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ABSTRACT 

 

Computational Modeling of Biological Cells and Soft Tissues. (May 2008) 

Ginu Unnithan Unnikrishnan,  

B.Tech., Kerala University, India; 

M.S., Indian Institute of Technology Madras, Chennai, India 

Chair of Advisory Committee: Dr. J.N. Reddy 

 

Biological materials are complex hierarchical systems subjected to external 

stimuli like mechanical forces, chemical potentials and electrical signals. A deeper 

understanding of the behavior of these materials is required for the response 

characterization of healthy and diseased conditions. The primary aim of this 

dissertation is to study the mechanics of biological materials like cells and tissues from 

a computational perspective and relate its behavior with experimental works, so as to 

provide a framework for the identification and treatment of pathological conditions like 

cancer and vascular diseases.  

The first step towards understanding the behavior of a biological cell is to 

comprehend its response to external mechanical stimuli. Experimentally derived 

material properties of cells have found to vary by orders of magnitude even for the 

same cell type. The primary cause of such disparity is attributed to the stimulation 

process, and the theoretical models used to interpret the experimental data. The 

variations in mechanical properties obtained from the experimental and theoretical 
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studies can be overcome only through the development of a sound mathematical 

framework correlating the derived mechanical property with the cellular structure. 

Such a formulation accounting for the inhomogeneity of the cytoplasm due to stress 

fibers and actin cortex is developed in this work using Mori-Tanaka method of 

homogenization. Mechanical modeling of single cells would be extremely useful in 

understanding its behavior in an experimental setup.  

Characterization of in-vivo response of cells requires mathematical modeling of 

the embedding environment like fibers and fluids, which forms the extra cellular matrix. 

Studies on fluid-tissue interactions in biomechanics have primarily relied on either an 

iterative solution of the individual solid or tissue phases or a sequential solution of the 

entire domain using a coupled algorithm. In this dissertation, a new computational 

methodology for the analysis of fluid-tissue interaction problem is presented. The 

modeling procedure is based on a biphasic representation of fluid and tissue domain, 

consisting of fluid and solid phases. The biphasic-fluid interaction model is also 

implemented to study the transfer of low-density lipoprotein from the blood to the 

arterial wall, and also the nutrient transfer in the tissue scaffolds of a bioreactor.  
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1 CHAPTER I  

INTRODUCTION 

* 

A. Background  

Biochemical and biomechanical stimuli affects the physiological response of 

biological materials critical for the functioning of organs. For example, hearing is aided 

by the conversion of mechanical vibration into electrical signals that travel to the brain; 

compression and dilation of arterial walls in response to blood flow patterns; growth 

and remodeling of tissues to external stress as in bones following fracture. The 

biochemical response of the cells and tissues to external mechanical stimuli is called 

mechanotransduction, and it involves interactions at the tissue, cellular and molecular 

level. The basic mechanism of transduction is still not clearly understood, and is an 

active area of research involving experimental and theoretical works. Experimental 

methods are required to stimulate the biological system and identify its physiological 

response while the correlation between the stimulation and response is achieved 

through mathematical models. Mathematical modeling of the distribution and 

magnitude of mechanical forces corresponding to different stimulation procedures 

forms the first step towards understanding the mechanotransduction in biological 

systems. For the correlation of experimental results, an accurate representation of the 

external stimulation and material model is required. One of the potential applications of 

such a mathematical model is in stem cell research. Stem cells are non-specific cells that 
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can develop into specialized cells through external stimuli like mechanical forces. 

Studies on the force distribution on stem cells and its corresponding physiological 

response would immensely help in designing cells for specific purposes. Thus, the 

primary focus of this research work is the development of mathematical models for 

cells and tissues to analyze its response to external mechanical loading.  

The response of a normal and pathological biological structure is drastically 

different. The alteration in the sensing and material property is the primary reason 

behind the change in the physiological response. Of late, the variation in the response of 

the cells and tissues are used to determine the pathological nature of these materials. 

Detection of malaria affected cells through cell extension and compression of tissues for 

tumor detection are some of the examples. So, along with the determination of stress 

distribution in the biomaterials, it is aimed to implement the mathematical models to 

predict the behavior of pathological cells for diagnostic purposes and also in tissue 

engineering.  

 

B. Motivation  

A generalized cell, which consists of features from all cell types, is shown in 

Figure 1.1. The major parts of the generalized cell are cytoplasm, nucleus and cell 

membrane. The cytoplasm consists of biopolymer filaments called cytoskeleton. Actin, 

microtubule, and intermediate filaments are the three main cytoskeletal filaments 

providing stiffness to the cell structure. Scanned images and experimental procedures 

have shown that there exist regions in cytoplasm having distinct physical properties. 
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Through suitable experimental and theoretical formulations, the mechanical properties 

of cells have been derived by a number of researchers [1-3]. These derived material 

properties have found to vary by orders of magnitude even for the same cell type. The 

primary cause of such a disparity is attributed to the stimulation process and the 

theoretical model used in interpreting the experimental data [4]. This drawback can 

only be overcome by developing a sound mathematical framework correlating the 

material of the cell with the evaluation of the experimental data. 

 

 

Figure 1.1. Schematic representation of a generalized cell. 

 
The contribution of the cytoskeletal filaments, especially the actin stress fibers, 

in influencing the mechanical properties of cells is well established in literature [5, 6]. 

Rotsch and Radmacher [5] reported a considerable reduction in the elastic modulus of 

cells when treated with actin disruptive chemicals. Similar findings were also published 
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by other authors [7, 8], and it is reported that the stiffness of the cell reduces in certain 

pathological conditions like cancer [9, 10]. A precise representation of the anisotropic, 

nonlinear behavior of the cytoskeletal architecture is required for any computational 

analysis of a living cell. The homogenous material property definition of the cell is far 

from being accurate, especially for an adherent cell in which stress fiber introduces 

significant inhomogeneity.  

Discrete cell models like the cellular tensegrity models [11], which represent the 

cell using a finite number of cytoskeletal filaments, have limitations in studying cell 

behavior. These limitations have led to a number of researchers turning towards 

continuum based models through the use of simplifying assumptions. Most of the 

earlier works, based on continuum hypothesis, homogenize the entire cell and do not 

explicitly consider the effect of inhomogeneity of the cell, with some exceptions being 

the works of [2, 3, 6]. These have lead to nonphysical correlation of the experimentally 

observed parameters to the mechanical characteristics of the cell. To overcome such a 

limitation, a constitutive model capable of accounting for the inhomogeneity of the 

cytoplasm is proposed in this dissertation.  

Mechanical modeling of single cells would be extremely useful in 

understanding the behavior of cells in an experimental setup. In-vivo response of cells 

requires mathematical modeling of the embedding environment like fibers and fluid 

making the extra cellular matrix. As the transmission of mechanical stimuli in cells 

occurs either through the extra cellular matrix surrounding the cells the determination 
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of mechanical properties of the surrounding matrix of the cells is necessary for the 

development of a comprehensive mathematical model for cell.  

Physiological importance of cell response when subjected to shear stress due to 

fluid flow as in blood-arterial wall interface, cartilage-synovial fluid interface also 

cannot be neglected. Mechanical stress on the tissue lining of the arterial walls causes 

diseases like atherosclerosis. Therefore, mathematical modeling of fluid interfaces is 

critical in the study of normal and pathological tissue behavior. The main difficulty in 

the analysis of fluid-tissue interfaces is the modeling of matching conditions at the 

interfaces. In this work, along with the mathematical modeling of cells, macroscopic 

behavior of soft tissues as well as fluid-tissue interface is also carried out.  

Soft tissues like tendon ligament articular cartilages are multiphasic materials 

composed of a mixture of collagen/elastin fibrils, water, glycoaminoglycans and cells. 

The presence of large amounts of fluid in a solid matrix of collagen, cells and other 

proteins greatly influences the behavior of soft tissues. The effect of this interstitial fluid 

is more pronounced in the deformation characteristics of soft tissues like cartilage and 

skin. Articular cartilage, the widely investigated soft tissue, is often termed as a 

multiphasic, nonlinearly permeable viscoelastic material consisting of solid organic 

matrix (collagen fibrils in a gel of proteoglycans, cells) and a liquid phase 

predominantly water [12]. Biphasic theories have been extensively used in the modeling 

of similar tissues, where it assumes a coexistence of solid and fluid medium [13-16]. The 

interaction between the different phases drives the physical characteristics of these 

media Single phase solid materials, using linear elastic, viscoelastic properties have also 
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been used extensively in the modeling of tissues like arterial wall [17]. The single phase 

models can be considered as a special case of the multiphase models. In this scenario, 

we propose to study the mechanics of soft tissues through the multiphasic material 

models which could be converted to a single phase model depending on the type of 

problems.  

Fluid-structure interaction problems, as applied to biomechanical systems, have 

been solved using a wide range of methods [18-20]. A sequential solving of the 

individual solid and fluid phases to coupled algorithm with a biphasic representation 

of tissue have been developed to study the interactions [21-24]. A new fluid-tissue 

interface finite element model to study blood tissue interactions is developed in this 

dissertation. 

 

C. Objective  

The different stages in the application of computational model to a complex 

system like biological cells/tissues are: a) development of a mathematical model, b) 

numerical solution of the mathematical model, and c) verification and implementation 

of the model to study cell/tissue behavior.  

The main objective of this dissertation is to develop a computational framework 

for the mechanical behavior of eukaryotic cells (cells with nucleus). The primary steps 

undertaken in the modeling of cells are as follows: 

a. identify primary microcellular components responsible for the 

biomechanical behavior of cells. 
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b. develop constitutive models of biological cells based on microcellular 

components. 

c. implement the proposed constitutive models in the finite element 

analysis of cells. 

d. study the behavior of pathological cells (cancer). 

To understand the behavior of cells when embedded in a tissue structure and to 

study the physiological environment for cells subjected to fluid shear stress, a biphasic 

model of soft tissue is developed. The major objectives in modeling in soft tissue 

modeling are  

a. develop constitutive models of soft tissues and study fluid-tissue 

interactions, and 

b. study behavior of artery walls subjected to blood flow. 

The cell-soft tissue model is implemented to study the response of pathological cells so 

as to aid in the development of a diagnostic tool. The flow behavior through an artery 

and compression testing on cancer cells are the main issues that are undertaken, and 

they involve the following features: 

a. development of the biphasic representation for arterial walls. 

b. implementation of the proposed constitutive framework to study flow 

behavior of blood through healthy and stenosed artery wall. 

c. computational model development of cancer cell and AFM testing. 
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Physiological behavior of cells and tissues are dependent on the transfer of nutrients 

and proteins in the tissues. So, a model to study transfer of nutrients and proteins from 

fluid into tissues by 

a. incorporating mass transfer of macromolecule into the fluid-tissue finite 

element model, 

b. studying the influence on flow characteristics on LDL deposition in the 

artery wall, and 

c. distribution of nutrients in a controlled environment for tissue 

engineering application. 

This dissertation is organized as follows. The development of a mechanical 

formulation of cell accounting for the inhomogeneity of the cytoplasm is given in 

Chapter II. The validation of the constitutive model using finite element analysis by 

atomic force microscopy (AFM) and magnetic twisting cytometry (MTC) is presented in 

the chapter. A good correlation between simulated results and experimental values are 

observed from the analysis. In this chapter, the probable cause of difference in the 

derived mechanical property of cell is also identified.  

In Chapter III, the material properties of the extra cellular matrix surrounding 

the cells in a soft tissue is analyzed using a biphasic model. The biphasic material model 

is extended to study fluid-tissue interface to model blood flow through a healthy and 

diseased artery. The variations in the fluid flow and behavior of artery wall is also 

analyzed in this chapter. 
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Chapter IV studies the effects of cancer on the material property of the cell. 

Using the constitutive model developed in Chapter II, and with the identification of 

cytoskeletal filament density the material properties are derived in this chapter. AFM 

simulation for a normal and cancerous cell is carried out and the results are found to be 

in good correlation with experimentally derived values.  

Analysis of mass transfer occurring in blood-arterial wall interface and also in a 

bioreactor for tissue engineering is presented in Chapter V. The fluid-biphasic interface 

model is extended to incorporate mass transfer phenomenon in this chapter. The finite 

element modeling of low density lipoprotein transfer in arterial wall and glucose 

distribution in a hollow fiber membrane bioreactor is presented in this chapter.  

Finally, the dissertation concludes with a summary and future works in Chapter 

VI. 
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2 CHAPTER II  

COMPUTATIONAL MODELING OF BIOLOGICAL CELL 

 

A. Introduction 

Cell is the fundamental unit of any living organism and has long been observed 

to respond physiologically to external mechanical stimuli. The first step towards 

understanding the physiological behavior is to comprehend its response to external 

mechanical stimuli. Through suitable experimental and theoretical formulations the 

mechanical properties of cells have been derived by a number of researchers [1-3, 8]. 

These derived material properties have found to vary by orders of magnitude even for 

the same cell type. The primary cause of such a disparity is attributed to the stimulation 

process, and the theoretical model used in interpreting the experimental data [4]. This 

drawback is to be overcome by the developing a sound mathematical framework 

correlating the material of the cell with the evaluation of the experimental data.  

 

B. Cell Physiology 

Cytoplasm, cell membrane, and nucleus are the main structural components of 

the cell. Cytoplasm consists of fluid like cytosol containing organelles (mitochondria, 

nucleus, etc), the cytoskeleton, and a variety of other molecules. Cytoskeleton, which 

forms the biomechanical framework, is responsible for maintaining the structural 

integrity and also the distribution of forces in a cell. The organelles present in cytosol, 

except for the nucleus, do not contribute significantly to the structural integrity of a cell 
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and are generally neglected in mechanical modeling of cell. The major components of 

cells are explained below. 

 

1. Cytoskeleton  

Cytoskeleton is a complex network of protein filaments consisting of: actin, 

microtubule and intermediate filaments distributed throughout the cytoplasm. The 

filaments help the cell to adopt a variety of shapes during cellular motion and also act 

as pathways for transfer of organelles inside the cell. Cytoskeleton consists of three 

filaments: actin, intermediate filaments and microtubule. Figure 2.1 shows the 

distribution of actin filaments (marked as green), microtubules (as red) in an adherent 

bovine cell. The cytoskeletal filaments have dissimilar characteristics and thus their 

contribution to overall cell response is dissimilar. It has been found experimentally that 

the actin has higher stiffness than the microtubule, but fails at lower extensions (Figure 

2.2). The intermediate filaments have characteristics between the two. The interactions 

of the cytoskeleton with one another and with accessory proteins are responsible for the 

biological response of the cell.  
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Figure 2.1. Stained image of bovine cell, green and red indicates cytoskeletal filaments 

and blue is the nucleus. 

 

 

Figure 2.2. Behavior of cytoskeletal filaments. 

 
Actin Filament: Actin filaments are formed by the polymerization of actin 

protein monomers and have a diameter of approximately 8nm. Actin is the abundant 

protein in many eukaryotic cells and constitutes about 5-10% of the total protein content 
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in a cell. They are distributed throughout the cell with typical concentrations of 1-

5mg/ml. Actin filaments in the presence of the Actin Binding Proteins (ABPs), like 

filamin and fimbrin, forms a series of networks or bundles. Two prominent structures 

formed by actin filaments are the actin cortex, and stress fibers. Actin cortex is a three-

dimensional networks formed as a thick band below the plasma membrane providing 

additional strength to the membrane. Actin stress fibers are formed by the bundling of 

actin filaments through rigid connections in an adherent cell. The stress fibers originate 

from the cortical layer where it connects to the plasma membrane through focal points 

and either connects with another focal point or would end in a network of other 

cytoskeletal filaments. They act as structural regulators within the cells influencing cell 

behavior like adhesion and cell contraction. 

Intermediate Filaments (IF): Intermediate filaments are woven rope like 

structures, slightly thicker than F-actin, with a diameter of 8-10 nm. Unlike actin 

filaments, the fundamental units of intermediate filaments are fibrous proteins of 2-3 

nm wide. Keratin, vimentin, neurofilament, desmin are some of the intermediate 

filaments which comes under the broad classification of Type I, Type II and Type III 

intermediate filaments. The intermediate filament network envelopes the nucleus and is 

closely interconnected with the microtubule filaments extending throughout the 

cytoplasm. The interrelation between intermediate filaments and microtubule is largely 

unknown though it is believed that MT pulls the intermediate filaments towards the 

membrane [25]. The primary function of intermediate filament is to provide mechanical 

stability to the cytoplasm and the nucleus. 



