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ABSTRACT 

 

An Investigation of Effects of Flow Conditioning on Straight Tube Coriolis Meter. 

 (May 2008) 

Shashank Shukla, B.Tech, National Institute of Technology, Calicut, India 

Chair of Advisory Committee: Dr. Stuart L. Scott 

 

 Coriolis meter, despite being very accurate in single phase conditions, fails to 

accurately measure two-phase flows. It poses a complex fluid-structure interaction 

problem in case of two-phase operation; there is a scarcity of theoretical models 

available to predict the errors reported by Coriolis meter in aforementioned conditions, 

hence the need for experimental research. 

Experiments are conducted in both single and two-phase flow conditions. Meter 

accuracy is excellent in single phase conditions and no significant effect is observed on 

use of flow conditioners, namely inlet swirl and inline mixer. Operational two-phase 

envelope is determined through experiments at different flowrates. Flow conditioners are 

used to study the effect of phase segregation and homogenization on accuracy of the 

meter. Testing is done to cover two-phase flows from both extreme ends, namely aerated 

liquids and wet gas. Use of flow conditioners show slight improvement in meter 

accuracy on use of inline mixer, and reduction in accuracy in case of inlet swirl, when 

both former and latter are compared to results obtained from experiments with no flow 

conditioners. The difference in accuracies between results with flow conditioner and 
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without flow conditioners is attributed to relative motion between the phases, which is 

more in case of inlet swirl, due to larger bubble sizes. Flow conditioners show an 

insignificant effect on meter accuracy during wet gas tests. The reason proposed is 

annular flow regime, which is not highly affected by flow conditioners.  

Single phase tests demonstrate that Coriolis meter gives accurate measurement 

even in presence of severe flow disturbances. There is no need for flow conditioning 

before the meter to obtain accurate readings from it, which would be the case in other 

metering technologies like orifice and turbine. In two phase flows, the meter reports 

negative errors, which is consistent with previous experimental works available in 

literature. Use of flow conditioners clearly affects the reading of the meter in aerated 

liquids. This phenomenon can be used to get fairly accurate estimate of flow rate in low 

gas volume fraction liquid flows. 
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CHAPTER I 

INTRODUCTION 

 

1.1  Background 

 The measurement of multiphase flow with good rangeability and acceptable 

accuracy will be a very cost effective solution for the development of new satellite fields 

as well as for optimization of existing fields
1
.  Multiphase metering technology has 

advanced quite significantly over past few years, as has the acceptance and utilization of 

such technology both onshore and offshore.  

 Many new fields are economically marginal and cannot sustain the financial 

implications of the traditional separator based technology. Multiphase meters can offer 

substantial cost savings by eliminating the need of separators, or by allowing several 

fields to share common processing facilities.  

In well management applications, multiphase meters offer continuous data output 

giving valuable information about the performance of the wells. This enables problems 

or changes in well performance to be detected sooner, and subsequent interventions 

planned earlier than would be possible with traditional processing technology. 

 The importance of multiphase metering is evident in the number of papers 

published on the subject and the time devoted to it at major flow measurement and oil 

and gas conferences.  

_____________ 

This thesis follows the style and format of SPE Journal. 
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 Within the oil and gas industry, it is generally recognized that multiphase 

metering can be very beneficial for the following
1, 2

. 

 

1.1.1 Layout of production facilities 

Use of multiphase meters reduces the hardware needed for onshore, offshore 

topside and offshore subsea applications by eliminating the need of dedicated test 

separator for well testing applications. With a smaller “footprint” it minimizes platform 

space and load requirements. It also makes the costly well test lines obsolete; which is 

very important for unmanned locations, deepwater developments and satellite fields.  

 

1.1.2 Well testing 

Well testing using multiphase meters is much quicker than by traditional 

separator. Multiphase phase meters have accuracy comparable to conventional test 

separators (~5-10%)
2
, but the latter require regular intervention by trained personnel and 

cannot provide continuous well monitoring. Another disadvantage of using conventional 

well testing with separators is that wells suffer from regular shutdown cycles related to 

well testing; this may lead to more frequent workovers needed to maintain their 

production rates. Multiphase meters can also be used to measure clean up flow after 

exploratory drilling; added value may include improved control of drawdown applied to 

the formation, the pressure transient and shortened flow periods.  
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1.1.3 Reservoir management 

Multiphase meters can provide real time, continuous data for the operators to 

better characterize field and reservoir performance and to react faster. Using multiphase 

meters in individual wells can be a powerful tool in field development. It can help 

singling out the “under-performing” wells, and to plan interventions. Any appreciable 

changes in productivity index, gas-oil ratio and water cut can be detected and quantified 

almost immediately, as opposed to conventional test separators where this information is 

at discrete points in time and on cumulative volume basis.  

 

1.1.4 Production allocation 

Using multiphase meters in manifolds handling commingled production from 

different fields/wells operated by different companies holds clear advantage over the 

conventional testing. In the latter, production from each well must flow through a test 

separator before commingling with other produced streams. This especially is a 

formidable task in planning tie-backs for existing facilities.  

 

1.1.5 Production monitoring 

Real time monitoring of production data from multiphase meters can give useful 

information for detecting problems associated with well slugging and gas-lift issues. 

This allows operators to optimize well performance and extend field life.  
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1.1.6 CAPEX and OPEX 

Apart from direct savings in CAPEX for multiphase meters compared to 

conventional test separators, the OPEX of multiphase meters is also estimated to be 

considerably lower than the latter. In addition, it is estimated that multiphase metering 

systems could improve the management of the field/well with 6-9%
2
 gain in the value of 

the oil recovered. Both CAPEX and OPEX for multiphase meters are estimated to 

reduce as competition in the market increases and more operational experience is gained.  

 

1.1.7 Fiscal metering or custody transfer 

Current technology in multiphase metering is not accurate enough for fiscal 

metering. Custody transfer metering is still being done single phase metering devices, 

used after separating the phases. Considerable research and development work is 

however being done in improving the accuracy of multiphase measurement. 

A large number of technologies are available to measure multiphase flows. Most 

of the multiphase meters are combination of techniques each giving parameters, which 

together can give individual flowrates and volume fraction. Due to large costs associated 

with multiphase meters, a lot of attention has been given to single phase meters (which 

are comparatively inexpensive) operating in multiphase conditions. One of such 

candidates is Coriolis meter.  

 Coriolis mass flow and density meters are considered the flow metering solution 

of choice for many precision flow applications. Coriolis mass flow metering has been 

used in industry since early 1980s; since then Coriolis meters have grown into one of the 
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largest and fastest growing meter segment, representing roughly $400 million annual 

sales on approximately 100,000 units
3
. 

 Coriolis mass flow meters are available in widely varying designs (e.g. straight-

through pipes, U-tubes, B-tubes, with single path or split flow configurations), but the 

operating principle remains the same: mass flow through a vibrating tube causes a 

proportional Coriolis force to act, which is detected as a phase difference between two 

velocity sensors. Almost all transmitter designs cause the flowtube to vibrate at its 

natural frequency; this frequency is a function of the process fluid density, which can 

thus be calculated and given as an additional measurement. The process fluid 

temperature is also measured to provide temperature correction of the mass flow and 

density (compensating for tube stiffness), and as an extra process measurement. Coriolis 

meter is thus a fairly sophisticated example of a multivariable industrial sensor.  

