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ABSTRACT 

 

Principal Stress Pore Pressure Prediction: Utilizing Drilling Measurements to Predict 

Pore Pressure. (May 2008) 

Kyle Wade Richardson, B.S., Texas A&M University 

Co-Chairs of Advisory Committee:   Dr. Egidio Marotta 
  Dr. Thomas Lalk 

 

A novel method of predicting pore pressure has been invented. The method 

utilizes currently recorded drilling measurements to predict the pore pressure of the 

formation through which the bit is drilling. The method applies Mohr’s Theory to 

describe the stresses at the bottom of the borehole. From the stress state and knowledge 

of Mohr’s Envelope, the pore pressure is predicted. To verify the method, a test 

procedure was developed. The test procedure enabled systematic collection and 

processing of the drilling data to calculate the pore pressure prediction. The test 

procedure was then applied to industry data that was recorded at the surface. The 

industry data were composed of wells from different geographical regions. 

Two conclusions were deduced from the research. First, Mohr’s Theory indicates 

that the model is valid. Second, because of too much variation in the torque 

measurements the model cannot be proved and requires further investigation.  
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NOMENCLATURE 

 

Achip Cross Sectional Area of Chip 

Dcut Depth of Cut 

D Measured Depth of Wellbore 

ECD Equivalent Circulation Density 

Fcutter Cutter Force 

Gradwater Water Gradient 

m Slope of Mohr Envelope 

MSE Mechanical Specific Energy 

MW Mud Weight 

PH Hydrostatic Pressure 

PP Pore Pressure 

PPG Pounds per Gallon 

PSP3 Principal Stress Pore Pressure Prediction 

Rbit Radius of the Bit 

rc Radius of Mohr Circle 

ROP Rate of Penetration 

RPM Revolutions per Minute 

WOB Weight on Bit 

σ Normal Stress 

σ1 Minimum Principal Stress 
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σ3 Maximum Principal Stress 

σC Cutter Stress 

σx Normal Stress in x-direction 

σy Normal Stress in y-direction 

τxy Shear Stress 
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CHAPTER I 

INTRODUCTION 

 

 

Lost time events caused by unknown formation pore pressure, including 

blowouts, loss of circulation, and decrease in drilling rate, costs oil companies millions 

of dollars per annum. A more detrimental effect of unknown formation pore pressure is 

reservoir damage. This is caused by overpressure during drilling which results in damage 

of near wellbore permeability. The loss in permeability results in a significant decrease 

of production for each well or requires further investment to more effectively produce 

the formation. In an effort to reduce the cost of drilling an oil well and increase reservoir 

production, British Petroleum (BP) has teamed with Texas A&M Department of 

Mechanical Engineering to develop methods to predict pore pressure. 

In industry today, companies are utilizing Mechanical Specific Energy (MSE) to 

determine the efficiency of a drill bit. More generally, they are determining the 

environment in which the bit is drilling by the processing of currently recorded drilling 

measurements.  

An investigation was conducted to determine if similar drilling measurements 

could be processed to predict pore pressure. Through the investigation, a theoretical 

basis was developed that relates drilling measurements to the downhole stress state. 

______________ 
This thesis follow the style of the SPE Journal. 
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From the stress state, a prediction of pore pressure can be calculated. The new 

concept has been termed Principal Stress Pore Pressure Prediction (PSP3). From the 

theoretical basis, a test procedure was created that converted industry drilling log data to 

the PSP3. To verify the concept, the calculation process was then applied to three 

different wells and compared to actual pore pressure predictions. 

In this report, the theoretical basis will be presented first in the Theory section. 

Then, the test procedure will be explained. Following this, the results of applying the test 

procedure will be presented and discussed. Finally, conclusions about the results and 

future recommendations for advancement of the project will be presented. 
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CHAPTER II 

THEORY 

 

Mohr’s Theory 

To represent the stress state of the bottom of the borehole, Mohr’s Theory was 

applied. Mohr’s Theory is a graphical representation of the stress state of an element 

under normal and shear stress. Fig. 1 shows a two dimensional element in normal and 

shear stress. 

