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ABSTRACT 

 

Development of a Model to Calculate Mechanical Specific Energy for Air Hammer 

Drilling Systems. (May 2008) 

Boma Jeremiah Okuchaba, B.Tech, River State University of Science and Technology, 

Nigeria 

Chair of Advisory Committee: Dr. Jerome J. Schubert 

 

Drilling for hydrocarbons is an expensive operation; consequently operators try to save 

costs by reducing the number of days spent during this operation. Drilling efficiently 

with the highest attainable rate of penetration is one of the ways drilling time could be 

reduced. Real-time monitoring of Mechanical Specific Energy will enable drilling 

engineers to detect when the optimum drilling rate for a given set of drilling parameters 

is not being achieved. 

 

Numerous works have been done on air hammers and rock Mechanical Specific Energy. 

Previous research has shown that Mechanical Specific Energy, which is a ratio that 

quantifies the input energy and Rate of Penetration (ROP) of a drilling system, is directly 

proportional to the rock compressive strength being drilled. The Mechanical Specific 

Energy model utilizes drilling parameters such as ROP, Weight on bit (WOB), RPM, 

torque, flow-rate, bottom-hole pressure, and bottom-hole temperature to show how 

effectively energy being put into the drill string is being converted to ROP at the bit. 

 

This research effort proposes a new model to calculate the Mechanical Specific Energy 

for air hammer drilling systems. A thermodynamic model for the air hammer from 

which the piston impact velocity and kinetic energy is obtained is presented. To be able 

to estimate the effective energy delivered to the rock by the hammer, the stress wave 

propagation model is used and factored into the Mechanical Specific Energy model. 
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The Mechanical Specific Energy values obtained from the application of this model 

provide a qualitative indicator of formation pressure changes and a means for drilling 

engineers to detect when optimum drilling rate is not being achieved. It can be deduced 

from the model that the impact energy of the hammer is greatly affected by the pressure 

drop across the hammer and since the hammer accounts for about sixty percent of the 

energy required for destroying the rock, the ROP can be varied by varying the pressure 

drop across the hammer. 
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CHAPTER I 

INTRODUCTION: AIR ROTARY PERCUSSIVE DRILLING DEVELOPMENT 

 

Increase in the world’s energy demand, which is associated with a sharp increase in oil 

and natural gas prices, has outpaced the growth in oil and natural gas production. The oil 

industry response to this increase in energy demand is to increase oil and natural gas 

exploration and production. Oil companies are now forced by this high energy demand 

to drill in very difficult terrain.  

 

Increase in drilling activity is seen across the oil industry, but limited rig supply calls for 

efficient and faster drilling so as to be able to drill more wells with the limited rig supply 

within a given period of time.  The development and application of a more efficient and 

lower cost drilling technology will significantly reduce drilling time and cost, 

consequently, making drilling in deep, hard rock formations and older fields with 

inherent depleted reservoirs more economical. Under-balanced drilling and air rotary-

percussive drilling are some of the technologies developed to overcome these 

challenges. 

 

Air was substituted for liquid as the drilling fluid on an experimental basis on several 

wells in the early 1950’s1.  The resultant benefits of air drilling, a type of under-balanced 

drilling technology, over conventional mud drilling are, higher penetration rates, greater 

footage per bit, reduction in lost circulation, reduction in formation damage and reduced 

drilling costs. The need to further increase the rate of penetration during drilling led to 

the idea of rotary-percussive drilling. 

 

Percussive drilling was first developed by the Chinese four thousand (4,000) years ago  

 

____________ 
This thesis follows the style and format of SPE Drilling and Completion Journal. 
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and in its early stage entailed raising and dropping a heavy piercing tool to cut and 

loosen earth material. The first well drilled by Col. E.L Drake in 1859 was drilled using 

a percussion-type machine.   

 

Over the years researchers have been able to develop upon the principles of the early 

percussive drilling machine to arrive at a powerful down-the-hole hammer. Experiments 

have shown that a combination of rotary air drilling and percussive drilling, referred to 

as air rotary-percussive drilling, exhibited a dramatic increase in rate of penetration over 

conventional rotary drilling.    

 

Air rotary percussion drilling is used in many wells drilled in hard rock formations 

where formation fluid flow is negligible, especially in wells where formation damage, 

severe fluid loss, differential sticking and low penetration rates are concerns to the 

drilling engineer. However, the potential and theoretical improvements in drilling 

efficiency using combined percussion and air rotary drilling is sometimes difficult to 

achieve because of the vulnerability of the down-hole hammer to lose its ability to drill. 

The down-hole hammer accounts for 60% of the axial force used in rock destruction 

during drilling and a proper understanding of the factors affecting the down-hole 

hammer performance and development of a model that can give drillers an indication of 

down-hole hammer efficiency is an important step in achieving constant drilling 

efficiency while drilling with the  air rotary-percussive drilling system.  
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CHAPTER II 

LITERATURE REVIEW 

 

E&P companies have always aimed at reducing drilling cost and presently, with the high 

energy demand, companies are faced with having to drill difficult wells; time is of 

essence as wells need to be completed quickly so as to drill more wells in order to meet 

the growing energy demand. One of the ways of reducing drilling time and cost among 

others is to drill with the highest rate of penetration attainable in a safe and efficient 

manner. To attain the highest rate of penetration (ROP), drilling engineers need to know 

the amount of energy required to destroy a unit volume of the various rock formation 

types encountered during the drilling process and a way of monitoring the energy being 

delivered to the rock by the drill bit. 

 

Teale2 proposed the concept of specific energy (SE) in rock drilling in 1965. He derived 

the specific energy equation by calculating the torsional and axial work performed by the 

bit and dividing this by the volume of rock drilled. Teale1 then conducted lab tests that 

demonstrated the energy per volume of rock destroyed to be relatively constant, 

regardless of changes in ROP, weight on bit (WOB) or revolutions per minute (RPM). 

Teale noticed that laboratory drilling data showed the SE value to be numerically equal 

to rock compressive strength in pounds per square inch (psi), he however recognized that 

the SE cannot be represented by a single, accurate number due to the heterogeneity of 

the rock formations and the wide fluctuations of the drilling variables.  

 

This specific energy concept is useful from an operations standpoint because it provides 

a reference point for efficiency. If the observed SE is close to the known confined rock 

strength, the bit is efficient. If not, energy is being lost. The value should change as the 

lithology changes. 
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Teale’s specific energy concept which has evolved into ‘Technical limit Specific 

Energy’ and ‘Mechanical Specific Energy’ (MSE), has been used for determining the 

drilling efficiency for drill bit designs and in specialized field applications. 

