

AN OBJECT-ORIENTED FRAMEWORK TO ORGANIZE GENOMIC DATA

A Dissertation

by

NING WEI

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2008

Major Subject: Computer Science

AN OBJECT-ORIENTED FRAMEWORK TO ORGANIZE GENOMIC DATA

A Dissertation

by

NING WEI

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Co-Chairs of Committee, David Adelson

 Michael Thon

Committee Members, Christine Elsik

 Richard Furuta

 Sing-Hoi Sze

Head of Department, Valerie E. Taylor

May 2008

Major Subject: Computer Science

 iii

ABSTRACT

An Object-Oriented Framework to Organize Genomic Data. (May 2008)

Ning Wei, B.E., Tsinghua University; M.S., University of Oklahoma

 Co-Chairs of Advisory Committee: Dr. David Adelson

 Dr. Michael Thon

 Bioinformatics resources should provide simple and flexible support for

genomics research. A huge amount of gene mapping data, micro-array expression data,

expressed sequence tags (EST), BAC sequence data and genome sequence data are

already, or will soon be available for a number of livestock species. These species will

have different requirements compared to typical biomedical model organisms and will

need an informatics framework to deal with the data. In term of exploring complex-

intertwined genomic data, the way to organize them will be addressed in this study.

Therefore, we investigated two issues in this study: one is an independent informatics

framework including both back end and front end; another is how an informatics

framework simplifies the user interface to explore data. We have developed a

fundamental informatics framework that makes it easy to organize and manipulate the

complex relations between genomic data, and allow for query results to be presented via

a user friendly web interface. A genome object-oriented framework (GOOF) was

proposed with object-oriented Java technology and is independent of any database

system. This framework seamlessly links the database system and web presentation

components. The data models of GOOF collect the data relationships in order to provide

users with access to relations across different types of data, meaning that users avoid

 iv

constructing queries within the interface layer. Moreover, the module-based interface

provided by GOOF could allow different users to access data in different interfaces and

ways. In another words, GOOF not only gives a whole solution to informatics

infrastructure, but also simplifies the organization of data modeling and presentation. In

order to be a fast development solution, GOOF provides an automatic code engine by

using meta-programming facilities in Java, which could allow users to generate a large

amount of routine program codes. Moreover, the pre-built data layer in GOOF

connecting with Chado simplifies the process to manage genomic data in the Chado

schema. In summary, we studied the way to model genomic data into an informatics

framework, a one-stop approach, to organize the data and addressed how GOOF

constructs a bioinformatics infrastructure for users to access genomic data.

 v

ACKNOWLEDGEMENTS

First of all, I profoundly thank my father, Xuehua Wei, and my mother, Xiaoping

Di, who have been a tower of strength all throughout my education. This work is entirely

dedicated to both of them.

I would like to express my sincere and heartfelt gratitude to my committee

chairs, Dr. Adelson and Dr. Thon, for guiding my research efforts. They guided me on

various ideas in computational biology and the GOOF. I am very grateful to them for

their encouragement, kindness, and support during my research work.

I would also like to thank my committee members, Dr. Elsik, Dr. Furuta, and Dr.

Sze, for their guidance and support throughout the course of this research. Thanks also

go to my friends and colleagues Jonathan and Hanni for making my time at Texas A&M

University a great experience. Exchanging research ideas and discussing problems with

them have enriched my knowledge and brought me important ideas for my research

work. It was a pleasant experience to work with them.

 vi

TABLE OF CONTENTS

 Page

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... v

TABLE OF CONTENTS .. vi

LIST OF FIGURES ... ix

1 INTRODUCTION .. 1

1.1 The Problem Statement .. 1

1.2 Introduction of an Object-Oriented Framework ... 5
1.3 Dissertation Organization ... 6

2 BACKGROUND .. 8

2.1 The Object-Oriented Structure ... 8
2.2 The Middleware Approach ... 12

2.3 Meta-Programming .. 15
2.4 User Interfaces .. 18

3 GENOME OBJECT-ORIENTED FRAMEWORK ... 21

3.1 The Overall Structure ... 21

3.2 The MVC Design ... 28
3.3 Managing Application Development ... 30

3.4 The Data Model Layer ... 33
3.5 The Data Transaction Layer ... 42
3.6 The Web Presentation Layer .. 46
3.7 Managing User Interfaces .. 56

3.8 GOOF and Chado ... 59
3.9 Meta-programming Utility ... 62
3.10 Summary .. 66

4 EQUINEBASE ... 69

4.1 Introduction .. 69
4.2 Structure and Content ... 70

 vii

Page

4.3 The Search Schema .. 73
4.4 Summary .. 77

5 OMIMBASE .. 79

5.1 Introduction .. 79
5.2 Structure and Content ... 79
5.3 The Search Schema .. 82
5.4 Summary .. 85

6 EVALUATION .. 87

6.1 Improvements ... 87
6.2 Comparison of Different Frameworks ... 88

6.3 Evaluation of User Feedback ... 90

7 CONCLUSIONS AND FUTURE WORK .. 101

7.1 Summary and Conclusions ... 101

7.2 Directions for Future Work .. 103

REFERENCES ... 106

APPENDIX A: INSTALLATION OF GOOF ... 114

APPENDIX B: DATA MODEL LAYER - Contig.java .. 118

APPENDIX C: DATA MODEL LAYER - ContigDao.java ... 125

APPENDIX D: DATA MODEL LAYER - ContigDaoHibernate.java 126

APPENDIX E: DATA MODEL LAYER - FeatureDaoHibernate.java......................... 128

APPENDIX F: DATA MODEL LAYER - applicationContext-hibernate.xml 131

APPENDIX G: DATA TRANSACTION LAYER - ContigManager.java 133

APPENDIX H: DATA TRANSACTION LAYER - ContigMangerImpl.java 134

APPENDIX I: DATA TRANSACTION LAYER - applicationContext-service.xml ... 136

APPENDIX J: WEB PRESENTATION LAYER - ContigAction.java 139

APPENDIX K: WEB PRESENTATION LAYER - ContigView.jsp 143

 viii

Page

APPENDIX L: WEB PRESENTATION LAYER - ContigSearchAnno.jsp 146

APPENDIX M: WEB PRESENTATION LAYER - ContigList.jsp 147

APPENDIX N: WEB PRESENTATION LAYER - xwork.xml 148

APPENDIX O: WEB PRESENTATION LAYER - action-servlet.xml 153

APPENDIX P: WEB PRESENTATION LAYER - menu-config.xml 155

APPENDIX Q: GOOF DEVELOPERS’ SURVEY .. 157

APPENDIX R: EQUINEBASE END USERS’ SURVEY .. 162

VITA .. 168

 ix

LIST OF FIGURES

 Page

Figure 1 GOOF database settings .. 23

Figure 2 Java libraries configuration ... 24

Figure 3 The structure of folders in GOOF ... 26

Figure 4 The MVC structure of GOOF ... 28

Figure 5 The Apache Ant build reference ... 31

Figure 6 The Ant build task definitions .. 32

Figure 7 The data object "Contig" example .. 34

Figure 8 The Hibernate persistent mapping file example ... 35

Figure 9 The Hibernate data objects mapping configuration .. 36

Figure 10 Example of the interface of a data object ... 38

Figure 11 Example of a Hibernate query based on a template 39

Figure 12 Example of a Hibernate criteria query .. 41

Figure 13 Example of a data transaction manager interface ... 43

Figure 14 Example of the implementation of a data transaction manager 44

Figure 15 Configuration of the data transaction manager ... 45

Figure 16 Web action .. 48

Figure 17 Web action configuration .. 49

Figure 18 Web action and view model configuration ... 50

Figure 19 Web interface component definition ... 51

file:///C:\Documents%20and%20Settings\Edward\Desktop\dissertation\wei_phd_dissertation_goof_Endnote_PageTable_04012008.doc%23_Toc194830159

 x

Page

Figure 20 JSP search view .. 52

Figure 21 JSP list view .. 53

Figure 22 JSP detail view .. 54

Figure 23 Gbrowse detail view JSP .. 55

Figure 24 Menu definition ... 58

Figure 25 Data source definition of Chado ... 60

Figure 26 Chado data source manager .. 61

Figure 27 Dao Hibernation template for meta-programming 64

Figure 28 Meta-programming Ant build task definition ... 65

Figure 29 The structure of EquineBase ... 71

Figure 30 EquineBase login interface ... 72

Figure 31 EquineBase data detail view ... 73

Figure 32 EquineBase basic search schema .. 74

Figure 33 EquineBase search interface ... 76

Figure 34 The results of a gene description search in EquineBase 77

Figure 35 The structure of OMIMBase ... 80

Figure 36 OMIMBase menu in EquineBase ... 81

Figure 37 OMIMBase search interface ... 83

Figure 38 OMIMBase search results list ... 84

Figure 39 OMIMBase OMIM detail view .. 85

Figure 40 Developers' profiles in GOOF survey ... 93

 xi

Page

Figure 41 Developers' positive responses to the advantages of GOOF in the survey ... 94

Figure 42 Developers' responses to the shortcomings of GOOF in the survey............. 94

Figure 43 Users' profiles in EquineBase survey .. 97

Figure 44 The summary of the user survey ... 98

 1

1 INTRODUCTION

1.1 The Problem Statement

An informatics system should provide simple and flexible support for complex data

management. Large amounts of genomic data are already routinely generated by high

throughput biological technologies. There is a need for an informatics framework to deal

with the ever increasing volume data. In order to explore and analyze complex and

intertwined genomic data, one has to understand how to organize data efficiently.

Several previous studies proposed different solutions for comprehensive informatics

support of genome data management. We will address some current issues that impinge

on the available informatics solutions. First of all, some informatics systems are only

back-end systems, such as Chado [1] and the Genomics Unified Schema (GUS). Only

GMOD [2] releases the web front-end system (Turnkey), which is the web end interface

of Chado. However, the back end and the GUI are not distributed as a single package

and are not yet fully integrated. This is because there is still a gap between the back-end

schema Chado and Turnkey. Moreover, it is difficult to customize the Turnkey interface

to fit the back-end schema, since every group does not deploy the whole Chado schema.

A major part of GMOD is an integrated solution for genome data management and a

web interface, such as Gbrowse. However, Gbrowse is not expandable and has only

This dissertation follows the style of BMC Bioinformatics.

 2

limited functions, which are used for visualizing genome features, even though the GFF3

data format supports more alternatives for data presentation. Deploying Gbrowse is a

relatively easy solution, but users have to adopt the Gbrowse fixed back-end schema and

one unified Gbrowse view interface. Other informatics systems, which integrate both

back and front ends, only target certain types of genome data. For instance, the

Longhorn Array Database (LAD) [3] and Stanford Microarray Database (SMD) [4] only

manage microarray data. In other words, currently available systems do not provide a

single approach to organize genomic data. Furthermore, current informatics systems do

not support flexible user interfaces. They leave the problem of exploring data

relationships to users by providing query interfaces. However, by definition exploring

genomic data requires users to search new information before understanding the

complex relationships in the data. In particular, where one type of data links across many

different related types of genomic data, it is difficult for users to construct query

interfaces which can be quite complex. These problems are due to the lack of a flexible

informatics system structure.

Many bioinformatics systems were individually constructed for either a certain

set of function requirements or a particular type of genomic data. The current

methodology to approach genomic data management problem does not provide a generic

solution. It is neither efficient nor productive. For most bioinformatics system projects,

system developers have to design a database schema for their particular genomic data,

construct data mining procedures, build a friendly user interface and then connect each

component into one system. However, developers might have to re-engineer the current

 3

system when facing with new update data or new required functions. This approach

increases the time and cost for biology and biomedical researchers to study and discover

knowledge from raw genomic data.

