fig. 4.26). For 

other multipolarities, especially for E1 excitation, the continuum choice does affect 

considerably the strength extracted.  E2 strength reported in that paper  corresponding to 

102±11% of the E2 EWSR with a centroid of 18.77±0.35 MeV and rms width of  

5.45±0.20 MeV, contrasts sharply with results of  Ref. [40] (see Fig. 4.27). The 

percentage of E2 EWSR reported in that paper agree with 111±16% extracted in 6Li 

scattering, but not much strength was seen from ~27< Ex < 35 MeV(see Fig. 4.27). The 

E3 strength reported in that paper corresponding to 81±8% of the E3 EWSR between 23 

and 39 MeV, and is much higher than that extracted in this work (see Fig. 4.28). 
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FIG. 4.26 E0 strength distribution obtained from analysis of 6Li scattering compared 

to that obtained from analysis of α scattering without continuum 

subtraction[134] (pink curve). 

 
 
FIG. 4.27 E2 strength distribution obtained from analysis of 6Li scattering compared 

to those obtained from analysis of α scattering without continuum 

subtraction [134] (purple curve) and with continuum subtraction [40] (red 

curve). 
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FIG. 4.28 E3 strength distribution obtained from analysis of 6Li scattering compared 

to those obtained from analysis of α scattering without continuum 

subtraction [134] (purple curve) and with continuum subtraction[40] (red 

curve). 
 

4.3.3 Analysis of 6Li Inelastic Scattering on 24Mg 

 Inelastic scattering of 6Li from 24Mg excited into the giant resonance region was 

measured with the spectrometer at 0°, 4° and 6°. The data analysis procedure was 

described in SECTION 4.1. The folding optical potential obtained with the CDM3Y5 

NN interaction and with density den1 (as shown in Table 4.8) were used to analyze 24Mg 

giant resonance data. Sample excitation energy spectra for 24Mg with average center of 

mass angles 1.3°, 4.7° and 9.5° are shown in Fig. 4.29 with pink curves representing the 

continuum choices. Angular distributions of differential cross sections for the giant 

resonance peak and background are shown in Fig. 4.30 along with DWBA fits for three 

energy bins with average excitation energies 12.94 MeV, 20.08 MeV and 28.75 MeV. 
 
The E0, E1, E2 and E3 strength distributions obtained are shown in Fig. 4.31 and Fig. 

4.32 along with those obtained from two different analyses of α scattering. The 
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multipole parameters obtained for 24Mg are summarized and compared with those from 

α scattering and 156 MeV 6Li scattering in Table 4.13. The centroid, (m1/m0), rms width 

and percentage of the EWSR are calculated for the total excitation range measured (8 to 

40 MeV), as well as for the ranges ~10 to 20 MeV. 

 

The E0 strength for 24Mg extracted in the energy range 9 to 40 MeV in this work 34
24106+

−  

% of the E0 EWSR, is in agreement within the errors with those obtained in α scattering  

72±10% given in Ref. [39] and 82±9% given by new analysis of α scattering [50]. 

Dennert et al. [53] reported 97±25% of the E0 EWSR for the region Ex = 10 - 23 MeV 

obtained with 156 MeV 6Li scattering. However, Youngblood et al. [39] pointed out that 

Dennert et al. used a non-conventional normalization of the DWBA to the angular 

distribution (see Fig. 3 in Ref. [53]), in which the peak of data for E0 strength is about a 

factor of 2 below the peak of the DWBA calculation. This resulted in the E0 strength 

being about a factor of 2 higher. If Dennert et al.’s result is divided by this factor of 2, 

the adjusted E0 strength in the range Ex = 10 - 20.2 MeV corresponds to 34±3% of the 

E0 EWSR with a centroid energy 16.66±0.5 MeV and rms width 2.48±0.5 MeV, which 

is in excellent agreement with the strength obtained in this work corresponding to 

35±5% of the E0 EWSR with a centroid energy 16.88±0.17 MeV and rms width 

2.13±0.17 MeV (see Fig. 4.33 and Table 4.13). S. Peru et al. [140] used the quasi-

particle Random Phase approximation (QRPA) based on Hartree-Fock-Bogolyubov 

states (HFB) obtained with the Gogny D1S effective force [141, 142], to calculate the 

ISGMR strength distribution for 24Mg. The results are shown in Fig. 4.34 along with the 

strength distribution obtained in this work. It is also interesting to see that, if the strength 

distribution obtained in the new analysis of  α scattering data is multiplied by a factor of 

1.7, it will overlap the strength obtained in this work (see Fig. 4.35) in the range Ex = 16 

- 30 MeV. 
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FIG. 4.29 Sample spectra for 24Mg at average center of mass angle 1.3°, 4.7° and 

9.5°. The pink curves are the continuum chosen for the analysis. The 

broad structures pointed by the brown arrow or covered by the parenthesis 

is contamination caused by 6Li scattering on Hydrogen.  
 
