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ABSTRACT 

 

Measurement Enhancement for State Estimation. (May 2008) 

Jian Chen, B.S., Xi’an Jiaotong University; 

M.S., Xi’an Jiaotong University 

Chair of Advisory Committee: Dr. Ali Abur 

 

After the deregulation of the power industry, power systems are required to be 

operated efficiently and economically in today’s strongly competitive environment. In 

order to achieve these objectives, it is crucial for power system control centers to 

accurately monitor the system operating state. State estimation is an essential tool in an 

energy management system (EMS). It is responsible for providing an accurate and 

correct estimate for the system operating state based on the available measurements in 

the power system. A robust state estimation should have the capability of keeping the 

system observable during different contingencies, as well as detecting and identifying 

the gross errors in measurement set and network topology. However, this capability 

relies directly on the system network configuration and measurement locations. In other 

words, a reliable and redundant measurement system is the primary condition for a 

robust state estimation.  

This dissertation is focused on the possible benefits to state estimation of using 

synchronized phasor measurements to improve the measurement system. The benefits 

are investigated with respect to the measurement redundancy, bad data and topology 
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error processing functions in state estimation. This dissertation studies how to utilize the 

phasor measurements in the traditional state estimation. The optimal placement of 

measurement to realize the maximum benefit is also considered and practical algorithms 

are designed. It is shown that strategic placement of a few phasor measurement units 

(PMU) in the system can significantly increase measurement redundancy, which in turn 

can improve the capability of state estimation to detect and identify bad data, even 

during loss of measurements. Meanwhile, strategic placement of traditional and phasor 

measurements can also improve the state estimation’s topology error detection and 

identification capability, as well as its robustness against branch outages. The proposed 

procedures and algorithms are illustrated and demonstrated with different sizes of test 

systems. And numerical simulations verify the gained benefits of state estimation in bad 

data processing and topology error processing.  
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CHAPTER I 

INTRODUCTION 

 

1.1 Motivation 

After the deregulation of the power industry, power systems are required to be 

operated efficiently and economically in a strongly competitive environment. In order to 

achieve these objectives it is crucial to accurately monitor the state of the power system 

as the operating conditions change during the daily operation. State Estimation, which 

determines the optimal estimate for the system state based on the available system 

measurements, has become an essential tool in modern control centers. The 

measurements are commonly provided by the remote terminal units (RTU) at the 

substations and include real/reactive power flows, power injections, and magnitudes of 

bus voltages and branch currents. Today, state estimators are widely used in almost 

every power system control center. 

Performance of the state estimator relies heavily on its measurement system. 

When a new state estimator is put into service or an existing state estimator is upgraded, 

the measurement system needs to be well designed to ensure that the power system not 

only is observable, but also remains observable during all major contingencies. The 

problem of determining the best locations of measurements for state estimation is 

referred as the optimal measurement placement problem. This problem has been widely  
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studied in the past and the results were documented in [1-17]. While the majority of 

these studies are concerned about the observability problem, some of them also consider 

the state estimation robustness against loss of measurements and outage of branches, 

which may happen during some contingencies. On the other hand, a reliable and 

redundant measurement system is essential in order to enable proper bad data and/or 

information processing.  

In the recent years, synchronized phasor measurements have been introduced into 

power systems at selected substations in the system. Phasor measurement units (PMU) 

are devices that provide positive sequence phasor voltages and currents based on the 

measured voltage and current signals at substations.  These signals are time 

synchronized by the help of global positioning system (GPS) satellites. As the numbers 

of PMUs increase in power systems, phasor measurements will play a dominant role in 

improving the performance of state estimators. 

The idea of using synchronized phasor measurements for state estimation in not a 

new concept. In the pioneering work in PMU development and utilization done by 

Phadke et al. [18,19], it is argued that the state estimation problem can be solved by 

exclusive use of phasor measurements, if PMUs are installed at each bus.  Later on, this 

requirement is relaxed in [20,21] based on the fact that each PMU can measure not only 

the bus voltage but also the currents along all the lines incident to the bus.  This will also 

lead to a linear real-time state estimator, as opposed to the non-linear traditional state 

estimator which uses conventional measurements.  
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While the idea of using only phasor measurements appears very attractive due to 

its advantages in state estimation solution, it may not yet be practical since it requires a 

large number of PMUs to be installed in strategic system buses in order to accomplish 

this goal. Hence, a good comprise would be to incrementally improve the current 

traditional state estimators by introducing a limited number of phasor measurements. It 

has been shown that when phasor measurements are added to traditional measurement 

sets, accuracy of the state estimation can be improved [18,19,22].  Furthermore, it is 

recognized that PMUs can also be used to improve network observability [23].  

This dissertation studies potential benefits of adding phasor measurements to 

existing measurement sets. The benefits are investigated with respect to the 

measurement redundancy, bad data and topology error processing functions.  Optimal 

placement of phasor measurements in order to maximize these benefits is considered and 

practical engineering solutions are developed.   

 

1.2 Objective 

This dissertation is mainly focused on the possible benefits to state estimation of 

introducing phasor measurements, with respect to measurement redundancy, bad data 

processing and topology error processing. As state estimation constitutes the core of the 

on-line system security analysis, it acts like a filter between the raw data/information 

received from the system and all application functions that rely on the current state of the 

system. Therefore, the state estimator is required to have the capability to detect and 
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identify gross errors in the measurement set and network topology.   These objectives are 

accomplished by implementing proper bad data and topology error processing functions.   

However, bad data and topology error processing capability is closely related to the 

measurement redundancy problem. Even for an observable measurement system, bad 

data appearing in some measurements or topology errors associated with some branches 

may not be detected due to the deficiencies of the measurement system. In this 

dissertation, as a supplement of traditional measurements, the voltage and current phasor 

measurements from PMUs are incorporated into the commonly-used WLS state 

estimation algorithm. While the bad data and topology error processing capability is 

limited by the measurement system consisting of traditional measurements, adding a few 

extra PMUs can drastically improve the bad data and topology error processing 

capability,. Strategic PMU placement algorithms are also developed for this purpose. 

The developed PMU placement procedures can identify existing deficiencies in the 

measurement system and determine an optimal placement of PMUs to improve these 

deficiencies.  The algorithm is designed in such a way that it can also be extended to 

incorporate traditional measurements, as well as to improve redundancy based on 

desired levels of reliability.   

 

1.3 Contribution of the Dissertation 

This dissertation shows that strategic placement of few PMUs in the system can 

significantly increase measurement redundancy, which in turn can improve the 

capability of the state estimator to detect and identify bad data, even during loss of 
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measurements. Meanwhile, strategic placement of traditional and phasor measurements 

can also improve the state estimation’s topology error detection and identification 

capability, as well as its robustness against branch outages. This dissertation explores 

how to utilize these phasor measurements to improve bad data processing and topology 

error processing capability in state estimation. The main contributions of the dissertation 

are listed below: 

• Illustration of how phasor measurements can be used to improve measurement 

redundancy and bad data detection and identification capability. 

• Development of a new algorithm that is designed for optimal placement of both 

traditional and phasor measurements, to improve the measurement redundancy of 

a given system to a desirable level. This allows design of measurement systems 

with different degrees of vulnerability against loss of measurements and bad 

data. 

• Illustration of how phasor measurements are used to improve topology error 

detection and identification capability.  Phasor measurements are shown to be 

capable of improving topology error processing capability for cases where this 

can not be done by the traditional measurements. 

• Development of a new algorithm that is designed to obtain the optimal placement 

of measurements to improve topology error detection and identification. This 

placement also improves the robustness of state estimation against branch 

outages. 
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1.4 Outline of the Dissertation 

The dissertation includes five chapters. Chapter I introduces the motivation, 

objectives, and contributions of the completed work. Chapter II describes the traditional 

state estimation problem—its definition, formulation, and its function in bad data 

processing and topology error processing. Furthermore, the new measurements with 

PMUs are introduced. Incorporation of phasor measurements in state estimation 

formulation is reviewed and discussed. A new formulation of state estimation with both 

traditional measurements and phasor measurements is described. Chapter III analyzes 

benefits of phasor measurements for bad data processing. It is shown that with a few 

PMUs, bad data detection and identification capability of a given system can be 

drastically improved. The critical measurements or critical pairs of measurements in the 

original system, in which the bad data is undetectable or unidentifiable, can be 

transformed into redundant measurements. An optimal placement algorithm that 

accomplishes this in an efficient manner is also developed and described in this chapter.  

Chapter IV analyzes benefits of phasor measurements for topology error processing.  It 

is shown that phasor measurements can improve the system’s topology error processing 

capability up to a desired level, so that any single branch topology error can be detected 

by state estimation using measurement residual analysis. The measurement system can 

also be further reinforced in order to not only detect but also identify topology errors.  

Description of the developed placement algorithm is given, and case studies carried out 

on different size test system are presented in this chapter. Following a summary of the 
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contributions of the completed work, Chapter V discusses potential avenues for future 

research.  
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CHAPTER II 

STATE ESTIMATION 

 

In this chapter, the traditional state estimation problem is introduced, such as its 

definition, formulation and important functions. Before the main study of this 

dissertation is given, it is appropriate to provide a review for these primary problems and 

state of act in the area of state estimation. The review covers the models and 

assumptions in state estimation, the commonly used Weighted Least Squares (WLS) 

method to solve the state estimation problem, Chi-squares test and largest normalized 

residual test for bad data processing, as well as a geometric interpretation of the 

measurement residuals for topology error processing.   The chapter will also review 

phasor measurements and their previous utilization in state estimation. A specific 

algorithm is provided to utilize the phasor measurements in traditional Weighted Least 

Square (WLS) method. 

 

2.1 State Estimation Problem 

Power system state estimation constitutes the core of the on-line power system 

monitoring, analysis and control functions. In modern power system, the control center 

receives the system-wide device information and measurement data through the 

Supervisory Control and Data Acquisition (SCADA) system. However, the information 

and measurement data provided by SCADA may not always be accurate and reliable due 

to errors in the measurements, telemetry failures, communication noise, etc. On the other 
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hand, the collected measurements may not allow direct extraction of the corresponding a 

real-time AC operation state of the system. These concerns bring the development of 

state estimation [24,25].  

State estimation acts like a filter between the raw measurements received from 

the system and all the application functions that require the most reliable data base for 

the current system operation state. State estimation use the measurement data from 

SCADA system, the status information about the circuit breakers (CB), switches and 

transformer taps, as well as the parameters of transmission lines, transformers, shunts 

capacitors/reactors and other devices, to estimate the state of the power system. 

Nowadays, state estimation has become one of the essential energy management system 

(EMS) functions. It is responsible for maintaining a reliable and accurate real-time data 

base, which will in turn be used by all other EMS functions. 

State estimation typically includes the follow functions [27-29]: 

• Topology processor: Gathers the status information about the CBs and switches 

in the system, and configures the bus-branch model of the system.  

• Observablility analysis: Determines the available measurements in the system, 

and checks if these measurements are enough to obtain the state estimation 

solution for the entire power system. If not, identifies the unobservable branches 

and the observable islands in the power system.  

• State estimation solution: Finds out the optimal estimated solution for the state of 

entire power system, using the gathered measurement data and devices 

information. The state of power system is usually obtained by solving a nonlinear 
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optimization problem, and given out in the form of complex bus voltages 

(magnitudes and angles) for all buses. Therefore, other variables, such as line 

flows, loads, and generator outputs can be calculated based on the estimated 

solution.   

• Bad data processing: Detects existence of gross errors in the measurement data. 

If there is any bad measurement data, it should be identified and eliminated. 

However, it requires enough redundancy in the measurement system. 