 Coriolis meters offer several advantages over other flow rate measurement 

technologies. They have accuracy and repeatability of 0.2% or better, and the ability to 

handle difficult, non-Newtonian fluids such as slurries and food stuffs
4
. There are also 

limitations associated with them. Currently Coriolis meters are very expensive to buy 

and install. Another major disadvantage is the impact of two-phase (gas-liquid) flow on 

meter performance. Even a short burst of gas in a liquid flow stream may cause serious 

disruption to meter operation and lead to large measurement errors
5
. 

 In the past, research and design efforts to improve the performance of Coriolis 

mass flow meters have concentrated on areas such as digital signal processing; 

separation of phases using compact separators, design of tubes among others. Very few 
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public domain literature concerns with effect of flow conditioning on performance of 

Coriolis meters operating in single phase flows. To the best of author‟s knowledge, no 

one has reported effect of flow conditioning on Coriolis meter in two-phase flows. A 

good understanding of latter will aid in the design of multiphase metering packages 

incorporating Coriolis meter and ultimately, confidence in its use.  

 

1.2 Literature review  

 Domnick et al (1987)
6
 states and gives arguments, that in case of multiphase 

flows, Coriolis mass flow meter will be accurate when the secondary phase 

particles/droplets/bubbles in the flow follow the oscillations of the measuring instrument 

(and the primary phase). In the presence of axial swirl, one is forcing the suspended 

particles (or bubbles/droplets) to move in a fashion different from that dictated by the 

vibration of the sensor tube.  This phenomenon predicts a degraded performance of 

Coriolis meters in presence of axial swirl though, they haven‟t looked particularly into 

the effect of axial swirl particularly.  

 Cascetta et al (1989)
7
 describe a new design of Coriolis mass flow meter, which 

permits measurements independent of the elastic properties of the vibrating tube. The 

measuring principle is suitable for metering homogeneous or heterogeneous two-phase 

fluids. For the latter the density of the secondary phase should not be too different from 

that of primary phase, so that when the sensor tube is set in relative motion the two 

phases may behave as rigidly connected. Cascetta et al (1992)
8
 experimentally compared 

performance of seven Coriolis mass flowmeters. They also outlined some of the external 
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factors which might affect accuracy of Coriolis mass flow meter, including but not 

limited to various turbulence spectra and presence of axial swirl. No explanation, as of 

what might be the effect of axial swirl on Coriolis mass flow meter would be, is 

presented.  

 Hemp and Sultan (1989)
9
 developed a “bubble” model for Coriolis mass flow 

meters operating in two-phase regimes; considering the inertial losses generated by a 

single bubble surrounded by much denser liquid, passing through vibrating tube. This 

model predicts monotonic, negative errors which are a function of gas void fraction 

(GVF) only, i.e. the proportion of gas by volume in the two-phase mixture. Mass flow 

and density errors specifically take following form
 10

, 
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 ……………………………………………………………………………………………….. (1) 
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trueobserved
 ………………………………………………………………………………………………….. (2) 

Where
.

m is the mass flow rate of the combined stream, and is the gas volume fraction 

on a scale of 0 to 1. This model was then compared to measurements by Grumski and 

Bajura (1984)
11

. The theory overestimated the errors and the reason provided was 

possible interaction between bubbles.   

 Tests of single-tube and dual-tube Coriolis meters in liquid flows by Grumski 

and Bajura (1984)
11

 found that the meters could measure single-phase mass flow rates to 

within ± 0.4% of the actual. Air was then injected into the water flow to test the 

tolerance of the Coriolis meters to entrained air. The single tube meter gave mass flow 
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readings accurate to within ± 2% for flows up to 1.5% gas by volume, then its accuracy 

dropped until complete failure occurred between gas volume fractions of 2.5% and 3.5% 

(Fig. 1.1).  

 

 
Fig. 1.1 – Single tube Coriolis meter accuracy under aerated liquid tests

10
. 

 

The dual tube Coriolis meter fared better; errors of less than ± 2% were observed 

for gas volume fractions below 7.5%, and failure occurred between gas volume fractions 

of 16% to 20% (Fig. 1.2). 

 Benefits of using one particular design of Coriolis meter over others are also 

scarcely reported. Al-Khamis et al
12

 reported that straight tube Coriolis mass flow meter 

is less sensitive to gas entrained in the liquid than both U-tube and the modified form of 

U-tube Coriolis mass flow meter for the range that was tested (Fig. 1.3). The reason 
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given for this observation was less pressure drop in straight tube Coriolis mass flow 

meter; due to which less amount of dissolved gas comes out of the solution. Straight tube 

Coriolis meter was also able to handle higher two-phase flowrates than other designs. 

 

 
Fig. 1.2 – Dual tube Coriolis meter accuracy under aerated liquid tests

10
.   

 

 Recently several research efforts have been done trying to predict Coriolis meter 

performance in two-phase flows
13

. Gysling
14

 proposed a lump model of Coriolis meter 

operating in aerated flows. He gives arguments showing importance of speed of sound 

measurement in Coriolis meters due to acoustic resonance of the fluid in the tube, mainly 

in relation to their density measurements. It is proposed that an additional measurement 

of speed of sound in multiphase mixture will enable predicting accurate density of the 

process fluid. Gysling
3
 presented an improved comprehensive lumped parameter, 
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aeroelastic model of U-tube Coriolis massflow and density meter addressing the issues 

of compressibility and inhomogeniety present by aerated process fluids. He shows that 

the behavior of the meter is influenced by several parameters like void fraction, fluid 

viscosity and reduced frequency. As in previous work
14

, speed of sound in aerated fluid 

is measured as an additional variable and is used to calculate all aeroelastic operating 

parameters, gas volume fraction and reduced frequency. They also discuss process of 

relative motion between the bubbles and the liquid, and how this can cause damping and 

a change in the apparent density of the mixture. This methodology has been successfully 

used in recent field experiences
 15, 16

. 

 

 

Fig. 1.3 – Comparison between straight tube and U-tube design. Straight tube 

Coriolis meter is able to handle higher two-phase flow rates than U-tube
11

. 
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  Hemp and Kutin (2006)
17

 investigated both massflow and density errors 

associated with Coriolis meter operating on compressible fluids. Their analysis is 

applicable to small fractional errors (low contamination of secondary phase) and as such 

does not cover the full range of two-phase flows from aerated liquids to wet-gas. They 

propose following expressions for massflow and density errors encountered in case of 

compressible fluids, 

2

1
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2
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
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
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ctrue
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


 ……………………………………………………………………………………….. (4) 

Where 1  is resonance frequency of the flowmeter tube filled with compressible fluid, b 

is the flowmeter tube radius (inner) and, c is the velocity of sound in fluid. 

 Investigation of effect of inlet velocity profiles on Coriolis meter performance 

has also been done for single phase flows by researchers. Cheesewright et al (2000)
18

 

identified external factors which influence the calibration of Coriolis massflow meter. 

