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ABSTRACT 

 

Damage Analysis of Laminated Composite Beams  

under Bending Loads Using the Layer-Wise Theory. (May 2008) 

Wook Jin Na, B.S., Korea University; 

M.S., Korea Advanced Institute of Science and Technology 

Chair of Advisory Committee: Dr. Junuthula N. Reddy 

 

A finite element model based on the layer-wise theory and the von Kármán type 

nonlinear strains is used to analyze damage in laminated composite beams. In the 

formulation, the Heaviside step function is employed to express the discontinuous 

interlaminar displacement field at the delaminated interfaces. Two types of the most 

common damage modes in composite laminates are investigated for cross-ply laminated 

beams using a numerical approach.  

First, a multi-scale analysis approach to determine the influence of transverse 

cracks on a laminate is proposed. In the meso-scale model, the finite element model 

based on the classical laminate theory provides the material stiffness reduction in terms 

of the crack density by computing homogenized material properties of the cracked ply. 

The multiplication of transverse cracks is predicted in a macro-scale beam model under 

bending loads. In particular, a damage analysis based on nonlinear strain fields in 

contrast to the linear case is carried out for a moderately large deformation.  



 iv

Secondly, the effect of delamination in a cross-ply laminated beam under 

bending loads is studied for various boundary conditions with various cross-ply laminate 

lay-ups. The crack growth of delamination is predicted through investigating the strain 

energy release rate.  

Finally, the interactions of a transverse crack and delamination are considered for 

beams of different configurations. The relationships between the two different damage 

modes are described through the density of intralaminar cracks and the length of the 

interlaminar crack.  

It is found that geometric nonlinearity plays an important role in progression of 

interlaminar cracks whereas growth of intralaminar cracks is not significantly influenced. 

This study also shows that the mixture of fracture mode I and II should be considered for 

analysis of delamination under bending loads and the fracture mode leading 

delamination changes as the damage develops. The growth of delamination originated 

from the tip of the transverse crack is found to strongly depend on the thickness of 90-

degree layers as well as the transverse crack density. Further, the effect of interfacial 

crack growth on the transverse cracking can be quatitatively determined by the 

delamination length, the thickness of 90-degree layers and the transverse crack density.    
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CHAPTER I 

INTRODUCTION 

 

1.1 Background 

The composite materials are one of the most widely used engineering materials in 

mechanical structures due to its high strength and relatively light weight. The composite 

materials are composed of matrix and reinforcement materials. Matrix is considered as a 

continuous phase and the reinforcement as a discontinuous phase. The reinforcement is 

often supplied in the form of fibers and the matrix materials are often made of metals, 

ceramics, or polymers. The unidirectional fiber-reinforced composites are widely 

employed in forming composite laminates.     

Unidirectional layers are stacked with different fiber orientation to achieve 

desired stiffness, strength, and thermal characteristics. The strength of a laminate in the 

fiber direction is higher than that in the direction of normal to the fiber direction. The 

sudden change in the material between the layers with different orientation angles often 

results in concentration of the local stresses. Hence, since laminates are made of layers 

with different orientations, damage in the laminate appears to be inevitable under service 

loads. 

When unidirectional composites are subjected to various loading conditions, sub-

critical damage precedes in the laminated composites before a catastrophic failure 

____________ 
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prohibits the material from performing the structural function. Initiation of damage may 

not directly attribute to the failure of structure, but the stiffness and the strength can be 

considerably weakened. Unlike the macroscopic cracks on the surface of a structure, 

microscopic damage in the composite laminate is developed. Therefore, prediction of 

formation of damage and accurate assessment of the effect of damage in the laminate are 

crucial to design the structure using the composite laminates. 

The predominant damage mode found in cross-ply laminates is matrix cracks in 

the plies with fibers oriented in off-axis to the direction of loading. Especially when 

those cracks form along the transverse direction to the major load, they are called 

transverse cracks. These cracks are usually arrested by the adjacent plies having different 

orientation angles, so the transverse cracks do not propagate across the neighboring plies 

and the matrix cracks often called intralaminar damage.  Such matrix cracks within the 

off-axis plies multiply the number of cracks according to the loading condition, but the 

number of matrix cracks is also bounded. Thus, the maximum number of cracks in a unit 

length of specimen shows a characteristic damage state (CDS). The multiplication of 

transverse matrix cracks appears to reach a saturation state when the CDS is reached.  

Another damage mode frequently found in the composite laminates is the 

separation of layers, called delamination. The cracks formed between the interfaces of 

the layers show a growth along the interface. Therefore, delamination is also called 

interlaminar damage. Delamination can occur at the edge of the laminate under the 

unidirectional tensile load due to concentration of the interlaminar shear stress as well as 

normal stress.  Delamination can also develop within the laminate depending on the 
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stacking configuration and loading conditions. In impact or fatigue tests, delamination is 

often initiated from the transverse crack tips. 

In order to take these damage modes into account in a numerical model based on 

the finite element analysis, the accuracy of the solutions obtained from the model is a 

critical issue because initiation of damage is a localized phenomenon. If the application 

of computational damage results to a practical structure is aimed, the structural base 

model must accommodate accurate description of the kinematic behavior of layers in the 

laminate and the damage mode as well.  

 

1.2 Literature Review 

1.2.1 Laminated Beam Model 

A simple analytical model of a laminated beam is provided by a beam theory combined 

with the laminate theory. The Euler-Bernoulli beam theory (EBT) and Timoshenko 

beam theory (TBT) are the most often used beam models due to the simplicity of 

formulation and relatively accurate solutions for slender beams. The material properties 

of each lamina can be taken care of by the laminate theory and the whole laminate can 

be dealt with as simple stacks of the laminas. This idea is often called equivalent single 

layer laminate theories (ESL) [1]. However, when the thickness of the laminated beam 

becomes moderately thick, the lack of accuracy stemming from neglecting variation of 

the transverse shear strain through the thickness causes difficulty in predicting accurate 

stress fields in practical applications. To capture the actual kinematic behavior of 

transverse shear deformation, attempts have been made by introducing high order 



 4

theories such as the third order theory [2, 3]. Nevertheless, beam theories in conjunction 

with the laminate theory fail to assess the localized stresses with a high accuracy, which 

is often required for evaluating ply level responses such as in damage analysis.  

In contrast to the equivalent single layer theories, both of the intralaminar and the 

interlaminar responses can be assessed with a high accuracy in the layer-wise 

theory(LWT). The layer-wise laminated beam model can be seen as a simplified version 

of the layer-wise laminate plate model of Reddy [4]. In the original work of Reddy, the 

displacement-based theory of laminate plates has been treated. The main idea of Reddy’s 

layer-wise theory is that the three-dimensional elasticity theory can be reduced to a two 

dimensional laminate theory by assuming the displacement field to vary through the 

thickness as explicit functions of the thickness coordinate. Several studies ensued by 

making use of the layer-wise plate theory of Reddy to analyze bending beams [5, 6]. 

However, most of the works have dealt with linear beams based on the assumption of 

linearized strain fields. Although the linear layer-wise beam model is easy to formulate 

and gives a satisfactory solution within the range of small deformation, the nonlinear 

characteristics under a large deformed behavior cannot be captured.  

 

1.2.2 Damage in Laminated Composites 

A. Transverse cracking – intralaminar damage 

Reifsnider and Masters [7] made an observation on the characteristic damage state where 

the matrix cracks are saturated through a tensile test on the cross-ply. They pointed that 

the tensile strain to initiate the transverse crack depends on the thickness of the 90- 
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degree ply. Bader et al. [8] also conducted a tensile test on cross-ply laminates and 

concluded that the state of saturation of transverse cracks depends on the thickness of 

90-degree plies.  

A series of researchers attempted to quantify the stiffness reduction in a 

transversely cracked laminate. Aveston et al. [9] proposed a so called “shear lag model” 

to model the stress transfer between fibers and matrix. This model is based on one 

dimensional analysis and was employed by Garrett and Bailey [10] and others [11, 12] to 

estimate the effective stiffness in a cracked laminate.  

Hashin [13] derived a variational solution to the stress field in a cross ply 

laminate under the assumption of uniformly distributed transverse cracks in 90-degree 

layer. His approach was a two dimensional analysis and adopted and modified by 

many[14-16] to obtain the closed form solution of the normal and shear stresses as well 

as the axial stresses in the cracked 90-degree layers.  

The continuum damage mechanics (CDM) has been studied profoundly and 

refined by a number of researchers [17, 18] since Kachanov [19] introduced the concept. 

Talreja [20, 21] is credited for applying the CDM theory systematically to a practical 

model. In the CDM model of Talreja, the material coefficients are described at the level 

of laminated structure, that is, a macro scale. Hence, the characteristics of each ply are 

smeared out in the macro scale system, and the stiffness change in the individual ply of 

laminate structures cannot be specified. To overcome this shorthand, Thionnet and 

Renard [22] attempted to apply Talreja’s model to the ply level by using the classic 

laminate theory for the transverse crack damage in cross-plies. Similarly, the damaged 
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material stiffness coefficients of the individual damaged ply were proposed by Boniface 

et al. [23]. In addition to those, Li et al. [24] employed the strain energy equivalence to 

obtain the material stiffness coefficients of the individual damaged ply. The view that 

the transverse cracks in the laminate structure are local phenomena has been justified by 

the experimental observations and the results of the numerical computation [22].  

 

B. Delamination – interlaminar damage 

The common sequences of the actual damage which a composite laminated structure 

suffers are reported as transverse cracking followed by delamination in many 

experimental observations [8, 25-27]. Free-edge delamination is observed in the uniaxial 

tensile test and internal delamination is also found under various loading conditions. In 

many cases, the interfacial cracks appear to be originated from the tips of the precedent 

transverse cracks. For cross-ply laminates, 90-degree plies are susceptible to the 

transverse cracks and they result in delamination at the interfaces of the transversely 

cracked 90-degree plies and the adjacent 0-degree plies.  

Delamination is often analyzed using the principles of fracture mechanics 

because delamination has more similarities to the growing crack in the framework of 

fracture mechanics than transverse matrix cracking. In the matrix cracking, the progress 

of damage is measured by the multiplying number of cracks in the damaged layer. 

However, the crack length is the measure of the damage growth in delamination and it is 

 predicted by estimating the strain energy release rate. 
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 Griffith [28] proposed a condition for a crack to extend using the principle of 

minimum total potential energy by equating the strain energy increase rate to the crack 

length due to forming new surfaces and the potential energy of the crack surface rate to 

the crack length. This condition is called Griffith criterion for a crack to grow. Griffith 

criterion has been mathematically and thermodynamically improved by Rice [29] who 

postulated a contour integral that is path independent as the change in potential energy 

for a virtual crack extension. This special integral is known as J-integral under the 

context of fracture mechanics .Gurtin [30] later showed that J-integral is equivalent to 

the strain energy release rate for the linear elastic material. 

Pagano and Pipes [31] provided an analytic solution to the distribution of the 

interlaminar transverse normal stress along the interface of free edge delamination. They 

also conducted an experiment to check of the free edge phenomenon. Kim [32, 33] 

reported the characteristics of free edge delamination under tensile loads and attempted 

to give a criterion for the onset of delamination by a strength criterion [34]. Brewer and 

Lagace [35] also proposed a quadratic stress criterion for initiation of delamination. 

Wang [36] asserted that the rate of energy release during crack extension is a 

material property, which is known as the critical energy release rate, and the critical 

strain energy release rate  is determined experimentally by a procedure in that a 

controlled stable crack growth is examined. Wang and his colleagues intensively 

investigated delamination phenomena related to transverse cracks and produced useful 

information about the strain energy release rate through a series of works [25, 27, 37, 38].  

The strain energy release rate is suggested as a criterion for delamination growth 
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by a number of others [26, 39, 40]. Among those, Sih et al. [41] and O’brien [42] 

addressed different contributions of the strain energy release rate depending on the 

failure mode, and pointed out that the total mixed mode strain energy release rate 

controls the onset of edge delamination under cyclic loads. The strain energy release 

rates of mixed modes are considered by Wilkins et al. [43] and Hahn [44], too. 

 

C. Damage under bending loads 

Though damage in the composite laminates has been investigated in depth for decades, 

the major contribution was attributed to the case under the uniaxial tensile load. The 

damage in composite laminates under bending loads is paid attention in relatively recent 

studies. Usually under the bending loads, both matrix cracking and delamination damage 

are observed and the failure modes are also mixed in the interlaminar cracks.  

Delamination induced by matrix cracking under transverse loading was observed by 

experiments, especially in impact tests [45-47]. 

 Echaani et al. [48] investigated the damage progression in a flexural test and 

reported the formation of matrix cracking and delamination. They also observed the 

failure in 0-degree ply depending on the lay-ups. Murri and Guynn [49] conducted 

experiments to find the critical strain energy release rate for the delamination growth 

from matrix cracks under three different bending boundary conditions. Choi et al. [50, 

51] reported the damage sequence in a low velocity impact test and observed the 

different delamination behaviors according to the location of crack. The matrix crack 

with an angle of 45 degree is also observed in a low velocity impact by Salpekar [52]. 
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He claimed that delamination during the impact event cannot be characterized by the 

critical strain energy release rate of Mode II alone. 

Delamination cracks originated from transverse cracks which are assumed to be 

uniformly distributed in the laminate is studied by Kim and Im [53]. They applied 

several different plane loading conditions to the unit cell model. Liu and Chang [54] 

found that Mode I fracture dominates the delamination initiation, but the other modes’ 

fracture toughness govern the delamination propagation through a quasi-static vertical 

load at the center of clamped plate. Zhang and Lewandowski [55] performed a slow four 

point bending test on pre-damaged bi-layer metal-matrix composites. They observed the 

transverse crack tip merged into the pre-existing delamination at the middle interface 

under the four point bending. Dharani et al. [56] studied the interactions between the 

transverse cracks and delamination in [0 / 90 ]
m n S

 cross ply laminate and they concluded 

that the two damage modes compete with each other depending on the damage state. 

Kuriakose [57] studied the delamination at the tip of transverse crack in cross ply by 

making use of the variational approach and the finite element method. 

More studies on the damage in the composite laminates under bending loads can 

be found in literatures [58-61].   

 

1.3 Objectives of the Present Research  

The whole progression of damage developed in the laminated composite beams under 

bending loads is investigated using the layer-wise theory and the finite element method. 

The progressive damage behavior includes the initiation of damage, its propagation, and 
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inducing other damage modes. 