• Parameter and topology error processing: Detects parameter error in the network 

parameters, such as transmission line parameters, transformer tap parameters, as 

well as shunt capacitor/reactor parameters. Estimates the correct values if there is 

any erroneous parameter. Detects topology error in the network configuration. 

Identifies the topology error if there is enough measurement redundancy.  

 

2.2 State Estimation Formulation 

2.2.1 Models and Assumptions 

State estimation problem generally only uses the single phase positive sequence 

circuit for modeling the power system. Power system is assumed to operate in the steady 

state under balanced conditions, which implies all bus loads and branch power flows will 

be three phase and balanced, all transmission lines are fully transposed, and all other 

devices are symmetrical in the three phases.  
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State estimation collects the measurement data from a various types of 

measurements installed in the power system. However, the most commonly used 

measurements include the following types: 

• Line power flow measurements: Provide the real and reactive power flow along 

the transmission lines or transformers. 

• Bus power injection measurements: Provide the real and reactive power injected 

at the buses. 

• Voltage magnitude measurements: Provide the voltage magnitudes of the buses. 

Furthermore, in some cases, especially for state estimation of distribution systems, the 

line current magnitude measurements may be taken into consideration, which provide 

the current flow magnitudes (Amps) along the transmission lines or transformers. The 

line current magnitude measurements are not discussed in this dissertation.  

With the introduction of PMUs into state estimation, there will be two new types 

of measurements: 

• Voltage phasor measurements: These are the phase angles and magnitudes of 

voltage phasors at system buses. 

• Current phasor measurements: These are the phase angles and magnitudes of 

current phasors along transmission lines or transformers. 

The utilization of these two types of phasor measurements is discussed in the later part 

of this chapter. 

All types of measurements can be expressed in terms of the system state as 

below: 
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where, 

z  is the vector of measurement, and iz  is the measured value of measurement i; 

[ ])(,),(),( 21 xhxhxhh m
T L=  and )(xhi  is the nonlinear function relating 

measurement i  to the state vector x ; 

[ ]n
T xxxx L21=  is the system state vector, including the voltage magnitudes and 

phase angles of all the buses excluding the reference bus phase angle; 

[ ]m
T eeee L21=  is the vector representing measurement errors, and ie  is 

measurement error of measurement i. 

Regarding the general statistical properties of the measurement errors, the 

following assumptions are made: 

• The measurement error ie  is assumed to have a normal distribution with zero 

mean and known standard deviation iσ , i.e. ;0)( =ieE  

• The measurement errors are assumed to be independent, i.e. 0][ =jieeE .  

Hence, the covariance matrix of the measurement errors R is diagonal 

{ }22
2

2
1 ,,,][)( m

T diageeEeCovR σσσ L=⋅==  

The standard deviation iσ  of measurement i is set to reflect the expected accuracy of the 

corresponding meter used. 
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2.2.2 WLS State Estimation Algorithm 

Weight Least Square (WLS) method is commonly used to solve the state 

estimation problem, which is formulated as the following optimization problem: 

mirxhztosubject

rWMinimize

iii

m

i
iii

,,1)(
1

2

K=+=

∑
=                                                                           (2.2) 

where, 

m is the number of measurements; 

n is the number of system states; 

[ ]m
T zzzz ,,, 21 L=  is the vector of measurement; 

[ ])(,),(),( 21 xhxhxhh m
T L=  is the nonlinear function vector; 

[ ]n
T xxxx L21=  is the system state vector. 

W  is the weight matrix, which is defined as the inverse of the covariance matrix of the 

measurement errors R :  

⎭
⎬
⎫

⎩
⎨
⎧

== −
22

2
2
1

1 1,,1,1

m

diagRW
σσσ

L  

The optimization problem in Equation (2.2) can be solved when the first-order 

optimality conditions are satisfied: 

[ ] 0)()()()( 1 =−−=
∂

∂
= − xhzRxH

x
xJxg T

                                                                    (2.3) 

where )(xH  is called Jacobian matrix, and 
x
xhxH

∂
∂

=
)()(                                          (2.4) 
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Equation (2.3) is a nonlinear equation, which can be further solved using an iterative 

solution scheme known as the Gauss-Newton method as shown below: 

[ ] )()( 11 kkkk xgxGxx ⋅−=
−+                                                                                         (2.5) 

where, 

k is the iteration index; 

kx is the solution vector at the kth iteration; 

))(()()( 1 kkTk xhzRxHxg −⋅⋅−= −                                                                              (2.6) 

)()()()( 1 kkT
k

k xHRxH
x
xgxG ⋅⋅=
∂

∂
= −                                                                       (2.7) 

G(x) is called the gain matrix. It is sparse, positive definite and symmetric if the system 

is fully observable. At the kth iteration, it is decomposed into its triangular factors, and 

the following linear equation is solved using forward/back substitutions: 

[ ] [ ])()()( 11 kkTkk xhzRxHxxG −=Δ −+                                                                           (2.8) 

where kkk xxx −=Δ ++ 11  

 

2.2.3 Bad Data Processing 

One of the essential functions of state estimation is bad data processing function. 

State estimation is required to detect, identify and correct or eliminate the gross errors in 

the measurement data, in order to obtain an unbiased result. Hence, state estimation has 

to be equipped with some advanced features for bad data detection and identification 

[30,31,32]. 
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Treatment of bad data depends on the method of state estimation used in the 

implementation. With the commonly used WLS method, detection and identification of 

bad data are done after the estimation solution by analyzing the measurement residuals. 

In this dissertation, Chi-squares ( 2χ ) test will be used to process the 

measurement residuals to detect bad data in the measurement set. Once bad data are 

detected, the Largest Normalized Residual ( Nrmax ) test will be used to identify bad data. 

These two tests will be described next. 

 

2.2.4 Chi-squares Test 

It can be shown that sum of squares of independent random variables will have a 

Chi-squares distribution, if each variable is distributed according to the Standard Normal 

distribution. Therefore, based on the given formulation of WLS estimation method, the 

objective function J(x) is expected to have a distribution which can be approximated as a 

Chi-squares distribution with at most (m-n) degrees of freedom, where m is the total 

number of measurements and n is the number of state variables.  

Using the statistical properties of the objective function, the following steps can 

be defined as the Chi-squares 2χ -test for bad data detection: 

• Solve the WLS estimation problem and compute the objective function as 

defined by Equation (2.2): 

      ∑
=

−
=

m

i i

ii xhz
xJ

1
2

2))ˆ((
)ˆ(

σ
 

      where x̂  is the estimated state vector of dimension n. 
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• Check the detection confidence value 2
),( pnm−χ  for the Chi-squares distribution 

with probability p (e.g. 95%) and (m-n) degrees of freedom. The probability p is 

defined as ))ˆ(Pr( 2
),( pnmxJp −≤= χ . 

• Test if 2
),()ˆ( pnmxJ −≥ χ . If yes, then bad data will be suspected, else no bad data 

will be assumed to exist. 

 

2.2.5 Largest Normalized Residual Test 

Consider the linearized measurement equation, which is used at each iteration 

during the numerical solution of the WLS estimation problem: 

exHz +Δ=Δ                                                                                                                 (2.9) 

Applying the optimization criterion, the following expression can be derived for 

the optimal state update:  

zRHGzRHHRHx TTT Δ=Δ=Δ −−−−− 11111 )(ˆ                                                              (2.10) 

The calculated measurement updates based on the estimated state updates will be given 

by: 

zKzRHHGxHz T Δ=Δ=Δ=Δ −− 11ˆˆ                                                                            (2.11) 

where 11 −−= RHHGK T  and is called the hat matrix. Furthermore, it can be proved that 

the matrix K has the following property: HHK =⋅   

Thus, the expression of measurement residuals can be derived as the follows: 
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Se
eKI

exHKI
zKI

zzr

=
−=

+Δ−=
Δ−=

Δ−Δ=

)(
))((

)(
ˆ

                                                                     (2.12) 

where KIS −= and is called the sensitive matrix, which has the following property: 

RSSRS T ⋅=⋅⋅ . It represents the sensitivity of measurement residuals to the 

measurement errors.  

Based on the assumption that the measurement errors have normal distributions, 

the statistical properties of measurement residual are derived as:  

[ ] [ ] SRSRSSeeESrrErCov
eESeSErE

TTT ==⋅⋅==Ω=

=⋅=⋅=

)(
0)()()(

                                                    (2.13) 

where Ω  is the covariance matrix of measurement residuals. 

Hence, the normalized value of the residual for ith measurement can be 

calculated as: 

iiii

i

ii

iN
i SR

rr
r =

Ω
=                                                                                     (2.14) 

and the normalized residual vector Nr  have a Standard Normalized Distribution, i.e. 

)1,0(~ Nr N
i  

It can be derived that, with enough measurement redundancy, the largest 

normalized residual should correspond to the measurement with bad data. The Largest 

Normalized Residual ( Nrmax ) Test uses this property to identify and subsequently 

eliminate bad data, which involves the following steps: 
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• Solve the WLS estimation problem and calculate the measurement residuals: 

      mixhzr iii L,1)ˆ( =−=  

• Calculate the normalized residuals of the measurements: 

      mi
SR

rr
r

iiii

i

ii

iN
i L,1==

Ω
=  

• Find the largest value N
kr  in the normalized residual corresponding to kth 

measurement; 

• If cr N
k > , the kth measurement is identified as bad data. Otherwise, no bad data 

will be suspected. Here, c is the chosen identification threshold (e.g. 3.0). 

• Eliminate the kth measurement, and repeat the state estimation. 

 

2.2.6 Topology Error in State Estimation 

As introduced at the beginning of this chapter, state estimation problem is 

formulated based on a branch-to-bus electrical network model provided by the topology 

processor. The topology processor analyzes the status of all circuit breakers (CB) and 

switching devices to configure the bus-branch model of the power system. However, in 

some rare cases, the obtained status of certain CBs may be incorrect. When this happens, 

the topology processor generates wrong bus-branch model, which leads to a topology 

error. 

Topology errors can be generally classified in two types: 

• Branch status errors: This type of errors involves the status of network branches, 

which represent the transmission lines or transformers. For example, an inclusion 
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error takes places when a disconnected element is assumed to be in service. And 

an exclusion error happens when an energized element is assumed to be out of 

service. 

• Substation configuration errors: This type of errors affects the CBs which link 

different bus sections within the substation. A split error happens when an 

electric bus is erroneously modeled as two buses, while a merging error occurs 

when two actually separated buses is modeled as one bus. This type of errors 

generally can be detected as a multiple branch status error, but its identification 

need more detailed bus-section-switch model. 

Topology errors will lead the state estimation to a significantly biased result or 

serious convergence problem. It is necessary for state estimation to develop effective 

mechanisms to detect and identify topology errors.  With the commonly used WLS 

method, the topology error detection and identification can be realized by analyzing the 

measurement residuals after the estimation [33,34], which is introduced in the following 

section. 

 

2.2.7 Residual Analysis for Topology Error Detection and Identification 

The topology errors involve wrong network configuration in the generated bus-

branch model, which leads to the incorrect nonlinear function h(x). The effect of the 

topology errors then shows up in the Jacobian matrix H. This effect can be modeled in 

the following manner [34]: 

EHH et +=                                                                                              (2.15) 
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where, 

tH  is the true Jacobian matrix, 

eH  is the incorrect Jacobian due to topology errors,  

E  is the Jacobian matrix error. 

The true equation for the state estimation should be: 

exHz t +Δ=Δ  

But the following equation will be used erroneously instead: 

exHz e +Δ=Δ  

Measurement residuals will then have the following statistical properties due to 

the topology error: 

RKIr
ExKIrE

eExKIxHzr

e

e

ee

)()cov(
)()(

))((ˆ

−=
−=

+−=−Δ=
                                                                      (2.16) 

where 111 )( −−−= RHHRHHK T
ee

T
eee , which is the hat matrix with topology errors. 