 

 

14 

Microtubules (MT): Microtubules are the thickest of the cytoskeletal filaments 

with a diameter of 23-25 nm made of alpha and beta tubulin subunits. They are formed 

through the polymerization of tubulin units and are found to radiate from the 

centrosome. Unlike the intermediate filaments and the actin filaments, microtubule is 

distributed across the cytoplasm as individual filaments. Microtubule acts as contractile 

members in the cytoskeleton, a view deduced from the fact that cells become stiffer 

when treated with microtubule disruptive chemicals [5]. Apart from providing 

structural stability, microtubules also act as pathways for the transfer of organelles 

inside the cytoplasm. They also help in the cellular division by forming a polarized 

region due to difference in the arrangement of alpha and beta tubulin units.  Similar to 

the ABPs, the Microtubule Binding Proteins, (MBPs) stabilize the organization of the 

microtubule and also acts as mediators in their interactions with other cell components.  

Experimental and theoretical works have shown that the mechanical properties 

of the cells, like adhesion and viscoelastic nature, are depended on these cytoskeletal 

framework [26, 27]. The changes caused by pathological conditions like malaria; aging 

and cancer on the cellular behavior have also been correlated to the structural and 

morphological changes in the cytoskeleton [10]. Apart from the deformations, cell 

filaments are also constantly in the process of polymerization and depolymerization 

inducing additional changes in these load bearing components.  
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2. Cytosol and organelles  

The cytosol is a fluid medium in the cytoplasm consisting of the organelles and 

the cytoskeleton. Cytosol aids in the biological response of the cell and preserves the 

incompressible nature of cell. The organelles present in cytosol, except for the nucleus, 

do not contribute significantly to the structural integrity of a cell. So these effects are not 

considered for computational analysis in most of the cases. Nucleus occupies a volume 

of nearly 20% of cytosol has a significant bearing on the behavior of the cell (see Figure 

2.1). Structurally it can be considered as a single entity and experimentally it is found to 

have a shear modulus higher than the cytoplasm [28]. The cytosol is responsible for the 

viscoelastic nature of the cell.  

 

3. Cell membrane  

The cell membrane is composed of a semi permeable bilipid layer. The effect of 

the cell membrane on the structural property varies according to the type of the cell. For 

example, in erythrocyte the cell membrane contributes significantly to the structural 

behavior of the cell. In constant, the influence of plasma membrane for an adherent cell 

is negligible. Cell membrane is responsible for adherence and the motion of cell over a 

substrate. Adhesion is achieved through a series of transmembrane proteins which 

connects the extra cellular matrix with the cytoskeleton. Movement of cell is achieved 

through the lamellipods and through a series of polymerization and depolymerization 

of cell skeleton. Focal points are created in the membrane which connects with the 

cytoskeleton and that helps in the movement of cell.  



 

 

16 

C. Formulation of Constitutive Model 

1. Mechanical models of cell  

Cells have long been observed to respond physiologically to mechanical forces. 

They are highly integrated systems capable of “sensing” external forces. The external 

forces like shear due to blood flow changes the sub-cellular organization thereby 

triggering regulatory physiological information vital to the cell. The need to 

comprehend and predict the effect of forces on a cell instigated the development of 

mathematical cell models. The limited knowledge in the behavior of the cell has 

prevented the development of a universal constitutive cell model. A wide range of 

models applicable to distinct types and functions of cell are available in the literature [6, 

29]. These cell models can be broadly classified into discrete and continuum based 

models. 

In discrete cell model a finite number of load bearing members are employed to 

explain the cell behavior. In these models, analysis is concentrated on the behavior of 

the individual members as well as a network of members formed through a series of 

interconnections called the nodal points. Cellular tensegrity models, percolation based 

models are examples of discrete mechanical models of cell. The widely accepted cellular 

tensegrity model developed by Ingber and colleagues [11] considers the whole cell to be 

a prestressed tensegrity structure. Continuum based models assumes the cell satisfies 

the continuum hypotheses. It treats the cell to be composed of material that is 

continuous in space, called the “continuum”. The continuum assumption allows the 

definition of quantities like stress, strain, energy at every point in the material. 
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Governing equations are developed using these quantities to predict the mechanical 

behavior of the cell when subjected to relevant boundary conditions. The continuum 

mechanical models available in the literature range from simple directly solvable 

models to complex models that require numerical solution tools like finite element 

method. 

Most of the mechanical cell models consider the entire cytoplasm as a single unit, 

a fact which is far from being physiologically accurate. These models, even though 

reduces the mechanical parameters, fails to capture the properties caused by the 

structural inhomogeneity of cytoplasm, like actin network layer, stress fibers etc. This 

becomes a crucial factor in the study of mechanical behavior of cells in-vivo as well as in 

the determination of mechanical parameters using experimental techniques like atomic 

force microscopy and micropipette suction.   

In this work, a mechanical model of an adherent cell based on continuum 

micromechanics considering the structural inhomogeneity of the cytoplasm is 

developed. The homogenized cytoplasm is considered to be a matrix reinforced with 

stress fibers; the periplasm or the actin cortex as a layer of semi-flexible polymer 

networks and the nucleus are the various constituents whose properties considered 

individually. The degree of influence of individual layers on the mechanical response of 

a cell using atomic force microscopy is also studied in this work. This work also deals 

with the effect of actin filaments (stress-fibers) on the mechanical properties of the cell 

and its variations in the presence of actin disrupting chemicals like cytochalasin D so as 

to provide a foundation towards building a tissue model to predict cancer growth.   
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2. Theoretical formulation  

Numerous scanned images of cells have established the genuineness of a text 

book image of a compartmentalized cell structure [5, 25, 30, 31]. The cell can be divided 

into three distinct layers: an outer cortical layer formed by the actin filament networks 

(outer cytoplasm - cortex); inner cytoplasmic region, and the nucleus. Most of the 

previous works on continuum based constitutive modeling of cell use a homogenous 

isotropic model of the cytoplasm so as to reduce the number of unknown material 

parameters. However, such simplifications limit the applicability of the model in 

connecting the physiological phenomenon with the mechanical properties of the cell. 

For example, when a cell is attached to a substrate, the mechanical properties are 

altered due to the formation of stress fibers, a fact that cannot be explained with the 

available continuum cell models. To overcome such a limitation, a constitutive model 

capable of accounting the inhomogeneous cytoplasm is carried out in this work. The 

inhomogeneity is due to the presence of stress fibers that originate from the focal points 

and end either in another focal point or in the filament network and it is also due to the 

actin cortex which forms a layer beneath the cell membrane. Using the micromechanics 

approach, and treating the cell as a fiber-reinforced composite medium satisfying the 

continuum hypothesis, the material modeling is carried out. The Mori-Tanaka method 

of homogenization that considers the amount of fiber formed as well as its orientation is 

employed to develop the material model of a cell. Modeling of the actin cortex and the 

cytoplasm with the nucleus as an inclusion is outlined next.  
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Modeling of Cortical Cytoplasm: The actin cortex region is modeled as a 

hyperelastic material by assuming the cortical region to be of an isotropic distribution 

of the actin network filaments. The general form of strain energy is given as [32]  

( ) ( ) ( )1 2 3 1 2 3
, , 0

( , , ) 3 3 3p q r
pqr

p q r
W I I I c I I I

∞

=

= − − −∑   (2.1) 

where pqrc  are the material properties, ( 1 2 3, ,I I I ) are the strain invariants that can be 

expressed in terms of the principal stretches ( 1 2 3, ,λ λ λ ) as 
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Modeling of Inner Cytoplasm: Cytoplasm is composed of an organized 

network of cytoskeletal filaments of actin, intermediate filaments and microtubules. The 

distribution of the cytoskeletal filaments differs according to the type and environment 

of the cell, thus changing their material properties. The stress fibers are contractile 

bundles of actin filaments [25] having diameters in the range of one-tenths of microns. 

Experimental and theoretical works have shown that the cell behaviors like adhesion 

and motion are dependent on these stress fibers [26, 27]. The constitutive model 

developed in this work considers the stress fibers as being distributed in the cytoplasm, 

satisfying the continuum hypothesis. With an idealization of the cytoplasm to be a 

“fiber-reinforced composite”, the effective property is obtained by borrowing ideas 

from the widely accepted homogenization theories in composite materials. The 
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homogenization is achieved by replacing the heterogeneous composite material by an 

equivalent homogeneous continuum using a suitable homogenization technique.  

The property of a homogeneous continuum is based on a statistically 

homogeneous volume element, called the representative volume element (RVE). The 

RVE is a representation of the material at the microscale: small in comparison to the 

macrostructure (i.e., whole cell) to have negligible influence on macroscopic property, 

but large in comparison to the microstructure (i.e., stress fibers) to have a meaningful 

sampling. In order to have a good sampling of the entire domain, the selected RVE 

should ideally have a couple of stress fibers. As an example, RVE with dimensions of 

unit microns, encompassing three stress fibers having a mean diameter of 0.1 microns, 

would have fiber volume fraction of 9.428%. Based on the stress fiber volume fraction 

the effective modulus of an equivalent homogenized structure could be calculated.  

A brief explanation of the micromechanics approach is presented next for 

completeness; detailed descriptions can be found in [33]. In any region of an 

inhomogeneous material, the microscopic strain and stress fields are given by relations 

of the form 

x A x

x B x

ε ε

σ σ

( ) = ( )

( ) = ( )
  (2.3) 

where A and B are the stress and strain concentration tensors, ε  and σ are the strain 

and stress tensors, respectively, and 
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∫
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denotes the volume-averaged stress and strain tensors, respectively, over the RVE 

volume Ω . 

Various approximations techniques, like variational bounds or mean field 

method, are invoked to obtain the concentration tensors due to the complexity of real 

micro-structures. The mean field methods are generally based on Eshelby equivalent 

inclusion formulation [34]. When an elastic homogeneous ellipsoidal inclusion in 

infinite matrix is subjected to a uniform strain field tε , called the eigenstrain, uniform 

stress and uniform strain is induced in the constrained inclusion. As an improvement 

over the Eshelby type formulation, Mori-Tanaka method considers the average strain as 

being caused by the inclusion as well as the perturbed matrix stress due to other 

reinforcements.  

The relation for the effective strain in the Mori-Tanaka method is given as  

1 0AAMε ε=   (2.5) 

where AM is the influence of the inclusion, and it is represented as 

( ) 1
1A = A - I + AM f fv v

−
⎡ ⎤⎣ ⎦   (2.6) 

and A is represented as 
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( ) 10 1 0A I SC E E
−

⎡ ⎤= + −⎣ ⎦   (2.7) 

where, S is the Eshelby tensor, E is the elastic tensor, C is the compliance tensor , fv is 

the volume fraction of fiber and 0 and 1 superscript indicates the matrix and fiber 

respectively. Thus from the strain concentration tensors the effective elastic property of 

the inhomogeneous matrix is calculated.  

The effective material properties (Eeff) through the correlation between the 

averaged stress and average strains over the composite is given as 

Eσ ε= eff   (2.8) 

where, Eeff is the elastic tensor of an equivalent homogeneous material, which is a 

function of concentration tensors obtained from equations (2.6) and (2.7).  

To develop a suitable material model of the cell capable of capturing the large 

deformations, a nonlinear material model of the cytoplasm is required. A standardized 

incremental linearization of the matrix-fiber composite is carried out to obtain the 

nonlinear stress strain behavior of the homogenized cytoplasm. Based on the above 

formulation, specific example on the modeling of an adherent cell having a random 

distribution of actin stress fibers in the cytoplasm and bounded by actin cortical layer is 

carried out. 
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D. Results  

1. Constitutive modeling example   

Actin cortex is considered as a semi-dilute polymer solution of actin filaments, 

cross-linked with actin binding proteins. Assuming a persistence length of 17 µm, with 

a mesh size 0.19 µm, the linear elastic shear modulus is calculated as 275 Pa for small 

strains [35]. The nonlinear stress strain behavior of the actin network is captured by 

introducing a neo-Hookean material model (Eqn (2.9)), using the calculated shear 

modulus with cortex treated as an incompressible material   

( )0
1 1( ) 3

2
W I Iμ

= −   (2.9) 

where 0μ  is the small strain shear modulus.  

The cytoplasm is considered as having randomly distributed stress fibers in a 

matrix of microtubules and intermediate filaments, as observed in various experiments. 

The cross-section of a typical adherent cell with a random distribution of actin stress 

fibers is shown in Figure 2.3. In this work, reinforcements in the form of stress fibers 

alone are considered in deriving the material properties of the cell. The matrix is 

assumed as a hyperelastic material, nearly incompressible with a small strain shear 

modulus of 100 Pa. The material properties of the stress fiber is taken from stretching 

tests carried out by Deguchi et al. [36], and Poisson’s ratio of 0.33 is assumed. The linear 

effective modulus of the composite having a random distribution of the fiber in a 

uniform matrix is given as [37]  
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where, μ  is the shear modulus, K  is the bulk modulus, υ  Poisson’s ratio, v the 

volume fraction of the materials defined by the subscripts:  0=matrix, 1=fiber, 

eff=effective matrix.  

 

Figure 2.3. The cross section of a typical adherent cell showing the random distribution 

of actin stress fibers.  

 
In literature, various methods are available to model the homogenized nonlinear 

behavior of the composite [33]. In this work, the nonlinear behavior is captured using 

an incremental approach. The stress-strain curve for the material after homogenization 

for different volume fractions of the fiber is shown in Figure 2.4. As the volume fraction 

of the fiber decreases the property of matrix becomes less influenced by the fiber, thus 

decreasing the composite stiffness. The same effect is observed in many experimental 

Actin Cortex 

Nucleus 

Randomly Oriented 
Stress Fibers Cytoplasm 
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studies, and they have reported a decrease in the measured elastic modulus of cell 

when treated with actin disrupting chemicals [7]. For sufficiently large values of stress 

fiber volume fraction, Poisson’s ratio decreases, reaching the fiber Poisson’s ratio as 

shown in Figure 2.5 (0.35 for a stress fiber volume fraction of 2.5%).  This is a significant 

observation as it partly explains the wide differences reported in Poisson’s ratio values 

ranging from a nearly incompressible value to the range of 0.25+0.05. The nucleus is 

assumed to be linear elastic with Young’s modulus of 400 Pa and Poisson’s ratio of 0.35, 

as reported in [28]. 

 

Figure 2.4. The stress-strain curve for the material after homogenization for different 

volume fractions of the fiber.  
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Figure 2.5. The effect of stress fiber volume fraction on Poisson’s ratio of the composite.  

 
2. Numerical verification-finite element analysis  

The effectiveness of the developed model in accurately interpreting the 

experimental results is illustrated through the numerical simulation of two 

experimental procedures in cell mechanics: Atomic Force Microscopy (AFM) and 

Magnetic Twisting Cytometry (MTC). Following assumptions are considered in this 

investigation: 

a) The material is elastic.  

b) The presence of the local inhomogeneity in the probing area is neglected.  

c) The stress fibers are randomly distributed in the cytoplasm creating an isotropic 

material, whose effective properties are calculated using micromechanics.  
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Atomic Force Microscopy (AFM): AFM experiment is widely accepted in the 

area of cell mechanics due to its high quality of derivable structural and functional 

information. In general, the properties derived from the interpretation of data from the 

AFM experiments are based on certain assumptions. These assumptions become invalid 

in the case of biological cell due to: large deformation compared to the cell size; 

inherent inhomogeneity of the cytoplasm, and so on.  Thus, in the interpretation of the 

results obtained from the atomic force microscopy, a more detailed numerical approach 

like the finite element method is required [38]. The implementation of the developed 

constitutive model of the cytoplasm in the numerical study of AFM is described below.   

Loading and boundary condition: Finite element analysis [39, 40] of an AFM 

indentation using spherical indenter of 0.4 microns diameter acting on the cell surface 

above the nucleus is carried out. The material properties are obtained through the 

procedure outlined in the previous section. The cell geometry considered is of 3.5 

microns in half width, 3.0 microns in height, with a nucleus of 0.9 microns diameter at a 

height of 0.75 microns from the base. The cortical region is assumed to be 0.2 microns 

thick and the cross section of the cell is as shown in Figure 2.3. The cell is assumed to be 

axisymmetric with a rigid spherical indenter acting on the cell surface above the 

nucleus. Displacement boundary conditions are applied on the indenter and also at the 

base of the cell, while symmetric boundary conditions are taken along the axis of 

symmetry. The indenter is given a vertical displacement and the cell base is constrained 

in all directions to assume a perfect contact with the substrate. The symmetric half cell 

model is discretized using an axisymmetric finite element with a finer mesh towards 
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the top of the cell (Figure 2.6). Finite element analysis is performed using commercial 

software, ABAQUS [41].  The finite element model consists of 2,637 nodes with a total of 

2,746 linear axisymmetric elements. The material property of the cell is assumed to 

remain constant throughout the analysis and no active force generation is considered. 