 

 
Fig. 1: Element in a State of Stress 

 

In the figure, the normal stresses are σx and σy and the shear stresses are τyx and 

τxy. The graphical representation of the element in Fig. 1 is seen in Fig. 2, 

 

σx σx 

σy 

σy 

τyx 

τyx 

τxy 

τxy 
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Fig. 2: Mohr's Circle of Stress Element 

 
 
 

where the intersection of the principal stress axis (σ) and Mohr’s Circle farthest from the 

origin is the maximum, principal stress (σmax). At this state, shear stress is not being 

applied to the element and the largest normal stress is equal to the principal stress. The 

other intersection of the primary stress axis with Mohr’s Circle is the minimum, 

principal stress. Also at this state, shear stress is not being applied to the element and the 

smallest normal stress is equal to the principal stress. 

 Mohr’s Theory can also be applied to a three dimensional element, as seen in Fig 

3. If only principal stresses are applied to the element, the Mohr’s Circle representation 

can be created and is shown in Fig. 4. 

σ 

τ 
σmax 

σmin 
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Fig. 3: Three Dimensional Stress Element 

 
 

 

 
Fig. 4: Mohr’s Circle Representation of a Three Dimensional Element 

 
 
 

In the Mohr’s Circle representation, all stresses are assumed to be in 

compression. The maximum stress is defined as σ3, and the minimum stress is defined as 

σ1. As can be seen in Fig. 4, to draw the outer Mohr circle only the maximum and 

σ2 

σ1 

σ3 

τ 

σ3 σ1 σ2 

Compression 
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minimum, principal stresses need to be defined. The third stress, which lies on the range 

σ3 ≤  σ2 ≤ σ1, does not need to be defined. 

 

Mohr’s Envelope 

The strength of rock specimens is often found experimentally by inserting a 

cylindrical rock specimen in a press and loading the specimen until it fractures. The 

amount of load required to break the rock specimen is defined as its compressive 

strength. Stress can also be applied to the sides of the specimen during testing. This 

applied stress is defined as the confining stress as referenced by Obert and Duvall 

(1967). When the specimen is loaded on three different axes, the test is termed a “tri-

axial test”. Fig. 5 shows a rock specimen and the stresses being applied to it. 

 

 
Fig. 5: Tri-axial Test 

 

σ3 

σ1= σ2 
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As the confining pressure (σ1 and σ2) is increased, the compressive stress (σ3) 

needed to fracture the rock also increases. In the test, the maximum stress will always be 

σ3 and the minimum stresses, σ1 and σ2, are equal. Since these are the only stresses 

applied, a Mohr’s Circle representation can be made. If the tri-axial tests of increasing 

confining stress and the resulting σ3 required to break the specimen are plotted as Mohr’s 

Circles, Fig. 6 can be developed. 

 

 
Fig. 6: Mohr's Envelope for a Series of Tri-axial Test Specimens 

 
 
 

In Fig. 6, each circle is the graphical representation of the rock specimen at 

fracture when different stress states are applied. In the figure, the line that tangentially 

intersects the Mohr’s Circles is defined as the Mohr’s Envelope. The envelope 

encompasses all the Mohr’s Circles. It is also known that, when a Mohr’s Circle 

σ 

τ 

σ3 σ1 
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intersects the envelope, the graphical representation will be of a specimen at failure as 

shown by Obert and Duvall (1967). 

 A property of the Mohr’s Envelope is that it is unique for different rocks. For 

each rock type, the Mohr’s Envelope will have a different slope and intercept. 

 

Downhole Stress State 

To determine the link between the MSE (a function of drilling measurements) 

and the pore pressure, the stress state at the borehole bottom must be defined. To 

determine this stress state, a two dimensional model of the rock chip under stress is 

shown from Gerbaud, Menand, and Sellami (2006) in Fig. 7. 