Let fΔ  be the vector of branch flow errors, which represents the errors in the 

branch flows due to transmission line topology errors or other topology errors. Let M be 

the measurement-to-branch incidence matrix. The measurement bias Ex in Equation 

(2.15) can be expressed as: 

fMEx Δ=                                                                                                        (2.17) 

and the measurement residuals can be given by: 

fMKIr e Δ−= )(                                                                                                     (2.18)  
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Therefore, given enough measurement redundancy, the existence of topology 

errors will affect measurement residuals. This implies that topology errors can be 

detected by checking the objective function J(x) and applying the Chi-squares ( 2χ ) test, 

or by checking the normalized residuals of measurements, assuming that analog bad data 

in measurements have already been identified and eliminated. 

Let us consider the linear relationship between the measurement residuals and 

branch flow errors: 

fTr Δ=                                                                                                                        (2.19) 

where MKIT e )( −= . When a single topology error exists in the ith branch, there will 

be a change in the corresponding branch flow α=Δ if  and 0=Δ kf  for ik ≠ , where α  

is the scalar corresponding to the type of topology error. Thus, the measurement residual 

vector r will be collinear with the vector iT , representing the ith column of matrix T. 

A geometric interpretation of the measurement residuals can be used to identify 

single branch topology errors [33] applying the following procedure: 

• Solve the WLS estimation problem and calculate the measurement residuals 

vector: 

       )ˆ(xhzr −=  

• Calculate the sensitive matrix of T for measurement residual r  respect to branch 

flow errors fΔ : 

      MKIT e )( −=  
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• Test the collinearity between the measurement residuals vector and the columns 

of the sensitive matrix of T , using their dot product: 

      ni
rT
rT

i

T
i

i L,1cos ==θ  

      where n  is the number of branches in the system. 

• If 0.1cos ≅iθ , and other 1cos <kθ  for ik ≠ , a single branch topology error is 

suspected in the ith branch.    

Note that, both detection and identification of topology errors based on the 

analysis of measurement residuals will require high enough measurement redundancy in 

the system. Moreover, in some cases, the capability of detection and identification is 

limited by the network configuration. 

  

2.3 Synchronized Phasor Measurements 

 

 

Figure 1  Typical Blocks of PMU 
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Phasor measurement units (PMUs) use the synchronization signals received from 

the GPS satellite system. By measuring the magnitude and phase angles of currents and 

voltages, multiple PMUs will provide coordinated system-wide measurements [35,36].  

Figure 1 shows a typical synchronized phasor measurement unit configuration. 

The analog input signals are obtained from the secondary sides of the voltage and 

current transformers. The analog input signals are filtered by anti-aliasing filter to avoid 

aliasing errors. Then the signals will be sampled by the A/D converter. The sampling 

clock is phase-locked to the GPS time signal. The GPS receivers can provide uniform 

time stamps for PMUs at different locations. The phasor microprocessor calculates the 

values of phasor. The calculated phasors and other information are transmitted to 

appropriate remote locations over the modems or other communication tools. 

In recent years, PMUs are becoming more common in the power systems due to 

their versatile utilization. PMUs have made significant improvements in the control and 

protection functions [37-39]. The wide-spread placement of PMUs also provides an 

opportunity to improve state estimation. Their benefits to the state estimation function 

have been studied and results of the work were reported in [18-20,40,41]. 

 

2.4 State Estimation with Phasor Measurements 

PMUs can directly provide two types of measurements, namely bus voltage 

phasors and branch current phasors. A PMU placed at a given bus can provide voltage 

phasor at the bus and current phasors on several or all lines incident to that bus, as 
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shown in Figure 2. Depending on the type of PMUs used, the number of channels used 

for measuring voltage and current phasors will vary. 

 

 

Figure 2 Phasor Measurement Provided by PMU 

 

So far, there have been two optional methods which proposed to utilize the 

phasor measurements in the state estimation.  These will be reviewed next.  

 

2.4.1 Linear State Estimation with Only Phasor Measurements 

The idea of using phasor measurements in state estimation is first presented in 

the pioneering work of Phadke et al. Initially it was proposed that every bus ought to be 

monitored by a PMU which would result in a simplified linear state estimation 

formulation. This requirement is further relaxed due to the fact that each PMU can 

measure not only the bus voltage phasor but also the current phasors along all lines 

incident to the bus. 

However, in order to guarantee the observability of entire power system, it still 

needs enough PMUs are implemented at proper buses. Hence, although this type of state 
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estimation has significant advantages comparing to traditional state estimation, its 

implementation in the power systems requires much more investment. 

 

2.4.2 Hybrid State Estimation with Both Traditional and Phasor Measurements 

Given the impracticality of placing many PMUs to support the linear state 

estimation with only phasor measurements, an intermediate solution is to use phasor 

measurements as additional inputs to the traditional state estimation. Some work has 

been done to incorporate the synchronized phasor measurements into the state estimation 

along with traditional measurement [42].  

In this dissertation, a specific model is used to implement both the voltage and 

line current phasor measurements into traditional WLS state estimation. In this model, 

the voltage phasor measurements are used in the polar coordinates denoted as the angle 

iθ  and magnitude iV   for the voltage phasor at the certain bus i, which directly 

corresponds to the state variables iθ  and iV . Therefore, there is a linear relation between 

the voltage phasor measurements and state variables. 

However, the model of line current phasor measurement is nonlinear and more 

complicated. The line current phasor are written in rectangular coordinates, in terms of 

their real )(, rijI  and imaginary )(, iijI  parts for the current phasor in the branch from bus i 

to bus j.  Consider the two-port −π model of a network branch show in Figure 3. 
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Figure 3 π -Model of a Network Branch 

 

where, 

ijij jbg +  is the admittance of the series branch connecting buses i  and j ; 

sisi jbg +  is the admittance of the shunt branch connected at bus i . 

The real and imaginary part of the current phasor along the branch from bus i to 

bus j can be expressed as the following formulations, which also represent the nonlinear 

measurement functions )(xhI  relating current phasor measurements to the state 

variables:  
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(2.20) 

Their corresponding elements in the Jacobian matrix H  can also be obtained 

using Equation (2.4): 
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(2.21)             

Using this model, both the bus voltage phasor and the line current phasor 

measurements can be easily incorporated into the traditional WLS state estimation 

problem shown in Equation (2.2). The solution algorithm will also remain the same as 

described in Section 2.2.      

              

2.5 Summary 

In this chapter, the traditional state estimation problem is briefly reviewed. 

Among its various functions, bad data and topology error processing are described in 

detail.  The commonly used methods to detect and identify bad data as well as topology 
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error are also reviewed.  It is specifically noted that all of these bad data and topology 

error processing methods require high measurement redundancy.  

The description of operation and properties of PMUs are also introduced in this 

chapter.  PMUs have recently been populating power systems because of their wide 

applications in power system control and protection. The benefits of PMUs are also 

extended to the functions of state estimation. It is argued that state estimation based on 

only phasor measurements may require a large amount of PMUs and therefore may not 

be economically viable in the immediate future.  A compromising alternative is to utilize 

the phasor measurements from PMUs to improve traditional state estimation. A specific 

model is introduced so that both voltage phasor and line current phasor measurements 

can be incorporated into the traditional WLS estimation method.  

In the next chapter, one important benefit of PMUs to the state estimation, 

improving bad data detection and identification capability, will be discussed.  The 

strategically placed PMUs will be used to improve traditional state estimation and its 

benefits to bad data processing will be shown.  
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CHAPTER III 

OPTIMAL MEASURMENT PLACEMENT TO  

IMPROVE BAD DATA PROCESSING 

 

In this chapter, PMUs are introduced into traditional state estimation to improve 

the bad data processing capability in state estimation.  Bad data processing is an essential 

function to detect and identify the errors in measurement set, which is commonly 

integrated in the state estimation. Bad data processing capability is closely related to the 

measurement system, while bad data appearing in critical measurements can not be 

detected. In this chapter, it will be shown that by adding few extra PMUs at strategic 

locations, the bad data detection and identification capability of a given system can be 

drastically improved. A specific algorithm to obtain the optimal placement of extra 

PMUs or traditional measurements is also presented and illustrated with a simple 

example. Cases studies are carried out with different sizes of test systems, and 

simulation results are presented to demonstrate the gained benefits. Some studies and 

results have been presented in the previous paper [43]. 

 

3.1 Introduction 

Bad data processing is an important function which is commonly integrated the 

state estimation. It is required for the state estimation to have the capability to detect, 

identify and correct the gross errors in the measurement set. Depending on the state 

estimation method used, bad data processing may be carried out as a part of the state 
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estimation or as a post-estimation procedure. However, no matter what type of state 

estimation method employed, the bad data processing capability depends closely on the 

measurement configuration and redundancy. 

In a given observable power system, measurements can be classified as either 

critical or redundant measurements. While a redundant measurement can be removed 

from the measurement system without observability problem, the removal of any critical 

measurement will cause the rest system unobservable. The critical measurements in the 

power system also lead to bad data detection problem. When a bad data takes place in 

the redundant measurement, it can detected by analyzing the objective function or 

measurement residuals. However, errors in the critical measurement cannot be detected. 

Therefore, a well-designed measurement system should not contain any critical 

measurement so that bad data processing can be accomplished.  

Critical measurements in a given power system can be identified, either by the 

topological methods or numerical methods, such as those presented in [44] or [45]. The 

critical measurements can be improved to redundant measurements by adding a few 

measurements at the proper locations, as the result of increased measurement 

redundancy. 

Although it is possible and feasible to improve measurement redundancy by 

adding traditional measurements, adding PMUs will potentially be a better alternative. 

As a new type of advanced measurement, a PMU placed at a given bus can provide 

multiple synchronized phasor measurements to the state estimation, which include the 

bus voltage phasor measurement and the current phasors on several or all lines incident 
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to that bus. And using the model provided in Section 2.4, it is simple to incorporate these 

voltage and current phasor measurements into the WLS state estimation along with 

traditional measurements. In this chapter, it is shown that, given a power system which is 

fully observable with existing measurements, adding few PMUs can convert all existing 

critical measurements in the power system to redundant measurements. As a result of 

this improvement, it will make any bad data appearing in the measurement set 

detectable. An optimal PMU placement algorithm is developed for this purpose and 

presented in this chapter.  

Besides bad data detection, another problem regarding bad data processing is the 

dad data identification, which also related to the measurement configuration and requires 

even higher redundancy. Two redundant measurements are defined as a critical pair, if 

their simultaneous removal from the measurement set will make the system 

unobservable. A single bad data in either measurement of a critical pair is detectable, but 

not identifiable. Hence, the placement of measurements to enable bad data identification 

is further discussed in this chapter. It is shown that the measurement redundancy can be 

further improved to a desirable level so that any bad data in the measurement set is 

identifiable. 

It should be noted that the system is assumed to be already observable before 

further improving measurement redundancy. If the system is not observable, traditional 

measurements or PMUs can be added to improve the measurement system and make it 

fully observable, using the approaches provided in [21] or [23]. 
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3.2 Linear Measurement Model with PMUs 

A simplified DC approximation model for the measurement equations is often 

useful for analyzing the various problems related only to the measurement configuration. 