 

1.3.1 Developing a Fully Layer-wise Nonlinear Beam Model 

As mentioned in the previous section, the high accuracy of solutions to the stress fields 

of the localized region in the laminate is crucial for studying damage. Thus, the finite 

element model is developed to meet the kinematic requirements that capture the 

transverse shear deformation and evaluate the precise stresses in a laminated beam. For 

this purpose, the layer-wise theory is employed represent the kinematics of the beam. 

The present layer-wise model is capable of taking into account the geometric 

nonlinearity due to moderately large flexural deformation by including von Kármán type 

nonlinear strains. 

The present research work presents a complete formulation of the layer-wise 

beam model derived using nonlinear strain fields followed by the finite element model. 

The layer-wise beam model is extended to another level that accounts for discontinuous 

displacement fields between layers to analyze delamination damage.  

 

1.3.2 Analysis of Transverse Crack 

Basically the multiscale approach is attempted to predict the transverse cracking and its 

effect in composite laminates.  

The transverse cracks in the laminated beam are treated as a localized damage in  

the cracked ply and the numerical computation is adopted to determine the damaged 

ply’s homogenized material stiffness in the mesoscale. The unit cell model is used to 
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obtain the stiffness reduction in the cracked layer and the effective material stiffness is 

applied to the macroscale beam structure model. In the structural length scale, the 

initiation and propagation of the transverse cracks are predicted under bending loads. 

 

1.3.3 Analysis of Delamination  

The characteristics of delamination in the laminated beam under bending are 

investigated for the various cases of bending loads as well as the laminate lay-ups.  

 The change of strain energy release rate is examined to predict the delamination 

growth. Also, mixture of failure modes in the laminate under bending is considered and 

the contribution of each mode’s strain energy release rate to the total strain energy 

release rate is studied so that the predominant mode in delamination can be identified.  

   Interactions between transverse cracks and delamination are studied through the 

case of delamination originated from transverse cracks. The effect of varying transverse 

crack density on the growth of delamination is highlighted from that perspective.  
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CHAPTER II 

LAYER-WISE BEAM MODEL 

 

2.1 Laminated Beam Theories 

2.1.1 Equivalent Single Layer Theory 

Two commonly used laminated beam models are making use of Euler-Bernoulli beam 

theory (EBT) and Timoshenko beam theory (TBT) (see Reddy [62]). These two 

conventional beam theories are widely employed to give good results on analysis of 

relatively long and thin beams.  

In EBT, the displacement field is given as 

 

 0
0( , ) ( , )

w
u x z u x z z

x

∂
= −

∂
  (2.1a) 

 ( , ) 0v x z =  (2.1b) 

 0( , ) ( , )w x z w x z=   (2.1c) 

 

where 0 0( , )u w  are the displacement components along the ( , )x z coordinate directions, 

respectively, of a point on 0z=  plane and the displacement fields in equations (2.1a)-

(2.1c) are valid under the Euler-Bernoulli hypothesis.  

On the other hand, the displacement field in TBT is given by 
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 0( , ) ( , ) ( )u x z u x z z xφ= +   (2.2a) 

 ( , ) 0v x z =  (2.2b) 

 0( , ) ( , )w x z w x z=  (2.2c)                                                                   

 

where ( )xφ  is an independent function of x  and denotes rotation about the y  axis. The 

strict kinematic assumption of Euler-Bernoulli hypothesis, namely, the normality 

assumption, is relaxed in TBT by allowing independent rotation of a transverse normal 

line, i.e., include shear deformation, 
xz

γ .  

In the course of developing an analytic model of the laminated beam, the 

kinematic representation of the deformation can be implemented in a finite element 

model with each layer’s material properties. Although the material properties of each 

layer are taken into account, the equivalent single layer (ESL) theories (i.e. EBT and 

TBT) cannot accurately capture the interlaminar stresses, especially for the thick and 

short beams. On top of that, the ESL beam models often turn out to be improper for the 

damage analysis because the damage analysis requires a highly accurate assessment of 

localized regions [1]. 

 

2.1.2 Layer-wise Theory 

Similar to the layer-wise plate theory of Reddy [1, 4], the total displacement fields of the 

laminated beam are written as [6] 
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1

( , ) ( ) ( )
N

I

I

I

u x z U x zΦ
=

=∑  (2.3a) 

 ( , ) 0v x z =  (2.3b) 

 
1

( , ) ( ) ( )
M

I

I

I

w x z W x zΨ
=

=∑  (2.3c)  

 

where ( , )
I I

U W denote the Ith nodal values of ( , )u w  while IΦ and IΨ are the global 

interpolation functions for the longitudinal displacement and the transverse displacement 

through the thickness, respectively. N and M in equations (2.3a)-(2.3c) are the numbers 

of nodes through the thickness for the longitudinal displacement and the transverse 

displacement respectively. In general, I IΦ Ψ≠ and N M≠ . It is worth addressing that 

the kinematic displacement fields are expressed in terms of the transverse directional 

coordinate as well as the longitudinal one. 

The von Kármán type nonlinear strains associated with the given displacement 

fields are 

 

 

2
1

2
xx

u w

x x
ε

 ∂ ∂ = +   ∂ ∂
 

 
1 1 1

( )( ) ( )1
( ) ( ) ( )

2

N M M
I I JJI I

I I J

dW xdU x dW x
z z z

dx dx dx
Φ Ψ Ψ

= = =

    = +        ∑ ∑ ∑   (2.4a) 

 
1

( )
( )

IM

zz I

I

w d z
W x

z dz
ε

Ψ

=

∂
= =
∂ ∑  (2.4b) 
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1 1

( ) ( )
( ) ( )

IM N
II

xz I

I I

dW xw u d z
z U x

x z dx dx
γ

Φ
Ψ

= =

∂ ∂
= + = +
∂ ∂ ∑ ∑  (2.4c) 

 0
yy xy yz

ε γ γ= = = . (2.4d) 

 

For the kth orthotropic lamina, the stresses can be obtained from the 3-D stress-

strain relation, 

 

 

( ) ( )

11 12 13 16

21 22 23 26

31 32 33 36

44 45

54 55

61 62 63 66

0 0

0 0

0 0

0 0 0 0

0 0 0 0

0 0

k k

xx xx

yy yy

zz zz

yz yz

xz xz

xy xy

C C C C

C C C C

C C C C

C C

C C

C C C C

σ ε

σ ε

σ ε

σ γ

σ γ

σ γ

                          =                          

( )k        

 (2.5) 

 

where ( )k

ijC  are the transformed elastic coefficients [1], which are symmetric for 

orthotropic materials. 

The governing equations of the layer-wise beam depicted in Fig. 2.1 are derived 

from the principle of virtual displacements [1, 62], 

 

 0 U Vδ δ= +   (2.6) 

 

where the virtual strain energy Uδ and the virtual work done Vδ  are given by 
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 ( )2

2

h
b

h
a

x

xx xx zz zz xz xz
x

U dzdxδ σ δε σ δε σ δγ
−

= + +∫ ∫  (2.7a) 

 ( )2 2
( ) ( , ) ( ) ( , )

b

a

x
h h

b t
x

V f x u x f x u x dxδ δ δ=− − +∫   

   ( )2 2
( ) ( , ) ( ) ( , )

b

a

x
h h

b t
x

q x w x q x w x dxδ δ− − +∫ . (2.7b) 

 

 

 

 

Fig. 2.1. Laminated beam model based on the layer-wise theory 

 

Applying the stress-strain relations in equation (2.5) and displacement field 

equations (2.3a)-(2.3c) to (2.7a) and (2.7b), the virtual energy and the virtual work done 

can be described in terms of the nodal displacements as follows 

 

 
1

b

a

Nx
I II
xx x I

x
I

d U
U N Q U dx

dx

δ
δ δ

=

 = +   ∑∫  

( )
t

q x

 

x
2
h  

2
h  

a
x

 

( )
t

f x  

( )
b

q x   

 

( )
b

f x  

z  
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1 1

b

a

N Mx
IJ I IJI I
xx z I x

x
I J

dWd W d W
N Q W Q dx

dx dx dx

δ δ
δ �

= =

 + + +    ∑ ∑∫  (2.8a) 

 ( ) ( )1 1

b b

a a

x x

b t N b t M
x x

V f U f U dx q W q W dxδ δ δ δ δ=− + − +∫ ∫  (2.8b)       

 

where  

 

 11 11 13

1 1 1 1

1

2

N M M M
I IJ IJK IJJ J K
xx J

J J K J

dU dW dW
N A B A W

dx dx dx= = = =

= + +∑ ∑∑ ∑ �  (2.9a) 

 11 11 13

1 1 1 1

1

2

N M M M
IJ KIJ IJKL IJKK K L
xx K

K K L K

dU dW dW
N B D B W

dx dx dx= = = =

= + +∑ ∑∑ ∑ �  (2.9b) 

 55 55

1 1

M N
I IJ IJJ
x J

J J

dW
Q B A U

dx= =

= +∑ ∑  (2.9c) 

 55 55

1 1

M N
I IJ JIJ
x J

J J

dW
Q D B U

dx= =

= +∑ ∑�  (2.9d) 

 31 31 33

1 1 1 1

1 ˆ
2

N M M M
I JI JKI IJJ J K
z J

J J K J

dU dW dW
Q A B A W

dx dx dx= = = =

= + +∑ ∑∑ ∑� �  (2.9e) 

 

and 

 

 
1 ( )

11 11

1

k

k

Ne z
IJ k I J

z
k

A C dzΦ Φ
+

=

=∑∫  (2.10a) 

 
1 ( )

13 31 13

1

k

k

JNe z
IJ IJ k I

z
k

d
A A C dz

dz

Ψ
Φ

+

=

= =∑∫� �  (2.10b) 
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1 ( )

55 55

1

k

k

I JNe z
IJ k

z
k

d d
A C dz

dz dz

Φ Φ+

=

=∑∫  (2.10c) 

 
1 ( )

33 33

1

ˆ k

k

I JNe z
IJ k

z
k

d d
A C dz

dz dz

Ψ Ψ+

=

=∑∫  (2.10d) 

 
1 ( )

55 55

1

k

k

INe z
IJ k J

z
k

d
B C dz

dz

Φ
Ψ

+

=

=∑∫  (2.10e) 

 
1 ( )

55 55

1

k

k

Ne z
IJ k I J

z
k

D C dzΨ Ψ
+

=

=∑∫  (2.10f) 

 
1 ( )

11 11

1

k

k

Ne z
IJK k I J K

z
k

B C dzΦ Ψ Ψ
+

=

=∑∫  (2.10g) 

 
1 ( )

13 31 13

1

k

k

KNe z
IJK IJK k I J

z
k

d
B B C dz

dz

Ψ
Ψ Ψ

+

=

= =∑∫� �  (2.10h) 

 
1 ( )

11 11

1

k

k

Ne z
IJKL k I J K L

z
k

D C dzΨ Ψ Ψ Ψ
+

=

=∑∫ .  (2.10i) 

 

Note that Ne  is the number of physical layers in the laminate, and that three or 

four superscripts are introduced due to the von Kármán type nonlinearity. That is, only 

two superscripts will appear in the laminate stiffness coefficients if linear strain fields 

are assumed. 

 

2.2 Finite Element Model 

The displacement field (2.3a)-(2.3c) are interpolated by appropriate interpolation 

functions in order to represent a finite element model for a layer-wise beam, as follows 
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 (1)

1

( ) ( )
p

j

I I j

j

U x U xϕ
=

=∑  (2.11a) 

  (2)

1

( ) ( )
q

j

I I j

j

W x W xϕ
=

=∑   (2.11b) 

 

where p and q  are the number of nodes per 1-D element used to approximate the 

longitudinal and transverse deflections, respectively, and j

I
U and j

I
W  are the 

displacement values at the jth node along the longitudinal ( x ) direction of Ith beam 

element. The interpolation functions, (1)

jϕ  and (2)

jϕ  are the 1-D Lagrangian polynomials 

with respect to the longitudinal and transverse deflections at the jth node of each beam 

element. Substituting the displacement fields (2.11a) and (2.11b) in the longitudinal 

direction and their variational forms 

 

 (1) ( )
I i

U xδ ϕ=  (2.12a) 

  (2) ( )
I i

W xδ ϕ=   (2.12b) 

 

into the energy equations (2.8a) and (2.8b) yields the equations for the finite element 

model as 

 

 (11) (12) 1

1 1 1 1

p qN M
IJ j IJ j I

ij J ij J i

j J j J

K U K W F
= = = =

+ =∑∑ ∑∑   

 ( 1,2, ,i p= �  and 1,2, ,I N= � ) (2.13a) 
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 (21) (22) 2

1 1 1 1

p qN M
IJ j IJ j I

ij J ij J i

j J j J

K U K W F
= = = =

+ =∑∑ ∑∑   

 ( 1, 2, ,i q= �  and 1,2, ,I M= � ) (2.13b) 

 

where  

 

 

(1)(1)
(11) (1) (1)

11 55

b

a

x
jIJ IJ IJi

ij i j
x

dd
K A A dx

dx dx

ϕϕ
ϕ ϕ

  = +   
∫  (2.14a) 

 

(2) (2)(1) (1)
(12) (2) (1)

11 13 55

1

1

2

b

a

Mx
j jIJ IJK IJ IJi iK

ij j i
x

K

d dd ddW
K B A B dx

dx dx dx dx dx

ϕ ϕϕ ϕ
ϕ ϕ

=

    = + +      
∑∫ �  (2.14b)            

 

(1) (1)(2) (2)
(21) (2) (1)

11 31 55

1

b

a

Mx
j jIJ IKJ JI JIi iK

ij i j
x

K

d dd ddW
K B A B dx

dx dx dx dx dx

ϕ ϕϕ ϕ
ϕ ϕ

=

   = + +      
∑∫ �  (2.14c) 

 

(2)(2)
(22)
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1 1

1

2

b

a

M Mx
jIJ IJKL iK L

ij
x

K L

dddW dW
K D dx

dx dx dx dx

ϕϕ

= =

 =    ∑∑∫  

 

(2)(2)
(2) (2)

13 31

1 1

1

2

b
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M Mx
jIKJ JKIiK K

j i
x

K K

dddW dW
B B dx
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ϕϕ
ϕ ϕ� �

= =

       + +           
∑ ∑∫  

 

(2)(2)
(2) (2)

33 55
ˆb
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x
jIJ IJ i

i j
x

dd
A D dx

dx dx

ϕϕ
ϕ ϕ

 
 + + 
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∫  (2.14d) 

 

and 

 



 21

 

( )

( )

( )

(1)

1 (1)

( ) 1

( )

0 2,3, , 1

b
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b

a

x

b i
x

x
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i t i
x

f x dx I

F f x dx I N
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ϕ

ϕ

 == = = −

∫

∫

�

 (2.15a) 

 

( )

( )

( )

(2)

2 (2)

( ) 1

( )

0 2,3, , 1

b

a

b

a

x

b i
x

x
I

i t i
x

q x dx I

F q x dx I M

I M

ϕ

ϕ

 == = = −

∫

∫

�

  (2.15b) 

 

Note that the coefficient matrices[ ](12)
K , [ ](21)

K  and [ ](22)
K contain nonlinearity in such 

a way that they are functions of the unknown ( )W x , also note that the finite element 

stiffness matrix is unsymmetric because [ ] [ ](12) (21)
T

K K≠  for the nonlinear case [63].  