 

Pessier and Fear3 gave a practical discussion of MSE and derived an equation for ROP 

based on the specific energy equation derived by R. Teale. They made modifications to 

Teale’s specific energy model by substituting an equation they derived, that expresses 

torque as a function of WOB, bit diameter and a bit-specific coefficient of sliding 

friction. They further showed, by conducting tests, that under atmospheric drilling 

conditions the MSE is approximately equal to the unconfined compressive strength of 

the formation drilled and that when drilling under hydrostatic pressure the mechanical 

efficiency which is essentially the inverse of specific energy, dropped significantly. 

Their analysis of field data revealed a good correlation between their simulator model 

and field results. Bit selection exercise and the diagnosis of failures and drilling practices 

became more accurate and less ambiguous because of the use of mechanical efficiency, 

specific energy input, and a bit-specific coefficient of sliding friction as key indexes of 

drilling performance. 

 

Waughman et al.4, in their research, developed a concept that entailed real-time 

monitoring of specific energy data in combination with measurement while drilling 

(MWD) data and sonic data, that enhanced the decision process of when to pull the bit 

out of hole. They outlined a guide on applying the specific energy monitoring technique 

to the field. The initial stage in the application of the specific energy concept is to 

benchmark new bit specific energy in different formations then using these values to 

assess the bits dull state. The concept has been proven to work in synthetic based mud 

systems and water based mud treated with anti-balling chemicals. 
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Apart from the above two papers numerous publications exist that apply the specific 

energy concept as a basis for bit performance and selection; however Curry et al.5  

applies specific energy as an index to facilitate drilling performance evaluation. 

 

Curry et al.5 developed a method to represent the difficulty of drilling a particular 

formation in its down-hole pressure environment using the concept of Mechanical 

Specific Energy. An algorithm was developed to estimate the technical limit specific 

energy, from wire-line sonic, lithology and pressure data. They stated that, the technical 

limit specific energy represents the lowest specific energy that can be reasonably 

expected for a particular combination of rock properties and pressures. ‘The average 

technical limit specific energy for a hole interval or well provides a rational basis for 

comparing drilling performance for wells drilled in different drilling environments.’5  

 

Dupriest and Koederitz6 adopted Teal’s specific energy equation in present drilling units 

and arrived at a model for Mechanical Specific Energy that was used in a drilling 

information system for mud drilling and has been implemented successfully on different 

rigs. Dupriest and Koederitz showed the usefulness of MSE through practical field 

application. They also showed that bit hydraulics, though not incorporated in the MSE 

equation, had a noticeable effect on MSE and ROP. 

 

The models in the above literature have applied the MSE concept to water or oil based 

muds, air as a drilling fluid has not been mentioned yet. 

 

Air was substituted for liquid as a drilling fluid on an experimental basis on several wells 

in the early 1950’s in order to further improve drilling rate. A further improvement in the 

drilling rate was achieved by the introduction of the air-operated, rotary percussion 

drilling tool. 
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Howard et al.7 successfully developed an air-operated percussion tool for down-the-hole 

air drilling operations. In 1959, when their paper was first written, down-the-hole air-

operated, rotary-percussion quarry drilling tools drilled with chisel bits, but they had 

little success when used with conventional roller cone bits because the percussive impact 

was beyond the strength of the bits. They gave a detailed description of the new hammer 

tool, which was basically a modification of the already existing air-operated quarry 

drilling tool. The modifications were in the tools valves spacing, hammer weight and 

stroke length. These were adjusted to decrease hammer impact but at a higher cyclic 

frequency which permitted the tool to be used with roller cone bits. Bit footages 

observed in laboratory shallow well tests showed an overall advantage of rotary 

percussion over air drilling of 1.3 times, whereas field tests showed an advantage of 

about 4 times. 

 

Another pneumatic down-hole percussion tool that had just been developed then in 1965 

was described by Bates7. Conditions affecting the tool’s operation were also described. 

One obvious factor affecting the tools operation was the pressure across the tool as the 

percussive energy was directly proportional to the differential pressure across the tool. 

Bates also used a simple linear equation to calculate the kinetic energy of the percussive 

tool. SAplbftblowperEnergyKinetic ××=−, . Where p is the pressure drop across the 

hammer in pounds per square inch (psi), A is the piston area in square inches and S is the 

length of the piston stroke in feet (ft). 

 

Whiteley and England8 discussed the engineering design and operation of the flat-bottom 

percussion bit/hammer tool (FPB/HT) in air drilling operation. The hammer tool they 

discussed is valveless and the piston functions as a sliding valve to control the operating 

air cycle. They gave a detailed description of its operation and mentioned that the impact 

energy from the hammer tool is largely responsible for penetration, the weight on bit 

(WOB) applied during drilling with the FPB/HT is for optimum operation of the hammer 

tool. Excess WOB will prevent efficient operation of the hammer tool. Applications and 
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limitations of the tool were stated as well as guidelines for optimization of the tool’s 

performance. 

 

As the years went by more air-operated percussive tools were developed and improved 

upon to give greater drilling rate and researchers constantly showed the advantages of 

the air hammer tool over conventional mud drilling. 

 

Finger9 did a study of mining and oilfield hammers and showed that industrial hammers 

could drill more than twice as fast as extremely high WOB rotary air and that the ROP 

with industrial hammers was three to six times as fast as with oilfield hammers. Finger 

identified sensitivity to WOB and gauge wear as two potential problems with the 

application of the industrial/mining hammer in the oilfield. 

 

Pratt10 elucidated on the above potential problem with ROP in his paper where he talked 

about the modifications made to equipment and computer hydraulics programs that 

enabled Shell Canada to drill more efficiently. Pratt indicated that one of the major 

factors affecting ROP was bit gauge wear. When a bit goes slightly under gauge, the 

driver sub causes noticeable torque and hangs up sufficiently to reduce ROP. The 

problem was however solved by redesigning the bit. Pratt compared ROP’s in wells 

drilled by Shell in Canada with water/mud, air rotary and air hammer between 1979 and 

1983 and showed that ROP increased with air over mud drilling with a further increase 

in ROP when the air hammer was used.  