For a given network, the DC approximation model is obtained by assuming that all the 

bus voltage magnitude are already known and set to 1.0 per unit. Furthermore, all the 

branch series resistances and shunt elements are neglected. It leads the real power flow 

from bus i and bus j to the following simplified formulation: 

ij

ij
ij x

P
θsin

=                                                                    (3.1) 

And the real power injection at bus i can be expressed as the sum of the power 

flows along all branches incident to this bus: 

∑
Ν∈

=
ij ij

ij
i x

P
θsin

                                                                 (3.2) 

where  

ijx  is the reactance of branch i-j, 

ijθ  is the phase angle difference between bus i and bus j, 

iΝ  is the set bus numbers that are directly connect to bus i.  

It should be noted that both the system observability and critical measurements 

problem are not only independent to the operating state of system, but also independent 

to the branch parameter. Therefore, all the reactance in the system branches can be 

assumed equal to 1.0 per unit. Using first order Taylor expansion around 0=ijθ for 
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Equations (3.1) and (3.2), the relations between real power measurements and bus 

voltage phase angles can be expressed as linear functions: 

eP jiij +−= θθ                                                                                                    (3.3) 

eP
ij

jii +−= ∑
Ν∈

θθ                                                                                              (3.4) 

As introduced in previous chapter, a PMU can measure both the voltage phasor 

of its own bus and current phasor along with the incident branches. It is obvious the 

voltage phasor measurement at bus i  has the following linear function: 

eiiz += θθ ),(                                                                                                          (3.5) 

where iz ),(θ  is the angle part of voltage phasor measurement at bus i. Based on the above 

assumption about system operating state and network parameter, the real part of branch 

current can be simplified from Equation (2.20) to the following equation: 

jirijI θθ sinsin)(, −=                                                                       (3.6) 

Since the bus voltage phase angles in power system are relatively small, and the 

analysis result of measurements configuration is independent to the operating state of the 

system, Equation (3.6) can be further approximated to: 

jirijI θθ −=)(,                                                                                                        (3.7) 

Therefore, for a given network, the θ−P  linear model for the real power and 

phasor measurement to the bus phase angles can be expressed in the following form: 

eHz += θ                                                                      (3.8) 

where, 
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z  is the real power and phasor measurement vector, which contains real power flow, 

real power injection measurements, angle part of voltage phasor measurements, and real 

part of current phasor measurements; 

θ  is the bus phase angle vector; 

H  is the measurement Jacobian matrix for the real power and phasor measurements 

versus bus voltage angles; 

e  is the error vector corresponding to the real power and phasor measurements. 

Note that the real and reactive power measurements, angle part and magnitude 

part of voltage phasor measurements, as well as real part and imaginary part of current 

phasor measurements are always in pairs in the measurement set. Hence, the analysis 

results based on θ−P  linear model can be extended to the nonlinear full model without 

loss of generality. 

 

3.3 Formulation of PMUs Placement Problem 

In this section, a proposed procedure for PMUs placement in order to covert all 

critical measurements into redundant ones will be described. And a small tutorial 

example is given to illustrate the procedure in detail. The benefits of having this new 

measurement configuration are twofold: 1) the observability of system will no longer be 

vulnerable to the loss of any single measurement; and 2) any single bad data, no matter 

where it happens, can be detected. 

The procedure is formulated as a three-step solution, including the following 

steps: 
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1) Identify the existed critical measurements in the original system; 

2) Find candidate PMUs that an transform each critical measurement into a 

redundant one; 

3) Choose the optimal set of PMUs among the candidates with minimum cost. 

 

3.3.1 Identification of Critical Measurements 

Based on its definition, a critical measurement is the measurement whose 

removal from the measurement set will result in an unobservable system. A power 

system will be observable only if the measurement Jacobian matrix H is of full rank. 

Hence, critical measurements in a given system can be identified by checking the 

algebraic dependency in the Jacobian matrix.   

Consider an observable power system with n buses and m measurements. Using 

the linear θ−P  measurement model, there will be )1( −n  state variables which 

correspond to all bus voltage angles except the reference bus. Therefore, the 

measurement Jacobian matrix H will be a )1( −× nm  matrix with a column rank of 

)1( −n . Then, a set of )1( −n  measurements can be chosen out from the available m 

measurements in the system, so that the system can keep observable with only these 

)1( −n  measurements. These  )1( −n  measurements are named as essential 

measurements, and other )1( +− nm  measurements are named as rest measurements. It 

should be noted that such a set of essential measurement may not be unique. However, 

all critical measurements in the system must be included in the set of essential 
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measurement. And the )1( +− nm  rest measurements must be redundant (non-critical) 

measurements. 

A numerical approach to identify the critical measurements in the power system 

by analyzing the Jacobian matrix is outlined as the following steps: 

Step 1) Decompose the Jacobian matrix H into its lower trapezoidal L and upper 

triangular factors U by applying the Peters-Wilkinson [46] decomposition method: 

ULU
M
L

HPH
R

b ⋅=⋅⎥
⎦

⎤
⎢
⎣

⎡
=⋅=~                                                                             (3.9) 

where, 

H~  is the permuted matrix derived from H  by suitably exchanging rows, which is 

equivalent to reordering the measurements. 

P  is the permutation matrix; 

L  is the lower trapezoidal matrix; 

U  is the upper triangular matrix; 

bL  is the )1()1( −×− nn  lower triangular sub-matrix, whose rows corresponds to the 

essential measurements; 

RM  is the )1()1( −×+− nnm  lower rectangular sub-matrix, whose rows corresponds to 

the rest redundant measurements. 

Step 2) Both the matrix of L and U are of full rank for an observable system. Hence, the 

rank of the Jacobian matrix H can is exactly the rank of transformed factor 'L , which is 

given by: 
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where, 

)1( −nI  is the identity matrix of dimension )1( −n ; 

RK  is the lower rectangular sub-matrix in the transformer factor 'L . 

Note that since bL  is of full rank, and its inverse is multiplied from the right, as 

shown in Equation (3.10), the row identities will be well preserved in the transformed 

factor matrix 'L . Hence, each row of 'L  still corresponds to the certain measurement, 

respectively. If one column of RK  is null, it will be indicated that the corresponding 

essential measurement is linear independent to others measurements. Therefore, if a 

column of  RK  contains all zero elements, then the measurement corresponding to the 

row index will be identified as critical. 

The procedure can be illustrated using a simple example. Consider the small five-

bus power system and its measurement configuration shown in Figure 4. 

 

 

Figure 4 Five-bus Test System 
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The critical measurements in the system can be easily identified by applying the 

above procedure. Calculating the transformed factor matrix of 'L  for the example, the 

result is shown as follows: 
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Checking the transformed lower rectangular sub-matrix RK , there are two 

columns with all zero elements. Therefore, two measurements are identified as critical, 

which are the power injection measurement at bus 2 and the power flow measurement at 

the branch from bus 1 to bus 2, denoted as 2P  and 12P , respectively. 

 

3.3.2 Identifying the Candidate PMUs for Eliminating Critical Measurements 

Once the critical measurements are identified, a set of candidate PMUs is 

selected for each critical measurement. The effects of candidate PMUs are studied if 

their installations will transform the corresponding critical measurements into redundant 

ones. The effects can be revealed by checking the linear dependency in the transformed 

factor matrix 'L  after assuming their installations.  

With all candidate PMUs installed in the system, the measurement Jacobian 

matrix of H  can be partitioned into two sub-matrices. 
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where, 

usedH  is the sub-matrix whose rows correspond to the existing measurements in the 

system; 

pmuH  is the sub-matrix whose rows correspond to the phasor measurements associated 

with candidate PMUs. 

Repeating the procedure in the above section, now the transformed factor 'L  is 

given by: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅
⋅
⋅

=⋅=
−

−

−

−

−

pmu

R

n

bpmu

bR

bb

b

K
K

I

LM
LM

LL
LLL

)1(

1

1

1

1'                                                             (3.11) 

where pmuK  is the lower rectangular sub-matrix corresponding to the phasor 

measurements associated with candidate PMUs. 

The effects of those measurements can be obtained easily by simply tracing the 

columns for the critical measurements in the transformed matrix 'L . For a certain row 

corresponding to a new measurement, those non-zero elements in the columns of 

original critical measurements indicates that these critical measurements can be 

improved by introducing the new measurement. 

Considering the five-bus example given above, let us assume that there is a 

candidate PMU installed at bus 1 only. Including the measurements associated with this 

PMU, 'L  will take the following form: 
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As shown above, a PMU placed at bus 1 is assumed to provide three phasor 

measurements, namely, the voltage phase angle measurement 1θ  and the current phasor 

12I  and 15I . By checking the existence of non-zero elements in the sub-matrix of pmuK , 

it shows that both the critical measurements 2P  and 12P  can be improved to redundant 

measurements by introducing the new phasor measurements of the PMU at bus 1. 

 

3.3.3 PMU Placement Problem 

The final step involves the optimal selection of the PMUs from the list of 

candidates, which can improve all critical measurements in the system with minimum 

cost. 

An incidence matrix B  that relates PMUs to their associated phasor 

measurements is formed. The element of B  is defined as the follows: 

otherwise
jtmeasurementheprovidesibusatPMUif

jiB
⎩
⎨
⎧

=
0
1

),(  

For the five-bus system in Figure 4, assume that there are five candidate PMUs 

corresponding to all five buses in the system. And also assume each candidate PMU has 
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one voltage phasor measurement for its own bus and several current phasor 

measurements for its incident branches, yielding the incidence matrix of B  shown in the 

following equation: 

1

2

3

4

5

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

PMU
PMU

B PMU
PMU
PMU

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1θ 12I 15I 2θ 21I 23I 24I 25I 3θ 32I 34I 42I 43I4θ 5θ 51I 52I

  

Next, let us define another matrix R. It is formed using the binary form of the 

columns of pmuK  in Equation (3.11) which correspond to the critical measurements. It is 

defined as 

otherwise
criticalisjtmeasuremenandjiKif

jiR pmu ""0),(
0
1

),(
≠

⎩
⎨
⎧

=  

Note that the binary matrix R  provides a compact representation of these critical 

measurements (columns) that will be improved to redundant ones by given phasor 

measurements with candidate PMUs (rows).  

For the same five-bus system which has only two critical measurements 

(corresponding to column 1 and column 4 in pmuK ), the matrix R will be obtained as 

follows: 
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Since each PMU supplies more than one phasor measurements (typically a 

voltage phasor measurement and several current phasor measurements), the incidence 

matrix B will be used to represent the incidence relation between phasor measurements 

and candidate PMUs. Then, the following matrix product will yield the relationship 

between candidate PMUs and critical measurements: 

TT BRF ⋅=                                                                                                          (3.12) 

Calculating F for the above example system, yielding the following result: 

⎥
⎦

⎤
⎢
⎣

⎡
=⋅=

31132
30011TT BRF  

Note that each row of F  corresponds to a critical measurement, and each column 

of F  corresponds to a candidate PMU. The following constraint will ensure the 
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requirement of PMU placement that for every critical measurement, there will be at least 

on PMU to make the critical measurement redundant: 

1̂≥⋅ XF                                                                                                                      (3.13) 

where, 

1̂  is a vector, whose entries are all equal to 1; 

X  is a binary (0/1) vector, whose entries is defined as 

otherwise
chosenisiPMUcandidatetheif

iX
⎩
⎨
⎧

=
0
1

)(  

The installation of selected PMUs will guarantee network observability in case of 

loss any of these critical measurements in the original system. In other words, all 

previously critical measurements now are transformed into redundant measurements.  

