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ABSTRACT 

 

Layer-by-Layer Assembly of Poly(3,4-Ethylenedioxythiophene) Thin Films:  

Tailoring Growth and UV-Protection.  (May 2008) 

Thomas James Dawidczyk, B.S., The University of Massachusetts at Amherst 

Chair of Advisory Committee: Dr. Jaime Grunlan 

 

 Conductive thin films of poly(3,4-ethylenedioxythiophene)-polystyrenesulfonate 

(PEDOT-PSS) were created via layer-by-layer assembly.  The PEDOT-PSS was used in 

an aqueous solution as an anionic polyelectrolyte, with both linear and branched 

polyethylenimine (PEI) and poly(allylamine hydrochloride) (PAH) in the positive 

aqueous solution.  The electrical conductivity was varied by altering pH, concentration, 

polyelectrolyte, and doping the PEDOT with dimethylsulfoxide (DMSO).  The most 

conductive 12BL samples were doped with 1wt% DMSO and have a sheet resistance of 

approximately 8kΩ/□.  Despite exhibiting good initial conductivity, these PEDOT based 

thin films degrade under ultraviolet (UV) exposure. 

 UV absorbing nanoparticles were added into the cationic solution in an effort to 

reduce UV sensitivity.  The final bilayers of the films contained either colloidal titanium 

dioxide (TiO2) or carbon black (CB) and the films were exposed to a 365nm UV-light 

with an intensity of 2.16mW/cm2 for 9 days.  The UV light at this intensity correlates to 

approximately four years of sunlight.  The initial sheet resistances for all samples were 

similar, but the UV-degradation was reduced by a factor of 5 by utilizing TiO2 and CB in 
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the final bilayers.  In addition to being the most conductive after UV exposure, the TiO2 

containing film was also 27% more optically transparent than the pure PEDOT films.  

These additional UV-absorbing nanoparticles extend the operational life of the PEDOT 

films and, in the case of TiO2, do so without any reduced transparency. 
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CHAPTER I 
 

INTRODUCTION 
 

 The layer-by-layer (LbL) assembly technique is a popular method used to 

create functional thin films that are generally less than one micrometer thick.1-3  

Films are typically made by alternately depositing positively and negatively charged 

species via dilute aqueous solutions, as shown in Figure 1.  The ability to finely tune 

various properties by changing processing variables makes LbL applicable to a 

broad range of applications.  Antimicrobial,4-6 biocompatible,7-9 electrically 

conductive,10,11 electrochromic,12,13 and anti-reflective14,15 films have all been 

prepared using LbL assembly.  In the present study poly(3,4-

ethylenedioxythiophene), an intrinsically conductive polymer, has been used to 

create tunable electrically conductive films. 1 

 
Figure 1.  Schematic of the layer-by-layer assembly process. 
 

                                                 
The thesis follows the style of Langmuir. 
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 Langmuir and Blodgett first introduced a technique for layered assembly in 

the 1920’s that served as a precursor for LbL assembly.  Amphiphilic monolayers on 

the surface of water were transferred to a substrate by dipping the substrate into the 

solution16  To achieve multiple layers, the substrate was simply dipped multiple 

times.  The thickness of the film is determined by the number of dips and the size of 

the molecule being used.17  The drawback to the Langmuir-Blodgett technique is that 

the films are generally thermally and structurally unstable and there are limited 

materials that combine the necessary properties of organic solubility, shear 

resistance and cohesion, stability at the subphase surface, proper orientation and 

compaction. 

 Decher and coworkers developed a more practical method for self assembly,2 

building upon the early work of Iler who focused exclusively on inorganic 

particles.18  Films were made utilizing the electrostatic attraction between oppositely 

charged polyelectrolytes resulting in uniform thickness and deposition.3  The benefit 

over the Langmuir-Blodgett technique is that absorption process is independent of 

the substrate size and topology,17 the layers can be varied without changing the 

process, the thickness can be controlled down to the nano-level and the films can be 

processed under ambient conditions. 

 The modern layer-by-layer assembly process is characterized by alternately 

depositing oppositely charged species via dilute aqueous solutions, but uncharged 

species with other mutual attractions have also been used.19  A charged or polar 

substrate is submerged into an oppositely charged polyelectrolyte solution for a 
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given time.  The polyelectrolytes are attracted to the surface until a charge inversion 

develops which repels further growth.20  The substrate is removed, rinsed and dried, 

and then submerged into the alternate electrolyte solution.  Figure 1 schematically 

depicts the LbL deposition process. Each deposited cationic/anionic pair is referred 

to as a bilayer.  The thickness of each bilayer is typically 1-100+ nm thick21 and can 

be tailored by altering the pH,22 counter ion,23 ionic strength,24 chemistry,25 

molecular weight,26 and temperature.27  Figure 2 illustrates how the layers build 

upon a substrate.  Bilayer growth can be either linear or exponential depending on 

the strength of charge in the layers, with weaker charge leading to more exponential 

growth.28-30   

 

 
Figure 2.   Schematic of a layer-by-layer thin film assembled on a substrate. 
 