Another big challenge is how computer scientists model a system on a large

amount of unstructured data. Even though there are new methodologies in programming

language, data modeling and informatics research areas, computer science researchers

did not propose a comprehensive from the back end to the front end informatics

approach for unstructured data because their research goals were to provide the

flexibility and general approach on each individual component, such as database, data

transaction and interface. Most methodologies for data transactions, user interface

construction were proposed and employed on the pre-structured data set. That leaves

developers or end users with the difficult task of modeling their data set. Since there is

no systematic approach to model unstructured data, any change in the data model could

require re-engineering a higher level structure, such as data transaction and interface.

Moreover, it is difficult for computer science researchers to design a systematic method

of modeling data because most types of data in an informatics system do not share

common characteristics to build an integrated approach. This is why this problem space

is sparsely populated in computer science. However, in any bioinformatics system, one

important characteristic of genomic data is that each genomic feature can be mapped on

a reference genome. This means there is a foundation on top of which one could build a

systematic approach to model unstructured data and then propose an integrated

bioinformatics framework. As far as we know, there is no study that proposes a

 4

methodology to construct a bioinformatics system by making use of that characteristic of

genomic data. In another aspect of constructing an informatics system, computer science

researchers focus more on how to efficiently construct an interface in an approach, but

do not include user management issues in their approaches. That is because they do not

consider that an interface component should be integrated as an essential part of an

informatics system. A bioinformatics system manages not only genomic data, but also

users. How to integrate genomic data and user management is another challenge for a

bioinformatics framework. In this study, we will present how we model the unstructured

biological data and propose a systematic bioinformatics framework, which will solve a

generic bioinformatics system construction problem. Therefore, there is a strong need to

develop an easy to implement and flexible informatics framework, which integrates both

data modeling and presentation as a way to simplify genome data management and user

interface construction.

In order to solve the above research issues, we conducted a methodology research

to reach the following goals.

 Develop a generic bioinformatics framework.

 Define an easy approach to describe and expand data schema.

 Be independent on any platform and database.

 Develop an interface to connect Chado schema.

 Reduce the cost of re-engineering a bioinformatics system.

 User driven interface.

This study aims to address this pressing and significant need by proposing an

 5

integrated informatics framework for genomic data.

1.2 Introduction of an Object-Oriented Framework

A standard way to deal with the above issues is to use object-oriented technology

to develop a complex and flexible system that can easily describe genomic data without

any knowledge of relational databases [5]. Even when faced with different organisms

and diverse types of genomic data, object-oriented data modeling simplifies the process

of data modeling and presentation in order to provide users with a straightforward way

to explore genomic data.

An object based framework should link the database system and the web

presentation components [6]. Object-oriented data modeling collects the data

relationships and provides users with access to relationships across different types of

data. This is a critical part of an object-oriented based framework and simplifies the

process of querying data. A module-based interface driven by an object-oriented

structure could allow different users to access data using different interfaces and in

different ways [7]. Object-oriented entities also provide a meta-programming

environment, which could allow users to rapidly build a large informatics application.

At present there is no pure object-oriented genome informatics framework

available. Furthermore, there is no integrated genome informatics system either. The

goal of this study is to provide a flexible and expandable informatics framework to

organize genomic data. Because of the underlying object-oriented architecture and the

application to genomics we will call it the Genome Object-Oriented Framework

(GOOF).

 6

GOOF not only provides a whole genomic informatics framework, but also has

several advanced features, including the ability to manage multiple data sources, a meta-

programming utility and the built-in connection with Chado. In order to demonstrate the

flexibility and capabilities of GOOF, we have built EquineBase and OMIMBase to

manage Equine genome data and OMIM data [8] [9] [10]. EquineBase and OMIMBase

are the first comprehensive informatics applications to manage Equine genome data and

OMIM data. In addition, the development of EquineBase and OMIMBase provide an

opportunity to evaluate and improve the structure and functions of GOOF. This

dissertation will present the issues and research priorities relevant to a genome data

management informatics framework.

1.3 Dissertation Organization

The rest of this dissertation is organized as follows. In section 2, we review

current methodologies to build an informatics framework, including object-oriented

technology, database systems and meta-programming. We will also examine several

current successful informatics frameworks for genome data management and discuss the

reasons why we have chosen to build an object-oriented framework. Section 3 proposes

a genome object-oriented framework, GOOF, which is a generic and flexible framework

for solving the issues we discussed above. We will describe the details of the

methodology and structure of GOOF, how to use GOOF to build a customized

informatics system and the front end user interface for a GOOF application. In order to

demonstrate the potential of GOOF, section 4 and 5 will present the schemas and

implementation of EquineBase and OMIMBase. In section 6, we will further evaluate

 7

the usefulness of GOOF after studying EquineBase and OMIMBase. Finally, section 7

will present our conclusions and the future directions of our genome informatics

framework.

 8

2 BACKGROUND

2.1 The Object-Oriented Structure

The real world consists of different types of objects and events. Object-oriented

design is the best fit for human beings to translate any situation into a problem which

can be solved by a computer [7] [6]. Object-oriented design is a programming paradigm

that began in the late 60's as software programs became more and more complex. The

idea behind the approach was to build software systems by modeling them based on the

real-world objects that they were trying to represent. For example, banking systems

would likely contain customer objects, account objects, etc. Today, object-oriented

design has been widely adopted around the world. When done properly, the approach

leads to simpler, concrete, robust, flexible and modular software. When done badly, the

results can be disastrous. At the heart of great design are a set of principles and patterns.

Design principles form the foundation of good object-oriented design and design

patterns provide general repeatable solutions for common software problems [11]. To

build a bioinformatics infrastructure, we need to select a good design patterns to address

those issues in the section 1.

An object-oriented programming language (also called an OO language) is one

that allows or encourages, to some degree, object-oriented programming techniques such

as encapsulation, inheritance, modularity, and polymorphism. It is the foundation of OO

design. To address a flexible bioinformatics system, we need to study different OO

languages to build the good foundation. Pure object-oriented computer languages, such

 9

as Java, C#, C++, Smalltalk and Ada 2005, are the way to design and implement such an

OO solution. Smalltalk and Ada 2005 do not have a solid library to build database

connection and web interface. C++ is not flexible across different platforms, because

C++ requires different compilers and supporting libraries on different platforms. C# is

intended to be a simple, modern, general-purpose, object-oriented programming

language, which developed by Microsoft as part of the .NET framework with a particular

emphasis on simplification. C# comes with several comprehensive libraries for database,

web application development. However, it is more stable and robust on Windows

system. And most scientific applications run on Mac and Linux systems, C# could bring

more problems for various platforms. Java is an object-oriented programming language,

which allows the same program to be executed on multiple operating systems. One

characteristic of Java, platform independence, is that programs written in the Java

language must run similarly on any supported hardware/operating-system platform. One

should be able to write a program once, compile it once, and run it anywhere. That is one

of several reasons why we decided to build a generic genome informatics system with

Java. In [12] [13], J2EE was derived from Java to develop any object-oriented system.

Biological technologies, such as DNA sequencing, proteomic mass-spectrometry,

protein arrays and microarray, generate too much data for biologists to digest and

manage. In order to assist biologists with the significant amount of genomic data, many

individual informatics systems have been implemented in various research communities.

FlyBase [14] [15] [16] and WormBase [17] [18] [19] [20] are the leading informatics

systems driven by their own genome databases. However, the efficient and productive

 10

way to discover data is still a hot research topic. FlyBase and WormBase are still being

developed and are testing how informatics systems and data modeling provide the best

way to manage data. Both of them, however, are not object-oriented systems. Recently,

FlyBase released their database schema, Chado, as a generic organism schema.

DictyBase [21] [22] adopted Chado, but used a system-specific approach to manage

data. More recently, different groups started to address informatics systems for genomic

data. Stanford Microarray Database [4] [23] and Longhorn database system [3]

emphasized microarray data, which only gave a solution for generic microarray data

management. WormBase published their GBrowse [2] for presenting genome features as

an interactive web application. SynView [24] provides the additional genome

comparison function on top of Gbrowse. Both of them provide only one simple function,

which limits their applicability. FlyBase and WormBase are not readily adaptable and

thus not likely to be adapted by other organism databases. The most comprehensive

component, Chado only provides the back-end database schema and is relatively

inflexible because it must be implemented on PostgreSQL. After studying different

available informatics systems, we discovered that there were no methodology studies

that addressed an approach to construct a generic bioinformatics system. Until now, it is

still a big question that how to provide an efficient way to develop an informatics system

which should provide the back end database and front end interface support.

Several problems can arise when applications contain a mixture of data access

code, data transaction code, and presentation code. Such applications are difficult to

maintain, because interdependencies between all of the components cause strong ripple

 11

effects whenever a change is made anywhere. High coupling makes classes difficult or

impossible to reuse because they depend on so many other classes. Adding new data

views often requires re-implementing or cutting and pasting data transaction code, which

then requires maintenance in multiple places. Data access code suffers from the same

problem, being cut and pasted among data transaction methods.

There are several approaches to design an OO system [5, 25]. The Model-View-

Controller [26] [27] design pattern solves complex data access problems by decoupling

data access, query logic, and data presentation and user interaction. Model is the model

represents data and the query rules that govern access to and updates of this data. Often

the model serves as a software approximation to a real-world process, so simple real-

world modeling techniques apply when defining the model. View is the view renders the

contents of a model. It accesses biological data through the model and specifies how that

data should be presented. It is the view's responsibility to maintain consistency in its

presentation when the model changes. This can be achieved by using a push model,

where the view registers itself with the model for change notifications, or a pull model,

where the view is responsible for calling the model when it needs to retrieve the most

current data. Controller is the controller translates interactions with the view into actions

to be performed by the model. In a stand-alone GUI or Web client, user interactions

could be button clicks or menu selections, and in a Web application, they appear as GET

and POST HTTP requests. The actions performed by the model include activating data

transaction processes or changing the state of the model. Based on the user interactions

and the outcome of the model actions, the controller responds by selecting an

 12

appropriate view. In order to build GOOF to be flexible for any organism, we take

advantage of object-oriented design and pattern. Since a bioinformatics system, we need

to solve the complicated relations of different types of data, and a straight forward

interface is also critical for our end users because most of them are equipped with good

computer knowledge. A web interface is a target interface for users. Then, the MVC

design pattern will be the natural choice for GOOF. However, how to solve the

complexity of data access and data presentation will introduce another design concept,

the middleware approach.

2.2 The Middleware Approach

In [28] and [12], the authors discussed different Java frameworks for a

comprehensive development system. The Model-View-Controller framework (MVC) is

the best and most flexible way to build an informatics system driven by a database [27,

29, 30]. In every application, we always have data model and user view components.

How does MVC reduce the complexity of an application, simplify the engineering

structure and improve the reusable components? The middleware approach [28] is

introduced. The critical part of MVC design is the controller, which is the middleware.

Middleware is computer software that connects software components or applications.

The software consists of a set of enabling services that allow multiple processes running

on one or more components of an application even cross different platforms. This

technology evolved to provide for interoperability in support of the move to client/server

architecture. It is used most often to support complex, distributed applications. It

includes web servers, application servers, content management systems, and similar

 13

tools that support application development and delivery. Middleware is especially

integral to modern information technology based on XML, SOAP, Web services, and

service-oriented architecture. In software engineering, the middleware approach attempts

to aid system designer in the separation of concerns, which are cross different functions

and work flow in an application, as an advance in modularization. Separation of

concerns entails breaking down a program into distinct parts that overlap in functionality

as little as possible. All programming methodologies, including procedural programming

and object-oriented programming, support some separation and encapsulation of

concerns (or any area of interest or focus) into single entities. For example, procedures,

packages, classes, and methods all help programmers encapsulate concerns into single

entities. But some concerns defy these forms of encapsulation. For a bioinformatics

system, we concern the independency of database system, a generic framework and a

flexible interface. How to integrate three MVC components together is the question that

how we employ the middleware approach to build interfaces of these three components

and link them together as one framework.