 

Hydrogen

Hydrogen



 

 

128

 
FIG. 4.30  Angular distributions of the cross section for inelastic scattering from 24Mg 

for 0.8 MeV wide bin centered at Ex=12.94, 20.08, 28.75 MeV along with 

DWBA fits. The left column shows those for the giant resonance peak 

while the right column shows those for the continuum. The pink lines 

through the data show the fits. The E0 contribution is shown by the red 

line, the isoscalar E1 contribution by the light blue line, the E2 

contributions by the purple lines, the E3 contributions by the brown lines 

and E4 contributions by the dark green lines. 
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FIG 4.31 The blue curves show E0, E1, E2 and E3 strength distributions for 24Mg 

obtained from analysis of 6Li inelastic scattering. The red curves  show 

those obtained with α inelastic scattering [39]. Error bars represent the 

uncertainty due to the fitting of the angular distributions and different 

choices of the continuum. 
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FIG. 4.32 The blue curves show E0, E1, E2 and E3 strength distributions for 24Mg 

obtained from analysis of 6Li inelastic scattering. The red curves show 

those obtained with new analysis of α inelastic scattering [50]. Error bars 

represent the uncertainty due to the fitting of the angular distributions and 

different choices of the continuum. 
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Table 4.13 Multipole parameters obtained for 24Mg in this work compared to those 

obtained from analysis of α scattering and from previous 156 MeV 6Li 

scattering. 
 6Li scattering α scattering 

L Ref. Ex energy 
(MeV) 

m1/m0 
(MeV) 

rms width 
(MeV) 

EWSR 
(%) Ref. Ex range 

(MeV) 
m1/m0  
(MeV) 

rms width 
(MeV) 

EWSR 
(%) 

10.2-20.6 17.0
17.088.16 +

−  17.013.2 ±  35±5 10.1-20.9 16.31±0.6* 2.62±0.74 27±4 This 
work 8.6-38.6 37.0

26.035.21 +
−  68.0

32.098.4 +
−  34

24106+
−  

[39] 
9.0-41.0 21.0±0.6 7.3±1.2 72±10 

10.2-20.4 33.0
25.044.16 +

−  48.0
23.048.2 +

−  24±4 
0 

[53] 10.0-20.2 16.66±0.5 2.48±0.5 34±3 [50] 
9.0-41.0 33.0

25.093.21 +
−  47.0

23.053.6 +
−  82±9 

10.1-20.9 14.68±2.21 3.14±0.97 11
512+

−  
10.2-20.6 20.0

17.075.14 +
−  17.029.2 ±  10±3 [39] 

9.0-41.0 18.8±1.7 6.7±1.0 26
1127+

−  

10.2-20.4 23.0
20.012.16 +

−  68.0
49.033.3 +

−  16±5 
1 This 

work 
8.6-38.6 29.0

26.056.26 +
−  29.0

27.042.6 +
−  24

2184+
−  [50] 

9.0-41.0 23.0
20.070.22 +

−  67.0
49.019.6 +

−  65±8 

10.1-20.9 15.07±0.6* 2.07±0.6* 5
851+

−  10.2-20.6 15.79±0.17 2.58±0.17 30±4 [39] 
9.0-41.0 16.9±0.6 3.4±0.6 72±10 

10.2-20.4 18.056.15 ±  25.0
20.093.2 +

−  36±4 2 This 
work 

8.6-38.6 25.0
20.023.20 +

−  34.0
25.029.6 +

−  14
1276+

−  [50] 
9.0-41.0 18.0

18.092.19 +
−  25.0

20.025.7 +
−  89±9 

[39] 9.0-41.0 25.2±1.0 4.5±1.2 9
631+

−  
3 This 

work 8.6-38.6 40.1
38.054.18 +

−  28.0
19.085.5 +

−  4
13+

−  
[50] 9.0-41.0 37.0

23.043.25 +
−  23.0

22.031.8 +
−  42±5 

*: assume the uncertainty is the same as in the total energy range 
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FIG. 4.33 E0 strength distribution obtained for 24Mg in this work compared to that 

obtained from previous 156 MeV 6Li scattering [53] multiplied by 0.5. 
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FIG. 4.34 E0 strength distribution of 24Mg calculated by Peru et al. [140] with 