Tests were conducted where they found no significant (>0.25%) effect of inlet swirl 

conditions on the three Coriolis meters used in tests; also the effect of severely 

asymmetric inlet velocity profiles (50% blockage immediately upstream of the meter) 

was minimal. Bobovnik et al
19

 investigated the effect of fully developed, asymmetric 

triangular and swirl flows (introduced at the inlet) on the straight tube Coriolis meter 

using CFD analysis. They found that the effect of inlet swirl flow is not negligible only 

for the highest Reynolds number simulated. Similarly the effect of asymmetric triangular 
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inlet condition was minimal (~0.1%) on the performance of the meter for the whole 

range of Reynolds number simulated. Recently Kutin
20

 discussed velocity profile effects 

on Coriolis meters. Results showed Coriolis meter is sensitive to inlet velocity profiles; 

as in other investigations the effect observed was minimal.  

 In past other benefits of Coriolis massflow meters have been widely reported. 

Cox
21

 showed that Coriolis meters can be used to satisfactorily measure oil/water 

emulsions. He also demonstrated the calibration is independent of the rheological nature 

of the fluid. Andersson and Gudmundsson
22

 used Coriolis meter to measure flow rates of 

hydrate-water slurries. They noted that the meter gives accurate readings till the 

concentration of hydrate in water is less than 15%.  

 Another interesting development in multiphase metering using Coriolis meters is 

emergence of relatively inexpensive multiphase metering systems using compact 

separation systems along with Coriolis meters to measure fully or partially separated 

fluid streams, considerable research efforts are being undertaken to improve the 

separation capabilities of compact separator in order to improve the operational envelope 

of the system
23,24

; an example of such a system is shown in Fig. 1.4. This is a primary 

application of results obtained through testing Coriolis meters in swirl conditions, since 

the compact separators can experience phenomenon of gas carry under, where due to 

large centrifugal forces, gas phase may develop swirl characteristics. Another good 

application of inlet swirl will be installation of Coriolis meter after any bend or elbow 

where partial phase separation occurs due to the difference in the velocity profiles of two 

phases.  
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Fig. 1.4 – Multiphase metering system using compact separation and Coriolis 

meters (from Phase Dynamics).  

 

 Recently Hemp and Yeung (2003)
10 

provided a novel Coriolis transmitter 

technology developed at Oxford University, which they propose, can be accurate in 

measurement of aerated liquids. Difficulty encountered in accurately measuring aerated 

fluids is probably the most critical issue with Coriolis technology. Companies providing 

Coriolis meters suggest removing as much air from flow stream as possible before 

measuring it with Coriolis meter, but it is not generally the case. In most cases it is 

prohibitively expensive to bring air levels below admissible. There is a need for 
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intensive research to devise methods to increase the permissible operation envelope of 

Coriolis meter measuring aerated fluids or wet-gas. Flow conditioning of fluids before 

they enter Coriolis meters can be an approach to attain the goal.   

 

1.3 Objectives of the research 

 The purpose of this research effort is to observe the effect of flow conditioning 

on the mass flow and density measurement of a two phase flow by a straight tube 

Coriolis meter. This involves quantifying errors observed in mass flow and density 

measurement upon, introduction of air in fluid flow (aerated liquid) and introduction of 

liquid in air flow (wet-gas) with and without flow conditioning. Flow conditioning will 

be done using both swirl generator (phase segregation) and inline mixer (phase 

homogenization).  

  

1.4 Thesis outlook   

 The physical geometry and operational features of Coriolis meters will be 

described next followed by a discussion of the applications and performance of Coriolis 

meters. Limiting physical phenomenon associated with Coriolis meters will be 

described. A general overview of experimental facility and process is given. 

The effect of flow conditioning on the mass flow and density errors observed in 

two phase flow are compared with base cases (single phase, with and without flow 

conditioning) and presented. Analysis of the results obtained from this investigation 

compared to analytical models available in literature is reported. 
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 Finally, conclusions and recommendations deduced from the outcome of this 

research are outlined.  
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CHAPTER II 

PHYSICAL GEOMETRY AND OPERATIONAL FEATURES OF 

CORIOLIS METERS 

 

2.1 Physical geometry of Coriolis meters 

            Coriolis meters are essentially aeroelastic devices; and as such involve coupled 

dynamic interaction of fluid dynamics and structural system. The Coriolis meter 

basically consists of a tube conveying fluid (lying in one plane and clamped at its ends) 

and associated circuitry. Circuitry includes an electromagnetic drive generally at the 

middle of the tube, and two electromagnetic detectors. It also includes a feedback circuit 

for maintaining vibration at the fundamental frequency and electronic means of 

measuring the phase difference (due to flow) between signals received from the 

detectors. 

 

Fig. 2.1 – A Coriolis mass flowmeter of U-tube configuration. 
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2.2 Operational features of Coriolis meters   

 In the Coriolis mass flowmeter, an angular movement is imparted to a tube 

conveying fluid by means of electromagnetic drive. This angular movement is generally 

harmonic in nature though some earlier designs used steady rotation. This additional 

motion communicated to the flowing fluid causes the particles of fluid to undergo 

Coriolis acceleration. As a result forces proportional to the product of the fluid density 

and velocity act through the fluid medium and generate pressure on the conduit walls, 

producing a measurable effect.  



 va c 2 ………………………………………………………………………….  (5) 

Where ca


 is the Coriolis acceleration, 


v is the velocity vector of the particle in the 

rotating system, and 


 is the angular velocity vector of the rotating vector (which has 

magnitude equal to the rotation rate and is directed along the axis of rotation). 



 vmF c 2  ……………………………………………………………………..… (6) 

Where cF


 is Coriolis force acting on the particle and  m is mass of the particle.  

 For example in the general arrangement of a meter of U-tube configuration 

shown in Fig. 2.1, the electromagnetic driver causes the tube to perform an oscillatory 

rotation about the y-axis. Fluid flows in opposite directions in the straight limbs of the 

U-tube so the effect of the Coriolis acceleration is to cause an oscillatory twisting of the 

tube about the x-axis. This secondary motion is exceedingly small compared with the 

main vibration about the y axis but it causes a slight difference in the phase of the signals 
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from the detectors. The total mass flow of the fluid can be deduced from the 

measurement of this phase difference.  

 The physical principle used to determine process fluid density is similar to that 

used in vibrating tube density meters. In Coriolis meter the measuring tube conveying 

the process fluid, is driven to oscillate and its resonant frequency is determined. The 

amount by which resonant frequency obtained in presence of process fluid is shifted 

from that obtained in vacuo is a function of the density of the process fluid, which can 

then be determined. 

 A feedback circuit is used to maintain the vibration, an amplified form of the 

signal received at one detector being used to power the drive. The rectified signal from 

one detector is employed as a gain control for the driving voltage. In this way the 

amplitude of vibration at the fundamental frequency is maintained at a fixed level. Since 

losses are small the fundamental natural vibration motion is effectively set up and 

maintained.  

A single straight tube Coriolis meter was used in the experiment (Fig. 2.2). Its 

operation is similar to U-tube design explained above.  