GOOF is a high level application framework. Three layers (model, view and

control) in GOOF are built using three different Java frameworks, which maintain low-

level API to communicate with the database and the web application server [31].

Hibernate [32] is the data object layer foundation. Since a GOOF application is the web

front end one, WebWork [33] is a simplicity and flexibility choice of the interface

construction. Spring [34] is the controller framework in GOOF, which handles the data

transaction management.

 14

Hibernate [35] is an object-relational mapping (ORM) library for the Java

language, providing a framework for mapping an object-oriented domain model to a

traditional relational database. Hibernate solves Object-Relational impedance mismatch

problems by replacing direct persistence-related database accesses with high-level object

handling functions. The primary feature of Hibernate is mapping from Java classes to

database tables and from Java data types to SQL data types. Hibernate also provides data

query and retrieval facilities. Hibernate generates the SQL calls and relieves the

developer from manual result set handling and object conversion, keeping the

application portable to all SQL databases, with database portability delivered at very

little performance overhead. Hibernate provides transparent persistence for Plain Old

Java Objects (POJOs). The portability of Hibernate provides the flexibility of GOOF on

any database.

WebWork [36] is a Java web-application development framework built

specifically with developer productivity and code simplicity in mind. In a standard Java

EE web application, the client will typically submit information to the server via a web

form. The information is then either handed over to a Java Servlet which processes it,

interacts with a database and produces an HTML-formatted response, or it is given to a

JavaServer Pages (JSP) document. Both approaches are often considered inadequate for

large projects because they mix application logic with presentation and make

maintenance difficult. WebWork distinguishes itself by having understood those existing

limitations and working to eliminate them. WebWork has been designed and

implemented with a specific set of features, which are very suitable for the

 15

bioinformatics research community. The interface layout design never has to touch Java

code, the web action and the data layer. It provides the central resource control for the

web interface, which also brings the reuse components on web pages. Since GOOF

targets a solution from database to web application, WebWork is naturally chosen to

build the view layer.

Spring [13] provides the full J2EE application API, which is used to link

WebWork and Hibernate together. Spring, as the controller component, brings an

abstraction mechanism to the Java platform. Its abstraction is capable of working with

local (inside the same layer) and global transactions (cross different layers). We use a

modular XML to define data access object interface, data transaction manager interface

and web action definition. The data flow and messages cross three components are

linked together by the XML mechanism. After reviewing the current research topics on

genome informatics systems, we will discuss how GOOF is built on top of three low-

level frameworks in the next section.

2.3 Meta-Programming

Previous empirical studies have shown 50% - 90% rates of repetitions that

recurred in newly developed programs [37]. Code generation is the approach in high-

performance computing and high-assurance embedded programming [38]. Because a

generic program in an earlier stage can generate a specialized program in a later stage

and assure it safe, the programmer need not trade off abstraction and assurance for

efficiency in time and space. Code-generating programs are sometimes called meta-

programs; writing such programs is called meta-programming [37]. Writing programs

 16

that write code has numerous applications. Code-generating programs allow developers

to abbreviate such statements and save a lot of typing, which also prevents a lot of

mistakes because there is less chance of mistyping [39]. Meta-programming is the

writing of computer programs that write or manipulate other programs (or themselves)

as their data or that do part of the work during compile time that is otherwise done at run

time. In many cases, this allows programmers to get more done in the same amount of

time as they would take to write all the code manually.

The components of meta-programming include textual macro languages,

specialized code generators [40]. Textual macro languages develop and use small,

domain-specific languages that are easier to write and maintain than writing them in the

target language. This is best written as a macro for several reasons: A function call

would take way too much overhead for a simple operation. Programs would have to pass

the variables' addresses to the function rather than the variables' values. Different parts

of programs have a different function for each type of data objects. Specialized code

generators are usually the generic textual-substitution programs, which are more focus

on automating specific aspects of a program [41]. In a bioinformatics application, we

have many similar types of data objects, which could be manipulated by the same way.

We can define a template by using a textual macro language to generate over reusable

operations in application. A specialized code generator could automate the code

generation process by a textual substitution in the template [42].

In order to solve a large amount of data objects and reusable functions in a

bioinformatics framework by the meta-programming approach, we need to have a design

 17

architecture which could take advantage of meta-programming. According to the above

discussions of OO design and MVC structure, what is the best data structure to present

genome data? Model-driven architecture (MDA) is the answer [43] [44]. MDA supports

model-driven engineering of software systems and provides a set of guidelines for

structuring specifications expressed as models. MDA requires that design is done in an

architecture and technology neutral way. For a bioinformatics application, it is easy to

illustrate genome data in a natural way. GOOF not only takes use of OO structure to

model genome data, but also composes the data transaction, web action and even the

interface layout in a model-driven architecture. As a well design framework, GOOF

would employ meta-programming to reduce the work of a bioinformatics application

development work.

With a generic capable structure, how to achieve high productivity is one of the

research issues in GOOF. We can discuss it further how a meta-programming utility will

be developed in GOOF. What is the best approach to design structures that represent the

similarity of patterns in a generic way? One of the best practices is the Object-Oriented

structure of GOOF, which provides a basic mechanism to reuse generic structures and

encourage organizing software as standard architectures in order to reuse common

components. The templates [45] in many programming languages, such as STL of C++

[46] and Generics of Java [47] [48], were studied to provide and reuse common

components in software [49]. Aspect-oriented programming (AOP) [50], such as

AspectJ, is a methodology that advocated decomposing software by aspects of

functionality that may affect other functional units [51]. AOP is more a theoretical

 18

definition than a practical guide. Meta-programming tools do not tie all of AOP, but

provide a mechanism to engineer common components, which were studied in the field

of software engineering. XDoclet [52] is an extended JavaDoc Doclet engine. It's a

generic Java tool that permits the creation of custom JavaDoc tags, and based on those

tags generate source code or other files [53]. It enables AOP for java. In short, this

means that it can add more significance to programs by adding meta data (attributes) to

Java codes. XDoclet employs the approach which is dynamic execution of string

expressions that contain programming commands. XDoclet is a meta-programming

language which is used to compose the macro templates for data model, data transaction,

web action and interface layout. We develop a specific code generator by using Ant

build script. Through the tags of XDoclet, Ant can generate the program codes and other

programming files according to the templates. The code generator would automatically

write the codes and files according to the fix Model structure in GOOF. In the overall

structure of GOOF section, we will discuss how important it is to follow the file

structure and the naming rules of GOOF. In summary, the templates and JavaDoc with

XDoclets in GOOF can improve productivity.

2.4 User Interfaces

Another problem that many existing systems face is the re-engineering

development of the user interfaces [54]. The primary reason for this is that they have

focused on database management and function and have ignored the characteristics of

the data and users. The user interface or Human Machine Interface is the aggregate of

means by which users interact with the system - a particular machine, computer program

 19

or other complex tools. The user interface provides means of: Input, allowing the users

to manipulate a system; Output, allowing the system to produce the effects of the users'

manipulation. The major users of bioinformatics applications do not know how to

construct complicated queries to explore the data. They prefer to pull data straight out of

databases rather than build the logical queries to navigate the data structures in

databases. Another problem is that when dealing with new genomic data, users can not

know the potential unknown relationships. Therefore, a means of presenting the data

relationships without user interactions could be a valuable aspect of an informatics

system. To manage a large amount of data, especially genome data, one research issue

for the user interface is how to construct and manage the data access interface. When

discussing meta-programming, we will employ Model-Driven Architecture in the whole

framework. Java Server Page (JSP) [55] is a Java technology that allows software

developers to dynamically generate HTML, XML or other types of documents in

response to a Web client request [26]. This technology allows Java code and certain pre-

defined actions to be embedded into static content. The JSP syntax adds additional

XML-like tags, called JSP actions, to be used to invoke built-in functionality.

Additionally, the technology allows for the creation of JSP tag libraries that act as

extensions to the standard HTML or XML tags. Tag libraries provide a platform

independent way of extending the capabilities of a Web server. JSP can embed a web

action inside, which allows application to separate the interface construction from the

data access programming. JSP and WebWork are the foundation of the user interface. In

order to manage a large amount of data and improve the usability of an interface, the

 20

modular structure of JSP can provide a bioinformatics framework with a flexible

template to construct a user interface. In the next section, we will discuss how the OO

structure and the modular design of JSP easily solve this problem.

 21

3 GENOME OBJECT-ORIENTED FRAMEWORK

3.1 The Overall Structure

This section will discuss the object-oriented data modules, which are employed

in GOOF. The goal of GOOF is to give a rapid and simple solution for genome data

informatics systems. Therefore, GOOF should not require any low level APIs. When we

proposed GOOF, another consideration was the stability, scalability and performance.

That is why we built GOOF using robust Java object-oriented frameworks.

In order to achieve flexibility, GOOF needs to be independent of any back-end

database. The object-oriented structure of GOOF allows developers to design the data of

their system as objects. GOOF maps data objects and relations to any major database

system because of the object-oriented structure. In other words, there is no need to use

database specific SQL. GOOF employs the Java object-oriented Model-View-Controller

design as we discussed in the background section. Hibernate is the data model

framework for data object and relation mapping modules, which builds the link to the

GOOF-based application and the back-end database. Spring and WebWork together

structure the data transaction to control data flow within the framework and

communicate with users via the web presentation layer. WebWork is the web

presentation view framework to control user actions and data flow through on the

interface level. The whole GOOF framework uses XML-based files for development and

application deployment to manage the different modules and the application

development. The XML-based configuration file is module-based and easy to be

 22

configured to be a pipeline for many development tasks.

For the easy maintenance and expandable features of GOOF, strict object naming

rules are defined as the part of the document. Since GOOF comes with a utility tool,

including several templates and automatic code generators, the unique naming rules are

critical to the functions of this utility tool. In modeling the data objects, the naming rules

could also ensure the consistency of data objects in the whole application. For the same

purpose, the strict file structure is fixed. After expanding the application of GOOF, one

unified XML-based configuration serves the whole application, which requires the same

file structure as well. Another important component of GOOF is the automatic code

generator, which provides developers with the out-of-box application to build simple

data objects and relations.

The default database connection is configured with PostgreSQL as the back-end

database, but this can be changed to any major database by reconfiguring the framework.

In the properties.xml, the multiple database connections are configured as figure 1. The

development control script, called build.xml, generates the database environment

variables which are used in the framework. In this example, there are two database

connections defined. Both of them are located on the same physical machine and one

database system. If an application is designed to manage multiple database systems on

different physical machines or different database systems, for instance, MySQL and

Postgresql, then multiple database driver libraries and host names should be given in this

file. GOOF calls those variables and builds the database connections for the data model

layer.

 23

Multiple
Database Names

Multiple
Database URLs

properties.xml for databases settings

build.properties for application
name and version settings

Figure 1 GOOF database settings

In GOOF, the definitions of objects, methods and variables follow the unified

naming rules. The file structure of GOOF follows the data-web-service structure

according to the MVC design pattern. The important rule for the central Ant build is that

developers must follow the fixed structure. If not, Ant could report a build error. For any

GOOF application, there are three basic folders. Applications are developed according to

this structure. The Ant development tool wraps the web application packages compatibly

with the Tomcat server.

 24

lib.properties in the GOOF’s lib folder is part of
build.xml and has all of information and paths
of java libraries.

Figure 2 Java libraries configuration

 “lib”: all necessary java libraries are located in this folder. All of version

information and paths are in lib.properties of figure 2. When building the

web application package, Ant includes them into the package.