QRPA+HBF theory (shown as dark green line), compared to that obtained 

in this work (blue line) and that obtained with α scattering [50] (red line). 

The purple thick line represents the convolutions of calculated discrete 

spectra with 2 MeV width Lorentzian distributions. 
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FIG. 4.35 E0 strength distribution obtained for 24Mg in this work compared to that 

obtained from a new analysis of the α scattering data [50] multiplied with 

a factor of 1.7. 
 
The E2 strength extracted for 24Mg in this work corresponding to 14

1276+
− % of the E2 

EWSR with a centroid energy of 25.0
20.023.20 +

−  MeV and an rms width of 34.0
25.029.6 +

−  MeV, is 

in agreement with that obtained with a new analysis of the α data which corresponds to 

89±9% of the E2 EWSR with a centroid of 19.92±0.18 MeV and an rms width of 
25.0
20.025.7 +

−  MeV. The percentage of the E2 EWSR obtained also agrees with  72±10% of 

the E2 EWSR given in Ref. [39], however, the strength given in Ref. [39] has a lower 

centroid energy of 16.9±0.6 MeV and a much smaller rms width of 3.4±0.6 MeV. E2 

strength in excitation range Ex = 10.2 - 20.6 MeV corresponds to 30±4% of the E2 

EWSR with a centroid of 15.79±0.17 MeV and an rms width of 2.58±0.17, in agreement 

with that obtained in new analysis of α scattering data which corresponds to 36±4% of 

the E2 EWSR with a centroid of 15.56±0.17 MeV and an rms width of 2.93 25.0
20.0

+
−  (see 

Table 4.13).  
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The total isoscalar E1 strength corresponds to 24
2184+

− % of the E1 EWSR, which is much 

higher than 26
1427+

− % given in Ref. [39] (note: the original value 26
1481+

− % in Table IV of 

Ref. [39] should be divided by 3 due to the transition density correction for ISGDR). In 

the new analysis of α scattering data, the E1 strength obtained corresponds to 65±8% of 

the E1 EWSR, which agrees with this work, but it has a lower centroid energy (see Table 

4.13). E1 strength for excitation range 2010 −=XE MeV corresponding to 10±3% of the 

E1 EWSR with a centroid energy 20.0
17.075.14 +

−  MeV and rms width 2.29±0.17, is in 

agreement within error with the one given in Ref. [39] which corresponds to 11
512+

− % of 

E1 EWSR with a centroid of 14.68±2.21 MeV and rms width 3.14±0.97 MeV.   
 
E3 strength corresponding to only about 3% of the E3 EWSR was identified, compared 

to those observed in α scattering corresponding to 31% of the E3 EWSR given in Ref. 

[39] and 42% of the E3 EWSR given by the new analysis of α scattering. 
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5. SUMMARY, DISCUSSION AND CONCLUSIONS 

Elastic and inelastic scattering of 240 MeV 6Li ions from 116Sn, 28Si and 24Mg was 

studied as a possible alternate tool for investigating giant resonances in nuclei.  The 

distorted-wave Born approximation was used to calculate expected cross-sections and 

angular distributions using optical potentials obtained from fitting the elastic scattering 

data. Results obtained with Woods-Saxon phenomenological potentials and potentials 

obtained by folding the density distributions of the projectile and target with JLM and 

M3Y NN interactions were compared. It has been shown that it is necessary to use 

folding model calculations for hadronic scattering to get B(EL) values for low-lying 

excited states [118, 137] that consistently agree with those from electron scattering. 
 
