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ABSTRACT 

On the Use of the Exponential Window Method in the Space Domain. (May 2008) 

Li Liu, B.S., Tsinghua University, Beijing, China; 

M.S., Tsinghua University, Beijing, China 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Jose Roesset 

Wave propagation in unbounded media is a topic widely studied in different science 

and engineering fields. Global and local absorbing boundary conditions combined with 

the finite element method or the finite difference method are the usual numerical 

treatments. In this dissertation, an alternative is investigated based on the dynamic 

stiffness and the exponential window method in the space-wave number domain. 

Applying the exponential window in the space-wave number domain is equivalent to 

introducing fictitious damping into the system. The Discrete Fourier Transform employed 

in the dynamic stiffness can be properly performed in a damped system. An open 

boundary in space is thus created. Since the equation is solved by the finite difference 

formula in the time domain, this approach is in the time-wave number domain, which 

provides a complement for the original dynamic stiffness method, which is in the 

frequency-wave number domain.  

The approach is tested through different elasto-dynamic models that cover one-, 

two- and three-dimensional problems. The results from the proposed approach are 

compared with those from either analytical solutions or the finite element method.  The 

comparison demonstrates the effectiveness of the approach. The incident waves can be 

efficiently absorbed regardless of incident angles and frequency contents. The approach 

proposed in this dissertation can be widely applied to the dynamics of railways, dams, 

tunnels, building and machine foundations, layered soil and composite materials. 
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CHAPTER I  

 

INTRODUCTION 

 

1.1 Overview 

 

Wave propagation in unbounded media is a topic widely studied in different 

science and engineering fields such as geophysics, acoustics, electromagnetics, 

oceanography, etc. In these fields, the domain of the problem is so large that it is 

considered to be infinite in the practical sense. In civil and structural engineering, this 

situation emerges in soil-structure interaction [1] or fluid-structure interaction problems 

[2], when wave propagation in the unbounded soil and rock layers, in a reservoir, or in 

the ocean is considered. It can be found particularly in problems involving railways, 

tunnels, dams, machine and building foundations, offshore structures, etc. 

To accommodate traditional numerical tools such as the finite element method, the 

infinite domain has to be truncated to make possible its discretization. Once the domain 

is truncated, the boundary condition on the truncated domain must be carefully 

considered. The conventional physical boundaries, Dirichlet or Neumann boundary 

conditions for instance, induce reflections when the incident waves from within the 

domain reach the boundary. These reflected waves are spurious in the context of the 

original problem because there should be no incoming waves from infinity in an 

unbounded domain, according to Sommerfeld’s radiation condition [3]. In order to 

remove the spurious reflected waves, a different type of boundary must be applied. This 

boundary, called an absorbing boundary, should be able to absorb all incident waves 

from within the domain, regardless of their frequency contents and incident angles. The 

original unbounded domain is then simulated by a truncated domain combined with an 

absorbing boundary. Waves exit the truncated domain as if there were no boundary or 

there were only an open boundary. 

This dissertation follows the style of Wave Motion. 
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Besides applications in unbounded domains, the absorbing boundary can be 

applied to finite domain problems too. When the domain to be studied is very large but 

only part of the domain is of interest and the reflected waves are not a concern, 

performing computation over the entire domain is not desirable.  The domain is 

truncated so that the computational load can be reduced. In this case, an absorbing 

boundary must also be placed on the truncated domain.  

 

1.2 Existing Methods 

 

1.2.1 Classification of absorbing boundaries 

 

Due to its significance, many researchers have proposed different absorbing 

boundaries since the 1970’s.  Basically there are two types of absorbing boundaries, 

namely absorbing boundary conditions and absorbing boundary layers. The former refers 

to a mathematical condition on the boundary. The latter is a fictitious layer attached to 

the truncated domain. Figure 1.1 shows these two types of absorbing boundaries. The 

boundary condition in Figure 1.1(a) is actually the original condition proposed by 

Clayton and Enqguist [4], where P is the displacement and V the wave velocity. The 

subscript stands for derivatives with respect to space and time, respectively. The 

boundary layer in Figure 1.1 (b) has damping in it so that any wave running across the 

interface between the truncated domain and the layer, indicated by the dashed line, will 

be dissipated before it can be reflected on the outer boundary of the layer, indicated by 

the solid line, and bounced back into the truncated domain.  
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(a) An absorbing boundary                                    (b) An absorbing layer 

Figure 1.1 Two different types of absorbing boundaries 

 

In the category of absorbing boundary conditions, there are two different types. 

The first one is known as local boundary conditions. They usually involve the 

derivatives of the unknown variable, displacement for example, with respect to time and 

space. The other type is the so-called global boundary conditions. They usually represent 

the relation between stresses and displacements on the boundary. 

 

1.2.2 Local absorbing boundary conditions 

 

The original work of Clayton and Enqguist [4], and Lindman [5] belongs to this 

category. Also included in this category are the boundaries proposed by Bayliss and 

Turkel [6], and Higdon [7]. Along this track, Collino [8], Grote and Keller [9], and 

Gudatti [10] introduced different high-order local boundary conditions.  

The basic idea of the local boundary conditions derives from the characteristic 

equation or the dispersion relation of the wave equation in the frequency-wave number 

domain. In the dispersion relation, the wave number is allowed to be both positive and 

negative so that wave propagation in both positive and negative directions is represented. 

Incident wave 

1
0z tP P

V
+ =

Incident wave 

A fictitious damping layer is attached 
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To derive the absorbing boundary condition, wave propagation in one direction, either 

positive or negative, is deliberately removed from the dispersion relation by choosing 

only the positive or negative wave number. This new dispersion relation represents the 

one-way wave propagation. The new dispersion relation, usually involving square roots, 

is then approximated by the Padé series [11]. The inverse Fourier transform of this 

approximate relation brings it back into the time-space domain and a one-way wave 

equation is created. Application of this one-way wave equation on the boundary leads to 

an absorbing boundary condition.  

Depending on the order of approximation in the Padé series, local boundary 

conditions can be classified as low-order or high-order. Low-order conditions use fewer 

terms in the Padé series and involve only low-order derivatives. Therefore they are easy 

to implement. However, accuracy is compromised since the original dispersion relation 

is not well approximated. The high-order conditions, on the other hand, use more terms 

in the Padé series so they are more accurate. However, the larger number of terms results 

in difficulty for the finite element or finite difference implementation.  

In the work cited above, Clayton and Enqguist’s condition is a low-order one; so 

are the conditions of Bayliss and Turkel. Collino is believed to be the first to propose a 

high order local condition and his approach laid the foundation for many other high 

order conditions. Furthermore his approach also covers the idea of low order conditions. 

So Collino’s method is summarized here.  

Consider the horizontal shear (SH) wave equation in a two-dimensional domain 

where u is the out-of-plane displacement. 

2
2

2 s

u
c u

t

∂
= ∇

∂
                                                                                                         (1.1) 

where 

cs = Shear wave velocity 

2∇ = Laplace operator 
2 2

2 2
x y

∂ ∂
+

∂ ∂
 

The characteristic equation of Equation (1.1) is 



 

 

5 

2
2 2

s

m n
c

ω
+ =                                                                                                        (1.2) 

where 

m = wave number in x direction 

n = wave number in y direction 

ω = frequency 

From Equation (1.2), the wave number m can be solved. 

2
2

2
1 s

s

c
m n

c

ω

ω
= −                                                                                                 (1.3) 

Only the positive root is chosen to represent a wave propagating in the positive direction. 

Multiplying Equation (1.3) by ( , )U m n
≅

, which is the Fourier transform of u with respect 

to x, y and t, one obtains 

2
2

2
1 s

s

c
mU n U

c

ω

ω

≅ ≅

= −                                                                                          (1.4) 

Performing the inverse Fourier transform with respect to m.  

2
2

2
1 0s

s

U c
j n U

x c

ω

ω

∂
+ − =

∂

�

�

                                                                                 (1.5) 

where  

( )U n
�

 = the Fourier transform of u with respect to y and t.  

j = unit imaginary number 

Expanding the square root in a Padé series, 

2 2
2

2 2 2 2
1

1 1
/

N

s i

i s i

c n
n

c n

α

ω ω β=

− ≈ −
−

∑                                                                        (1.6) 

where 

22sin ( /(2 1))

2 1
i

i N

N

π
α

+
=

+
 

2cos
2 1

i

i

N

π
β =

+
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Equation (1.5) can be rewritten as 

2

2 2 2
1

0
/

N

i

is s s i

U U n U
j j

x c c c n

ω ω α

ω β=

∂
+ − =

∂ −
∑

� � �

                                                              (1.7) 

Defining 
2

2 2 2/

i
i

s i

n U

c n

α
φ

ω β
=

−

�

�

, from Equation (1.7) 

          
1

0
N

j

is s

U U
j j

x c c

ω ω
φ

=

∂
+ − =

∂
∑

� �

�

                                                                                (1.8) 

Performing the inverse Fourier transform with respect to y and t, one obtains 

1

1 1
0

N

j

is s

u u

x c x c
φ

=

∂ ∂
+ − =

∂ ∂
∑                                                                                      (1.9) 

It is known from the definition of 
i

φ
�

that 

2 2 2 2( / )
s i i i

c n n Uω β φ α− =
� �

                                                                                (1.10) 

Performing finally the inverse Fourier transform of Equation (1.10) with respect to y and 

t,  

2 2 2

2 2 2 2

1 i i
i i

s

u

c t y y

φ φ
β α

∂ ∂ ∂
− + =

∂ ∂ ∂
                                                                               (1.11) 

(1.9) and (1.11) represent N+1 equations with N+1 unknowns , 1,2...
i

i Nφ = and u. 

This is Collino’s absorbing boundary condition of order N. It contains only second-order 

derivatives. But with the higher order, the implementation becomes more difficult as the 

number of terms increases.  

It is interesting to see that in Equation (1.6), if only the constant term “1” is taken, 

one will get 

0
s

U
j U

x c

ω∂
+ =

∂

�

�

                                                                                                 (1.12) 

Taking the inverse Fourier transform of Equation (1.12) with respect to t and y, 

Clayton and Enqguist’s condition is obtained. 
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1
0

s

u u

x c t

∂ ∂
+ =

∂ ∂
                                                                                                   (1.13) 

 

1.2.3 Global absorbing boundary conditions 

 

The second type of absorbing boundary conditions is constituted by the global 

conditions. Unlike local conditions, the underlying mechanism of different global 

conditions varies significantly. However, most of them are based on the relation between 

stresses and displacements on the boundary. This relation is essentially the dynamic 

stiffness matrix of the medium outside the truncated domain, referred to as exterior here. 

Since the global condition describes the exact physics of wave propagation in the 

exterior, it is an exact absorbing boundary condition.  

The consistent transmitting boundary condition proposed by Waas [12], and 

Kausel and Roesset [13] is a global condition. Waas addressed 2D problems in Cartesian 

coordinates and axisymmetric problems. Kausel and Roesset solved the general 3D 

problem in cylindrical coordinates.  The idea is to represent the displacements on the 

boundary in terms of the natural modes of one-way wave propagation in an unbounded 

layer. From here, the relation between the stresses and displacements, or the exact 

dynamic stiffness matrix of the exterior is found. This dynamic stiffness matrix is then 

assembled with the dynamic stiffness matrix of the truncated domain so that the entire 

unbounded domain is taken into account.  This idea was later picked up by Hagstrom 

and Keller [14] and in their work they even proved the existence of such an exact 

condition for certain nonlinear problems. Since the method proposed in this dissertation 

is closely related to the idea of the energy-transmitting boundary, it is not summarized 

here and will be elaborated in later chapters. 

Another global condition proposed by Roesset and Scaletti [15] is based on the 

cloning and dynamic condensation of the dynamic stiffness matrix of a layer with finite 

length. Along this track, Wolf and Song extended the idea and developed the Consistent 
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Infinitesimal Finite Element Cell Method [16]. The basic idea of this boundary is 

summarized in the following. 

Consider a series of identical columns of finite elements extending to a certain 

distance as shown in Figure 1.2.  

 

 

 

 

 

(a) 

 

 

 

 

(b) 

Figure 1.2 The 2D boundary matrices method 

 

Assume that the dynamic stiffness matrix of a particular column is partitioned as 

11 12

1

21 22

K K
K

K K

 
=  
 

                                                                                               (1.14) 

where 

Kij = sub-matrices with “1” referring to the left vertical boundary and “2” to the 

right.  

The dynamic stiffness matrix for the combination of 2 columns can be readily 

obtained as.  

11 12

2 21 11 22 12

21 22

0

0

K K

K K K K K

K K

 
 = +
 
  

  

The equation for this combination of 2 columns is 

1 2 3 1 2 1 2 3 

…… 
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11 12 1 1

21 11 22 12 2 2

21 22 3 3

0

0

K K U F

K K K K U F

K K U F

    
    + =    
         

                                                                (1.15) 

If there are no external forces acting on Nodes 2, i.e., 2 0F = , the above equation can be 

condensed with U2 eliminated 

1 1
1 111 12 21 11 22 12 21 11 22

1 1
2 212 21 11 22 22 12 21 11 22

( ) ( )

( ) ( )

U FK K K K K K K K K

U FK K K K K K K K K

− −

− −

 − + − +    
=    

− + − +     
             (1.16) 

Equation (1.16) can be repeated iteratively to cover a truly large distance increasing by 

the power of 2. If the system has some damping in it, after a few iterations, the distance 

would be long enough to have all the waves practically damped out. 

A nice feature of the above approach is that it can be extended to the 3D case as 

shown in Figure 1.3 with the top view of the rings. The dynamic stiffness matrix of each 

ring can be again partitioned as in Equation (1.14) with “1” referring to the inner 

boundary of the ring and “2” the outer boundary of the ring. In this case, however, the 

matrices corresponding to a new element would be equal to those of the preceding one 

multiplied by a constant. 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 The 3D boundary matrices method 

 

1 

2 

3 
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Other global conditions exist. Fix and Marin [17] introduced an exact condition 

involving the solution of an integral equation on the boundary. The integral equation, 

however, was solved numerically, which introduces an approximation. Keller and Givoli 

[18] then modified the method of Fix and Marin by imposing a circular and a spherical 

boundary in the 2D and 3D problems, respectively.  