 

 

Figure 2.6. Half cell axisymmetric finite element model of the cell having a graded finer 

mesh towards the region of indentation.  

 
Results: Numerical simulation of an AFM on a cell with a spherical indenter is 

carried out using ABAQUS [41]. The strain distribution of the cell with stress fiber 

volume fraction of 0.1% subjected to an indentation of 0.5 microns is shown in Figure 

2.7. The actin cortical layer, which is in direct contact with the indenter, sustains the 

maximum deformation. The inner cytoplasm near the region of indentation also 

experiences very high strains and the intensity decreases away from the center. The 

total reaction force acting on the indenter is calculated by considering the horizontal 
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and vertical reaction forces at the reference point of the rigid indenter. To ascertain the 

effect of stress fibers on the reaction force, numerical simulations are carried out for 

cytoplasm having stress fibers volume fractions of 0.1% and 1%. The corresponding 

force deflection curve obtained from the analysis is shown in Figure 2.8. As expected, 

with an increase in the fiber volume fraction, the cytoplasm becomes stiffer and a 

higher reaction force is predicted for the same geometry and boundary conditions. A 

larger reaction force is needed to make the same indentation on a stiffer material 

compared to a softer material. The simulated force-deflection curve is compared with 

experimental force-deflection curves of cells L929 [7], and HCV29 & Hu609 [9]. It is 

evident from Figure 2.8 that a qualitative prediction of the force-deflection graph using 

the model developed herein matches well with the experimental results. This 

comparison is shown to highlight the trend of the force-deflection curve obtained from 

the analysis rather than a one-to-one numerical correlation with the experimental 

values. The variation between the numerical predictions and experimentally observed 

results could be due to the difference in the experimental parameters, like the indenter 

type and stress fiber volume fraction. The mapping of actin stress fiber influence to 

AFM indentation study is one of the advantages of the developed computational model 

over prevailing models, and it is immensely useful in understanding the behavior of a 

cell. 
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Figure 2.7.  Strain distribution obtained from the finite element analysis of axisymmetric 

cell model due to an indentation of 0.5 microns on the cell. 

 

 

Figure 2.8. Force deflection curve for the cytoplasm having stress fiber volume fraction 

of 0.1 % and 1%.  
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Magnetic Twisting Cytometry: Magnetic Twisting Cytometry (MTC) is another 

experiment widely used to determine the mechanical property of the cell. Through a 

correlation between the magnetic force acting on the bead and the lateral bead 

displacement or through magnetic moment and angular rotation, the material 

properties of the cell are calculated. Most of the previous works on the simulation of 

MTC considers the entire cell to be a homogenous entity [3, 42]. Apart from the actin 

cortex, focal adhesion point generation, and thereby the stress fibers, also affects the 

determination of the material property from experimental methods [8]. With this 

background, we investigated the effectiveness of the developed computational model in 

the numerical simulation of MTC. The material properties are obtained using similar 

methods to that described for the atomic force microscopy in the previous section. To 

establish the influence of the stress fibers, their volume fraction is changed and 

corresponding force-displacement values are determined through the finite element 

analysis. The bead radius, indentation angle and cell geometry is kept constant for all 

the simulations.  

Loading and Boundary Conditions: The cell geometry is modeled as a 3D 

rectangular block 20 microns long, 10 microns wide and 5 microns thick, with the 

spherical bead of 4 microns diameter making an indentation angle of 90 degrees at the 

centre of the block. The cortical thickness is assumed to be of 0.2 microns with the inner 

region being the cytoplasm (Figure 2.9). A symmetric loading and boundary condition 

is assumed, and only half of the indenter and material body is modeled. The finite 

element model consists of 3742 nodes with 3102 hexahedral hybrid (C3D8H) elements 
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with a finer mesh towards the bead region. The base of the block was constrained in all 

directions to create a cell fully adhered to the substrate and symmetric boundary 

conditions were applied to the half section. The bead centre was given a lateral force of 

500 pN and the lateral displacement of the bead centre is determined from the analysis. 

The magnetic force was chosen based on the work by Karcher et al [2]. The bead and 

cell surface have a tied contact as no slippage between bead and surface is considered 

for the analysis. 

Results:  The displacement of the bead centre is obtained from the finite element 

analysis of a cell block having a cytoplasm with a random distribution of stress fiber 

and an isotropic actin cortex, subjected to an axial force of 500 pN. The strain induced in 

the cell block with a volume fraction of 0.1% stress fiber under the load is shown in 

Figure 2.10 (A &B). The Figure shows that large strains are induced at the actin cortex. 

The region directly below the bead shows less deformation in comparison to the 

deformation at either end of the bead-cell contact region. Figure 2.11 shows the vertical 

displacement distribution of the cell block due to the load at the centre of the bead.  

The effect of stress fiber in the MTC simulation is shown in Figure 2.12, which 

indicates that as the volume fraction of the stress fiber increases a significant drop in the 

bead displacement occurs. This decrease in the displacement is an indication of the 

stiffening of the underlying material due to higher stress fiber volume fraction. To 

compare the simulated results with works by Ohayon et al. [43], the boundary 

condition in the finite element analysis was modified to model a torque instead of the 

lateral load at the bead center. Figure 2.13 compares the results from the literature and 
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the simulated bead rotations for different volume fractions of stress fibers subjected to 

torque at the bead center, and shows a good comparison with the published results. 

Also, as observed in the bead displacement behavior the bead rotation also decreases on 

increasing the volume fraction of stress fiber. Only a qualitative correlation is attempted 

since Ohayon et al. [43] used a linear elastic modulus of the cell compared to the 

nonlinear elastic model used in the present work. 

 

 

Actin Cortex 

10 microns 

20 microns 

5 microns 

Inner 
Cytoplasm 

 

Figure 2.9. Finite element mesh of the cell block selected for MTC simulation.  
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(a) 

 

(b) 

Figure 2.10.  Strain distribution induced by bead displacement along 1-2 (a), and 2-2 (b) 

directions due to a lateral load of 500 pN. 
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Figure 2.11. The vertical displacement distribution due the action of the load at the 

centre of the bead.  

 

Figure 2.12. The variation of the displacement of the bead centre with the change in 

stress fiber volume fraction. 
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Figure 2.13. The comparison of bead rotation obtained from simulation with the results 

published in [43] (indicated by *) for a torque applied at the centre of the bead.  

 
E. Discussion 

Scanned images and experimental procedures have shown that there exist 

regions in cytoplasm having distinct mechanical properties. The homogenous material 

property definition of the cell is far from being accurate especially for an adherent cell 

in which stress fiber introduces significant inhomogeneity. Discrete cell models like the 

cellular tensegrity models, which model the cell using a finite number of cytoskeletal 

filaments, have limitations in studying cell behavior. These limitations have led to a 

number of researchers turning towards continuum based models through the use of 

simplifying assumptions. One of the major limitations of simplified continuum based 

models, as pointed by Ingber et al. [11], is their inability to provide specific predictions 

related to the functional contribution of cytoskeletal filaments as effectively as the 
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discrete model. In this work this limitation is overcome by modeling the cytoplasm as 

being reinforced with the stress fibers using a micromechanics approach. The work 

carried out here differs from earlier works in cell behavior modeling, as those works 

have either been from the discrete perspective or a homogenized continuum framework 

without explicitly modeling the stress fibers. Also, the method outlined in this chapter 

is capable of correlating experimentally determined parameters of a cell as a function of 

the amount of the stress fibers in the cytoplasm.  

The correspondence of the volume fraction of stress fibers on the indentation for 

AFM and rotation/displacement of the MTC brings out the effect of the stress fibers on 

the mechanical properties of the cell, as illustrated in Figure 2.8 and Figure 2.10. The 

results from AFM simulation show that greater nonlinearity and small reaction force 

are observed at low volume fractions of stress fiber. The simulated results for low and 

high stress fiber volume fractions match qualitatively with the reported results [9, 43] 

on force indentation on the cell for a healthy and as well as diseased and actin 

disrupted cell. With an increase in the stress fiber volume fraction, the stiffness of the 

cell increases and the displacement/indentation reduces exponentially. This 

dependency of the cell stiffness on the stress fibers provides an understanding of the 

cause of wide discrepancies of stiffness obtained from experiments. It is also observed 

that actin cortical region suffers the maximum deformation during AFM and MTC 

experiments. Thus for an accurate computational model of the cell the actin cortex 

should be modeled separately from the inner cytoplasm.  
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For simplicity, the formulation adopted in this work considers only an elastic 

response, which is acceptable since the loading time is assumed to be very small. Also 

an isotropic behavior is assumed for the homogenized cytoplasm due to the random 

distribution of stress fibers. Experimental studies using 3-D MTC by Hu et al. [8] have 

shown that the orientation of stress fibers is also important in determining the cellular 

material properties. Even though the current study does not consider the anisotropic 

nature of the cell due to the stress fiber orientation, its implementation along the lines of 

continuum micromechanics is possible. This factor would be captured by the RVE 

which would have oriented fibers leading to anisotropic behavior of the homogenized 

continuum. Thus, a natural extension of the present work is to consider the viscoelastic 

components of the composite as well as to model the anisotropic properties of the cell 

due to aligned stress fibers. 

 

F. Summary 

A homogenized constitutive model of the cell incorporating the distribution and 

amount of stress fibers has been developed in this study. The validation of the 

constitutive model using the finite element analysis on two most conventional 

experimental techniques of atomic force microscopy and magnetic twisting cytometry 

has been carried out. A satisfactory correlation between the simulated results and 

previously published results corroborate the accuracy of the micromechanics model. 

Through this model, we have been able to state the stress fiber as a likely cause of the 

wide disparity in the above mentioned experimental results. Thus, through this model a 
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correlation of the mechanical behavior of the cell, its composition, and experimental 

results is developed, which would be extremely important in the field of cell mechanics. 
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3  CHAPTER III  

ANALYSIS OF SOFT TISSUE ENVIRONMENT USING BIPHASIC MATERIAL 

MODEL 

 

A. Introduction 

The stimulus acting on cells in-vivo is altered by the properties of the 

surrounding environment. For example, cells response in soft tissues is influenced by 

the mechanical properties of the extra cellular matrix. So, to predict the behavior of cells 

in-vivo, the material properties of the environment should be included in the 

mathematical model. In this chapter, the behavior of soft tissues is analyzed using a 

biphasic material representation. A biphasic finite element model is developed and is 

also extended to model the tissue-fluid interfaces occurring in human body.  

Common examples of the tissue-fluid interactions are a) blood flowing through 

the artery wall, and b) synovial fluid and cartilage interactions  [20, 44]. The 

computational models to study fluid-structure interactions in biomechanics have 

primarily relied on either an iterative solution of the solid and fluid domains or a 

sequential solution of the entire domain using a coupled algorithm  [18-20]. Iterative 

solutions methodologies are computationally very expensive and hence cannot be used 

for large applications. Proper identification of boundary conditions at the interface 

posed significant difficulties in numerical solution of sequential algorithm. 

Complexity of the fluid-structure interactions in biomechanical systems due to 

the geometry and the material properties requires numerical techniques like finite 
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element methods. Representation of soft tissues as biphasic materials have led to the 

development of biphasic-fluid interaction models to study the fluid-structure 

interactions in biomechanics [45]. Physical phenomenon of a biphasic material is based 

on the characteristics of the coexisting solid and fluid phases and their interactions. 

Even though various studies on the application of biphasic theories with the finite 

element methods have been carried out [14, 46, 47], serious limitations in modeling the 

fluid-biphasic interfaces exists. Selection of accurate boundary conditions and its proper 

implementation in the finite element code is one of the major difficulties in the 

simulation of fluid-biphasic interfaces. A review of the various boundary conditions for 

study of fluid-structure interactions analysis using finite element method is provided 

by Alazmi et al. [48]. Lee et al. [21] analyzed the blood flow and arterial wall motion 

separately and then combined their effects using an iteratively coupled algorithm. A 

sequential treatment of tissue-fluid interface was considered by Chan et al. [22] using a 

biphasic representation of the tissue. 

A new methodology to incorporate the fluid-biphasic interface is described in 

this chapter. A biphasic representation of the tissue is utilized in the development of the 

new algorithm. Suitable mathematical representation of the fluid and solid phases in 

the biphasic model of the tissue and through proper finite element implementation of 

the mathematical model the tissue-fluid interaction model is developed. The 

formulation is computationally less intensive, when compared to iterative solution and 

robust when compared to the transformation matrix algorithms. The proposed model is 

verified with standard fluid flow problems over a porous region and is applied in the 
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normal and diseased artery wall. This chapter is organized in the following manner: 

The biphasic approach adopted in solving the solid fluid interface is outlined in Section 

B. In Section C the finite element verification of the adopted method is detailed and the 

application of the developed methods in solving blood arterial wall behavior is shown 

in Section D. Finally, summary and conclusion are drawn in Section E.  

 

B. Materials and Methods 

A study of blood flow through the artery, or synovial fluid interaction with the 

cartilage requires an efficient computational methodology, capable of modeling a) the 

complicated geometry, b) representing the interface boundary conditions. The primary 

obstacle in a fluid-biphasic finite element model is the identification and 

implementation of matching interface boundary condition. Matching interface 

conditions for velocity, pressure and temperature in FE biphasic model is still not well 

established in literature [22, 48-52]. A detailed review of various descriptions of the FE 

boundary conditions is provided by Alazmi et al [48]. Satisfaction of continuity of mass, 

momentum and energy, lead to the implementation of additional boundary conditions 

and of transformation functions in the FE formulation, which increased computational 

complexity of the formulation and also made the formulation problem specific. In this 

work, a new formulation avoiding the above drawbacks is presented.  

The computational domain selected for the finite element analysis, consists of a 

fluid domain FΩ and a tissue domain TΩ separated by the interfacial boundary IΓ  as 

shown in Figure 3.1. The entire domain is represented as a biphasic material having 



 

 

43 

different fluid phase volume fractions in the fluid and tissue domain. A review of 

constitutive modeling of the biphasic material, and its finite element implementation is 

outlined next. 

 

ΩF

ΩT

Γ 

ΓI 

Ω = ΩF ∪ ΩT

 

Figure 3.1. A schematic representation of the domain showing interface between the 

fluid and biphasic medium bounded by a smooth boundary Γ separated by the 

boundary layer Γ I.  

 

1. Biphasic constitutive equations 

Soft tissues like artery, cartilage is essentially a biphasic material consisting of 

solid organic matrix (collagen fibrils, in a gel of proteoglycans, cells) and a liquid phase 

predominantly water (see Figure 3.2). The behavior of these materials is influenced by 

the deformation characteristics of the solid and the flow of fluid through the solid 

skeleton. The properties and the volume fraction of solid and fluid phase and their 

interactions with one another determine the overall behavior of these biphasic tissues. 
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Assuming the biphasic material is composed of intrinsically incompressible 

components which are chemically inert, the governing equations are derived in the 

following manner for a domain Ω  having a boundaryΓ  with total volume V which is 

the sum of fluid volume fV and solid volume sV . The fluid is assumed to be viscous 

and incompressible, while the solid is assumed to be linearly elastic and isotropic. The 

volume fractions of the fluid and solid phases are represented as fφ  and sφ  

respectively, where V Vα αφ = , ,s fα =  refers to the solid and fluid phases respectively. 

It is to be noted that 1s fφ φ+ = .  

 

Cell

Collagen

Tissue Fluid

Mobile Ions

 

Figure 3.2. Schematic representation of soft tissue showing the distribution of water and 

solid phase in a cartilage.  