 

 
Fig. 7: PDC Bit and Rock Chip Schematic 

 
 
 

  
 

σ3 

σ1 

σΘ τΘ 

Θ 
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The two dimensional model of the rock chip in the figure is similar to a tri-axial 

test. Following the terminology from the tri-axial test, the maximum, principal stress is 

defined by the horizontal stress applied to the chip (σ3) because this applied stress breaks 

the rock chip away from the rock formation. Therefore from this definition, the 

minimum stress is then defined as the vertical stress (σ1).   

In the figure, the shear stress (τΘ) and the normal stress (σΘ) act along the slip 

plane defined by Θ. These two stresses correspond to the intersection of Mohr’s 

Envelope and Mohr’s Circle, shown in Fig. 8. 

 

 
Fig. 8: Schematic of Slip Plane Stresses Defined by Mohr’s Theory 

 
 
 

Looking closer at the two dimensional model of the chip in Fig. 7, we can further define 

the different stresses being applied as: 
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• σ3: Maximum Stress - Stress created by cutting force applied to cutting area and 

the pressure gradient 

• σ1: Minimum Stress - Stress created by the pressure gradient  

The stresses that sum to equal the maximum and minimum stresses are represented in 

Fig. 9. 

 

 
Fig. 9: Two Dimensional Stress Element of Chip with Pore 

 
 
 

From the figure, the maximum stress (σ3) in Fig. 7 is defined as the summation of 

the cutter stress (σC) being applied horizontally, the hydrostatic head (Ph) and the pore 

pressure (Pp). The stress applied vertically (σ1) to the chip is defined by the summation 

of the hydrostatic pressure (Ph) and the pore pressure (Pp).  

Ph 

σC 

 

 
Pp 
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If a three dimensional stress element is considered, then the third stress (σ2) is the 

confining stress on the element. This stress is a function of the load applied to the 

element by the overburden. Since this stress does not break the rock, it is assumed to be 

less than the maximum stress (σ3). This stress is also assumed to be higher than the 

vertical stress (σ1). Therefore, since the confining stress is defined as σ3 ≥ σ2 ≥ σ1, then 

the confining stress is not required to draw the largest diameter Mohr’s circle, as can be 

seen in Fig. 4. 

 

Calculating Pore Pressure from the Stress State 

 From Fig. 9, the vertical stress σ1 is defined by Eq. 1. 

1 h pP Pσ = + ………………………………………. (1) 

Therefore, if the hydrostatic pressure and the pressure differential (σ1) are known, the 

pore pressure can be determined by Eq. 2. 

1p hP Pσ= − ………………………..……………..(2) 

 

Determining the Minimum, Principal Stress and Pore Pressure 

 To be able to determine the pore pressure from Eq. 2, the hydrostatic / pore 

pressure differential must be defined. From Mohr’s Theory and the assumptions 

included in Downhole Stress State, there are several conclusions that can be deduced: 

• σ1 is defined as the minimum, principal stress on the largest diameter Mohr’s 

Circle 
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• If Mohr’s Circle intersects with Mohr’s Envelope, then the stress element has 

reached the maximum stress state at fracture. 

• When cutting, the horizontal force applied to the rock chip causes the chip to 

fracture from the formation. 

From these conclusions, it is deduced that since the chip is at the maximum stress 

state during cutting, then the graphical representation of the chip is a Mohr’s Circle that 

intersects the Mohr’s Envelope. Therefore, using geometrical relationships, the 

minimum, principal stress can be found by knowing the cutter stress and Mohr’s 

Envelope.  

 Finally, since the minimum, principal stress can be determined and the downhole 

pressure can be calculated, the pore pressure can be predicted by Eq. 2. 