Although the global conditions are exact, they tend to be computationally 

expensive. For instance, in the consistent transmitting boundary, it is necessary to solve 

an eigenvalue problem and in Fix and Marin’s approach, an integral equation has to be 

solved numerically. Therefore, the advantages of global conditions over the local 

conditions in relation to accuracy do not come by without a cost. It should be pointed out 

that the local conditions can be made as accurate as needed by increasing their order, but 

this is also achieved at an increased cost of implementation. 

Another way to classify absorbing boundary conditions is to distinguish them 

according to the domain in which they are studied. Local conditions are usually in terms 

of derivatives with respect to time and space. So they are in the time-space domain. Most 

of the global conditions involve a dynamic stiffness matrix, which is usually written in 

terms of frequency and wave number. So global conditions are normally in the 

frequency-wave number domain. There are, however, occasions in which one would 

prefer to work in the time domain. 

 

1.2.4 Absorbing layers  

 

The second category of absorbing boundaries is the absorbing boundary layer. 

Different from the absorbing boundary conditions, the absorbing boundary layer is not a 

mathematical condition on the boundary of the truncated domain. Rather it is a fictitious 

layer attached to the truncated domain, as shown in Figure 1.1. The most popular one in 

this category is the Perfectly Matched Layer (PML). This method was first introduced by 

Berenger to deal with electromagnetic wave propagation in an unbounded medium [19]. 

Almost immediately, Chew and Weedon [20] pointed out that Berenger’s approach is 
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actually equivalent to a complex coordinate transform, or coordinate stretching to be 

precise.  

Due to its flexibility in dealing with problems of different geometry, material 

properties and underlying physics, PML is widely used by researchers in different areas, 

such as electromagnetics, elastodynamics, acoustics, etc.  To name just a few of the 

researchers in elastodynamics, Liu and Chew [21] were the first ones to introduce PML 

into elastodynamic wave propagation problems. They solved the problem with finite 

differences. Collino and Tsogka [22] also derived a PML for the stress-displacement 

finite difference formulation. Basu and Chopra [23] presented a displacement-based, 

symmetric finite element implementation of the PML. 

As mentioned before, the key idea of PML is that a complex coordinate stretching 

is equivalent to the introduction of damping in the layer. This can be illustrated by the 

simple example of a 1D wave in an infinite bar on an elastic foundation as shown in 

Figure 1.4. The bar is put on an elastic foundation so that it will not fly away. It does not 

really matter if it is on an elastic foundation for the sake of PML. 

 

 

 

 

 

Figure 1.4 A bar on an elastic foundation 

 

The equation of motion is 

2 2

2 2

u u
A EA u f

t x
ρ ζ

∂ ∂
− + =

∂ ∂
                                                                                (1.17) 

where 

u = displacement 

E = Young’s modulus 

ρ = mass density 
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A = area of cross section 

ζ = elastic coefficient of the foundation 

f = distributed external load    

Consider a solution of the form  

         exp[ ( )]u A j kx tω= −                                                                                          (1.18) 

where 

k = wave number with positive real part 

ω = frequency 

j = unit imaginary number 1−  

The dispersion relation or the characteristic equation of Equation (1.17) is 

 2 2 0EAk Aζ ρ ω+ − =                                                                                        (1.19) 

Obviously this represents a dispersive wave. In Solution (1.18), only propagating waves 

are considered, which means ω is above the cut-off frequency and k should be real. 

Performing a coordinate stretching defined by 

0

( )

x

x s dsλ= ∫
∼

                                                                                                       (1.20) 

where  

x
∼

= the new coordinate 

( )xλ  is a nonzero and continuous function 

in the new coordinate, the equation keeps its form so that the solution can be written as 

~

exp[ ( )]u A j k x tω= −                                                                                         (1.21) 

If the stretching function is chosen as 

( ) 1 ( )x jf xλ = +                                                                                                  (1.22) 

where  

 ( )f x = a chosen function, for instance, 2
x  

from Equation (1.20), the new coordinates can be expressed in terms of the old one, as 
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0 0

(1 ( )) ( )

x x

x jf x ds x j f x ds= + = +∫ ∫
∼

                                                                  (1.23) 

Then in the x coordinate, the solution is 

0

exp( ( ) )exp( ( ))

x

u A k f x dx j kx tω= − −∫                                                              (1.24) 

From (1.24), it can be seen that the propagating wave is spatially modulated by a 

decaying exponential window. Meanwhile at 0x = , the coordinate transform gives 

~

x x= , which means no stretching or damping is introduced. If the interface between the 

truncated domain and the layer is put at 0x = , everything on the interface is continuous 

so there will be no reflections. 

From the above description, it is understood that the complex coordinate stretching 

introduces damping in the layer. This is exactly how the PML dissipates the waves 

entering the layer. Meanwhile the coordinate stretching is ingeniously designed so that 

on the interface between the truncated domain and the layer, the material property, or 

damping ratio, is continuous. Therefore there will be no wave reflected on the interface 

in the first place. The absorbing property of the layer depends on layer thickness and the 

stretching function ( )xλ . Fictitious damping can also be introduced into the system by a 

complex wave number shift in the wave number domain. Spatial decaying of the 

propagating wave is similarly achieved.  

While PML is a very flexible approach, it has some disadvantages. One big 

drawback is its need for splitting the unknown field in 2D or 3D cases to accommodate 

the coordinate stretching, which complicates the implementation significantly. 

Obviously the number of degrees of freedom in the PML doubles due to this unphysical 

splitting of the unknown fields. On the interface, the split fields in the PML and the 

unsplit fields in the truncated domain need to be matched, which adds even more 

complications to the implementation.  
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1.3 Alternative Approaches 

 

In this section, a new approach is suggested, which is closely related to the 

dynamic stiffness method followed by Gazetas [24] to find the stiffness functions of strip 

and rectangular footings, but using the thin layer method (TLM) instead of the exact 

layer matrices in the frequency-wave number domain, and making use of the exponential 

window method (EWM). To provide a clear description of the approach, it is appropriate 

to start with the TLM. 

As mentioned before, the TLM was first introduced by Waas [12] to address 2D 

plane wave propagation problems in Cartesian coordinates or axisymmetric problems in 

cylindrical coordinates. It was then extended to general 3D wave propagation by Kausel 

[25] in cylindrical coordinates. Kausel and Roesset [13] introduced then the concept of a  

“hyper-element”. In Waas’ formulation, the displacement field is approximated in the 

depth direction by finite element expansions with an exact expression in the horizontal 

direction in terms of wave number and frequency. In Kausel’s formulation, the 

displacement field is approximated by finite element expansions in the depth direction, a 

Fourier series in the tangential direction and Hankel functions in the radial direction. At 

the interface between the core region and the external region, the energy-transmitting 

boundary is applied (Figure 1.5).  

 

 

 

 

 

 

                                                                             

(a) The TLM of Waas 

Figure 1.5 The thin layer method 

 

Core Region 

Energy Transmitting Boundary 
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(b) The TLM of Kausel and Roesset 

Figure 1.5 Continued 

 

The TLM was further studied and developed to deal with different kinds of 

problems. Tan [26] formulated the finite element method for layered fluid-soil media. 

Ghibril [27] demonstrated the capability of TLM for the problem of wave scattering due 

to finite interfacial cracks. The strip element method developed by Liu and Achenbach 

[28] to investigate wave scattering in anisotropic media was essentially the thin layer 

method.  

Kausel and Roesset then developed the dynamic stiffness method for the same 

layered medium problem [29]. They formulated the exact dynamic stiffness matrix of a 

layer on the basis of the Haskell-Thompson transfer matrix. Using this approach, Kausel 

and Peek [30] later obtained an explicit closed form solution for the Green’s functions 

corresponding to dynamic loads acting on or within layered strata. The original idea of 

dynamic stiffness was then picked up by Gazetas [24] to calculate the stiffness functions 

for surface strip footings and rectangular foundations. Gazetas used an expansion of the 

load by the Discrete Fourier Transform and combined it with the dynamic stiffness 

matrix of soil layers in the frequency-wave number domain. In this approach, the 

r 

z 

θ 

Infinity 

Infinity 
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dynamic stiffness matrix is analytical. Unlike the thin layer method, the medium is no 

longer divided up into a core region and an exterior. The unknown fields are solved 

directly in the frequency domain. The solution in the time domain is then obtained 

through the inverse Fourier transform. In the presence of damping, which is typical in 

the case of wave propagation in soil, the waves are practically damped out after a certain 

distance. Therefore if the computational area is carefully chosen, the problem of 

unboundedness can be circumvented.  

The advantages of this approach over the consistent boundary matrix in the TLM is 

that is does not require the subdivision of each physical soil layer and that it provides an 

exact solution for an underlying elastic half space. The limitations are that it requires 

some internal damping in the soil and the use of a large number of points along the 

surface (number of terms in the Discrete Fourier Transform) to guarantee that waves 

attenuate within the domain considered. This same approach was later used by Doyle to 

treat general wave propagation problems in structures [31,32]. It has been referred to as 

the “spectral finite element method” although this same terminology is being used for a 

different type of finite elements. Also using this approach, Al-Khoury et al [33] studied 

the wave propagation associated with the Falling Weight Deflectometer.   

Based on the above discussion, it is clear that the TLM works for systems with or 

without damping but requires a consistent energy absorbing boundary. The dynamic 

stiffness approach does not need an absorbing boundary but requires the existence of 

internal damping.  Here a new approach is investigated, in which the need for energy 

absorbing boundary in the TLM or damping in the dynamic stiffness method is 

eliminated. This can be achieved through the exponential window method (EWM). 

Originally the EWM was used in digital signal processing (DSP) to reduce leakage 

when the Discrete Fourier Transform was used [34]. Kausel and Roesset were the first to 

introduce this method to solve elastodynamic systems with small or no damping [35].  In 

all frequency domain methods, when the Discrete Fourier Transform (DFT), which is the 

version of Fourier transform implemented on a computer, is performed, one needs to 

deal with the initial conditions problem. If the free vibration terms of a dynamic 
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system’s response are not damped out before the time range of interest, errors will be 

introduced.  

To fix this problem, people add trailing zeroes to prolong the duration so that the 

free vibration will damp out before the start of the time range of interest. The limit of 

this approach is obvious. If a system has no damping at all, the free vibration will never 

damp out regardless of the length of trailing zeroes. In Kausel and Roesset’s approach, a 

complex frequency shift is performed to the frequency domain equation. This complex 

frequency shift leads to three changes to the original system. First, the input force is 

exponentially windowed in the time domain. Second, there is a complex frequency shift 

in the transfer function. Third, the response is also exponentially windowed in the time 

domain. The complex frequency shift in the transfer function actually introduces a 

certain amount of damping into the system. By appropriately choosing the frequency 

shift parameter, or the amount of damping, free vibration terms in the response of the 

new system can be practically damped out. This is desirable because it is exactly the 

requirement for correctly performing DFT. Therefore, the response in the new system 

can be correctly obtained through the dynamic stiffness method. Then the response of 

the original system can be reconstructed by imposing an inverse exponential window. 

The time point at which the analysis is cut does not matter any more. It can be said that 

an “open boundary in time” is created. 

The implication of the above discussion is straightforward: if the problem were 

formulated in the wavenumber domain, and the same idea of the exponential window 

were applied the space point at which the model is cut would not matter any more. An 

open boundary in space would then be created.    

The dynamic stiffness method of Kausel and Roesset is in the frequency-wave 

number domain. That is, to obtain the solution in the time-space domain, it is necessary 

to perform an inverse Fourier transform with respect to both frequency and wave 

number. In this dissertation, the equation is not written in the frequency-wave number 

domain. It is written in the time-wave number domain. For the solution in the time 

domain, an explicit scheme can be implemented such as the central difference formula. 
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The advantage of the explicit scheme, combined with a lumped mass matrix, is twofold. 

First, it eliminates the need for solving a simultaneous system of algebraic equations. 

Secondly, there is no need to form explicitly the global stiffness matrix, saving thus both 

memory and CPU time.  

The thin layer method or the dynamic stiffness method can be implemented in 

Cartesian coordinates for 3D wave propagation problems. In this case, there are two 

possibilities. The first one is to solve the displacement field by the 2D Fourier transform 

in the horizontal plane and finite element discretization in the depth direction. This 

approach can be used to treat such problems as machine and building foundations. The 

second one is to solve the displacement field by finite element expansion on the cross-

section and to use the Fourier transform in the longitudinal direction. This approach can 

be used to treat such problems as tunnels and dams.   

 

1.4 Outline of the Dissertation 

 

The objective of this dissertation is to investigate the applicability of the 

exponential window method in the space domain to solve wave propagation problems in 

unbounded media, using a formulation in the time domain with the thin layer method. In 

Chapter II, the general formulation of the proposed method, which can be applied to 

different types of wave propagation problems, is presented. Chapter III covers wave 

propagation in an infinite beam on elastic foundation as an application for one-

dimensional cases.  Chapter IV presents the application to the two-dimensional plane 

strain wave propagation problem. In Chapter V, three-dimensional wave propagation 

problems are discussed. Chapter VI summarizes the results of the research and proposes 

future work. 
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CHAPTER II  

 

FORMULATION 

 

2.1 Overview 

 

This chapter describes the proposed method. It can be generally applied to one-

dimensional, two-dimensional, and three-dimensional cases. The description begins with 

a modified form of the equations of motion of an elastodynamic system. The equations 

in the time-wave number domain are then derived. After this, the introduction of 

damping by a complex wave number shift is explained in detail. Some issues associated 

with the application in space rather than time of the exponential window method are also 

discussed.  