 
 Nanoparticles can be added to the deposition mixtures along with the 

polyelectrolyte, which provides for additional functionality of the film.31  Single wall 

carbon nanotubes (SWMTs) were deposited to enhance thin film mechanical 

strength and thermal stability.32 To make the SWNTs water soluble, either the side 

walls were covalently functionalized or a surfactant was added. Titania filled 

nanocomposite films for UV protection were made with titania nanoparticles33 and 
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nanosheets34 dispersed with a polyelectrolyte. Easily manipulable, M13 Viruses 

were used in conjunction with linear polyethylenimine (LPEI) to make 

biocompatible films.9  GaN was added to these films to make them fluoresce, 

allowing for a variety of sensor applications.  Actuators were made by adding 

platinum nanoclusters to LbL films deposited on an electrically conductive substrate 

and applying a voltage.35  Figure 3 highlights some of these functionalities. 

     
(a)                                                    (b) 

      1,000 nm 

(c)                           (d) 

Figure 3.  Schematic of the LbL actuator (a) with the displacement per applied voltage (b).35  The 
AFM image of a virus containing film (c), and its fluorescence (d).9  
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Electrically conductive thin films are especially interesting for applications 

such as EMI shielding, electrostatic dissipation, touch screen electrodes, and flexible 

sensors.  Many of these applications require transparency.36  The thin nature of LbL 

films has even resulted in transparent films with carbon black,21 but combining high 

transparency and conductivity requires the use of intrinsically conductive polymers 

(ICP).  In this research, thin films have been deposited using water-dispersed 

colloids of poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrene 

sulfonate) (PSS). Figure 4 shows a schematic of the PEDOT-PSS chemistry. PEDOT 

itself is not water soluble so water soluble PSS is added as a dopant.  The resulting 

particles have a net negative charge due to the strong anionic nature of PSS, which 

provides the basis for layer-by-layer assembly with a polycation.  Many studies of 

the electrochromic behavior of PEDOT based assemblies have already been 

performed,37-39 but little work has been done to tailor the electrical conductivity of 

these films or protect them from UV degradation.   

  

Figure 4.  Schematic showing PEDOT-PSS chemistry.40 
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Intrinsically conductive polymers have conjugated backbones (i.e. alternating 

single and double bonds) and the electrical charge passes along the π orbitals on the 

polymer backbone.41  In 1977, H. Shirakawa, Alan G. MacDiarmid, and A.J. Heeger, 

found that polyacetylene films doped with arsenic pentafluoride were significantly 

more conductive than undoped films.42  This work led to a Nobel Prize in Chemistry 

in 2000.  Significant changes in sheet resistance can be achieved by doping, which 

can be achieved by a redox reaction (reduction or oxidation).  PEDOT-PSS is 

effectively doped with dimethyl sulfoxide (DMSO) which oxidizes and partially 

dissolves the particle.43  Solvation causes PEDOT particles to swell and intermesh 

with other particles and better align its chains, thus increasing the electrical 

conductivity.  Particle size is also tightly tied to conductivity, as particle size 

decreases so does the conductivity.40  This is due to the difficulty of the charge 

transferring from one particle to another (the larger the particles, the fewer the 

transfers). 

PEDOT-PSS has been used in a variety of applications including 

electrochromic,13,44 light emitting diodes,45,46 and transistors.47  PEDOT films have 

been made via spin coating,48 sputter coating,49 and LbL assembly.37  In spin coating, 

the polymer solution (or suspension) is deposited onto a spinning substrate.  The 

thickness of the film depends on the angular speed and polymer concentration,50 

with higher speed producing thinner films.  The drawback to spin coating is that the 

film is not completely uniform and does not follow the topology of the substrate 

very well.  In sputter coating, a solid material is deposited onto a substrate in a 
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vacuum by colliding the depositing material with ions.51  Atoms are ejected away 

from the solid and coat the surface of the substrate.  Lack of ambient conditions for 

deposition is the biggest drawback of sputter coating.   

 PEDOT-PSS films made via the LbL assembly technique are described in the 

following chapters.  Processing and compositional variables were evaluated in 

relation to electrical conductivity and UV-susceptibility of the thin films.  Chapter II 

focuses on film growth and conductivity in the absence of UV protection.  Cationic 

polymer choice and effect of doping are evaluated with respect to film thickness, 

conductivity and transparency.  Chapter III examines the increase in resistance due 

to UV aging and the addition of nanoparticles to prevent this effect.  Like most ICPs, 

PEDOT is inherently susceptible to environmental degradation.52  UV absorbing 

particles like titanium dioxide can absorb UV light,33 thus providing protection for 