 

Determining Maximum, Principal Stress 

 The maximum, principal stress (σ3) in the model is assumed to be the summation 

of the cutter stress, downhole pressure, and pore pressure as seen in Eq. 3. 

3 c h pP Pσ σ= + + .…………………………………….(3) 

therefore, by substituting Eq. 1 into Eq. 3, Eq. 4 is derived. 

3 1cσ σ σ= + ………………………………………..(4) 

Eq. 4 is represented graphically in Fig. 10. 
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Fig. 10: Graphical Representation of Eq. 4 

 
 
 

Eq. 3 contains three unknowns: cutter stress, downhole pressure, and pore pressure.  

 

Determining Cutter Stress 

 The first unknown in Eq. 3 is the cutter stress. Stress has units of force applied to 

a cross-sectional area. Therefore, the cutter stress can be defined by Eq. 5. 

cutter
C

chip

F
A

σ = ………………………………………. (5) 

The force of the cutter will be derived first, followed by the area of chip.  

 To derive the equation for force, the first assumption is that when a bit is cutting 

the formation, all teeth engaged are applying a stress larger than the compressive 

strength of the rock. Therefore, the rock breaks away from the formation. If the bit is 

cutting efficiently (absence of bit balling, missing teeth, etc), then all of the teeth will be 

σ 

τ 
σ3 

σ1 
σC 
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engaged simultaneously. If the bit is assumed to be fully engaged, then all the teeth of 

the bit can be combined to form an “effective tooth”, as shown in Fig. 11. 

 

 
Fig. 11: Schematic of Combining Teeth to Form an Effective Tooth 

 
 
 

The “effective tooth” will have the cross-sectional area of the distance from the center 

line of the drill-string to the outer diameter of the hole, by the depth of cut. This is seen 

in Fig. 12. 
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Fig. 12: Area of Effective Tooth 

 
 
 

 From these assumptions, the integral of torque over the tooth can be defined by Eq. 6 

and rearranged to solve for the cutter stress. A schematic of the calculation is shown in 

Fig. 13. 

0

2

2

2
2

bitR

c cut

c cut bit

c
cut bit

T S D r dr

S D RT

TS
D R

= ⋅ ⋅ ⋅

⋅ ⋅
=

⋅
=

⋅

∫

 …………………………… (6) 

where 

σC = Cutter Stress Applied 

T = torque from drilling log  

Rbit = radius of the bit 

Dcut = Depth of Cut 

r = Moment arm from cylindrical center of bit. 
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Fig. 13: Schematic of Torque Integral 

 
 
 

From Eq. 6, the stress of the cutter can be determined. This stress is the difference 

between the maximum and minimum, principal stresses (Eq. 4). All variables of Eq. 6 

are currently recorded during drilling except the depth of cut (Dcut). In the next section, 

the depth of cut will be derived.  

 

Calculating Depth of Cut 

 The depth of cut must be determined to calculate the cross-sectional area to 

which the cutting force is applied. The penetration of the teeth from the drilling data is a 

function of volume of material removed and number of rotations. Therefore, the depth of 

cut is defined by Eq. 7. 

2cut
ROPD

RPM π
=

⋅ …………………………………(7) 

where  

Rbit 

Dcut 
r 

dr 
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ROP = Rate of Penetration 

RPM = Revolutions per Minute. 

 

To be able to determine the pore pressure, a final calculation must be made. 

From Eq. 2, to determine the pore pressure hydrostatic pressure must defined. 