 

Pang et al11 developed a complete model of a pneumatic jack hammer system. The 

application of their model required that two preliminary experiments be performed. The 

first experiment produced an empirical relationship between piston impact velocity and 

the pressures acting on the top and bottom surfaces of the piston. After obtaining the 

value for the impact velocity of the hammer, the impact energy would then be 

calculated. While from the second experiment they were able to determine the force-
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indentation behavior of the bit/target system. The overall model analysis led to the 

prediction of the jack hammer efficiency and target response, including target 

penetration and crack propagation. 

 

Han et al12, in an effort to improve understanding of drilling physics and the prediction 

of hammer performance, developed a 3D numerical simulator for air hammer drilling. 

One of the outputs of the simulator is a bit advancement plot (ROP plot). This helps in 

the estimation of ROP for different hammer energy and formation properties. Han et al 

had already, in 2005, developed an integrated simulation tool, which included a tool 

model, a rock mechanics model and a cuttings transport model. Han et al12 in their 

present effort addressed the rock mechanics involved after compressive stresses pass 

from bit to rock. The 3D simulator requires rock property input and hammer tool specific 

inputs as stated in their work. 

 

Various air hammers have been designed, developed and put into operation. Designers 

use different methods and equations to obtain their performance indicators such as 

impact energy, power, impact frequency and efficiency to mention a few. The industry 

requires a simple general equation to calculate performance indicators. Chiang and 

Stamm13 proposed a design methodology for down-the-hole pneumatic hammers by 

developing a generic non-linear dynamic model used to compute hammer performance. 

The dynamic model consists of a set of differential equations and non-linear polynomial 

equations the solution of which would give hammer performance indicators such as, 

impact energy, power, efficiency and mass flow rate. 

 

Chiang and Izquierdo14 adopted the down-the-hole pneumatic hammer dynamic model 

developed by Chiang and Stamm13 in their research effort that resulted in the 

development of a methodology to estimate the instantaneous specific rock energy using 

corrected down-the-hole (DTH) drill monitoring data. Consequently, they were able to 

generate a specific rock energy profile for every hole drilled and thus mapping an entire 
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drilling site for this index. They stated the development procedure for a special data 

acquisition system used to measure and register operational variables that are inputs for 

two simulation models that estimate the power absorbed by the rock through impact and 

then the specific rock energy index. Correlations were found between the specific rock 

energy and impact frequency, as well as between the penetration rate and applied torque 

and between the penetration rate and impact frequency. 

 

The majority of the literatures mentioned in this chapter have shown the application of 

the concept of Mechanical Specific Energy to bit performance and selection as well as to 

drilling performance evaluation in water and oil based mud systems, but little has been 

done in arriving at a direct model for MSE in air hammer drilling systems and this 

obviously requires more research work. 

 

This research effort has been geared towards providing a model for calculating MSE for 

air hammer drilling systems, an important tool in evaluating drilling performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 10

 

CHAPTER III 

AIR HAMMERS 

 

3.1 Description of Air Hammer Operation 

The use of air as an energy carrier and drilling fluid in down-hole air hammer drilling 

has been known for many years. Also well known is the fact that down-hole air hammer 

drilling is by far the fastest method of penetration in hard rock material. 

 

Generally, during drilling with down-hole air hammers, the tool is placed in front of the 

borehole right behind the bit, while energy is transferred through the drill string in the 

form of compressed air, mechanical torque and mechanical axial force. The main 

function of the air hammer is to convert energy from the compressed air into piston 

kinetic energy which, through the oscillating movement of the piston and eventual 

mechanical impact with the bit, is transferred to the bit and then to the rock. Rock 

fragmentation occurs at highly pressurized contact zones between the bit buttons and the 

rock. Bit rotation, which is required during down-hole air hammer drilling, will create 

new impact positions for the bit buttons and new rock will be fragmented and 

consequently, advancing the bit. Crushed rock is flushed to the outside of the drill string 

from under the bit through the borehole annulus to the surface by compressed air 

flowing through the bit nozzles. Fig. 3.1 shows air hammers with flat bottom hammer 

bit.   

 

3.2 Air Hammer Types and Description of Hammer Action 

There are a variety of down-hole air hammer manufacturers with different proprietary air 

hammer designs, however there are two basic designs for the down-hole air hammers 

based on the flow path of the compressed air through the hammer. One design utilizes a 

flow path of the compressed air through a control rod (or feed tube) down the center of 

the hammer piston (or through passages in the piston) and then through the hammer bit, 
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while the other design utilizes a flow path through a housing annulus passage (around 

the piston) and then through the hammer bit. 

 

 
Fig. 3.1 Air Hammers with Flat Bottom Bit20 

 

Fig. 3.2 shows a diagram of a typical control rod flow design down-hole air hammer. 

The hammer action of the piston on the top of the drill bit shank provides an impact 

force that is transmitted down the shank to the bit studs which in turn crush the rock at 

the rock face.  

 

In shallow boreholes where there is little annulus back pressure, the piston impacts the 

top of the bit shank at a rate of from about 600 to 1,700 blows per minute (depending on 

volumetric flow rate of air). However, in deep boreholes where the annulus back 

pressure is usually high, impact rates can be as low as 100 to 300 blows per minute15. 

 

When the air hammer is suspended from a drill string lifted off the bottom (the shoulder 

of the bit is not in contact with the shoulder of the driver sub) as shown in Fig. 3.2 and in 

the first schematic in Fig. 3.3, the compressed air flows through the pin connection at the 

top of the hammer to the bit without actuating the piston action. When the hammer is 

placed on the bottom of the borehole and weight placed on the hammer, the bit shank 

will be pushed up inside the hammer housing until the bit shoulder is in contact with the 

shoulder of the driver sub. This action aligns one of the piston ports with one of the 

control rod windows. This allows the compressed air to flow to the space below the 
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piston which in turn forces the piston upward in the hammer housing. During this 

upward stroke of the piston, no air passes through the bit shank to the rock face. In 

essence, rock cuttings transport is momentarily suspended during this upward stroke of 

the piston. For example, at a piston impact rate of 600 blows per minute the air through 

the bit is suspended for about 0.05 seconds per cycle. This is so short a time that the air 

flow rate through the bit into the annulus can be assumed as a continuous flow15. 