In previous giant resonance work at this laboratory using α scattering, single folding 

calculations had been used, so computer codes were obtained to carry out the double 

folding calculations and procedures had to be developed to make these calculations for 
6Li scattering. Optical and transition potentials were obtained by folding with the code 

DFPD4 and DWBA calculations were carried out with ECIS. DFPD4 was modified to 

calculate the transition density for monopole and isoscalar dipole giant resonances. A 

PYTHON code df_ecis_avg.py was written to control the folding calculations, DWBA 

calculations, angle averaging, etc.   
 
To check consistency with previous data analyses and verify DFPD4 and ECIS 

operation, calculations were carried out for the 240 MeV α + 144Sm scattering system 

(which had been previously studied [49] experimentally) using both DOLFIN (single 

folding model calculation) and DFPD4 (double folding model calculation with M3Y-

Paris NN effective interaction) to calculate potentials which were then read into ECIS to 

calculate cross sections. The results were compared to those obtained with DOLFIN and 

PTOLEMY.  About 10% difference was found for maximum differential cross section 

for excitations with L=2, 3, 4 and about 4% difference was found for L=0 due to 

differences in single folding and double folding models, difference in numerical 
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interpolations in folding code and difference in Coulomb potential treatments.  This 

suggests a minimum ~10% uncertainty in experimental giant resonance strengths due to 

the uncertainties in the DWBA calculations. 
 

Experimental cross sections obtained for elastic scattering of 6Li ions from 24Mg, 28Si 

and 116Sn were fit with cross sections calculated with the optical model using Woods-

Saxon phenomenological potentials and real potentials obtained from double folding 

models with and without density dependence. The folded potentials had to be 

renormalized by a substantial factor Nr (Nr~0.65 for 116Sn ,~ 0.85 for 28Si and ~0.9 for 
24Mg) to fit the elastic scattering data, consistent with earlier 6Li scattering studies[69, 

120]. Best fit B(EL) values were then obtained for the low-lying 2+ and 3- states by 

fitting the experimental cross sections for inelastic excitation of these states with those 

calculated by DWBA.  For 116Sn, the B(EL) values obtained using the deformed 

potential model as well as  from density dependent folding calculations agree well with 

adopted values and with those from electron inelastic scattering and α inelastic 

scattering. Those obtained with the density independent folding model calculations do 

not reproduce the electromagnetic B(EL) values, which suggests that density dependent 

calculations may be required. The B(EL) values obtained for low lying states in 24Mg 

and 28Si using density dependent folding calculations agreed with those obtained from 

electron scattering whereas those obtained using deformed potential calculations did not, 

consistent with Beene et al.’s conclusion [137]. 
 
 Multipole decompositions of the data for the giant resonance region of 24Mg, 28Si and 
116Sn were carried out with calculations using the density dependent double folding 

model. In addition a decomposition of the 116Sn data was done with calculations using 

the deformed potential model.  
 
The ISGMR and ISGQR strength distributions obtained for 116Sn with both calculations 

are in agreement with those obtained by inelastic α scattering. The ISGDR strength 

obtained using the deformed potential model calculations corresponded to ~500% of the 
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E1 EWSR whereas strength corresponding to 20
14118+

−  % was obtained using double 

folding calculations. Only 88±20% of the ISGDR EWSR was identified in α scattering.  

In α scattering studies it was found that the ISGDR cross section obtained with the 

deformed potential model was extremely sensitive to optical model parameters [130] and 

this suggests it is true in 6Li scattering as well. As in the  α scattering studies, the 

strength was split between two peaks qualitatively consistent with theoretical predictions 

[143-145].  The HEOR distribution obtained has about the same shape as that from α 

scattering, but the strength obtained (116±13%) is much greater than that obtained from 

α scattering and the ~75% [146] expected for the HEOR.  
 
The E0 strength in 28Si identified in this work is in good agreement with that identified 

with inelastic α scattering[40, 134]. The E2 strength identified below Ex = 22 MeV is in 

agreement with that reported in inelastic α scattering where a continuum was subtracted 

[40], but is smaller than that obtained when the strength in the continuum was included 

[134].  The E2 strength obtained in this work in the excitation range Ex ~ 22 – 40 MeV  

is considerably larger than that obtained in either α scattering analysis.  The differences 

between the 6Li and α scattering results (both of which within the errors identify strength 

corresponding to ~100% of the E2 EWSR) are an indication of the inherent uncertainties 

in identifying multipole strength when a significant continuum must also be accounted 

for.  This is more apparent comparing the E1 strengths obtained from 6Li (85% of the 

EWSR) and α scattering (15% of the EWSR).  The E1 EWSR strength distribution given 

in Ref. [40], if multiplied by a factor of 5, overlaps nicely that obtained in this work in 

the range Ex ~ 15 – 30 MeV. In inelastic α scattering, it has been noted that ISGDR 

strength is very sensitive to assumptions about the continuum [10], as illustrated by the 

different distributions reported in Ref.’s [9] and [10]. 
 