An optimization problem is then formulated, whose objective is to select a set of 

PMUs with minimum installation cost so that all critical measurements are transformed 

into redundant ones. Due to the types of variables involved, it can be formed as an 

integer programming problem, which is stated as the following equation: 

1≥⋅

⋅∑
XFtosubject

xcMinimize
n

i
ii                                                                                              (3.14) 

where, 

n  is the number of candidate PMUs in the system; 

ic  is the cost of installing candidate PMU i . 
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The solution vector X  of the optimization problem given in Equation (3.14) will 

provide the strategic placement of PMUs, which eliminates all critical measurements 

with minimum cost. 

Solution of this problem for the above five-bus example yields that any one of 

candidate PMUs installed at the bus 1, bus 2 or bus 5 can achieve the objective. Only 

one PMU at any of these three buses can transform both critical measurements into 

redundant ones, so the PMU with minimum installation cost should be chosen. 

 

3.3.4 Algorithm 

An optimal PMU placement algorithm is developed based on the procedure given 

in the previous discussion. This algorithm includes the following steps: 

Step 1) Build the measurement Jacobian matrix H  based on system configuration, 

which includes both the original measurements in the system and the phasor 

measurements with the candidate PMUs. Also build the incidence matrix B. 

Step 2) Factorized H  and use back-substitution to obtain transformed factor matrix 'L  

as Equation (3.11); 

Step 3) Identify the critical measurements corresponding to the null columns in the sub-

matrix RK , and form the compact binary matrix R  from the sub-matrix pmuK ; 

Step 4) Solve the integer programming problem given by Equation (3.14). The optimal 

locations for the PMUs will be given by the non-zero entries in the integer solution 

vector X. 
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3.4 Optimal Placement for Mixed Measurements 

The above described algorithm can be easily revised so that not only PMUs but 

also traditional measurements are considered as candidate measurements to improve the 

critical measurements. The required revisions to the algorithm are given in detail below. 

Since now the candidate measurement set includes two types of measurement, 

namely, phasor measurements with PMUs and traditional measurements, thus the 

corresponding measurement Jacobian candH  also includes two sub-matrices as follows: 

⎥
⎦

⎤
⎢
⎣

⎡
=

trad

pmu
cand H

H
H  

where tradH  is the sub-matrix in the measurement Jacobian matrix, which rows 

correspond to the candidate traditional measurements. 

Therefore, now the measurement Jacobian matrix H has the following form, with 

assuming that all candidate measurements are installed: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

trad

pmu

used

H
H
H

H  

where usedH , pmuH  and tradH  correspond to the existing, candidate phasor 

measurements, and candidate traditional measurements, respectively. 

Applying the same decompose method provided in above sections, Jacobian 

matrix H  can be decomposed into the lower trapezoidal and upper triangular factors: 
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where, as in Equation (3.11), L  and U  represent the lower and upper factors. In the 

matrix of L, the rows of bL  and RM  correspond to the essential and rest redundant 

measurements, which already exist in the system. The rows of pmuM  and tradM  

correspond to the candidate phasor measurement and traditional measurements, 

respectively. It should be noted that, since the sub-matrix usedH  is of full rank with the 

original observable system, the rows exchanging during the decomposition only affects 

the rows in usedH . 

Appling the same transformation as done in Equation (3.12), the sub-matrices 

RK , pmuK  and tradK  will be formed in the similar procedure: 
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1'                                                                            (3.16) 

Note that now the critical measurements can still be identified as done in above sections, 

by checking the null columns in RK .  

The objective is still to introduce the non-zero elements into the certain columns 

of 'L  by placing PMUs or traditional measurements at strategic locations. Hence, the 

constraint matrix F  will be revised as: 

[ ]tradpmu FFF =                                                                                                         (3.17) 
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where, 

TT
pmupmu BRF ⋅=  

T
tradtrad RF =  

pmuR  and tradR  is the binary form of the columns pmuK  and tradK  that correspond to the 

critical measurements; 

B  is the same PMU and phasor measurement incidence matrix as defined in previous 

section.  

The optimal selection of PMUs and traditional measurements can still be 

formulated as Equation (3.14), using the revised constraint matrix F , shown as the 

following form: 

1≥⋅

⋅∑
XFtosubject

xcMinimize
n

i
ii                                                                                              (3.18) 

However, where, 

n  is total number of candidate PMUs and candidate traditional measurements; 

ic  is the installation cost of a candidate PMU or a candidate traditional measurement; 

X  is still the binary vector, whose entry ix  correspond a PMU or a traditional 

measurement. If the entry equals to 1, the corresponding PMU or traditional 

measurement is chosen, otherwise not chosen. 
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3.5 Improving Measurement Redundancy for Bad Data Identification 

After the improvement of measurement system with the procedure given in 

above Section 3.3 or Section 3.4, the bad data detection capability of state estimation is 

ensured. However, the bad data identification capability is still limited by the existence 

of critical pairs of measurement in the system. Hence, the measurement redundancy in 

the system may be required to further increase to a desired level in order to ensure the 

bad data identification capability.  

Such an objective also can be achieved by install extra PMUs or traditional 

measurements at the strategic locations in the system. The optimal placement of PMUs 

and traditional measurements can also be formed as an integer programming problem, 

however, through a more complicate procedure. 

 

3.5.1 Identification of Critical Pairs of Measurement 

The critical pairs of measurement can also be identified by examining the linear 

dependency in the Jacobian matrix H . Assuming the measurement system has been 

improved using the method provided in Section 3.3 and 3.4, therefore, there is no critical 

measurement in the system.  

After the decomposition of Jacobian matrix H as Equation (3.10), the 

measurements in the system are classified into two categories: essential measurements 

and rest redundant measurements. It is easily concluded that the critical pairs of 

measurement must be formed by two essential measurements, or an essential 

measurement and a rest measurement, since the simultaneous removal two rest 
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measurements will not affect the observability. Hence, there are also two expressions in 

the transformed lower rectangular factor RK , respectively: 

Type I: A critical pair with an essential measurement and a rest measurement 

corresponds to a certain column of RK , which only has one non-zero element. And the 

non-zero element corresponds to the rest measurement, and the column corresponds to 

the essential measurement. 

Type II: A critical pair of two essential measurements corresponds to two certain 

columns of RK , which are collinear with each other.  

Therefore, the critical pairs of measurements can be identified by checking the 

sub-matrix of RK , based on the above two properties. And the optimal placement 

problem of PMUs or traditional measurements also can be formulated based on those 

properties. 

 

3.5.2 PMU and Traditional Measurement Placement Problem 

The procedure and algorithm to obtain the optimal placement of PMUs and 

traditional measurements can be obtained by modifying the given procedure and 

algorithm in Section 3.3 and Section 3.4. 

Assuming all possible candidate measurements are installed, the measurement 

Jacobian matrix H has the following form: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

trad

pmu

used

H
H
H

H  



 50

Applying the decomposition as Equation (3.16) and linear transform as Equation 

(3.17), the transformed lower factor 'L  is given by: 
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Define the new matrix W , which corresponds to the collinear relationship 

between the columns in the sub-matrix RK . Since the two collinear columns in RK  

correspond to a critical pair of measurements, a column of matrix W  is then defined to 

represent to this critical pair: For the k th critical pair corresponding to two collinear 

columns i and j, find their first non-zero elements ),( imK R   and ),( jmK R  in same row 

m. Therefore, the elements in the k th column of matrix W is defined as  

otherwise
jl
il

jmK
imK

klW R

R

=
=

⎪
⎩

⎪
⎨

⎧
−=

0
),(1

),(1
),(  

Note that the product of WK R ⋅  must be a null matrix, where each row correspond to a 

rest measurement, and each column correspond to a critical pairs with two essential 

measurements. And the non-zero element in the product of WK pmu ⋅  or WKtrad ⋅  

represents the improvement to the corresponding critical pair with installation of new 

PMUs or traditional measurements, respectively. 

Another type of critical pairs with an essential measurement and a rest 

measurement correspond to the columns in RK  with only one non-zero element. If there 
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is another non-zero element in the corresponding columns of pmuK  and tradK , it means 

that the installation of this PMU or traditional measurement can improve the critical 

pairs. 

Therefore, the following revised optimization formulation will yield a solution 

that will help the system to approach the desired level for bad data identification: 

1≥⋅

⋅∑
XFtosubject

xcMinimize
n

i
ii                                                                                 

where the constraint matrix F has the following definition:  

][ tradpmu FFF =   

However, the sub-matrices of pmuF  and tradF  have more complicated definitions, 

which respectively are defined as: 

[ ] TT
pmupmupmu BWKRF ⋅⋅=  

[ ]Ttradtradtrad WKRF ⋅=  

where pmuR  and tradR  are the binary forms of the columns pmuK  and tradK  that 

correspond to these critical pairs with an essential measurement and a rest measurement. 

 

3.6 Simulation Results 

In order to simulate the proposed method and evaluate its performance, a 

program is developed. Two systems with different sizes, IEEE 57-bus and 118-bus test 

system are used for the simulations. The results are presented in four parts. Section 3.6.1 

and Section 3.6.2 show the placement procedure applied to these two systems. Section 
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3.6.3 illustrated the benefits of such placement for the IEEE 118-bus system, where a 

previously undetected of bad data becomes detectable as a result of PMU placement. In 

Section 3.6.4, simulation results about improving measurement redundancy to bad data 

identification and using both PMUs and traditional candidate measurements are 

presented.  The integer programming problem is solved using TOMLAB Optimization 

Toolbox [47]. 

All simulation cases use the following assumptions: 

1) There are no special bus limitations for the placement of PMUs. It means that 

every bus is assumed to be a candidate location for PMU installation.  

2) Installation costs of all PMUs are the same. Due to lack of any information about 

installation cost of PMUs, all PMUs are given the same cost in the optimization.  

3) Current phasor along all branches incident to a bus will be measured by the PMU 

at that bus. 

These assumptions are only made for convenience in carrying out the 

simulations. However, the proposed method also can work well without these 

assumptions.  

 

3.6.1 IEEE 57-bus System 

Since using the decoupled linear θ−P  model, only the real power injection and 

line flow measurements are considered here. The measurements system is already 

designed to make the entire system observable. The simulated IEEE 57-bus system 

network and measurement configuration are shown in Figure 5. The system has a total of 
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33 real power flow measurements and 32 injection measurements. Hence, the number of 

state variables is ( 56157 =−=n ), and the number of measurements is 65=m . 

 

 
Figure 5 Network Diagram and Measurement Configuration  

for IEEE 57-bus System 

 

The measurement configuration contains 13 critical measurements, which are 

listed in Table 1. 
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Table 1 Critical Measurements in IEEE-57 bus System 

Critical measurement Measurement type Measurement location 

1 power flow Bus 41 to Bus 43 

2 power flow Bus 36 to Bus 35 

3 power flow Bus 42 to Bus 41 

4 power flow Bus 40 to Bus56 

5 Injection Bus 11 

6 Injection Bus 24 

7 Injection Bus 39 

8 Injection Bus 37 

9 Injection Bus 46 

10 Injection Bus 48 

11 Injection Bus 57 

12 Injection Bus 56 

13 Injection Bus 34 

 

 

Using the method presented in previous sections, the optimal placement for 

PMUs is obtained as the result of integer programming problem. The optimal solution 

yields phasor measurement units at bus 34 and bus 46. As a result of installing these two 

PMUs, no critical measurements will exist in this system. 

 

3.6.2 IEEE 118-bus System 

In this case, IEEE 118-bus system is chosen for the simulation. A measurement 

set is chosen to make the system fully observable. A total of 39 injection measurements 

and 114 power flow measurements are chosen, yielding a total of ( 1171118 =−=n )  
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state variables and 153=m  measurements, the system network and measurement 

configuration is shown in Figure 6. 

This measurement set contains a total of 29 critical measurements, which are 

listed in Table 2. 