 

When the piston reaches the top of its stroke, another one of the piston ports aligns with 

one of the control rod windows and supplies compressed air to the open space above the 

top of the piston. This air flow forces the piston downward until it impacts the top of the 

bit shank. At the same time the air flows to the space above the piston, the foot valve at 

the bottom of the control rod opens and air inside the drill string is exhausted through the 

control rod, bit shank and the bit nozzles to the rock face. This compressed air exhaust 

carries the rock cuttings created by the drill bit for transport up the annulus to the 

surface. The impact force on the bit allows the rotary action of the drill bit to be very 

effective in destroying rock at the rock face and this in turn allows the air hammer to 

drill with low WOB. 

 

Down-hole air hammers are lubricated by occasionally injecting oil type lubricants into 

the compressed air and down the drill string during drilling operations. The lubricant 

serves to lubricate the piston surfaces as it moves up and down in the hammer housing.  

 

Down-hole air hammers are used exclusively for vertical drilling operations as the short, 

rapid blows of the piston minimizes the effect of dipping and formation damage. There 

is however, on going research efforts to develop down-hole hammers for directional 

drilling.  

 

Down-hole air hammers are available in various sizes with associated suitability for 

drilling different borehole sizes. The available down-hole air hammer sizes are 3 inches 
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to 16 inches. The 3 inch diameter hammer can drill a borehole as small as 3 5/8 inches 

and the 16 inch diameter hammer can drill boreholes from 17 ½ inches to 33 inches. 

 

 

 
Fig. 3.2 Schematic Cutaway of a Typical Air Hammer15 
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Fig. 3.3 Air Hammer Sequence Schematic19 
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CHAPTER IV 

MECHANICAL SPECIFIC ENERGY MODEL DEVELOPMENT 

 

4.1 Derivation of the Specific Energy Model 

‘Specific Energy’ is the work done per unit volume drilled. Mechanical Specific Energy 

(MSE) is a ratio that quantifies the relationship between input energy and ROP. This 

ratio should be constant for a given rock, which is to say that a given volume of rock 

requires a given amount of energy to destroy the rock. R. Teale2, in his paper “The 

Concept of Specific Energy in Rock Drilling” published in 1965 in the International 

Journal of Rock Mechanics and Mining Science, derived the Specific energy equation by 

calculating the torsional and axial work performed by the bit and dividing this by the 

volume of rock drilled. Teale then conducted laboratory tests that demonstrated the 

energy per volume of rock destroyed to be relatively constant, regardless of changes in 

ROP, WOB or RPM.  

 

The equation is derived below: 

 

The work done in one minute by the bit, during rock destruction and exaction, is the sum 

of the axial work done by the WOB and the torsional work done due to rotation of the 

bit. If ROP is in inch per minute and torque in inch pounds (in-lbs), then the axial work 

done in one minute to excavate one inch of rock is ROPWOB× and the torsional work 

done is NTπ2 , where N is the bit rotation in rev/min and T is torque. Therefore the  

total work done NTROPWOB π2+×=  …………………………………………….. (4.1) 

 

Now the Specific Energy is work done per unit volume. Let the circular area of the bit 

involved in the drilling be “A”, then the volume of rock excavated in one minute is 

( )min/3inROPA×  

Specific Energy 
ROPA
NT

A
WOB

ROPA
NT

ROPA
ROPWOB

×
+=

×
+

×
×

=
ππ 22  …………………... (4.2) 
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Teale noticed that laboratory drilling data showed the MSE value to be numerically 

equal to rock compressive strength in pound per square inch (psi). This is useful from an 

operations standpoint because it provides a reference point for efficiency. If the observed 

MSE is close to the known confined rock strength, the bit is efficient. If not, energy is 

being lost. The value should change as the lithology changes. However, field experience 

has shown that the energy losses that occur when the bit founders (The point at which 

the ROP stops responding linearly with increasing WOB is referred to as the “flounder” 

or “founder” point) are usually so large that they cannot be confused with the small 

changes that occur with rock compressive strength. 

 

In the drilling environment ROP is expressed in ft/hr and torque in ft-lb. F. E Dupriest 

and W. L Koederitz in their paper SPE/IADC 92194 adopted Teal’s equation in present 

drilling units and arrived at  

 

ROPDia
NT

Dia
WOB

ROPA
NT

A
WOBMSE

×
××

+
×

×
=

×
+= 22

4804120
π

π  ………………………...……. (4.3) 

 

 Where,
4

2DiaA π
= , ROP in ft/hr and Torque in ft-lb. 

 

Dupriest and Koederitz6 showed the usefulness of MSE through practical field 

application, they also showed that Bit Hydraulics, though not incorporated in the MSE 

equation, had a noticeable effect on MSE and ROP. 

 

4.2 Development of Mechanical Specific Energy Model  

The pneumatic-hammer utilizes an internal piston (or hammer) that is actuated by the 

compressed air (or other gas) flow inside the drill string. The internal piston moves up 

and down in a chamber under the action of air pressure applied either below or above the 

piston through points in the inside of the air hammer. In the downward stroke, the 
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hammer strikes the bottom of the upper end of the drill bit shaft (via a coupling shaft) 

and imparts an impact load to the drill bit. The drill bit in turn transfers this impact load 

to the rock face of the bit. This impact load creates a crushing action on the rock face.  

 

The rock destruction and excavation process is basically the same for air drilling as it is 

for mud drilling. However in the case of down-the-hole air hammer drilling the energy 

for rock destruction is supplied by three sources: impact (from air hammer), axial 

downward drill string force (WOB) and rotation (torque). Hydraulics though important 

has been shown (below) to have little contribution to the energy required for rock 

destruction. However, hydraulic energy is considered for efficient hole cleaning and 

because of its effect on MSE and ROP. 

 

Using the earlier procedure for the derivation of the equation for Specific Energy which 

is the work done per unit volume, or which can also be defined as the energy required to 

destroy and excavate a unit volume of rock, we can express MSE as 

 

Volunit

Torque

Volunit

thrustaxial

volunit

hammer

V
E

V
E

V
E

MSE
−−

−

−

++=  ………………………………………..…….. (4.4) 

 

Where 

Ehammer = Hammer impact Energy 

Eaxial-thrust = Axial Energy by virtue of applying WOB 

ETorque = Rotational Energy 

 

Let the circular area of the bit involved in the drilling be “A” in inches and ROP in inch 

per minute, torque in inch-lb and hammer impact energy in inch-lb, then the volume of 

rock excavated in one minute is ( )min/3inROPA×  
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ROPA
NT

A
WOB

ROPA
E

ROPA
NT

ROPA
ROPWOB

ROPA
E

MSE

hammer

hammer

×
++

×
=

×
+

×
×

+
×

=

π

π

2

2

     …………………………………… (4.5) 

 

Eq. 4.5 can be expressed in oilfield measurement units 

 

  
ROPA
NT

A
WOB

ROPA
E

MSE hammer

×
++

××
⋅⋅

=
π120

12
1260  ………………………………..……… (4.6) 

ROPDia
NT

Dia
WOB

ROPDia
E

MSE hammer

×
××

+
×

×
+

××
⋅

= 222

4804240
ππ

 ……………………………… (4.7) 

 

Where
4

2DiaA π
= , ROP in ft/hr, torque in ft-lb and Ehammer in ft-lb. This is consistent 

with oilfield measurement units. 