PEDOT.  Titanium dioxide (TiO2) is used extensively in polymers to increase the 

UV resistance,53 whereas carbon black is used as a pigment54 or an electrically 

conductive filler.21  The ability of these UV-absorbing particles to reduce UV 

degradation was evaluated.  Chapter IV discusses applications for these conductive 

films and some thoughts on future LbL work with magnetic particles and quantum 

dots. 
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CHAPTER II 
 

FILM GROWTH AND ELECTRICAL CONDUCTIVITY 
 

Introduction 

Layer-by-layer deposition of PEDOT-PSS with a suitable polycation allows 

for tunable sheet resistance and optical transparency.  The goal is to reduce sheet 

resistance while minimizing film thickness and increasing optical transparency.  In 

general, the more conductive a sample the thicker or less transparent it is.21  By 

carefully manipulating specific processing variables these film properties can be 

finely tailored.  The variables studied here include doping of PEDOT-PSS, varying 

polycation pH and concentration and changing the type of polycation. 

 

Experimental 

Materials.  Cationic deposition solutions were prepared with 0.1 or 0.3 wt% 

of either branched polyethylenimine (BPEI) (with a molecular weight (MW) of 

25,000 g/mol), linear polyethylenimine (LPEI), with MW of 25,000 g/mol, or 

poly(allylamine hydrochloride) (PAH) (with MW of 70,000g/mol).  Polymers were 

purchased from Aldrich (Milwaukee, WI).  The anionic deposition mixture 

contained 0.3 wt% PEDOT-PSS (tradename BAYTRON P HC V4) that was 

purchased from H.C. Starck (Newton, MA).  The P HC V4 had a PEDOT to PSS 

ratio of 1:2.5 by weight.55 Where indicated, 1M HCl was used to reduce the pH of 

PEI solutions.  Poly(ethylene terephthalate) (PET) film (tradename ST505 by 

DuPont Teijin) (Tekra Corp., New Berlin, WI), (1 0 0 ) silicon wafers polished on 
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only one side (University Wafer, South Boston, MA), standard glass microscope 

slides (VWR, West Chester, PA) and fused quartz glass slides (Structure Probe Inc., 

West Chester, PA) were used as substrates for deposition.  This wide variety was 

necessary to accommodate the various characterization techniques used (see below). 

Dimethyl sulfoxide (DMSO), purchased from Aldrich, was used as a dopant for 

PEDOT-PSS at a concentration of 1 wt% of the mixture weight. 

 

Film Deposition.  All films were deposited following the procedure shown 

in Figure 5.  The initial dip into each mixture was 5 minutes, beginning with the 

cationic solution.  Subsequent dips were 1 minute.  Following deposition of all 

layers, the films were oven dried at 700C for 15 minutes.  For deposition onto PET, 

the samples were cut to size, rinsed with methanol then de-ionized water and dried 

with filtered air.  The cleaned PET substrates were then corona treated with a BD-

20C Corona Treater (Electro-Technic Products Inc., Chicago, IL).  Corona treatment 

oxidizes the surface of PET which allows the polycationic polycation to better 

adhere.56,57  For deposition on fused quartz slides piranha treatment was performed.58  

The slides were removed from piranha solution after sonicating for 30 minutes, 

thoroughly rinsed with de-ionized water and dried with filtered air.  The silicon 

wafer and glass microscope slides were rinsed with acetone then de-ionized water 

and finally dried with filtered air, with no additional surface treatment performed.  

Films made with more than 14 BL were prepared with a home-built robotic dipping 
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system.59  All films were stored in a dry box for a minimum of 12 hours before 

testing. 

 

PEI or  
PAH 

Figure 5.  Schematic of the LbL deposition process, each revolution will deposit one bilayer.  Note 
the polycation was either polyethylenimine (PEI) or poly(allylamine hydrochloride) (PAH). 
 
  

Characterization.  Film growth was monitored with a USB2000-UV-VIS 

Spectrometer (Ocean Optics, Dunedin, FL).  The absorbance was measured between 

190 and 900nm. Thickness was directly measured with a Dektak 3 Profilometer 

(Veeco Instruments, Woodbury, NY), a Research Quartz Crystal Microbalance 

(Maxtek Inc., Cypress, CA), or from a PHE-101 Discrete Wavelength Ellipsometer 

with a wavelength of 632.8nm and an angle of 65° (Microphonics, Allentown, PA).  

Sheet resistance was measured with a home-built four point probe apparatus.  A 

2000 Multimeter (Keithley, Cleveland, OH) with a Signatone probe head (Lucas 

Labs, Gilroy, CA) and an E3644A power supply (Agilent Technologies Inc., Santa 
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Clara, CA) were used in conjunction with LabView 6 (National Instruments, Austin, 

TX) for data processing.  Thin film cross sections were imaged with a JEOL 

1200EX TEM  (Peabody, MA) and surface images were from a Vega II SEM 

(Tescan, Czech Republic).  All SEM samples were sputtered with 4nm of platinum. 