The equations (2.13a) through (2.15b) are used to compute the nonlinear 

responses based on the direct iteration scheme. The direct iteration converges if the 

nonlinearity is not very prominent but it tends to diverge if the nonlinearity is severe. 

Divergence is more likely for hardening type nonlinearity [63]. In this study, another 

numerical iteration scheme known as the Newton-Raphson method is employed to cover 

hardening types of nonlinear problems as well. The Newton-Raphson method makes use 

of the residual vector of the finite element equations (2.13a), (2.13b) and its Taylor’s 

series about the solution from the previous iteration. Here the details of the Newton-

Raphson method are omitted and, instead, the components of the tangent matrix[63] for 

the nonlinear layer-wise beam model are listed as follows 



 22

 

 

(1)(1)
(11) (1) (1)

11 55

b

a

x
jIJ IJ IJi

ij i j
x

dd
T A A dx

dx dx

ϕϕ
ϕ ϕ

  = +   
∫  (2.16a)   

 

(2) (2)(1) (1)
(12) (2) (1)

11 13 55

1

b

a

Mx
j jIJ IJK IJ IJi iK

ij j i
x

K

d dd ddW
T B A B dx

dx dx dx dx dx

ϕ ϕϕ ϕ
ϕ ϕ

=

   = + +      
∑∫ �  (2.16b) 

 

(1) (1)(2) (2)
(21) (2) (1)

11 31 55

1

b

a

Mx
j jIJ IKJ JI JIi iK

ij i j
x

K

d dd ddW
T B A B dx

dx dx dx dx dx

ϕ ϕϕ ϕ
ϕ ϕ

=

   = + +      
∑∫ �  (2.16c) 

 

(2)(2)
(22)

11

1

b

a

Nx
jIJ IJK iK

ij
x

K

dddU
T B dx

dx dx dx

ϕϕ

=

 =    ∑∫  

 

(2)(2)

11

1 1

3

2

b

a

M Mx
jIJKL iK L

x
K L

dddW dW
D dx

dx dx dx dx

ϕϕ

= =

 +    ∑∑∫  

 

(2) (2)(2)
(2)

13 31

1 1

b

a

M Mx
j jIJK JKIi K

K i
x

K K

d dd dW
B W B dx

dx dx dx dx

ϕ ϕϕ
ϕ� �

= =

       + +           
∑ ∑∫

 

(2)(2) (2)
(2) (2) (2)

13 33 55

1

b

a

Mx
jIKJ IJ IJi iK

j i j
x

K

dd ddW
B A A dx

dx dx dx dx

ϕϕ ϕ
ϕ ϕ ϕ�

=

   + + +      
∑∫ . (2.16d) 

 

Unlike the unsymmetric coefficient matrix in the direct iteration method, the 

tangent stiffness matrix is symmetric for the nonlinear case. 

 

2.3 Numerical Examples 

To demonstrate the accuracy of solutions using LWT, a simply supported laminated 

beam with [0 / 90 / 0]  lay-up subjected to sinusoidally distributed transverse load is 

considered. Since an exact elasticity solution based on the linear strain fields is available 
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for this example problem [64], the solutions from the linear finite element models based 

on all three different beam theories can be compared. One-half of the simply supported 

laminated beam is modeled using LWT, EBT, and TBT imposing the symmetry 

condition of rotation being zero at the center of the beam. The meshes in the vicinity of 

the boundaries are gradually refined so that the Gauss points at which the stresses are 

computed are close enough to the end points.  Also, the number and the length of 

elements of LWT, EBT and TBT are chosen in such a way that the Gauss points are 

same at which the stress is computed. A total 16 Lagrange quadratic beam elements are 

used for LWT and TBT while 32 Hermite cubic beam elements are used for EBT. As for 

the approximation of the displacement fields through the thickness in the model of LWT, 

two numerical layers per each physical layer are modeled using Lagrange quadratic 

interpolation functions for  IΦ  and IΨ  in equations (2.3a)-(2.3c). Not to mention, the 

finite element models based on ESL theories are incapable of representing the layer-wise 

kinematics of the laminated beam through the thickness (height). 

The material properties of the unidirectional fibrous graphite/epoxy composite 

are taken as used by Pagano [64]: 

 

   6

1 25 10E = × psi           6

2 3 1 10E E= = × psi 

   6

12 13 0.5 10G G= = × psi      6

23 0.2 10G = × psi 

     12 13 23 0.25ν ν ν= = = . 

 

Fig. 2.2 (a) shows nondimensional transverse deflections versus the length-to- 
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thickness ratio and (b) displays the ratio of transverse deflections of each beam theory to 

the exact solutions. As can be seen from Fig. 2.2 , the LWT solution is in excellent 

agreement with the exact solutions in the range of length-to-thickness ratios considered. 

For the thick beams, namely, when the length-to-thickness ratio of the laminated beam is 

small, the ESL solutions are underestimated values compared to the LWT solutions. 

Especially, the EBT presents a poorer solution than the TBT does. However, as the beam 

gets thinner and longer, or as the length-to-thickness ratio increases, both the ESL 

solutions and the LWT solutions converge to the same solution. 

The stresses through the thickness of the beams are shown in Fig. 2.3 through 2.5 

for the linear case. The stresses are obtained at the reduced Gauss points closest to the 

position where each stress component reaches a maximum value. All the stresses 

obtained from the finite element models using LWT show very close agreement with the 

exact elasticity solutions whereas the ESL solutions considerably deviate from the exact 

elasticity solutions for the thick beam ( / 4L h= ). It is noted that the transverse stress 

zzσ  is not available for the ESL beams and even the shear stress xzσ  cannot be obtained 

from the EBT due to the kinematic assumption of the theory. In contrast to the limitation 

of the ESL beams, the finite element model derived using the LWT is capable of 

yielding all three in-plane stresses as well as the deflection of the laminated beam with 

an excellent accuracy.    



 25

0

1

2

3

1 10 100 1000

N
o

n
d

im
e
n

s
io

n
a
l 

d
e

fl
e

c
ti

o
n

 (
w

)

L/h

Exact

LWT

EBT

TBT

 

(a) 

0.0

0.2

0.4

0.6

0.8

1.0

1 10 100 1000

W
F

E
M
/W

E
X

A
C

T

L/h

LWT

EBT

TBT

 

(b) 

 

Fig. 2.2. Normalized transverse deflections of simply supported [0 / 90 / 0]  laminated 

beams subjected to sinusoidally distributed transverse load (a) 
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Fig. 2.3. Nondimensional axial stress 
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Fig. 2.4. Nondimensional transverse stress 
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Fig. 2.5. Nondimensional shear stress 
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CHAPTER III 

TRANSVERSE CRACKS 

 

3.1 Transverse Cracking in Laminated Beams 

In the current chapter, the transverse cracks in laminated beams are treated as a localized 

damage in the cracked ply, and a numerical computation will be adopted to determine 

the damaged ply’s homogenized material stiffness. A typical unit cell of the damaged 

laminate is taken from one transverse crack to the next one under the assumption of 

uniform distance between the adjacent cracks.  

 

3.1.1 Stiffness Reduction Scheme in Mesoscale 

One of the main difficulties of using Talreja’s model is that the material constants used 

to evaluate the damage effects are determined by experimental data, and typically, the 

material constant associated with the change in the shear modulus cannot be determined 

due to large uncertainty in the measurement [65]. To construct a complete constitutive 

equation of the damaged material, Thionnet et al. [22] evoked the conventional laminate 

plate theory in which the resultant homogenized material stiffness coefficients of the 

laminate are described as the superposition form of the material stiffnesses of the plies. 

In their work, the components of the homogenized material stiffness coefficients of the 

cracked ply have been derived on the cross-ply laminate. However, layers with any angle 

θ  in the [0 / ]m nθ  configurations are applicable to determining homogenized material 

stiffness coefficients of the cracked θ �  ply in the laminate. Thus, 
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where the superscripts D, H, 0 and θ refer to the cracked ply, the total homogenized 

laminate, 0-degree and 90-degree ply, respectively (see Fig. 3.1). Also,  

 

 
D

D t
r

h
=  (3.2a) 

 
0

0 t
r

h
=  (3.2b) 

 
t

r
h

θ
θ = . (3.2c) 

 

Here, a scalar damage variable is introduced to represent the damage state at a 

certain moment during the process of multiplication of the number of cracks, and it is 

defined using the geometry of Fig. 3.1 (a) as  
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 D
t

l

θ

=  (3.3) 

 

where l  is the length of the unit cell of the damaged laminate. The scalar damage 

variable D is often referred to as the normalized crack density. The normalized crack 

density will be an appropriate measure of the damage if the homogenized material 

stiffness coefficients of the damaged laminate vary with the change of D. 

 

 

 

 

   

(a)                                                              (b)    

 

Fig. 3.1.  Multiscale finite element model of [90 / 0]s  laminated beam (a) mesoscale 

model including cracks (b) homogenized macroscale model 
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The total homogenized constitutive equation for the unit cell of a laminated beam 

that includes the cracked plies can be written  
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. (3.4)                                     

 

If the homogenized material stiffness coefficients of the damaged laminate 
H

ijC  

are known, the homogenized material stiffness coefficients of the cracked ply for a given 

damage state D are determined from equation (3.3). Yet, 
H

ijC  are the unknowns and 

should be determined by a proper numerical simulation.  

In order to identify 
H

ijC , the following four boundary conditions are imposed to 

the model (a) for one value of the damage variable D, 

 

 1 1 2) , 0
ci ε ε ε= =  (3.5a) 

 1 1 2 2) ,c cii ε ε ε ε= =  (3.5b) 

 2 2) ciii ε ε=  (3.5c) 

 6 6) civ ε ε=  (3.5d) 

 

where icε  represent arbitrary constants. Since the model (a) of Fig. 3.1 contains physical 

discontinuities inside the 90�  ply, the strains and the stresses obtained from this model 
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are not unifrom. Hence, the strains and the stresses should be homogenized so that they 

can represent the equivalent values of homogenized material of the model (b). Using the 

homogenized strains and stresses computed from the unit cell model, the total 

homogenized material stiffness coefficients are given as 
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Substituting 
H

ijC  into (3.1a)-(3.1d) yields the homogenized material stiffness coefficients 

of the cracked ply.  

Additionally, the effective elastic moduli and Poisson’s ratio of the cracked 

material can be extracted from the homogenized material stiffness coefficients of the 

associated ply as 
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where the superscript D denotes the damaged ply and the subscripts are not referring to 

the laminate structure’s direction but referring to the material direction of the 

transformed composite layer. 

 

3.1.2 Damage Implementation on Bending Beam in Macroscale      

Once the relation between the normalized crack density and the material stiffness 

coefficients is obtained, the homogenized material stiffness coefficients of the cracked 

ply for a given damage state can be used for the damaged beam bending analysis. 

Identifying the stiffness reduction of the cracked ply enables the effect of transverse 

cracks to be included in the bending analysis of the laminated composite beam. An 

assumption is made to simplify the problem in the macroscale beam bending analysis: a 

beam element that reaches a critical strain value is assumed to be fully cracked over the 

entire element with a certain normalized crack density D .  Therefore, the material 

properties of the element showing the critical strain will be replaced by the homogenized 

values of the cracked ply which has been prepared in the mesoscale analysis. 
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3.2 Numerical Results and Discussion 

A finite element model composed of membrane elements has been used to identify 
H

ijC  

in [22, 23]. In the present study, the layer-wise laminated beam model will be applied by 

taking advantage of the excellent accuracy of the solutions from LWT, as shown in the 

previous section. As demonstrated in the previous section, the layer-wise laminated 

beam model is completely suitable for a mesoscale unit cell model with a small length-

to-thickness ratio as well as the macroscale beam structure with a large length-to-

thickness ratio.  

Two finite element models using the layer-wise laminated beam theory are 

depicted in Fig. 3.1. The model (a) of Fig. 3.1 is the numerical unit cell in the mesoscale 

and the model (b) of Fig. 3.1 is the homogenized laminated beam in the macroscale 

which will be utilized to analyze the bending behavior of the damaged beam. Naturally, 

two steps of numerical simulations are carried out according to the view of multi-scale 

approach. At the first step of numerical simulation, a set of boundary conditions in 

equation (3.5a)-(3.5d) are imposed on the mesoscale unit cell model (a) of Fig. 3.1 to 

compute the stresses and eventually
H

ijC  are determined. Once 
H

ijC  are known, the 

cracked ply’s reduced material stiffness coefficients are computed from equation (3.1a)-

(3.1d). The second numerical computation step to analyze the bending behavior of the 

damaged beam is performed with the macroscale beam model (b) of Fig. 3.1 by 

replacing the material properties of the cracked plies with the homogenized values c

ijC  

which are given in the first numerical simulation step.  
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3.2.1 Mesoscale Analysis 

The reduced material stiffness coefficients of a unit cell are computed for the same 

graphite/epoxy composite as chosen in the former section but the laminate consists of 

[90 / 0]s  lay-up. The half part of the unit cell is modeled with eight quadratic beam 

elements using symmetric boundary conditions and each physical layer of the unit cell is 

interpolated by two quadratic Lagrange interpolation functions through the thickness. 

The lengths of the beam elements are gradually refined in the region which is close to 

the crack. Following the procedure explained with equations (18) through (20), the 

homogenized material stiffness coefficients of the total laminate for the same laminate 

configuration is obtained and plotted in Fig. 3.2. It is noted in this fig. that the ratio of 

the homogenized material stiffness coefficient to the virgin material stiffness coefficient 

of the total laminate gets smaller as the crack density is larger.   
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Fig. 3.2. Homogenized material stiffness coefficients of the total [90 / 0]s  laminate 
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Fig. 3.3.  Homogenized material stiffness coefficients of the cracked ( 90� ) ply in 

[90 / 0]s  laminate 
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Fig. 3.4. Elastic moduli and Poisson’s ratio reduction of the cracked ply in [90 / 0]s  

laminate 
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The homogenized material stiffness coefficients of the cracked ( 90� ) ply are 

computed by making use of equation (16) from the homogenized material stiffness 

coefficients of the total laminate. Fig. 3.3 displays the decrease of material stiffness 

coefficients in the cracked ply with increasing the crack density. Note that the material 

direction of the 90�  ply is marked in the graph so that 22

D
C  indicates the stiffness 

coefficient in the direction that is parallel to the fiber direction of the 0� ply.  