 

2.2 Modified Equation of Motion 

 

Consider the displacement formulation of a linear elastodynamic problem on a 

domain that is unbounded in some spatial direction. The original equations of motion of 

the system are a set of partial differential equations in terms of time and all the spatial 

coordinates. As the first step in the proposed method, the displacement fields must be 

approximated through a discretization process, for instance a finite difference 

approximation or a finite element expansion, in the spatial directions where the domain 

is finite. Through this process, the original equations of motion are changed so that only 

the derivatives with respect to the spatial coordinates where the domain is infinite are 

kept in the equations. These new equations are called the modified equations of motion 

in this dissertation, to distinguish them from the original equations of motion. If the 

domain is infinite in all directions, no discretization process is needed and the modified 

equations of motion are the same as the original ones.  
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Defining the displacement vector 1 1 1{ , , ,... , , }T

N N N
u v w u v w=U  with u, v, and w the 

displacements in the x, y and z directions, respectively, and N the number of degrees of 

freedom of the system, a modified equation of motion can be written as 

2

2

( , , , )
( , , , ) ( , , , )

x y z t
x y z t x y z t

t

∂
+ =

∂

U
M LU F ,                                                    (2.1) 

where  

t = time 

M = mass matrix of size N×N  

F = external force vector of size N×1  

L = a linear differential operator of size N×N 

The entries in the linear operator L contain derivatives with respect to the space 

coordinates. They also contain information on material properties. In fact, the specific 

form of L depends both on the kinematics of the system, which reflect the relation 

between displacements and strains, and on the constitutive law, which reflects the 

relation between stresses and strains. Although Equation (2.1) is written in matrix form 

and the matrix form along with the number of degrees of freedom are usually associated 

with semi-discretized finite element equations, Equation (2.1) can represent a scalar 

equation.   

As a simple example, consider the problem of a transverse wave propagating in an 

infinitely long Euler-Bernoulli beam. The original equation of motion is  

4 2

4 2

w w
EI A q

x t
ρ

∂ ∂
− =

∂ ∂
                                                                                          (2.2) 

where 

w = deflection 

E = Young’s modulus 

I = bending moment of inertia 

ρ = mass density 

A = area of cross section 

q = distributed external load                        
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Since the problem has only one spatial dimension and it is infinite, no 

discretization is needed and the modified equation of motion is the same as the original 

one. In this case, the matrices and vectors in Equation (2.1) all become scalars. 

Specifically Aρ=M , w=U , 
4

4
EI

x

∂
=

∂
L , and q=F . 

Another example is the general 3D wave propagation in an unbounded space. The 

original equations of motion are [36] 

2 2 2 2
2

2 2

2 2 2 2
2

2 2

2 2 2 2
2

2 2

( )( )

( )( )

( )( )

x

y

z

u v w u
u f

x x y x z t

u v w v
v f

y x y y z t

u v w w
w f

z x z y z t

λ µ µ ρ

λ µ µ ρ

λ µ µ ρ

∂ ∂ ∂ ∂
+ + + + ∇ + =

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ + + + ∇ + =

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ + + + ∇ + =

∂ ∂ ∂ ∂ ∂ ∂

                                             (2.3) 

where 

ρ = mass density 

λ and µ = Lame constants 

u, v, and w = displacements in x, y and z directions, respectively 

fx, fy, and fz = body force in x, y and z directions, respectively   

2 2 2
2

2 2 2
x y z

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
, the Laplace operator 

No discretization is needed and the modified equations of motion are the same. 

Therefore, Equation (2.3) can be written in the form of Equation (2.1) with the matrices. 

{ }
T

u v w=U  

0 0

0 0

0 0

ρ

ρ

ρ

 
 =
 
  

M  

{ }
T

x y z
f f f=F  
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2 2 2
2

2

2 2 2
2

2

2 2 2
2

2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

x x y x z

y x y y z

z x z y z

λ µ µ λ µ λ µ

λ µ λ µ µ λ µ

λ µ λ µ λ µ µ

 ∂ ∂ ∂
+ + ∇ + + ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂
= + + + ∇ + 

∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂

+ + + + ∇ 
∂ ∂ ∂ ∂ ∂  

L  

These two examples do not need discretization. However, this process is needed 

when the domain is finite in one of the directions as will be shown in Chapter IV when 

2D wave propagation in an unbounded strip is considered and in Chapter V when 3D 

wave propagation in an unbounded layer is considered. The linear operator L will 

include derivatives with respect to the space coordinates that are not eliminated by the 

discretization process.   

 

2.3 Equation of Motion in the Time-Wave Number Domain 

 

 Applying the Fourier transform to Equation (2.1) with respect to all the space 

coordinates that are in the equation, and using the property governing the Fourier 

transform of the derivatives, Equation (2.1) can be written as 

 
2

2

( , , , )
( , , ) ( , , , ) ( , , , )

l m n t
l m n l m n t l m n t

t

−
− − −∂

+ =
∂

U
M L U F                                        (2.4) 

where 

m, n, and l = wave numbers in x, y and z directions, respectively 

−

U = the Fourier transform of U  

−

F = the Fourier transform of F  

The entries in matrix 
−

L are now polynomials in terms of the wave numbers m, n 

and l. In the two examples given in Section 2.2, for the Euler Bernoulli beam 

4
EIm

−

=L . 

and for the 3D wave propagation problem,  
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( ) ( )

( ) ( )

( ) ( )

mn ml

mn nl

ml nl

α λ µ λ µ

λ µ β λ µ

λ µ λ µ γ

−
+ + 

 = − + +
 

+ +  

L .  

where 

2 2 2( 2 ) ( )m n lα λ µ µ= + + +  

2 2 2( 2 ) ( )n m lβ λ µ µ= + + +  

2 2 2( 2 ) ( )l m nγ λ µ µ= + + +  

Equation (2.4) is in the time-wave number domain. In the original dynamic 

stiffness method of Kausel and Roesset, another Fourier transform with respect to time is 

performed to turn the equation into the frequency-wave number domain. In the 

frequency-wave number domain, one only needs to solve a set of algebraic equations to 

obtain the displacements.  

Equation (2.4) can be solved directly in the time domain using, for instance, finite 

differences. For a diagonal mass matrix if the central difference scheme is used, there is 

no need to solve a set of simultaneous equations, making the solution very efficient. The 

time-wave number domain approach is not necessarily better than the frequency-wave 

number domain approach but it provides an alternative and a complement to the original 

method.  

 

2.4 Finite Difference Solution 

 

Approximating the second-order derivative in Equation (2.4) by the central 

difference formula, 

( 1) ( ) ( 1)

2

2 2

2
k k k

t t

+ −− − − −

∂ − +
=

∂ ∆

U U U U
                                                                               (2.5)                                               

( )k− −

=U U                                                                                                                (2.6) 

( )k− −

=F F                                                                                                                 (2.7) 
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where  

k = index of time step 

( 1)k−−

U = displacement vector at time step k-1 

( )k−

U = displacement vector at time step k 

( 1)k+−

U = displacement vector at time step k+1 

t∆ = time step 

Substituting Equation (2.5), (2.6) and (2.7) into Equation (2.4), one obtains 

( 1) ( ) ( 1)
( )

( )

2

2
k k k

k

k

t

+ −− − −
− −− +

+ =
∆

U U U
M LU F                                                                (2.8) 

Equation (2.8) can be rewritten as 

( 1) ( ) ( ) ( 1)
1 ( ) 2 2( 2 )

k k k k

k
t t

+ −− − − − −
−= ∆ − ∆ + −U M F LU U U                                                (2.9) 

Equation (2.9) provides an iterative process to find the displacement vector throughout 

the time steps. The initial conditions are  

(0)

0

− −

=U U                                                                                                             (2.10)                                                                    

(1)
1 (0) 2 2

0 0 0

1
( 2 2 )

2
t t t

− − − − −
−= ∆ − ∆ + + ∆U M F L U U V                                               (2.11) 

where 

0

−

U = initial displacement 

0

−

V = initial velocity 

In Equation (2.9), if the mass matrix M is diagonal, either because of a system with 

lumped masses, a spectral formulation of the finite element method, or a diagonalization 

of a full consistent mass matrix, there is no need for solving a set of simultaneous 

equations. In the other definition of the spectral finite element formulation described by 

Komatitsch and Tromp [37], the nodes and the integration quadrature points are 

specially designed, so that the consistent mass matrix is diagonal. 
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The term 
− −

LU represents the vector of internal elastic forces exerted on the nodes 

by the elements and involves in principle the global stiffness matrix. However, since the 

multiplication of the inverse of the mass matrix does not involve solving equations, there 

is no need to assemble the global matrix 
−

L  and multiply it by the displacement vector. 

One only needs to loop over all the elements and add each element’s contribution to the 

elastic force acting on the nodes according to the connectivity table. This will reduce 

considerably the memory requirements especially when the number of nodes is large. 

One issue associated with the explicit scheme is stability. The explicit scheme is 

conditionally stable. This condition, known as the C-F-L condition, relates the allowed 

time step with the element size.  

 

2.5 The Exponential Window Method 

 

2.5.1 The exponential window method in the frequency domain 

 

To provide better understanding of the exponential window method in the wave 

number domain, the exponential window method in the frequency domain is discussed 

here. Consider the dynamics of the very simple system of a mass and a spring, a single 

degree freedom system initially at rest. The equation of motion is 

2

2

u
m ku f

t

∂
+ =

∂
                                                                                                  (2.12) 

where 

m = mass 

k = spring coefficient 

f = force 

u = displacement 

The equation in the frequency domain is 

2( )k m U Fω− =                                                                                                 (2.13) 
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where 

U = Fourier transform of the displacement 

F = Fourier transform of the input force           

The dynamic stiffness of the system in the frequency domain is 

2
K k mω= −                                                                                                       (2.14) 

where  

ω  = frequency 

Since K is a real number, the Fourier transforms of the input force and the displacement 

have no phase difference. This indicates that there is no damping in the system.  

The displacement in the frequency domain can be easily obtained from Equation (2.13). 

2

F
U

k mω
=

−
                                                                                                      (2.15) 

Then the time response can be obtained performing an inverse Fourier transform. 

The seemingly simple procedure described above has a catch. For example, 

consider the system with the following parameters. 1.0m kg= , 1.0 /k N m= . The input 

force, with sinusoidal time history, is shown in Figure 2.1. The duration of the force is 

Tf, and the duration of the analysis is Td. The response of the system is plotted with 

different ratios, of Tf  and Td. The results are compared with the exact solution as shown 

in Figure 2.2. It can be seen that the error in the solution by Equation (2.15) tends to be 

unrelated to the ratio. Taking longer analysis duration does not help to reduce the error. 

The exact solution was obtained using finite differences with very small time steps. 

The reason behind this discrepancy is due to the periodic nature of the Discrete 

Fourier Transform (DFT), which matches the displacement and velocity conditions at 

the beginning and at the end of the duration. Thus the initial condition is violated if the 

system is not quiet at the end of the duration.   
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Figure 2.1 Time history of the sinusoidal input force 

 

(a) Tf = 6.28s, Td = 10s 

Figure 2.2 Comparison of results with different analysis duration 
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(b) Tf = 6.28s, Td = 20s 

 

(c) Tf = 6.28s, Td = 30s 

 

(d) Tf = 6.28s, Td = 40s 

Figure 2.2 Continued 
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(e) Tf = 6.28s, Td = 50s 

 

(e) Tf = 6.28s, Td = 60s 

Figure 2.2 Continued 

 

Now consider the same system with the addition of a dashpot, the dynamic 

stiffness of this damped system is 

2

d
K k m jcω= − +                                                                                              (2.16) 

where 

c = dashpot constant 

The displacement in the frequency domain is 

2

F
U

k m jcω
=

− +
                                                                                              (2.17) 
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The dynamic stiffness in (2.16) has an imaginary part, which results from the dashpot 

and indicates the existence of damping in the system. With damping, if the analysis 

duration is long enough, the vibration will damp out so that at the end of the duration, 

the conditions would be very close to the quiet condition. Therefore, one can expect that 

the results from the DFT would converge to the exact solution increasing the analysis 

duration. This is verified by the results shown in Figure 2.3 with the dashpot constant of 

0.05Ns/m and other system parameters the same. 

 

(a) Tf = 6.28s, Td = 10s, c=0.05Ns/m 

 

(b) Tf = 6.28s, Td = 20s, c=0.05Ns/m 

Figure 2.3 Results of different analysis duration with damping 
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(c) Tf = 6.28s, Td = 30s, c=0.05Ns/m 

 

(d) Tf = 6.28s, Td = 40s, c=0.05Ns/m 

 

(e) Tf = 6.28s, Td = 50s, c=0.05Ns/m 

Figure 2.3 Continued 
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(f) Tf = 6.28s, Td = 60s, c=0.05Ns/m 

Figure 2.3 Continued 

 

The conclusion from the above discussion is that if there is damping in the system, 

it is possible to find the correct results if the duration of analysis and the quiet zone, 

where the excitation force is zero, are long enough.  

Applying to Equation (2.14), a complex frequency shift, 1' jcω ω= + , one obtains 

2 2 2

1 1 1( ' ) ' 2 'K k m jc k m mc j mcω ω ω= − − = − + +                                              (2.18) 

Comparing Equation (2.18) with Equation (2.16), one can see that Equation (2.18) 

corresponds to a damped system. Actually it is a system with mass m, the spring 

coefficient 2

1k mc+ , and a dashpot 12 'mc ω .  

The force in the shifted system is 

( ) ( )
shifted

F F jcω ω= −                                                                                         (2.19) 

In the time domain 

( ) ( ) ct

shiftedf t f t e
−=                                                                                              (2.20) 

The displacement in the shifted system is 

( ) ( )
shifted

U U jcω ω= −                                                                                        (2.21) 

In the time domain 

( ) ( ) ct

shiftedu t u t e
−=                                                                                               (2.22) 
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One can calculate ( )
shifted

F ω  by imposing a decaying window on the input force before 

performing the DFT, and after ( )
shifted

u t  is obtained by performing an inverse DFT to 

( )
shifted

U ω , one can retrieve the response of the original system by imposing a rising 

window on ( )
shifted

u t .  

Figure 2.4 shows the results using the exponential window method for the 

undamped system in Figure 2.2. The results are good regardless of the analysis duration. 