 

Results and Discussion 

Figure 6 shows how doping dramatically reduces the sheet resistance in films 

made with 0.3 wt% BPEI and 0.3 wt% PEDOT-PSS mixtures.  As discussed below, 

these films are less than 1 μm thick (with the exception of 12BL films) and can have 

a bulk resistivity of 0.3 Ω-cm.55  Pure PEDOT has a bulk resistivity of 

approximately 0.005 Ω-cm.  The elevated resistance in these LbL films is due to the 

insulating cationic polymer (polyethylenimine in this case) used in the assembly 

process.  By doping the PEDOT-PSS solution with 1wt% DMSO the sheet resistance 

can be decreased by approximately 85%.  For example, an undoped 8-bilayer film 

has a sheet resistance of 84,700 Ω/sq that is reduced to 14,300 Ω/sq when doped 

with DMSO during deposition.  DMSO is known to solvate the PEDOT, which leads 

to chain alignment and lower resistance. 60 
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Figure 6.  Sheet resistance as a function of bilayers deposited for thin films made with 0.3wt% BPEI 
+ 0.3wt% PEDOT-PSS.  The PEDOT-PSS solution was doped with 1wt% DMSO where indicated. 
 

These films show what appears to be exponential increase in growth for each 

additional bilayer deposited.  This is due in part to the diffusion of the 

polyelectrolytes into the deposited film in addition to a growing charge imbalance as 

the film grows.  Absorbance measurements show that both the doped and undoped 

PEDOT-PSS films grow at the same rate.  By taking the absorbance at 550 nm the 

film growth can be monitored as seen in Figure 7.  This growth closely resembles 

that observed by others studying PEDOT-based assemblies,61-63 who suggest film 

growth is composed of two linear regimes rather than exponential.   
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Figure 7.  Absorbance at 550 nm as a function of bilayers deposited for films made with 0.3wt% 
BPEI + 0.3wt% PEDOT-PSS.  The PEDOT-PSS solution was doped with 1wt% DMSO where 
indicated. 
 
 
 Absorbance measurements can be converted into transmission, using Beer’s 

Law (A=abc).  Figure 8 shows how each bilayer deposited reduces visible light 

transmission.  Since both the doped and undoped films are growing at the same rate 

their percent transmission values are very similar.  At 12 bilayers the films are only 

50% transparent.  Figure 8 also shows the thickness of each film as measured with 

ellipsometry.  Ellipsometric thickness better shows the two linear growth regimes 

suggested by others.62 The first linear regime can be attributed to packing density 
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alteration due to substrate influence.  This data also confirms that doping has little 

influence on film thickness. 
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Figure 8.  Percent transmission at 550nm and thickness as a function of bilayers deposited for films 
made with 0.3wt% BPEI + 0.3wt% PEDOT-PSS.  The PEDOT-PSS solution was doped with 1wt% 
DMSO where indicated. 
 

As already mentioned, DMSO increases the conductivity of these films by 

partially dissolving the PEDOT-PSS particles.  This solvation swells the colloidal 

PEDOT-PSS particles.  Figure 9 shows AFM surface images that show this effect.  

The doped PEDOT-PSS particles (Fig. 9(b)) are larger than the undoped form. (Fig. 

9(a)).   The boundaries between particles also appear to be softened in the doped film, 

which contributes to lower resistance. 
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        (a)            (b)  
Figure 9.  AFM phase images of undoped (a) and doped (b) 12BL films.  These films were produced 
by alternately depositing BPEI and PEDOT-PSS.  In doped films, the PEDOT-PSS mixture contained 
1wt% DMSO. 
 
 

Figure 10 shows the effect of doping concentration.  If the concentration of 

DMSO is varied the PEDOT-PSS particles will dissolve and swell to different 

extents.  The optimum amount of dopant was found to be 1wt%.  Other doping 

levels (0.2 and 5 wt%) were evaluated, but their sheet resistance was closer to the 

undoped films until 12 bilayers. It is believed that too little DMSO yields poor chain 

alignment, while too much may result in weaker contacts between chains. 

1 μm 1 μm 
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Figure 10.  Sheet resistance as a function of bilayers deposited for films made with 0.3wt% BPEI + 
0.3wt% PEDOT-PSS.  The PEDOT-PSS solution was doped with 0.2, 1, and 5wt% DMSO where 
indicated. 
 

 PEI is an electrically insulating polymer, which is layered between 

conductive PEDOT colloids and acts to reduce the electrical conductivity of these 

LbL films.  As a result, film conductivity can be increased by decreasing the 

concentration of PEI in the deposition solution.  Figure 11 shows that the sheet 

resistance of a 4 BL film decreases ~60% by using 1 wt% BPEI along with doping 

the PEDOT with 1 wt% DMSO.  12BL films with 0.1 wt% BPEI with un-doped 

PEDOT actually has the same sheet resistance as doped 0.3 wt% BPEI, suggesting 

that decreasing the weight percent is as effective as doping for electrical conductivity 

of LbL assemblies. 
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Figure 11.  Sheet resistance as a function of bilayers deposited.  The  PEDOT-PSS mixture was 
0.3wt% in all cases and the PEDOT-PSS mixture was doped with 1wt% DMSO where indicated. 
 