 

Fig. 2.2 – Single straight tube Coriolis meter. 
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2.3 Performance and applications 

 Coriolis massflow meters have emerged as the fastest growing fluid metering 

technology over the past decade. With worldwide revenues presently greater than $400 

million and moving to $600 million in near future, Coriolis technology is considered as 

market leader mass flow metering technology by many. A major reason for this 

phenomenal growth is its ability to measure single phase fluids with accuracy and 

repeatability of 0.2% or less; which without question makes it the most accurate general 

purpose meter used by industry. It has been used successfully in wet-gas with at most 

2.5% of liquid. It has been used successfully for many applications including, but not 

limited to the following: 

 Custody transfer and fiscal metering of industrial gases (e.g. Carbon dioxide, 

Nitrogen) and natural gases. 

 Custody transfer and fiscal metering of crude oil and other natural liquids. 

 Metering of liquid-liquid emulsions. 

 „Check‟ metering of natural and industrial gases. 

 Batch and continuous reactor feed. 

 Process control of combustion gases (e.g. natural gas feed to reactors). 

 Process control of cryogenic fluids (e.g. Nitrogen, Argon, Oxygen). 

 Measurement of highly corrosive acids, bases and liquid-solid slurries (e.g. 

water-hydrate slurry). 

 Interface detection. 
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Fig. 2.3 – U-tube Coriolis meter in use for calibration of other meters at CEESI, 

                Colorado. 

 

Apart from being very accurate, Coriolis technology has several other advantages; some 

of them are: 

 It is not affected by the thermodynamic state of the fluid (i.e. temperature, 

pressure or density of measured fluid to a large extent). 

 They are fairly independent of the rheological properties of the fluid; this makes 

it quite suitable for Newtonian and non-Newtonian emulsions. This being said, 

Coriolis meters are affected by density of fluid, though dependence is not as 

much as seen in some other metering technologies. 



 21 

 They are almost non-intrusive in nature; though some pressure drop does occur 

in the vibrating tube. 

 They can measure massflow rate directly. Most of the other meters measure 

volume flow rate, which is dependent on thermodynamic (pressure, temperature) 

state of fluid. Mass measurement, therefore is considered superior. 

 Capital savings because of relatively short installation length requirement and 

easy retrofit. 

 Bi-directional flow capability; not many designs allow this but it is theoretically 

possible. 

 Less secondary instrumentation is required. It measures both massflow rate and 

density, thus compared to traditional metering technologies (e.g. turbine meter, 

orifice meter) fewer pressure transmitters are required. 

 Broader flow ranges possible; generally ratio between lowest and highest flow 

rates is 1:100. 

 Operational savings because of the on-board diagnostic capabilities. 

 

2.4 Limitations of Coriolis meters 

 Coriolis technology, like all other metering technologies has few disadvantages 

associated, which limit the use of it. One of the limitations is high CAPEX of the meters 

and associated circuitry. At present generally cost of Coriolis meter is more than orifice 

meter and turbine meter, but is definitely less than metering technologies like gamma ray 

and sonar. This cost is expected to come down as more meters are installed worldwide.  
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Another major limitation of Coriolis meter is its inability to handle aerated 

liquids or wet gas with reasonable accuracy. Coriolis meter by design is a single phase 

meter. Multiphase flow through a Coriolis meter becomes a very complicated fluid-

structure problem. Though Coriolis meter by design works in multiphase flow but past 

works show that the errors in mass flow rate and density reading can be as much as 80% 

even with low presence of secondary phase; also as the gas volume fraction in aerated 

liquids rise, so does the power required by the driving circuitry. There have been 

attempts to remedy this limitation by improving analog and digital circuitry, but with 

limited success. This work attempts to investigate the multiphase flow envelope, straight 

tube Coriolis meter can work in with reasonable accuracy. Also effects of flow 

conditioning on this envelope will be investigated.  
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CHAPTER III 

EXPERIMENTAL PROGRAM 

3.1 Test facility 

 The experimental two-phase flow loop consists of a pumping and metering 

section where required flowrates of individual phases are controlled and metered, and 

straight tube Coriolis section where most of experimental data is acquired (Fig. 3.1). 

Coriolis section itself is set-up in inlet section and actual straight tube Coriolis meter. A 

separate inlet section provides the flexibility of installing different flow conditioners 

upstream of Coriolis meter and observing their effect on the Coriolis performance.  

 

 

Fig. 3.1 – Experiment flow loop. 
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3.1.1 Coriolis meter test section 

 The test section consists of straight tube Coriolis meter (Fig. 3.2). The meter is a 

single straight tube design from Endress & Hauser; nominal diameter of the fluid 

conveying tube is 1 inch. Vendor stated range of mass flowrates through the meter is 

from 0 to 660 lb/min. The test section is divided into three primary parts: 

 Phase mixing section. 

 An inlet section adaptable to various flow conditioners. 

 A single straight tube Coriolis meter. 

 

 

Fig. 3.2 – Single straight tube Coriolis meter used in experiments. 
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3.1.2 Inlet section 

 Inlet section is made by transparent 1 inch PVC pipe and is compartmentalized in 

primary test section by means of flanges. This makes it adaptable to different flow 

conditioners used in the experiment by reducing the time and effort needed to change the 

configurations. Two types of flow conditioners were used in the experiments: 

 Swirl generator: It acts as a phase segregator (Fig. 3.3). A flow of multiphase 

mixture through the swirl generator causes the heavier phase to flow on the 

periphery of the tube with the lighter phase occupying the middle of the tube. 

This is caused by the centrifugal forces generated as the fluid rotates in transit 

through the swirl generator. Hardware similar has been used in past to separate 

two phase mixtures
27

. 

 

 

Fig. 3.3 – Inlet swirl generator. 

 

 In-line mixer: It acts as a phase homogenizer. The model used in the testing is 

Ryan Herco all plastic static in-line mixer (6 elements) with nominal diameter of 

1 inch. (Fig. 3.4). Multiphase flow through the mixer comes out as a well 

homogenized mixture of phases with the slip velocity between the phases 
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minimum. This occurs due to various obstructions (built in the mixer) 

encountered by the flow. The pressure drop along the obstructions act to break 

the secondary phase into small droplets dispersed throughout the primary phase. 

This makes the mixture “homogeneous” in a macroscopic sense.  

 

 

 

Fig. 3.4 – In-line mixer. 

 

 

 

Fig. 3.5 – Aerated liquid flow without flow conditioners. 
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Visual inspection during the tests has been done during the tests to confirm the 

effects of flow conditioners. Fig. 3.5 shows the aerated flow in the tube with no flow 

conditioners; as visible there is significant inhomogeniety present in the phase with air 

bubbles majorly present in the top of the tube.  Inlet swirl generates a concentric core of 

air as seen in Fig. 3.6. The swirl continues throughout the meter length (Fig. 3.7). 

 

 

Fig. 3.6 – Aerated liquid flow in presence of inlet swirl.  

 

 

Fig. 3.7 – Snapshot of aerated liquid flow exiting the Coriolis; it confirms that swirl 

continues throughout the meter. 



 28 

 

Fig. 3.8 – Inline mixer in aerated liquid flow. 

 

Fig. 3.8 shows the inline mixer in aerated liquids. It tends to create and disperse 

large amounts of smaller air bubbles (Fig. 3.9) and thus makes the flow “homogenized”. 