 “src”: all the java source codes are located in this folder. Following the

MVC design, “dao”, “service”, and “web” contain the three separate

layers.

o “dao”: the folder contains the Java code for the data model layer

and data mapping files. The data model definitions and Hibernate

data operations are also in this folder.

 25

o “service”: the folder contains the Java code for the data

transaction layer. The interfaces in between the data model layer

and the web presentations are defined as data managers.

o “web”: the folder contains the Java code for the web presentation

layer. The interfaces to the data transaction manager are defined

here. The implementations of web actions are built in the web

folder, which link the actions to the Java Server Page (JSP).

 “web”: all JSPs, web interface components definitions and the web

application configurations are located in this folder. The “pages” and

“WEB-INF” folders follow the Tomcat server application rules.

o “pages”: All JSPs for the web interface are in this folder. These

are the templates used to build the interfaces and generate the

actual values of data objects requested by users.

o “WEB-INF”: “classes” is where all Java binary files are. The Ant

development tool compiles the Java source codes and wraps the

binary class files into this folder, when building a web application

package. All of the web application configurations are defined in

“WEB-INF”.

Figure 3 shows the structure of folders in the GOOF package. The GOOF

package is a bare bone application, which in the case is actually a ready-to-go

application with a simple template for demonstration. First of all, the database section of

property.xml should be changed to the proper value. In the build.xml and

 26

build.properties, the web application name should be changed from “goof” to an actual

web application name. Then please refer the development management section for how

to start a goof application.

The structure of folders in GOOF

The fixed
structure of
file folders

lib: All required Java
libraries

metadata: meta-
programming
templates and db-
load xml data files

src: All java source
codes.
•dao: the data
object codes.
•service: the data
transaction codes.
•web: the web
presentation codes

web: CSS, JSP, web actions
configurations and
interface definitions.

build.xml and
properties.xml for ant
build management

Figure 3 The structure of folders in GOOF

In GOOF, the user management module, including users and roles, is

independent of the genome data schema, which provides users with different levels of

accesses to data objects on the view level. The independent user management module

allows GOOF to integrate any existing data schema without losing role-based data

 27

access control. It is easy to take an existing user information database for data access

control as well. The security access control configuration can be reconfigured to link to

the existing user information database. In this way, the data schema can simply reflect

the genome data without any worrying about user access control. To build user access

control at the data model level would detract from the flexibility and generic structure of

GOOF. This is why we designed a separated schema for user management and left the

user access control within the view level. This allows role-based data access to be added

on top of the web presentation layer. It controls not only data access, but also the

different levels of the data query utilities in the interface. We will show how this works

in the user interface section.

GOOF is developed as a single informatics back-to-front framework. Every

development stage and database configuration is managed by one Ant configuration file.

Therefore, one setup in the Ant build file will allow any GOOF application to run out of

box. This will be discussed further in section 3.3. Once the overall structure is well

understood, the MVS design and developing a GOOF application should be clear.

 28

3.2 The MVC Design

In a complex informatics application that presents a large amount of data to

users, we always have data (model) and user interface (view) concerns, because any

change to the user interface will affect data handling and any change to the data schema

can require rebuilding the user interface. The Model-View-Controller (MVC) solves this

problem by decoupling data access and data transaction from data presentation and user

interaction. The solution is an intermediate component: the controller. Therefore, the

GOOF

Data Objects and

Relations

Database
Hibernate

Data Transaction and

Control

Spring

Web

Presentation

WebWork JSP and

CSS

Service and Actions

Build.xml and database.properties – Development control

configuration

Action-servlet.xml and xwork.xml – J2EE actions

configuration

ApplicationResources.properties – Web presentation

configuration

Figure 4 The MVC structure of GOOF

 29

controller is the middle interface between the data objects and the data view (user

interface). As long as the controller interface is the same, the data objects and the data

view can be reconstructed according to local implementation needs without interrupting

each other. GOOF follows the MVC design pattern to keep each layer independent.

Figure 4 shows that the structure of GOOF is built on the layers of web presentation,

data transaction (control), and data object and relations, which correspond with the three

Java frameworks.

 The model layer: Hibernate is an entity and persistent service to connect

actual database and objects as the data model layer of GOOF.

 The control layer: Spring is an independent API set to build data flows

from the data layer to the view layer. It is the base API of the data

transaction layer of GOOF

 The view layer: WebWork is an API set to operate objects and manage

user actions on the web presentation. JSP and WebWork are the web

presentation layer of GOOF.

GOOF is designed to manage genome data. Facing with the complexity of

genome data, genomics and biomedical researchers usually do not have the knowledge

and resources to handle the design work of their bioinformatics infrastructure. The MVC

structure of GOOF helps to reduce the complexity of the architecture to increase

flexibility and reuse the same components by decoupling models and views. Many

bioinformatics system use a persistent storage mechanism (a database) to store data.

GOOF does not specifically link any database system as the data access layer because

 30

the database is underneath or encapsulated by the data model layer. On the view layer,

users usually interact with a GOOF application by invoking an action, which is delivered

to the controller layer. A controller handles the input event from the user interface, often

via a registered web action. Then, the controller accesses the data model, possibly

updating it in the appropriate way, depending on the user's request. A web view uses the

web interface components in the web presentation layer and the data objects indirectly to

generate an appropriate user interface. Finally, the web view gets the requested data

from the data model layer. At the same time, the data model has no direct knowledge of

the view. The user interface waits for further user interactions, which begins another new

cycle. Although the three layers of GOOF are separate in the MVC structure, they are

actually well connected as a life cycle for data flow invoked by users. In the following

sections, we will discuss how to design and develop a GOOF application.

3.3 Managing Application Development

We envisioned GOOF as an out-of-the-box genome data informatics framework,

a tool to simplify the complexity of managing application development. In order to keep

GOOF consistent and easy to deploy, Apache Ant [56] is used as the automatic building

tool to manage the whole project, from setting up the database, compiling, building and

deploying to the web application server. Several Ant commands are shown here in figure

5. They control not only application development but also database operation. The basic

process of a development using GOOF follows three major steps.

1. “Ant setup-db” prepares the database table and schema, create the

database in the target database system and load data into the database if

 31

the raw data in XML format is available.

2. “Ant compile” or “Ant build” builds the binaries from Java source code.

It is also useful for debugging Java source code.

3. “Ant war” generates the web application package, the war file, for

deploying the application via the Tomcat server. It wraps up the binary

files, the web components resource file, JSP and all of the web

application configuration files in the war package.

ant clean

ant war

ant setup-db

ant compile

ant build

ant db-create db-prepare db-load

ant db-drop

Ant controls the different development stages in GOOF.

Job: clean the compile codes and
generated files

Job: generate the whole web
application deploy package for
Tomcat

Job: setup the databases
according to the data object layer.

Jobs: compile and build the Java
codes.

Jobs: it is same as setup-db

Jobs: drop database

Figure 5 The Apache Ant build reference

 32

In the overall structure section, we discussed how to setup the general application

name and database connections. After that, GOOF is ready to run. The default settings

are good for most cases. Users can change the variables and redefine build tasks in

build.xml, properties.xml and build.properties, which are shown in figure 6.

The ant build.xml definition

The build task
definition can be
redefined for
different paths,
purposes by
changing the
variables and
build.properties
and
properties.xml.

Figure 6 The Ant build task definitions

As an independent framework, one of the primary aims of GOOF is to solve

 33

development portability problem. GOOF is built using Java, which is naturally

independent of any platform. Ant can execute tasks on both Windows and UNIX-like

system. This is another important reason why we developed GOOF using Apache Ant.

3.4 The Data Model Layer

In the data model layer, there are two basic generic data objects in GOOF: the

single data object and the many-to-many data object. The single data object is a generic

data object. In order to simplify data transaction modules and presentation interfaces, the

many-to-many data object is used to manipulate the relationships of data objects.

Modeling the relations of data as properties of data objects is the key to avoiding

complexity when building queries in the data transaction layer of GOOF.

 34

Construct a data object with
properties, which are mapped
to the database table.

Build a many-to-many relation
with other data object.

Hibernate tags for
constructing a hibernate
mapping file and a table
schema.

A data object class, which
builds a many-to-many
relation with other data
objects.

Figure 7 The data object "Contig" example

In figure 7, a “Contig” data object has several properties, such as name,

sequence, annotation, date and so on. As long as you can describe a data object in an

application, it is easy to construct a data object in the data model layer. From the

database point view, a table in the database is a data object in the data model layer and

each column of a table is a property of a data object. Some additional attributes of data

object models in Java are a function of Hibernate tags that can be used by the meta-

programming utility to automatically generate a Hibernate persistent mapping file for the

data objects. It can also convert Java data type to the data types of the linked database.

 35

The Hibernate persistent data object mapping file

the data object
mapped to the
table in the
database

the property of
the data object
to the column of
the table

Figure 8 The Hibernate persistent mapping file example

The fundamental way that data object is described in the data model layer differs

from a table in the relational database. A relationship between data objects can be

defined as a property, just like other properties of those data objects. In figure 8, the

example shows that every “Contig” has several “Clones”. In the data model, there is

only a many-to-many relationship. One-to-many or one-to-one is just a simplified many-

to-many relationship. Users can add Hibernate tags to restrict the relationships to one of

these three types to control those relationships in the database.

 36

The hibernate data objects mapping configuration

Add the customized
data object mapping
files

Add the target data
source. Multiple
data sources can
be configured.

Figure 9 The Hibernate data objects mapping configuration

Based on the data models and the data object relationship mapping files, we can

configure the framework to connect the data objects to the target data source. That is the

critical step that actually links the application to the back end database. All of these

mapping files are the “mappingResources” of a data source showed in figure 9.

Since there are many genomic data types modeled in the Chado schema, the

Chado connection built-in GOOF would provide the most general templates for

translating genomic data into the object-oriented structure. The flexible structure of the

 37

data model layer allows any application to connect to multiple database sources and

model various schemas into GOOF. Therefore, the built-in connection with Chado in

GOOF is an advantage to many existing genomic data systems. We will discuss GOOF

and Chado in the section 3.8. Therefore, GOOF not only has a simple data object

template, but also provides a comprehensive data object template (Chado) to model

genomic data into object-oriented data objects.

Once the data model has been built, the interface to the data transaction layer

must be constructed. Since the MVC structure is composed of three separate layers and

the data flow in the whole framework is a life cycle, every layer has an interface to

communicate with the next layer, but still executes its own internal methods unknown to

the adjacent layers. In the MVC structure of GOOF, the data model layer has an

interface to the data transaction layer. This is basically the interface that allows the data

transaction manager to approach the data object in defined ways. In figure 10, we show

several interfaces of “Contig” to the data transaction layer.

 38

The interface to the data transaction layer
from the data object model layer

Figure 10 Example of the interface of a data object

GOOF has an interface to build an SQL query provided by Hibernate. There are

several templates available. The module for listing data items on a particular data object

is a simple search without any query criteria, which is built on the single-field query

model. The module for editing, deleting and updating data objects is currently used in

the user management module. It might be deprecated in the view module for genome

data objects, unless submitting data through the web interface is required in future. To

query key words in a single field or across fields is a basic version of all other complex

 39

queries in the framework. Although many relationships are pre-defined into data models,

GOOF still has the flexibility to construct arbitrarily complicated query modules. While

every query module requires an extra interface module, the data model layer provides an

advantage in terms of simple and rapid solutions to deal with the complex relationships

between data objects.

The hibernate query class

The hibernate
query template for

a simple list

The hibernate HSQL for a
customized search (it is

independent on any
database system.)