 
The continuity equation for the biphasic material is given as 

( ). 0f f s sφ φ∇ + =v v   (3.1) 
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Neglecting inertia and body forces, conservation of linear momentum yields the 

following equations [53]: 

( )

. 0

. 0

s s

f f

s f f s fp Kφ

∇ +Π =

∇ +Π =

Π = −Π = − ∇ − −

σ
σ

v v

  (3.2) 

where σα is the Cauchy stress tensor of α phase, αΠ  is the diffusive momentum 

exchange between the two phases, p the apparent pressure, vα is the velocity field 

vector, and K is the diffusive drag coefficient [14] given as 

( )2

0

f

K
φ

κ
=   (3.3) 

where 0κ is the tissue permeability constant  

Cauchy stress for an incompressible linear elastic solid and a viscous 

incompressible fluid is given as [53] 

( )
( ) 2s s

s s

Tf f f f
f

p tr I

p

φ λ μ

φ μ

= − + +

⎡ ⎤= − + ∇ +∇⎢ ⎥⎣ ⎦

σ I e e

σ I v v
  (3.4) 

where ,s sλ μ  are the Lamé constants of the solid material and fμ the viscosity of fluid, 

and e is the solid phase strain tensor and I is the identify tensor. One of the advantages 

of a biphasic representation of a medium is that by setting the volume fraction of any 

one phase to zero, the medium could be characterized by the governing equation of the 

other phase alone. For example, a fluid domain can be characterized from the 
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governing equation of biphasic medium by setting the volume fraction of solid phase to 

zero. 

 

2. Finite element formulation  

Mixed finite element formulation, penalty finite element formulations, and a 

combination of mixed and penalty based formulations are some of the formulations 

implemented to consider the pressure term in modeling the biphasic model of tissue [47, 

54, 55]. A penalty based finite element formulation is considered in this work [39, 40]. 

The penalty finite element formulation  is based on the interpretation that the 

continuity equation can be considered as a constraint on the velocity components, and 

is represented as [39, 40] 

( ). 0f f s s pφ φ
β

∇ + + =v v   (3.5) 

where, β  is the user-specified penalty parameter. 

Using the above equation the modified governing differential equation is given 

as 

( ) ( ) ( )
( ) ( ) ( )

( ) 2. . 0

. . 0

s
s s

Tf f f
f

s s f f f s f

s s f f f s f

p tr I

p

K

K

φ λ μ

φ μ

β φ φ φ

β φ φ φ

⎡ ⎤− + + ⎣ ⎦
⎛ ⎞⎡ ⎤ ⎡ ⎤− + ∇ +∇⎜ ⎟⎢ ⎥ ⎣ ⎦⎣ ⎦⎝ ⎠

∇ ∇ + ∇ − − =

∇ − ∇ + ∇ + − =

I e e

I v v  

         + v v v v     

v v v v     
 

(3.6) 

The weak form of the equation is given as 

( ){ }. 0. s s
E

s fu p K dδ φ
Ω

− ∇ − Ω =∇ −∫ σ v v  (3.7) 
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( ) ( ) ( ) ( ){ }: . ..σ v v v v fT s s s s f f s
E

s fu u u K dδ φ δ φ φ δβ
Ω

+ ∇ + + Ω∇ ∇ − =∫  (3.8) 

( ){ }. 0. F f
v

s fw p K dδ φ
Ω

− ∇ + Ω =∇ −∫ σ v v  (3.9) 

( ) ( ) ( ) ( ){ }: . ..σ v v v v fT F f s s f f f
v

s fw w w K dδ φ δ φ φ δβ
Ω

+ ∇ + − Ω∇ ∇ − =∫  (3.10) 

The primary variables are identified from the weak form as , ,s s fd v v , which are 

the displacement of the solid phase, velocity of solid and fluid phases respectively. By 

discretization of the above equation, the primary variables are represented in terms of 

the nodal values using interpolation functions 1 2&ψ ψ as 

1 1 2, ,u d v v v vf fs s s s
e e eψ ψ ψ= = =   (3.11) 

where, , ,d v v fs s
e e e  are the elemental solid displacement, solid velocity and fluid velocity 

respectively. The elemental matrix representation of equations (3.8) and (3.10) is  

11 12 11 12 13 14

21 22 21 22 23 24

31 32 33 34

41 42 43 44

0 0
0 0

0 0 0 0 0
0 0 0 0 0

s ss
x xs s x
s ss
y ys s y
f f
x x
f f
y y

v FK K d C C C C
v FK K d C C C C
v FC C C C
v FC C C C

⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎧ ⎫ ⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎢ ⎥

⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥+ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭    

(3.12) 

or 

Kd  +  Cv = F   (3.13) 

Implementing the space and time decoupled formulation, the following 

definition of the nodal variables are used 
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( ) ( ) ( )( )

( ) ( ) ( )( )

1

1

2

1

, ,

,

v x x v

v x x v

n
s s

j e jj
n

f f
j e jj

t t

t t

ψ

ψ

=

=

=

=

∑

∑
  (3.14) 

Assuming a time difference of tΔ , separating time at 1nt + and nt , 1n nt t t+Δ = −  the 

displacement and velocity for time 1nt + is given as 

( ) [ ]
1

1

d  = d + v
v 1 v v , 0,1

n n n

n n n

t α

α α α α
+ +

+ +

Δ

= − + ∈   
(3.15) 

Substituting equation (3.15) into the equivalent relation (3.13), gives the following 

matrix equation [14] 

( ) 1 1 [ (1 ) ]n n n nt tα α+ +Δ − + Δ −C + K v  = F K d v  (3.16) 

with 0.75α > . Solution of equation (3.16) with an appropriate choice of the penalty 

parameter [14], gives the velocity components of the solid and fluid phase in the 

biphasic medium.  

 

3. Tissue-fluid interface modeling   

The volume fraction of fluid phase in the tissue-fluid domain is discontinuous 

along the interface surface. To develop a well-posed mathematical problem it is 

required to satisfy conservation of mass, energy and momentum in the domain and also 

additional kinematical boundary condition at the interface surface [20].  

For an incompressible solid and incompressible fluid phase for the conservation 

of mass on interfacial surface is represented by the following jump condition 
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( ) . 0v v nf f sφ − =   (3.17) 

where, n is the unit outward normal of the interface surface. Using the 

relation 1f sφ φ= − , equation (3.17) can be represented as  

. 0v v nf f s sφ φ+ =   (3.18) 

which is defined as the weighted velocity of the mixture at the interface.  

Using the “pseudo-no slip” boundary condition, which allows different 

velocities for the solid and fluid phase at the interface surface, and equation (3.18) the 

following relation for the mass conservation on the surface is obtained [20].  

0v vf f s sφ φ+ =   (3.19) 

or can be explicitly represented as 

( ) ( ) 0f f s s f f s s
F F F F T T T Tφ φ φ φ+ − + =v v v v   (3.20) 

where subscripts F and T denote the fluid and tissue domains, respectively.  

For a tissue-fluid interface ( 1, 0f s
F Fφ φ= = ), equation (3.20) would give the 

following interface boundary condition. 

( )f f f s s
F T T T Tφ φ= +v v v  at IΓ   (3.21) 

This means that the velocity of the fluid in the fluid domain would induce a 

velocity in the solid and fluid phase in the tissue domain proportional to its volume 

fraction at the tissue domain. 
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In previous works, the above boundary condition was incorporated in the finite 

element formulation using a set of interface elements connecting fluid and tissue 

domains [22]. Interface elements satisfied the interface boundary condition over an 

elemental area, thus introducing artificial thickness to the interface.  This lead to the 

prescription of duplicate nodes at a point on the interface surface, connected through 

multipoint constraints or through transformation matrixes. The formulation of finite 

element along these lines increased its computational overheads.  

A new approach to satisfy equation (3.21) without an interelement layer is 

presented below. A continuous function of solid phase volume fraction, which tends to 

zero ( 0s
Tφ → ) near the interface boundary in the tissue domain, is assumed in this work.  

Thus, in the limit as we approach the interface surface from the tissue domain T
IΓ the 

above assumption leads to the following continuity equation over the boundary surface. 

( )
0

lim
s
T T

I

f f s s f
T T T T T

φ
φ φ

Γ
→

+ =v v v   (3.22) 

The following boundary condition for fluid velocity is obtained at the interface 

f f
T F=v v at IΓ   (3.23) 

and on comparison with equation  (3.21) and (3.22), satisfies the compatibility equation. 

Thus it is assumed that the fluid velocity in the fluid domain and the tissue 

domain across the interface surface is satisfied one-on-one basis and not in the 

weighted sense as described in other works. The change in s
Tφ  occurs at elements in the 

interface boundary in the tissue domain and at every point inside the element the 
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function is continuous, leading to an well posed finite element problem. The entire 

domain is meshed such that the interface surface lies on an interelement boundary for 

continuity of sφ in an element.  

This methodology avoids the use of additional constraints and interface 

elements in the finite element implementation of tissue-fluid interface modeling. When 

compared to a sequential algorithm the proposed formulation is robust as iterative 

satisfaction of equilibrium and specification of additional boundary conditions is not 

required. A formulation capable of simultaneously solving the fluid and biphasic 

domains and avoiding any explicit interface modeling in the finite element formulation 

forms the major contributions of this work.  

 

4. Verification of finite element formulation  

A standard Taylor-Couette flow over a rigid and deformable porous medium is 

simulated to verify the proposed algorithm. The standard Taylor-Couette problem 

consists of a steady viscous fluid at a uniform speed v, flowing over a biphasic material 

(see Figure 3.3). The continuity of field variables in individual domains and at the 

transition from the fluid and biphasic domain is checked for its accuracy. Fluid flow 

over a rigid and deformable biphasic material is simulated and the results are 

compared with solution presented by Chan et al [22].  

To capture wide range of material properties the following set of parameters is 

defined and varied in the simulation, 
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2
2

f
T

h K
μδ =

 
 (3.24) 

1

2

h
h

ξ =
 

 (3.25) 

( )2f f
F

f
T

φ μ
η

μ
=

 
 (3.26) 

where, δ relates the viscous effect of fluid channel to the drag of fluid flow in the 

porous layer, f
Tμ is the viscosity of fluid in the porous medium, and η  is the weighted 

viscosity ratio, and 1h and 2h are the heights of fluid and biphasic medium, respectively, 

and are set to 1.0 μm and 0.25 μm, respectively. The computational domain and 

material parameters are selected from Chan et al [22]. The solid volume fraction of the 

porous medium is assumed to approach zero towards the interface region.  

In a rigid porous medium the displacement and velocity of the solid phase are 

set to zero for the entire domain. The viscosity of the fluid in FΩ is taken as 1.0 Ns/m2 

and a unit velocity is prescribed at the top layer of fluid domain.  The simulation is 

carried out for different values of andδ η and compared with results presented in [22]. 

The normalized fluid flux ( )0v vf f
xφ  in the fluid layer and their comparison for a rigid 

biphasic-fluid medium for different test cases is shown in Figure 3.4. The variation of 

the fluid flux across the interface is found to be smooth in the present analysis. From 

these figures it is evident that the new formulation is capable of predicting the fluid flux 

in the rigid biphasic region and the fluid region accurately.  
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Porous Layer 

Fluid Channel 

Rigid Moving Wall 

Rigid Wall 
 

Figure 3.3. Viscous flow over a porous medium represented as a biphasic material.  

 
To study the applicability of the model in the analysis of soft tissues, similar 

tests are carried out for a deformable-biphasic fluid domain. The boundary conditions 

and material properties of the FΩ  domain are kept the same. In the TΩ domain, solid 

phase displacement and velocity is constrained at the base of the domain. The 

corresponding variation of fluid flux is shown in Figure 3.5. The normalized solid phase 

deformation in the deformable biphasic region is shown in Figure 3.6. The results are 

compared with analytical solutions from Chan et al. [22] and shows a good correlation. 

Thus, based on the simulation of the Couette flow over a rigid and a deformable 

biphasic region, the algorithm developed in this chapter can be considered as being 

capable of treating fluid-biphasic interfaces with sudden variations in the volume 

fraction of the biphasic material. As the variation of the material properties in this test 

problem is similar to that in a soft tissue having fluid and biphasic domains, the FE 
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formulation is implemented in the study of blood flow through an artery, which forms 

the rest of the chapter. 

 

Fluid Flux

H
ei

gh
t

0 0.2 0.4 0.6 0.8 1
-1

-0.75

-0.5

-0.25

0

0.25

Simulation (1)
Simulation (2)
Simulation (3)
Chan et al, 2000 (1)
Chan et al, 2000 (2)
Chan et al, 2000 (3)

 
Figure 3.4. Comparison of simulated normalized fluid flux distribution across a rigid 

biphasic and fluid layer and analytical solutions for different flow conditions. 
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Figure 3.5. Normalized fluid flux distribution across a biphasic deformable biphasic and 

fluid layer. Similar to the flow over a rigid biphasic layer, a smooth transition between 

the fluid flux in the fluid and biphasic region is observed. 
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Figure 3.6. Normalized solid displacement of the deformable biphasic layer obtained 

from simulation compared with that from the literature. 
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C. Biphasic Artery-Blood Interface Simulation  

Arterial walls are incompressible materials having a nonlinear stress-strain 

response with a stiffening effect at high pressures. Analysis of arterial wall using 

linear/nonlinear elastic/viscoelastic approaches for different physiological conditions 

has been carried out by many authors. A review on the various constitutive models 

used for artery wall is provided by [56]. Artery wall-blood flow interactions have been 

treated extensively with a detailed review provided by Quarteroni et al. [57]. In almost 

all of the models, artery wall was treated as a solid material and fluid-solid interactions 

were considered using additional boundary conditions. Biphasic models of artery walls 

have been previously implemented to study the transfer of macromolecules in the 

arterial walls from the blood [58-60].  

A schematic representation of the cross-section of symmetric artery wall is 

shown in Figure 3.7. Blood flows through the inner region called the lumen, which is 

bounded by a thin layer of endothelial cells, called the endothelium. A glycocalyx of 

macromolecules, having an average thickness of 60 nm coats the luminal surface of the 

endothelium. The solid volume fraction of glycocalyx region is very small in the limit 

tending to zero [61, 62]. Compared to the lumen diameter and endothelial layer the 

thickness of glycocalyx is very small and is neglected in most of the analysis. Outer to 

the endothelial layer is the intima, consisting of connective tissues. In normal healthy 

artery intima layer is very thin and makes an insignificant contribution to the material 

properties of the arterial wall. Thickening of intima is associated with pathological 

condition called arteriosclerosis [63]. The intima is bounded on the outer region by the 
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internal elastic lamina (IEL). Media and adventitia, which provides the tensile strength 

and prevent disruption of artery wall, forms the outer regions of artery wall.  

The arterial wall-blood interface is analyzed using the biphasic-fluid FE 

formulation described in the previous section. In the biphasic material representation of 

artery wall, the fluid phase represents the tissue fluid in the wall and the solid phase 

represents matrix phase consisting of collagen fibrils, proteoglycans, cells etc. [64]. The 

fluid in the tissue is assumed to be viscous and the solid a linearly elastic material.  The 

values for arterial wall thickness and the lumen diameter are taken from literature. 

Blood flow through a healthy artery and a diseased artery due to atherosclerosis is 

analyzed using fluid-biphasic finite element model for time period of 1.0 s. 

 

Figure 3.7. Loading and boundary conditions of a symmetric lumen and arterial wall. 

 

1. Blood flow through healthy artery   

A multilayered model of a symmetric artery with a lumen radius of 33.10 10−×  m 

and having distinct endothelial, intima, media and adventitia layers is selected (see 
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Figure 3.7). The viscosity of blood is 33.5 10−×  Pa.s and the viscosity of fluid in the 

arterial wall is taken as 30.72 10−× Pa.s. The geometric and material parameters selected 

for the analysis is shown in Table 3.1. As the thickness of glycocalyx layer is in the order 

of nanometers, the region is not explicitly modeled in the finite element model. Also, it 

is assumed that the solid phase volume fraction of the arterial wall tends to zero at the 

glycocalyx region near the blood-wall interface. At the inlet a fully developed blood 

flow velocity is prescribed with a central line velocity of 0.17 m/s and at the outlet of 

the lumen free boundary conditions are prescribed. The solid displacement of the 

lateral ends of the arterial wall is fixed in both directions and kept free at the top outer 

adventitia layer. Symmetric boundary conditions are taken at the center of the lumen. 

The rectangular artery tube is meshed using 100 quadrilateral elements. A finer mesh is 

provided near the interface surface to capture the sudden variation in the field variables.  

 

Table 3.1. Material parameters of artery wall. 

  

Endothelial 
Layer 

 

Intima 

 

IEL 

 

Media 

 

Adventitia 

Porosity 0.005 0.083 0.002 0.258 0.001 

Permeability ( 4 /( . )m N s ) 66.25 10−×  122.0 10−×  114.32 10−×  142.0 10−×  194.32 10−×  

Thickness (microns) 5 10 5 160 300 

Elastic Modulus  67.5  Pa 6.75 kPa  0.0675Pa 6.75 Pa 67.5 kPa 

 

Finite element analysis of the artery tube domain with a symmetric center line is 

carried out.  The variation of fluid velocity in the arterial wall and the lumen at the 

longitudinal center of the domain is shown in Figure 3.8.  Similar to the inlet profile, a 
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parabolic profile is observed in the flow through the lumen, while in the arterial wall 

the fluid velocity is negligible. Similar axial velocity for the fluid near the arterial wall-

blood interface was reported by [61]. Figure 3.9 shows the variation of the radial fluid 

velocity in the lumen and the arterial wall. The radial velocity in the lumen increases to 

a maximum value of 62.81 10 m/s−×  before reducing to 62.77 10 m/s−×  in the artery wall.  