In this work, strength corresponding to 106 24

24
+
− % of the E0 EWSR was identified in 

24Mg, compared to 72±10 % identified in α scattering Ref. [39, 53], however the 

distributions were very similar and the centroid energies are in agreement. The E0 
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strength obtained in this work for excitation range Ex= 10-22  MeV is in excellent 

agreement with the adjusted Dennert et al.’s result [53], but  above ~ 22 MeV the E0 

strength obtained by Dennert et al. rapidly went to 0, probably due to the lower 

bombarding energy (156 MeV). The E2 strength obtained in this work is in agreement 

with that obtained in a new analysis of the α data [50]. The  E1 strength obtained is in 

agreement with that from α scattering below Ex~ 30 MeV, but considerably more E1 

strength is seen in the 6Li scattering between Ex = 30 and 40 MeV. Strength 

corresponding to only 3% of the E3 EWSR  was identified in 6Li scattering  compared to 

42% identified in α scattering . 
 
It is useful to summarize the comparisons between the results from 6Li scattering and 

those obtained from α scattering for the ISGMR, ISGDR and ISGQR respectively. Table 

5.1 shows the comparisons for the ISGMR. The total strength and the centroids obtained 

by 6Li scattering for 116Sn, 28Si and 24Mg are all in agreement those obtained with α 

scattering. Table 5.2 shows the comparisons for the ISGQR. The total strengths and the 

centroids obtained for 116Sn and 24Mg are also in agreement with α scattering, while 

more strength is observed above Ex =22 MeV  in 28Si compared to α scattering.  

 

Table 5.1 Comparisons of  fractional energy weight sum rule (EWSR) and energy 

moments between this work and previous works for ISGMR. EB 

represents bombarding energy. 

 
Scattering 

type 
EB 

(MeV) 
Ex interval 

(MeV) 
11 / −mm  

(MeV) 
01 / mm  

(MeV) 
13 / mm  

(MeV) 
EWSR 

(%) 
24Mg α [39] 240  9.0-41.0  21.0±0.6  72±10 

 α[50]  240 9.0-41.0 20.83 28.0
22.0

+
−  33.0

25.093.21 +
−  24.65

53.0
31.0

+
−  82±9 

 6Li[53] 156 10.0-23.16 17.6±0.5 18.3±0.5 18.6±0.5 97±15 

 
6Li 240 8.6-38.6 20.58

32.0
25.0

+
−  21.35

37.0
26.0

+
−  23.10

53.0
30.0

+
−  106

34
24

+
−  

28Si α[40]  240 8.0-40.0 20.13±0.38 21.25±0.38 23.7±0.70 81±10 
 α [134] 240  8.0-40.0  20.89±0.38  74±7 

 
6Li 240 8.0-40.0 19.85

61.0
29.0

+
−  20.59

78.0
33.0

+
−  22.70

58.1
35.0

+
−  80

35
20

+
−  

116Sn α [49] 240 5.0-35.0 15.45±0.20 15.62±0.20 16.13±0.20 112±15 

 
6Li 240 8.0-31.0 15.17

30.0
20.0

+
−  15.39

35.0
20.0

+
−  16.12

59.0
32.0

+
−  106

27
11

+
−  
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Table 5.2 Comparison of the strength and m1/m0 between this work and previous 

works for ISGQR. 

 Ex range  
(MeV) 

Scattering type m1/m0 

(MeV) 
EWSR 

(%) 
Ref. 