This means the location at which the analysis is cut does not matter. Alternatively it can 

be said that an open boundary in time is created. If the same procedure were to be 

carried out in space, one might expect that an open boundary in space would be created. 

In the next section, the potential application of the method in the space domain is 

discussed. 

 

(a) Tf = 6.28s, Td = 10s 

Figure 2.4 Results from the exponential window method 
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(b) Tf = 6.28s, Td = 20s 

 

(c)  Tf = 6.28s, Td = 30s 

 

(b) Tf = 6.28s, Td = 40s 

Figure 2.4 Continued 
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(e) Tf = 6.28s, Td = 50s 

 

(f) Tf = 6.28s, Td = 60s 

Figure 2.4 Continued 

 

2.5.2 Application of the complex wave number shift in the space domain 

 

In this section, the concept of the exponential window for the solution of dynamic 

problems in the frequency domain is extended to the formulation of dynamic problems 

in the space domain. The expectation is that performing a complex wave number shift in 

space might help to generate good results regardless of the location where the model is 

cut, or alternatively, that it could lead to an open boundary in the space domain.  

Setting the following for the three dimensional wave propagation problem: 

1'm m jc= −   
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2'n n jc= −                                                                                                             

3'l l jc= −  

the following equation is obtained. 

2

1 2 3
1 1 12

1 1 1 1 1 1

( ' , ' , ' , )
( ' , ' , ' )

( ' , ' , ' , ) ( ' , ' , ' , )

m jc n jc l jc t
m jc n jc l jc

t

m jc n jc l jc t m jc n jc l jc t

−
−

− −

∂ − − −
+ − − −

∂

× − − − = − − −

U
M L

U F

                       (2.23) 

The new equation (2.23) is in terms of the shifted wave numbers 'm , 'n , and 'l . 

The primary difference between Equation (2.23) and Equation (2.4) lies in the change of 

matrix 
−

L , that is actually the “dynamic stiffness matrix” in the wave number domain. In 

Equation (2.4), the entries in 
−

L are all real numbers if the original equation of motion 

contains only even number order derivatives. The entries in 
−

L may be complex if the 

original equation of motion contains odd number order derivatives. In both cases, 

however, the structure of the entries of
−

L does not reflect the existence of damping if the 

original equation of motion contains no damping.  

With the complex wave number shifting, the structure of the entries of
−

L changes. 

Due to the introduction of 1jc− , 2jc− , and 3jc− , damping is added to the original 

system. Then Equation (2.23) can perhaps be solved correctly by the DFT and the 

inverse DFT. 

What is left is to apply the exponential window to the force and displacement. The 

force in the shifted system is 

1 2 3( , , ) ( , , )shifted m n l m jc n jc l jc
− −

= − − −F F                                                         (2.24) 

In the space domain 

1 2 3( , , ) ( , , )
c x c y c z

shifted x y z x y z e
− − −=F F                                                                    (2.25) 

The displacement in the shifted system is 

1 2 3( , , ) ( , , )shifted m n l m jc n jc l jc
− −

= − − −U U                                                        (2.26) 
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In the time domain 

1 2 3( , , ) ( , , )
c x c y c z

shifted x y z x y z e
− − −=U U                                                                   (2.27) 

Equation (2.25) means that a decaying window is applied to the input force before 

it is transformed to the wave number domain. Equation (2.27) indicates that the response 

in the original system can be retrieved by applying a rising window after the response in 

the shifted system is obtained.  

 

2.6 Issues to Consider 

 

In the above discussion, an analogy between time and space was used to explain 

the concept. However, time and space are not completely equivalent. There are two 

issues that must be considered.  

One issue is associated with the causal nature of time. Motion can “propagate” in 

only one direction, which is the positive direction, in the time domain. But in the space 

domain, waves can propagate in both positive and negative directions. If a uniform 

window is applied over the entire range, only wave motion in the positive direction 

would be properly simulated and the simulated wave in the negative direction would be 

incorrectly modeled. Rather than decaying, in the negative direction, the fictitious 

damping would actually “boost” the motion and thus lead to a blowout. There are two 

possible ways to deal with this situation. First, by intuition, a two-segment window can 

be designed with a decaying exponential window imposed in the positive direction and a 

rising exponential window imposed in the negative direction. Second, if a symmetric 

problem is to be analyzed, only the wave propagating in the positive direction needs to 

be studied and the wave propagating in the other direction is just a mirror image.  

The other issue is associated with the conjugate symmetry property of the Fourier 

transform. Since the solution to the equation of motion is real, the DFT of the 

displacements is conjugate symmetric with respect to the Nyquist frequency, or Nyquist 

wave number in this case. The property needs be applied in the DFT since the results 

from DFT above the Nyquist wave number only carry spurious frequency contents and 
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should not be used. It is easy to apply this property in a one dimensional DFT, but in a 

two dimensional DFT, needed in three-dimensional problems, some special 

consideration is needed when the exponential window is implemented. This will be 

explained in detail in later chapters. 
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CHAPTER III 

 

INFINITE BEAM ON ELASTIC FOUNDATION-1D APPLICATION 

 

3.1 Overview 

 

The study of an infinite beam on an elastic foundation as shown in Figure 3.1 has a 

long history documented in the literature. It can be used to model different problems 

where moving loads on a structure with a dominant longitudinal dimension are involved. 

To name just a few, Timoshenko was the first to model a moving load of constant 

velocity on a railway [38]. To account for high frequencies associated with high speed 

moving loads, Achenbach and Sun [39] used a Timoshenko beam rather than the Euler-

Bernoulli beam. Kim and Roesset investigated the effects of moving loads on pavements 

through the dynamic stiffness approach [40]. In the early days, investigators attacked the 

problem analytically so they were able to deal with the infinity condition well. As more 

complicated models were developed and numerical methods became popular, a 

procedure to enforce numerically the condition at infinity became necessary. To the 

author’s knowledge, the existing numerical methods have not really addressed the 

infinity problem. It is circumvented because the existence of damping in real 

applications eliminates the need for an absorbing boundary if an appropriate length of 

the model is chosen.   

 

 

 

 

 

 

 

Figure 3.1 An infinitely long beam on elastic foundation 

EI, ρA 

c 

Pf(t) 
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O 
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In this chapter, the proposed method is applied to an infinite beam on an elastic 

foundation. The steady state response of the beam is studied both analytically and 

numerically with the exponential window imposed. The results with different 

frequencies and truncated lengths are compared. The conjugate symmetry property of 

the Fourier transform and its application in elastodynamic problems using frequency 

domain methods are discussed. The impact of damping on the implementation of the 

symmetry property is explained and an alternative or more general approach is 

presented. The transient response of the same beam under a triangular pulse load is also 

studied in the time-wave number domain. The effectiveness of the exponential window 

in this case is examined by comparing the results with and without the exponential 

window. 

 

3.2 Analytical Solution of Steady State Response 

 

In this section, the steady state response of an undamped infinite beam on elastic 

foundation subject to a harmonic load is studied. The reason to study the steady state 

response is that the solution can be obtained analytically and the numerical accuracy of 

the proposed method can be examined. 

The equation of motion of the beam in Figure 3.1 is [36] 

4 2

4 2

( , )
( , ) ( ) ( )

w x t w
EI cw x t A Pf t x

x t
ρ δ

∂ ∂
+ − =

∂ ∂
                                                    (3.1) 

where 

w = deflection of the beam 

EI = bending stiffness 

ρA = mass per unit length 

c = elastic constant of the foundation 

P = magnitude of the applied force 

f(t) = time history of the applied force 

δ(x) = Dirac delta function 
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The steady state response to a harmonic applied force, ( ) j tf t e Ω= can be obtained by 

substituting ( , ) ( , ) j tw x t W x e Ω= Ω into Equation (3.1). Then 

4
2

4

( , )
( ) ( , ) ( )

W x
EI c A W x P x

x
ρ δ

∂ Ω
+ − Ω Ω =

∂
                                                     (3.2) 

where ( , )W x Ω  is the Fourier transform with respect to time. 

Equation (3.2) is an ordinary differential equation with respect to space only. To 

solve it, its modes must be found first. If 2 0A cρ Ω − > , calling
2

4 A c

EI

ρ
α

Ω −
= with 

0α > , the characteristic equation is 

4 4 0r α− =                                                                                                          (3.3a) 

the modes are j x
e

α , j x
e

α− , x
e

α and x
e

α− . The first two modes correspond to propagating 

waves in both directions and the other two modes correspond to evanescent waves in 

both directions.  If 2 0A cρ Ω − < , calling
2

4 c A

EI

ρ
α

− Ω
= with 0α > , the characteristic 

equation is 

4 4 0r α+ =                                                                                                          (3.3b) 

The modes are then 1r x
e , 2r x

e , 3r x
e and 4r x

e  with  1

2 2

2 2
r j

α α
= + , 2

2 2

2 2
r j

α α
= − + , 

3

2 2

2 2
r j

α α
= − and 4

2 2

2 2
r j

α α
= − − . The first two modes correspond to 

propagating waves in the positive x direction and the other two to propagating waves in 

the negative x direction.  

To solve Equation (3.2) directly requires finding a particular solution to the Dirac 

delta function on the right hand side. It is easy to take advantage of symmetry and to 

divide the beam into two halves at the location of the applied force as shown in Figure 

3.2. The small segment in the middle is of differential length. For the segments on the 

left and right, there will be no applied force, so the particular solution would be trivial. 

Then the solution of the homogeneous equation is the general solution for each segment. 
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Meanwhile the continuity at the origin has to be satisfied, which provides the following 

boundary conditions.         

                                                            

 

 

 

 

 

 

 

Figure 3.2 Segmentation of the beam 

 

, ( )
r

x W x→ +∞  is finite                                                                                      (3.4a)     

, ( )
l

x W x→ −∞  is finite                                                                                      (3.4b) 

(0 ) (0 )
r l

W W
+ −=                                                                                                  (3.4c) 

(0 ) (0 )r lW W

x x

+ −∂ ∂
=

∂ ∂
                                                                                          (3.4d) 

2 2

2 2
(0 ) (0 )r lW W

x x

+ −∂ ∂
=

∂ ∂
                                                                                        (3.4e) 

3 3

3 3
(0 ) (0 )r lW W

EI EI P
x x

+ −∂ ∂
= +

∂ ∂
                                                                         (3.4f) 

When 2 0A cρ Ω − > , since the segment on the left runs to infinity, according to 

Summerfeld’s radiation condition, its solution should not include the ( )j x t
e

α− −Ω  term, 

which represents wave propagating to the right. Similarly, the solution for the segment 

on the right should not include a term ( )j x t
e

α +Ω . After these conditions are considered, the 

solution is found to be 

3 3
( 0)

4 4

x j x

r

P P
W e e x

EI j EI

α α

α α
− −= − − >                                                           (3.5a) 

EI, ρA 

c 

Pf(t) 

x 
O 

w 
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3 3
( 0)

4 4

x j x

l

P P
W e e x

EI j EI

α α

α α
= − − <                                                              (3.5b) 

 

It should be noticed that in this case the solution is complex. The points along the beam 

are not vibrating in phase and there are waves propagating with a velocity /αΩ . The 

amplitude of the vibrations is 2

3
2 2sin( )

4

x xP
x e e

EI

α αα
α

− −+ + . When 2 0A cρ Ω − < , the 

solution for the segment on the right should include only those modes decaying in the 

positive x direction, i.e., modes with negative real part. Similarly the solution for the 

segment on the left should include modes decaying in the negative x direction, i.e., 

modes with positive real part. The solution is found to be 

2 4

2

2
3 3 3

2 4

2 2 2
(cos( ) sin( ))( 0)

4 4 4 2 2

x
r x r x

r

P P P
W e e e x x x

r EI r EI EI

α

α α
α

−

= + = + >              

                                                                                                                            (3.5c)                        

31

2

2
3 3 3

1 3

2 2 2
(cos( ) sin( ))( 0)

4 4 4 2 2

x
r xr x

l

P P P
W e e e x x x

r EI r EI EI

α

α α
α

−

= − − = − <                                                                   

                                                                                                                            (3.5d) 

It is clear that on each side of the load, there are two modes in either case so there are 

four constants and these constants can be determined by applying conditions (3.4c) 

through (3.4f). It should be noticed that in this case the solution is real and all points 

along the beam would be vibrating in phase. There are no waves propagating. 

 

3.3 Steady State Response with Exponential Windows 

 

The solution to Equation (3.2) can be found numerically by truncating the beam to a 

finite length L and performing the DFT with respect to x. Since the original beam is 

infinitely long, the exponential window must be imposed (Figure 3.3). 

Performing the Fourier transform of Equation (3.2) with respect to x, one obtains  

~ ~ ~
4 2( , ) ( ) ( , ) ( )EIk W k c A W k P kρΩ + − Ω Ω =                                                          (3.6) 
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where 

k = the wave number 

~

W = the displacement in the wave number domain. 

 

 

 

 

 

 

 

 

Figure 3.3 The truncated beam 

 

The complex wave number shift is 'k k jβ= − .  

~ ~ ~
4 2( ' ) ( ' , ) ( ) ( ' , ) ( ' )ss sEI k j W k j c A W k j P k jβ β ρ β β− − Ω + − Ω − Ω = −             (3.7) 

where 

~

sW = displacement in the shifted wave number domain 

~

sP  = force in the shifted wave number domain 

From (3.7), 
~

sW can be obtained 

~
~

4 2( ' )

s
s

P
W

EI k j c Aβ ρ
=

− + − Ω
                                                                            (3.8) 

The displacement in the space domain for the shifted system can be obtained by 

applying the inverse Fourier transform to Equation (3.8). The displacement of the 

original system is retrieved by imposing finally the rising exponential window. 

x

s
W W e

β=                                                                                                             (3.9) 
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3.4 Comparison of Steady State Results 

 

The steady state responses obtained by the analytical and the numerical solutions 

are shown in Figures 3.4 to 3.7. Different excitation frequencies, and truncated lengths 

were used to verify the effectiveness of the exponential window. As a comparison, the 

results from the solution without the exponential window are also included. The 

parameters are 1.0EI = , 10.0Aρ = , and 500.0c = . The different frequencies are 0.1Hz, 

0.5Hz, 1.5Hz and 2.5Hz. The different lengths are 5.12m, 10.24m and 20.48m.  