 

 

Fig. 3.9 – Inline mixer creates large amounts of smaller bubbles. 
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3.1.3 Metering section 

 The metering section consists of two parallel, single-phase feeder lines for 

measuring individual incoming single-phase gas and liquid flow rates. Air, which is 

supplied by an air compressor, is used as the gas phase in the present setup. The air flow 

rate into the loop is controlled by a regulating valve and metered by an elite series 

Micromotion (ESM) Coriolis meter. The liquid phase used in the current work is water. 

It is supplied from a 15-barrel storage tank at atmospheric pressure and pumped to the 

liquid feeder line by a combination of two centrifugal pumps. Variable frequency drives 

are used to control the drive frequency of centrifugal pumps; drive frequency controls 

the liquid flow rate.  

 Similar to the gas phase, the liquid flow rate is metered using 1½-in. Model D 

Micromotion meter. The single-phase gas and liquid streams are combined at the mixing 

tee and delivered to the test section. No-return valves, located downstream of each 

feeder, are installed to prevent backflow. The two-phase mixture downstream of the test 

section is separated by a conventional separator. The air is vented to the atmosphere and 

the liquid is returned to the storage tank to complete the cycle. 

 

3.1.4 Uncertainty analysis  

 Uncertainty analysis is performed on single phase tests to determine level of 

confidence in the results. Vendor provided technical manuals
25,26

 are used to get 

accuracy information about participating instruments. Relevant information used to 

calculate uncertainties of measured parameters are presented below: 
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 Mass flow rate of liquid: maximum uncertainty of  0.1% of rate. 

 Mass flow rate of gas: maximum uncertainty of  0.5% of rate. 

 Density measurement of liquids: maximum uncertainty of  0.5 

kg/m
3
  0.0312 lb/ft

3
. 

 Temperature measurement of gas: maximum uncertainty of  1
0
C 0.5% of 

reading in 
0
C   69.6 

0
F to 73.6 

0
F (test temperature is constant at 72 

0
F). 

 Pressure measurement: 0.25% of the range of the transducer (100 psi in this 

work). 

Expressions resulting from these considerations are used to calculate uncertainty 

associated with reference measurements and presented as range of errors (of mass flow 

rate and density readings for single phase flows) in chapter IV.  

)001.01(,,  observedlactuall MFRMFR   ……………………………………………….. (7) 

)005.01(,.,  observedgactualg MFRMFR  ………………………………………………. (8) 

0312.0,,  observedlactuall   …………………………………………………………... (9) 

And for density of air, applying ideal gas law at the inlet of the Coriolis meter, 

)26.71(

)0025.01(,,

,





R

P

RT

P observedinlet

actual

actualinlet

actuala  ……………………………………... (10) 

An important assumption made during uncertainty analysis is that variables 

measurements are considered independent of each other, i.e. density reading of liquid is 

not affected by mass flow rate reading of the Coriolis meter. Results of uncertainty 

analysis are presented in Chapter IV. 
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3.2 Experimental procedure  

 The overall test schematics used for this experimental work appears in Fig. 3.10. 

Air, and water run in the flow loop; Water is pumped into the loop from water storage 

tank by centrifugal pumps.  

 

F
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Air outlet

1 – Water/Oil storage tank   8 – Flow conditioner (inlet swirl/inline mixer) 

2 – Air compressor    9 – Pressure transducer after flow 

3 – Centrifugal pumps          conditioner (2)  

4 – Air meter (1)    10 – Straight tube Coriolis meter           

5 – Liquid meter (2)    11 – Pressure transducer after Coriolis          

6 – Mixing tee                        meter (3)  

7 – Pressure transducer before flow    12 – Separator 

      Conditioner (1)              

Fig. 3.10 – Process Flow diagram of experimental setup. 
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Variable frequency drives are applied to control liquid flow rates. Air for the gas 

loop comes from a compressor, which is regulated with a needle control valve. Pressure 

transducers are located all around the test facility to provide the required pressure 

measurements. Mixing tee is used to mix the two single phase streams into a single two-

phase flow, it is shown in Fig. 3.11; 0.5 inch pipe is used to inject secondary phase into 

2 inch pipe carrying primary phase. An additional needle valve on the 0.5 inch flow line 

provides additional control on secondary phase flowrates. After passing through the test 

section, multiphase flow is allowed to flow back to a settling tank (separator), where air 

is released to the atmosphere and liquid is recirculated. 

 

 

Fig. 3.11 – Mixing junction. Secondary phase is injected through ½’’ pipe in 

primary phase being carried through 2’’ pipe.  
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3.2.1 Data acquisition system 

 To monitor real time behavior of the experiments, it is essential to record various 

parameters that define the process. Apart from the flowrates, pressure and temperature at 

various points are important parameters.  Air temperature is given as additional output 

by ½ inch Coriolis meter used to measure air flow rates.  

 Three Rosemount (Emerson) absolute pressure transducers are installed on the 

flow loop. They measure pressure readings before inlet section, after inlet section and 

after Coriolis test meter respectively, and transmit a proportional or square root (flow) 

electrical signal. The differential pressure gauges are energized by a 20 volts single DC 

power supply and output 4~20 mA DC current signals that travel to hardware via grade 

16AWG electric cable. 

 The connections of the transmitters are assembled with 1/8” hastelloy C276 

tubing and GYROLOK compression fitting.  Fig. 3.12 shows the connection mode to 

capture the electric signals and convert to PC based data acquisition system. 

The NI CB-68LP board is the device that receives the electric signal from the 

transducers, via the wires, and transfers the signals to the main board inside the 

computer; see Fig. 3.13.  It has a direct network interface, processes I/O signals on up to 

64 channels, eight of which are type analog.  The channels entering to the board and its 

distribution and recognition are programmed by the software LabVIEW from National 

Instruments. 
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Fig. 3.12 – Schematic of pressure signal acquisition. 

 

  

Fig. 3.13 – NI Interface Board CB-68LP DAQ. 

  



 35 

The three pressure signals use independent analog channels in the interface 

board; these signals are then distributed and directed to the main board installed inside 

desktop. These three signals are processed by the software LabVIEW which 

automatically recognizes and display them on a wave chart in front panel as shown in 

Fig. 3.14.  

 

 

Fig. 3.14 – Data acquisition LabVIEW program (front panel). 
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The software works with specific commands for each tasks and it easily links the 

pressure signals with the workflow to calculate the GVF encountered by the test Coriolis 

meter. Finally the pressure and GVF readings along with flowrates of both water and air 

are sent to be written in a file. The sampling frequency is fixed at 10 Hz .When a steady 

state condition is attained; a mean of data recorded for a run, usually about 5 minutes is 

taken as the final measurement. The file can be extracted as a excel spread sheet to 

represent the differential pressure and permeability data. Fig. 3.15 shows the block 

diagram of the LabVIEW with the program to acquiring and writing the data. 