240 MeV α 14.0±0.50 103±10 [49] 
240 MeV α 13.50±0.35 108±12 [133] 116Sn ~8-30 
240 MeV 6Li 14.34 26.0

20.0
+
−  94 14

10
+
−  This work 

240 MeV α 16.59±0.35 47±5 [40] ~8-22 240 MeV 6Li 17.25±0.17 47±5 This work 
240 MeV α 27.21±0.25 18±2 [40] 

28Si 
~22-40 240 MeV 6Li 29.22 20.0

19.0
+
−  64±6 This work 

240 MeV α 15.56±0.18 36±4 [50] ~10-20 240 MeV 6Li 15.79±0.17 30±4 This work 
240 MeV α 19.92±0.18 89±9 [50] 

24Mg 
~9-40 240 MeV 6Li 20.23 25.0

20.0
−
−  76 14

12
+
−  This work 

 
 
 
The results obtained from 6Li scattering do not agree with those obtained from α 

scattering for the ISGDR. We have known from previous analysis of α scattering that 

the ISGDR is sensitive to the potential parameters [130], and also very sensitive to the 

physical continuum choice [134].  The fact that ISGDR strength for 116Sn, 28Si and 24Mg 

can not be reproduced well in the 6Li scattering, strengthens the above conclusion. 

However, there are some common characteristics between the ISGDR strength obtained 

in 6Li and α scattering, such as, the ISGDR strength for 116Sn extracted in both 6Li and α 

scattering is split into two peaks; the ISGDR strength for 28Si obtained in α scattering 

has the same energy distribution as that extracted in 6Li scattering below Ex= 30 MeV; 

the ISGDR strength for 24Mg below Ex =25 MeV obtained with α scattering is in 

agreement with that extracted in 6Li scattering. 
 

As shown in Table 5.3, the predicted peak differential cross sections for E0 excitation in 
28Si with 6Li scattering and with α scattering at Ex = 15 MeV are about the same, but the 
6Li cross section decreases much faster at higher excitation than does the  α cross 

section.  Also the peak cross sections for the excitation of the other multipoles is 



 

 

140

considerably lower in α scattering than in 6Li scattering, so that particularly at higher 

excitation, monopole strength is surpressed relative to the other multipoles in 6Li 

scattering. Fig. 5.1 shows an excitation energy spectra obtained in 6Li scattering at  θc.m. 

= 1.3° compared to one obtained in alpha scattering at θc.m. = 1.2°. The differential cross 

section for 6Li scattering goes below that for alpha scattering around 40 MeV, 

suggesting that the processes that make up the continuum are lower in 6Li scattering.  In 

the excitation energy range from 5 − 40 MeV, the continua chosen for 6Li scattering 

(black curve) and α scattering (green curve) are more or less the same, the difference of 

the differential cross sections between α and 6Li scattering is due to other L = 1 − 3 

excitations rather than E0 excitation, which indicate that 6Li scattering may not be a 

better way to study the ISGMR than α scattering for high excitation energy range 

(~30−40 MeV). 
 
 
Table 5.3  The maximum differential cross section obtained with DWBA calculations 

for 28Si with L = 0 − 3 excitation in α and 6Li inelastic scattering. 

 Max. dσ/dΩ in 6Li inelastic scattering 
(mb/sr) 

Max. dσ/dΩ in α inelastic scattering 
(mb/sr) 

Ex(MeV) L=0 L=1 L=2 L=3 L=0 L=1 L=2 L=3 
15 361 460 331 428 343 170 228 206 
30 21.4 32.1 66.6 143 53.7 29.4 69.0 82.3 
35 7.25 13.0 35.4 89.5 25.8 16.5 47.3 61.4 
40 2.29 5.54 17.8 49.9 11.3 8.9 32.2 49.0 
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FIG. 5.1 The excitation energy spectra obtained in 6Li scattering (blue curve) at θc.m. 

= 1.3° and in α scattering (red curve) at θc.m. = 1.2°.  The black curve is 

the continuum for α scattering spectrum while the green one is for 6Li 

scattering. 
 
 

To summarize this research, data for elastic and inelastic scattering of 240 MeV 6Li ions 

exciting low lying states and giant resonances was taken on 24Mg, 28Si, and 116Sn. 

Parameters and techniques were developed for double folding calculations and multipole 

analyses were carried out for high lying isoscalar L = 0 - 3 strength. The results for the 

ISGMR and ISGQR are in agreement with those obtained by 240 MeV α scattering, 

however the agreement for the ISGDR and HEOR is not so good, indicating the 

uncertainty in extracting these strengths. This work has shown that 240 MeV 6Li 

scattering is a viable way to study the ISGMR and ISGQR and can be particular useful 

in rare isotope studies where 6Li can be used as the target.  
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