 

Table 2 Critical Measurements in IEEE 118-bus System 

Critical Measurement Critical Measurement 

Power flow 7-12 Power flow 83-84 

Power flow 31-32 Power flow 86-87 

Power flow 29-31 Power flow 85-86 

Power flow 8-9 Power flow 96-97 

Power flow 9-10 Power flow 54-55 

Power flow 3-5 Power flow 54-59 

Power flow 1-3 Power flow 63-59 

Power flow 1-2 Power flow 59-60 

Power flow 5-6 Power flow 59-61 

Power flow 12-14 Power flow 64-61 

Power flow 35-36 Power injection 114 

Power flow 51-52 Power injection 117 

Power flow 52-53 Power injection 34 

Power flow 77-78 Power injection 79 

Power flow 95-96  

 

 

 



 57

The solution of the optimization problem yields a total of 13 PMUs to be placed 

at the following buses in order to transform all critical measurements into redundant 

ones: 7, 10, 12, 28, 32, 35, 52, 59, 61, 80, 83, 86, 94. 

 

3.6.3 Bad Data Processing Capability 

The same 118 bus system is used to illustrate bad data processing benefits gained 

as a result of PMU placement. In order to show these benefits, one of the critical 

measurements in the system is assumed to be corrupted by gross error.  State estimation 

is executed and the results of bad data processing reveal no bad data. This is expected 

due to the criticality of the measurement. After applying the proposed PMU placement 

procedure, the gross error in the same measurement can be detected. 

The original measurement set is populated with traditional measurements. These 

are 2 voltage, 39 pairs of injection and 114 pairs of power flow measurements. All 

measurements in the system are assumed to have the same standard deviation of  

001.0=σ  per unit. Chi-squares test is used for bad data detection. 

A single bad measurement is simulated for the real power flow measurement 

from bus 3 to bus 5. The true real power flow value of -0.6810353 =−P  is replaced by a 

gross error as -0.9810353 =−P . However, the state estimation fails to detect this bad 

data, yielding an objective function value of 0.0260. This value is far below the Chi-

squares test threshold of 93.94 (corresponding to 95% confidence level and 73 degrees 

of freedom). 
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After introducing new PMUs using the proposed approach, 13 PMUs are 

installed at buses 7, 10, 12, 28, 32, 35, 52, 59, 61, 80, 83, 86 and 94. Repeating the state 

estimation with the updated measurement set yields an objective function value of 

44443, which is clearly above the threshold of 228.58 (based on 95% confidence level 

and 195 degrees of freedom). Hence, the Chi-squares test will flag the presence of bad 

data. Furthermore, the largest normalized residual test is also performed and the gross 

error is identified, having the largest normalized residual of 8.210=N
ir . 

 

3.6.4 Redundancy Improvement with Mixed Measurements 

As discussed in Section 3.4 and 3.5, the algorithm can be further modified to 

consider the optimal placement of mixed measurements and improve the system 

measurement redundancy to the bad data identification level. Therefore, IEEE 57-bus 

system is used to evaluate the performance of both two extended algorithms. The system 

network and original measurement configuration is same as shown in Figure 5. In 

addition to the PMUs, some injection measurements are also considered as candidate 

measurements in this particular simulation. It is assumed that any bus without an 

injection measurement is assumed as a candidate for injection measurement placement. 

The cost of a PMU installation is assumed to be twice the cost of place injection 

measurement. 
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Table 3 Optimal Candidates for IEEE 57-bus System with  

 Both PMUs and Traditional Measurements 

Redundancy 
level 

PMU location Injection measurement 
location 

No critical 
measurement 

 Bus 35, 47 

No critical 
pair 

Bus 1 Bus 14, 19, 22, 27, 32, 36, 
41, 45, 51, 53 

 

 

The results of simulations are shown in Table 3. As the required redundancy 

level increase, so does the number of measurements to be placed. This is evident from 

the results of Table 3, where for the case of the IEEE 57-bus system, a total of 1 PMUs 

and 12 extra injection measurements are need when the system is improved to ensure 

any single bad data identification. 

 

3.7 Conclusion 

The essential objective of this chapter is to illustrate the benefits of adding a few 

PMUs for state estimation, even when the system is initially fully observable without 

these devices.  In this chapter, it is shown that, PMUs will provide increased bad data 

detection and identification capability, which may come handy during contingencies and 

existence of bad data in low redundancy pockets of the system. 

The problem of PMU placement is formulated and solved as an integer 

programming problem. The solution provides the minimum number of strategically 

located PMUs that will eliminate measurement criticality in the entire system.  This 

implies that any bad data appearing on single measurement will be detectable.  It is 
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shown that depending on the measurement configuration and the system topology, this 

goal can be achieved by using only a few extra PMUs to transform several critical 

measurements into redundant ones in the system.  

The placement problem is then extended to also incorporate traditional 

measurements as candidates for placement. Furthermore, it is also shown that an 

extended algorithm can be used to determine optimal measurement placement for a 

further desired level to enable bad data identification capability in the system. This 

allows design of measurement systems with different degrees of vulnerability against 

loss of measurements and/or bad data.  Several simulation results are provided to 

illustrate the proposed placement procedure and its effectiveness in enhancing bad data 

processing.  
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CHAPTER IV 

OPTIMAL MEASUREMENT PLACEMENT  

TO IMPROVE TOPOLOGY ERROR PROCESSING 

 

In this chapter, PMUs are used to improve the given measurement system for the 

objective to ensure topology error processing capability in state estimation. Existing 

methods to detect and identify topology errors are dependent on the measurement 

configuration and network topology. Hence, the capability to effectively process 

topology errors is closely linked to proper measurement design. In particular, a topology 

error associated with a given branch may not be detectable with the existing 

measurement configuration.  It is possible to efficiently improve the topology error 

processing capability for a given system by strategically placing few extra 

measurements. A systematic procedure is developed in order to accomplish this 

objective by using not only the traditional measurements but also the phasor 

measurements from PMUs.  Case studies and numerical simulations are also provided in 

order to illustrate the proposed measurement placement strategy. 

 

4.1 Introduction 

The state estimation problem is formulated based on an electrical model provided 

by the Topology Processor. The topology processor processes the status information 

about the circuit breakers (CB) and switching devices in the system, and configures the 

bus-branch model of the system. This procedure is typically based on the assumption 
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that network topology and parameters are perfectly known and correct.  While true for 

most cases, this assumption may not hold for certain situations where the status of some 

circuit breakers may not be known or may even be wrong. In these rare cases, the bus-

branch model generated for the state estimator is wrong, leading to a topology error. 

Pioneering work for topology error detection and identification methods are 

based on normalized residual tests [34]. The relation between the capability to detect and 

identify topology errors and the existing measurement and network configuration is also 

systematically presented. It is shown that, in a given power system, some branches can 

be classified into sets of topology error undetectable and unidentifiable branches.  The 

topology errors that occur in these branches can not be detected and identified, 

respectively. The conditions upon detectability and identifiability of topology errors are 

analyzed in detailed in [34] and [35]: A single branch error can not be detected if the 

following conditions happen: 1) it is an irrelevant branch (branch with no incident 

measurements), or 2) the removal of branch from the original network causes the rest of 

network unobservable (critical branch). A single branch error is unidentifiable if it 

happens in either one of critical pair of branches, which simultaneous removal of both 

branches causes the system unobservable.   

In general, adding traditional extra measurements, which include power flow 

measurements and injection measurements, can improve the topology error processing 

capability of both detection and identification. However, not all branches can be made 

error detectable by using traditional measurements, since topology error processing 

capability also depends on the network configuration.  
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As discussed in previous chapters, the state estimation is expected to benefit from 

the PMUs rapid populating in today’s power systems. It is easy to incorporate phasor 

measurements into the existing state estimator, as presented in Section 2.4, and it is 

proved that PMUs utilization in state estimator can improve the measurement 

redundancy, as discussed in Chapter III. Therefore, in this chapter, the benefits of phasor 

measurements to the state estimator are discussed regarding the topology error 

processing capability.  

The objective of this study is to strategically place a mix set of few phasor and 

few traditional measurements in order to drastically enhance the topology error 

processing capability for a given system. In this chapter, an algorithm is also developed 

to find the optimal measurement placement to achieve this objective. This algorithm will 

be described and illustrated by examples. Furthermore, the improvements in topology 

error processing capability as a result of introducing new measurements will be verified 

by simulations. 

 

4.2 Topology Error Detection and Identification 

4.2.1 Residual Analysis of Topology Error 

The effect of topology errors shows up in the measurements equations, which can 

be modeled in the Jacobian matrix: 

EHH et +=                                                                                                                  (4.1) 

where tH  is the true Jacobian matrix, eH  is the incorrect Jacobian due to topology 

errors, and E is the Jacobian matrix error.  
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With existing topology errors, the measurement residual vector is derived: 

))((ˆ eExKIxHzr ee +−=−Δ=                                                                                     (4.2) 

where I  is the identity matrix, and  

111 )( −−−= RHHRHHK T
ee

t
eee                                                                             (4.3) 

Let Δf be the vector of branch flow errors, and M be the measurement-to-branch 

incidence matrix. Then the measurement bias vector Ex can be written as a linear 

combination of errors in network branch flows: 

fMEx Δ=                                                                                                                  (4.4) 

and the measurement residual vector will be given by: 

fTfMKIr e Δ=Δ−= )(                                                                                             (4.5) 

It means a topology error in a certain branch will produce a residual vector that is 

collinear with the corresponding column of T. Based on their collinearity, a geometric 

interpretation of measurement residuals can identify the topology error.   

However, a topology error in certain branch corresponding to a null column of T 

can not be detected, because now this specific topology error will not affect the 

measurement residuals. And a topology error in the one of two branches with collinear 

columns in T can not be identified, while the topology errors in either of branches will 

cause identical same measurement residuals. 

 

4.2.2 Detectability and Identifiability of Branch Topology Error 

Therefore, the detectability and Identifiability of branch topology error is directly 

related to the algebraic dependency among the columns of T. Due to the properties of 
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matrix linear transformation, those dependencies can be further deduced from a simpler 

matrix. The method is described as follows [34]: 

For an observable system, there must be a full rank Jacobian matrix H. And by 

reordering the measurements, the Jacobian matrix H can be written as  

⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

H
H

H  

where sub-matrix 1H  is square and of full rank. 

Define two new matrices R and G as the following definitions: 

[ ]IFG
HHF

−=
= −1

12                                                                                                                  (4.6) 

It can be proved that  

GMGRGRGT TT 1)( −=                                                                                           (4.7) 

Because the first two factors TRG and 1)( −GRG  must also be of full rank for the 

observable systems, the algebraic dependencies among the columns of T  are exactly 

equivalent to those among the columns of the matrix of GM. If M  is also portioned into 

two blocks 1M  and 2M  as the same order of measurements in H , we can find the 

detectability and identifiability of branch topology errors, by only studying the 

dependencies in  the following matrix: 

MHHM

FMMGM
1

122

12
−−=

−=
                                                                                      (4.8) 
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In other words, single topology error in the branch corresponding to a null column in the 

matrix of  GM  is not detectable. A topology error in either of two branches having 

collinear columns in GM  can not be identified by measurement residual analysis. 

 

4.3 Linear Measurement Model with PMUs 

During the study of detectability of topology error, we still can use the simplified 

real power approximation model. Now all bus voltage magnitudes as 1.0 p.u., and the 

shunt elements and branch resistances are also neglected.  It should be noted that these 

simplifying assumptions have in general no effect on the analysis of topology errors.    

Therefore, the θ−P  linear model for the real power and phasor measurement to 

the bus phase angles can be expressed as: 

eHz += θ                                                                                                                     (4.9) 

where , 

z  is the real power and phase angle measurement vector.  