The radial fluid velocity in the arterial wall is called the filtration velocity, and it drives 

the solutes and other nutrients from the blood into the arterial wall through convection. 

The filtration velocity is affected by the permeability and the stiffness of the arterial 

wall layers and is also a good indicator of the probable uptake of lipids by the arterial 

wall which is critical in diseases like arthrosclerosis. 

In a rigid artery wall, studies have reported a radial fluid velocities of 

83.0 10−× m/s [65], 82.31 10−×  m/s [66], and 81.76 10−× m/s [67]. For a rigid artery wall 

simulation yielded a filtration velocity of 82.51 10−× m/s at the interface surface, which is 

comparable to the reported values. Figure 3.10 and Figure 3.11 shows the variation of 

the radial and axial displacement of the biphasic artery wall. The radial solid 

displacement increases, reaching a peak value of 62.75 10 m−× , and then decreases to the 

prescribed boundary condition at either ends of the artery wall. The axial displacement 

profile shows a sinusoidal variation along the length of the wall.  
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Figure 3.8. Axial fluid velocity in the lumen and arterial wall showing a parabolic 

velocity profile in the lumen while in the arterial wall a negligible axial fluid flow is 

observed. 

 
To model the physiological event of a failure of the lining (e.g. cell death), the 

permeability of the epithelial layer is now varied. Figure 3.12 shows the variation of the 

filtration velocity with change in the ratio of permeability of the epithelial tissue 

keeping a standard value of 2163.2 10 m−× .  The values are chosen to provide a wide 

range of permeability differences to effectively capture the influence of the endothelial 

layer to blood flow. It is evident from the figure that as the permeability is increased the 

filtration velocity also increases. In actuality, these conditions translate as a forerunner 

to atherosclerosis where the arterial wall becomes porous to lipids, due to an injury to 

the cell lining.  
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Figure 3.9. Radial fluid velocity in the lumen and arterial wall taken at axial center of 

domain. The radial fluid velocity increases in the lumen and then reaches a constant 

value in the arterial wall. 
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Figure 3.10. Radial solid displacement of top arterial layer shows a maximum value of 

2.75 X 10 -6 m at the center of the wall. 
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Figure 3.11.Axial solid displacement profile of the top arterial wall layer, a sinusoidal 

displacement profile is observed from the analysis. 
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Figure 3.12.Variation of filtration velocity with permeability coefficient of epithelial 

layer, as the permeability decreases the filtration velocity also decreases. 
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2. Blood flow through stenosed artery   

Atherosclerosis is a common form of disease affecting large and medium sized 

arteries. The formation of atherosclerosis is primarily caused by the blood flow 

conditions and arterial wall properties, which induce uptake of atherogenic substances 

into the artery wall. The formation of atherosclerotic plaque leads to changes in the 

blood flow patterns, which in turn may increase the artery block. When flowing 

through a narrowed artery the blood velocity increases leading to a negative pressure in 

the constricted region. This could lead to flow separation after the stenosis and can also 

lead to the collapse of arterial wall. The study of blood flow through stenotic artery thus 

requires a coupling of the fluid and arterial wall mechanics [68, 69]. Various researchers 

have studied the blood flow through a stenosed artery, considering artery wall as 

linear/nonlinear elastic, biphasic material with fluid structure interaction [18, 21, 70-72]. 

In most of the works, the walls are considered to be rigid and impervious. In actuality, 

computational analysis of diseased arteries requires the material to be non-rigid and 

permeable to water and other molecules, like LDL. Through the fluid-biphasic interface 

formulation we study the blood flow characteristics in a stenosed artery for different 

blocks in this section. In this study, we consider 

(a) interaction of fluid and artery wall to study the influence of the material 

property, and 

(b)  influence of the constrictions on the blood flow.  

To reduce the computational intensity of the analysis, the complex mechanical 

property of the artery wall is simplified and modeled as an isotropic bilayer having the 

inner media, and outer adventitia layers only, similar to the analysis carried out in [65]. 
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The axial length of the domain is taken as 0.085 m, with the stenotic region modeled at a 

distance of 0.035 m from the inlet. The thickness of the wall assumed to be of 44 10−× m, 

with equal thickness for media and adventitia. The porosity of inner layer is assumed to 

be 0.25 while for the outer layer it is taken as 0.05. An elastic modulus of 67.5 kPa and 

6.75 GPa is assumed for the inner and outer layer respectively. Viscosity of fluid in the 

arterial wall is taken as 30.72 10−×  Pa.s. The blood is assumed to be viscous and 

incompressible. To analyze the influence of stenosis in the blood flow, simulation is 

carried out for stenotic blocks of 25 %, 40%, 50% and 60%. A block is defined as 

“Block %= (R0-Rnew)/ R0 X 100),” where Rnew is the radius of the constricted tube. The 

variation of fluid velocity and solid displacement and the pressure drop due to the 

blocks are studied and compared.  

A 4-noded quadrilateral element having 4 degrees of freedom per node is used 

to mesh the entire domain. The tissue-fluid interface lies along an interelement 

boundary region and a finer mesh is provided at the entrance and at the stenotic region 

of the artery. A tolerance limit of 0.001 was provided for convergence in the analysis.  

At the lumen inlet a fully developed velocity profile is prescribed with a central velocity 

of 0.024 m/s and at the outlet of the lumen, free boundary conditions are given. The 

arterial wall was constrained in both directions at the two ends. The axial velocity 

profile of the blood for the various cases of blocks is shown in Figure 3.13.  
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(a) 25 % block 

 

(b) 50 % block 

 

(c) 60 % block 

Figure 3.13. Velocity profile for an artery with various degrees of constrictions. 

 
In the figure, the white dotted line shows the interface region between the fluid 

and arterial wall. With a change in the stenosis the velocity profile is significantly 

altered in the lumen. The maximum velocity increases with an increase in the degree of 

block as shown in Figure 3.14. Also, it is observed that the fluid velocity for 60% block 

has negative velocities in the post-stenosis region showing fluid re-circulation. The 
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recirculation effects of blood flow alter the blood flow and increase the intensity of 

atherosclerosis through other physiological events. 
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Figure 3.14. Variation of maximum fluid velocity with block %. 

 
The variation of the fluid pressure drop along the axial direction for different 

blockages of lumen is shown in Figure 3.15. Pressure drop in an artery is very critical as 

it may lead to total blockage of the artery causing stroke. The difference between the 

inlet and outlet pressure is considered for ease of plotting. It can be observed from the 

figure that the pressure remains positive before stenosis, with the value increasing for 

increasing blocks at regions nearer to the block. At the region of stenosis, a sharp 

decrease in the pressure is observed, even going to the range of negative values 

followed by a recovery at the post stenotic region. Also, the negative pressure is 
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observed to increase with stenosis severity.  Similar findings for changes in the negative 

pressure for different blocks were published by Bathe and Kamm [18]. 

The variation of the solid vertical displacement of the top layer of wall for 

different degrees of block of the tube is shown in Figure 3.16. An inward (negative) 

displacement of the top layer near to the fluid inlet is seen which then recovers and 

have an outward displacement in the pre-steonsois region. The maximum displacement 

attained at the pre-stenosis region is less for constricted tube when compared to a 

normal tube. The maximum value of the displacement decreases with increasing block 

upto 50% block and a reduction in the solid displacement of 60% block positive 

displacement is observed. The likely reason for this change is the influence of the 

negative pressure on the arterial wall behavior as evident from the maximum negative 

displacement profile seen at post stenosis region for 60% block artery. In the post-

stenosis region inward (negative) displacement is maximum for 60% block, and 

decreases for 50% block and no inward displacement is observed for other blocks.  

The alteration of the fluid flow pattern and wall behavior has been reported to 

be responsible for the further deterioration of the artery wall causing vascular diseases. 

For a complete analysis of the progression of disease more cases needs to be studied. 
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Figure 3.15. Pressure variation (N/m2) due to stenosis. The maximum drop in pressure 

is observed for the 60% block.  
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Figure 3.16. Displacement of artery wall for the computational domain selected. 60 % 

block of artery causes considerable undulations in the artery wall.  
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D. Summary  

The close interaction of fluid flow and soft tissues in the biological systems 

makes the study of solid-fluid interaction a critical component in understanding the 

behavior of soft tissues. Studies of the fluid-structure interaction in biomechanics have 

mostly relied on the use of iterative solutions of the solid and fluid phases. These 

methods require multiple iterations due to the coupling of the fluid and solid phases. A 

new tissue-fluid interface model using biphasic representation of the fluid and tissue is 

developed in this chapter. The computational methodology does not require the 

prescription of additional boundary conditions or interface elements. Conservation 

requirements of mass, momentum, and energy are satisfied across the interelement 

boundary. The finite element implementation of the model is carried out and verified 

with standard problem of fluid flow over a porous medium and is used in the study of 

blood flow through an artery.  

Mathematical modeling of blood flow-arterial wall systems is difficult as it 

involves large wall deformations, pulsative flow behavior and fluid structure 

interaction. To simplify the analysis in this work, the flow is assumed to be of steady 

state and the heterogeneity of the blood was also neglected. The material properties of 

the wall were considered as linearly elastic even though the vessel wall should be 

multilayered, orthotropic and non-uniform in nature. The effect of the permeability of 

arterial wall on the filtration velocity, which is a forerunner to atherosclerosis, is also 

studied in this work. 
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The tissue-fluid model is also implemented to study the blood flow through a 

constricted artery. From the analysis it is seen that considerable negative pressure, 

negative displacement and flow separation occurs at downstream region of the stenosis. 

These observed characteristics have a direct relation to the behavior of the plaque, and 

ultimately causes the plaque cap to rupture leading to arterial blockage.  The study on 

the stenosis effect of the arterial wall was carried out on a simplified model of the wall, 

which did not consider the nonlinear material properties of the solid, and also the 

anatomically critical components of endothelial layer and IEL. But these 

approximations nevertheless does not reduce the impact of this research work in 

obtaining a computationally inexpensive and accurate model, capable of obtaining the 

flow patterns, pressure on the wall and wall deformations so critical in vascular 

angiogenesis. It is clearly evident from the analysis that the algorithm developed in this 

work would greatly enhance the study of blood flow through the blood vessels and 

helps in a better understanding of artery diseases. The developed finite element 

computational approach could also be extended in understanding fluid and solid tissue 

interactions, like vascular tumor interactions as well as in fields other than 

mechanobiology.  
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4  CHAPTER IV  

COMPUTATIONAL MODELING OF CANCER CELLS AND TUMOR TISSUES 

 

A. Introduction  

Cancer, which can develop from cells of virtually all types of tissue, is one of the 

leading causes of premature death in the western world. A recent release from the 

World Health Organization (WHO) shows that malignant tumors were responsible for 

12% of nearly 56 million deaths from all causes worldwide in the year 2000. It also 

predicts that the cancer rates will increase by 50% and will emerge as a major public 

health problem. The alarming rate of contracting cancer has caused a great deal of 

research activities in the identification and treatment of cancer. Although research on 

cancer in the medical field is predominantly experimental, theoretical and 

computational modeling research into the biomechanics and biophysics of cancer can 

contribute significantly towards the understanding of cancer. Through an effective 

correlation between the modeling and experimental studies, various interactions 

occurring in a cancer tissue can be used for the development of a comprehensive model. 

Also, any mathematical/mechanistic model of tumor will increase the pace of the 

research by cutting down on the experimental requirements. 

Cancer is a multistep phenomenon in which “normal” healthy cells are 

converted to abnormal cells that can multiply uncontrollably. Cancer develops due to 

the damage of genetic material in a cell and further its accumulation over a period of 

time either due to biological factors or environmental factors. Genetically three factors 
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are responsible for the formation of tumors: a) Presence of cancer genes – responsible 

for cell multiplication (oncogenes), b) Absence of tumor suppressor genes, c) Inability to 

repair damaged genes. Along with these genetic factors a series of other chemical and 

biological events, leads to the formation of cancerous cell in a healthy tissue (Figure 4. 

1).  
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Figure 4.1. Flow chart of oncogenesis.  

 
The uncontrollable growth of cancerous cells leads to an abnormal mass of new 

tissue defined as tumor. In the early stages of tumor (avascular tumor), nourishment to 

the cells is obtained from surrounding healthy tissues primarily through diffusion. As 

the nutrients diffuse through the tumor they get absorbed by the tumor cells causing a 

deficiency at the center of tumor tissue. As the tumor grows, inner cells get increasingly 

deprived of nutrients and oxygen ultimately leading to cell death. At this stage, there 
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are two distinct regions in the tumor tissue, an inner necrotic core consisting of dead 

cells, and an outer rim of proliferating tumor cells. As tumor grows, it induces stress on 

surrounding healthy tissues. At this stage, tumor is normally benign and has a low 

probability of recurrence after treatment. 

The enzymatic dissolution of dead tumor cells releases angiogenic growth 

factors in the tumor tissue. The growth factors diffuse from the center of the tumor to 

the edges, finally reaching surrounding blood vessels. Through a series of physiological 

processes new blood vessels, which supply nutrients to tumor tissue, are developed. 

This process is called tumor angiogenesis.  With no limitation on the supply of nutrients, 

tumor tissues grow profusely leading to the metastases stage. In the primary metastases 

stage, as shown in Figure 4.2, the tumor invades the surrounding tissues by breaking 

the tissue membrane. The tumor tissue at this stage consists of an increased number of 

dividing cells, with variation in nuclear size and shape, variation in cell size and shape, 

loss of specialized cell features, and loss of normal tissue organization. At an advanced 

stage of metastases, cancer cells enter the vascular and lymphatic system and reach 

different regions of the body. This leads to the formation of secondary tumor at sites far 

from the initial formation region. These tumors are malignant and have a higher 

probability of recurrence even after removal of the tumor. Malignant tissue also has 

distinctive appearance under the microscope that influences the mechanical behavior of 

tumor tissue. Experiments on benign and malignant breast tissues have found that 

cancerous tissues are 10 times stiffer than a normal tissue at 1% strain and more than 70 

times as stiff at 15 %strain  [73]. 
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Figure 4.2. Development of tumor.  

 
B. Cancer Cell Mechanical Properties  

Cytoskeleton apart from providing structural rigidity to a cell, maintain and 

regulate various metabolic activities in a cell and are closely related to its physiological 

response. Pathological condition like cancer, aging and malaria induces considerable 

changes in the structural characteristics of cell and thereby affects its mechanical 

behavior. By measuring the mechanical property of the cell, and by noting the 

difference between a normal cell, a marker for diagnostic purposes could be developed 

[7, 9, 10]. Material properties of cells are derived from experimental data using 

theoretical models, like Hertz model is used for analysis of data from atomic force 

microscopy indentation study. Other widely used experimental techniques in cell 
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mechanics to derive the material properties are optical tweezers, and micropipette 

aspirations [1, 3, 8, 74]   

Experimental studies have shown that the actin structures changes drastically 

from a normal cell to a malignant cancer cell. Two forms of actin filament structures are 

found in a cell: a) actin cortex: which is a network formed beneath the plasma 

membrane and b) stress fibers which are formed at focal adhesion regions, that ends 

either in a different adhesion region or in a network of filaments in the cytoplasm. The 

influence of these structures on the mechanical rigidity of the cell has been extensively 

studied using experimental and simulation procedures. Unfortunately, there is a lack of 

accurate computational model capable of quantifying the change in material property 

obtained from the AFM experiments on cancer cells to its structural makeup.  

Numerous images of cells has revealed the compartmentalized nature of cells [8, 

25, 30], and therefore a multilayered computational model of the cell with properties for 

each region derived through a bottom to top approach, is carried out in this work. The 

model exclusively considers the actin cortex, the cytoplasm and the nucleus. The 

material models for actin cortex and the cytoplasm are developed and the property of 

the nucleus is assumed from literature.  