 

 

Fig. 3.15 – Data acquisition LabVIEW program (block diagram). 
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3.2.2 Single phase test procedure 

 Single experimental setup is used for conducting both single phase and two-

phase tests. In single phase tests, both air and water are allowed to flow through the test 

skid individually. This is done by cutting off secondary phase flow by means of control 

valves. Single phase tests were performed both with and without flow conditioners. The 

meter was tested for both air and water. Upper limit of flowrates for which meter was 

tested were limited due to incapability of clear PVC pipe (used in the experiment for 

visual inspection) to handle high pressures. Frequency of swirl in single phase flows can 

be easily determined; another interesting testing can be to measure the output of the 

meter as the swirl frequency nears the frequency of the meter itself, and to see what 

happens when those two are same. When these two frequencies will be same, resonance 

will occur, but that is very hard to achieve since commercial coriolis meters vibrate at 

100 hertz to 200 hertz. This effect has not been discussed in present work. 

 

3.2.3 Two phase test procedure 

 Two scenarios are given emphasis while testing flow-loop for two phase flows:  

 Aerated liquids: Aerated liquids are generated by introducing trace amounts of 

gas in liquid flow. Amount of air in liquid is varied to observe the change in 

Coriolis performance. Tests are carried out till the gas volume fraction above 

which the error in mass flow rate becomes more than 10%. Tests are done 

without using flow conditioners, as well as with swirl generator/in-line mixer.  
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 Wet gas: Trace amounts of liquid are introduced in the gas stream to generate 

wet gas flows. As in aerated liquid testing, here too amount of liquid present in 

the flow is varied to observe the effect of change of liquid loading on Coriolis 

performance. This also gives an operation envelope, where Coriolis meter can 

work with reasonable accuracy, in spite of being subjected to two phase flow. As 

before, tests are carried out in presence of flow conditioners as well as without 

them.  
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CHAPTER IV 

SINGLE PHASE METERING WITH CORIOLIS METER 

 

Previous literature shows that Coriolis meter works best in single phase flows. First step 

in this work is to test the meter in single phase flows to ascertain the performance of the 

meter at different flowrates. This step can be viewed as a pre calibration procedure. 

Single phase testing was done for both air and water flows. Also, effect of flow 

conditioning is determined by employing both inlet swirl and inline mixer just before the 

inlet to the Coriolis. Following sections describe the results obtained during the testing.  

 

4.1 Single phase water tests 

Tests were done using water as the singular phase while keeping the air supply 

closed. Using the centrifugal pumps water was pumped at different rates and the 

corresponding mass flowrate and density readings of test meter were acquired using data 

acquisition system. Reading reported are mean of several reading taken over an interval 

of 5 to 10 minutes when steady state conditions prevailed. Fig. 4.1 and Fig. 4.2 show the 

data captured during the tests. From these plots, flow conditioning has no or minimal 

effect on the mass flowrate and density readings of the Coriolis meter in case of single 

phase liquid flow. These results suggest that the metering technology is immune to 

velocity vectors associated with the fluid being metered in above mentioned conditions. 

This has important implications for practical use of this technology. Flow conditioning is 
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not essential for accurate metering of the fluid. This also eliminates the need to install a 

straight length of pipe between the meter and any sort of bend or elbow.   

 

 

Fig. 4.1 – Effect of flow conditioners on MFR reading in single phase liquid test.  

 

 

Fig. 4.2 – Effect of flow conditioners on density reading in single phase liquid test.  
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Errors recorded in the experiments along with range of uncertainty in reference 

measurement are plotted versus liquid mass flow rates in Fig. 4.3 and Fig. 4.4, for liquid 

mass flow rate and liquid density respectively.  

 

 

Fig. 4.3 – Error in liquid mass flowrate with range of uncertainty (black markers). 

 

 

Fig. 4.4 – Error in liquid density with range of uncertainty (same color). 
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As seen in the figures, error magnitudes are relatively small (~ %6.0 ) for mass 

flow rate and (~ %3.0 ) for liquid density. No clear trends are visible, and errors can be 

attributed random.  

 

4.2 Single phase air tests 

Single phase air tests are done in similar fashion as described in previous section, 

only during these tests water inlet remains closed. Fig. 4.5 and Fig. 4.6 show the data 

captured during the tests. Results show no or minimal effect of flow conditioning before 

the meter. This aspect is similar to the results described in previous section. This 

response of the meter in presence of any single phase flow could be attributed to the fact 

that the response of the meter to flow vectors is negligible to the order of force generated 

by high vibration frequency of the meter itself.  

 

 

Fig. 4.5 – Effect of flow conditioners on MFR reading in single phase air test.  
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Fig. 4.6 – Effect of flow conditioners on density reading in single phase air test. 

 

 

Fig. 4.7 – Error in air mass flow rate with range of uncertainty (same color).  
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Fig. 4.8 – Error in air density with range of uncertainty (same color). 

 

Fig. 4.7 and Fig. 4.8 shows the relative difference between the reference (actual) 

and the bserved parameters for mass flow rate and density respectively, along with the 

renge of uncertainty in reference air mass flow rate and uncertainty in calculation of 

reference density respectively. Though error magnitude in air mass flow rates are small 

(~ %2 ), it is larger than in case of liquids. Errors in air density readings are very 

significant (~ %10 ). The reason for these observations seems to be the inability of 

coriolis meter to handle low density fluids at very low pressures; though this effect is 

more important in density readings than mass flow rate readings. Another observation is 

the reduction of error magnitude as the mass flow rates and hence the pressure is 

increased.  
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CHAPTER V 

TWO PHASE METERING WITH CORIOLIS METER  

 

An accurate and real-time measurement of multiphase flows composed of oil, 

water and gas phases is of great importance in many industries, such as chemical and 

process industries, oil refineries and particularly in exploration and production of crude 

oil and natural gas. A typical flow in any exploration and production operation consists 

of any combination of oil, water and gas. Traditionally metering has involved separation 

of these mixed flows into involved phases and using single phase meters to measure 

them. This is not only an expensive “brute force” method; it also has a large footprint, 

which in case of offshore operations is a hefty premium. As the drive towards attaining 

cost reduction and smaller foot prints, especially in offshore exploration and production 

operations gains momentum, the industry is searching for compact and inexpensive 

alternatives to the traditional “separate and measure” approach.  

Though intense efforts are being done to come up with universal multiphase 

meters, unfortunately the basic nature of multiphase flows makes it virtually impossible 

for anyone metering technology to measure any and every combination of phases 

accurately. Currently there are several multiphase measuring technologies with 

individual niches. Most of these technologies use multiple sensors to deduce individual 

flowrates and other properties. Most of these technologies have a smaller footprint, 

albeit not a cost advantage when compared to traditional approach to the problem. 
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Owing to very high accuracy of Coriolis meters operating in single phase flows, it shows 

promise in emerging as a multiphase technology.  

Coriolis meters have been evaluated in the past to measure two phase flows, as 

cited in literature review. At this point, it is still very difficult to develop a reliable 

theoretical model that can accurately predict behavior of Coriolis meter in two phase 

flows; this is evident by the fact that only bubble model has been widely used by 

researchers since late 90s till now
28

. This is because of the complex fluid-structure 

problem Coriolis meter poses operating in two phase flows; therefore, experimental 

investigation is needed to verify the performance and limitations of Coriolis meter in two 

phase flows.  

Experimental program has been divided into two different types of two phase 

flows, namely aerated liquids and wet gas (Fig. 5.1); in the former flow primarily 

consists of liquid phase with small amounts of air, while in latter small volumes of liquid 

is introduced in air flow. Since these two phase flows differ widely from each other in 

their behavior, respective results are discussed separately.  