The effective engineering constants, that is, Young’s moduli ( 1

D
E , 2

D
E ), shear 

modulus ( 12

D
G ), and Poisson’s ratio ( 12

Dν ) of the cracked ply are shown in Fig. 3.4. It is 

worth pointing that the effective Young’s modulus in the axial direction 1

D
E  of the 90�  

ply changes very little whereas the modulus in the transverse direction 2

D
E  is reduced 

drastically as the crack density increases. This result matches the observation reported in 

the literature that the presence of transverse cracks does not affect the effective Young’s 

modulus along the fibers in the cracked lamina [66]. 

 

3.2.2 Macroscale Analysis 

Having the effective elastic moduli and Poisson’s ratio of the cracked lamina facilitates 

the analysis on the bending behavior of transversely cracked laminated beams. Here, the 

laminated beam is a macroscale structure and the effect of cracks in the individual 

lamina is treated as homogenized material characteristics in the cracked lamina. Again, 

the laminated beam is modeled with the finite elements developed from LWT. Fig. 3.5 

presents the configuration of the clamped-clamped boundary conditions and the load 



 39

applied to the laminated beam. The clamped boundary conditions at both ends of the 

beam are chosen so that the effect of nonlinearity in LWT can be prominent. Since the 

geometric symmetry of the beam is obvious, one half of the full length of beam is 

modeled using symmetry boundary condition at / 2x L= . Total 50 linear elements 

along the beam length and 4 quadratic interpolation functions through the thickness are 

used. The uniformly distributed load 0q  is applied and a constant load increment q∆ is 

added at every load step until the uniformly distributed load reaches 1q  so that the 

composite laminated beam will carry increasingly varying loads and the transverse 

cracks will start forming in the 90�  lamina. The critical load of forming the transverse 

cracks is determined by the critical axial normal stress at which the composite material 

fails. When the maximum stress in a 90�  lamina reaches the critical stress, the material 

stiffness coefficients of the lamina in the associate finite element is replaced with the 

homogenized damaged material stiffness coefficients. The length of a single finite 

element is chosen such that the normalized crack density equals one, which is assumed 

to be a crack saturation state. That is, the 90�  lamina in an element of which the 

maximum stress gets to the critical stress is considered as the fully cracked material and 

thus, no more transverse cracks can form in the same lamina of the same element.    

The sequential progress of cracked finite element according to increasing load is 

depicted in Fig. 3.6. The area filled with black color represents the cracked element in 

the lamina. The first crack appears at the clamped end and the cracked elements are 

multiplied from the clamped end to the center of the beam. Then, the cracks near the 

center of the beam start developing and they progressed toward the clamped end. 
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Fig. 3.5.  Macroscale [90 / 0]s  laminated beam model under a uniformly distributed load 

with clamped-clamped boundary conditions using geometric symmetry 

 

 

 

 

Fig. 3.6.  The multiplication of cracks in a clamped-clamped [90 / 0]s  laminated beam 

subjected to a uniformly distributed load  
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The maximum transverse deflection at the top surface of the center of the beam is 

plotted at each load step in Fig. 3.7 and Fig. 3.8 presents deformed shapes of the 

laminated beam under bending when the load 0 20q = (lb/in) where many elements in 

the model have damaged. The damaged bending beams show larger transverse 

deflections as expected. It can be also seen that the effect of transverse cracks in the 90�  

ply is more prominent for the linear beam than the nonlinear case. 
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Fig. 3.7.  Transverse deflection ( , )
2 2

L h
w  versus the applied load of a clamped-clamped 

[90 / 0]s  laminated beam  
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Fig. 3.8.  Transverse deflection ( , )
2

h
w x  under 4

oq = (lb/in) along the length of a 

clamped-clamped [90 / 0]s  laminated beam  

 

 

However, the nonlinear curve diverges from the linear curve before the linear 

beam is damaged, which implies that the nonlinearity develops before the cracks start 

forming in the bending beam. In this case, the bending beam analysis based on linear 

strain fields can result in an erroneous damage prediction, and thus the nonlinear beam 

model is required to take this account.  

The axial normal stress xxσ  on the tensile surface is plotted in Fig. 3.9 and Fig. 

3.10. As shown in Fig. 3.8, the bottom 90�  layer near the clamped end is expected to be 

damaged due to the tensile stress under bending and the top 90�  layer near the center of 

the beam is expected to crack. Thus, the stresses are computed at the nearest Gauss point 

to the bottom surface ( / 2z h=− ) of the clamped end ( 0x= ) in Fig. 3.9 and the top 
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surface ( / 2z h= ) of the center of beam ( / 2x L= ) in Fig. 3.10. In this figure, the 

capacity to carry the axial load in the damaged lamina can be shown and the damage 

seems to diminish it radically. According to these figures, the initial crack is found at the 

clamped end first and the center of the beam is damaged later. The initial crack at the 

clamped end is formed at a relatively low applied load ( 3.16
oq =  for linear beam and 

3.19
oq =  for nonlinear beam) and the linear and the nonlinear beam show almost same 

stress change at this moment because the crack starts forming before the nonlinearity 

appears in the bending beam (Fig. 3.9).  

On the other hand, it can be appreciated from Fig. 3.10 that the nonlinear beam 

sustains a higher applied load before the cracks are formed at the center of the laminated 

beam. Another interesting finding is that the second stress drop is observed in Fig. 3.9 at 

the same applied load of forming cracks at the center of the beam. On the contrary, no 

stress drop is found in Fig. 3.10 when the clamped boundary end is damaged. Only one 

big stress drop is found commonly in the linear and the nonlinear beam when the center 

of the beam itself is damaged. One can draw a conclusion from this observation that the 

damage around the clamped boundary area has little influence on the stress field of the 

center of the beam in an experiment on damaged laminated beam under bending. 
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Fig. 3.9.  Axial stress at the clamped end (0, )
2
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σ −  versus the applied load in a 

clamped-clamped [90 / 0]s  laminated beam  
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Fig. 3.10. Axial stress at the center of the beam ( , )
2 2

xx

L h
σ  versus the applied load in a 

clamped-clamped [90 / 0]s  laminated beam  
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Figs. 3.11 through 3.13 show the stress distributions through the thickness of the 

laminate near the center of the beam under the applied load 20
oq =  (lb/in). In Fig. 3.11, 

the axial normal stress is reduced through the thickness when the damage is considered 

in the laminated beam. The damaged 90�  ply shows little capacity to carry the axial load. 

More importantly, the neutral axis, at which the axial normal stress 0
xxσ = , lies 

departing from 0z=  axis for the nonlinear beam case whereas the linear beam shows a 

symmetric stress distribution about 0z=  axis.  
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Fig. 3.11.  Axial stress distribution ( , )
2

xx

L
zσ  through the thickness of a clamped-

clamped [90 / 0]s  laminated beam  

 

 

Considering that the cracking starts after the kinematic nonlinearity develops, the 

nonlinear beam model is suitable for this problem because its capability to capture the 
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shift of neutral axis to the compressive side under a large deformation appears to give 

more practical solutions. 

Fig. 3.12 displays the transverse normal stress distribution through the thickness 

The bending beam shows a large compressive stress in the 90�  plies when the damage is 

taken into account although the stress change in the core ( 0�  plies) of the laminate is not 

noticeable.   
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Fig. 3.12. Transverse stress distribution ( , )
2

zz

L
zσ  through the thickness of a clamped-

clamped [90 / 0]s  laminated beam 

 

 

The shear stress distribution through the thickness is shown in Fig. 3.13. The 

significant change of shear stress at the center of the beam is not found when the effect 

of damage is imposed in the clamped-clamped model. 
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Fig. 3.13. Shear stress distribution ( , )
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xz

L
zσ  through the thickness of a clamped-

clamped [90 / 0]s  laminated beam 
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CHAPTER IV 

DELAMINATION ANALYSIS USING THE LAYER-WISE THEORY 

 

4.1. Outline 

A beam model using layer-wise theory was formulated and implemented in a finite 

element model to analyze delamination phenomena in laminated composite beams. The 

Heaviside step function was adopted to express the discontinuous interlaminar 

displacement field of the delaminated layer. To verify the solutions obtained from the 

numerical analysis, a benchmark test was performed by comparing with the solutions 

available in the literature.   

  

4.2. Formulation 

4.2.1 Layer-wise Theory with Heaviside Step Function  

The total displacement fields of the laminated beam are assumed to be written as 

 

 ( , ) ( , ) ( , )LWT DELu x z u x z u x z= +  (4.1a) 

 ( , ) 0v x z =  (4.1b) 

 ( , ) ( , ) ( , )LWT DELw x z w x z w x z= +  (4.1c)  

 

where LWT
u  and LWT

w  are the longitudinal and the transverse displacement fields using 

the layer-wise theory expressed as 
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1

( , ) ( ) ( )
N

LWT I

I

I

u x z U x z
=

=∑ Φ  (4.2a) 

 
1

( , ) ( ) ( )
M

LWT I

I

I

w x z W x z
=

=∑ Ψ . (4.2b) 

 

In equations (4.2a)-(4.2b), 
IΦ  and 

IΨ  are generally different 1-D Lagrangian 

polynomials with 
0

C  continuity across the layers so that the strain field through the 

thickness can be discontinuous and that, in turn, the stress field can have the possibility 

to be continuous.  

On the other hand, 
DEL

u  and 
DEL

w  in equations (4.1a) and (4.1c) denote the 

discontinuous longitudinal and transverse displacement due to delamination, 

respectively, which can be expressed as  

 

 
1

( , ) ( ) ( )
ND

DEL D I

I

I

u x z U x H z
=

=∑  (4.3a) 

 
1

( , ) ( ) ( )
ND

DEL D I

I

I

w x z W x H z
=

=∑  (4.3b) 

 

where ND  indicates the number of delaminated interfaces and ( )IH z  is defined using 

the Heaviside step function such that 

 

 
1 ,

ˆ( ) ( )
0 ,

I I
z z

H z H z z
z z

µ

µ
µ

 ≥= − = <
. (4.4)  
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It should be noted that the Ith nodal values of  ( , )u w  are the combination of 

( , )I IU W  and ( , )D D

I IU W . 

To accommodate moderately large deformations, the von Kármán type nonlinear 

strains are employed as follows 

 

 

2
1

2
xx

u w

x x
ε

 ∂ ∂ = +   ∂ ∂
 

 
1 1

( ) ( )
( ) ( )

DN ND
I II I

I I

dU x d U x
z H z

dx dx= =

= +∑ ∑Φ  

 
1 1

( ) ( )1
( ) ( )

2

DM ND
I II I

I I

dW x d W x
z H z

dx dx
Ψ

= =

  + +   
∑ ∑  

 
1 1

( ) ( )
( ) ( )

DM ND
J JJ J

J J

dW x d W x
z H z

dx dx
Ψ

= =

  × +   
∑ ∑  (4.5a) 

 
1

( )
( )

IM

zz I

I

w d z
W x

z dz
ε

Ψ

=

∂
= =
∂ ∑  (4.5b) 

 xz

w u

x z
γ

∂ ∂
= +
∂ ∂

 

1 1 1

( ) ( )( )
( ) ( ) ( )

DIM N ND
I II I

I

I I I

dW x d W xd z
z U x H z

dx dx dx

Φ
Ψ

= = =

= + +∑ ∑ ∑  (4.5c) 

 0
yy xy yzε γ γ= = = . (4.5d)  
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For the kth orthotropic lamina, the reduced stresses can be obtained from the 

plane strain using the following constitutive equations, 

 

 

( )( ) ( )

11 13

31 33

55

0

0

0 0

kk k

xx xx

zz zz

xz xz

C C

C C

C

σ ε

σ ε

σ γ

                  =                      

 (4.6) 

 

where 
( )k

ijC  are the transformed elastic coefficients of which are symmetric for 

orthotropic materials. 

The governing equations of the layer-wise beam depicted in Fig. 2.1 are derived 

from the principle of virtual displacements, 

 

 0 U Vδ δ= +  (4.7) 

 

where the virtual strain energy Uδ and the virtual work done Vδ  are given by 

 

 ( )2

2

h
b

h
a

x

xx xx zz zz xz xz
x

U dzdxδ σ δε σ δε σ δγ
−

= + +∫ ∫  (4.8a) 

 ( )2 2
( ) ( , ) ( ) ( , )

b

a

x
h h

b t
x

V f x u x f x u x dxδ δ δ=− − +∫   

 ( )2 2
( ) ( , ) ( ) ( , )

b

a

x
h h

b t
x

q x w x q x w x dxδ δ− − +∫ . (4.8b) 
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Applying the stress-strain relations in equation (4.6) and strain-displacement 

relations in equations (4.5) to (4.8a) and (4.8b), the virtual energy and the virtual work 

done can be described in terms of the nodal displacements as follows 

 

1 1 1

b

a

N N Mx
I I IJ I IJI I I
xx x I xx z I x

x
I I J

dWd U d W d W
U N Q U N Q W Q

dx dx dx dx

δ δ δ
δ δ δ

= = =

     = + + + +         
∑ ∑ ∑∫ �  

 
1 1

b

a

DM NDx
D IJ JI

xx
x

I J

d Wd W
N dx

dx dx

δ

= =

+ ∑∑∫  

 
1 1 1

ˆb

a

DD DND M NDx
D JI D IJJ JI I

xx xx
x

I J J

dW d Wd W d W
N N dx

dx dx dx dx

δ δ

= = =

  + +   
∑ ∑ ∑∫  

 
1 1

b

a

D DND NDx
D I D II I

xx x
x

I I

d U d W
N Q dx

dx dx

δ δ

= =

  + +   
∑ ∑∫  (4.9a) 

( ) ( )1 1

b b

a a

x x

b t N b t M
x x

V f U f U dx q W q W dxδ δ δ δ δ=− + − +∫ ∫  (4.9b) 

 

where  

 

 11 11 13 11

1 1 1 1 1

1

2

DN M M M ND
I IJ IJK IJ D IJJ J JK
xx J

J J K J J

dU dW d UdW
N A B A W A

dx dx dx dx
�

= = = = =

= + + +∑ ∑∑ ∑ ∑  

 11 11

1 1 1 1

1

2

DD DM ND ND ND
D IJK D IJKJ JK K

J K J K

dW d Wd W d W
B B

dx dx dx dx= = = =

+ +∑∑ ∑∑  (4.10a) 

 11 11 13 11

1 1 1 1 1

1 ˆ
2

DN M M M ND
IJ KIJ IJKL IJK D IJKK K L K
xx K

K K L K K

dU dW dW d U
N B D B W B

dx dx dx dx
�

= = = = =

= + + +∑ ∑∑ ∑ ∑  
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 11 11

1 1 1 1

1

2

D D DM ND ND ND
D IJKL D IJKLK L K L

K L K L

dW d W d W d W
D D

dx dx dx dx= = = =

+ +∑∑ ∑∑  (4.10b) 

 11 11 13 11

1 1 1 1 1
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J J K J J
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 11 11

1 1 1 1

1ˆ̂

2

DD DM ND ND ND
D JIK D IJKJ JK K

J K J K

dW d Wd W d W
B B

dx dx dx dx= = = =

+ +∑∑ ∑∑  (4.10c) 
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 11 11
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1

2

D D DM ND ND ND
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K L K L
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D D

dx dx dx dx= = = =
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 11 11 13 11

1 1 1 1 1
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K K L K K
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 11 11

1 1 1 1
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2
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D KIJL D IJKLK L K L

K L K L

dW d W d W d W
D D

dx dx dx dx= = = =
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 55 55 55
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�� �
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 55 55 55
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and 
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1 ( )

1

k

k

Ne z
D IJKL k I J K L

ij ij
z

k

D C H H H H dz
+

=

=∑∫ . (4.11y) 

 

In euqtions (4.11a)-(4.11y), Ne  is the number of physical layers in the laminate 

and the laminate stiffness coefficients with three or four superscripts are introduced due 

to the nonlinearity of von Kármán type strain. The superscript D  in front of the laminate 

stiffness coefficients indicates the terms induced by delamination. 