 

It has been experimentally shown by Chiang and Izquierdo14 that about 60% of the 

energy required for rock destruction in Down-The-Hole (DTH) percussive drilling 

comes from the pneumatic hammer. Therefore adequate knowledge of the DTH 

pneumatic hammer is required. The hammer piston delivers certain impact energy every 

time it strikes the bit shank and looking at the hammer as a pneumatic engine, then the 

total impact energy delivered in one minute can be approximated as the power delivered 

by this engine in one minute. 

 

ontransmissirawhammerhammer PowPowE η⋅=≅  ………………………………………….... (4.8) 

 

From the above the Powraw is the raw power delivered by the pneumatic hammer engine 

in one minute which is the piston impact energy times the impact frequency. The 

magnitude of Powraw depends on the thermodynamic behavior of the hammer, and that is 
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how efficiently the high pressure air energy is converted into kinetic energy of the piston 

at impact. Kinetic energy from the piston is transferred upon impact on the bit shank by 

way of stress wave that propagates toward the bit and then to the rock. Depending on the 

geometry of the hammer components and the mechanical properties of the rock, a 

percentage of the stress wave energy is absorbed by the rock, causing its failure, and the 

remaining is reflected back and dissipated by the hammer and supporting structures. The 

magnitude of the energy transmission efficiency, ontransmissiη , takes the inefficiency in the 

transfer of the piston kinetic energy into account. 

 

The contribution of the impact power of the hammer on the rock destruction can be 

modeled by a thermodynamic model. The impact power developed by a DTH hammer 

originates from air supplied at high pressure. The balance of pressures in the front and 

rear chambers in a DTH hammer causes alternate up and down motion of the piston. At 

the end of the forward stroke, the moving piston impacts a drill bit, initiating a stress 

wave that travels towards the rock. 

 

To simulate the thermodynamic operation of the DTH hammer, a model developed by 

Chiang and Stamm13 in their paper titled “Design Optimization of Valveless DTH 

Pneumatic Hammers by a Weighted Pseudo-Gradient Search Method” (1998) Journal of 

Mechanical Design, will be used. The model relates air pressure, piston velocity and 

impact frequency for a given DTH hammer geometry. The impact restitution coefficient 

e between the piston and drill bit takes rock behavior into account. 

Chiang et al. defined the coefficient of restitution e as 

 

pA

pB

v
v

factorimpactpiston
velocityreboundpistone ==

'' ……………………………………………….... (4.9) 

 

Where vpB is the piston reflected velocity and vpA is the piston impact velocity. Chiang et 

al’s thermodynamic model has been experimentally validated for a number of DTH 
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hammers in an experimental bench test. More so, laboratory and field measurements 

reveal that the predominant variable in the operation of any DTH hammer is the input air 

pressure. 

 

From the above explanations, considering the fact that the raw power (maximum 

available power) of a DTH hammer is obtained as the product between the piston kinetic 

energy difference (Impact and the rebound, represented by e2) and the percussion 

frequency, it is possible to compute the raw power as: 

 

( )FeVmPow pactpistonraw
22

Im 1
2
1

−=  ……………………………………………….… (4.10) 

 

Where mpiston is the mass of the piston, Vimpact is the impact velocity of the piston and F is 

the impact frequency (blows per minute). Substituting Eq. 4.10 into Eq. 4.8 

 

( ) ontransmissipactpistonontransmissirawhammerhammer FeVmPowPowE ηη ⋅⋅−⋅=⋅=≅ 22
Im 1

2
1  … (4.11) 

 

Substituting Eq. 4.11 into Eq. 4.7, the MSE model becomes: 

 

( )
ROPDia

NT
Dia

WOB
ROPDia

FeVm
MSE ontransmissipactpiston

×
××

+
×

×
+

××

⋅⋅−⋅⋅
= 222

22
Im 48041120

ππ
η

……… (4.12) 

 

For the calculation of the impact velocity, we will be considering the downward 

movement of the piston and the velocity just before impact should be the maximum 

velocity of the piston. At this point the position of the piston will be at the maximum 

downward stroke of the piston which means the rear chamber behind this piston would 

be occupied by high pressure air and the air in the front chamber would have been 

exhausted. During actual operation of the DTH pneumatic hammer, at the same instant 
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the air flows to the space behind the piston (Rear Chamber), the foot valve at bottom 

opens and air is exhausted from the front chamber. 

 

Fig. 3.2 in chapter III shows the air hammer suspended from a drill string lifted off-

bottom. In this position, compressed air flows through the pin connection at the top of 

the hammer to the bit without the piston action. When the hammer is placed on the 

bottom of the hole, and weight is placed on the hammer, the bit shank will be pushed up 

inside the hammer housing until the bit shoulder is in contact with shoulder of the driver 

sub. This action aligns one of the piston ports (of one of the flow passages through the 

piston) with one of the control rod windows. This allows the compressed air to flow to 

the space below the piston which in turn forces the piston upward in the hammer 

housing. During this upward stroke of the piston, no air passes through the bit shank to 

the rock face. In essence, rock cuttings transport is suspended during this upward stroke 

of the piston17. 

 

When the piston reaches the top of its stroke, another one of the piston ports aligns with 

one of the control rod windows and supplies compressed air to the open space above the 

piston. This air flow forces the piston downward until it impacts the top of the bit shank. 

This impact force on the bit allows the rotary action of the drill bit to be very effective in 

destroying rock at the rock face. This in turn allows the air hammer to drill with low 

WOB. 