θ  is the phase angle vector. 

H  is the decoupled real power-phase angle measurement Jacobian.  

e  is the measurement error vector.  

 Now let us consider a PMU installed at bus i, providing the bus voltage phase 

angle measurement iθ  as measurement k  in the measurement vector. Note that, 

irrespective to any changes of network topology, the k-th row of H corresponding to this 

phasor measurement should always be given by: 
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⎩
⎨
⎧ =

=
otherwise

ij
jkH

0
1

),(  

This implies that, the rows corresponding to the phasor measurement in E should 

always be zero.  Furthermore, considering the given form in Equation (4.4), the 

corresponding row in the measurement-to-branch incidence matrix M, must also be null. 

 

4.4 Formulation of Measurement Placement Problem 

A two-stage measurement placement strategy will be proposed in this section.  

For simple illustration of this procedure, it will be described using a tutorial example. 

The objective of this procedure is to improve the topology error processing capability up 

to the desirable level by adding both the phasor measurements and traditional 

measurements with minimal cost.  

 

4.4.1 Measurement Placement to Enable Topology Error Detection 

In the first stage, new measurements will be placed to make sure that any single 

branch topology error in the power system will be detectable, and the system will remain 

observable after the outage of any single branch. 

This procedure is formulated as a three-step solution: 

1) Identify the branches whose single branch topology error is undetectable; 

2) Determine the effects of candidate measurements on each of existing branches; 

3) Choose the optimal set of measurements among the candidate measurements. 
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4.4.1.1 Identification of Topology Error Undetectable Branch 

As shown in Section 4.2, the topology error undetectable branches correspond to 

the null columns in the matrix GM. Using this property, a numerical method is simply 

developed to identify these branches. 

Let us consider an observable system. Its essential measurements and rest 

measurements can be identified as the procedure described in Section 3.3, by applying 

the Peters-Wilkinson decomposition method to the Jacobian matrix H. And the 

measurements will be reordered during the decomposition, so that the Jacobian matrix H 

can be written in the following form: 

⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

H
H

H  

where 1H  and 2H  correspond to the essential and rest measurements respectively. 

Similar reordering for M will result: 

⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

M
M

M  

Then we can calculate the dependency matrix GM for this system, as Equation 

(4.8): 

1
1

122 MHHMGM −−=  

The null columns in matrix GM indicate the topology errors in corresponding 

branches have no effect on the measurement residuals. In other words, these branches 

are topology error undetectable. Note that each column of GM corresponds to a certain 

network branch. 
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Figure 7 Five-bus Test System 

 

The procedure is illustrated using a simple example. Let us consider the simple 

five-bus power system and its measurement configuration, as shown in Figure 7. 

Applying the above procedure, the topology error undetectable branches can be easily 

found. The GM matrix for this example is obtained as: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−
=

00033.033.033.0
00033.033.033.0
00033.033.033.0

GM

21−b 51−b 52−b 42−b 43−b 54−b

 

Note that there are three null columns in GM, corresponding to branches 4-5, 2-4 

and 3-4. Among them, branch 4-5 is an irrelevant branch, while both branches 2-4 and 3-

4 are critical branches, whose removal will lead to an unobservable network. 

 

4.4.1.2 Identifying the Relevant Candidate Measurements 

Now we assume that all candidate measurements are installed in the network, so 

the Jacobian matrix H  will contain three sub-matrices as below: 



 70

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

cH
H
H

H 2

1

 

where the rows of the sub-matrix cH  correspond to the candidate measurements.  

Similar partitioning will apply to M:  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

cM
M
M

M 2

1

 

where the rows of the sub-matrix cM  correspond to the candidate measurements. 

The new GM  matrix will then be written as: 

⎥
⎦

⎤
⎢
⎣

⎡
=

c
new GM

GM
GM  

where 

MHHMGM

MHHMGM

ccc
1

1

1
1

122
−

−

−=

−=
                                                                                  (4.10) 

The non-zero elements in the rows of the sub-matrix cGM , indicates that the 

branches are made error detectable by the corresponding candidate measurements. 

As an example, consider a set of candidate measurements for the given five-bus 

test system in Figure 7. The candidate measurements include injection measurements at 

buses 3, 4 and 5, and flow measurement on branch 4-5, and phasor measurements at 

buses 2, 3, 4 and 5. Then this candidate measurements set yields a new GM as shown 

below: 
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21−b 51−b 52−b 42−b 43−b 54−b
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⎥
⎥
⎥
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⎥
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⎦

⎤
⎢
⎣

⎡
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−
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4

3

2

54

5

4

3

θ
θ
θ
θ
P
P
P
P

GM
GM

GM
c

new

 
Note that adding a new injection measurement at bus 3 will have no effect for 

topology error processing capability.  However, the installation of an injection at bus 4 

will enable detection of previously undetectable topology errors on branches 4-5 and 2-

4.  Moreover, adding a phasor measurement at bus 3 will make previously critical 

branches 2-4 and 3-4, topology error detectable. 

  

4.4.1.3 Optimal Placement of Measurements 

The above example illustrates the effectiveness of placing new measurements on 

transforming previously undetectable branch errors into detectable ones.  However, this 

process should also optimize the cost in order to accomplish the most optimal 

investment. Hence, the objective is set as making any single branch topology error 

detectable with minimal measurement installation cost.  This problem can be formulated 

and solved using integer programming as shown below: 
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1̂

min

≥⋅

∑
XWtosubject

xc

T
c

n

i
ii                                                                                                 (4.11) 

where, 

n  is the number of candidate measurements, 

ic  is the cost of installing candidate measurement,  

X  is the binary vector, whose entry ix  indicates if the candidate measurement i should 

be chosen:  

⎩
⎨
⎧=

otherwise0
chosenistmeasuremencandidatethif1 i

ix  

1̂  is a vector, whose length is the number of topology error undetectable branches and all 

entries are equal to 1. 

cW  is a binary matrix, which is formed using the binary form of the columns in cGM  

that correspond to the topology error undetectable branches. It is defined as 

otherwise
le"undetectab"j""branch&0j)(i,GMif

0
1

),( c ≠

⎩
⎨
⎧

=jiWc    

Note that the matrix cW  provides a compact representation of relations between 

topology error undetectable branches (columns) and given candidate measurements 

(rows).  

The inequality constraint condition ensures that, for every topology error 

undetectable branch in the previous network, at least one non-zero elements exist in its 

corresponding column in the new matrix GM. It guarantees that, after improvement, 
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there will be no topology error undetectable branch in the network. Thus, the solution 

vector X of the above optimization problem will provide the strategic placement of 

measurement. 

For the example five-bus system, there are three topology undetectable branches 

(corresponding column 4, 5, 6 in cGM ), so its binary matrix cW  is obtained as (in 

transpose): 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

−

−

−

00001110
00100000
01101110

54

43
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b
b
b

W T
c  

 Solution of integer programming problem for the example system yields a set of 

measurements including both voltage phasor measurement at bus 3 and power injection 

measurement at bus 4. Note that only voltage phasor measurement at bus 3 can eliminate 

the criticality of branch 3-4, while no traditional measurement can accomplish this due 

to the limitation imposed by the network configuration. 

 

4.4.2 Measurement Placement to Enable Topology Error Identification 

The above described procedure which is referred as the first-stage will ensure 

detection of any single branch topology error in the system, but it will not guarantee 

identification of these errors.  In other words, there may still be some critical pairs of 

branches in the network, whose topology errors can not be identified by using residual 

analysis. While it would be nice to allow all branch errors to be identifiable, the cost 
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may be prohibitively large.  Instead, a less ambitious, yet practical objective which is to 

ensure topology error identification for certain set of important branches, is considered.  

Accomplishing this objective necessitates a procedure that is similar to the one 

described in previous section: 

1) Identify the existing critical pairs of branches; 

2) Determine the candidate measurements that will transform those critical pairs of 

branches. 

3) Choose the optimal set of measurements among the candidate measurements set. 

It will be assumed that the measurement system is already optimized using the 

first-stage procedure, i.e. all network branches are already topology error detectable. 

 

4.4.2.1 Identification of the Critical Pairs of Branches 

The topology error unidentifiable branches correspond to the collinear columns 

in matrix GM and they can be identified by “normalizing” each column of GM as below: 

),(
1),(),('

jkgm
jigmjigm ×=                                                                                    (4.12) 

where, gm(k,j) is the first non-zero element in column j.  Following this normalization, 

the collinear columns will be identical to each other.  Searching for the identical columns 

in the normalized matrix 'GM , the critical pairs of branches can be identified. 
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Figure 8 Four-bus Test System 

 

Consider the four-bus example system given in Figure 8. After successful 

application of the first stage procedure, its measurement system contains no topology 

error undetectable branches. The matrix GM  and its normalized form 'GM  will be 

given as below: 
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⎥
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⎡

−−−−−
−−=

11111
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21−b 32−b 31−b 42−b 43−b

 

By checking the columns in the matrix of 'GM , two critical pairs of branches are 

easily identified: the first branch pair containing branches 1-2 and 1-3 and the second 

critical pair composed of branches 2-4 and 3-4.  
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4.4.2.2 Identifying the Relevant Candidate Measurements  

Let us define a new matrix U which will have as many columns as the number of 

critical branch pairs.  For the kth critical pair of branches including branch i and branch 

j, the elements of column k will be given as: 

otherwise
jl
il

jmgm
imgm

klu =
=

⎪
⎩

⎪
⎨

⎧
−=

0
),(1

),(1
),(                                                                           (4.13) 

where, gm(m,x) is the first non-zero element in column x of the matrix GM.  The two 

non-zero elements corresponding to branches i and j must be in same row. 

Define a new matrix P as the product:  

UGMP c ⋅=                                                                                                                (4.14) 

where, a non-zero element p(i,j) in the matrix P indicates that the ith candidate 

measurement will transform the jth critical pair of branches by making their branch 

errors identifiable.   

Again, the above given four-bus example system will be used to illustrate this 

step. There are 2 critical pairs of branches, the candidate measurements set includes 3 

phasor measurements at buses 2, 3 and 4, a flow measurement in branch 3-4, and 2 

injections at buses 2 and 4. The matrix U and cGM  for this system will be given as: 
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Substitute them into the product UGMP c ⋅= : 
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Note that the traditional measurements including two injections and a flow 

measurement can not affect the error identifiability of the critical pair, while the phasor 

measurement at bus 4 will transform both critical pairs and enable error identification 

when they have topology errors.  

 
4.4.2.3 Optimal Placement of Measurements  

This part is similar to the corresponding step of the first stage procedure. Integer 

programming formulation leads to the following problem: 

1̂

min

≥⋅

∑
XQtosubject

xc

T

n

i
ii                                                                                                   (4.15) 



 78

where Q is the reduced binary form of the matrix of P that correspond to the selected 

critical pairs of branches. Note that the selected critical pairs are those pairs including 

the important branches. It is defined as 

otherwise
 selected ispair  criticalj""and0if

0
1

),(
≠

⎩
⎨
⎧

=
p(i,j)

jiq  

Other variables and matrices are the same as in Equation (4.11). 

In the above simple example, it is trivial to see the optimal solution as the phasor 

measurement at bus 4. After the installation of this measurement, the topology error 

processing capability of the system is further improved so that any single branch 

topology error will not only be detectable but also identifiable.   

 

4.4.3 Algorithm for Two-stage Optimal Placement 

Having described the first and second stage procedures in previous two sections, 

the overall procedure which combines these two stages is summarized as below: 

Stage I: Improving topology error detection  

Step 1) Form the measurement Jacobian H and measurement-to-branch incidence matrix 

M based on the network and available measurement set. Form cH  and cM  based on the 

available candidate measurements including both traditional and phasor measurements. 