 If the thickness for each deposited PEI layer is reduced, the absorbance and 

total film thickness should also be reduced for each bilayer.  Figure 12 shows that 

the absorbance at 550nm for the 0.1 wt% films is indeed lower than the 0.3 wt% 

films.  It also shows that the doped form of PEDOT actually has a lower absorbance 

than the undoped, but ellipsometry data for the undoped forms of both the 0.3 and 

0.1 wt% PEI films are very similar. The ellipsometry and absorbance readings show 

very similar growth until about the 6th bilayer.  After that point the 0.3 wt% PEI 

films grow at a greater rate in absorbance, while the thickness growth (measured via 

ellipsometry) is similar until about the 11th bilayer. This is likely due to doped 

PEDOT having swollen PEDOT-PSS particles that increase the thickness without 

increasing the absorbance.  
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Figure 12.  Absorbance at 550nm (a) and ellipsometric thickness (b) as a function of bilayers 
deposited.  The PEDOT-PSS mixture was doped with 1wt% DMSO where indicated. 
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Another method used to decrease the PEI layer thickness is to use linear PEI 

(LPEI).  This linear structure will allow the sample to deposit thinner than the 

branched form used up to this point.  Branching along the polymer backbone will not 

allow the polyelectrolyte to lie as flat on the surface.  By utilizing LPEI, the 

deposited thickness for each layer will decrease.  This minimizes the barrier between 

PEDOT particles, as was done by decreasing the concentration of BPEI.  Figure 13 

shows sheet resistance as a function of bilayers deposited for BPEI and LPEI.  

Unlike BPEI, altering the LPEI weight percent has very little effect on the sheet 

resistance for the films. 
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Figure 13.  Sheet resistance as a function of bilayers deposited for films made with 0.3wt% PEDOT-
PSS with 0.1 or 0.3wt% BPEI or LPEI. 
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 Figure 14(a) confirms that altering the LPEI concentration has very little 

effect on thickness, much like sheet resistance (Fig. 13).  At 11 BL, the 0.3 wt% 

LPEI film is approximately 900nm, while the BPEI is near 1 μm.  Before the fourth 

bilayer the film growth is spotty for LPEI-based films, but growth is very linear once 

the surface is sufficiently covered.  The absorbance for both the 0.1 and 0.3wt% 

solutions are also linear (Fig. 14(b)).  Values for 0.1wt% LPEI are less than half that 

of 0.3wt%, while the thickness remains similar for both.  This is a reasonable result 

if the density of the 0.1wt% films is less than half the 0.3wt% film, which is possible 

for thin films. 
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Figure 14.  Ellipsometric thickness (a) and absorbance at 550nm as a function of bilayers deposited.  
In all cases films were made with 0.3wt% PEDOT-PSS. 
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Figure 14.  (continued) 
 

The addition of salt to the PEI solution has been shown to adversely alter the 

conductivity, as shown in Figure 15, by restricting  the growth of the conjugated 

bond length.64  The most conductive recipe, 0.1wt % LPEI alternated with 0.3 wt % 

PEDOT-PSS, had 1, 10, and 100 mM concentrations of NaCl added to the cationic 

LPEI .  The resistance of the initial bilayers with salt was too high to accurately 

measure with the four-point probe.  Resistance values get closer to one another at 

higher bilayers, which is likely due to salt ions being rinsed out of the films. 
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Figure 15.  Sheet resistance as a function of bilayers deposited for films with varying concentrations 
of NaCl added to 0.1 wt% LPEI alternated with 0.3 wt% PEDOT-PSS. 
 

Increasing the charge density of the polycation is an additional way to reduce 

thickness, as higher charge density polymers lie flatter on the substrate.22,25,30  This 

can be accomplished by changing the polycation type or simply reducing the pH of 

the PEI solution.  Decreasing the pH of the PEI solution increases the cationic 

charge on the polymer’s backbone, which in turn allows the deposition thickness be 

reduced.22 Within the range of a half unit of pH the deposition layer thickness can 

increase significantly, as shown in Figure 16. The pH = 10.2 system is the natural 

pH of 0.3wt% BPEI, while the other samples had their pH reduced with 1 M HCl.   
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Figure 16.  Ellipsometric thickness (a) and absorbance at 550nm (b) as a function of bilayers 
deposited.  In all cases films were made with 0.3wt% PEDOT-PSS and 0.3wt% BPEI.  The pH was 
adjusted with 1M HCl. 
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Figure 17 shows how thin and linear the deposition of PAH is up to 40 

bilayers, which agrees with the findings of others.65   Each bilayer is approximately 

2 nm and is far thinner than the PEI system that was approximately 100 nm after 

only 5 bilayers.  However, the sheet resistance of the PAH system was too high to 

accurately measure, even at 40 bilayers.  Similar results were found when the pH of 

BPEI was reduced from ~10 down to 3, which is known to make each imine group 

fully charged.66 

y = 2.1212x + 5.5827
R2 = 0.9865
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Figure 17.  Thickness of 0.3 wt% PAH and 0.3 wt% PEDOT-PSS, as a function of bilayers deposited, 
measured via ellipsometry. 
 