In Fig. 5.1, test matrix is plotted on Taitel and Dukler flow regime map, created 

by FlowPat (Chevron) at atmospheric pressure and 72
0
 F. Axes of the map denote the 

velocity which each phase would be having in the coriolis meter if that phase alone was 

occupying the whole tube cross section. This is also termed as “superficial” velocity; 

hence the names of the axes are Vsl and Vsg, for superficial liquid velocity and 

superficial gas velocity respectively. It also shows the regions the data points lie; aerated 

liquids in dispersed bubble regime I and wet gas in annular flow regime A. 
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Fig. 5.1 – Test matrix showing both aerated liquid (blue) and wet gas (orange) data 

points (plotted on Taitel & Dukler flow regime map at atmospheric pressure).  
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Maximum pressure achieved before the Coriolis meter in these testing was 5 psig 

for cases with highest liquid mass flow rate and highest gas volume fractions; all the data 

points corresponded to pressures ranging from 2-5 psi, hence the flow pattern map was 

made for atmospheric pressure.  

 

5.1 Aerated liquid tests 

Aerated liquids are termed as flows containing primarily liquid with small 

amounts of gas. In actual field conditions this gas may come from reservoir or it may be 

dissolved in the liquid which comes out as “free” gas when considerable pressure drop 

occurs. In any practical field condition, it is nearly impossible to eliminate free gas from 

the liquid phase since any flow consists of pressure gradient; therefore it is imperative 

for meters to have certain resistance to liquid flows with small amount of air in them, 

even if it is supposed to operate in single phase flow. This is necessary to avoid a meter 

failure if conditions change and can be viewed as a contingency plan.  

 One of the aims of aerated liquid tests in current work is to observe whether the 

Coriolis meter can handle aerated liquid flows. The amount of gas present in the flow is 

quantified by gas volume fraction ( ), (also denoted by GVF) where, 

gl

g

VV

V


 ………………..………………………………………………………….. (11) 

V denotes the volume of a particular phase present in the flow, and l and g denote the 

liquid and gas phase respectively. GVF reported in results are calculated at the inlet of 



 49 

the meter by applying pressure correction to account for the expansion of the gas; this is 

due to drop in pressure between the supply air outlet and the Coriolis meter inlet.  

 As specified before in the metering subsection, air mass flowrate ( gM
.

) and 

temperature ( gT ) are measured by the Coriolis meter installed on the air supply line, 

whereas liquid mass flowrate ( lM
.

) and liquid density ( l ) are measured by the Coriolis 

meter installed at the liquid supply. Since the experiment is conducted at ambient 

conditions, air is considered to be in isothermal conditions, which is confirmed later by 

direct measurements. Liquids are considered incompressible in all the experiments.  

l

l
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Where gT  is measured in Degree Fahrenheit, 10.7316 ft
3
·psi·°R

-1
·lb-mol

-1 
is the 

universal gas constant, and 29 is the molecular mass of air. inletP  denotes the measured 

inlet gauge pressure just before the Coriolis test meter and atmP  is the atmospheric 

pressure at lab conditions. lV
.

 and gV
.

 are the volumetric flowrate of liquid and gas 

phase respectively.   

Results obtained in aerated liquid tests are compared with the “bubble” model 

given by Hemp and Sultan
9
. A simplified schematic of an entrained air bubble in a liquid 
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is shown in Fig. 5.2. Here a small sphere of material (density s ) is situated in a pool of 

another material (density l ). When the liquid with density l  is accelerated at A m/s
2
, 

the sphere with density s  does not accelerate at same rate A m/s
2
 but at rate A1 m/s

2
, 

where both are related as (page 36 of [29]), 

AA
sl

l





2

3
1


  ………………..…………………………………………………….. (14) 

 

 

 

 

 

 

 

Fig. 5.2 – Motion of small sphere in a liquid filled container. 

 

As clear from the equation 9, if the density of the sphere s  exceeds that of the 

surrounding fluid ( l ), the sphere “lags” behind the surrounding fluid; on other hand if 

s < l , the sphere “leads” ahead. In case of aerated liquids, s << l  and equation 9 

gives, 

AA 31   ……………………………………………………………………………… (15) 

A 

l  
A1 

s  
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Considering a unit volume of aerated mixture, with GVF equals  , passing 

through the Coriolis meter, equation 10 suggests that gas bubble will vibrate with 

acceleration equaling three time the acceleration experienced by the rest of the 

surrounding fluid; this also suggests that in context of motion of sphere/bubble in a cross 

section of the vibrating tube, increased motion of the sphere/bubble compared to rest of 

the fluid will result in reduced level  of participation in oscillation by rest of the fluid. 

This gives rise to reduced, apparent system inertia.  

Rayleigh-Plesset equation in case of bubble acting as a harmonic oscillator 

surrounded by liquid gives
30

, 

0
3

2

..

  x
R

P
x

l

 ………..……………………………………………………………. (16) 

Where x is the small displacement along the equilibrium axis of the bubble, P is the far 

field liquid pressure, R  is the radius of the bubble, and   is the ideal gas specific heat 

ratio. 

When compared to linear oscillator of the form, 

02
....

 xxx
m

k
x  ……………………………………………………….......... (17) 

Where k is the spring constant, m is the effective mass oscillating, and   is the resonant 

angular frequency. 

It gives, 

l

P

R 


 

31
………………………………………………………………......  (18) 

Along with, 
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34 Rmm e  ……………………………………………………...…………… (19) 

Equation (14) shows that when a bubble oscillates in the pool of the liquid, the effective 

mass oscillating is equal to three times the mass of liquid displaced by the bubble. This 

in turn results to no participation in oscillations by equal amount of liquid. 

Therefore the meter measures apparent density and apparent mass flow rate given by, 

)31(   la
…………………………………………………..…………………… (20) 

)31(
.

  tla vAM …………………………………………….…………………….. (21) 

Where, v  is the velocity of the mixture through the meter, and tA  is the cross sectional 

area of measuring tube. 

Now if the density of liquid, l  is known and the apparent density value is given by the 

meter, the density error is given by, 





3




l

la
dE  ………………..……………………………..…………………… (22) 

Since the true mass flow rate is, 

tl vAM )1(
.

   …………...…………………….……………………………………. (23) 

The mass flow error (neglecting the mass of gas) is given by, 

 












1

2
.

..

M

MM
E a

m
 …………….………..……………………………................... (24) 

In the prior reasoning, the mass of the gas phase is considered negligible and hence is 

not accounted for in the model; also multi bubble dynamics is not included in the 
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formulation. Another notable simplification is absence of any bubble-boundary 

interactions. 

Experiments are conducted at three different liquid flowrates. All the 

experiments are started by introducing small quantities of air in single phase water flow 

and gradually increasing air quantities to reach required GVF. Experiments are stopped 

at the GVF which either corresponds to 10% error in mass flowrate reading or when 

pressure experienced prior to flow conditioner becomes higher than 15 psi; while the 

latter limit is dictated by the pressure handling capacity of transparent PVC pipes used in 

the setup, the former is frequently reported as the maximum error for any satisfactory 

multiphase metering.  