 

4.3 Cylinder Model 

The hammer housing where the conversion of air flow and pressure into the kinetic 

energy of the piston can be considered as a cylinder as shown in Fig. 4.1. Fig. 4.1 shows 

a simplified diagram of the downward stroke of the piston of the pneumatic Hammer 

used to derive the thermodynamic model for the Hammer. Fig. 4.2 is another simplified 

diagram of the air hammer highlighting the piston, bit and formation, with the piston 

moving downward to impact the bit. 
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The flow of air through the pneumatic cylinder is considered to be isothermal and 

adiabatic, while the flow through the cylinder’s inlet and outlet valves is considered 

isentropic in this research, therefore a definition of these flow processes is worth 

mentioning at this point. 

 

An isothermal process is one in which there is no change in temperature, while an 

adiabatic process is one in which no heat is added to or taken away from the flow 

system. An isentropic process is a frictionless adiabatic process. 

 

 
 

Fig. 4.1 Simplified Cylinder Diagram 
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Fig. 4.2 Air Hammer Cross Section Highlighting the Piston, Bit and Formation 

 

Below are conditions associated with the above flow processes. 

For an isothermal flow – pv = constant 

For adiabatic flow - kpv  = constant, k is defined in the equation below 

v

p
c

ck =  …………………………………………………………………………. (4.13) 

Where, k is the ratio of the specific heats. The terms cp and cv are the specific heat at 

constant pressure and constant volume, respectively. 
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Bit 
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There are four main variables to calculate in the simulation of pneumatic cylinders: air 

mass Wg, piston velocity vpA, air temperature (which will be bottom hole temperature), 

and pressure P at the cylinder inlet and outlet, which is effectively the pressure drop 

across the cylinder (or hammer in this case). The four equations necessary to know these 

variables are respectively: the equation of continuity, the equation of motion, the energy 

equation and the state equation of ideal gases. It is assumed that: (i) the gas (which is air 

in this case) is perfect, (ii) the pressures and temperature within each cylinder chamber is 

homogeneous and, (iii) kinetic and potential energy terms are negligible. 

 

The Ideal gas equation of state is: 

mR
T
pv

=  ………………………………………………………………..…………. (4.14) 

Where p is the absolute pressure of the gas, v is the volume of the gas, T is the absolute 

temperature of the gas, and m is mass of the gas and R is the ideal gas constant. 

 

From the equation of continuity, the air mass changes at the rear chamber and front 

chamber are, respectively, 

iRC
iRC w

dt
dW

&=   ………………………………………………………………..……. (4.15) 

iFC
iFC w

dt
dW

&−=   …………………………………………………………...……….. (4.16) 

 

Using Newton’s second law of motion, the equation of motion for the piston, assuming a 

negligible effect of friction, is 

 

gmPAPA
dt

dv
mFForce pFCFPRCRP

p
pp +−==,   …………………………..……... (4.17) 

 

If the piston has a uniform rear and front chamber area, then we have 
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gmPAgmPPA
dt

dv
mFForce pppFCRCp

p
pp +∆=+−== )(, ...………………..….. (4.18)  

 

This is the resultant force on the piston. This force upon traveling the length of piston 

stroke, S, will have an approximate energy equivalent to the product of the force times 

the piston stroke. However, a more accurate model for the energy of the piston will be to 

use the energy equation from the first law of thermodynamics. The first law of 

thermodynamics is most easily stated for a material volume as: the rate of change of 

stored energy equals the sum of rate of work done and rate of heat addition to a material 

volume. 

 

For the pneumatic cylinder in Fig. 4.1 and from the first law of thermodynamics and 

assuming no heat loss occurs in the cylinder, since we have considered the process to be 

adiabatic (i.e., the heat loss is small relative to the work and enthalpy terms), the energy 

equation in it basic form can be written as: 

 

WHU &&& −=  ……………………………………...………………………………… (4.19) 

 

Where U is the internal of the air in the cylinder chambers, H is the enthalpy added to 

the cylinder chambers and W is the work done by the cylinder chambers. 

 

Using the simplified cylinder diagram in Fig. 4.1 and the considering the cylinder piston 

to be in the downward motion right before impact with the bit, the various terms in Eq. 

4.19 can be expressed as: 

 

RCRCpRCRCp TwcTwc
dt

dUU 2222
&&& +==  ……………………………………………… (4.20) 

FCFCpRCRCp TwcTwc
dt

dHH 3311 &&& −==  …………………………………………...…. (4.21) 
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pRPRCRCRC vAPVP
dt

dWW 222 === &&  ………………………………………………… (4.22) 

 

It is assumed in the derivation of Eq. 4.21 that the enthalpy term associated with the time 

rate of change of temperature is small relative to that associated with the mass flow rate. 

Substituting Eqs. 4.20, 4.21 and 4.22 into Eq. 4.19 and simplifying, yields,  

 

pRC

pRPRC
FCFCRCRCRCRC

RC
RC

RC

cw
vAP

TwTwTw
w

T
dt

dT

2

2
331122

2
2

2 )(1
−−+−== &&&&   …….…… (4.23) 

 

Also from the pneumatic cylinder design, when air flows into the rear chamber of the 

cylinder, air also exits the front chamber of the cylinder as the piston moves,  

 

FCRCRC www 312 &&& −=   ………………………………………...……………………... (4.24) 

 

4.3.1 Rear Chamber Equations 

pRPmrearRC xAVV +=2   ………………………………………..……………………. (4.25) 

RC

RC
RC w

V
v

2

2
2 =   ………………………………………………….…………………… (4.26) 

RC

RC
RC v

RT
P

2

2
2 =  …………………………………………….……………………….. (4.27) 

n
RCRCRC vPC 22=   …………………………………………………………………… (4.28) 

 

The critical pressure at the inlet section is given by 

 
)1/(

01 1
2 −

∗ ⎟
⎠
⎞

⎜
⎝
⎛

+
=

nn

RCRC n
PP   ………………………………………………………...… (4.29) 
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The actual pressure at the inlet throat Pd1 is now computed. If, *
12 RCRC PP <  

then, *
11 RCd PP =  otherwise RCd PP 21 = . Thus the mass flow rate, 
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The critical pressure at the outlet section 

 
)1/(

23 1
2 −
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⎠
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nn

FCFC n
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The actual pressure at the outlet throat Pd3 is now calculated. If, *
34 FCFC PP <  

then *
33 FCd PP = , otherwise FCd PP 43 = . Thus the mass flow rate, 
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4.3.2 Front Chamber Equations 

pFPmfrontFC xAVV +=2   …………………………………………………….………. (4.33) 

FC

FC
FC w

V
v

2

2
2 =   ………………………….………………………………...…………. (4.34) 

FC

FC
FC v

RT
P

2

2
2 =  ……………………………………………………………..………. (4.35) 

n
FCFCFC vPC 22=   ……………………………………………………………..…..… (4.36) 
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4.3.3 Energy Transmission Efficiency 

A DTH pneumatic hammer converts pneumatic energy into piston kinetic energy. This 

kinetic energy in then transferred to the drill bit through an impact at every blow cycle. 