 

1. Materials and methods  

Analysis of experimental data from atomic force microscopy should be based on 

a computational model which accurately considers the known cellular material 

properties. Previous works on continuum based constitutive modeling of cell for 
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analysis of AFM data uses a homogenous isotropic model of the cytoplasm so as to 

reduce the number of unknown material parameters [30]. Such simplifications of 

material properties limit the applicability of these models in understanding the effects 

of pathological conditions like cancer. The effect of cancer is localized and its effect is 

primarily felt on the disruption of actin structures [75]. Experimental evidence also 

suggests that corresponding material stiffness of cell changes with cancer.  

Previous computational models of cells are incapable of connecting the 

physiological changes in a cell due to cancer with its mechanical property [30]. Thus a 

new mathematical model, based on structural micro-constituents of cell is developed in 

this work. The material model is developed so as to be capable of incorporating large 

deformations suffered during AFM and also capable of considering the alteration in 

mechanical properties of cell with pathological conditions.  

This work is based on the assumption that actin cytoskeleton suffers the 

maximum alteration, compared to other cytoskeletal filaments, in the event of cancer 

attack [76]. Actin filament forms two primary structures of actin cortex and stress fibers 

in the cytoplasm. These changes in these structures due to cancer affect the mechanical 

property of the cell. Thus, the material model is developed based on the 

compartmentalized structure of outer actin cortex, inner cytoplasm and nucleus as 

presented in Chapter II. 

Numerical Simulation: The material constitutive model of the cytoplasm is 

implemented in a finite element analysis of AFM, as shown below.  In this work, an 

elastic analysis is considered and it is assumed that only basal stress fibers are formed 
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for benign cells and no stress fibers are considered for malignant cells. The geometric 

and structural makeup of cancer cells is obtained from experiments conducted by Mr. 

Qingsen and Dr. C.T. Lim at National University of Singapore. 

Benign and malignant tumor cell shows distinct morphologies. The benign cells 

having an extended profile, similar to a normal cell which indicates the likelihood of 

formation of stress fibers with good contact with the substrate. Malignant tumor cells 

shows a spherical structure indicating the near absence of stress fibers. The 

corresponding finite element model of the benign and malignant tumor cell, with a 

spherical indenter of 4 microns acting directly above the nucleus is shown in Figure 4.3.  

The nucleus is considered to be of 0.5 microns in diameter for the benign tumor 

and 0.75 microns in diameter for the malignant tumor. Actin cortex is of 0.2 microns 

thickness for a benign tumor and 0.1 microns for the malignant tumor cell. The model is 

discretized using an axisymmetric finite element with the mesh gradually made finer 

towards the area of indentation. A benign tumor-cell finite element model consists of 

2,549 elements and 2,123 nodes while the malignant tumor-cell model is meshed with 

1,278 elements having 956 nodes. The rigid indenter is given a downward displacement 

and the base of cell is constrained in all directions, with symmetry boundary conditions 

along the axis of symmetry. The nucleus is assumed as linear elastic with a Young’s 

modulus of 400 Pa and a Poisson ratio of 0.35 (McGarry et al. [28]). 
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(a)     (b) 

Figure 4.3. Finite element model for the analysis of a) benign and b) malignant tumor 

cell obtained with an indentation using a spherical indenter of 4 microns actin directly 

above the nucleus. 

 
2. Results and discussion  

Numerical simulation of an AFM on a benign and malignant tumor cell with a 

spherical indenter of 4 microns, with the boundary conditions as outlined in the 

previous section is carried out using ABAQUS [41]. The actin cortex and cytoplasm is 

considered as a hyperelastic material and for the ease of modeling a neo-Hookean 

material model is applied. Assuming the filament length and persistence length of actin 

in benign and tumor cells to be a constant, the entire network is assumed to be made of 

crosslinked actin filaments only. Small strain shear modulus is calculated for benign 

tumor cell using polymer physics theories [35]. The decrease in the elastic modulus of 

actin cortex for malignant tumor is then attributed to the actin filament concentration 

alone. Theoretical and experimental studies have shown that decrease in actin filament 

concentration decreases the network elasticity (see Figure 4.4).  
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The material property of nucleus for benign and malignant tumor cell is 

assumed to be same due to the lack of data. Only the geometric effects of nucleus as 

observable in the confocal images of the cell are considered in this work. The material 

properties of actin cortex cytoplasm and nucleus for benign tumor cells are now varied 

to correlate with the force deflection curves obtained from simulation with 

experimentally determined values. The shear modulus of actin cortex, cytoplasm and 

nucleus are determined using a parametric study and the values obtained are 250 Pa 

and 125 Pa, respectively. The volume fraction of stress fibers at the base of cytoplasm is 

assumed to be 0.05%. Along similar lines the material property of the malignant tumor 

cells are also determined but the property of the nucleus is kept the same as that 

derived from the benign tumor. The small strain shear modulus for the actin cortex and 

cytoplasm for the malignant tumor cell is 50 Pa and 50 Pa, respectively. Comparison of 

the material property between malignant and benign tumor cell shows that the 

malignant tumor cell is less stiff at the cortex and the cytoplasm. As we decrease the 

concentration of actin filaments the material property drastically decreases. The same 

behavior is seen in confocal images of cells where the actin filament concentration is 

considerably low for malignant tumor cells. As there is little experimental evidence to 

suggest changes in intermediate filament and microtubule distributions in the 

malignant and benign tumor cell the reduction in material stiffness could wholly be 

attributed to actin filament concentrations [35].  

Finite element analysis of AFM simulation over benign and malignant tumor 

cell is carried out to obtain the force deflection curve. Force deflection curves are 
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obtained by noting the total reaction force acting at the reference point of the rigid 

indenter for an increase in displacement of the indenter. The force deflection curve from 

the numerical simulation and corresponding experimental values is shown in Figure 4.4. 

Figure 4.4a shows the comparison of the curves for benign tumor cell and Figure 4.4b 

shows the corresponding curves for malignant tumor cells. From the figures it is 

evident that the numerical simulation closely matches with the experimental force 

deflection curves. This validates the constitutive modeling approach adopted in this 

work. So, it could be concluded form these results that the change in material property 

of cancerous cell is primarily attributed to the difference in the actin cytoskeleton 

concentration, which has been verified in the confocal images of cancerous cells 

available in literature.  

For the material property, whose force deflection curve matches closely with the 

experimental data, the strain and displacement characteristics are studied. The strain 

distribution of both the normal and malignant cells is shown in Figures 4.5 (a) and (b) 

respectively. From the figures it is evident that the maximum strain occurs on the actin 

cortical layer which is in direct contact with the indenter. The inner cytoplasm and the 

nucleus directly below the indentation also suffer considerable strain and the intensity 

decreases away from the center. The deflection profiles for the benign and malignant 

cancer cells are shown in Figures 4.6 (a) and (b).  
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(b) 

Figure 4.4. Force deflection curve for (a) benign and (b) malignant tumor cell. 
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(a) 

 

 

 

(b) 

Figure 4.5. Strain distribution for AFM indentation simulation for (a) benign and (b) 

malignant tumor cell. 
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(a) 

 

 

(b) 

Figure 4.6. Displacement distribution for AFM indentation simulation for (a) benign 

and (b) malignant tumor cell. 
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C. Constitutive Modeling of Tumor Tissues  

The tumor constitutive models are basically divided into discrete cell based and 

continuum based models. A good number of single cell based models accounting for 

cell characteristics like adhesion, motility and growth as well as excellent reviews on 

them are available in the literature (cellular automaton models, off lattice models [77]). 

In this chapter, the modeling of tumor tissues using continuum based approach is 

presented so that it can be considered in the computational modeling of tumor behavior 

using tools like FEA and computational fluid dynamics. Thus, the primary focus in this 

section is to provide an overview on the constitutive modeling of the tumor tissues in 

the study of general mechanical behavior of tissues as well as in the cancer growth.  

In the macroscopic modeling of tumors, continuum assumption holds wherein 

representative volume element of the tumor contains sufficiently large number of cells 

and is continuous in space. The representative volume element (RVE) properties at any 

point in the tumor are considered as an average of properties over the local region 

centered at this point. The elastic stresses at any point in tumor is regarded as the 

average force per unit area between adjoining blocks of the tumor rather than as 

quantities determined by individual cell to cell interactions [78]. Based on the 

mechanics adopted in the modeling of tumor tissues, the constitutive models fall into 

two main categories: single phase models and multiphase models.  
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1. Single phase models  

Single phase models, even though does not represent the exact physiology of the 

tumor tissues, are relatively easier to formulate compared to a multiphase material 

model. One of the simplest forms of liquid tumor model is the ideal fluid model given 

by 

p= −σ I   (4.1) 

where,σ is the stress and p is the pressure. An ideal fluid is isotropic.  To capture the 

time dependent behavior of the tumor, various researchers have modeled tumor as 

viscous and incompressible material [79, 80]. An isotropic incompressible viscous fluid 

is represented as [53] 

2σ I Dp μ= − +   (4.2) 

where μ  is the viscosity of the fluid, and D is the rate of deformation tensor.  

Advantage of using liquid models over the solid models is that they work in an 

Eulerian framework, which will be helpful in considering the material before growth 

and deformation, and also to define the deformation with respect to a reference or a 

natural configuration. At the same time liquid models cannot consider the residual 

stresses which are significant in cases like tumor induced vascular collapse. To model 

this phenomenon, a solid material model would be more appropriate.  

Solid tumor models ranges from simple linear elastic material to hyperelastic 

and viscoelastic models [78, 81-83]. A material is said to be hyperelastic if there exists a 
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free energy function ( )ψ ψ= F such that the following equation holds for compressible 

elastic material 

T( ) ψρ ∂
=

∂
σ F F

F
  (4.3) 

where, ρ is the material density, σ is the stress tensor, and F is the deformation 

gradient tensor. For an incompressible material, which does not show appreciable 

change in volume with deformation, the following relationship holds [84] 

T( ) p ψρ ∂
= − +

∂
σ F I F

F
  (4.4) 

Different strain energies can be assigned to different materials, and are generally 

represented in terms of deformation gradient tensor F or left Cauchy-Green Tensor B.   

A free energy function, assumed to be a linear function of the principal 

invariants of B, is represented as [53] 

( ) ( )1 23 3B BC I C IIψ = − + −   (4.5) 

where C1 and C2 are constants, and IB and IIB are the principal invariants of B. The stress 

tensor for the above strain energy function is given by 

1p α β −= − + +σ I B B   (4.6) 

where α and β are material parameters obtained from experiments.  The above 

material representation is called Mooney-Rivlin material. Neo-Hookean materials have 

the constitutive equation defined by the equation 
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12p Cρ= − +σ I B   (4.7) 

Other hyperelastic models are also considered by authors in modeling tumor behavior 

[85]. 

It was proposed by Greenspan [85] that benign tumors could be modeled using 

neo-Hookean material or Mooney-Rivlin materials models while models for the 

malignant tumors should consider the invasive and metastatic characteristics and an 

Ogden model is appropriate. Liu et al. [86] also used a hyperelastic material based on 

Arruda-Boyce material model to capture the nonlinear behavior of pathological breast 

tissues. The parameters of the model were obtained by correlating force-deflection 

curves from indentation tests. Experimental works to obtain the mechanical property 

on the tumor breast tissues was also carried out in [87-89]. 

In Jones et al. [78], tumor is assumed to behave as a solid incompressible 

isotropic elastic material. By neglecting the body forces and assuming the forces acting 

on the tumor is in balance at all times, the following equation for isotropic growth 

strain is derived. 

( ) ( )( )1 1 1 3 Tr
2 3 2

T g
E

δ δ∇ +∇ = + −u u σ σ  (4.8) 

where the left-hand side of the above equation is the strain tensor ε , the second term 

being the growth and third the stress response, g the growth factor, E the elastic 

modulus, and is applicable such that the change in g is sufficiently small and that the 

strain and stress tensors represent infinitesimal changes.  
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The growth factor with time is introduced using a total time derivative where 

the constitutive law to describe a linearly elastic tumor subjected to continuous volume 

growth is obtained as 

( ) ( ) ( )( ) ( )1 1 1. 3 Tr 3 . .
2 3 2

v v v σ σ σ-σT D
E Dt

δ δ ω ω⎛ ⎞∇ +∇ = ∇ + − +⎜ ⎟
⎝ ⎠

 (4.9) 

where v and ω  are the velocity vector and vorticity tensor, respectively.  

The variation in mechanical property of tumor with time was captured in a time 

dependent strain energy formulation by Greenspan [85].  The benign and malignant 

tumors were modeled using different strain energy functions. The degree of 

malignancy/differentiation of the tumor was obtained through the variation of the 

strain energy function with time. The strain energy with time varying parameters is 

given as 

( ) ( )
( )

( ) ( ) ( ){ }1 2 3, , , 3r r rt t tr
r r

r r

t
W t

t
α α αμ

λ μ α λ λ λ
α

= + + −∑  (4.10) 

As the tumor changes from a well differentiated tumor to a poorly differentiated tumor, 

the strain energy changes from ( , , )r rW λ μ α  to * * * *( , , )r rW λ μ α . In this work, the strain 

energy function was further applied to model the cells causing different strain energy 

for normal cells and tumor cells.   

Chaplain et al [81] developed a mathematical model for the growth of a solid 

tumor using membrane and thick shell theory. The material composition of the model 

was obtained through the strain-energy function and the analysis was carried out using 

nonlinear elasticity theory. In this work, the growing tumor is treated as an inflating 
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balloon, wherein the thin outer layer of cells is the membrane of the balloon 

characterized by a strain energy function. The internal pressure of the necrotic core is 

modeled as an inflationary pressure inside the balloon and the equilibrium equations 

from the membrane theory reproduces the pressure/surface tension balance on the 

boundary. Works on tumor modeling and analysis was also carried out in [73, 90-92]. 

A number of solid constitutive models have been implemented to capture the 

behavior of tumor tissues. The simplistic isotropic linear elastic representation is far 

from accurate in modeling biological materials which are inherently heterogeneous and 

nonlinear. Nonlinear material models like Mooney-Rivlin models, neo-Hookean models 

of tumor tissue have been implemented to capture the nonlinearity in the system. The 

material parameters of the hyperelastic models are generally obtained by fitting curves 

to experimental data [82]. Apart from the nonlinearity of the system, the heterogeneous 

nature of tumor tissues should also be considered in single phase modeling. Early stage 

tumors consist of an outer proliferating region of active cells, the inner necrotic core, 

and the intermediate region of active and dead cells. Derivation of material properties 

of the individual layers of tumor from mechanical testing is near impossible. The other 

option is to derive the mechanical property from mathematical models by incorporating 

the structural framework of the tumor regions, similar to the one carried out for cell 

modeling [84]. This requires a multiscale modeling procedure by first identifying the 

material properties of sub-cellular constituents, which change with the pathology, to 

obtain the property of the cell. With the identification of material property of the cell, 

the material properties of different regions of tumor can be developed.  
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2. Multiphase models  

The theory of mixtures and poroelasticity are widely used multiphase models in 

the modeling of tumors. In a strict sense, poroelasticity could be considered as a 

subsidiary of the theory of mixtures model. The basic assumption of the modeling is 

that the tissue is considered as being an elastic medium having a localized flow and 

fluid injection and absorption points. The solid phase consists of the cells, collagen and 

proteoglycans of the extracellular matrix while the liquid phase consists of the free 

flowing fluid of the communicating pore space [93]. Through the derivation of 

governing equations, suitable material models are developed. 

Please et al. [94] proposed one of the first multiphase liquid models of tumor in 

the study of tumor growth. In this work, the tumor was assumed to be composed of 

two phases of fluid: an inviscid tumor cell and the extracellular water. The force balance 

on the water is obtained by considering the extracellular water to flow between the cells 

of the tumor body, and the cell mass acting as the porous media. Breward et al. [95] 

used similar approach in modeling the tumor as a two-phase model, where the aqueous 

phase was inviscid and the cell was considered as a viscous material with the viscosity 

depended on the degree of differentiation of the cancerous cell. Using the constitutive 

relation derived through this method, the tumor growth was studied in a 1-D system.  

The tumor growth in the vascular stage is characterized by the presence of 

vascular supply chains supporting the cancerous cells. These leaky blood vessels 

increase the fluid pressure inside the tumor tissue which affects the solid cells in tumor. 

This causes a strong solid-fluid coupling and attempts are made to model the tumor 
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using the multiphase continuum models. Ambrosi and Mollica [96] used a theory of 

mixtures model to develop the constitutive material model of tumor growth. The tumor 

is considered as a hyperelastic material that is capable of growing by assuming the 

characteristic time of rate dependent behavior is less than the characteristic time of 

growth. Specific constitutive assumption was used to model the tumor as a 

compressible nonlinearly elastic material from the generalized strain energy function. A 

general Blatz-Ko type strain energy function given as  

( ) ( )2 2
12 23 -1 3 -1

2 2
III III III
III

q qv fvfW
q q

−⎡ ⎤ ⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞= − − + − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦ ⎣ ⎦
 (4.11) 

where, v q and f are material constants obtained from experiments with the following 

restrictions: 0,0 1, 0v f q> < ≤ <  and 1f =  is used, I, II, III are the first second and 

third invariants of deformation tensor. 