 

4.2.2 Finite Element Model 

The displacement fields (4.2a)-(4.3b) are interpolated by appropriate approximation 

functions in order to represent a finite element model for a layer-wise beam as follows 
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( ) ( )
p

j

I I j
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U x U xϕ
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=∑  (4.12a) 

 (2)

1
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q

j

I I j
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W x W xϕ
=

=∑  (4.12b) 

 (3)

1

( ) ( )
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D D j

I I j

j

U x U xϕ
=

=∑  (4.12c) 

 (4)

1

( ) ( )
s

D D j

I I j

j

W x W xϕ
=

=∑  (4.12d) 

 

where p and q  are the number of nodes per 1-D element used to approximate the 

longitudinal and transverse deflections, respectively, and r and s  are the number of 
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nodes per 1-D element used to approximate the discontinuous longitudinal and 

transverse deflections due to delamination, respectively. 
j

IU , 
j

IW , 
D j

IU and 
D j

IW  are the 

displacement values at the jth node along the longitudinal ( x ) direction of Ith beam 

element. The interpolation functions 
( )m

jϕ  are the 1-D Lagrangian polynomials with 

respect to the longitudinal and transverse deflections at the jth node of each beam 

element.  

Substituting the approximated displacement fields (4.12a)-(4.12d) in the 

longitudinal direction and their variational forms into the energy equation (4.9a) and 

(4.9b) yields the finite element equations for an element as 
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and 
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Note that the coefficient matrices contain nonlinearity in such a way that they are 

functions of the unknowns ( )U x , ( )W x , ( )DU x  and ( )DW x .  

The equations (4.13) through (4.15b) are used to compute the nonlinear 

responses based on the direct iteration scheme. The solution obtained from direct 

iteration converges if the nonlinearity is not very prominent but it tends to diverge if the 

nonlinearity is severe. Divergence is more likely for hardening type nonlinearity. In this 

study, the nonlinearity is strongly involved in the formulation due to the von Kármán 

type strain field. Thus, another numerical iteration scheme known as the Newton-

Raphson method is employed. The Newton-Raphson method makes use of the residual 

vector of the finite element equations (4.15a) and (4.15b), and its Taylor’s series about 

the solution from the previous iteration. Here, the details of the Newton-Raphson 
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method are omitted and, instead, the components of the tangent matrix for the nonlinear 

layer-wise beam model are listed as follows 
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Unlike the unsymmetric coefficient matrix in the direct iteration method, the 

tangent stiffness matrix is symmetric in the Newton-Raphson method for the nonlinear 

case. 

 

4.3 Numerical Examples 

4.3.1 Mid-plane Delamination 

A laminated beam of [90 / 0 / 90 / 0 ]m n m n s  lay-ups with pre-delamination through the 

width in the mid-plane is considered for an example to demonstrate the accuracy of 

solutions using the current layer-wise theory taking into account delamination 

(LWTDEL). The laminated beam is subjected to three-point-bending and the problem 

definitions are taken from Zhao et al.[67]. The configurations and the boundary 

conditions of the problem are displayed in Fig. 4.1. 
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Fig. 4.1. Configurations of laminated beam under three-point bending 

 

The material properties of NCT-301 graphite/epoxy composite used in this 

numerical example are same as in [67], which are  

 

     1 145E = GPa          2 3 10.7E E= = GPa 

   12 13 4.5G G= = GPa     23 3.6G = GPa 

       12 13 0.3ν ν= =                      23 0.49ν = . 
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The result of the numerical example is shown through the interlaminar shear 

stress distribution near the delaminated mid-plane along the beam length for the case of 

4m n= =  and the static bending load 0q  applied at the beam center. Noting the beam is 

symmetric about the beam center, half of the beam is modeled. The stress values are 

normalized by 0τ  defined as 03 / 4q h  where h  is the total thickness (4mm) of the 

laminated beam. In discretization, 36 linear beam elements are used along the beam 

length direction. Since each angle ply’s thickness is uniform in this case, the physical 4 

layers of each 0�  ply and 90�  ply are modeled as a single numerical layer using one 

quadratic interpolation function through the numerical layer’s thickness direction 

respectively. In the aspect of the numerical solutions, the selective reduced numerical 

integration scheme [63] is used for the transverse shear and transverse normal 

components of the coefficients in equations (4.14a)-(4.14q) and (4.16a)-(4.16q) to avoid 

shear locking. The solutions are obtained at the Gauss points nearest to the mid-plane of 

beam elements along the beam length.   

As can be seen in Fig. 4.2, a very good agreement can be found between the 

solutions of LWTDEL and that of Zhao et al. [67]. The solution based on the linear 

strain fields and the solution of Zhao et al show a symmetric stress distribution about the 

interlaminar crack center, whereas the nonlinear solution of LWTDEL shows an 

unsymmetric stress distribution owing to the hardening effect caused by the nonlinearity 

in strain field.  
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Fig. 4.2. Nondimensionalized interlaminar shear stress 
03 / 4

xz
xz

q h

τ
τ = distribution near 

the delaminated mid-plane along the simply supported beam length 

( ( , 0.014088)xz xτ −  when 0 400 /q N mm= ) 

 

 

Zhao et al. [67] was interested in the concentration of shear stress around the 

interlaminar crack tips but they did not provide other stress components along the beam 

length nor the stress distribution through the thickness direction. Fig. 4.3 and Fig. 4.4 

display the axial normal stress and the interlaminar normal stress distribution along the 

mid-plane of the delaminated beam near the tips of interlaminar crack. The stress 

distributions through the thickness of the linear beams are shown in Fig. 4.5 through 4.7. 
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Fig. 4.3.  Nondimensional axial stress 
0 /

xx
xx

q h

σ
σ =  distribution near the delaminated 

mid-plane along the simply supported beam length ( ( , 0.014088)xx xσ −  when 

0 400 /q N mm= ) 
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Fig. 4.4.  Nondimensional interlaminar normal stress 
0 /

zz
zz

q h

σ
σ =  distribution near the 

delaminated mid-plane along the simply supported beam length 

( ( , 0.014088)zz xσ −  when 0 400 /q N mm= ) 
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Fig. 4.5.  Nondimensionalized interlaminar shear stress 
03 / 4

xz
xz

q h

τ
τ = distribution 

through the thickness of the simply supported beam length ( ( , )xz
x zτ  when 

0 400 /q N mm= ) 
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Fig. 4.6.  Nondimensionalized axial normal stress 
0 /

xx
xx

q h

σ
σ = distribution through the 

thickness of the simply supported beam length ( ( , )xx
x zσ  when 

0 400 /q N mm= ) 
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Fig. 4.7.  Nondimensionalized interlaminar normal stress 
0 /

zz
zz

q h

σ
σ = distribution 

through the thickness of the simply supported beam length ( ( , )zz
x zσ  when 

0 400 /q N mm= ) 

 

 

4.3.2 Free Edge Delamination 

In a number of works [32, 33, 68-71], stress concentration at the free-edge of composite 

laminates was reported. This phenomenon was often attributed to the delamination 

formed from the free-edge of the laminate structure. Many of the free-edge delamination 
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phenomena were investigated under the axial extension load [32, 33, 69, 70]. The 

interlaminar normal and shear stress were commonly pointed as the main contribution to 

onset of the free-edge delamination under the axial load. Some of the researchers studied 

the free-edge delamination under bending loads[68, 71]. Among those, Feraboli and 

Kedward [71] proposed a four-point bending test method to study the interlaminar shear 

strength of the composite laminate with various configurations. They examined the shear 

stress distribution in the composite laminates and observed the interlaminar crack 

forming near the support during the bending test. When the failure was detected, the 

interlaminar shear stress was recorded as the interlaminar shear strength of the 

composite laminates. Here, a stress analysis on the same configuration of composite 

laminates as in Feraboli and Kedward [71] is conducted using LWTDEL.      

The material properties of the carbon fiber reinforced epoxy used in this section 

are as follows 

 

       1 18E = Msi                  2 3 1.5E E= = Msi 

         12 13 0.8G G= = Msi        23 0.6G = Msi 

          12 13 0.3ν ν= =                      23 0.35ν = . 

 

Fig. 4.8 displays the configuration of the composite laminated beam under four-

point bending load as in [71]. The bold letters A, B and C in Fig. 4.8 indicates the 

locations of loading, mid-span between loading and support, and support, respectively. 

The applied forces 
o

q  are 1027.5 /lb in  for the lay-ups of [0]
s
 and 1206.0 /lb in  for 
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[0 / 90]
s , which are equivalent to the experimental values measured as the maximum 

load in [71]. 

 

 

 

Fig. 4.8. Configurations of laminated beam under four-point bending 

 

The dimensional values described in Fig. 4.8 are listed in Table 1.1 for the two 

cases of [0]
s
 and [0 / 90]

s
 lay-up configurations.  

 

Table 1.1. Dimensions of laminated beam under four-point bending 

 

 

S O

S I

q o /2

x

z

a

q o /2

L

h

A B C

( unit = inch )

S I S O L h a width

[0]s 0.5 1.25 1.3 0.139 0.177 0.236

[0/90]s 0.5 1.25 1.3 0.163 0.177 0.284
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Making use of the symmetry condition about the z-axis, 32 linear elements with 

12 numerical layers were modeled in the finite element analysis using LWTDEL. The 

interlaminar shear stress distributions through the thickness computed at the nearest 

Gauss points to the locations A, B and C in Fig. 4.9 are depicted in Fig. 4.10. The 

maximum shear stress was found at the mid-plane of the beam between loading and 

support points.  

Fig. 4.11 displays the shear stress distribution along the beam length evaluated at 

the nearest Gauss points to the mid-plane. The maximum shear stress was found at a 

region near the support and this coincides with the experimental observation of Feraboli 

and Kedward [71] that the interlaminar failure propagated from a region located about 

one thickness away from the support, usually at the axis of symmetry. They also 

suspected that the interlaminar crack initiated from the location showing the maximum 

interlaminar shear stress.  

 

 



 76

 

(a) 

 

(b) 

 

 

Fig. 4.9. Interlaminar shear stress distribution through the thickness ( ( , )
xz i

x zτ ) for the 

lay-ups of (a) [0]
s
 (b) [0 / 90 ]

s
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(a) 

 

(b) 

 

 

Fig. 4.10. Interlaminar shear stress distribution along the beam  ( ( ,0.0033445 )
xz

x hτ ) for 

the lay-ups of (a) [0]
s
 (b) [0 / 90 ]

s
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The maximum shear stress obtained from LWTDEL for [0]
s  lay-ups shows a less 

value than the case of [0 / 90]
s
, mainly due to the lower axial material stiffness in  90�  

plies.  

The graphs of interlaminar shear stress distribution shown in Fig. 4.9 to 4.10 are 

based on the results before the delamination failure occurs in the beam and the values 

show an excellent agreement with the experimental results as well as the numerical 

solutions using three dimensional elements reported in [71]. According to the 

experimental discovery of Feraboli and Kedward [71], the failure occurs suddenly in a 

macroscopically brittle mode. Assuming the initial crack completely propagates toward 

the free-edge, redistribution of the interlaminar shear stress is displayed in Figs. 4.11 to 

4.12, under the same load. From Fig. 4.11, the compressive side of the bending beam 

seems to lose the capacity to carry the shear load near the crack tip after the 

delamination failure. Whereas, the tensile side of the bending beam shows higher 

interlaminar shear stress values through the thickness. A sharp increase of stress at the 

crack tip is commonly seen in Fig. 4.11 and 4.12 for [0]
s
 and [0 / 90 ]

s

�  configurations 

when the interlaminar failure occurs, as expected. 
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(a) 

 

(b) 

Fig. 4.11. Redistribution of interlaminar shear stress through the thickness at the crack 

tip ( ( , )
xz i

x zτ ) for the lay-ups of (a) [0]
s
 (b) [0 / 90 ]

s

�  
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Fig. 4.12. Redistribution of interlaminar shear stress along the beam length 

( ( ,0.0033445 )
xz

x hτ ) due to delamination for the lay-ups of (a) [0]
s

 (b) 

[0 / 90 ]
s

�  
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CHAPTER V 

PROGRESSIVE DELAMINATION 

 

5.1 Fracture Mechanics  

Once the delamination occurs in the composite laminate structure, its growth is predicted 

by the fracture criterion such as the energy required to create the new surface in the 

structure. In the frame work of fracture mechanics, the strain energy release rate is often 

used to judge the growth of the existing crack.  