Similar trends are seen from the separate tests conducted at liquid mass flow 

rates of 105 lb/m (439 bbl/day) (Fig. 5.3), 130 lb/m (541 bbl/day) (Fig. 5.4), and 150 

lb/m (627 bbl/day) (Fig. 5.5). Negative mass flow errors are recorded for all the tests. 

Observed mass flow rates for all the cases lie between the actual (reference) and those 

predicted by the “bubble-model” (model MFR); this tends to suggest that the model does 

predicts the lower limit of mass flow errors. The discrepancies between the observed and 

predicted readings can be accounted to lack of multi-bubble dynamics and lack of 

bubble-structure interactions in the model.   

In case of inlet swirl conditioner, observed errors are largest when compared to 

reference mass flow rate, and seems to follow the model rather well (Fig. 5.4 & Fig. 

5.5). This can be due to coalesce of bubbles into a single air core; this reduces the 
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deviation of the observed errors to that predicted by the model (which doesn‟t accounts 

for multi-bubble dynamics).  

 

Flow conditioners affect the reading of the meter. This inference is unlike that 

observed in single phase flows; this suggests that the flow conditioners change the flow 

conditions rather than having any direct impact on the meter itself. In tests at each flow 

rate, inline mixer tends to homogenize flow and hence gives most accurate result 

compared to reference flow rate; on the other hand, inlet swirl tends to segregate flow 

and gives least accurate reading. Difference between readings with inline mixer and with 

no flow conditioner tends to decrease at higher flowrates. This may be explained due to 

increased shear rate, which tends to homogenize fluid distribution. 

Use of inline mixer also increases the GVF limit for a particular error. For 

example, at liquid mass flow rate 105 lb/m (439 bbl/day), 10% error is achieved at GVF 

between 4 and 5, in case of inlet swirl; inline mixer gives 10% error after GVF 7. This 

can be a way of increasing the operational two-phase envelope of Coriolis meter. At 

liquid mass flow rate 150 lb/m (627 bbl/day), same analysis yields GVF between 5 and 6 

(inlet swirl), and GVF 7 (inline mixer); this tends to suggest that effectiveness of inline 

mixer decreases at higher flow rates.  
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Fig. 5.3 – Aerated liquid test at flow rate, lQ  = 105 lb/min. 

 

 

Fig. 5.4 – Aerated liquid test at flow rate lQ  = 130 lb/min. 
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Fig. 5.5 – Aerated liquid test at flow rate lQ  = 150 lb/min. 

 

5.2 Wet gas tests 

Wet gas is the generic name given to multi-phase fluids, where small quantities 

of liquids are present in flow stream comprised mainly from gas phase fluids. In field 

conditions, liquids may originate from the reservoir or may form from the gas phase 

itself in the form of condensates. In lab conditions, wet gas is generated by adding small 

quantities of liquid in an air flow. Similarly to aerated liquid tests, gas volume fractions 

(GVF) are calculated and recorded. Unlike in aerated liquids, there is no model available 

for Coriolis meter performance in wet gas. Though superficially, the only parameter that 

distinguishes wet gas from aerated liquids is GVF, the flow profile changes completely. 

In most cases the phase mixture is in annular flow regime; as such the models used in 

aerated liquids cannot be used for wet gas.  
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 Tests are done at three different rates, 1 lb/m (19.2 Mscf/day), 1.5 lb/m (28.8 

Mscf/day) and 2 lb/m (38.4 Mscf/day). The results of the investigation are presented in 

Figs. 5.6 – 5.8. A close observation of the plot shows that flow conditioners have no 

significant effect on the mass flow rate output of the meter; the reason seems to be the 

quick reversal of the flow back to annular even in presence of flow conditioners. As 

expected, error associated with the reading also increases as the GVF increases. Unlike 

aerated liquid tests, error in mass flow rate output is significant even at very low liquid 

contaminations (GVF~97). This may be due to high mass contrast between single phase 

gas and wet gas with even slight liquid contamination. At higher air flow rate (Fig. 5.8), 

inline mixer seems to cause an improvement in mass flow rate reading due to high shear 

rate involved with the flow.  

 

 

Fig. 5.6 – Wet gas test at flow rate gQ  = 1 lb/min. 
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Fig. 5.7 – Wet gas test at flow rate gQ  = 1.5 lb/min. 

 

 

Fig. 5.8 – Wet gas test at flow rate gQ  = 2 lb/min. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusions 

 From the results of this experimental investigation the following conclusions 

were reached: 

1. Coriolis meter‟s performance in single phase flows is excellent. Flow 

conditioners have no significant effect on accuracy. 

2. Coriolis meter reports negative errors in case of aerated liquid flows for the gas 

volume fractions included in the work. The reason seems to be the relative 

motion between two phases. 

3. Flow conditioners affect the accuracy of Coriolis meter in aerated liquid 

conditions. In most of the cases, inlet swirl decreases the accuracy while inline 

mixer has an opposite impact. Coriolis meter reports an error of 10% at GVF 7 to 

8, when mass flow rate increase from 105 lb/m to 150 lb/m.   

4. In aerated fluid tests, effect of flow conditioners on accuracy reduces with 

increased flow rate.  

5. Coriolis meter reports negative errors in case of wet gas flows. Flow conditioners 

seem to have negligible effect on measurement accuracy on lower rates, with 

inline mixer showing improvement in highest flow rate used in testing. 

Effect of flow conditioners on two-phase envelope has been 

experimentally determined. Flow conditioners are shown to have an impact on 
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meter accuracy in aerated liquid flows, however small that might be; on the other 

hand, results from experiments with flow conditioners in wet gas don‟t look 

promising. Coriolis meter is also shown to be able to handle two-phase flows 

without stalling.  

 

6.2 Recommendations 

 Following recommendations are made based on results from this research: 

1. Accuracy of Coriolis meters operating in two-phase flows should be investigated 

further with fluids having different viscosities and densities than water and air. 

2. Current analytical prediction of Coriolis meter performance in two-phase flows 

lacks accuracy. Efforts should be made towards improvement. 

3. Two-phase testing of Coriolis meters should be done at higher pressures and 

higher flow rates, simulating field conditions more realistically. 

4. Further investigation of Coriolis meter performance should be done with vertical 

installation, to eliminate effect of buoyancy on readings. 
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NOMENCLATURE 

 

          = gas volume fraction 

a         = apparent density 

l         = liquid density 

s         = sphere/bubble density 

          = resonant angular frequency 

           = ideal gas specific heat ratio 

tA         = cross sectional area of measuring tube 

dE        = density error 

mE        = mass flow rate error 

GVF    = gas volume fraction 

k          = spring constant 

MFR    = mass flow rate 

.

M        = actual mass flow rate (gas mass neglected) 

aM
.

      = apparent mass flow rate 

gM
.

      = gas mass flow rate 

lM
.

       = liquid mass flow rate 

atmP       = atmospheric pressure 
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inletP      = pressure at the inlet of Coriolis meter 

P         = far-field pressure 

gQ        = gas mass flow rate 

lQ         = liquid mass flow rate 

R          = radius of sphere/bubble. 

gT         = gas temperature 

gV
.

       = gas volumetric flow rate 

lV
.

        = liquid volumetric flow rate 
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