Figure 11 Example of a Hibernate query based on a template

We listed several queries which are built from the templates using Hibernate

SQL in figure 11. The structure and syntax of those queries are similar to those of

 40

standard SQL and independent of any database. Additional SQL functions can be also

added to the existing functions. For the simple queries, the template is simple and

efficient.

In addition, GOOF can operate data objects without resorting to SQL. Every

table and its relationships are presented as data objects in GOOF. Since the relationships

between tables in the database are already built into data objects in GOOF, adding

criteria to data objects effectively constructs a query, removing the need to explicitly

construct a complex query. This simplifies the data operations on the database and

avoids direct database query. This is how object-oriented data modeling allows data

operations to be independent of the database. However, complicated relationships

between data objects could make this type of query construction very difficult.

Therefore, constructing a query by using criteria simplifies the construction process.

In constructing criteria based searches, the criteria can be added as logic

conditions to the properties of a data object. We can just add “equal”, “like”, “include”

and other criteria to the properties of a single data object or multiple connected objects.

For instance, we can navigate the complexity of relationships in the Chado schema. In

the example, we construct the query to list features of a certain type and name in a range

on a target chromosome. This involves four data objects and four their properties. Since

the relationships of data objects are also defined as properties, we do not have to build a

search with multiple joins. We simply add criteria to a property of the target data object.

In figure 12, the example involves five joint criteria cross four data objects. It allows us

to constructing a very long SQL based query. Since GOOF is independent of any

 41

database system, it does not have to deal the different versions of SQL implemented in

various database systems.

The Hibernate criteria search construction for Chado (No SQL query needed)

The Hibernate
criteria construction
for a cross-multiple-
data-objects query.
It is easy and
intuitive to build a
multiple-criteria
and cross-multiple-
tables search.

Figure 12 Example of a Hibernate criteria query

The data model layer not only defines the data model mapped to the database, but

also provides a way to access those data. It defines an interface through which the data

transaction layer acquires the data. It effectively hides the complexity of the data model

from the other layers. Any change or reengineering of the data objects would not affect

the other layers as long the interface between layers is constant.

 42

3.5 The Data Transaction Layer

The data transaction layer acts as the controller module to handle data

transactions between data object and data view, but keeps them independent from each

other. In another words, it acts a bridge to manage the data flow from the data model

layer to the web presentation layer. The data transaction layer delivers the data objects

requested by users on the web presentation layer.

A design goal of GOOF is to simplify the interface and reduce data transaction

complexity for the view module. In this sense, the presentation layer presents data

objects from the data transaction layer and does not need to operate on data directly

within the data modeling layer. The principal advantage of this approach is that if any

data model changes or any query structure is modified, the presentation layer only

operates on the pre-processed data objects and does not change its view layout or

interface as a result of changes on the lower level.

 43

The data transaction manager interface

The data
transaction
manager interface
to call hibernate
query construction
class. It is also the
interface between
the data object
layer and the data
transaction layer.

Figure 13 Example of a data transaction manager interface

First of all, a data transaction manager should be established for the target data

objects. The transaction manager manages and builds several interfaces for data

transaction between the target data objects. Any operation on a data object invoked by

users via the web presentation layer is handled by the data transaction manager. The data

transaction interfaces are also used to link the data model layer, which does not directly

interact with any data object requests. Therefore, any alternation in the data model layer

would not break the data flow at the level of the web presentation layer, as long as the

 44

interface is unchanged. In figure 13, each interface of the data object “Contig”

corresponds to one data operation of “Contig” in the data model layer.

The implementation of a data transaction manager.
It basically delivers the variables from the web
presentation layer to the Hibernate query java class.
But it does not know the construction of the query
class.

Figure 14 Example of the implementation of a data transaction manager

The next step is to establish how the data transaction manager communicates

with the appropriate data objects. The data transaction manager also transfers the

variables from the web presentation layer to the data model layer across the data

interface. The data transaction manager communicates with the data object layer for the

requested data. The data transaction manager can be changed if any updated data object

 45

structures are updated or if any data object query interface is altered. As long as the

interface of a data transaction manager is unchanged, web actions do not have to be

altered to get data from the data model layer.

In figure 14, the example demonstrates another important point, namely that

name of an interface is the same as that of the corresponding query class in the data

model layer. This naming rule is not required, but helps to establish the clean variable

name space in the framework. In the overall structure section, strict naming rules are

helpful when developing and updating a GOOF application. In the meta-programming

section, we will discuss how the template generates codes and why it is critical to follow

naming rules.

The data transaction manager definitions in
applicationContext-service.xml. It links the
data transaction manager to the
implementation java class and the target
managed data object.

Figure 15 Configuration of the data transaction manager

 46

Figure 15 shows how an application defines the data transaction manager to

manage a data object. Once data transaction managers have been implemented, they are

defined in applicationContext-service.xml file. This allows the framework to access the

data objects being managed. The web component passes those Java beans (Java class

object) to the variables of JSP. This will be discussed in detail in the next section.

As shown above, the data transaction layer shows how data transaction manager

builds the interface between the data model and the web presentation layer. More

accurately, the data transaction manger does not do anything, but rather manages the

data flow between the data models and the web view. This is the middleware approach.

The importance of the data transaction layer is that the data models and the web actions

can be easily defined, reused and made to interoperate each other.

3.6 The Web Presentation Layer

Users do not want to understand any of the data management, data flow or data

mining procedures that comprise a bioinformatics data management system, they just

want to transform data into knowledge. The web presentation layer is the interface

through which users interact with the whole data management application. The data

model and transaction layers are more abstract data construction components in GOOF.

The web presentation layer not only acts as another abstract data flow component, but

also consists of the user view module. There are three basic components that make up

 47

the web presentation layer: web actions, view modules and web interface resource

definitions.

 Web actions: these are Java classes, which define the actions invoked by

users. They provide the interface to the view module (JSP) and manage

the data flow from the view module to the data transaction layer.

 View modules: these are composed of JSP pages, which describe the

layout of the user interface. In the view module, all the components,

including web actions, menu, titles and interface elements, are defined as

variables.

 Web interface resource definitions: in order to manage and maintain the

interface, every component of the view module is defined in the web

interface resource file. Every component can easily be reused in

anywhere in the interface. It provides a central web interface management

tool to reduce the complexity of interface design.

 48

The web action java class in the web presentation
layer. It instructs the web action to which data
transaction should be called in the data transaction
manager. The data transaction manager handles
which Hibernate query action should be called.

The web action
delivers the
variables acquired
by this web action
trigger to the data
transaction
manager.

Figure 16 Web action

In figure 16, the web action of the data object “Contig” is defined. Each web

action class consists of several web actions which are invoked in the same view module.

Each web action is connected to a data transaction manager for the data requested by this

action and delivers the variables which are needed by that data transaction manager to

perform the query. A web action can also instruct a view module via a view interface

what content should be delivered to users as a result of that web action. In this example,

if it is a failed input from the view module, the web action returns an “INPUT” message

 49

to the view module. If the requested data were successfully retrieved from the data

transaction manager, it returns a “SUCCESS” message.

The web action definition configuration in action-servlet.xml.
It links web actions to the web action java classes and sets
which data transaction manager handles the data objects of
this web action in the web presentation layer.

Figure 17 Web action configuration

 50

The web action directed to which JSP pages
are defined in xwork.xml of the web
presentation layer. The defined results of each
action are corresponded to the definitions in
the web action java classes.

Figure 18 Web action and view model configuration

The view module consists of two parts. One is the web action definition, which

specifies how the JSPs handle the results of web actions in figure 17. Another is the JSP,

which defines the layout of the user interface. As the above example shows in figure 18,

each web action of a JSP is linked to the web action generated by Java class in the

xwork.xml file. The messages returned from the web action Java class instruct the

corresponding JSP to deliver the data objects or messages requested.

 51

The definitions of web interface components in
applicationResources.properties of the web presentation layer.

Each web interface
component
variable can be
called in any JSP
page.

Figure 19 Web interface component definition

The logical extension of object-oriented design is to use a central application

resource file to define the names of menus, readable names of objects, and the content of

the web interface in GOOF. One Cascading Style Sheet (CSS) is used to define fonts,

colors and layout. The central resource definition in figure 19 and CSS file also allow

the interface to be designed as object-oriented models. The view module (JSP) presents

the data objects to the web interface and transfers queries invoked by web actions to the

data transaction manager. We have three basic templates for the view module: the search

 52

view, the list view and the detail view. Every view module defines the layout and

function of the interface. The layout consists of web interface components, which are

defined as variables and can be reused any view module. The values of the web interface

components are defined in the applicationResource.properties. This approach to interface

design can significantly reduce the large amount of time required to construct many view

modules and also improves the re-use of the interface components.

This JSP corresponds
which web action.

Get the web interface
component definition.

Deliver the variable
to the web action.

The search view JSP of a data object in the web presentation layer

Figure 20 JSP search view

The search view in figure 20 is the interface to pass a query to the data

 53

transaction layer. The search view not only defines which web action responses the user

requests, but also specifies the value variables defined in the web action based on user

input. The comprehensive search view allows users to add criteria to relationships within

data objects to create a complex query. The drop down list, check box and text input

field can be used for the more complicated query construction. The search view can be

used to design a data mining interface to invoke a data mining procedure in the data

transaction layer. Well thought out good design can hide the complexity of the logic

flow from the user. The above example shows the simple text input field in a search

view.

The list view of a data object composed in JSP.
It consists of data objects, properties of them
and web interface components.

The data object
listed in the list
view

The properties
of the data
object listed in
the list view

The web interface
component in the
list view

Figure 21 JSP list view

 54

The data list view in figure 21 lists the data objects that match the query criteria.

The data list view provides a link to the detail view of each data object in table format

and provides the options of exporting data as XML, EXCEL and CSV formats. Once the

list web action gets the list of data objects from the data transaction manager, it returns a

“SUCCESS” message. In the web action definition configuration, this message is

directed to the list view module. The list view receives the data object and links to the

detail view of each individual data object.

To list other data
object which has
a joint relation of
this data object
is just to list
them as one
properties of this
data object.

The detail view of a data object. It can list another
data object which has a joint relation of this one
without invoking any query action.

Figure 22 JSP detail view

 55

In figure 22, the cross data object view is shown as a detail view. The cross data

object view is built to list data objects with many-to-many relationships of others. An

object-oriented data model can model the relationships with other data objects as normal

properties of a data object. The beauty of this approach is seen in the detail view of a

data object, where list the other data objects as properties, which have many-to-many

relationships with this object. We do not need to construct another query to get the

related data object. Therefore, the object-oriented way of constructing the data model

can significantly reduce query construction and simplify the detail view module.

The detail view JSP of a data object in the web presentation layer

List the value of one
property of a data
object.

Iterate the values of
the list of other data
objects which has a
many-to-many
relation with this data
object.

Integrate Gbrowse into the detail view and
deliver the values of the properties of this
data object to Gbrowse.

Figure 23 Gbrowse detail view JSP

 56

Modular design allows GOOF to integrate Gbrowse as a visualization module.

The presentation layer manages to deliver information from data objects to Gbrowse and

bring back the visual presentation of data into the view module. The above example

from figure 23 shows how the data detail view module deliver a property of the data

object to Gbrowse. The Gbrowse view is then embedded into this detail view module.

This approach can deliver data objects to other web data services and construct an

interface to exchange data.

The presentation layer provides GOOF with the functionality to simplify

interfaces and a straightforward way to explore data.

3.7 Managing User Interfaces

GOOF is proposed as a genome data informatics system, which not only manage

data but also provides a user friendly interface. Simplification of the user interface is a

critical research subject in GOOF. There are two questions that we need to address for

this issue.

 How does GOOF employ an object-oriented data modeling to simplify the

query interface?

 How does GOOF provide a user adapted interface based on different data

access requirement?