 

Calculating the Hydrostatic Pressure 

 Hydrostatic pressure at the bottom of the borehole is a function of the depth of 

the borehole, density of the mud, and gravitational constant. Drilling logs commonly plot 

mud density (mud weight) in pounds per gallon (PPG). However the downhole pressure 

while drilling also includes the added pressure created by the mud pumps. Therefore to 

calculate downhole pressure, the Equivalent Circulating Density (ECD) is a better 

approximation for mud weight. ECD adds a correction for increased pressure applied 

downhole by the mud pumps. Hydrostatic pressure is defined in Eq. 8. 

water
h

water

GradP ECD D
Density

= ⋅ ⋅ ……………………………(8) 

where  

ECD = Equivalent Circulation Density (from drilling log) 

Gradwater = Fresh Water Gradient (Constant) 

Densitywater = Density of Fresh Water (Constant) 

D = Depth of borehole (from drilling log) 
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After calculating the cutter stress, depth of cut, and hydrostatic pressure, all 

parameters needed to calculate the pore pressure are known. Next, the graphical 

relationships needed to determine the pore pressure from drilling log parameters and 

Mohr’s Theory will be derived.  

 

Graphical Relationships 

 When the rock chip is at a failure state, Mohr’s Circle will tangentially intersect 

with Mohr’s Envelope. Since the diameter of Mohr’s Circle is known (from σc), the 

circle can be translated along the principal stress axis until a solution is reached.  

A graphical representation of the desired solution is depicted in Fig. 14. 

 
Fig. 14: Mohr’s Circle Intersecting Tangentially with the Mohr’s Envelope 

 
 

σ 

τ 

σ3 

σ1 

σc 

r 
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In the figure, the graphical relationship between the circle radius, minimum and 

maximum principal stresses, and cutter stress are defined by Eq. 4 and Eq. 9. 

2
C

cr
σ

= ……………………………………….(9) 

If segment lengths are defined in Fig. 15 as, 

 
Fig. 15: Schematic Defining Graphical Relationships 

 
 
 
then the relationship between the radius and the minimum principal stress can be defined 

by Eq. 10. 

1 cC F rσ = − − …………………………………(10) 

σ 

τ 

rc 

Φ 

F 

C 

σ1 
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Using the equation of the Mohr’s Envelope, F can be determined to be the distance 

between the intersection with the normal stress axis and the origin by Eq. 11. 

 

when 0
m b

bF
m

τ σ
τ

σ

= ⋅ +
=
−

= =

 ………………………………..(11) 

From the equation of Mohr’s Envelope and the law of sines and cosines, σ1 can be 

further defined by Eqs. 12 and 13. 

( )

( )( )

( )( )

1

1

1

sin

tan

sin tan

sin tan

c

c

c

r
C

m
rm
C

rC
m

−

−

−

Φ =

Φ = −

− =

=
−

 ……………………………(12) 

Substituting Eqs. 9, 11, and 12 into Eq. 10 yields Eq. 13. 

( )( )1 1

1 1
2 sin tan

c b
mm

σσ
−

⎛ ⎞
⎜ ⎟= − +
⎜ ⎟−⎝ ⎠

……………………..(13) 

With the minimum, principal stress defined, the pore pressure prediction can be 

determined by substituting Eq. 13 into Eq. 2 to form Eq. 14. 

( )( )1

1 1
2 sin tan

c
p h

bP P
mm

σ
−

⎛ ⎞
⎜ ⎟= − + −
⎜ ⎟−⎝ ⎠

………………….(14) 



 21

CHAPTER III 

TEST PROCEDURE 

 

With the theory and required equations defined, a sequential test procedure is 

needed to predict the pore pressure from the drilling log data. The following steps define 

a sequential test procedure to predict PP: 

• The type of lithology being drilled is determined from the drilling and mud logs. 

• A Mohr’s Envelope is selected that corresponds with the lithology. 

• The equation of Mohr’s Envelope is found. 

• From Eq. 14, the pore pressure is predicted. 

 

The next section describes the results when the sequential process was applied to 

industry drilling data. 
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CHAPTER IV 

RESULTS 

 

Wells 1 and 2 

 

 To verify the concept, the test procedure was applied to drilling log data from 

industry. However due to incomplete understanding of the calculation process, the test 

procedure was altered during the primary test. In the altered procedure, the cutter stress 

was assumed to be the maximum stress. From geometrical relationships, the minimum, 

principal stress was then found. This calculation process was incorrect. However, error 

in the calculation process did not change the final conclusion of the concept. Further 

explanation will be included in the Discussion of Results section. 