Ambrosi and Preziosi [79] used a multiphase model for the multi-cell spheroids 

having two constituents: a liquid phase filling the extracellular space and a solid 

skeleton constituted by an ensemble of sticky cells each of which is considered as an 

elastic membrane filled by an organic fluid. To model the tumor growth, the ensemble 

of cell is assumed to be growing through the permeation of the organic fluid through 

the cell membrane. The porous material is assumed to be deformable and its 

constituents are capable of undergoing relative motion. The constitutive equation for 

the mixture, considering the cell interactions and no memory effects is given as 
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( ) ( ) ( ) ( )( )T.T v I v vm T T T T T T T TP φ λ φ μ φ⎡ ⎤= − + − ∇ + ∇ + ∇⎣ ⎦∑  (4.12) 

where ∑ denotes the elastic cellular interactions, Tμ represents the shear resistance 

and Tφ is the density of cells. An extension along these lines was carried out by Byrne 

and Preziosi [97].Roose et al. [98], studied the stress generated by the tumor growth 

through a linear poroelastic model having a solid phase made up by the cells and the 

extracellular matrix by the fluid phase. The relation between the stress and strain on the 

cell/matrix phase of the tissue was given as 

22
3ij ij kk ij ij ijG K G p Kσ ε δ δ ηδ⎛ ⎞= + − − −⎜ ⎟

⎝ ⎠
 (4.13) 

where 
1
2

ji
ij

j i

uu
x x

ε
⎛ ⎞∂∂

= +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
 is the strain, K is the bulk modulus of the tissue, G the shear 

modulus and η is the volume of new tissue created per unit volume of tissue.  

Byrne el at. [99] considered the tumor as a two-phase component where the cell 

and the water phases were treated as incompressible fluids. It is assumed that there are 

no voids or excluded volume in the tissue. The constitutive model is developed by 

treating the cell and water phases as incompressible fluids with the cell treated as a 

viscous fluid and the water as an inviscid fluid satisfying the following stress equations 

as  
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σ Iw wp= −   (4.14) 

( ) ( )v v .vσ I IT
c c c c c c cp μ λ= − + ∇ +∇ + ∇   (4.15) 

where μ and λ are the shear and bulk viscosity coefficients of the cell phase. The model 

was used to study the tumor growth by treating it as a moving boundary problem. 

Byrne et al [100] developed a two phase model of an avascular tumor consisting 

of a solid cellular phase and a liquid phase. Using the theory of mixtures, constitutive 

equations were incorporated with the governing equations of mass and momentum 

balances to calculate the stresses within the tumor. All the cells in this work were 

considered as solid skeleton assumed as a homogenous material, which is bathed in an 

organic liquid containing diffusible nutrients and growth factors. Through this model, 

the effect of proliferation of the cell due to the mechanical stresses was obtained in this 

work. Byrne and Preziosi [100] extended the previous work to the modeling of the solid 

tumor growth using the theory of mixtures in the modeling of avascular solid tumor.  

Lubkin and Jackson [101] studied the capsule formation in tumors by 

considering a mechanical description of the tumor growth using a multiphase material 

model. A three-phase model was considered in this analysis, with the liquid 

extracellular phase and the fluid phase of normal cells and fibers and that of the tumor 

cells and fibers. Stokes fluid model is invoked for modeling the aqueous phase and the 

cell-fiber phase on the time scale of tumor growth. Sarntinoranont et al. [93] used a 

poroelastic model as formulated by Rice and Cleary [102] in the application of solid and 

rock mechanics. The growth strain model in a tumor tissue assumes the tissue to grow 

under zero stress condition. The growth model was based on isothermal, equilibrium of 
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pore fluid pressure, small incremental deformations, isotropic material properties and 

the constituents were assumed to be incompressible. The interstitial fluid pressure was 

modeled based on two mechanisms of equilibration: reversal of low from the interstitial 

space back into the blood vessels and exudation of fluid into surrounding normal tissue. 

Analysis was carried out for the growth of a spherical tumor with a moving boundary.  

Poroelastic models have been used to predict stress as well as interstitial pressure in 

tumor and surrounding host tissues [103-106]. A solid multiphase model of the growing 

with a linear elastic solid and an inviscid fluid assumption was developed by Araujo 

and McElwain [107]. Araujo and McElwain [83] also considered the extended version of 

the previous model to account the residual stress evolution in a growing multicell 

spheroid system.  

 

D. Examples of Tumor Modeling 

Computational models are being implemented for the diagnosis of tumor tissue 

in breast, spine and brain. Diagnosis and identification of most types of cancer occurs 

after the second stage of tumor growth, when a significant number of cancerous cells 

are formed within a healthy tissue. The tumor tissue, which has distinct material and 

structural property over a healthy tissue, makes it easy for real time diagnosis of tumor. 

Tools like finite element methods are integrated with techniques like MRI and 

elastography [108] to develop powerful diagnostic tools. The models are capable of 

predicting the behavior of tumor tissue when embedded in healthy tissue and to 

identify the size and location of tumor. Some of applications of finite element models 
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for tumor diagnosis along with the material model and salient results are provided in 

Table 4.1. 

 

Table 4.1. Finite element modeling of breast, spine and brain tumor, with the material 

models and results.  

Tumor Material Model Results 

Finite element study on Breast tumor 

Kerdok et al  [87] Nonlinear hyperelastic (Arruda-

Boyce) 

Material parameters are obtained 

through the correlation of 

simulation with experimental 

results 

Jordan et al  [109] Nonlinear visco-elastic 

(Combined hyperelastic 8-chain 

model and porous viscous 

model) 

Solution of inverse problem for 

determination of material 

parameters 

Azar et al [90] Nonlinear material  Obtain the nonlinear behavior of 

the breast tissues to identify 

tumor location 

Plewes et al [91] Linear elastic  Identification of material 

modulus with experiment 

through an iterative procedure 

Samani and Plewes [82] Nonlinear hyperelastic  Correlation with experimental 

results to obtain the material 

properties of the breast tissues 

Finite element study on Spine Tumor 

Whyne et al  [110] Poroelastic  Identifying relative risk of burst 

fracture initiation  

Tschirhart et al [92] Nonlinear hyperelastic  Effect of shape and location of 

tumor on burst fracture risk and 

displacement of spine 

Finite element study on Brain Tumor 

Kyriacou et al [111] Nonlinear hyperelastic  Studied the deformations on 

brain tissue due to tumor growth 
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Macroscopic level models are also handy in treatment plans like surgical 

removal, and chemotherapy. A simulation of tumor and surrounding tissue behavior 

during the surgery would make it easy for the surgery planning and removal of tumor 

tissue. Chemotherapy and medicinal treatment occurs through diffusion and 

convection processes. A macroscopic model of tumor showing the uptake of medicines 

and its concentration levels at different stages helps in the treatment of tumor. 

 

E. Summary  

Through a parametric study of the material properties of actin, cytoplasm and 

nucleus the elastic modulus of the different regions are determined from this study. For 

the first time a numerical study is able to correlate the concentration of actin filament 

with the material property, and ultimately to the experimentally determined force 

deflection curves from an AFM. The limitation of AFM in the diagnosis of cancer cells, 

imposed by the assumptions of Hertz model is overcome through this work. The close 

interaction of computational modeling process with the experimental procedure would 

be immensely helpful in the extensive application of AFM in the field of cancer 

diagnosis. A review of the mechanical models of tumor tissues is also provided in this 

chapter. From the review on tumor tissue models it could be concluded that the 

biphasic models are best suited for the analysis of tumor tissues for growth and in 

pharmaceutical applications.  
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5  CHAPTER V  

MASS TRANSFER IN ARTERIES AND BIOREACTORS USING FLUID-

BIPHASIC INTERFACE MODELS 

 

A. Introduction  

Studies on the transfer of solutes through the fluid and its uptake by tissues are 

critical in understanding physiological processes like initiation and development of 

artery diseases like atherosclerosis and in tissue engineering. Solute transfer is 

determined by the diffusion and convection processes and is mathematically 

represented by the mass transport equations. To simulate the uptake of solute in the 

tissue from the fluid, mass transport equations should be solved numerically in the 

tissue and fluid domain. Mathematically this is difficult as proper matching boundary 

conditions satisfying the continuity of mass, energy and momentum should be 

developed. Implementation of these boundary conditions in a numerical algorithm 

posses significant difficulties in modeling the interface region and in correlating the 

variables. These difficulties have lead to the development of computational models 

solving mass transport equations in the individual domains. The influence of other 

domains is inbuilt into the model through assumptions, which may not be always 

accurate.   

In this chapter, the fluid-tissue finite element formulation described in Chapter 

III is extended to incorporate mass transfer phenomenon. Through the identification of 

suitable boundary conditions, solute transport in the blood-arterial wall transport and 
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in a bioreactor is simulated. The chapter is outlined as follows: A review of 

mathematical representation of mass transport phenomenon and its finite element 

implementation is presented in Section B. The application of the finite element model in 

the transfer of LDL from the blood to the arterial wall and the glucose transfer in a 

bioreactor is presented in Section C and Section D respectively, followed by a summary 

in Section E. 

 

B. Finite Element Formulation  

The mass transport within the biphasic material is given by the following 

convective-diffusion equation 

( ). v  f
C C D C q
t

∂
+∇ − ∇ =

∂
 in Ω  (5.1) 

where, C is the concentration of the solute in the medium, v f is the velocity of the fluid 

phase, q is the reaction rate that considers the generation, consumption or degradation 

of the solute mass, D is the diffusion coefficient. Diffusion coefficient is dependent on 

the molecular size, the solvent and temperature. As the molecular size increases the 

diffusion coefficient decreases which is a factor critical in the design of pharmaceuticals.  

In convective transfer, the effect of molecular size is not prominent. So, 

convection plays a major role in the transfer of larger molecules through the system. In 

a biological system, the interstitial flows are quite small and the convection portion of 

the equation is neglected. However, the mass transfer occurring in an artery and in 

bioreactors is predominantly through convection transfer and cannot be neglected. 
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Finite element analysis of the governing differential equation (5.1) is carried out by 

assuming the approximation of the nutrient concentration over a typical element eΩ  as  

1
( , )

N
e e e

j j
j

C C x yψ
=

=∑   (5.2) 

where, e
jC is the concentration at the nodes of the finite element eΩ  and e

jψ  are the 

Lagrange interpolation functions over the element. A weighted integral form of the 

diffusion-convection equation is obtained by multiplying equation (5.1) by the weight 

function wδ  over the element and is given as 

( ). fw C D C q dδ
Ω

⎡ ⎤∇ − ∇ − Ω⎣ ⎦∫ v .  (5.3) 

The weight function is selected as e
jψ  and by trading the differentiation from C 

to wδ using integration by parts, the weak form is derived. By the identification of 

primary and secondary boundary conditions the following finite element model for the 

convection-diffusion equation is derived [39, 40] as  

{ } { }⎡ ⎤ =⎣ ⎦
e e eT C Q   (5.4) 

where  

  
e e

e e

j je x yi i i i
ij i f f

e
ij i i n

T v v dxdy D dxdy
x y x x y y

Q q dxdy q ds

ψ ψψ ψ ψ ψψ

ψ ψ
Ω Ω

Ω Γ

∂ ∂⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂
= + + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

= +

∫ ∫

∫ ∫
 (5.5) 

and x
fv and y

fv are the fluid velocities in the x and y directions, respectively. 
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The finite element model developed for mass transfer is then coupled with the 

biphasic finite element model presented in Chapter III. The fluid velocities are 

calculated from the biphasic model and incorporated into equation (5.5). The proposed 

formulation leads to five degrees of freedom per node, and the solute velocity is 

assumed to be the same as fluid velocity. To model fluid and biphasic interface for 

solute transfer, the interface between fluid and biphasic region falls along an 

interelement boundary. At the interface, continuity of mass is automatically satisfied as 

there is a continuity of fluid velocity and mass addition or deletion is not considered at 

the boundary interface.  

 

C. Low Density Lipoprotein (LDL) Transfer in Artery Wall  

1. Pathophysiology  

Atherosclerosis is a pathogenic condition of the cardiovascular system affecting 

medium to large arteries [65]. Experimental and theoretical studies have conclusively 

proven that the transfer of atherogenic substances (like LDL) from the blood to the 

artery wall is a critical factor involved in the development of atherosclerosis. The 

arterial wall consists of primarily three layers: intima, media, and adventitia. The intima 

is the innermost region of the arterial wall, which comes in contact with the blood flow. 

It consists of a single layer of endothelial cells which acts as the primary barrier to mass 

influx from the blood.  

Computational modeling of LDL uptake by the arterial wall requires 

mathematical models for the transfer of solutes in the blood, transfer of LDL from blood 
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into the wall through blood-wall interface, and diffusion of molecules in different 

regions of the arterial wall. Most of the previous works on LDL transport in an artery 

have concentrated on solute dynamics either in the fluid phase or in the tissue phase. 

Models implemented in the study of LDL transport through the artery have been 

generalized into four major categories: a) Fluid models in which the artery wall is 

substituted by appropriate boundary conditions, b) lumen-wall models, considering an 

interface of solid and fluid domains and c) arterial wall models, where the 

concentration at the lumen is considered using appropriate boundary conditions.  

Lumen-wall interface regions are modeled using additional boundary 

conditions connecting the momentum of the fluid and tissue phase. Its implementation 

in a numerical simulation like finite element method has relied on the use of interface 

elements connecting fluid and tissue domains. This presented significant computational 

challenges and limited the usage of numerical methods in solving mass transfer from 

blood into the artery wall. In this work, a new computational model for the mass 

transfer in the blood and arterial wall is developed using the fluid-tissue biphasic 

interface model. The model assumes that the solid volume fraction in the tissue tends to 

zero near the interface. The mass transfer phenomenon is included in the mathematical 

model using the convection-diffusion equation. 

 

2. Computational domain and boundary conditions  

The transfer of solutes in the blood and its uptake by arterial systems involves 

parameters like diffusivity of molecules in the fluid, permeability of arterial wall, 
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concentration of the solutes, flow parameters, etc. The large number of variables, its 

proper identification and control to obtain valid data represents significant challenges 

in numerical analysis of solute transfer. To simplify the analysis, a simple geometric 

representation of blood flow through lumen is considered. 

A straight tube artery with a multilayered arterial wall without the outer 

adventitia is modeled in this study. The lumen is assumed to be 0.0031 m in radius with 

the length assumed to be 0.083 m. The thin glycocalyx region of the artery is not 

modeled and the blood flowing through the lumen is in direct contact with the 

endothelial region. A fully developed flow is considered at the entrance with a mean 

velocity of 0.17 m/s. The domain is meshed using 4-node quadrilateral finite elements 

with the blood-wall interface lying along an interelement boundary region. Analysis is 

carried out to study the deposition of LDL in the artery wall and also the influence of 

various physiological factors in the LDL distribution. The permeability and porosity of 

the endothelial region are the two main factors that would be considered in this study. 

The domain is meshed using a 100×50 mesh of four-node quadrilateral finite elements 

with five degrees of freedom per node.  

A fully developed velocity profile is provided at the inlet of the lumen with a 

mean velocity of 24 cm/s, and at the exit of the lumen a free flowing condition is 

prescribed. At the centre of the lumen symmetry boundary conditions are prescribed. 

At the inlet and exit of the artery wall zero axial velocity is provided. All the solid 

degrees of freedom are constrained in the fluid phase as well as the tissue domain. A 

constant LDL concentration at the inlet is prescribed, with zero transverse gradients at 



 

 

103

the line of symmetry, with the continuity conditions at the interface automatically 

satisfied.  