Step 2) Partition H  and M  according to essential and rest redundant measurements: 

⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

H
H

H
                                 

⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

M
M

M
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Step 3) Calculate the matrices GM and cGM  from Equation (4.10). Also calculate the 

binary form matrix cW  from cGM . 

Step 4) Solve the integer programming problem  

1̂

min

≥⋅

∑
XWtosubject

xc

T
c

n

i
ii  

to get the optimal placement of measurements. 

Stage II: Improving topology error identification  

Step 1) Based on the essential measurements obtained in Stage I, reorder the 

measurements so that H  and M  are partitioned as: 
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Note that now the sub-matrices 1H  and 1M  are still the same, but the sub-matrices 2H  

and 2H  include the extra installed measurements decided in Stage I. 

Step 2) Recalculate the matrices GM  and cGM . Identify the existing critical pairs of 

branches in the system by checking the matrix GM . 

Step 3) Form the matrix U  for all critical pairs of branches based on its definition in 

Equation (4.12). Then, based on the selected critical pairs, obtain its reduced binary 

matrix Q .  

Step 4) Solve the integer programming problem  

1̂

min

≥⋅

∑
XQtosubject

xc

T

n

i
ii
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to get the optimal placement of measurements. 

 

4.5 Simulation Results 

A program is developed in order to simulate the proposed procedure and evaluate 

its performance. Two test systems with different sizes are used for the simulations. 

Section 4.5.1 and 4.5.2 show the placement procedure applied to these two systems. 

Section 4.5.3 illustrates the benefits of new measurement placement, where a previously 

undetected topology error becomes detectable and identifiable as a result of new 

measurement placement. Integer programming problem is solved using the TOMLAB 

Optimization Toolbox [47]. 

There are three assumptions in the simulations: (1) there is no upper limit for 

placing PMUs, so that every bus is treated as a candidate for PMU placement; (2) some 

injection measurements are also considered as candidate measurements, i.e. any bus 

without an injection measurement is a candidate for injection measurement placement; 

(3) the cost of a PMU installation is assumed to be twice the cost of installing an 

injection measurement. However, these assumptions are made mostly for convenience 

and the proposed method also can work well without these assumptions. 

 

4.5.1 14-bus Test System 

As shown in Figure 9, a modified version of IEEE 14-bus system is used to test 

the performance of the proposed method. Using the real power linear θ−P  model, only 

the real power injection and branch flow measurement are considered. The test system 
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has 18 branches and a total of 19 measurements, including 10 branch flow measurements 

and 9 injection measurements. 

 

 
Figure 9  14-bus Test System 

 

Using the method proposed in above sections, there are 5 branches identified as 

topology error undetectable, which are listed in Table 4. 

 

Table 4 Topology Error Undetectable Branches in Test System 

Branch Locations 

1 Bus 5 to Bus 6 

2 Bus 7 to Bus 8 

3 Bus 7 to Bus 9 

4 Bus 6 to Bus 12 

5 Bus 12 to Bus 13 
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By solving the integer programming problem as Equation (4.11), the first-stage 

optimal placement of candidate measurements is obtained. The optimal solution yields a 

selection including voltage phasor measurement at bus 8 and injection measurement at 

bus 13. As a result of adding these two measurements to original measurement set, any 

single branch topology error in the network can be detected by residual analysis.  

By checking the improved system, it is indicated that there are 14 critical pairs of 

branches in the system, as listed in Table 5. 

 

Table 5 Critical Pairs of Branches in 14-bus Test System 

Critical pair Branch  

1 Branch 2-4 Branch 2-3 

2 Branch 2-4 Branch 3-4 

3 Branch 2-4 Branch 4-5 

4 Branch 2-3 Branch 3-4 

5 Branch 2-3 Branch 4-5 

6 Branch 3-4 Branch 4-5 

7 Branch 5-6 Branch 7-8 

8 Branch 5-6 Branch 7-9 

9 Branch 7-8 Branch 7-9 

10 Branch 9-10 Branch 10-11 

11 Branch 9-10 Branch 6-11 

12 Branch 9-14 Branch 13-14 

13 Branch 10-11 Branch 6-11 

14 Branch 6-12 Branch 12-13 
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Assume branch 5-6 is an important tie-line between two areas, and the objective 

of second-stage improvement is to enable the topology error identification capability in 

this branch. In other words, the second-stage should eliminate the critical pairs 

associated with branch 5-6.  The solution of the second-stage optimal measurement 

placement yields only one phasor measurement at bus 9, so that branch topology error on 

branch 5-6 can be identified. 

Considering the more ambitious objective, i.e. eliminating all critical pairs of 

branches in the system, the solution of the second-stage optimal measurement placement 

yields a total of 6 phasor measurements at buses 3, 7, 10, 11, 12 and 14. 

 

4.5.2 IEEE 30-bus Test System 

In this case, the IEEE 30-bus system is used to test the proposed method. A total 

of 19 injection measurements and 15 branch flow measurements are already installed in 

the network, making the system fully observable. The configuration of network and the 

locations of measurements are shown in Figure 10. 
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Figure 10 IEEE 30-bus Test System 

 

Among the total 41 branches in the network, there are 9 branches which are 

topology error undetectable. These branches are listed in Table 6. 
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Table 6 Topology Error Undetectable Branches  

in IEEE 30-bus System 

Branch Locations 

1 Bus 9 to Bus 11 

2 Bus 12 to Bus 13 

3 Bus 12 to Bus 16 

4 Bus 15 to Bus 12 

5 Bus 16 to Bus 17 

6 Bus 17 to Bus 10 

7 Bus 24 to Bus 23 

8 Bus 25 to Bus 26 

9 Bus 15 to Bus 23 

 
 

The solution of the first-stage optimization problem yields a total of 2 injection 

measurements and 3 phasor measurements in order to eliminate these topology error 

undetectable branches. The 2 injection measurements should be placed at buses 15 and 

16, while 3 phasor measurements should be placed at buses 11, 13 and 26. 

After the installation of new measurements, there are still 29 critical pairs of 

branches in the system. Here, it is assumed that the branches 24-23 and 21-22 are two 

important branches, which must be topology error identifiable. The second-stage optimal 

measurement placement yields a total of two phasor measurements at buses 21 and 23, 

and one injection measurement at bus 19.  These additional measurements will transform 

all critical pairs associated with these two important branches into topology error 

identifiable branches. 
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4.5.3 Topology Error Processing Capability 

The IEEE 30-bus system is used to illustrate topology error processing benefits 

gained as a result of new measurement installation. In order to show these benefits, a 

single branch topology error is assumed to occur in one of the topology error 

undetectable branches.  

First, the state estimation is executed and the result of topology error processing 

reveals no topology errors as expected. After applying the proposed placement 

procedure, the same topology error can be detected and even identified.  

These are 2 voltage, 15 pairs of injection, and 19 pairs of power flow 

measurements in the original system. Hence, the number is state variables is 59 

(n=30×2-1=59), and the number of measurements is 70. All measurements in the system 

are assumed to have the same standards deviation of σ=0.001 p.u.. Chi-squares test is 

used for topology error detection, and the geometric interpretation of the measurement 

residuals is used to identify the topology error.  

A branch topology error is simulated by disconnecting the branch 23-24, while 

the network model used by the state estimator erroneously assumed the branch to be in 

service. In this case, the state estimation fails to detect this error, yielding an objective 

function value of 0.0037. This value is far below the Chi-square test threshold of 

19.6751 (corresponding to 95% confidence level and 11 degrees of freedom).  

After introducing new measurements after the first-stage optimal measurement 

placement, 2 injection measurements are installed at buses 16 and 17, while 3 phasor 

measurements are installed at buses 11, 13 and 26. Repeating the state estimation with 
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the updated measurement set yields an objective function value of 176.6125, which is 

clearly above the threshold of 32.6706 (corresponding to 95% confidence level and 21 

degrees of freedom). Hence, the Chi-square test will flag the presence of topology error. 

Furthermore, the geometric interpretation of the measurement residuals is also used to 

identify the topology error. But the analysis of normal residual returns the possible 

topology error is in the branch 15-23 and branch 23-24, which form a critical pair of 

branches. 

Hence, the second stage placement procedure is applied, yielding 1 injection and 

2 phasor measurements which are installed in the system to enable the topology error 

identification capability on branches 22-21 and 24-23. The state estimation is executed 

again, and the real topology error branch 23-24 is then detected and identified correctly.  

 

4.6 Conclusion 

This chapter investigates the benefits to state estimation by strategically adding a 

few measurements, especially the phasor measurements to improve measurement 

system. It is shown that a few extra measurements can provide increased topology error 

detection and identification capability. It is also shown that, with the advantage of phasor 

measurements, it is feasible to eliminate all topology error vulnerable branches in the 

system by installing new extra measurements. 

The optimal strategies can be implemented in order to determine locations and 

types of few new measurements that will significantly enhance topology error processing 

capability of a given system. The problem of measurement placement is formulated and 
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solved as two-stage integer programming problem. Each stage will provide the strategic 

placement of measurements that will improve the topology error processing capability to 

the desirable level. Simulations on example systems are carried out to verify the 

effectiveness of the proposed measurement placement schemes in improving the 

capability of state estimators to detect and identify branch topology errors. 
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CHAPTER V 

CONCLUSION 

 

5.1 Summary 

This dissertation is mainly focused on the benefits of introducing PMUs to 

traditional state estimation, regarding the measurement redundancy, bad data processing 

and topology error processing.  In today’s power system control center, state estimation 

constitutes the primary part of energy management system. It is required to provide the 

correct and accurate operating state of entire power system to the system operator and 

other analysis and control functions. Therefore, a robust state estimation should have the 

capability to detect and identify the gross errors in measurement set and network 

topology, as well to keep the system observable. However, this capability of state 

estimation is directly related to the system network configuration and measurement 

locations. For a given system with low measurement redundancy, critical measurements 

and branches exist as the deficiencies in the measurement system. It is necessary to 

enhance the measurement system, so as to ensure the robustness of state estimation 

against the loss of measurement or branch, and errors in measurement set or network 

topology. In this dissertation, a new type of measurement, synchronized phasor 

measurement, is introduced into traditional state estimation and its benefits to state 

estimation are studied with respect to measurement redundancy, bad data processing and 

topology error processing. The main achievements of this dissertation are listed as 

following: 
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• Illustration of how phasor measurements can be used to improve measurement 

redundancy and bad data detection and identification capability. 

• Development of a new algorithm that is designed for optimal placement of both 

traditional and phasor measurements, to improve the measurement redundancy of 

a given system to a desirable level. This allows design of measurement systems 

with different degrees of vulnerability against loss of measurements and bad 

data. 

• Illustration of how phasor measurements are used to improve topology error 

detection and identification capability.  Phasor measurements are shown to be 

capable of improving topology error processing capability for cases where this 

can not be done by the traditional measurements. 

• Development of a new algorithm that is designed to obtain the optimal placement 

of measurements to improve topology error detection and identification. This 

placement also improves the robustness of state estimation against branch 

outages.  

 

5.2 Suggestions for Future Research 

The study work in this dissertation can be an important basis for future research 

related to state estimation. In general, future research directions based on this 

dissertation can be summarized below: 

• The benefits of phasor measurements to topology error processing can be studied 

with respect to different topology error processing methods.  
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• The possible benefits to state estimation of introducing phasor measurements can 

be studied with respect to the parameter error processing. 

• For optimal measurement placement to enhance the measurement system, other 

possible contingencies, such as loss of RTU or outage of substation, may be 

considered in the future research. 
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