Using the theorem of minimum potential energy, Griffith[28] proposed the 

condition for a crack to extend by equating the rate of strain energy increase required for 

forming new surfaces with the rate of potential energy of the crack surface. This idea 

inspired a number of researchers to form the concept of the strain energy release rate in 

the fracture mechanics framework. Irwin [72] pointed out that the strain energy release 

rate and the stress intensity factor as fracture parameters. He made use of the method of 

Westergaard [73] to show the singular part of any stress component near the crack tip as 

 

 ( )
1

2
ij ij

GE f
r

σ θ
π

=  (5.1) 

 

where the stress component  
ij

σ  was described by the strain energy release rate G , 

Young’s modulus E, the radius of the location from the crack tip r and a function of  

the angle θ  (see Fig. 5. 1). 
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x

y

r

crack tip

stress measuring point

 θ

 

 

Fig. 5.1. General fracture problem 

 

The stress intensity factor is invoked in his work for the plane stress case, and the 

relationship with the strain energy release rate has been shown as 

 

 
2

K
G

E
=  (5.2) 

 

where K indicates the stress intensity factor. It is shown that Poisson’s ratio ν  has to be 

taken into account for the case of plane strain [74], and thus, 

 

 
2

2(1 )
K

G
E

ν= − . (5.3)  
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More importantly, Irwin postulated the idea of crack closure technique to 

compute the strain energy release rate for Mode I, which turns out 

 

 
0

1
( ) (0)

2
y

v dp G
α

σ α α=∫  (5.4) 

 

where α  is the distance of the virtual crack extension, ( )
y

σ α  is the stress component in 

y-direction at x α=  and (0)v  denotes the deformation of the point at 0x =  in y-

direction(see Fig. 5.2).  
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p

α
virtual crack

 ( )y pσ α −

 ( )v p

 ( )y xσ

 

 

Fig. 5.2. Virtual crack closure technique 
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Since Irwin introduced the virtual crack closure technique, there have been many 

attempts to compute the strain energy release rate by finding the analytical solutions[75-

77]. Paris and Sih [75] summarized the stress distribution near the crack tip for various 

configurations of cracks in 2-D homogeneous materials. They also compared the stress 

intensity factors and its correction factors by giving the solutions of different 

approaches. Fedderson [76] discussed about the analytical solutions for the finite width 

correction of the stress intensity factor( 0/K aσ π ). He compared the various analytical 

solutions side by side in the form of table and considered the solution of Isida [77] as the 

most precise expression. 

 

5.2 Computing Strain Energy Release Rate 

The finite element methods were adopted by some researchers [78-83] to compute the 

strain energy release rate or the stress intensity factors. Some researchers [79, 80] have 

attempted to compute directly from two computations of two configurations with 

different crack lengths and others [78, 81-83] came up with methods to calculate with a 

single computation. In particular, Rybicki and Kanninen [78] modified Irwin’s crack 

closure integral in terms of the nodal forces and   displacements at the crack tip 

elements. They evaluated the strain energy release rate to compute the stress intensity 

factor using 4-node 2-D finite elements. That is,  

 

 
1

( )
2

c c d
G F v v

α
= −    (5.5) 
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where c
v and d

v  represent the y-directional crack opening displacements at nodes c and 

d, respectively, and c
F  is a force in y-direction to hold the nodes c and d together (see 

Fig. 5.3).  

Rybicki and Kanninen [78] suggested that 
c

F  be evaluated as the y-directional 

force at the node e for the case of the same element lengths of α  and l  in Fig 5.3. Later 

on, Raju [83] employed the higher order and singular elements for the crack tip elements 

to improve the accuracy of solutions. 

 

c

d
e

α l
 

 

Fig. 5.3.  Fintie elements and nodes at the crack tip 

 

In the current work, the computation of strain energy release rate based on the 

virtual crack closure technique is taken into account by applying to the 

beamfiniteelement using the layerwise theory. Since the layerwise beam model is able to  
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describe the full 2-D behaviors of the beam structure in terms of the longitudinal and 

transverse displacements, the virtual crack closure method is completely applicable to 

give the nodal forces and displacements that are required to compute the strain energy 

release rate given in (5.5) 

The displacement fields in the layer-wise beam model are approximated by the 

quadratic shape functions, and following Raju[83], the strain energy release rate can be 

accordingly computed as 

 

  ' '

1
( ) ( )

2
I yi m m yj n n

G F v v F v v = − − + − ∆
 (5.6a) 

 ' '

1
( ) ( )

2
II xi m m xj n n

G F u u F u u = − − + − ∆
 (5.6b) 

 

where 
I

G  and 
II

G  indicate the strain energy release rate for the fracture Mode I and II, 

respectively, ∆  is the length of the beam element at the crack tip, 
yi

F  and 
xi

F  are the 

forces in y and x direction, respectively at the node i, and 
m

v  and  
m

u  are the nodal 

displacements in y and x direction, respectively at the node m(see Fig. 5.4). From the 

formula given in (5.6a)-(5.6b), the accuracy of the strain energy release rate appears to 

be dependent upon the size of the element as well as the accuracy of the nodal forces and 

displacements. The dependency of the numerical values on the element size will be 

examined in the following section through some examples. 
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Fig. 5.4.  8-node parabolic element ( Raju, 1987) 

 

 

5.3 Numerical Examples for Verification 

5.3.1 Single Edge Crack 

The single edge crack model is depicted in Fig. 5.5 and the length of the crack a is 

varying in the computation from 0.2b to 1.0b while b and L are fixed to be same ( b L= ). 

As for the mesh using the layer-wise beam finite element model, the smallest elements 

are placed at the crack tip and the thickness of the layer which includes the crack face is 

set as same as the smallest element length. The thickness of the layers and the size of the 

elements are varying in the computation in order to see how the numerical values are 

dependent on the mesh size. The quadratic shape functions are used for each beam 

element and also the quadratic approximation functions are used for computing the 

coefficients through the thickness [14].   
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2b

a

2L

σo

σo  

 

Fig. 5.5. Single edge crack model 

 

Table 5.1 compares the results obtained from layer-wise beam finite element 

model with the ones available from the literature. The strain energy release rate has been 

converted to the stress intensity factor using equation (5.2), and again the stress intensity 

factor is nondimensionalized. 

Comparing to the analytical solutions of Gross and Bowie[84], the stress 

intensity factors computed based on the virtual crack closure technique using the layer-

wise beam model shows only less than 6% or 8% of discrepancy,  for all cases of the 

element size at the crack tip. Overall, the numerical values of the present method tend to 

overestimate slightly more than the analytical values except for the case of / 0.2a b = .  

Further, the sensitivity of the stress intensity factor to the finite element size does  

not appear significant.  
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Table 5.1. Finite width corrections of stress intensity factor 
0

K

aσ π
 for a single edge 

crack 

 

 

 

The numerical values show a good agreement with the analytical values within 

5% of error even with the same length for all elements including the crack tip region. 

However the relationship between the crack tip element length ( ∆ ) with the crack length 

ratio to the total length of the model (a/b) is worth studying in order to find a criterion 

for constructing the meshes. When the ratio of /( / )a b∆  is around 0.1, the computed 

values show a good agreement with the results from the literature. Hence, the effort to 

build extremely fine meshes does not seem to be required to obtain satisfying values of 

the strain energy release rate or the stress intensity factor. 

   

5.3.2 Center Crack 

Fig. 5.6 shows the center crack model of a finite strip under plane stress state. In a 

similar way to the single edge crack model, the length of the crack a is varying in the 

computation from 0.1b to 0.5b while b and L are fixed to be same (b=L). 

∆=0.1b ∆=0.05b ∆=0.02b ∆=0.01b ∆=0.001b

0.2 1.14 1.16 1.17 1.17 1.17 1.19 1.20

0.4 1.39 1.40 1.41 1.41 1.42 1.37 1.37

0.6 1.73 1.75 1.76 1.76 1.76 1.66 1.68

0.8 2.18 2.20 2.21 2.21 2.21 2.12 2.14

1.0 2.82 2.84 2.86 2.86 2.86 2.82 2.86

a/b
Virtual Crack Closure Using Layerwise Beam FEM

Gross Bowie
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Fig. 5.6.  Center crack model 

 

Basically the same idea for building meshes as the single edge crack model is employed 

for the center crack model. 

Comparison between the stress intensity factors computed from layer-wise beam 

finite element model with the ones available from the literature [84] is presented in 

Table 5.2.  

The analytical solutions for the center crack in a strip with infinitely long L are 

found in most of the works and the solution of Isida was tabulated in Table 5.2 as the 

representative analytical solution. As for an finite L, Hellen [82] obtained the numerical 

solutions for the case of b L= based on the virtual crack extension method and his 

solutions are compared in Table 5.2. The present analysis shows underestimated values 

relative to the solutions of Hellen by about 4 to 8% except for a/b=0.2. Considering that 
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Table 5.2. Finite width corrections of stress intensity factor 
0

K

aσ π
 for a center crack 

 

 

the numerical solutions in the literature calculated with a different ratio of L/b and they 

are often compared to the analytical solutions which are based on the case of L → ∞ , 

the discrepancy of the present analysis appears to be accurate enough to be used for 

computing the strain energy release rate or the stress intensity factors. In addition, 

underestimation of the stress intensity factor using the virtual crack closure technique 

has been also observed by Raju in his study and his optimized meshes shows about 4% 

discrepancy [83]. The size of the crack tip elements, again, does not appear to affect the 

numerical values drastically when the crack tip element size is relatively small enough. 

In the present study, the optimal size of the crack tip element appears to be 0.1a and the 

smaller element size makes little change in the stress intensity factors.  

 

5.4 Influence of Bending Boundary Conditions 

In many practical cases, a bending test of beam structure is conducted under a transverse 

∆=0.1b ∆=0.05b ∆=0.02b ∆=0.01b ∆=0.001b

0.1 0.90 0.95 0.96 0.96 0.97 1.02 1.00

0.2 0.98 1.00 1.00 1.00 1.01 1.05 1.03

0.3 1.05 1.06 1.07 1.07 1.07 1.15 1.06

0.4 1.14 1.15 1.16 1.16 1.16 1.21 1.13

0.5 1.25 1.27 1.27 1.27 1.27 1.33 1.27

a/b
Virtual Crack Closure Using Layerwise Beam FEM

Hellen Isida
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load with some boundary conditions. The combination of load type and boundary 

condition appears to affect the response of delamination analysis under bending loads. 

Four types of bending tests will be considered to evaluate the influence of boundary 

conditions on the delamination behavior in the composite laminated beams. The beams 

are composed of [90 / 0 ]
m n S

 cross ply laminates and a interlaminar crack with length a  

is assumed to exist at the tip of pre-existing transverse crack (see Fig. 5.7).  
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Fig. 5.7.. Laminated beam with a delamination originated from a transverse crack 
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 The single transverse crack is assumed to be aligned with the z-axis in the 90-degree 

layers on the tensile side of the beam and it is also assumed to run through the width of 

the beam completely. As shown in Fig. 5.6, an interlaminar crack at the interface of the 

cracked 90-degree layer and the adjacent 0-degree layer is assumed to locate 

symmetrically about the z-axis. One can expect to simulate a crack similar to the 

delamination originated from a free edge of the beam under bending.  

Four different boundary conditions are considered to impose bending loads on 

the specimen: a) 3-point bending , b) clamped-ends with center load, c) distributed load 

with simply supported ends and d) 4-point bending (Fig. 5.8). The applied load is given 

to each case of boundary condition in such a way that the maximum bending moment 

along the beam can be the same for all four boundary conditions. For the lay-ups of 

2 2[90 / 0 ]
S

 with the thickness of one ply being 0.5mm, the total thickness of the beam, h 

is 4mm and the length of the beam, L is 150mm. The moment arm S for the case of 4-

point bending is given as 5mm. 

The material properties of the composite are taken from the reference [51] and 

listed as follows 

 

                   1 156E = GPa          2 3 9.09E E= = GPa 

   12 13 6.96G G= = GPa     23 3.24G = GPa 

       12 13 0.228ν ν= =                      23 0.4ν = . 
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Fig. 5.8.  Four boundary conditions (a) 3-point bending (b) clamped-ends with center 

load (c) distributed load with simply supported ends (d) 4-point bending 
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Fig. 5.8. (Continued) 

 

The numerical computation to obtain the strain energy release rate for each 

boundary condition is performed using the LWTDEL code, which has been developed 

based on the layer-wise beam theory including delamination. In the numerical model, 

half of the beam is modeled using the geometric symmetry and the assumption of 

symmetric crack growth.  

 

5.4.1 Role of Bending Moment 

Fig. 5.9 presents the strain energy release rate versus the delamination length for each 

boundary condition. Unlike the axial extension test in which the strain energy release 

rate usually increases and approaches an asymptotic value as the delamination length 

increases[27, 36, 38, 41], the strain energy release rate shows different patterns in the 

bending test according to the boundary condition types.  

For the case of distributed load with simply supported ends and 3-point bending, 

the strain energy release rate keeps decreasing as the delamination length grows. For the 
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case of clamped ends, the strain energy decreases until the delamination length reaches a 

little less than half of the beam length, then it starts increases again. Only for the case of 

4-point bending, the strain energy remains almost constant except for the very short 

delamination length. Based on this observation, the length of the delamination crack 

does not seem to directly contribute to the variation of strain energy release rate. Rather, 

the strain energy release rate is governed by the location of the delamination crack tip at 

which the amount of bending moment is determined by the boundary condition. 
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Fig. 5.9. Strain energy release rate versus nondimensional delamination length 

 

 

From Fig. 5.9, a fact that the strain energy curve pattern resembles the bending 

moment along the beam can be found. As the crack tip moves from the beam center 

toward the beam ends, the bending moment at the position of the crack tip varies and the 
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strain energy release rate is varying proportionally to the bending moment. In particular, 

the bending moment for the case of four-point bending is uniform in between the inner 

supports, which gives the uniform strain energy release rate throughout the range of 

delamination length. In that perspective, the four-point bending test can be seen as a 

method to provide the boundary condition in which the delamination under bending can 

be analyzed without the boundary effect. Another interesting observation in Fig. 5.9 is 

that the maximum value of the strain energy release rate obtained for the clamped ends is 

significantly larger than those of other three boundary conditions even though the 

vertical loads are applied so that the maximum bending moment can be the same for all 

four boundary conditions. 

 

5.4.2 Fracture Modes 

Mixture of fracture Mode I and II in delamination are observed and analyzed in the 

literature[26, 27, 43]. In order to make a distinction between the two modes, the strain 

energy components 
I

G  and 
II

G  are separately computed at a crack tip and then the total 

strain energy release rate G  is obtained by the summation of 
I

G  and 
II

G  as follows. 