To answer the first question, we need to review the data model layer in GOOF.

Users can list many-to-many data objects without queries in the list view. In order to

simplify this query process, GOOF deals with this issue in the data model layer. The

object-oriented data modeling approach builds relationships as properties of data objects,

 57

while the relational database needs to construct another table to present the same

relationship. This means that the data module allows users to explore data through the

web interface. In the data transaction and web presentation layers, we do not need to

construct an extra module to retrieve the relationships from the database. This reduces

the complexity of the relationships between as far as users are concerned. In a genome

data informatics system, many data relationships are pre-defined by biological

explanations, this is a special characteristic of genome data informatics systems and

makes this approach feasible. This method of constructing data objects also provides the

foundation to query data by using simple criteria and avoids the construction of

complicated SQL queries. The data model layer hides the data query complexity from

the data transaction and web presentation layer. This simplifies the construction of the

user interface for data queries.

 58

The menu definitions in menu-config.xml of the web
presentation layer. It is modular object-oriented defined.
Each menu item links the corresponding JSP page.

It specifies which user groups could access this menu
item. That means the corresponding JSP or web action
could be accessed only by the defined groups.

Figure 24 Menu definition

For the second question, we need to look at the user management module in the

web presentation layer. The user management module not only manages the user

information, but also data access. This module controls the user interface components as

well. The dynamic menus driven by user information are implemented in the user

management module. Since the web interface components are designed as different

objects, the interface and menus components can be specific for user groups, which are

independent of the genomic data schema in database. That means the interface can be

 59

tailored to the needs of a particular user group without changing any existing data

schema. Different groups can have different user interfaces and have different levels of

data access. This modular approach gives GOOF flexibility without redundant

development. In the example, each menu item is one component in the view module. In

figure 24, we define which groups can access this menu item in the “roles” property.

Overall, the object-oriented approach for constructing the user interface is one of

many contributions that GOOF brings to the bioinformatics research community.

3.8 GOOF and Chado

Chado is a relational database schema that underlies many GMOD installations.

It is capable of representing many of the general classes of data frequently encountered

in modern biology such as sequences, sequence comparisons, phenotypes, genotypes,

ontology, publications, and phylogeny. It has been designed to handle complex

representations of biological knowledge and is one of the most sophisticated relational

schemas currently available in molecular biology. Since Chado underlies many

molecular biology databases and there are several standardized file formats which

present biological data and are defined according to the Chado schema, it is critical for

GOOF to connect to the Chado schema. The object-oriented structure of GOOF enables

the data transaction and presentation layers to manipulate data objects without knowing

about the data sources as long as the data objects are well defined in the data model

layer. In figure 25, the data manager called by the data transaction layer is defined in

GOOF to link to the target data source.

 60

The data source for Chado is defined in
applicationContext-resources.xml. It gets the
information of Chado connection from build.xml.

Figure 25 Data source definition of Chado

In the section of the overall GOOF structure, we showed how GOOF configures

multiple database connections. Once Chado database information is provided, the data

source manager needs to be configured to know which data source is for Chado. The

data source deification retrieves the variables for Chado database connection from

property.xml. Users only need to fill in their own Chado database configuration in

property.xml and then GOOF builds the Chado connection into the application. The data

source consists of the raw Chado database connection information. After that, the actual

Chado data objects will be mapped to the Chado database by the Chado data source

manager. In figure 26, we show how the data source manager refers to the actual data

 61

source. After that, the Chado data objects used in the application need to be configured

for the Chado data source manager. Due to the complexity of the Chado schema, the

criteria approach to build Chado queries is recommended and shown in the section of

describing the data model layer.

The Chado data source manager and the Chado data objects are
defined in ApplicationContext-hibernate.xml.

The Chado data object is
linked to the Chado data
source manager.

The Chado data source
manager is pointed to
the previous defined
Chado data source,
which contains all Chado
database information.

The Chado hibernate library
contains the Chado data
object mapping informaion.

Figure 26 Chado data source manager

In order to remain flexible and independent, GOOF maintains a separated data

source schema from Chado, which manages user and database security for the whole

system. Another advantage of building GOOF in this way is that many bioinformatics

systems already have their existing Chado database. It will allow GOOF to be deployed

in many current genome data database systems. Since the connection with Chado in

 62

GOOF is already configured, users can develop their Chado transaction and view models

in accord with their needs. Since many GMOD tools are driven by Chado, GOOF can

take advantage of Chado to integrate other GMOD tools, such as Gbrowse.

3.9 Meta-programming Utility

Program generation is one of GOOF’s important contributions. A database-

driven application on top of GOOF contains many reusable components [57]. GOOF can

cut the development cost and ease development tasks by using meta-programming. In

order to increase the automation of the informatics development task, GOOF employs

XDoclet, which generates extra Java classes and applications configuration files

according to the conventions of GOOF. The meta-programming utility consists of

templates and Java programs annotated with JavaDoc comments to describe what

functional components should be used for program generation. The Java templates for

classes driven by models in the data object layer can generate classes of data transaction

and web presentation layers. The parameterization of meta-programming can unify the

similar patterns in the templates. The templates then read the similar generic patterns in

the Java class of data object models to generate other Java classes. For this to work

properly, meta-component tags in the templates have to be parameterized in fairly

restrictive and arbitrary ways. Otherwise, meta-programming might fail to guarantee that

generated programs perform correctly. This brings up tradeoffs which we had to

consider when developing the framework. The design of meta-programming templates is

associated with two several tradeoffs: safety properties and expressive power. The safety

properties refer to the integrity of generated programs. In GOOF, the template represents

 63

the generated program as abstract syntax trees in a structured meta-programming tool -

Xdoclet. This statically ensures that any generated code is correct. The meta-

programming tools of GOOF only provide simple and basic templates in order to ensure

safety properties. Moreover, there is a tradeoff of flexibility for efficiency between the

automation of meta-programming and the generated programs. The Java classes

generated by the templates certainly follow the conventions of the function definitions in

GOOF. In other words, they carry out their functions in the same way but with different

data objects. However, they can still be modified to suit the desires of GOOF developers.

The usefulness of meta-programming in GOOF depends on the design goals of the

systems. If developers construct functions for different data objects in inconsistent

fashion, meta-programming will only generate the basic codes of Java classes, not the

whole target codes. In most cases, the majority of applications for managing genome

data management present a significant amount of different data in similar ways. In this

case, meta-programming could improve the efficiency of development tasks. Another

concern is expressive power, which means what meta-programming language can define

in the templates and JavaDoc. The meta-programming tools of GOOF can generate extra

configuration files for development tasks. However, this brings up the issue discussed

above, when safety properties are the first priority, the JavaDoc with certain XDoclet

tags in Java programs can generate only part of the basic configuration files. Developers

can use them directly in the pre-constructed configuration files provided with GOOF.

This aspect of meta-programming leaves the tedious job of application configuration to

GOOF. The XDoclet tags in Java programs can dynamically generate configuration files

 64

for the whole application when it is compiled. Since GOOF consists of three MVC

layers, there are many tedious configuration files that must be integrated together so that

the data objects communicated across these three layers. The tags and conventions of

comments in Java code could be read at the compile time in order to generate extra code,

such as Hibernate mapping files, by the meta-programming tool of GOOF. This function

of meta-programming is beneficial to developers of GOOF, because all of these

configuration files are mechanical.

The Dao Hibernate java class template of DAOHibernate.xdt
in meta-programming.

Get className variable to fill in
the XdtFrom tag in the template
for generating actual codes.

Figure 27 Dao Hibernation template for meta-programming

In figure 27, the Dao Hibernate template is illustrated. Templates generate code

according to the data model Java class that users define in the data model layer. Users

 65

need to give the name of the data model to the Ant meta-programming utility command.

As we mentioned above, naming rule are important in GOOF: the file name of the data

model Java code must be the same as the name of the data model. The templates use the

name of that data model and the variables in the Java code as variables to replace the

templates tags. In order to generate code for several templates, there is an Ant build file

for this task shown in figure 28.

ant -Dmodel.name=<Data model> -Dmodel.name.lowercase=<data model>

Ant task is to generate the Dao
Hibernate Java code by using Dao
Implementation template

Users need to give the data model
name to Ant meta-progamming
command.

Figure 28 Meta-programming Ant build task definition

GOOF has templates for generic data models, transaction models and view

models to extend the framework. The templates can be used as automatic code

generators, providing a rapid solution to deploy GOOF-based applications.

 66

3.10 Summary

GOOF is a Model-Control-View object-oriented genome informatics framework.

GOOF provides a built-in connection with Chado and GMOD that has advantages over

other genome data informatics systems.

GOOF is released a whole package, including the source code. GOOF can run on

any system, UNIX/Linux/OS X/Windows. Here are the software requirements.

 A server side database supported by Hibernate. MySQL and PostgreSQL

connections are built into the GOOF. For use with Chado, PostgreSQL is

recommended.

 A Java SDK. JDK 5 has been tested. At present, JDK 5 is recommended.

All other required Java libraries are included in GOOF.

 Apache Tomcat server. Tomcat 5 has been tested and is recommended.

Other Java application servers have not been tested.

 Apache Ant. Ant is the central tool to manage the different development

stages in GOOF.

The primary features and contributions of GOOF are listed below.

 The structure of GOOF is built on object-oriented Java, which has the

advantages of allowing the framework to incorporate modular design

pattern. GOOF is the first object-oriented generic bioinformatics

framework. Genomic data can be described in Java by OO design pattern,

which simplifies the database schema design and data transaction design.

 67

 GOOF is the first systematic approach to model unstructured biological

data. The data transaction and presentation layers are built based on the

foundation of the OO data model layer. Therefore, the higher layers can

use all kinds of different biological data as an object without worrying the

unstructured data. Computer scientists could model unstructured data in

other areas by referring GOOF’s approach.

 The MVC structure allows GOOF to be independent of database system

and makes it easy to manage data object work flow and maintain

applications that may be updated as data schema changes. Each single

data object integrates the three layers and make GOOF the first integrated

from back end to front end framework.

 GOOF can manage multiple database sources, providing the flexibility to

adopt any existing database or build a unified web application on top of

multiple databases.

 The built-in connection with Chado in GOOF is of benefit to the whole

GMOD community, which allows a GOOF application to manage a

Chado-based database and integrate other GMOD tools together.

 The meta-programming utility of GOOF allows the rapid generation of

large amounts of routine program codes. The templates allow GOOF

developers to rapidly deploy similar data objects into a production

environment. Developers can construct reusable components by using

templates and reduce routine code programming.

 68

 The modular design and the object-oriented structure of GOOF provide a

user driven interface and manages role driven data access in the web

presentation layer.

 The single unified development management file provides central control

informatics application development. This is facilitated by GOOF’s the

modular design.

 GOOF’s object-oriented presentation layer provides a central mechanism

to define web interface components. This approach manages user

interface components and data access together while simplifying the data

model schema. This could be used in other interface frameworks to

simplifying interface components without complicating the data structure.

 Since GOOF is Java-base, users are free to migrate their bioinformatics

infrastructures to different operating systems.

 69

4 EQUINEBASE

4.1 Introduction

Equine genomics has been catapulted from a field with a few thousand DNA

sequences to one with a full genome sequence within the last two years. As large

amounts of Equine genomic sequence became available, horse genome researchers have

been forced to find a way to integrate that sequence data with all the other available

equine annotations. Without integration, application of the genome sequence to horse

genomic research will remain slow and inefficient. In order to facilitate this overall

integration, an easy access informatics system for managing and visualizing data is

required. This makes GOOF a near perfect solution for building an Equine genome data

system. As a demonstration of GOOF’s potential, we developed EquineBase using

GOOF. Since two versions of the equine genome assemble, we elected to setup up two

different database systems. This decision was based on the difference in the degree of

annotation available for the two assemblies. The first version had GenBank [58]

annotations and other sources of annotated information. For the second version, we had

ESTs and Repeats sequence data. The Chado schema was a good choice to build the

back end database system, because the annotated sequence data was released in the

standard format and we want to take use of other GMOD tools to analyze and visualize

the data.