Several observations can be made from these results. First, there exists a threshold 

excitation frequency below which propagation does not happen and above which motion 

can propagate. The threshold frequency is the fundamental natural frequency 
c

Aρ
, 

where c is the stiffness per unit length of the foundation and Aρ  is the mass per unit 

length of the beam. At the threshold frequency, the beam is vibrating in resonance on the 

elastic foundation like a rigid body. The motion decreases rapidly in amplitude if the 

excitation frequency is lower than the threshold frequency. The motion spreads out if the 

frequency is higher than the threshold frequency.  

Second, when the excitation frequency is lower than the threshold frequency, the 

results from the solution without imposing the exponential window are very good as 

shown in Figures 3.4 and 3.5. On the other hand, the results with the exponential 

window exhibit small numerical errors in the vicinity of the boundary for small lengths 

of the truncated domain. When the length of the truncated domain increases, the error 

tends to disappear.  This phenomenon is observed again when natural or physical 

damping is introduced in the system. In this case, the length of the truncated domain 

needs to be carefully selected. 

Finally, when the excitation frequency is higher than the threshold frequency, the 

results with the exponential window match the analytical solution very well, regardless 

of the excitation frequency and the truncated length. The results from the solution 

without the exponential window are quite random and generally do not match the 
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analytical solution. This means that the suggested procedure works very well. It is 

interesting to notice that as the length of the truncated domain increases the possible 

convergence of the results without exponential window, if it exists, is not monotonic. 

The results seem to be better at times for the smallest length than for the longer ones. 

 

 

(a) length = 5.12m 

 

(b) length = 10.24m 

 

(c) length = 20.48m 

Figure 3.4 Results with excitation frequency of 0.1Hz 
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(a) length = 5.12m 

 

 

(b) length = 10.24m 

 

 

(c) length = 20.48m 

Figure 3.5 Results with excitation frequency of 0.5Hz 
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(a) length = 5.12m 

 

 

(b) length = 10.24m 

 

 

(c) length = 20.48m 

Figure 3.6 Results with excitation frequency of 1.5Hz 
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(a) length = 5.12m 

 

 

(b) length = 10.24m 

 

 

(c) length = 20.48m 

Figure 3.7 Results with excitation frequency of 2.5Hz 
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3.5 Further Discussion on the Steady State Response 

 

3.5.1 The conjugate symmetry of the Fourier transform 

 

A point that deserves some consideration is associated with the conjugate 

symmetry property of the Fourier transform of a real function or the Discrete Fourier 

transform of a real array.  

Consider the Fourier transform pair 

( ) ( ) j t
F f t e dt

ωω
∞

−

−∞

= ∫                                                                                        (3.10a) 

( ) ( ) j t
f t F e d

ωω ω
∞

−∞

= ∫                                                                                        (3.10b) 

If f(t) is a real function, then from (3.10a), 

( ) ( ) ( ( ) ) ( ( ))j t j t
F f t e dt conj f t e dt conj F

ω ωω ω
∞ ∞

−

−∞ −∞

− = = =∫ ∫                                (3.11) 

where  

conj( ) = conjugate operation 

For a real function, its Fourier transform is conjugate symmetric with respect to the 

origin. 

Consider the Discrete Fourier Transform pair 

1
2 /

0

( ) ( ) , 0,1,2,..., 1
N

j kn N

n

X k x n e k N
π

−
−

=

= = −∑                                                      (3.12a) 

1
2 /

0

1
( ) ( ) , 0,1,2,..., 1

N
j kn N

k

x n X k e n N
N

π
−

−

=

= = −∑                                                 (3.12b) 

If x(n) is a real sequence, then from (3.12a), 

1 1
2 ( ) / 2 /

0 0

1
2 /

0

( ) ( ) ( )

( ( ) ) ( ( ))

N N
j N k n N j kn N

n n

N
j kn N

n

X N k x n e x n e

conj x n e conj X k

π π

π

− −
− −

= =

−
−

=

− = =

= =

∑ ∑

∑
                                            (3.13) 
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Thus for a real sequence, the Discrete Fourier Transform is conjugate symmetric with 

respect to the point indexed by N/2, where the Nyquist frequency is located.  

The conjugate symmetric property of the Fourier transform has an important 

implication when the Discrete Fourier Transform is used to solve an elastodynamic 

equation. In an elastodynamic equation, the input force is always real. In the absence of 

damping, the displacement must be real too. Then the Discrete Fourier Transform of 

both the input force and the displacement must be conjugate symmetric with respect to 

the Nyquist frequency, which implies that the transfer function or the dynamic stiffness 

must also be conjugate symmetric with respect to the Nyquist frequency. In practice, 

only the dynamic stiffness values corresponding to frequencies lower than the Nyquist 

frequency have to be calculated. For frequencies higher than the Nyquist frequency, the 

conjugate symmetric property is applied to obtain the dynamic stiffness. Alternatively, 

this property is applied directly to the displacement in the frequency domain. This is not 

only convenient, but also correct.   

Looking at this point from another angle, the Nyquist frequency defines the highest 

frequency in a discrete sequence that can be correctly represented in its Discrete Fourier 

Transform. Above the Nyquist frequency, aliasing occurs and the results are meaningless 

[41]. Therefore it would be incorrect to calculate the dynamic stiffness values 

corresponding to frequencies above the Nyquist frequency by directly substituting the 

frequency into the expression of the dynamic stiffness. 

The above argument applies to the wave number domain just as it does to the 

frequency domain. So in the following discussion, one should keep in mind that the term 

“frequency” is used to represent both frequency and wave number. However, the above 

argument applies only when there is no damping in the system. With damping, the 

solution by the frequency domain method should be complex to represent a phase 

difference, which reflects the existence of damping. In this case, the displacement in the 

frequency domain, as expected, is no longer conjugate symmetric with respect to the 

Nyquist frequency while aliasing still exists above the Nyquist frequency. One needs to 

consider an alternative to the approach based on the conjugate symmetry property.   
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3.5.2 The impact of damping 

 

As argued in the previous subsection, one should not apply the conjugate 

symmetry property when damping exists. In this case, the method to calculate the 

dynamic stiffness above the Nyquist frequency must be modified as follows.  

Assume the duration of analysis is T, and the number of points used in the Discrete 

Fourier Transform is N. The equation in the frequency domain is  

i i i
=K U F                                                                                                            (3.14) 

where 

i = the index of frequencies: /
i

i Tω = , i = 1, 2, N. 

i
K = the dynamic stiffness corresponding to the i-th frequency. 

i
F = the DFT of input force 

i
U = the DFT of the displacement 

Assume the dynamic stiffness of the system is K. The dynamic stiffness corresponding 

to the i-th frequency is 

( ), / 2

( ), / 2

i

i

N i

i N

i N

ω

ω −

 <=
= 

− >

K
K

K
                                                                                (3.15) 

The validity of Equation (3.15) is based on the original definition of the Discrete 

Fourier Transform, which defines the frequencies from / 2N T−  to / 2N T  [42]. 

Equation (3.15) is more general than the approach in the previous subsection where the 

conjugate symmetry property was applied. Equation (3.15) covers the symmetry cases, 

but is not limited to these cases.  

To illustrate this point, consider again the beam on elastic foundation but now 

introducing dashpots (Figure 3.8). As mentioned before, with the existence of damping, 

motion is practically damped out over a certain distance so there is no window needed to 

obtain the correct results with the dynamic stiffness method.  
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Figure 3.8 An infinitely long beam on elastic foundation with dashpots 

 

The equation of motion is 

4 2

4 2

( , )
( , ) ( ) ( )

w x t w w
EI cw x t A Pf t x

x t t
η ρ δ

∂ ∂ ∂
+ + − =

∂ ∂ ∂
                                       (3.16)  

where 

η = dashpot coefficient. 

The equation in the wave number domain is 

         4 2( )EIk c A j W Pρ η+ − Ω + Ω =                                                                         (3.17)  

If Equation (3.15) is used, the dynamic stiffness, as represented by the term in 

parenthesis, is no longer conjugate symmetric with respect to the Nyquist wave number, 

due to the existence of the imaginary term jηΩ . So it is expected that the result obtained 

applying Equation (3.15) should be different from that obtained applying the conjugate 

symmetry property. The following figures show how the results from the conjugate 

symmetry property deviate from those obtained from Equation (3.15), with different 

amounts of damping. The length of analysis is 40.96m. The other parameters are 

0.1EI = , 1.0Aρ = , 500.0c = , 2.0Ω = . 

EI, ρA 

c 

Pf(t) 

x 
O 

w 



 

 

54 

 

(a) η = 7.0 

 

(b) η = 70 

 

(c) η = 700 

Figure 3.9 Comparison of the symmetric property and Equation (3.15) 
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From Figure 3.9, it can be observed that with increasing damping, the results 

obtained imposing symmetry with respect to the Nyquist frequency deviate increasingly 

from the exact solution obtained applying Equation (3.15). This is understandable 

because increasing the damping implies that the imaginary part of the dynamic stiffness 

in Equation (3.17) becomes closer to its real part so its impact can no longer be ignored.  

The impact of damping is also not negligible when the exponential window is 

introduced to simulate effects of an absorbing boundary. The results from applying the 

symmetric property are compared with the analytical solution in Figure 3.10. It is clear 

that spurious motion is introduced. However, when Equation (3.15) is used, the results 

from the absorbing boundary match perfectly the analytical solution.  

 Figure 3.11 compares the results using the exponential window and the analytical 

solution with different wave number shifting parameters. The wave number shifting 

parameter m is associated with the parameter β in Equation (3.7) by the relation 

ln(10)
m

L
β =                                                                                                       (3.18) 

where 

ln = the natural logarithm operator 

L = the analysis length or the truncated length 

The parameters used in both Figure 3.9 and 3.10 are 1.0EI = , 10.0Aρ = , 

500.0c = , 2.0Ω = , 70η = . 
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(a) m = 1.0 

 

(b) m = 2.0 

 

(c) m = 3.0 

Figure 3.10 Results by symmetry property and the analytical solution 
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(a) m = 1.0 

 

(b) m = 2.0 

 

(c) m = 3.0 

Figure 3.11 Results by Equation (3.15) and the analytical solution 
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3.6 Transient Response  

 

The transient response of the same beam in Figure 3.3 under a triangular pulse load 

is studied. The time history of the load is defined as in Figure 3.12.  

 

 

 

Figure 3.12 Time history of the triangular pulse 

 

Performing the Fourier transform of Equation (3.2) with respect to x, one obtains 

~
2~ ~

4

2

( , )
( , ) ( , ) ( )

W k t
EIk W k t cW k t A Pf t

t
ρ

∂
+ − =

∂
                                                (3.19) 

The complex wave number shift is the same as in the steady state case. Equation (3.19) 

can be solved in the time-wave number domain using finite differences in the time 

domain. The solution in the space-time domain can be then retrieved by performing the 

inverse Fourier transform of 
~

( , )W k t . The procedure was described in detail in Chapter II 

and will not be repeated here. The displacement picked up by a receiver located at 

distance LR from the excitation is studied (Figure 3.13). The parameters are 1.0EI = , 

10.0Aρ = , 500.0c = .  

Tf 

Ta 
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The displacements obtained with and without the exponential window are 

compared. Figure 3.14 shows the results with 20.48L m=  and 3 / 8
R

L L= . Sixty four 

points are used to perform the Discrete Fourier Transform. The width of the triangular 

pulse is 0.5s. With this pulse, most of the energy is carried in frequencies above the 

threshold frequency of 1.13Hz. Figure 3.15 shows the results with 40.96L m=  and 

7 /16
R

L L= . 128 points were used to perform the Discrete Fourier Transform and the 

width of the triangular pulse was still 0.5s. 

 

 

                                                                                                                                               

 

 

 

Figure 3.13 Location of the receiver 

 

 

Figure 3.14 Results with and without the window ( 20.48L m=  and  0.5
f

T s= ) 

P 

L 

LR 
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Figure 3.15 Results with and without the window ( 40.96L m=  and  0.5
f

T s= ) 

 

From Figures 3.14 and 3.15, it can be seen that the responses with or without the 

exponential window are the same at the beginning but start to differ from a certain point. 

It is interesting to observe that the first arrival of the responses is about 1.0 second 

earlier than the first arrival of the difference in both figures. The distance between the 

receiver and the right end of the truncated beam is the same (2.56m) in both figures, 

suggesting that the difference is due to the arrival of reflected waves from the right end 

of the truncated beam in the case without the exponential window. 

The result obtained with the exponential window method is also compared with 

those computed with a finite element model and different lengths. Figure 3.15 shows the 

results from the exponential window method with 20.48L m=  and 3 / 8
R

L L= . Also 

shown are the results from the finite element method with 20.48L m=  and 3 / 8
R

L L= , 

and 40.96L m=  and 3 /16
R

L L= . From Figure 3.16, it can be seen that the finite element 

method gives different results with different truncated lengths (Refer to the solid line and 

the center line in Figure 3.16). This is understandable because the arrival time of the 
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reflected wave changes with the truncated length. The result with the exponential 

window with the smaller truncated length 20.48m (Refer to the dotted line in Figure 

3.16), however, matches well that from the finite element method with the longer 

truncated length 40.96m (Refer to the center line in Figure 3.16). This indicates that with 

the exponential window, absorption occurs at the truncated boundary.  

 

 

Figure 3.16 Results with exponential window and finite elements ( 0.5
f

T s= ) 

 

It is also of interest to compare the results with a different pulse length, 1.2s. With 

this pulse, most of the energy is carried by frequencies below the threshold frequency. 