A stress wave is thus generated at the impact section that propagates toward the drill bit 

and piston end. The portion of the stress wave that travels toward the bit-end eventually 

reaches into the rock. Most of the incident stress wave gets absorbed by the rock 

resulting in its breakage, while some of it gets reflected back to the drill bit, piston and 

hammer cylinder. The piston receives the resulting reflected wave and acquires a return 

velocity. Simulations carried out by Chiang and Stamm13, show that the piston and the 

bit can stay in contact and separate alternatively several times before interaction is 

completely over. On the other hand the drill string receives a portion of the reflected 

waves by virtue of the hammer cylinder which is holding the bit in contact with the 

bottom of the hole while exerting a thrust force over the drill bit. 

 

Energy transmission efficiency is a very important issue in pneumatic hammer design. 

From a performance stand point, it affects the rate of penetration no matter how good the 

conversion of pressure energy to piston kinetic energy is, inside the hammer. The 

hammer cycle is also affected because the return velocity is determined by the amount of 

reflected energy after impact, which in turn has an effect over both the piston stroke 

length and cycle duration. Estimation of the energy transferred to the bit and then the 

rock during DTH percussive drilling is a very complex process. However, Chiang and 

Stamm13 established a simplification based on earlier works on the subject by Lundberg 

(1982). Hence a detailed analysis of the stress wave propagation is carried out for the 

piston-bit interaction and an empirical factor is used for the actual energy absorbed by 

the rock. This empirical factor depends on the rock tenacity and drill bit shape, and must 

be obtained by field tests. 

 

From the above explanation, one can analytically deduce relations, if A and B are used 

to denote immediately before and after impact. 
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From linear conservation of momentum 

 bBbpBppAp vmvmvm +=   …………………………………..………………. (4.37) 

 

From the energy conservation  

 

 222

2
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2
1

2
1

bBbpBppAp vmvmvm +=   ………………………………..…………… (4.38) 

Thus 
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And  
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  ……………………………………………………….. (4.40) 

 

The energy absorbed by the rock is the kinetic energy transmitted to the bit upon impact 

by the piston 

  2

2
1

bBbR vmE =   ……………………………………………...…..….. (4.41) 

The energy reflected through the piston is 

  2

2
1

pBbP vmE =   ………………………………………………...…… (4.42) 

Note that the coefficient of restitution e is defined as pApB vve /= . The energy 

transmission efficiency was derived by Li et al16 and will be briefly described here, 

 

Where ( )βα pb mm /2=  and ( )pcAK ρτβ /=  

 

When α > 1, ( ) 5.01/5.0 −≥ απαβ  
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When α > 1, ( ) 5.01/5.0 −< απαβ  
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Since ( )βα pb mm /2= , from the equation ( ) 5.01/5.0 −= απαβ . 

The estimated K values of very hard rocks (σc = 200 MPa). Medium hard rocks (σc = 80 

MPa), and soft rocks (σc = 40 MPa) are 250, 90 and 50 MN/m respectively. Other 

models, one of which is that by Lundberg and Okrouhlik17, exist that could be used to 

compute the energy transmission efficiency. 

 

4.4 Impact Energy of Air Flowing through the Bit 

On the first pass, the jet impact force was modeled as follows: To model the Hydraulic 

impact force at the bit, it was assumed that all the fluid momentum is transferred to the 

hole bottom. Since the fluid is traveling at a vertical velocity vn before striking the hole 

bottom and is traveling at a zero vertical velocity after striking the hole bottom, the time 

rate of change of momentum (in field units) is given by18: 
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⎛
∆

≅
∆

∆
= ………………………………………...……… (4.45) 

 

Where ( )qρ  is the mass rate of the fluid through the bit, and ρ is in lb/ft3, q is in ft3/min, 

vn is in ft/sec and g = 32.17 ft/sec2. 

 

From the book, Gas Volume Requirements for Underbalanced Drilling by Boyun Guo 

and Ali Ghalambor, the flow of air through the bit, qb is given by 
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Where C is the flow coefficient, approximately 1.0 for drill bit nozzles and 0.6 for bit 

orifices. At is in ft2.  

 

From the above equation, the velocity of the flow through the bit, vn will be 
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In Eq. 4.45, the air density at the bit can be expressed at  
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Where Pai is the Pressure just above the bit in the drill string and the temperature just 

above the bit is assumed to be the same as the bottom hole temperature. Ra = 53.36 ft-

lb/lb-˚R and Sg is the specific gravity of air. Substituting Eqs. 4.46, 4.47 and 4.48 into 

Eq. 4.45 
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From Lyon’s Air and Gas Drilling Manual17, assuming a sub-sonic flow through the bit. 
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Substituting Eq. 4.50 into Eq. 4.49 and simplifying, yields 
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…………………………………………………………………………………..…. (4.51) 

 

Where the weight rate of flow of air, ggg Qw γ=  and 
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The bottom hole pressure can be calculated using the expression below 
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ROP is in ft/hr and Ss is the specific weight of the cuttings. The empirical von karman 

relationship for determining the fanning friction factor for the annulus is: 
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For follow-on calculations for flow in the annulus the absolute roughness for commercial 

pipe, ep= 0.00015 ft will be used for the outside surfaces of the drill pipe and drill collars, 

and inside surface of the casing. The open hole surfaces of boreholes can be approximated 

with an absolute roughness, eoh = 0.01 ft. The average absolute roughness of the annulus is 

approximated by using a surface area weight average relationship between the open 

surface area and its roughness and the outside surface of the drill string and its roughness. 

Thus the value for eavo is 
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, the term Ho cancels and the above reduces to 
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GHTT rbh += , where G is the temperature gradient and is usually 0.01 ˚F/ft and  

( ) RtT rr °+= 67.459 , where tr is the approximate average temperature at the surface 

location in ˚F. 