The first step in executing the procedure was to determine the type of rock that 

was drilled. In the first set of data given, the exact lithology that was drilled was not 

recorded on the drilling log or the mud log. Therefore, an exact Mohr’s Envelope 

representation of the formation that was drilled could not be known. However to verify 

the concept, a Mohr’s Envelope of Berea Sandstone was used to represent the lithology 

in a sandstone interval. Tri-axial data from Handin, Hager, Friedman, and Feather (1963) 

was used to create the Berea Sandstone Mohr’s Envelope.  

 The sandstone depth interval selected for processing was determined by 

interpreting the gamma ray measurement on the drilling log. From the interpretation, a 

one hundred foot depth interval was selected. The input data in the interval had several 
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bad data points (NULL values taken by the instruments). These data points were filtered 

from the data set. 

 To verify the concept, a prediction of the pore pressure created by a post drill 

pore pressure analysis was plotted with the PSP3. 

 When the test procedure was applied to the drilling data, Fig. 16 from Well 1 was 

created. 

 

 

Fig. 16: PSP3 for Sandstone Interval (Well 1) 
 
 

 
In the figure, the blue data points are the PSP3 at every foot interval, the pink 

data points are a moving average of the previous three PSP3 data points, and the yellow 

is the prediction created from the post drill pore pressure analysis. 
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If the same Mohr’s Envelope could be applied to the whole well, then 

implementation in industry would be executed with greater ease. Therefore, the Berea 

Sandstone Mohr’s Envelope was used with the test procedure for the whole well to try to 

find a general Mohr’s Envelope.  

The calculation process was applied to data sets from 9,000 ft to 18,000 ft depth. 

From the resulting data, the calculations produced values with a variance from -100 to 

100 PPG.  

 In an effort to find a more general Mohr’s Envelope, the slope and intercept were 

modified. As these parameters were modified, the output of the prediction was 

monitored for reactions to the changes.  

 As the slope was increased, the data became more consolidated to within a 

couple PPG of mud density. A slope increase from 0.75 to 10 produced Fig. 17. 
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Fig. 17: PSP3 with a Mohr’s Envelope Slope of 10 (Well 1) 

 
 
 

In the figure, the blue data points are the PSP3, the yellow data points are the post drill 

pore pressure analysis, and the pink triangles are the casing shoe depths. 

 To better determine how the PSP3 related to the actual pressure, the PSP3 curve 

was shifted in the positive direction until it overlaid the actual measurements. With this 

shift, Fig. 18 was produced. 
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Fig. 18: PSP3 with Mohr’s Envelope Slope of 10 and +25 PPG Shift (Well 1) 

 
 
 

As seen in the figure, the PSP3 trended closely with the post drill prediction, however 

there are large jumps at the casing shoe depths.  

 A correlation between the required PSP3 shift and the drill bit diameter was 

conducted. The correlation was plotted to produce Fig. 19. 
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Fig. 19: Correlation between Required Shift of the PSP3 as a  

Function of the Bit Diameter 
 
 
 

The correlation produced a linear trend with a R2 value of 0.9989. When the required 

shift was added to the PSP3, Fig. 20 was produced for Wells 1 and 2. 
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Fig. 20: PSP3 for Two Wells in Same Play 
 
 
 

For validation, the test procedure was then applied to another well in a different play. 
 

Well 3 

 To validate the concept, the calculation process was applied to a third set of data 

from a different play. The same modified Mohr’s Envelope (m=10) from Wells 1 and 2 

was used. The result is seen in Fig. 21. 