Figure 3.17 shows the results with 20.48L m= and 3 / 8
R

L L= . Sixty four points were 

used to perform the Discrete Fourier Transform. Figure 3.18 shows the results with 

40.96L m=  and 7 /16
R

L L= . One hundred and twenty eight points were used to perform 

the Discrete Fourier Transform. Again, the first arrival of the responses is about 1.0 
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second earlier than the first arrival of the difference in both figures, suggesting the 

arrival of reflected waves from the right end of the truncated beam in the case without 

the exponential window. 

 

 

Figure 3.17 Results with and without the window ( 20.48L m=  and  1.2
f

T s= ) 

 

 

Figure 3.18 Results with and without the window ( 40.96L m=  and  1.2
f

T s= ) 
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Again, the results from the exponential window method are compared with those 

from the finite element method. Figure 3.19 shows the results from the exponential 

window method with 20.48L m=  and 3 / 8
R

L L= . Also shown are the results from the 

finite element method with 20.48L m=  and 3 / 8
R

L L= , and 40.96L m=  

and 3 /16
R

L L= . Similar to Figure 3.16, it can be seen the result with the exponential 

window with the smaller truncated length 20.48m (dotted line in Figure 18) matches well 

that from the finite element method with the longer truncated length 40.96m (the center 

line in Figure 18). This implies again that with the exponential window, absorption 

occurs at the truncated boundary.  

 

 

Figure 3.19 Results with exponential window and finite elements ( 1.2
f

T s= ) 
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From the above discussion, it is seen that with exponential window, the truncated 

beam can be used to effectively simulate the original unbounded beam at least up to the 

time duration considered. However, errors appear if the duration is increased. 

Considering again the problem in Figure 3.19 as an example if the truncated length is 

large enough, the result from the finite element method can be regarded as “accurate” 

and used as the “true” response of the unbounded beam for a certain duration. Figure 

3.20 shows the results from both finite element method and the exponential window 

method. The truncated length for the finite element method is 81.92m. The truncated 

length for the exponential window method is 20.48m. The distance between the 

excitation and the receiver is 7.68m in both cases. It can be seen that after 5.0s, spurious 

oscillations occur in the solution with the exponential window method.  

It appears from these results that the exponential window introduces damping only 

for the wave propagating in one direction, which is the positive x direction in the above 

examples. In the negative x direction, when the wave motion reaches the left end, it is 

reflected and finally reaches the receiver. This is evidenced by the later arrival of the 

spurious oscillation when the truncated length is 40.96m with the same distance between 

the source and the receiver. In this case, it takes longer for the spurious oscillation to get 

reflected at the left end, start in the positive x direction, and finally reach the receiver. In 

Figure 20, the result from the exponential window with the truncated length of 40.96m 

matches very well with that from the finite element method. The spurious oscillation 

does not happen within 7.0s. 

The time at which these oscillations start coincides roughly with the time of arrival 

of the waves propagating in the negative direction, reflecting at the left end and reaching 

the point of observation. The exponential window provides thus an absorbing window at 

the right end for the waves propagating in the positive x direction but not at the left. 

When the length is increased to 40.96m, with the result also shown in Figure 3.20, the 

waves reflected at the left end do not have enough time to reach the observation point 

within the 7.0 seconds considered. 
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Figure 3.20 Responses at the receiver with different truncated lengths 
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CHAPTER IV  

 

PLANE SV-P WAVES IN AN UNBOUNDED STRIP 

 

4.1 Overview 

 

 In this chapter we consider the propagation of plane SV and P waves in an 

unbounded strip that can represent a soil layer over rigid rock (Figure 4.1). The strip is 

infinite in the x direction but finite in the y direction. The boundary conditions on the 

upper and lower boundary in the y direction are physical. For the case of a soil layer 

overlying much stiffer rock, the top boundary would have specified stresses or tractions 

while the bottom boundary is fixed. In Figure 4.1, both the top and bottom boundary are 

fixed. In this case, uniformly distributed loads are located in the shaded area. The 

direction of the load can be horizontal, as shown in Figure 4.1, or vertical.  

 

 

                                                                                                                

 

 

 

 

Figure 4.1 The infinite strip 

 

As mentioned in Chapter II, the displacement field is approximated by a finite 

element expansion in the directions where the domain is finite and a modified equation 

of motion is derived. In this problem, the finite element expansion is applied in the y 

direction. The strip is infinitely long in the x direction so it is truncated at some distance. 

The same method could be used for three-dimensional problems with a finite dimension 

in two directions and an infinite length in the third direction. Then a two-dimensional 

h 

a 
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h/2 
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finite element expansion would be employed on the cross section and the Fourier 

expansion would be used with the exponential window in the infinite direction.  

 

4.2 Modified Equation of Motion 

 

The equation of motion for plane SV-P waves is  

2 2 2
2

2 2
( )( )

u v u
u

x x y t
λ µ µ ρ

∂ ∂ ∂
+ + + ∇ =

∂ ∂ ∂ ∂
                                                                (4.1a) 

2 2 2
2

2 2
( )( )

u v v
v

y x y t
λ µ µ ρ

∂ ∂ ∂
+ + + ∇ =

∂ ∂ ∂ ∂
                                                                (4.1b) 

where 

ρ = mass density 

λ, µ = Lame’s constants 

u = displacement in x direction 

v = displacement in y direction 

2 2
2

2 2
x y

∂ ∂
∇ = +

∂ ∂
 

Consider a sub-layer taken from the unbounded strip in Figure 4.1 as shown in Figure 

4.2. The displacement vector is { , }Tu v=U . The nodal displacement vector 

1 1 2 2{ , , , }T
u v u v=V has u1 and v1 as displacements at the top and u2 and v2 at the bottom, 

respectively. The force vector is { }1 1 2 2, , ,
T

p q p q=T with p1, q1 as tractions at the top and 

p2, q2 at the bottom, respectively. 

 

 

 

                                                                                                                        

 

Figure 4.2 A sub-layer of finite element 
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Calling { , , }T

xx yy xyσ σ σ=σ and { , , }T

xx yy xyε ε ε=ε , the constitutive law is 

=σ Cε  with 

2 0

2 0

0 0

λ µ λ

λ λ µ

µ

+ 
 = +
 
  

C .  

The strains and displacements are connected by 

T
ε = L U with 

0

0

x y

y x

∂ ∂ 
 ∂ ∂
 =

∂ ∂ 
 ∂ ∂ 

L .  

Following Kausel’s formulation [23], the displacement field can be written as  

( , , ) ( ) ( , )x y t y x t=U N V                                                                                        (4.2) 

The matrix N is  

0 0

( )

0 0

h y y

h h
y

h y y

h h

− 
 

=  
− 

  

N  for linear elements and 

2 2 2

2 2 2

2 2 2

2 2 2

( )

1 3 2 0 4( ) 0 2 0

0 1 3 2 0 4( ) 0 2

y

x x x x x x

h h h h h h

x x x x x x

h h h h h h

=

 
− + − − + 

 
 

− + − − +  

N

  

for quadratic elements. 

Applying then the principle of virtual work to the finite element layer,  

* *

0

h

T T
dxδ δ= ∫V T ε σ                                                                                               (4.3) 

The superscript in Equation (4.3) stands for conjugate operation. The reason for 

introducing this more general form of virtual work is that the displacement ( , )x tV  can 

be treated as a complex number later on by assuming ( , ) ( , ) jkxx t k t e
−

=V V , which is 

equivalent to applying a Fourier transform to ( , )x tV  with respect to x. With the 



 

 

69 

conjugate operation, anti-symmetric first-order terms are produced. Then the mass and 

stiffness matrix can be derived as 

0

h

T
dyρ= ∫M N N                                                                                                    (4.4)  

 *

0

h

T T
dy= ∫K N L CLN                                                                                            (4.5) 

The stiffness matrix can be decomposed into three matrices associated with the 

second-order, first-order and constant term, respectively. After some algebraic 

manipulations, one obtains the modified equation of motion. 

2 2

2 1 02 2
x x t

∂ ∂ ∂
− + + + =

∂ ∂ ∂

V V V
A A A V M T                                                               (4.6) 

There is a first-order term in the equation. As stated in Chapter II, the first-order term 

does not indicate the existence of damping as it would with first order time derivatives. 

For linear elements, the matrices are listed below for ready reference. Note that A1 is 

anti-symmetric. 

 

2

( 2 ) ( 2 )
0 0

3 6

0 0
3 6

( 2 ) ( 2 )
0 0

6 3

0 0
6 3

h h

h h

h h

h h

λ µ λ µ

µ µ

λ µ λ µ

µ µ

+ + 
 
 
 
 

=  + +
 
 
 
 
 

A  
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1

0 0
2 2

0 0
2 2

0 0
2 2

0 0
2 2

µ λ µ λ

λ µ µ λ

µ λ λ µ

µ λ µ λ

− + 
 
 

− + 
 

=  + −
 −
 
 + −
− 
 

A  

 

0

0 0

2 2
0 0

0 0

2 2
0 0

G G

h h

G G

h h

G G

h h

G G

h h

λ λ

λ λ

 
− 

 
+ + −

 
=  
 −
 
 + +

− 
 

A  

 

0 0
3 6

0 0
3 6

0 0
6 3

0 0
6 3

h h

h h

h h

h h

ρ ρ

ρ ρ

ρ ρ

ρ ρ

 
 
 
 
 

=  
 
 
 
 
 

M  
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For quadratic elements, the matrices are 

 

2

2
0 0 0

15 15 30

(4 2 ) (2 ) (2 )
0 0 0

15 15 30

8
0 0 0

15 15 15

(2 ) (16 8 ) (2 )
0 0 0

15 15 15

2
0 0 0

30 15 15

(2 ) (2 ) (4 2 )
0 0 0

30 15 15

h h h

h h h

h h h

h h h

h h h

h h h

µ µ µ

λ µ λ µ λ µ

µ µ µ

λ µ λ µ λ µ

µ µ µ

λ µ λ µ λ µ

 
− 

 
+ + + −

 
 
 
 

=  + + +
 
 
 
− 
 

+ + + 
−  

A  

 

1

4( )
0 0 0

2 3 3

4( )
0 0 0

2 3 3

4( ) 4( )
0 0 0 0

3 3

4( ) 4( )
0 0 0 0

3 3

4( )
0 0 0

3 3 2

4( )
0 0 0

3 3 2

µ λ λ µ λ µ

λ µ λ µ λ µ

λ µ λ µ

λ µ λ µ

λ µ λ µ µ λ

λ µ λ µ λ µ

− + + 
− 

 
− + + −

 
 

+ + −
 

=  + +
 −
 
 + + −

− 
 

+ + − 
−  

A  
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0

7( 2 ) 8( 2 ) 2
0 0 0

3 3

7 8
0 0 0

3 3

8( 2 ) 16( 2 ) 8( 2 )
0 0 0

3 3 3

8 16 8
0 0 0

3 3 3

2 8( 2 ) 7( 2 )
0 0 0

3 3

8 7
0 0 0

3 3

h h h

h h h

h h h

h h h

h h h

h h h

λ µ λ µ λ µ

µ µ µ

λ µ λ µ λ µ

µ µ µ

λ µ λ µ λ µ

µ µ µ

+ + + 
− 

 
 −
 
 

+ + + − −
 

=  
 − −
 
 + + +

− 
 
 

−  

A  

 

2 2
0 0 0

15 15 15

2 2
0 0 0

15 15 15

2 8 2
0 0 0

15 15 15

2 8 2
0 0 0

15 15 15

2 2
0 0 0

15 15 15

2 2
0 0 0

15 15 15

h h h

h h h

h h h

h h h

h h h

h h h

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

 
− 

 
 −
 
 
 
 

=  
 
 
 
− 
 
 

−  

M  

 

As mentioned in the previous section, this approach may also be applied to three-

dimensional cases where the dimension in the longitudinal direction is infinite (Figure 

4.3). On the cross section, the displacement is approximated by a finite element 

expansion and in the longitudinal direction (z direction) the Fourier transform is used. 
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Figure 4.3 A three-dimensional problem 

 

The element matrices take the same form as the two dimensional case. In the reference 

coordinate, the general form of the matrices for the master element is  

( , ) ( , ) | |T

D

J d dρ ξ η ξ η ξ η= ∫∫M N N                                                                     (4.7) 

*( , ) ( , )T T

D

d dξ η ξ η ξ η= ∫∫K N L CLN                                                                     (4.8) 

In expressions (4.7) and (4.8), ξ and η are local coordinates, |J| is the Jacobian 

representing the transform from the global coordinates to the reference coordinates, N is 

the shape function matrix, and C represents the constitutive law.  

 

0 0 0

0 0 0

0 0 0

x z y

y z x

z y x

 ∂ ∂ ∂
 ∂ ∂ ∂ 
 ∂ ∂ ∂
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∂ ∂ ∂ 
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2 0 0 0

2 0 0 0

2 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

λ µ λ λ

λ λ µ λ

λ λ λ µ

µ

µ

µ

+ 
 + 
 +

=  
 
 
 
 

C  

 

The matrix N depends on the element type used. For linear quadrilateral elements,  

[ ]1 2 3 4( )y N N N N=N I I I I  ,  

where  

I = 3×3 identity matrix 

1

1
( 1)( 1)

4
N ξ η= − −  

2

1
( 1)( 1)

4
N ξ η= − + −  

3

1
( 1)( 1)

4
N ξ η= + +  

4

1
( 1)( 1)

4
N ξ η= − − +  

Therefore for linear quadrilateral elements, M and K are 12×12. For linear triangular 

elements, M and K are 9×9. 

 

4.3 The Complex Wave Number Shift 

 

Performing the Fourier transform with respect to the space coordinate x, one 

obtains the equation in the wave number-time domain  

2
2

2 1 0 2

( , )
( ) ( , ) ( , )

k t
k j k k t k t

t

−
− −∂

+ + + =
∂

V
A A A V M T                                             (4.9) 

where 

k = wave number in x direction 
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j = unit imaginary number 

−

V = Fourier transform of the displacement 

−

T = Fourier transform of the load 

The complex wave number is defined by  

'k k jη= +                                                                                                          (4.10) 

Substituting Equation (4.10) into Equation (4.9), one has 

 
2

2

2 1 0 2

( ' , )
[ ( ' ) ( ' ) ] ( ' , ) ( ' , )

k j t
k j j k j k j t k j t

t

η
η η η η

−
− −∂ −

− + − + − + = −
∂

V
A A A V M T    (4.11) 

To find the load in the shifted wave number domain, one needs to impose the decaying 

window in the space domain before performing the Fourier transform 

 ( ' , ) ( , ) x jkx
k j t x t e e dx

ηη
∞−

− −

−∞

− = ∫T T                                                                     (4.12) 

To find the displacement in the original system, one needs to impose the rising window 

after obtaining the displacement in the space domain. 