Whereas doping increased the conductivity with the PEI/PEDOT-PSS system 

there was little measurable increase in the conductivity of the PAH system.  The 

resistance was still too high to accurately measure.  Using an AFM, the surface was 
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imaged and the doped PEDOT particle size was larger than the undoped form, as 

shown in Figure 18. 

       
1 μm 1 μm 

      (a)            (b) 
Figure 18.  An AFM phase image of the surface of undoped (a) and doped (b) 12BL films.  These 
films were produced by alternately depositing PAH and PEDOT-PSS.  In doped films, the PEDOT-
PSS mixture contained 1wt% DMSO. 
 
 

Conclusion 

Doping and choice of polycation have a significant influence on bulk 

resistivity and film growth for layer-by-layer assemblies of PEDOT-PSS.  These 

films can have a bulk resistivity below 1 Ω-cm, thickness below 100 nm and 

transparency greater than 90%.  This makes these films suitable for applications such 

as low conductivity electrodes used in flexible displays.  Films made with PEI had a 

growth rate more than an order of magnitude larger than PAH films and were up to 3 

times more conductive when doped.  Doping with 1 wt% DMSO provided the 

maximum improvement in conductivity for doped films.  Further work will focus on 

improving electrical conductivity with different dopants, polyelectrolytes and fillers.  
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CHAPTER III 
 

UV DEGRADATION OF ELECTRICAL CONDUCTIVITY 
 

Introduction 

 Chapter II focused on tailoring the electrical conductivity of the PEDOT-PSS 

films, while Chapter III deals with the ultraviolet degradation of electrical 

conductivity.  Intrinsically conductive polymer conductivity degrades by two 

methods when exposed to light, scission of the backbone and the creation of 

defects.52,67,68  UV absorbing particles such as TiO2 and carbon black (CB) can be 

added to help prevent this degradation.  In the present work, nanoparticles of TiO2 

and CB were added to LbL films to enhance the stability of the PEDOT.  Initial 

bilayers were deposited as shown in Chapter II, but after the initial bilayers were 

deposited, the cationic solution was exchanged with a cationic solution containing 

0.05 wt% BPEI and 0.25 wt% of either TiO2 or CB.  As Figure 19 illustrates, there 

are UV absorbing particles in the top layers of the film as a result. 

                 

= Polycation = UV Absorbing Particle

= PEDOT- PSS

SUBSTRATE

Figure 19.  Schematic of a multilayer film with UV absorbing particles in the outer layers. 
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Experimental 

Materials.  Conductex 7055 Ultra was the carbon black used here 

(Columbian Chemicals, Marietta, GA), which has a 42 nm particle size.  The 

colloidal TiO2 (tradename Pinnacle Titanium Dioxide) was provided by Applied 

NanoWorks (Rensselaer, NY) and has a 10nm particle size.  When CB or TiO2 were 

added, to the BPEI solutions, 0.05 wt% polymer was used with 0.25 wt% CB or 

TiO2, otherwise the solution contained just 0.3 wt% polymer. The same substrates 

described in Chapter II were also used here. 

 

Film Deposition.  Initial bilayers contained no UV absorbing particles.  For 

films designated “6-6”, the first 6 bilayers were the standard recipe (0.3wt% BPEI 

and 0.3wt% PEDOT-PSS), while the next 6 used the cationic solution containing the 

UV absorbing particles.  In the case of the 3-1 TiO2 film, the first 3 bilayers were the 

standard recipe followed by one UV absorbing bilayer.  This was repeated 3 times to 

create a 12 BL film.  In other words, 12 BL films were used for all UV degradation 

studies. 