 

The flowing assumptions were made while arriving at the model for flow through the bit 

nozzle: 

1. That the flow is isentropic. 

2. Elevation changes are ignored 

3. The bottom hole temperature is the same as that just above the bit. 

 

The equation for the jet impact force was tried out with example 8.3b, in Lyon’s book (Air 

and Gas Drilling Manual). In the example Pbh = 29,454 lb/ft2, Tbh = 604.41˚R, 

atmospheric pressure, pat = 12.685 psia, Pat = pat x 144 = 1,827 lb/ft2, 
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At = 0.00802ft2 

Using Eq. 4.49 above for simplicity 
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The force is almost negligible and this is not surprising because of the polytropic 

expansion of the air as it exits the bit nozzle. 

 

In designing the air volume requirement for Air drilling, we use the minimum kinetic 

energy (3.0 ft-lb/ft3) required at the bit to lift the cuttings, with this value we do not expect 

a lot of impact force. However, as argued earlier, we have to take the kinetic energy at the 

bit into account as it affects the cutting removal from the bit which in turn affects the ROP 

and MSE. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

From the theoretical study of the air hammer and the derivation of the Mechanical Specific 

Energy model, the following conclusions were made: 

1. A model for calculating Mechanical Specific Energy for air hammer drilling system 

has been developed as derived in Eq. 4.12.   

2. The pneumatic impact force, as shown in Chapter IV, of air exiting the bit does not 

contribute to the total rock destruction impact force from the bit. Air however, is very 

important for operating the hammer and for the removal of cuttings from under the bit. 

Inadequate cuttings removal will, however, affect rate of penetration and Mechanical 

Specific Energy values. 

3. The differential pressure across the hammer is an important input for calculating 

hammer impact energy and can be used to control the hammer impact energy and 

consequently the rate of penetration during drilling. 

4. Mechanical Specific Energy values, when properly applied can be utilized as a 

qualitative indicator of formation pressure changes during drilling. For as formation 

pore pressure changes, Mechanical Specific Energy values will change as well. 

 

5.2 Recommendations 

1. Field Data is required for further validation of the Mechanical Specific Energy model 

for air hammer drilling systems. 

2. In spite of the results from this research, we should consider the fact that experience in 

the use of Mechanical Specific Energy in air hammer drilling is very limited. 

Therefore, a proper field experimentation, application and possible modification (if 

necessary) of the model developed in this research is required. 
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3. A possible further research area will be to investigate the effects of pneumatics, 

cuttings build-up and friction on the Mechanical Specific Energy values during air 

hammer drilling. 
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NOMENCLATURE 

 

WOB   Weight on Bit, lb 

ROP  Rate of penetration, ft/hr 

N  Bit revolutions per minute, rpm 

T  Torque, ft-lb 

Dia   Bit diameter, in 

A   Circular area of the bit, in2 

vn  Fluid vertical velocity, ft/sec 

m   Fluid mass, lb 

ρ   Density of fluid, lb-sec2/ft4 

q   Flow rate of fluid, ft3/sec 

cd  Nozzle discharge coefficient (0.95 is recommended value) 

Pb  Bottom-hole pressure, lb/ft2 

Fj   Jet impact force, lb 

At   Total nozzle area 
( ) ∑∑ ++=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ 22
2

2
1

22
2 .......

324 nnn DDDDwhereDπ  

e   Coefficient of restitution, 
pA

pB

v
v

e =  

vp, vpA,Vimpact  Piston impact velocity, ft/sec 

vpB  Piston reflected velocity, ft/sec 

Powraw  Hammer raw power, ft-lb/min 

mpiston, mp   Piston mass, lb 

mb   Drill bit mass, lb 

F   Impact frequency, blows/min 

ontransmissiη    Energy transmission efficiency 

wiFC,wiRC   Mass of air at point i of front chamber or rear chamber, lb 

iRCiFc ww && ,    Air mass flow at point i of front chamber or rear chamber, lb/sec 
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Fp   Resultant force of piston, lb 

Ap   Area of piston, ft2 

iRCiFc TT ,   Air temperature of point i of front chamber (FC) or rear chamber 

(RC), º R 

iRCiFC PP ,   Air Pressure of point i of front chamber or rear chamber, lb/ft2 

∗∗
iRCiFC PP ,   Critical air Pressure of point i of front chamber (FC) or rear 

chamber (RC), lb/ft2 

cp  Specific heat at constant pressure 

k    Adiabatic expansion exponent 

n   Polytropic expansion exponent 

Pd1, Pd3   Discharge pressure at points 1&3, lb/ft2 

FPRP AA ,  Piston rear area (RP) and front area (FP), ft2 

xp   Piston position, ft 

FCmFCm CC 31 ,   Front chamber input discharge loss coefficient (m1FC), output 

Discharge loss coefficient (m3FC) 

RCmRCm CC 31 ,   Rear chamber input discharge loss coefficient (m1RC), output 

Discharge loss coefficient (m3RC) 

iRCiFC VV ,   Air specific volume at point i of front chamber (FC) or rear chamber 

(RC), ft3 

Vmfront  Passive volume front chamber, ft3 

Vmrear  Passive volume rear chamber, ft3 

iRCiFC vv ,   Air specific volume at point i of the front chamber (FC) and rear 

chamber (RC), ft3 

R   Air constant for Ideal gas, ft-lb/lb-º R 

FCRC CC ,   Polytropic expansion constant 

Ad1RC   Rear chamber input discharge area (d1RC), ft2 

Ad3FC   Front chamber output discharge area (d3FC), ft2 
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For energy transmission efficiency model (units as in reference #16) 

ρ   Density of steel 

c   One dimensional wave velocity 

A   Cross-sectional area of the anvil, and/or piston 

K   Rock impact resistance index 

τ   Duration of impact 

 

For the impact energy of the air flowing through the bit 

qb  Air flow through the bit, ft3/sec 

Pai   Pressure just above the bit in the drill string, lb/ft2 

Pbh   Bottom-hole pressure, lb/ft2 

Tbh   Bottom-hole temperature, º R 

k  1.4 for air 

Sg   Specific gravity of air 

Ss   Specific weight of cuttings 

At   Total nozzle area, ft 

Tav   Average temperature of the hole. º R 

G   Temperature gradient, º F/ft 

Dh   Hole diameter, ft 

Dp   Drill pipe outer diameter, ft 

wg  Weight rate of flow of air, lb/sec 

ep   Absolute roughness of commercial pipe, ft 

f   Fanning friction factor 

H   Hole depth, ft 

Ra   Gas constant, ft-lb/lb-º R 

C   Nozzle discharge coefficient 
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