( , ) ( , )x jkx
x t e x t e dk

η
∞ −

−∞

= ∫V V                                                                                (4.13) 

Defining the stiffness matrix in the wave number domain  

2

2 1 0( ' ) ( ' )k j j k jη η= − + − +K A A A                                                                 (4.14) 

Equation (4.7) can be briefly written as 

2

2
t

−
− −∂

+ =
∂

V
K V M T                                                                                              (4.15) 

To solve Equation (4.15) with respect to time, an explicit finite difference scheme is 

implemented. The scheme is discussed in detail in Chapter II and will not be repeated 

here.  
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4.4 Numerical Examples 

 

4.4.1 Horizontal area load 

 

To validate the method, numerical experiments were carried out to assess the 

usefulness of the exponential window approach. In this sub-section, a uniform area load 

in the horizontal direction is applied to the infinite strip. As shown in Figure 4.4, the 

infinite strip is truncated so that the loading area is located at the center of the domain. 

As a comparison, the P-SV wave propagating in a domain of the same size as the 

truncated one is solved by the finite element method (Figure 4.4). L is the length of the 

domain.  

 

 

 

                                                                                                                                    

 

 

 

         (a) exponential window                                        (b) finite elements 

Figure 4.4 Absorbing boundary and finite element method settings 

 

The parameters are listed in Table 4.1. In the Fourier expansion approach, 65 

points are used in the x direction and 64 linear finite elements are used in the y direction. 

In the finite element approach, 32 second-order spectral finite elements are used in both 

x and y directions. In both cases, the number of nodes in the x and y directions are the 

same, which is 65. The load is a rectangular pulse running from 0.003s to 0.006s in time. 

 

 

 

Fixed 

boundary 

L Truncated 

boundary 

with the 

exponential 

window 

L 



 

 

77 

Table 4.1 Parameters used in the horizontal load case 

Length of the domain L 10.0m 

Width of the domain h 20.0m 

Length of the loading area a 1.25m 

Width of the loading area b 2.5m 

Mass density ρ 22.0 kg/m
3
 

P-wave velocity cp 20 m/s 

S-wave velocity cs 11.57 m/s 

Magnitude of the horizontal load q 1.0e+3 N/m
2
 

 

First, the horizontal and vertical displacements of the entire domain at 0.18s, 0.33s 

and 0.39s for both methods are shown in Figure 4.5.  It can be seen that at 0.18s, the 

wave has not reached the boundary so the two models give identical distribution pattern 

of the displacement fields. At 0.33s, the wave has already arrived at the boundary so 

reflected waves can be observed for the finite element solution while they are absent for 

the Fourier expansion case. The displacements at 0.39s confirm that the exponential 

window approach absorbs all incident waves. Notice that the vertical displacement is 

anti-symmetric with respect to the center of the loading area, as expected. 
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(a) Horizontal displacement at 0.18s 

 

 

(b) Vertical displacement at 0.18s 

 

Figure 4.5 Displacement fields at different times for the horizontal load 



 

 

79 

 

(c) Horizontal displacement at 0.33s 

 

 

(d) Vertical displacement at 0.33s 

 

Figure 4.5 Continued 
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(e) Horizontal displacement at 0.39s 

 

 

(f) Vertical displacement at 0.39s 

 

Figure 4.5 Continued 
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It is also interesting to compare the time history of the displacement at specific 

locations. Next, horizontal and vertical displacements at four different locations in the 

domain are compared for these two different methods. Figure 4.6 shows the position of 

the points. The coordinates of the points are listed in Table 4.2. The origin is located at 

the left lower corner of the truncated domain. The horizontal displacements of the four 

points and vertical displacements of Points C and D are compared. The vertical 

displacement at Points A and B are zero, due to the symmetric settings of the problem. 

The results are shown in Figure 4.7. Again, it demonstrates the effectiveness of the 

exponential window approach. In Figure 4.7, “EM” stands for “exponential window”. 

The results from the two different methods match well until the reflected wave arrives in 

the finite element method case. 

                                                                                                                         

 

 

 

 

 

 

 

 

Figure 4.6 Location of the four points 

 

Table 4.2 The coordinates of the four points 

 X coordinates (m) Y coordinates (m) 

Point A 0.156 10.0 

Point B 0.468 10.0 

Point C 0.156 11.248 

Point D 0.468 11.248 

O x 

y 

A B 

C D 
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(a) Horizontal displacement at Point A         (b) Horizontal displacement at Point B 

 

 

 

 

 

 

 

 

          (c) Horizontal displacement at Point C         (d) Vertical displacement at Point C 

          (e) Horizontal displacement at point D         (f) Vertical displacement at Point D 

 

  Figure 4.7 Time history of the displacements for the horizontal load 
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To further confirm the effectiveness of the approach, another test was performed. 

Consider a new truncated domain that is twice as long as the one in the above discussion 

(Figure 4.8). In this new truncated domain the wave will not reach the boundary at 0.33s. 

 

 

 

 

              

 

 

 

 

 

 

(a) Comparison of the horizontal displacements with different truncated sizes 

 

 

       

 

 

 

 

 

 

 

 

(b) Comparison of the vertical displacements with different truncated sizes 

Figure 4.8 Time history of the displacements for the horizontal load 
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Then the results from the two domains should be identical within the area of the original 

truncated domain. Figure 4.8 shows the results. One can see that the displacement field 

in the 10m×20m truncated domain is identical to the corresponding part in the 20m×20m 

truncated domain.  

 

4.4.2 Vertical area load 

 

The same truncated domain in Section 4.4.1 is studied with the load direction 

changed to vertical. All parameters are the same. The horizontal and vertical 

displacements of the entire domain at 0.18s, and 0.45s for both methods are shown in 

Figure 4.9.  At 0.18s, the wave is yet to reach the boundary so the two methods give the 

same pattern of the displacement field. At 0.45s, the wave has reached the boundary in 

the horizontal direction. Reflected waves can be observed in the finite element case.  

 

 

(a) Horizontal displacement at 0.18s 

 

Figure 4.9 Displacement fields at different times for the vertical load  
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(b) Vertical displacement at 0.18s 

 

 

(c) Horizontal displacement at 0.45s 

 

Figure 4.9 Continued  
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(d) Horizontal displacement at 0.45s 

Figure 4.9 Continued 

 

As in the previous subsection, the time history of the displacements at the four 

points is investigated. The horizontal displacement at Points A and B are zero so they are 

not listed here. The results are shown in Figure 4.10. Again, it demonstrates the 

effectiveness of the exponential window approach. 
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(a) Vertical displacement at Point A         (b) Vertical displacement at Point B 

 

 

 

 

 

 

 

 

(c) Horizontal displacement at Point C         (d) Vertical displacement at Point C 

 

 

 

 

 

 

 

 

(e) Horizontal displacement at Point D         (f) Vertical displacement at Point D 

 

Figure 4.10 Time history of the displacements for the vertical load 
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4.5 Line Loads on Free Surface 

 

In this section, a line load on the free surface of an unbounded soil layer is studied 

(Refer to Figure 4.11). The soil layer rests on top of rock, which is considered to be 

rigid. In this case, besides P and SV wave, there will be another type of wave, namely, 

the surface or Rayleigh wave. Rayleigh waves propagate along the free surface and can 

be observed as a strong motion in an earthquake because their decay is slower than that 

of P-wave or S-waves, which are body waves.   

 

 

 

 

 

 

 

 

Figure 4.11 Vertical line load on free surface 

 

The exponential window approach is applied in the horizontal direction. Figure 

4.12 shows the truncated domain and the dimensions. The truncated boundary is 

represented by the center lines. The parameters are listed in Table 4.3.  

 

 

 

 

 

 

 

Figure 4.12 Geometric dimensions 
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Table 4.3 Parameters used in the line load case 

Length of the domain L 20.0m 

Width of the domain H 10.0m 

Length of the loading area a 0.9375m 

Location of the loading area b 2.65625m 

Mass density ρ 22.0 kg/m
3
 

P-wave velocity cp 20 m/s 

S-wave velocity cs 11.57 m/s 

Magnitude of the horizontal load q 1.0e+6 N/m
2
 

 

 

The time history of the load is a rectangular pulse lasting from 3.0e-3s to 6.0e-3s. 

The truncated domain is meshed with 256 linear elements in the y direction and 256 

points in the x direction to perform the Fourier transform. As a comparison, the same 

domain is also approximated with 128 third-order spectral finite elements in both x and y 

directions. The total number of nodes and DOFs in both cases is the same. In the finite 

element case, the left and right boundaries are modeled as free surfaces. 

The vertical displacement field is recorded at 0.5s. As shown in Figure 4.13, P, SV 

and Rayleigh waves can be observed. These waves can be distinguished by their arrival 

times. From Figure 4.13, all types of waves in the finite element method are reflected 

when they reach the left boundary while they are all absorbed in the exponential window 

approach. Figure 4.14 shows the horizontal displacement field at 0.5s. Again, reflected 

waves can be observed in the results from the finite element method while all waves are 

absorbed in the exponential window approach.  
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(a) Results from the exponential window approach 

 

 

(b) Results from the finite element method 

 

Figure 4.13 Vertical displacement field of a line load at 0.5s 
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(a) Results from the exponential window approach 

 

(b) Results from the finite element method 

 

Figure 4.14 Horizontal displacement field of a line load at 0.5s 

 

Time histories of the displacements at specific locations were also obtained. The 

coordinates of points 1 and 2 in Figure 4.12 are (1.72, 9.53) and (1.72, 9.22), 

respectively. Horizontal and vertical displacements at these two points are shown in 

Figures 4.15 and 4.16. 
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(a) Vertical displacement at Point 1 

 

(b) Horizontal displacement at Point 1 

 

Figure 4.15 Displacements at Point 1 
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(a) Vertical displacement at Point 2 

 

(b) Horizontal displacement at Point 2 

 

Figure 4.16 Displacements at Point 2 
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In Figure 4.15 and 4.16, “EM” stands for “the exponential window approach”. To 

confirm the effectiveness of the exponential window, the finite element method was also 

applied to a wider truncated domain so that within the time range studied (0.45s in the 

figures), there are no reflected waves at Points 1 and 2. It can be seen that the results 

from the finite element method with the wider truncated domain, represented by solid 

lines, match very well the results from the exponential window approach, represented by 

dashed lines, for the horizontal displacements. For the vertical displacements, they 

match reasonably well with small errors. The results from the finite element solution 

with the original truncated domain, as represented by the dotted lines, start to deviate 

from the other two, at the time of arrival of the reflected waves.  

The difference shown in the vertical displacements between the exponential 

window approach and the finite element method needs to be further studied and the 

wiggles shown in the results from the finite element method are also a matter of interest. 

But these two issues are not the main concern here because the purpose was to explore 

the absorbing property of the exponential window method, which was validated through 

the examples. 
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CHAPTER V  

 

WAVES IN AN UNBOUNDED LAYER 

 

5.1 Overview 

 

 The topic in this chapter is 3D wave propagation in an unbounded layer (Figure 

5.1). The layer is infinite in the x and y directions but finite in the z direction. The 

boundary conditions on the top and bottom surface in the z direction are physical. For 

the case of a layer or layers of soil resting on rigid rock, the top surface would have 

specified tractions while the bottom surface is fixed. In Figure 5.1, the bottom surface is 

fixed while uniformly distributed loads are located in the shaded area on the top surface. 

 

 

Figure 5.1 The infinite layer 

 

The procedure followed is analogous to the one described for the 2D case in 

Chapter IV. The displacement field is approximated by a finite element expansion in the 

directions where the domain is finite and a modified equation of motion is derived. In 

this case, the finite element expansion is applied in the z direction. The layer is infinitely 

long in the x and y directions so it is truncated in these two directions in which the 
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exponential window is applied. The 2D case in Chapter IV could be applied to certain 

types of 3D problems. The problem addressed in this chapter is different from the one in 

Chapter IV in that it employs a 2D Fourier transform in the x-y plane. Applications can 

be found in soil-structure interaction problems where soil is treated as a layered medium. 

The procedure may also find applications in layered composite materials where a 

number of layers are bonded together to create desired mechanical properties.  

 

5.2 Modified Equation of Motion  

 

The equations of motion for general 3D wave propagation are  

2 2 2 2
2

2 2
( )( )

x

u v w u
u f

x x y x z t
λ µ µ ρ

∂ ∂ ∂ ∂
+ + + + ∇ + =

∂ ∂ ∂ ∂ ∂ ∂
                                              (5.1a) 

2 2 2 2
2

2 2
( )( )

y

u v w v
v f

y x y y z t
λ µ µ ρ

∂ ∂ ∂ ∂
+ + + + ∇ + =

∂ ∂ ∂ ∂ ∂ ∂
                                              (5.1b) 

2 2 2 2
2

2 2
( )( )

z

u v w w
w f

z x z y z t
λ µ µ ρ

∂ ∂ ∂ ∂
+ + + + ∇ + =

∂ ∂ ∂ ∂ ∂ ∂
                                             (5.1c) 

where 

ρ = mass density 

λ, and µ = Lame constants 

u, v, and w = displacements in x, y and z directions, respectively 

fx, fy, and fz = body force in x, y and z directions, respectively 

2 2 2
2

2 2 2
x y z

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
, the Laplace operator 

Consider a sub-layer taken from the unbounded layer in Figure 5.1. The displacement 

vector is { , , }Tu v w=U . The nodal displacement vector is 1 1 1 2 2 2{ , , , , , }T
u v w u v w=V with 

u1, v1 and w1 as displacements at the top and u2, v2 and w2 at the bottom, respectively. 