 

 
I II

G G G= + . (5.3)  

 

Depending on the configuration of the laminate lay-ups or the loading conditions, 

a predominant mode is considered as the main mechanism to drive the delamination in 

the situation. More often than not, the total strain energy release rate is replaced by the 
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predominant mode’s strain energy release rate[37, 43, 49]. This simplification can be 

made to save the computational effort when the contribution of the other mode is 

negligibly small. To investigate the possibility of applying this simplification to the 

bending case, the following results are discussed. 

For the four boundary conditions given in Fig. 5.8, the fraction of the fracture 

modes to the total strain energy release rate is quantified in Fig. 5.10. As seen in Fig. 

5.10, the fracture Mode I appears to be the main mechanism of the delamination for the 

given situation. Except for the case of clamped ends, 
I

G  commonly takes up about 78% 

of the total strain energy release rate regardless of the delamination length. The 

remaining 22% of the total strain energy release rate can be seen as a contribution of the 

fracture Mode II. In this case, whether 
II

G  is negligible is questionable. The error of 

22% in evaluating the total strain energy release rate to predict the growth of 

delamination can result in a considerable underestimation. Thus, the mixture of Mode I 

and II should be taken into account to compute G  at the delamination crack tip under 

the given bending loads. A similar observation has been made by Murri and Huynn[49]. 

In their work, they tried to find the critical strain energy release rate at which the growth 

of delamination occurs, under different bending test conditions. However, they failed to 

relate the strain energy release rate to the bending moment. More importantly, the 

contribution of fracture Mode II to the total strain energy release rate was 

underestimated and they argued that the critical strain energy release rate could be 

regarded as the value of Mode I. 
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Fig. 5.10. Strain energy release rate fraction of (a) Mode I  (b)  Mode II 
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5.5 Geometric Nonlinearity 

In most of the studies related to the delamination damage, geometric nonlinearity in the 

specimen is neglected. The effect of the von Kármán type nonlinear strain field will be 

examined in this section by comparing the analysis based on the conventional linear 

strain fields. Since the computer code LWTDEL has been developed in a way that the 

nonlinear strain fields can be included in the delamination analysis, the influence of the 

geometric nonlinearity on the interlaminar cracks will be considered. In this study, the 

linear analysis refers to the numerical analysis based on the linear strain fields and the 

nonlinear analysis refers to the one based on the von Kármán type nonlinear strain fields. 

Also, as seen in the previous section, the four-point bending appears to be the boundary 

condition that can simulate the behavior of delaminated beam under the pure bending 

load. Based on these ideas, the lay-ups of 2 2[90 / 0 ]
S

 are employed to model the 

laminated beams and the pre-existing interlaminar crack with length a is assumed at the 

interface of 90-degree and 0-degree on the tension side. 

  

5.5.1 Delamination Growth   

The change of strain energy release rate is presented in Fig. 5.11 as the delamination 

length increases. The solid lines indicate the values computed from linear analysis and 

the dotted lines indicate the results from nonlinear analysis. As seen in the figure, the 

difference between the linear and nonlinear analysis can be hardly found. Taking into 

account the von Kármán type nonlinearity in the delamination growth has little influence 

on the strain energy release rate G  for the given numerical examples.  
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Fig. 5.11.  Strain energy release rate VS delamination growth under pure bending 

 

When the delamination length a is less than 0.05L, the strain energy release rate 

sharply decreases until it reaches a certain bounded value. The interlaminar crack length 

0.05L is also approximately same as twice the thickness of one ply. Wang et al.[38] 

introduced the concept of effective flaw for analysis of the delamination onset in the 

axial tensile test and they made use of the asymptotic value that the strain energy release 

rate reaches, to determine the minimum size of the embedded delamination crack as the 

effective flaw in the analysis. Wang et al. [27] suggested twice the ply thickness as the 

size of effective flaw. The size of crack at which the strain energy release rate reaches a 

certain asymptotic value coincides with the present result under the bending load.  

The primary fracture mode leading the delamination growth can be found in Fig. 

5.12 displaying the strain energy release rate fraction of Mode I and Mode II. Mode I has 

been identified as the primary fracture mode responsible for the delamination with 
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transverse crack in 90-degree layer in the previous section. The strain energy release rate 

fractions remain constant even the interlaminar crack runs more than half of the total 

beam length.  

In order to quantify the role of nonlinearity, if any, developed in the laminated 

beam under bending loads, an attempt is made. The strain energy release rate ratios are 

defined as the ratios of the strain energy release rate from the linear analysis to the strain 

energy release rate from the nonlinear analysis. That is 

 

 
N

L

G
R

G
=  (5.4a) 

 
N

I
I L

I

G
R

G
=  (5.4b) 

 
N

II
II L

II

G
R

G
=  (5.4c) 

 

where the superscript L and N stand for the values from the linear and the nonlinear 

analysis, respectively.  

The strain energy release rate ratios for the two cases of delamination are plotted 

in Fig. 5.13, as a function of delamination length. The strain energy release rate ratio of 

the primary fracture mode is decreasing as the delamination length advances. On the 

other hand, the strain energy release rate ratio of the other fracture mode is increasing 

while the total strain energy release rate ratio is kept almost unchanged. This result 

implies that the nonlinearity is developed in the bending beam as the delamination crack  
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Fig. 5.12. Strain energy release rate fraction VS delamination growth under pure  

bending 
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Fig. 5.13. Strain energy release rate ratio VS delamination growth under pure bending 
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grows, even if the change in the strain energy release rate due to nonlinearity is less than 

5% for each fracture mode. However, the total strain energy release rate is found to be 

nearly unchanged for the effect of nonlinearity during the delamination growth. 

 

5.5.2 Applied Bending Moment 

Fig. 5.14 presents the relationship between the strain energy release rate and the applied 

bending moment when the interlaminar crack length is fixed. Again, the difference 

between the linear and nonlinear analysis appear negligible even when the strain energy 

release rate reaches a considerably high value. The strain energy release rate G  is not 

much affected by including the nonlinearity throughout the whole range of the applied 

bending moment. This result can be related to the previous observation that the total 

strain energy release rate is little changed by the nonlinearity developed in the beam 

even though the strain energy release rate ratios of Mode I and Mode II are slightly 

changed. In that regard, the general perception that the delamination analysis is 

performed using the linear elasticity theory can be justified. 

Fig. 5.15 gives information about the main fracture mode to drive the 

delamination as increasing the applied bending moment by displaying the strain energy 

release rate fraction of Mode I and Mode II. As seen previously, the primary fracture 

mode for the delamination is found to be Mode I throughout the range of applied 

bending moment for a fixed delamination length a=10mm.  
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Fig. 5.14. Strain energy release rate VS applied moment under pure bending (a=10mm) 

 

 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 500 1000 1500

S
tr

a
in

 E
n

e
rg

y
 R

e
le

a
se

 F
ra

ct
io

n

Moment (Nm)

Linear GI/G

Nonlinear GI/G

Linear GII/G

Nonlinear GII/G

 

Fig. 5.15. Strain energy release rate fraction VS applied moment crack under pure  

bending (a=10mm) 
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The contribution of the minor fracture mode to the whole delamination mechanism is not 

negligible. It deserves an attention that the strain energy release rate fraction is nearly 

constant for any value of applied bending moment if the delamination length is fixed. 

The strain energy release rate ratio is plotted in Fig. 5.16. Even though the 

change is small, it can be noticed that the strain energy release rate ratios increase as 

more bending moment is applied to the beam. This is due to the fact that the nodal force 

at the crack tip is increasing as the nonlinearity is introduced in the stiffness. It is worth 

remarking that the minor fracture mode, i.e. Mode II, shows more increase than the 

primary fracture mode, i.e. Mode I, as the applied moment increases. 
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Fig. 5.16.  Strain energy release rate ratio VS applied moment under pure bending 

(a=10mm) 
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Overall, very little geometric nonlinearity in the beam is developed under the 

given bending load until the strain energy release rate reaches a very high value. The 

material used in this analysis is T300/976 graphite-epoxy composite and its critical strain 

energy release rate is reported in the range of 87.5
2/J m  (for Mode I) to 282.6

2/J m  

(for Mode II) [54]. Although the strain energy release rate computed is well above these 

values, the nonlinear analysis shows almost the same G values as the linear analysis. 

Therefore, the interlaminar crack under a pure bending load is expected to grow before 

the applied bending moment gets large enough for the significant geometric nonlinearity 

to be prominent.  
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CHAPTER VI 

DELAMINATION ORIGINATED FROM TRANSVERSE CRACKS  

 

6.1. Outline 

The interactions between the interlaminar cracks and the transverse cracks are examined 

for a cross-ply laminate with various lay-ups under bending loads. The exemplary cross-

ply configurations considered here is [90 / 0 ]
m n S

 where 4m n+ =  and , 1, 2,3m n = . One 

ply thickness, i.e. for m or n 1= , is given 0.1mm in the numerical models throughout the 

analyses. The material is T300/976 graphite epoxy composite and its material properties 

used in the numerical computation are given, following the reference [54], by 

 

                   1 121.3E = GPa          2 3 9.72E E= = GPa 

   12 13 5.58G G= = GPa     23 3.45G = GPa 

       12 13 0.29ν ν= =                      23 0.4ν = . 

 

The outer layers are 90-degree plies in  [90 / 0 ]
m n S

 and only one side of the 90-

degree plies in tensile state is assumed to develop the uniformly distributed transverse 

cracks in it. The interlaminar crack at the interface of the cracked 90-degree layer and 

the adjacent 0-degree layer is assumed to be symmetric about the transverse crack. 

Further, the delamination cracks are also assumed to have the same length at each 

transverse crack tip so that a unit cell can be considered in the model (see Fig. 6.1).  



 109

 

 

 

h

[90  ]m
o

[0  ]n
o

[90  ]m
o

[0  ]no

a a

2d 2d

unit cell
     

z

d

[90  ]m
o

[0  ]n
o

[90  ]m
o

[0  ]n
o

a

x

t

 

 

Fig. 6.1.  Laminated beam of [90 / 0 ]
m n S

 lay-up with delamination originated from 

uniformly distributed transverse cracks under plane strain bending 
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Only half of the unit cell is modeled using the geometric symmetry and the plane 

strain bending load is applied as depicted in Fig. 6.1. The thickness of the transversely 

cracked 90-degree layer is denoted by t. The magnitude of the maximum strain value at 

the top and bottom surface of the laminate is set to 1% in all computation for each 

different lay-up.  

The finite element code LWTDEL based on the layer-wise beam theory is used 

to build the numerical model and to investigate the influence of the two damage modes 

on each other. 

 

 6.2. Influence of Transverse Cracking on Delamination 

6.2.1. Delamination Length, Transverse Crack Density and 90-degree Plies 

The strain energy release rates, G for various transverse crack densities, / 2t d  are 

presented in Fig. 6.2 through Fig. 6.4 as the dimensionless delamination length, 2 /a t  

increases. When the delamination length relative to the cracked 90-degree ply’s 

thickness is very short, the strain energy release rate increases until it reaches a certain 

maximum value. Once the maximum values are achieved, the strain energy release rates 

start decreasing as the delamination length increases. It can be noted that the decreasing 

slope of G curve after its maximum value is varying according to the transverse crack 

density, / 2t d  as well as the number of 90 and 0-egree plies. When the dimensionless 

crack density / 2t d  is low, the strain energy release rate is not significantly affected by 

the growing delamination length after G reaches the maximum, even though the 

magnitude of the strain energy release rate can be recognized to be decreasing slowly. 
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On the other hand, the strain energy release rate shows a rapid decease as soon as 

it gets to the maximum at the high crack densities. Further, the maximum value of strain 

energy release rate itself decreases as the transverse crack density becomes higher. 

A physical meaning of this varying strain energy release rate can be found 

regarding the delamination crack growth hindered by the transverse crack density. In 

other words, it becomes harder for the interlaminar crack to grow further as the crack 

density increases or the delamination length approaches the transverse crack spacing.  
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Fig. 6.2. Strain energy release rate VS delamination length (2a/t) for 1 3[90 / 0 ]
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Fig. 6.3. Strain energy release rate VS delamination length (2a/t) for 2 2
[90 / 0 ]

S
 

 

 

0

10

20

30

40

50

60

70

80

90

0.0 0.5 1.0 1.5

G
 (

J/
m

2
)

Delamination Length (2a/t)

t/2d = 0.0375

t/2d = 0.3

t/2d = 0.6

t/2d = 0.75

 

Fig. 6.4. Strain energy release rate VS delamination length (2a/t) for 3 1[90 / 0 ]
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Since the strain energy release rate computed here indicates the energy required 

for the delamination crack to grow, the delamination is unlikely to progress when the 

magnitude of the strain energy release rate is below the critical value. From that 

perspective, the delamination crack is expected to occur and grow more easily at low 

transverse crack density. This consequence can be found under the tensile load 

condtion[36]. 

It should be also noted that the early stage of delamination growth, i.e. until the 

strain energy release rate reaches a maximum value, at the low transverse crack density 

shows a good agreement with the result of axial tension tests[27, 38]. Wang et al.[38] 

performed the axial tension test and they reported that the strain energy release rate 

reached an asymptotic value. Wang et al. [27] also observed the asymptotic G value was 

achieved at about twice the ply thickness and they suggested this characteristic 

delamination length should be the size of effective flaw to predict the delamination 

growth. In the present examples with the uniformly distributed transverse cracks under 

the bending load, however, the characteristic delamination length appears to be 

dependent upon the crack density and the lay-up configuration. 

To demonstrate the effect of 90-degree plies, the strain energy release rates for 

the different lay-up configuration are presented in Fig. 6.5 and 6.6 as the delamination 

length, a/d increases under the same applied plane bending strain. Note that the 

delamination length is displayed in terms of the ratio to the crack spacing because the 

thickness of the cracked 90-degree plies are varying.  

As shown in Fig. 6.5, the thicker the 90-degree layer is, the higher the maximum 
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strain energy release rate is marked when the transverse crack density is low 

( 1/ 2 0.125 /d mm= ). However, the strain energy release rate is showing a rapider 

decrease as the delamination progresses when the number of 90-degree plies increases in 

the laminate lay-ups. Especially, the strain energy release rate for 3 1
[90 / 0 ]

S
 

configuration becomes lower than that of 2 2
[90 / 0 ]

S
 after the interlaminar crack grows 

over a certain length. Thus, the delamination is expected to grow easily when the more 

90-dgree plies compose the laminate for a low crack density until the delamination crack 

reaches a certain length. 