Well 1 Well 2 
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Fig. 21: PSP3 and Mudlogger’s PP Estimation of Well 3 

 
 
 

In the figure, the dark blue data is the PSP3, the yellow data points are the mudlogger’s 

prediction of PP, the light blue data is the mud weight, and the pink triangles are the 

casing shoe depths. The PP prediction for comparison is not as accurate as the post well 

analysis from Wells 1 and 2. However, the PSP3 remains a couple of PPG below the 

prediction. 

For the proceeding results, the cutter stress was assumed to be the maximum, 

principal stress in the calculation. This is an error in the calculation, but it does not 
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change the final conclusions about the concept. To verify this, the correct calculation 

process, outlined in Theory and Test Procedure, was applied to Well 1. The PSP3 

measurement can be seen in Fig. 22. 

 

 
Fig. 22: PSP3 for Well 1 Using Correct Calculation Method 
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In the figure, the blue data is the PSP3, the yellow data points are the post drill pore 

pressure analysis, and the pink triangles are the casing shoe depths. For this calculation, 

the Mohr’s Envelope for Berea Sandstone was used. 

 From the results produced by processing the drilling data, several important 

observations can be made. These observations are included in Discussion of Results. 
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CHAPTER V 

DISCUSSION OF RESULTS 

 

 Raw data from three different wells was processed using the PSP3 test procedure. 

The first PSP3 was of a one hundred foot sandstone interval. The interval was 

determined by interpreting the gamma log. The PSP3 is plotted with the post drill 

prediction in Fig. 16. From this plot, the PSP3 has a range from 0 to 20 PPG mud weight 

(MW). To reduce the sensitivity of the prediction, a moving average of the previous 

three data points was also computed. This average is centered about the post drill 

prediction, yet has a 5 to 15 PPG MW variation. The PSP3 method was then applied to 

the whole wellbore. When the test procedure was applied to the whole wellbore (9000 ft 

– 18,000 ft), the PSP3 had a large variance similar to the sandstone interval. 

 The Mohr’s Envelope of Berea Sandstone was then modified (slope and 

intercept) to determine if a general Mohr’s Envelope for the whole wellbore could be 

found. With an increase in slope, the PSP3 data points became more consolidated to 

within 1 PPG variation. This consolidated PSP3 curve can be seen in Fig. 17. When the 

slope of the envelope was increased by an order of magnitude, it did not represent the 

failure envelope of the formations. The increase in slope actually reduced the minimum, 

principal stress and de-sensitized the PSP3 to the fluctuations in torque. 

 As can be seen in Fig. 23, 
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Fig. 23: Graphical Representation of Reducing the Minimum, Principal Stress by 

Increasing the Slope of the Mohr’s Envelope 
 
 

 
when the slope of the Mohr’s Envelope is increased, the minimum, principal stress is 

reduced. It is important to note that as the slope goes to infinity, the minimum, principal 

stress goes to zero. The increase in slope of the Mohr’s Circle also de-sensitizes the 

minimum, principal stress from the variations in torque. This can be seen in Fig. 24. 
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Fig. 24: Graphical Representation of De-sensitizing the Minimum, Principal Stress by 

Increasing the Slope of the Mohr’s Envelope 
 

 

In the figure, the Mohr’s Circles are plotted with the same maximum stresses. The 

Mohr’s Circles that intersect the envelope with m = 10, have a smaller variation in 

minimum stress (∆σ). 

As the slope is increased, σ1 goes to zero and Eq. 2 is approximated by Eq. 15. 

p hP P= −       (15) 

Therefore, the PSP3 becomes only a function of mudweight. When the mudweight is 

plotted with the absolute value of the PSP3 in Fig. 25, this result can be seen.  
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Fig. 25: Mud Weight Plotted with the Absolute Value of the PSP3 

 
 

In the figure the blue is the PSP3, the yellow is the post well pressure prediction, 

and the brown is the mudweight. It is important to notice that there are anomalies from 

13,000 to 14,000 ft, where the PSP3 varies from the mudweight as the pore pressure 

increases. 