The force vector is { }1 1 1 2 2 2, , , , ,
T

p q r p q r=T with p1, q1, and r1, as tractions at the top and 

p2, q2 and r1 at the bottom, respectively (Figure 5.2.) 
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Figure 5.2 Definition of displacements and forces 

 

Calling { , , , , , }T

xx yy zz yz xz xyσ σ σ σ σ σ=σ  and { , , , , , }T

xx yy zz yz xz xyε ε ε ε ε ε=ε , the general 

Hooke’s law for the isotropic material is 

=σ Cε  with 

2 0 0 0

2 0 0 0

2 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

λ µ λ λ

λ λ µ λ

λ λ λ µ

µ

µ

µ

+ 
 + 
 +

=  
 
 
 
 

C .  

The strains and displacements are connected by 

T=ε L U with 

0 0 0

0 0 0

0 0 0

x z y

y z x

z y x

 ∂ ∂ ∂
 ∂ ∂ ∂
 

∂ ∂ ∂ 
=  ∂ ∂ ∂
 

∂ ∂ ∂ 
 ∂ ∂ ∂ 

L . 

The displacement field can be written as  

( , , , ) ( ) ( , , )x y z t z x y t=U N V                                                                                 (5.2) 

The matrix N is 

v1 

u1 

w1 

O 

v2 

u2 

w2 

O p2 

q2 r2 

O 

O 
p1 

q1 r1 x 

y 

z 

O 
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0 0

( )

0 0

h z z

h h
y

h z z

h h

− 
 

=  
− 

  

N  for linear elements and 

 

Applying the principle of virtual work to the finite element layer, 

* *

0

h

T T
dzδ δ= ∫V T ε σ                                                                                               (5.3) 

The superscript in Equation (5.3) stands for conjugate operation. The reason for 

introducing this more general form of virtual work is the same as in the 2D case in 

Chapter IV. With the conjugate operation, anti-symmetric first-order terms are created. 

The mass and stiffness matrices are 

0

h

T
dzρ= ∫M N N                                                                                                     (5.4)  

 *

0

h

T T
dz= ∫K N L CLN                                                                                            (5.5) 

The stiffness matrix can be decomposed into matrices associated with the second-

order, first-order and constant terms, respectively. After some algebraic manipulations, 

the modified equation of motion can be derived as the following. 

2 2 2 2

xx xy yy x y 02 2 2
x x y y x y t

∂ ∂ ∂ ∂ ∂ ∂
− − − + + + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂

V V V V V V
A A A A A A V M T            (5.6) 

There are two first-order terms in the equation. As stated in Chapter II, these first-order 

terms do not indicate the existence of damping. For linear elements, the matrices are 

listed below for ready reference. Note that Ax and Ay are anti-symmetric. 
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( 2 ) ( 2 )
0 0 0 0

3 6

0 0 0 0
3 6

0 0 0 0
3 6

( 2 ) ( 2 )
0 0 0 0

3 6

0 0 0 0
6 3
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6 3
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h h

h h

h h

h h

h h

h h

λ µ λ µ

µ µ

µ µ

λ µ λ µ

µ µ

µ µ

+ + 
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 
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 
 
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3 6
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 
  
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0 0 0 0
3 6
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3 6

0 0 0 0
6 3
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6 3

0 0 0 0
6 3

xx
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2 2

0 0 0 0 0 0

0 0 0 0
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5.3 The Complex Wave Number Shift 

 

Performing the Fourier transform with respect to the space coordinates x and y, one 

obtains the equation in the wave number-time domain  

2
2 2

xx yy xy x y 0 2

( , , )
( ) ( , , ) ( , , )

k l t
k l kl jk jl k l t k l t

t

−
− −∂

+ + + + + + =
∂

V
A A A A A A V M T                                     

                                                                                                                              (5.7) 

where 

k = wave number in the x direction 

l = wave number in the y direction 

j = unit imaginary number 1−  

−

V = Fourier transform of the displacement 

−

T = Fourier transform of the load 

The complex wave number is defined by  

'k k jη= +                                                                                                          (5.8a) 

'l l jµ= +                                                                                                           (5.8b) 

Substituting Equation (5.8) into Equation (5.7), one has 

 

2 2

xx yy xy x y

2

0 2

[( ' ) ( ' ) ( ' )( ' ) ( ' ) ( ' )

( ' , ' , )
] ( ' , ' , ) ( ' , ' , )

k j l j k j l j j k j j l j

k j l j t
k j l j t k j l j t

t

η µ η µ η µ

η µ
η µ η µ

−
− −

− + − + − − + − + −

∂ − −
+ − − + = − −

∂

A A A A A

V
A V M T

              

                                                                                                                              (5.9) 

To find the load in the shifted wave number domain, one needs to impose the decaying 

window in the space domain before performing the Fourier transform 

 ( )( ' , ' , ) ( , ) x y j kx ly
k j l j t x t e e dxdy

η µη µ
∞ ∞−

− − − +

−∞ −∞

− − = ∫ ∫T T                                        (5.10) 

To find the displacement in the original system, one needs to impose the rising window 

after obtaining the displacement in the space domain. 
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( )( , , ) ( , , )x y j kx y
x y t e x y t e dkdl

η µ µ
∞ ∞ −

+ +

−∞ −∞

= ∫ ∫V V                                                       (5.11) 

Defining the stiffness matrix in the wave number domain  

2 2

xx yy xy x

y 0

( ' ) ( ' ) ( ' )( ' ) ( ' )

( ' )

k j l j k j l j j k j

j l j

η µ η µ η

µ

= − + − + − − + −

+ − +

K A A A A

A A
          (5.12)                                                        

Equation (5.7) can be briefly written as 

2

2
t

−
− −∂

+ =
∂

V
K V M T                                                                                              (5.13) 

To solve Equation (5.13) with respect to time, an explicit finite difference scheme was 

implemented. The scheme was described in detail in Chapter II and is not repeated here. 

  

5.4 A Numerical Example 

 

To validate the method, a numerical experiment is carried out to demonstrate the 

effectiveness of the exponential window. The unbounded layer in Figure 5.1 is truncated 

so that the loading area is located at the center of the truncated domain (Figure 5.3). The 

time history of the load is a rectangular pulse lasting from 0.003s to 0.006s. 

 

                                                                                                                                    

 

 

 

 

 

     

                 

Figure 5.3 Absorbing boundary and finite element method settings 
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The parameters are listed in Table 5.1.  Sixty four points are used in the x and y 

directions and 32 linear finite elements are used in the z direction. The total number of 

nodes is 64*64*33 135168= . The total number of DOFs is 3*135168 405504= . 

Figures 5.4 and 5.5 show the displacement fields at the top surface in the x and y 

directions at 0.45s. 

 

Table 5.1 Parameters used in the 3D numerical example 

Length of the domain L 10.0m 

Width of the domain W 10.0m 

Thickness of the domain h 10.0m 

Length of the loading area a 1.094m 

Width of the loading area b 1.094m 

Mass density ρ 22.0 kg/m
3
 

P-wave velocity cp 20.0 m/s 

S-wave velocity cs 10.0 m/s 

Magnitude of the horizontal load q 1.0e+3 N/m
2
 

 

              (a) With exponential window                     (b) Without exponential window    

Figure 5.4 Displacements on the top surface in the x direction at 0.45s 
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               (a) With exponential window                    (b) Without exponential window      

          

Figure 5.5 Displacements on the top surface in the y direction at 0.45s 

 

Figures 5.4 and 5.5 show that there are no reflected waves when the exponential window 

is employed. The displacement in the y direction is anti-symmetric as expected. As a 

comparison, a larger truncated domain of 16m by 16m was studied. The number of nodes 

was increased accordingly so that the size of the elements remained the same. Other 

parameters were also the same. The displacements at 0.45s are shown in Figure 5.6. At 

this time, the waves have not reached the boundaries. It can be seen that the pattern in 

Figure 5.6 matches very well the pattern with the exponential window in Figures 5.4 and 

5.5. This indicates that the exponential window helps to absorb the waves on the 

truncated boundaries very well. 
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(a) Displacement in the x direction 

 

(b) Displacement in the y direction 

 

Figure 5.6 Displacements in a larger truncated domain at 0.45s 
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The time histories of displacements at two points located on the top surface and on 

the truncated boundary were also recorded. The position of the two points is shown in 

Figure 5.7. 0.625a b m= = .  

                                                                                                                                              

 

 

 

 

 

 

 

Figure 5.7 Location of Points A and B 

 

Figure 5.8 shows the displacement histories. The displacements obtained with and 

without the exponential window are compared with the displacement in the larger 

truncated domain. The result with the exponential window matches very well that with 

the larger truncate domain. The result without the exponential window, however, 

deviates from the other two, illustrating the effective absorption on the boundary with 

the exponential window. 

 

(a) Displacement in the x direction at Point A 

Figure 5.8 Displacements with and without the exponential window  

B 

A 

a 
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(b) Displacement in the x direction at Point B 

 

(c) Displacement in the y direction at Point B 

 

Figure 5.8 Continued 
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CHAPTER VI  

 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Summary 

 

In this dissertation, the application of the exponential window method to solve 

wave propagation problems in an unbounded medium has been investigated. Wave 

propagation in unbounded media is a topic of both theoretical and practical significance 

with a wide range of applications in seismology, oceanography, and various engineering 

disciplines. Many researchers have studied this topic and developed solution approaches 

with a variety of underlying mechanisms. The purpose of this study was to investigate an 

efficient alternative based on the use of the exponential window method.  

The idea for the approach is borrowed from the exponential window method 

applied in the time domain when frequency domain solutions using the Fast Fourier 

transform are employed to solve elasto-dynamic problems. In a problem with a domain 

that is infinite in some or all directions, the Fourier transform is performed along with 

the exponential window in those directions to create an open boundary. For the 

directions with finite dimensions, the problem can be solved either analytically or by 

numerical discretizations such as the finite element method. In the time domain, the 

central difference formula was adopted.   

The procedure involves three steps, similar to those of the exponential window in 

the time domain: imposing the spatial exponential window to the input force, performing 

a complex wave number shift and imposing the inverse spatial window to the resulting 

displacement. The wave number shift in the dynamic stiffness matrix is equivalent to 

introducing some damping into the system so that the wave motion is damped out before 

it reaches the boundary. The purpose of the inverse window is to retrieve the 

displacement in the original system.  
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The proposed method implemented in the study is efficient due to a couple of 

reasons. First, it employs Fourier transform in the directions where the domain is 

unbounded and the Fast Fourier Transform is more efficient than the finite element 

expansion. This advantage is inherent from the use of the Thin Layer Method. Second, in 

the time domain, the central difference method is combined with a lumped mass matrix, 

leading to a highly efficient sparse storage and computational approach. The problem is 

thus solved in the time-wave number domain. Solving the problem in the time-wave 

number domain provides an alternative that complements the original Thin Layer 

Method, in the frequency-wave number domain. 

The proposed approach was applied to one-dimensional, two-dimensional and 

three-dimensional problems to test its effectiveness. All of these problems have real 

applications.  

 

6.2 Conclusions 

 

In the one-dimensional case, the steady state and transient response of an infinite 

beam on elastic foundation were studied. In the steady state case, a sinusoidal point load 

was applied to the beam. Results from the exponential window approach matched very 

well the analytical solutions for an infinitely long beam with different truncated lengths 

and excitation frequencies below and above the threshold frequency. In the transient 

response case, a point load with the time history of a triangular pulse was imposed on the 

beam. Different pulse widths, which reflect different frequency contents of the 

excitation, were considered to test the effectiveness of the approach. Within the time 

duration studied, the approach showed absorption of the waves at the end of the 

truncated beam while a solution obtained with a finite element discretization of the finite 

domain showed reflections. There was a problem, however, with waves reflected from 

the other end.  

In the two-dimensional case, the propagation of plane SV and P waves in an 

infinitely long strip was studied. Different types of loads were considered. In the case of 
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a uniformly distributed area load, both horizontal and vertical loads were investigated. 

From the displacement fields at specific instants and the time history of displacements at 

selected locations, it could be seen that waves were effectively absorbed at the truncated 

boundary with the exponential window, while in the results obtained with a finite 

element model, reflected waves were generated at the boundaries. In the case of a line 

load on the top boundary, the same observations were made. It was also observed that 

both body and surface waves were effectively absorbed with the exponential window 

approach, an improvement over some of the previous absorbing boundaries where 

inadequate absorption of surface waves was reported. It is worth noting this two-

dimensional model can be applied to some three-dimensional problems with a dominant 

dimension in one direction. 

Finally, the wave propagation in an unbounded layer was studied as a three-

dimensional application of the proposed approach. In this case, a two-dimensional 

Fourier transform was required, preventing the applicability of the conjugate symmetry 

property when the complex wave number shift is performed (which is the case in the one 

and two-dimensional models). The dynamic stiffness must be calculated for all the wave 

numbers while in the previous studies, only those wave numbers up to the Nyquist wave 

number needed to be calculated. Again, the results showed effective absorption at the 

truncated boundary.  

 

6.3 Recommendations for Future Work 

 

An unresolved issue exists for all one-, two- and three-dimensional cases, which 

leads to a major future effort. In all cases, when the transient response was considered, 

the exponential window helped to absorb wave propagation in one direction on the 

truncated boundary but not on the other. On the boundary in the other direction, the 

exponential window resulted in oscillations that were reflected back into the truncated 

domain to“ruin” the correct solution after some time. This inadequacy manifests itself as 

unstable oscillations in the solution after a certain period of time. Although this can be 
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fixed by increasing the size of the truncated domain in one direction in accordance with 

the desired time duration, a more efficient solution is yet to be found. There is no clear 

answer to the question at this time. One potential solution could be to combine the 

exponential window approach with the one-way wave equation, which is the underlying 

mechanism of many local absorbing boundary conditions. If a model can be established 

so that it allows only wave propagation in one direction but not the opposite, from the 

discussion above, it is to be expected that the exponential window approach could work 

perfectly.      
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