 

3. Results and discussion  

The mass transfer in a blood-arterial wall for a straight arterial section is carried 

out using the developed biphasic tissue finite element model. The variation of the LDL 

concentrations in the lumen and in the arterial wall is shown in Figure 5.1. From the 

figure it is evident that the concentration remains the same in the lumen and there is a 

sharp decrease in the arterial wall. This shows that the convection effect on the LDL 

transport is prominent in the lumen. To show the decrease in the lumen, the 

concentration profile in the artery wall is magnified and is shown in Figure 5.2. The 

decrease in the artery wall LDL concentration is due to the endothelial resistance to 

LDL transport. At the intima and media the concentration remains constant, with a 

slight decrease occurring at the internal elastic lamina region. In the media 

consumption of LDL molecules occurs, which depletes the amount of molecule 

concentration. Figure 5.3 shows a nonlinear variation of the concentration in the lumen 

due to the uptake of molecules by the media.  
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Figure 5.1. Concentration profile in lumen and artery wall. 
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Figure 5.2. Concentration profile in artery wall. 
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Figure 5.3. Concentration profile in media. 

 
As indicated earlier, the endothelial layer forms the major barrier in restricting 

the entry of lipid molecules into the arterial wall. With a change in the material 

properties of the endothelial layer an increase in the uptake of LDL in the arterial walls 

has been reported by experimental analysis. The primary material parameters that 

determine the uptake of lipid molecules are the permeability and fluid phase volume 

fraction of the endothelial region.  

The permeability of the endothelial layers is changed by factors of 10 and 100 

times from the previous analysis to analyze its influence in LDL concentration in the 

artery. The variation of LDL concentration in the arterial wall which changes in the 

endothelial permeability is shown in Figure 5.4. It is evident from the figure that as the 

permeability increases the concentration of LDL in the artery wall also increases.  
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Figure 5.4. Concentration profile for different values of the endothelial permeability. 
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Figure 5.5. Concentration profile for varying solid phase volume fractions of endothelial 

layer. 
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The effect of volume fraction of the solid phase on LDL concentration for 

different values of volume fraction is studied next. Figure 5.5 shows that for a decrease 

in solid phase volume fraction of endothelial layer increases the arterial wall LDL 

concentration. For the range of values selected for the analysis, solid volume fraction of 

0.9 shows maximum concentration in the artery wall. This shows that the transfer of 

LDL molecules in the arterial wall is primarily through the fluid convection process. 

 
 

D. Nutrient Transport in Bioreactors  

1. Tissue engineering  

Damage and loss of tissue poses significant health hazard to humans. 

Substitution of tissues using artificial implants has limitations due to the risk of 

infections, rejection of the tissues, or limited time span. Of late, tissue engineered 

substitute is an emerging area utilized for the restoration of damaged tissues. Tissue 

engineering is defined as the application of principles and methods of engineering and 

life sciences for the development of biological substitutes, to restore maintain or 

improve tissue function [112]. In-vitro development of 3-D tissue substitutes are carried 

out by attaching the cells to a porous scaffold and encasing the tissue in a closed 

environment that is most suitable for growth. Tissue engineering of substitutes for 

cartilage, bones, liver and skin have been carried out by many researchers [113-115]. At 

present, grafts for skin and cartilage are the only lab grown tissues available for clinical 

purposes. The major parameters to be considered in the growth of tissues are the 

biological factors like type of cell, its functionality, mechanical conditioning and the 
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optimality of temperature and pressure. The major parameters in tissue growth are 

constantly controlled and monitored in an artificial environment called bioreactor. 

Bioreactors are devices that provide tightly controlled environmental and 

operating conditions for the development of the tissue substitutes [27]. In tissue 

engineering, bioreactors can be applied either for the conditioning the cells for 

transplantation, or to grow 3-D tissues prior to human implantation or as organ 

supporting devices [116]. In this section, we analyze the effects of nutrient distributions 

required for the growth of tissues as a replacement for human tissues.  

Tissues are formed from groups of cells by the action of external stimuli in the 

form of mechanical, electrical, or chemical impulses. In the absence of external stimuli 

tissue the cells become disorganized finally leading to cell death. Bioreactors apart from 

providing the environment for growth of the cells are also required to maintain shape 

and provide impulses in the form of mechanical conditioning or chemical signals for 

the generation of complex tissues from individual cells. The cells are initially attached 

onto a substrate through a process called ‘seeding’.  

Scaffolds are biodegradable porous materials that provide mechanical support 

to the cells and shape to the final tissue substitute [117]. The mechanical properties of 

scaffolds like stiffness, porosity, permeability affect the tissue enhancement and the 

delivery of the final end product. Seeded scaffolds are then embedded in a growth 

medium inside the bioreactor culture chamber. Based on the design of culture chamber, 

bioreactors can be broadly classified into two types a) Rotating bioreactors, where the 

culture medium is constantly in rotation and b) Non-rotating bioreactors, where the 
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culture medium is stationary. The non-rotating bioreactors are generally advantageous 

for the development of complex shaped tissue substitutes.  

Apart from providing ideal conditions for the growth of the cells into tissue, the 

bioreactors also provide growth factors like nutrients and also remove waste materials 

from the culture chamber. Nutrient rich fluid is passed through the culture medium 

through special passages called capillaries, and through a process of convection and 

diffusion, the nutrients reach the cells in the extra capillary space (ECS). Waste 

materials diffuse from the ECS into the capillaries and are removed from the culture 

chamber. A major limitation in the working of bioreactor is the transfer of the nutrients 

from the fluid flow to the extra cellular space. In in-vivo tissue blood supplies the 

nourishment and removes the waste materials. In a bioreactor the absence of blood 

supply system means that the nourishments supplied by the capillaries have to reach 

the cells through diffusion and convection from the boundaries of the scaffolds. At the 

cell surface the nutrients are absorbed by the cells, and as the consumption of nutrients 

becomes more than the supply, the surface concentration will fall. In such a situation, 

the cells beyond the scaffold boundaries have a non-homogenous distribution of 

nutrients. To avoid the nonhomogenous distribution of nutrients in the growth process, 

the size of artificial tissues is limited, which makes it clinically unusable. Thus, to make 

the scaffold of size suitable for clinical usage, the nonhomogenous distribution of 

nutrients is avoided by suitably designing the bioreactor parameters like porosity, 

stiffness and permeability of the scaffolds along with the flow speed and concentration 

of nutrients supplied. 



 

 

110

Hollow fiber membrane bioreactor (HFMB) has been widely used for the tissue 

engineering of bones, cartilages because of their excellent nutrient transfer properties 

[118]. The HFMB consists of porous hollow fiber bundle enclosed in a culture reactor 

(see Figure 5.6). Fluid flowing through the capillaries supplies the nutrients into the 

culture chamber, which diffuses out of the lumen through the fiber membrane into the 

extra cellular space. The nutrients are transferred in the capillaries through the 

convective process, while diffusion dominates the transfer of nutrients in the scaffold.  

The diffusion of molecules from the lumen (fluid flowing region at the center) to the 

extra cellular space is dependent on the flow rate of the fluid, the porosity, and other 

mechanical properties of the fiber.  

Of all the parameters involved in the design of bioreactors, the transfer of 

nutrient is the most critical. Experimental studies on the transfer properties of nutrients 

in a reactor are difficult due to the requirement of real time data, and also due to the 

difficulty in controlling different parameters. Numerical studies provide a perfect 

platform to carry out a large number of simulations to optimize the functioning of 

bioreactors. The presence of a fluid and a biphasic interface makes it very suitable for 

the application of fluid-biphasic interface finite element model developed in Chapter III 

and the mass transfer finite element model described in Section B of this chapter. The 

primary objective of this study is to predict the nutrient distribution in the scaffold for 

different material properties of the scaffold and fiber.  
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Figure 5.6. Schematic representation of Hollow Fiber Membrane Bioreactor (HFMB).   

 
2. Computational domain  

Hollow fiber membrane bioreactor consists of a number of fibers running 

parallel in the culture chamber. In this work, a single cylinder of the bioreactor is 

considered with the assumption that the flow through all the fibers is identical and 

transport behavior within each fiber is the same [118]. An axisymmetric half-section of 

the cylinder is considered for modeling. The cylinder is represented by a rectangular 

domain having a lumen radius of 0.01 cm, fiber thickness of 0.002 cm, and the external 

scaffold thickness of 0.02 cm. The total length of the fiber is taken as 0.3 cm. The 

material parameters for the fiber and scaffold namely the porosity, stiffness and 

permeability are taken from literature [118].  

At the inlet of the lumen the fluid velocity of 0.007 m/s is prescribed and outlet 

flow region is assumed to be free. The top region of scaffold is considered as 

impermeable and all solid degrees of freedom are constrained. The concentration of 
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nutrient at the inlet is prescribed and the gradient on the top surface of the scaffold is 

taken as zero. The entire domain is represented by 1200 four-node quadrilateral 

elements and the interface between the fluid and fiber is made to lie across the 

interelement boundary region. The solid phase volume fraction is assumed to tend to 

zero near the interface as was the case for the blood artery wall interface. It is assumed 

that the cell density is uniform throughout the scaffold and the consumption of 

nutrients by the cells in scaffold is identical.   

The permeability and porosity of the fiber was taken as 1716.1 10−× m4/N.s, and 

0.25, respectively, while for the scaffold a permeability of 146.62 10−× m4/N.s, and 

porosity of 0.85 was considered for the analysis.  The diffusivity of glucose in the fluid 

is 105.4 10−× m2/s, in the fiber 115.4 10−× m2/s, and in the scaffold 101.1 10−× m2/s [118]. 

The glucose cell metabolic rate (Vk) is taken as 161.0 10−× mol/cell/s. Using equation (5.6) 

the reaction rate for the consumption of nutrient by the cell is calculated for different 

seeding densities for a time period of 1.0 s.  

The mass transport in the lumen and fiber is governed by equations as described 

previously. In the extra cellular space, the cells absorb the nutrients through metabolic 

activities. It is assumed that the reaction is governed by the simple zero-order reaction 

kinetics for the uniform cell seeded bioreactor. The reaction rate for the kth nutrient 

consumption is given by the following equation 
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k kR V d= ×   (5.6) 

where, Rk is the consumption scalar quantity, Vk is the cell metabolic rate, d is the cell 

seeding density. For a specific nutrient the metabolic rate is taken from literature and is 

assumed to be constant throughout the simulation.  

 

3. Results and discussion  

Finite element analysis of a bioreactor for glucose distribution was carried out 

using the fluid-biphasic interface model for mass transfer. The analysis was carried out 

to understand the influence of material properties of fiber and scaffold on the glucose 

distribution in the bioreactor. For comparison of the concentration profile and 

normalized reaction rate is defined.  

 

The normalized concentration unit is given as  

0

Cc
C

=   (5.7) 

where, C0 is the inlet concentration (mol/cm3), c is the normalized concentration. A 

normalized reaction rate is defined as  

0

k
k

Rr
C

=   (5.8) 

where, R is first order reaction rate value, mol/(cm3.s) and defined in equation (5.6), k 

subscript defines the nutrient type. 
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The normalized axial and radial glucose distribution for different reaction rate 

(r) is shown in Figure 5.7. From the figure it is seen that the glucose distribution 

decreases in the scaffold region due to the lack of convection and also due to the uptake 

of glucose by the cell. As the reaction rates increases, i.e. as the number of cells in the 

scaffold increases the glucose concentration decreases considerably in the scaffold. At 

low values of glucose concentration the cells may die and the tissue scaffold becomes 

unusable.  
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Figure 5.7 Distribution of glucose concentration in the bioreactor for different reaction 

rates. 

 
The radial distribution of glucose at different axial lengths of the scaffold is 

shown in Figure 5.8 for a reaction rate of 910.0 10−× 1/s. The maximum concentration of 

glucose is at the entrance of fluid with a decrease observed in the culture medium. A 
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marginal decrease in the radial concentration of glucose is also observed along the 

length of the bioreactor. To provide a uniform distribution of nutrients it is required to 

maintain a sufficient inlet flow velocity. 
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Figure 5.8. Radial variation of glucose along the axial length of the bioreactor. 

 
The variation of glucose concentration with the solid phase volume fraction of 

the scaffold is shown in Figure 5.9. From the analysis it is observed that the 

concentration of nutrients increases with a decrease in the solid phase volume fraction. 

The primary aim of the inlet fluid is to provide a constant supply of the nutrients into 

the bioreactor. Thus design considerations require only little perfusion from the lumen 

into the scaffold as the scaffolds are already encased in a fluid medium. It can be 

achieved by the proper design of the fiber and scaffold permeability. The axial fluid 

velocity distribution in the bioreactor is shown in Figure 5.10. As can be observed from 
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the figure, the permeability of the fiber and the scaffold allows only little seepage 

through the fiber membrane into the scaffold, satisfying the design requirements.  
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Figure 5.9. Radial variation of nutrient concentration with solid phase volume fraction 

of scaffold.  
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Figure 5.10. Axial fluid velocity distribution in the bioreactor. 
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E. Summary  

Computational modeling of mass transfer across a fluid-tissue domain requires 

the treatment of physical phenomenon acting in the individual phases and also at the 

interface between the fluid and the tissue. Most of the previous works on mass transfer 

across the tissue-fluid domain focused either on the solid or the fluid phase and the 

interface were treated as a hard boundary. A new mathematical model for the mass 

transfer of solutes in the artery wall and in a bioreactor is presented. LDL transport 

from the blood stream to the arterial wall and nutrient transport in a bioreactor is 

analyzed using the new formulation in this chapter. The material properties of arterial 

wall influencing LDL deposition in the artery wall are studied along with the 

parameters affecting glucose distribution in a Hollow Fiber Membrane Bioreactor 

(HFMB). The biphasic finite element representation of the bioreactor provides a fluid-

scaffold coupling, thus studying the fluid and scaffold domains simultaneously.  
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6  CHAPTER VI 

CONCLUSIONS 

 

A. Concluding Remarks and Summary  

In this dissertation, mechanical modeling of cells and tissues that explicitly 

incorporate the structural components of biological materials are developed. In the 

constitutive modeling of cell, a homogenous continuum model of a generalized cell 

incorporating the stress fibers was developed. Through the model it was identified that 

the stress fibers are the primary reason behind the wide disparity of the experimentally 

derived modulus for even the same cell type. A finite element simulation of some of the 

widely used experiments in the determination of cell properties was carried out to 

verify the developed constitutive model. In atomic force microscopy (AFM) finite 

element simulations, it was observed that the force-deflection curves obtained matches 

well with the experimental results. Similarly, in magnetic twisting cytometry (MTC) 

simulation, the stress fibers influence on the angle of twisting due to a magnetic torque 

was determined. The guidelines for derivation of mechanical property from the 

experiments are also provided in this work. 

As the embedding environment is also important for the response of cells in-vivo, 

a material modeling of soft tissue were carried out in Chapter III. The soft tissues 

constitutive models was developed using a biphasic approach, by incorporating the 

solid and fluid phases in a tissue. The biphasic material model is further extended to 

study the fluid-tissue interface, as seen in blood-arterial wall interface. The macroscopic 
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behavior of tissue and fluid flow is simultaneously studied using the proposed interface 

model. The interface model presented in this chapter reduces the computational 

overhead as the fluid and solid domain is analyzed concurrently.  

Significant changes occur in a cell in the event of various pathologies like cancer. 

The cytoskeleton undergoes drastic changes to cater for the physiological requirements 

of the disease. Therefore, mechanical properties of the cells can form excellent 

diagnostic tools for the detection of cancer and malaria. With the developed constitutive 

model of cell incorporating the cytoskeletal filaments, the alterations in the mechanical 

property of cell for various stages of pathologies is studied in Chapter IV. Material 

models are developed for a cancerous cells and the finite element simulation of AFM 

indentation is carried out. The results are compared with experimental values provided 

by Mr. Qingsen and Dr. C.T. Lim of National University of Singapore, Singapore. The 

simulated results were found to be in close match with experimental results, thereby 

validating the constitutive material model. 

Mass transport in tissues is critical to the various physiological processes like 

growth and development of diseases. In Chapter V, the transfer of low-density 

lipoprotein from the blood to the arterial wall was analyzed using an extension of the 

fluid-biphasic interface model. Suitable interface boundary conditions for the mass 

conservation are incorporated and the simultaneous analysis of the fluid and tissue 

domain was carried out. The main design challenge in a bioreactor is to provide 

sufficient nutrients for the cells to growth and development. Using the mass transport 

finite element model the analysis of bioreactor was carried out to obtain the distribution 
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of glucose. The effect of material parameters of the scaffold on the nutrient distribution 

is also presented in Chapter V. 

 

B. Future Works  

As an extension to the computational framework presented in this study, the 

following works could be carried out. 

a. Incorporate viscoelastic models of cell to represent other experiments, 

like micropipette aspiration, to determine the material properties of cells 

b. Study the cellular phenomenon like cell migration and cell adhesion 

c. Analyze the fluid-structure interactions of the tissue in a larger domain 

d. Study the influence of nutrients in growth and remodeling of tissues 
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