Fig. 6.6 displays a contrasting result for a high transverse crack density, 

1/ 2 2.5 /d mm= . The strain energy release rate of the thicker 90-degree plies is lower, 

which indicates that it is required more bending strain in order for the delamination to 

grow further when the crack density is high. The strain energy release rate is consistently 

showing a lower value when the number of 90-degree plies increases throughout the 

growing delamination length.   

To compare the delamination growth under the several chosen crack densities 

with three different lay-up configurations, the strain energy release rates are depicted in 

Fig. 6.7 through 6.9.  It can be seen that the strain energy release rate is strongly 

depending on the thickness of 90-degree ply even for the same transverse crack density. 

When the crack density is low, the strain energy release rate is higher than that of a high 

crack density case for all configurations of lay-ups, which means that the interlaminar 

crack is more likely to grow when the crack density is low.  
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Fig. 6.5. Strain energy release rate VS delamination length for various lay-ups at low 

crack density (1/ 2 0.125 /d mm= ) 
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Fig. 6.6. Strain energy release rate VS delamination length for various lay-ups at high 

crack density (1/ 2 2.5 /d mm= ) 
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Fig. 6.7. Strain energy release rate VS delamination length (a/d)  for 1 3
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Fig. 6.9. Strain energy release rate VS delamination length (a/d)  for 3 1
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6.2.2 Mode Contribution  

The fracture modes in delamination are usually mixed under the bending load and the 

delamination growth is driven by the combination of the fracture modes. Again, Mode I 

and II are considered for the responsible fracture modes in delamination of the laminated 

beam. The contribution of Mode I and II is presented in Fig. 6.10 through 6.12 in terms 

of the crack density. The contribution of each mode is measured by the strain energy 

release rate fraction of the mode to the total strain energy release rate.  

The primary fracture mode responsible for the delamination originated from 

uniformly distributed transverse cracks is found to be Mode I, when the crack density is 

low for all three lay-ups of [90 / 0 ]
m n S

. The strain energy release rate fraction is nearly 

constant until the crack density becomes large and after the crack density reaches a  
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Fig. 6.10.  Strain energy release rate fraction VS crack density for 1 3
[90 / 0 ]
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Fig. 6.11.  Strain energy release rate fraction VS crack density for 2 2[90 / 0 ]
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Fig. 6.12.  Strain energy release rate fraction VS crack density for  3 1
[90 / 0 ]
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certain value, the contribution of the fracture mode is changing. The contribution of 

Mode I appears to be predominant when the crack density is low and the delamination 

length is short. The contribution of Mode II increases as the crack density increases and 

the delamination length becomes larger. 

The number of 90-degree plies also significantly affects the fracture mode. The 

more 90-degree plies compose the laminate, the more delamination is led by Mode I. 

When the crack density is low, the maximum contribution of Mode I is about 73% for 

1 3[90 / 0 ]
S
, 85% for 2 2[90 / 0 ]

S
 and 95% for 3 1[90 / 0 ]

S
. That is, when the 90-degree plies 

becomes thicker and eventually thicker than 0-degree plies, Mode I can be seen as the 

main fracture mode for the initial delamination growth at a low crack densty and the 

growth of the initial delamination may be predicted by neglecting Mode II and 
I

G G≈ . 
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When the length of delamination crack approaches the transverse crack spacing with a 

high crack density, the contribution of Mode II becomes larger and the delamination can 

be driven by Mode II according to the laminate lay-up composition and the crack length. 

 

6.3. Influence of Delamination on Transverse Cracking 

For the same numerical model depicted in Fig. 6.1, an analysis from a different 

perspective is attempted to investigate the influence of delamination on transverse 

cracking in this section. 

 

6.3.1 Transverse Cracking Due to Delamination Growth  

The axial normal stress distribution along the outer surface of 90-degree layer in the 

tensile side over half the transverse cracking space is illustrated for the lay-ups of 

1 3
[90 / 0 ]

S
 in Fig. 6.13 and Fig. 6.14. The stress shows a constant along the delaminated 

interface from the transverse crack ( 0x = ) to the interfacial crack tip ( x a< ). The stress 

shows a sudden drop around the tip of the interfacial crack and it increases after the 

interfacial crack tip ( x a> ), then it finally tends to show a maximum value at around the 

half way to the next nearest transverse crack. Over all, it can be found that the stress 

level of the low crack density is higher than that of the high crack density. 

The stress level in between the interfacial crack tips for a short length of 

delamination crack is higher than that of a long delamination crack. This indicates that 

the possibility to create a new transverse crack in between the pre-existing adjacent 

transverse cracks is higher when the delamination length is short. The stress level in 
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between the pre-existing transverse crack and the interfacial crack tip induced from the 

initial transverse crack is relatively very low comparing to the stress level at the region 

ahead of the interfacial crack tip. 

Comparing Fig. 6.13 and Fig. 6.14, the stress level in between the interfacial 

crack tips is found higher when the transverse crack density is lower. This shows a good 

agreement with the case of uniformly distributed transverse cracks without delamination. 

That is, a new transverse crack is expected to form easily in between the pre-existing 

adjacent transverse cracks when the crack density is lower, and the new crack appears to 

be harder to form as the crack density becomes high (see for example, [9, 13]). 

Application of the stress distribution figures shown in Fig. 6.13 and Fig. 6.14 can 

be made to determine whether a new transverse crack will be formed in the unit cell 

under a given transverse crack density and a given interfacial crack length. Suppose the 

axial strength of the 90-degree layer were 70MPa, for example, the new transverse crack 

would be created in between the pre-existing transverse cracks for a low crack density 

(Fig. 6.13 ) regardless of the length of the delamination. However, a new transverse 

crack would not develop under the delamination length (a/d) greater than 0.25 for a high 

crack density (Fig. 6.14). Additionally, one will be able to give a quantitative prediction 

whether a further transverse cracking damage will occur or a further delamination 

damage will occur, under the given bending load condition, if the results presented in 

Fig. 6.7 through Fig. 6.9 are compared along with Fig. 6.13 and Fig. 6.14.  
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Fig. 6.13.  1 3
[90 / 0 ]

S  Cross ply at a low crack density (1/d=0.25/mm) 
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Fig. 6.14.  1 3[90 / 0 ]
S  Cross ply at a high crack density (1/d=1/mm) 
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6.3.2  90-Degree Plies and Transverse Cracking 

The axial stress distribution along the outer surface of 90-degree layer in the tensile side 

of the laminated beam is presented in Fig. 6.15 and Fig. 6.16 for different combinations 

of 90 and 0-degree lay-ups. In order to demonstrate the effect of 90-degree plies, the 

total thickness of the laminate is remained the same and the number of plies of 90-degree 

and 0-degree are changed. The length of the interfacial crack is fixed with a ratio of 

a/d=0.25.   

With delamination existing, thicker 90-degree layers tend to lower the axial 

stress. That is, less transverse cracking is expected under the same condition of other 

factors. This tendency is consistent for both of the low transverse crack density (Fig. 

6.15) and the high transverse crack density (Fig. 6.16). It should be reminded that the 

effect of 90-degree plies on delamination was depending on the delamination length in 

the previous section (6.2).  

The stress level at x a>  shows a bigger change due to the change of number of 

90-degree plies when the transverse crack density is higher. Thus, transverse cracking 

progression tends to be more affected by the interfacial crack when the crack density is 

high, and increasing the number of 90-degree plies under the existence of delamination 

makes transverse cracking more difficult. In other words, the effect of 90-degree plies is 

not so prominent under the given length of interfacial crack when the transverse crack 

density is low. 
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Fig. 6.15.  Effect of 90-degree plies at a low crack density (1/d=0.25/mm) 

 

 

-2.0E+07

1.0E+07

4.0E+07

7.0E+07

1.0E+08

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A
x

ia
l 

S
tr

e
ss

 σ
xx

(N
/

m
2
)

x/d

[90_1/0_3]s

[90_2/0_2]s

[90_3/0_1]s

 

Fig. 6.16.  Effect of 90-degree plies at a high crack density (1/d=1/mm) 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

 

A finite element model for the laminated beam based on the von Kármán type nonlinear 

strains and layer-wise kinematics has been developed. The finite element model of layer-

wise laminated beam provides solutions showing an excellent agreement with the exact 

elasticity solutions or stresses as well as deflections. The layer-wise laminated beam 

model is used to analyze the unit cell of the transversely cracked laminate in mesoscale, 

in order to determine the material properties of the damaged laminate. The analysis on 

the bending behavior of the transversely cracked laminated beam can be performed by 

replacing the material properties obtained from the mesoscale model for the cracked ply. 

As a result, two steps of numerical simulations can be accomplished using LWT and the 

effort to construct a number of meshes can be minimized in the present multi-scale 

damage analysis.    

Using nonlinear laminated beam model based on LWT, a beam is analyzed under 

a distributed transverse load with a clamped-clamped boundary condition. It is found 

that the nonlinear beam model is necessary for the damage study, especially when the 

damage occurs under a large deformation so that the geometric nonlinearity develops 

before the material is damaged. Further, the feature of the largely deformed bending 

beam such as the shift of neutral axis can be captured by the nonlinear laminated beam 

model using LWT.  

For the clamped-clamped bending beam studied, a sequential propagation of 
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transverse cracks has been successfully predicted. It is also found that the damage at the 

center of the bending beam affects the stress at the clamped boundary end whereas the 

damage at the clamped end does not disturb the stress at the center of the beam. 

The layer-wise beam model is extended to consider interlaminar discontinuity in 

the displacement through the thickness. The Heaviside step function is incorporated in 

the formulation of layer-wise beam model, which successfully evaluates the local 

stresses around the interfacial crack. This model enables the strain energy release rate to 

be computed with a good accuracy. 

The virtual crack closure method in the frame work of fracture mechanics is 

regarded as a simple and accurate way to compute the strain energy release rate or the 

stress intensity factor of the cracked strip. In particular, the application to the beam finite 

element model based on the layer-wise theory has been attempted and the accuracy of 

the solutions is satisfactory within a certain percentage of error comparing to the 

analytical values. The size of the finite elements at the crack tip usually shows a low 

sensitivity to the stress intensity factor, but to achieve a better accuracy without losing 

the modeling efficiency for the various case studies, the ratio of the crack tip element to 

the crack length ratio should be considered. In this study, only the homogeneous material 

has been examined for the sake of verifying the accuracy by comparing to the well 

known analytical results from the literature. However, the application of the virtual crack 

closure method combined with the layer-wise beam finite element model is capable of 

predicting the progress of delamination damage. 

Two cases of delamination in [90 / 0 ]
m n S

 cross plies subjected to bending loads 
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 are investigated using the finite element method based on the layer-wise beam theory. 

The boundary conditions imposed on the beam to be subjected to the bending causes a 

significant effect on the delamination growth and the strain energy release rate strongly 

depends on the location of the delamination crack tip because the bending moment 

distribution along the beam is determined by the boundary condition. The effect of 

boundary condition can be avoided by applying four-point bending which simulates a 

pure bending condition. 

An interlaminar crack originated from a transverse crack in the 90-degree ply on 

the tensile side is primarily led by the fracture Mode I and the strain energy release rate 

is nearly constant under pure a bending condition if the delamination length is larger 

than a critical size. The interlamiar crack without transverse crack is driven by the 

fracture Mode II when the crack size is small and the primary fracture mode is shifting 

to the Mode I as the delamination length increases.  

Very little effects are induced to the behavior of the delaminated beam by taking 

into account the von Kármán type nonlinearity in the numerical analysis. In this regards, 

the growth of delamination can occur when the beam deforms within the range that 

linear strains are applicable.   

Interactions between the interlaminar cracks and the transverse cracks have been 

intensively studied in a cross-ply laminated beam with uniformly distributed damage 

subjected to the bending loads. The relationship between the transverse crack density 

and the delamination crack length is revealed that the higher the crack density becomes 

 the less the delamination grows.  
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It is also found that the number of 90-degree plies sigificantly changes the 

delamination growth for a given crack density. The thickness of 90-degree layer also 

greatly affects the pattern of strain energy release rate curve, the characteristic 

delamination length and the effect of crack density as well. The failure mode 

contribution to the total strain energy release rate is changed as the thickness of 90-

degree layer varies.  The degree of mode contribution in delamination is also governed 

by the number of 90-degree plies and the crack density. The thckness of the 90-degree 

layer in the laminate makes Mode I more predominent. 

The predominant fracture mode is governed by the crack density and the 

delamination length as well. When the crack density is low, Mode I fracture turns out to 

lead the delamination growth. However, the dominant fracture mode changes as the 

crack density increases, and Mode II becomes prominent. In the early stage of 

delamination, i.e. when the interlaminar crack is short, the predominant frailure mode 

driving the delamination growth is found to be Mode I. Mode II  fracture leads the 

delamination as the interlaminar crack progresses.  

 

Finally, main contributions of this research work can be summarized as follows: 

1. A nonlinear finite element model based on the von Kármán type nonlinear 

strains is developed using the layer-wise theory to analyze delamination as 

well as transverse cracking in laminated beams under bending loads. 

2. Employing the multiscale analyis approach, the effective material stiffness 

coefficients in the transversely cracked layer are extracted from a mesoscale  
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model and they are applied to a macroscale  model to predict the sequential 

damage in a  cross-ply laminated beam. 

3. Nonlinearity in laminated beams under bending loads is found to develop 

before the initial transverse crack forms. Therefore, nonlinearity due to a 

moderately large flexural deformation should be taken into account in the 

analysis of transverse cracking in laminated beams under bending loads. 

4. Boundary conditions significantly affect the behaviour of delamination and 

the predominant fracture mode is found to vary during the growth of 

delamination. Thus, unlike the progression of delamination under a tensile 

load, mode mixture should be considered for analysis of delamination under a 

bending load.   

5. Delamination can progress in a laminated beam under a bending load before 

nonlinearity due to a large rotational deformation is prominent, and the 

general idea of linear analysis on delamination is numerically justified by 

comparing the results from linear and nonlinear analyses. 

6. Interactions between intralaminar and interlaminar damage are investigated 

for cross-ply laminated beams under bending loads, and the growth of 

delamination originated from the tip of transverse crack is found to strongly 

depend on the thickness of 90-degree layers as well as the crack density. The 

effect of interfacial crack growth on the transverse cracking is also 

investigated in this study, and the quantatative prediction of damage progress 

is made with considering the interactions of the two damage modes. 
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