 70

4.2 Structure and Content

Since GOOF is a flexible and object-oriented informatics framework, it is easy to

integrate multiple database sources and GMOD tools with a single web access interface

to provide flexible and powerful search utilities. EquineBase consists of three schemas,

which are all implemented as PostgreSQL databases. The GOOF default schema

manages the users and groups, which is a part of the security user management schema

for EquineBase. It also administers privileges for data access and the role-driven

interface for each user group. The other two Chado schemas store the two versions of the

equine sequence assembly data and their annotated information. We manage equine

sequence data version 1 and 2 in two schemas to reduce the single database load and

balance the performance of the databases. In figure 29, we show the overall structure of

EquineBase.

EquineBase mainly provides an interface for data mining on Equine genomic

sequence data. Although Gbrowse can present data on the web, it has a very limited

 71

Equine V1
Data

Equine V2
Data

Users and
Groups

Data
Transactions

Managers

Equine V2 Data
Objects

Users Data
Objects

The Resource
Definitions of

Modular
Components of

The Web
Interface

Equine V1 Data
Objects

Gbrowse

EquineBase
Web

Interface

Web Actions
Managers

Database
Sources

The Data
Objects Layer

The Web
Presentation

Layer

The Data
Transaction Layer

The Structure of EquineBase

Figure 29 The structure of EquineBase

search and data mining tools. The Gbrowse visualization of the data is not powerful

enough to discover all the inherent relationships in the data. In contrast, the data

transaction layer of GOOF gives EquineBase many ways to search the data. The

templates and MVC structure of GOOF made it easy to build EquineBase.

Figure 30 shows the login interface, which contains the security check managed

by the user management module. Figure 31 the detail view of a feature, which is the

standard detail view based on the template view module of GOOF. The detail view is

integrated with a Gbrowse view, which visualizes the feature on the reference genome

and the relationships with other features to help researchers discover more biological

 72

associations. There is a link on the Gbrowse view to the full Gbrowse view, which

shows more annotated information for each feature.

Figure 30 EquineBase login interface

 73

Figure 31 EquineBase data detail view

4.3 The Search Schema

Initially, we developed the EquineBase schema, including gene annotation,

microarray probes, gene mapping, and EST components. After reviewing the Chado

 74

schema, we decided to transfer our existing EquineBase schema to Chado. Chado

provides a generic organism model and more comprehensive components. This makes it

easy to integrate other GMOD tools into EquineBase. Other utility tools in Chado help

us handle the raw sequence data in other standard file formats, such as GenBank and

GFF3. Even though Chado has more features than necessary for EquineBase, the

migration would be a single database and data object mapping and subsequently provide

the standard mapping interface of GOOF for other organisms.

feature_id
orgamism_id
type_id
name
……

feature

featureloc_id
feature_id
scrfeature_id
type_id
fmin
fmax
strand
……

featureloc

featureprop_id
feature_id
type_id
value
……

featureprop

feature_cvterm_id
feature_id
type_id
……

feature_cvterm

cvterm_id
name
definition
……

cvterm

The simple schema to drive the search interface

Figure 32 EquineBase basic search schema

 75

The schema to drive the search interface is shown in figure 32 and is a simplified

version of the Chado sequence schema. Each feature, which could be EST, gene,

mRNA, SNP, repeat or any genomic data object, is listed according to its location on the

reference genome. The features are grouped into different tracks or types of genomic

data objects aligning on the reference genome. Each object can have an unlimited

number of properties. Each property has its own unique properties (tags) and a value.

This schema provides search strategies to allow researchers to carry out data mining of

the raw genomic data.

 Search equine data features by matching name on a particular track across

difference reference genomes.

 Search equine data features across different tracks within a certain

distance on a reference genome.

 Search equine data features with matched values of properties cross

different tracks.

Figure 33 shows the interface to explore genes based on the matched gene

description. This simple search function involves the feature, featureprop, cvterm tables.

Cvterm is set to “Gene” track for the features. Featureprop is set to the value which users

request, and the link from featureprop to cvterm is set to gene description, the “product”

tag. Since the complexity of Chado could confuse users, EquineBase provides a simple

interface and functions which Gbrowse does not have.

 76

The search interface to explore gene description in EquineBase

Figure 33 EquineBase search interface

In figure 34, we show the results of a gene description search. Since the property

values of features are stored in the featureprop table and the property name is stored in

the cvterm table, the search results are actually built using three data objects. In the web

presentation layer, the web action binds them together as one data object in order to

simplify the web interface layout design and fit the data into the web data list template.

 77

the search results of gene description on EquineBase

Figure 34 The results of a gene description search in EquineBase

4.4 Summary

EquineBase is an integrated online resource for managing equine genomic data

and provides a data mining and visualization tool. For equine genomic sequence data to

be fully and efficiently explored by animal and biomedical researchers, EquineBase will

keep its data updated and add more data mining utilities according to researchers’ needs.

Since part of database schema of EquineBase was adopted from Chado, it is easy to

communicate with remote equine genomic data sources and update the local data source.

Because of the object-oriented structure of GOOF, EquineBase is flexible and can add

more function modules in the future. In addition, EquineBase also contributes to the

 78

development of GOOF as a part of this research study. GOOF provides EquineBase with

a systematic approach to model unstructured Equine genome data and a framework to

build a data mining interface. Therefore, EquineBase would help enriching the

knowledge in the horse research community.

 79

5 OMIMBASE

5.1 Introduction

OMIM, Online Mendelian Inheritance in Man, is a database of human genes and

genetic disorders. It would help researchers studying horse genetic disease to be able to

use the knowledge in OMIM in an equine context. In order to do this, one must map

OMIM onto the equine reference genome. Since the first version of equine assembly is

fully annotated, we have taken advantage of this and fact that human gene annotation

exists for many of the entries in OMIM. This information has been used to link the

equine genome data and the OMIM data where possible. An application module to

support searches of these linked data has been created and is called the Online

Mendelian Inheritance in Man (OMIM) Base. OMIMBase is the first resource to provide

animal and biomedical researchers with an integrated Horse and OMIM knowledge

database. OMIMBase not only integrates both databases, but also builds a data mining

utility to discover biomedical knowledge.

5.2 Structure and Content

First of all, the OMIM data in NCBI is a standalone flat data file. There is no

good facility to search OMIM data, even though NCBI gives the relationships linking

OMIM and the Human genome sequence. In order to build the connection from the

clinical study portion of OMIM to the Equine genome, OMIM information was

processed into a clean format from the NCBI OMIM flat file. OMIM data was then

mapped onto the equine genome sequences by BLAST [59]. Finally, we modeled the

 80

OMIM data into Chado. OMIMBase data is displayed as another track on the equine

reference genome.

OMIM
Data

Users and
Groups

Data
Transactions

Managers

Users Data
Objects

The Resource
Definitions of

Modular
Components of

The Web
Interface

Chado Generic
Data Objects

Gbrowse

OMIMBase
Web

Interface

Web Actions
Managers

Database
Sources

The Data
Objects Layer

The Web
Presentation

Layer

The Data
Transaction Layer

The Structure of OMIMBase

Equine
V1/V2
Data

Mapping

Figure 35 The structure of OMIMBase

In figure 35, the overall structure of OMIMBase is the same as EquineBase,

because both of them are built using GOOF. They are both modeled using Chado generic

data object model. The relationships linking OMIM data and equine genes are built on

the equine genome sequence. In other words, they are connected by the same range of

locations on the equine genome sequence. We built the key clinical study data of OMIM

into our own in-house database. Therefore, OMIMBase can provide researchers with

 81

better search functions to discover relationships between human and equine genetic

diseases.

OMIMBase as a component of EquineBase

OMIMBase is an independent
component of EquineBase. It can be
accessed by a restricted user group.

Figure 36 OMIMBase menu in EquineBase

Figure 36 shows that OMIMBase was built as an independent component of

EquineBase. The search interface of OMIMBase is a separate menu, which can be

accessed by a restricted user group. Since there are two versions of the equine genome

assembly, we mapped OMIM data to both of them. We built two data transaction

managers for OMIMBase. One is for the first version of the equine genome assembly.

The other is for the second version. The search interfaces for OMIM on both of equine

genome assemblies can be accessed via the OMIMBase menu. In this fashion,

 82

OMIMBase data can be easily updated without affecting EquineBase data, even though

they share the same data structure in the database. This latter feature is needed because

NCBI updates the OMIM database much more often than genome sequences. The goal

of OMIMBase is to provide comparative genomic analysis in order to study genetic

diseases in horse and human, so we do not need to keep the OMIM descriptions updated.

To take advantages of NCBI’s frequent updates of disease and literature reference

database, OMIMBase offers a link to NCBI for the detailed clinical study report and

reference.

5.3 The Search Schema

The schema to drive the search interface in OMIMBase is also based on Chado.

However, the search strategy is different from that of EquineBase because of different

user requirements. The search results show a list of OMIM entries retrieved, and each

entry is linked to a Gbrowse view that shows equine gene products in the same region.

 Search OMIM within a limited region of the certain equine genome.

 Search OMIM according to the clinical study data across the genomes.

 83

Query the symbols
or clinical study of
a OMIM entry

A OMIMBase query interface to search the symbol
or clinical study of a OMIM in a certain Equine
genome.

Figure 37 OMIMBase search interface

Figure 37, for instance, shows an interface for searching OMIM data on an

equine reference genome. On this interface, OMIM data can be searched based on either

the clinical study or the gene symbols. Both of search functions were built using the

Chado feature property search template, which is also used by several search functions

in EquineBase. This is benefit from the generic data structure and the flexible MVC

structure of GOOF.

 84

OMIMBase search results using the data object list template

Figure 38 OMIMBase search results list

Figure 38 shows an OMIM search result example, which is built on the data

object list template. Users can sort the results based on feature name, start position, or

symbols to quickly identify the most interesting data. Figure 39 shows the OMIM detail

view, which shows only a brief description of clinical study information. For the further

details of a clinical study report and references, users can click the link on the Gbrowse

view to NCBI OMIM database. One of many contributions by OMIMBase is that the

search functions for OMIM not only provide an interface to search for human genetic

 85

disorders in OMIM, but also present the otherwise cryptic relationships between OMIM

and features on the equine genome, such as genes, SNPs, repeats etc.. That cryptic

knowledge is not directly presented in the database, but can be discovered by using

OMIMBase.

OMIMBase the detail view of a OMIM entry

The Gbrowse view of
a OMIM entry shows
the relationship of
OMIM and other
features in an equine
genome.

Figure 39 OMIMBase OMIM detail view

5.4 Summary

OMIMBase is developed as an independent component of EquineBase, which

enhances the scientific importance of equine genome data and OMIM. As the first online

 86

resource that links OMIM data and the equine genome, OMIMBase provides animal

researchers and biomedical scientists with a data mining tool and an integrated

knowledge database of OMIM and horse. OMIMBase will add more data and organize

the OMIM clinical study data in response to the new OMIM data and annotations of

equine genome. OMIMBase will keep updated with NCBI OMIM and will have more

data mining functions. The main difficulty at the current development stage of

OMIMBase is that the clinical study data in NCBI OMIM is in free text format. One big

contribution of OMIMBase is to model unstructured OMIM and Equine genome data

and provide a data mining interface. That accelerates the Equine genetics research.