 

Characterization.  These films were exposed to 365 nm light from a Black-

Ray UV Bench Lamp (UVP, Upland, CA) and further characterized with the 

techniques described in Chapter II.   
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Results and Discussion 

 The initial sheet resistance of each film, prior to UV-light exposure, was 

measured and recorded in Table 1.  The samples were then exposed to 365nm light 

at an intensity of 2.16 W/cm2.  The total time the samples spent under the UV lamp 

was 781,250 seconds (~9 days).  After only 20 minutes (1250 s) the sheet resistance 

had increased noticeably.  The samples all began with a sheet resistance of 30,000 ± 

3,000 Ω/□, but these values were divided by the initial resistance reading to 

normalize the data.  Figure 20 shows the increase in sheet resistance as the exposure 

time is increased.  Note how the pure sample is 4 times less conductive (more 

resistive) than the sample with 6 BL of TiO2 protection and 5 times less conductive 

than the sample with TiO2 in every bilayer.  Carbon black is a conductive filler, but 

did not improve the conductivity of the film.  Furthermore, TiO2 is a much more 

effective protectant than CB.  This was somewhat surprising due to the highly 

absorbing nature of CB across the UV-vis spectrum. 
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Table 1.  Sheet resistance values for PEDOT-based assemblies exposed to UV light.* 
 

Time (s) Pure 
(Ω/□) 

6-6 
TiO2 
(Ω/□) 

9-3 
TiO2 
(Ω/□) 

6-6 CB 
(Ω/□) 

9-3 CB 
(Ω/□) 

3-1 
TiO2 
(Ω/□) 

All 
TiO2 
(Ω/□) 

1 30,876 29,715 27,012 35,444 32,202 23,548 40,457 
10 29,963 31,414 24,932 30,152 26,767 27,296 38,382 
50 31,964 33,232 26,124 30,465 26,687 28,425 38,575 

250 38,042 40,296 32,813 33,279 26,720 34,134 40,455 
1,250 52,736 49,594 47,602 45,177 36,481 43,474 51,950 
6,250 50,379 48,687 38,603 44,344 37,606 38,327 48,462 

31,250 98,891 79,980 64,391 80,025 73,525 72,709 80,001 
156,250 313,109 164,609 142,670 173,083 186,005 187,220 127,215 

781,250 1,655,549 404,642 435,717 692,651 776,059 905,744 325,539 

* The first number denotes the number of bilayers without UV absorbing particles.  All films were 12 
BL total.  The 3-1 film had one UV absorbing bilayer for every 3 standard bilayers. 
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Figure 20.  Normalized change in sheet resistance as a function of time exposed to the UV light.  All 
films began with a sheet resistance near 30,000 Ω/□  (+/- 10%). 
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In addition to being more electrically conductive following UV exposure, the 

film with TiO2 in all bilayers was also the most transparent.  Figure 21 shows the 

transparency measurements.  The samples with carbon black were the least 

transparent.  The TiO2 was stabilized with acetic acid and when mixed with the 0.05 

wt% BPEI the pH was lowered to approximately 4. This pH reduction made the 

BPEI deposit much thinner (due to greater charge density) than the unmodified, high 

pH BPEI.  Transparency and conductivity are also linked to the discrete nature of the 

8 nm TiO2 colloids in the assemblies.  Carbon black is much more aggregated, 

which increases opacity and serves to prevent PEDOT layers from interacting as 

strongly. 

9-3 CB 6-6 CB
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(a) 

Figure 21.  Transparency of the various systems used for UV protection (a).  Transmission values are 
from 550nm light.  Images of some of these films (b) highlight the disparity in %T (b). 
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  Glass slide           Pure PEDOT        6-6 CB      6-6TiO2 

 
(b) 

Figure 21.  (continued) 

Figure 22 shows how film growth changes for the 6-6 CB and 6-6 TiO2 films 

when the particle-containing layers replace pure BPEI.  The initial growth for 6 

bilayers on both films is identical.  After the initial 6 bilayers, the film growth rates 

change dramatically.  The TiO2-containing layers grow very slowly due to the pH of 

the BPEI + TiO2 solution being reduced relative to BPEI alone. The carbon black + 

BPEI layers grow at a much faster rate than the initial 6 bilayers due to the size of 

the carbon black clusters (100+ nm) that are being deposited.  In the case of TiO2, 

the 8 nm particles are individual, but the 40nm CB particles exist as covalently-fused 

clusters.  Previous studies have observed large growth rates with BPEI-stabilized 

CB.21 
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Figure 22.  Absorbance at 550 nm as a function of bilayers deposited for the 6-6 TiO2 film (a) and the 
6-6 CB film (b). 
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Figure 23 shows the ellipsometric thickness of the 6-6 TiO2 film.  This 

growth matches the trend seen in the absorbance measurements.  For the initial 6 

bilayers, the growth rate is approximately 18 nm per bilayer and decreases to 6nm 

per bilayer for the TiO2.  Based upon the ellipsometry data, the TiO2 containing 

thickness is only a quarter of the total film thickness. 
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Figure 23.  Ellipsometric thickness as a function of bilayers for the 6-6 TiO2 film.  
 

Figure 24 shows a TEM cross-section of the 6-6 TiO2 film taken with a 

JEOL JEM-2010 TEM (JEOL USA, Inc., Peabody, MA).  This image confirms the 

total film thickness measured with ellipsometry, but the TiO2 section is 
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approximately half of this thickness.  This can be explained by diffusion of TiO2 into 

the existing layers already on the substrate and/or smearing of the particles during 

microtoming. 