 Due to the effect on the minimum, principal stress of increasing the Mohr’s 
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Envelope slope, the concept is not proven valid by the results of applying the test 

procedure to the drilling data. 

 In Fig. 22, the results from applying the correct calculation method to the 

industry data are presented. The first observation is that the PSP3 data points have a large 

amount of scatter. This scatter of data points is driven by the fluctuation of the drill 

string torque. Torque fluctuation is common during drilling due to the highly transient 

downhole environment. This environment includes many types of vibration including 

stick-slip, bit whirl, and unbalanced bits (missing teeth). 

 The second observation is that a correlation between the PSP3 and post drill PP 

could not be realized. The PSP3 varies from 0 to 150 PPG while the post drill prediction 

remains within ±5 PPG of 10 PPG. 
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CHAPTER VI 

SUMMARY 

 

 In summary, to develop and verify a possible solution, a theoretical basis was 

defined, a test procedure was created, and then the procedure was applied to industry 

data.  

When the procedure was first applied to a sandstone depth interval, the PSP3 had 

a range of approximately 0 to 20 PPG pressure, where the post drill prediction had a 

range between 8 and 9 PPG pressure. 

While trying to find a more general Mohr’s Envelope, it was found that when the 

slope was increased, the representation became invalid. Therefore, the primary results 

were invalid. When the correct test procedure was applied to the test data, the PSP3 had a 

range from 0 to 150 PPG pressure. This large variation masked the actual pore pressure 

prediction.  

The PSP3 method has many benefits that make determining the validity of the 

concept attractive. First, the concept uses only equipment and measurements that are 

currently used in drilling. A new tool design is not required to implement the concept. 

Second, the concept’s calculations can be completed quickly. This allows for the pore 

pressure prediction to be assessed continuously while drilling. Third, the concept can be 

quickly implemented in the drilling procedures. If the concept is validated, the PSP3 

could be plotted alongside torque, WOB, and other drilling measurements for the driller 

to view.  
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CHAPTER VII 

CONCLUSIONS 

 

Two conclusions can be made about the research. First, Mohr’s Theory indicates 

that the PSP3 model is valid. Second, the model cannot be disproved from the results 

because there was too much variation in the torque measurements.  
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CHAPTER VIII 

RECOMMENDATIONS 

 

 To prove the concept, there are two issues that need to be resolved. The first 

issue is the large variation of the torque data. Due to this variation, the actual 

measurement of pore pressure is masked. The second issue is the number of effective 

blades, experienced by the formation downhole, needs to be determined. If it is found 

that the number of effective blades must be increased, the PSP3 would converge to a 

closer value of pore pressure. 

 To accomplish this, the PSP3 test procedure should be applied to controlled, 

experimental data. In a controlled environment, all required parameters could be 

measured without significant variation caused by unknown parameters. In the controlled 

experiment, the controlled parameters should include: 

  

• Rock type and corresponding tri-axial test data 

• Bit type and characteristic form (number of teeth, number of blades, diameter) 

• Pore pressure applied to rock 

• Wellbore pressure 

• Torque 

• Rate of Penetration (ROP) 

• Revolutions per Minute (RPM) 
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 The experimental data could be generated by either working with third party 

vendors or conducting a local experiment. Collaboration with a third party vendor might 

be a better decision because they conduct multiple tests for every bit that is produced. 

Therefore, the data may be currently available. 

To determination the validity of the PSP3 concept, the results must meet either of two 

criteria: 

• The concept correctly predicts the pore pressure. 

• A correlation between the pore pressure prediction and the actual pressure is 

found when a bit factor is applied to the calculation.  

The bit factor could be function of effective number of blades, diameter of bit, angle 

of teeth, or other physical characteristics of the bit. Accuracy of the prediction should be 

within 1 PPG of the actual pore pressure. With this accuracy, PSP3 could be 

implemented in industry. 
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