 

 

 

TiO2 
Layer PS 

Epoxy 

 
Figure 24.  A TEM cross-sectional image of the 12 BL film that highlights the thinner TiO2-
containing portion TEM images of the 6-6 TiO2 film taken with a and a JEOL JEM-2010. 
 
 
Conclusion 
 

The addition of UV-absorbing nanoparticles to PEDOT-based thin films was 

shown to dramatically decrease the degradation of PEDOT electrical conductivity 

and is a promising approach toward improving its photolytic stability.  By adding a 

30nm thick (6 BL) TiO2 containing top section, the film sheet resistance degrades 

four times slower.  Future work will focus on other particles that may absorb UV 

light, such as colloidal ZnO or carbon nanotubes.  The effect of particle size may 
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also tie into UV protection, along with the location of the particles within these 

layers.  These variables could simultaneously improve stability and transparency. 
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CHAPTER IV 
 

CONCLUSIONS AND FUTURE WORK 
 
 

PEDOT was used to create electrically conductive thin films via layer-by-

layer assembly.  The sheet resistance was tailored by altering both process and 

compositional variables.    As the number of bilayers increased, film thickness 

increased and sheet resistance decreased.  By doping the PEDOT-PSS suspension 

with 1 wt% DMSO, the conductivity increased by 50 percent with little thickness 

change for the same number of bilayers deposited.  Increasing the charge density of 

the alternating polycation to 100%, either by altering pH or switching polymers type, 

decreased the film growth to approximately 6 nm per bilayer, from a maximum of 

200 nm per bilayer at 0% charge.  The addition of TiO2 colloids into the LbL process 

helped to protect the electrical conductivity during UV ageing.  6-6 films (6-bilayers 

without TiO2 followed by 6-bilayers with TiO2) were 1.7 times more conductive than 

the equivalent carbon black containing films.  Additionally, the TiO2 films were 

more transparent due to thinner deposition and less aggregation. 

Future work with PEDOT could involve creating transparent, flexible, thin 

film capacitors with PEDOT as the electrode layers and clay (or other nanoparticles) 

used to make a dielectric layer.  Figure 25 shows a schematic of a proposed capacitor 

made with the layer by layer process.  The substrate could be coated with gold (Au) 

on both ends and a layer of photo-resist could be applied over the gold contacts.  

Multiple bilayers of a PEDOT-PEI system (PEDOT) could be applied (Step 1 in Fig. 

25) and the photo-resist could be removed.  New photo-resist would then be added 
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followed by multiple bilayers of a clay-PEI system (CLAY) (Step 2 in Fig. 25).  The 

photo-resist would then be removed, a new photo-resist added, and the final bilayers 

of the PEDOT-PEI system would be applied (Step 3 in Fig. 25).  Finally, the photo-

resist would be removed (Step 4 in Fig. 25) and the capacitor would be fully 

functional.   

 
Figure 25.  Schematic showing a proposed process to make a capacitor using the LbL process. 
 
 
 The use of magnetic colloids such as γ-Fe2O3 (maghemite) and Fe3O4 

(magnetite) is another area of future work, either in conjunction with or independent 

of PEDOT.  Both materials are multiferroic, meaning they are ferromagnetic and 

ferroelectric at the same time.69  This opens new applications in sensors and 

actuators, where an electric field could be applied to alter the magnetization and vice 

versa.  Preliminary work has been performed on characterization of the growth of 
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these films.  Figure 26 shows TEM images of the Fe2O3 and Fe3O4 nanoparticles.  

The particles are somewhat polydisperse, but both the Fe2O3 and Fe3O4 have 

diameters less than 25 nm. 

 

 (a)         (b) 
 

Figure 26.  TEM images of Fe2O3 (a) and Fe3O4 (b) colloidal particles.  Images were taken with a 
JEOL 1200 EX. 
 
 
 

Layer-by-layer films were made with aqueous solutions containing 0.2 wt% 

Fe-based particles alternated with 0.2 wt% LPEI solutions.  The Fe2O3 particle 

solutions had a pH of approximately 9.9 while the Fe3O4 had a pH of 5.1.  Both 

films exhibit linear growth as shown in Figure 27.  The Fe2O3 film grows at 

approximately 2.5 nm per bilayer while the Fe3O4 film grows at 22 nm per bilayer.  

The disparity in film growth can be accounted for by the Fe3O4 solution being at a 

lower pH, causing the stabilizer to be only weakly charged, which causes thicker 

deposition. 

100nm 100nm 
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Figure 27.  Ellipsometric thickness (a) and absorbance at 550nm (b) as a function of bilayers 
deposited for the two multiferroic systems. 
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Further work needs to be performed on tailoring and characterizing the film 

growth and multiferroic properties of these films.  These nanoparticles could be 

combined with PEDOT-PSS to see if there is a coupling effect. Quantum dots could 

be added to see if changing a magnetic field would alter their fluorescence 

characteristics. 
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