OMIMBase, as a GOOF application, demonstrated the flexibility of the OO

structure of GOOF. The user driven interface can control OMIMBase as an independent

application for certain user group. In other words, a GOOF application can add on

another GOOF application as a controllable module, which would not affect the original

structure of the application.

 87

6 EVALUATION

 After the general release of GOOF, EquineBase and OMIMBASE, user feedback

has led to improvements on them and helped us evaluate whether or not GOOF,

EquineBase and OMIMBase reached our original expectations. Critical evaluation

criteria for a genome informatics framework are critical to evaluate the applicability and

flexibility [60] [61]. Only a successful application will demonstrate how GOOF

contributes a bioinformatics system development. We will first discuss the

improvements to GOOF based on the development of EquineBase and OMIMBase.

Then, we will compare the features of GOOF with those of other bioinformatics system.

We will discuss two parts of evaluations on this whole research work: one is GOOF

developers’ feedback and another is EquineBase and OMIMBase’s user survey. Since

GOOF was proposed as a generic bioinformatics, we have conducted a survey to

different levels of bioinformatics developers to evaluate whether GOOF solves the

research issues discussed in the introduction section. Since the user interface is one part

of this research study, we have evaluated the GOOF interface through user feedback of

EquineBase and OMIMBase.

6.1 Improvements

Since applicability and user feedback are part of this research study, a

demonstration was required. Two independent applications, EquineBase and

OMIMBase, show the applicability and interface issues of GOOF.

GOOF was initially proposed as an informatics framework more for the

 88

developers of a genome informatics infrastructure. However, GOOF targets genome data

management. When we started to build EquineBase and OMIMBase, we concluded that

we should incorporate characteristics of genome data and existing bioinformatics system

into GOOF. The object-oriented structure of GOOF is flexible enough to be expanded

and integrate other modules. Here are the improvements of GOOF which we

incorporated from the development of EquineBase and OMIMBase.

 GOOF expands to a multiple database driven front end development

framework. The user and security schema is independent of any data

schema. Data access is shifted to the presentation layer and is controlled

by the interface modules based on the user schema.

 GOOF sets up a separated data source manager to link the data model

layer and the target data database. Therefore, data objects in the

framework can ignore their data sources and make development

independent of the database system.

 GOOF improves the data model layer and is built with the Chado

connection. This makes it easy to build a GOOF application on a Chado

schema database and integrate other GMOD tools.

 GOOF adds the criteria search module into the data transaction template.

This makes it easy to build a multiple joint query on a complicated

database schema, such as Chado.

6.2 Comparison of Different Frameworks

The major difference of GOOF from other java frameworks is that GOOF

 89

interlinks the data model, data transactions and presentation layer together. In order to

provide a simple and rapid solution, GOOF uses a single data object across three MVC

layers at the expense of losing some functions found in other frameworks. Moreover,

any informatics infrastructure create using GOOF must follow strict rules. With other

bioinformatics system, GOOF provides a generic genome data management framework.

The object-oriented structure of GOOF leads a flexible and simple solution compared to

other frameworks.

GOOF is an integration of three MVC layers. Hibernate, iBase, Pure JDBC are

several data access Java frameworks. They are all flexible, but a large amount of work is

required to configure them and connect the database. Spring, Struct, Tapestry and

WebWork are frameworks for data transaction and data presentation development. They

can provide many functions for the interface. None of them are integrated together

because that was not their original goal. GOOF links them together and many

configurations are available within GOOF. Database connections, data sources, data

transaction managers and web components are defined. Since the goal of GOOF is to

provide a rapid method for implementing a bioinformatics infrastructure, the data model

and data transaction targets the characteristics of genome data. The connection of GOOF

with Chado is a significant contribution. The templates provided by GOOF are

developed for the genome data model. In summary, GOOF is an integration framework

built using other basic Java framework.

Until now, the most mature bioinformatics system to make use of Chado was

Gbrowse. But Gbrowse is only a data visualization tool for genome data, and it lacks a

 90

comprehensive data query interface and user data access management. Another web

front end is Turnkey, which lacks many recent developments due to its inflexible

structure. LAD and SMD are developed as gene expression data systems, which do not

manage general genome data. Moreover, users of LAD and SMD have to use a specific

schema for gene expression data. Chado is a very comprehensive genome database

schema, including mapping, sequence, library, phenotype, organism modules and so on.

The flexible object-oriented structure of GOOF has been adapted to Chado and can add

any customized data schema from existing bioinformatics system. The modular design

of the interface allows a GOOF application to be scaled to a large application. Since

GOOF can manage multiple data schemas, a separated user schema reduces the

complexity of the data schema but retains data access control in the presentation layer.

This mechanism gives GOOF an advantage over other bioinformatics systems in term of

user access control, since others systems either build user data access into the data

schema or do not have it.

6.3 Evaluation of User Feedback

For the developers to choose GOOF, the most important criterion is why they

would pick GOOF over other frameworks to construct new systems. Since GOOF only

targets certain applications, it will face only particular groups of developers; biology

researchers who need their own informatics system to manage genome data. The

development time, lines of codes and reduction of maintenance are the major evaluation

matrices. If the database is based on Chado, they do not need to develop a data model for

GOOF. They only need to customize the data transaction query and the web interface

 91

according to their needs. If they want to develop an individual data schema, they only

need to describe a data object in the data model layer and then GOOF will automatically

build the data schema and the target database. The templates provided by GOOF help

developers significantly reduce the amount of time needed to develop a data query

transaction. The modular design of the interface and the centralized management of web

interface components reduces both the development time and the amount of redundant

code programming. The MVC structure reduces the maintenance of a GOOF application,

because any change in any layer will not interrupt others as long as the interfaces are the

same.

A list of questions was created towards evaluating the goals and features of

GOOF. We conducted the survey with different types of developers and wanted to see

how developers view GOOF as a generic bioinformatics framework. There were three

participants: one is a bioinformatics developer of Bovine Genome Consortium, who

works on a similar type of data and is a PHP developer with a little experience on Java;

the other is a Java web application but not a bioinformatics system developer; the other

is a C/C++ database application developer with few experience on Java and interface.

We address the following questions and purposes in the survey.

 Is the MVC structure of GOOF generic and flexible enough to construct a

new project? Does the integrated structure of GOOF help the development

procedure? Does the data model layer make it easy to construct a database

application?

 Does GOOF reduce the programming lines of work for a bioinformatics/web

 92

database project? What is the percentage of reduced code that you estimate

by comparing with other approaches? Please compare it to different

programming languages and frameworks that you have used before.

 Does GOOF reduce the time of development work since it is a new

framework for a developer? How about the learning curve?

 Does GOOF help to update a bioinformatics system when adding new

functions and interface?

 What are your suggestions for GOOF? What are the advantages and

shortcomings of GOOF? What is the wish list of features of GOOF?

Three of them completed the survey and gave us some additional feedback.

Figure 40 shows the profiles of GOOF developers in the survey.

 93

Figure 40 Developers' profiles in GOOF survey

 94

Figure 41 Developers' positive responses to the advantages of GOOF in the survey

Figure 42 Developers' responses to the shortcomings of GOOF in the survey

 95

Figure 41 shows the summary of developers’ responses to the advantages of

GOOF and figure 42 shows the summary of developers’ responses to the shortcomings

in the survey. We summarized several aspects from a development point of view on

GOOF.

 For developers who are not familiar with object-oriented concept, once they

understand the structure of GOOF, MVC layers and the data model approach

are efficient and effective. The data model layer is flexible to build a database

application fast on either a new database schema or an existing one by

comparing to PHP or C/C++.

 Three independent layers make it individually to construct each component in

a GOOF application. The centralized resource definitions in the interface

layer keep it easy to manage and develop interface comparing with PHP and

C/C++ approaches.

 By comparing the number of files and cumulative lines in the PHP approach

on a bioinformatics project, the object-oriented approach presented by GOOF

reduces the code by approximately fifty percent. With updated data and

functions in a bioinformatics web application, it could reduce the code

further.

 The data model layer and templates in GOOF significantly reduce the time on

developing a bioinformatics system, but are not flexible and suitable on other

web applications.

 For non-Java developers, there is a learning curve. However, the clarity of

 96

MVC design pattern helps developers understand GOOF and apply it on a

bioinformatics system construction.

 Making modifications and updates has been streamlined, because all levels of

the GOOF structure are independent of one another. Applications developed

by using GOOF reduce the cost of the future maintenance and migration.

For end users of a GOOF application, GOOF simplifies the construction of user

interfaces by using OO structure and models. This modular approach could allow GOOF

to evaluate different groups and then construct a best fit interface. The user survey

helped us understand how certain groups of users feel about the functionality of

interfaces. Two major measurements of usability are the time which users take to reach

their target data, and expert opinions on how the interface is easy to use. The evaluation

results will feed back to the future development on the interface layer of GOOF and

EquineBase and OMIMBase.

We conducted a question survey with total five people of Maxwell H. Gluck

Equine Research Center and Texas A&M University College of Veterinary Medicine on

EquineBase. We also made an observation on the user experience of EquineBase with

one person at Texas A&M University. They are all genetic or biomedical researchers

who have experience with many different bioinformatics web applications. Only one of

them has some knowledge of databases. The survey questions aimed at determining

whether or not the interface is appealing and easy to understand its function. The

observation was conducted to see how fast the user learns the interface and their

responses. Figure 43 shows the profiles of users in the survey. Here are the questions in

 97

the survey.

Figure 43 Users' profiles in EquineBase survey

 Does the search interface in EquineBase help you find the target data fast and

easily?

 Is easy it to navigate the interface and find the function that you need? Do

you like the layout of menus?

 98

 What are your favorite functions of EquineBase? Do you have any suggestion

on improving the interface?

Figure 44 The summary of the user survey

Figure 44 shows the summary of end users’ responses to the features of

EquineBase in the survey. We summarized several aspects of the usability of

EquineBase and our improvements.

 Equinebase has the search functions which can go deep into the data, but

 99

are not provided by other bioinformatics tools and equine database. That

means we achieved the goals of EquineBase.

 The drop-down option list keeps several search functions in one interface.

This simplifies the user interface and reduces the time for user to explore

different functions on EquineBase.

 The sortable search result list and export options of the data are very

useful. It helps users identify the target data and download the result data.

However, users require having more options of sorting the result data,

such as the positions and the annotations of data. After the survey, we

updated the search result list template and added extra fields in the result

list.

 The search functions lack the flexibility of setting the range for searching

a feature. We updated feature the search function template to allow

setting the range for searching a feature. However, we still provide only

several range parameters for searching. One concern is that we want to

reduce the search time. Another is that we need to balance the functions

and the performance of hardware.

 Users would like to have some hints and a user guide on the interface. We

added some examples on search interfaces and will provide a

comprehensive user guide.

In summary, the user surveys are critical for this study because they provide us

with inside views and different prospects of GOOF and EquineBase. As a proposed

 100

bioinformatics framework targets both of developers and end users, the feedback could

improve and direct the future research work. EquineBase was developed to provide a

user friendly web resource for access equine genome data. The end users help

EquineBase improving the usability.

 101

7 CONCLUSIONS AND FUTURE WORK

7.1 Summary and Conclusions

While there are a number of genome informatics systems available, we have

concentrated on the whole system, from the back end to the front end genomic data

management solution. GOOF is novel because it is the first framework that integrates a

Model-View-Controller object-oriented genome informatics framework with many pre-

built utilities to help genomics and biomedical researchers build their own

bioinformatics infrastructure. In this research study, we successfully built EquineBase

and OMIMBase using GOOF. There is no reason why other organism specific

bioinformatics systems cannot develop their own bioinformatics infrastructure rapidly by

taking advantages of GOOF. The Bovine research community has plans to build the next

generation of QTL viewer system based on GOOF. The built-in connection on the data

object layer with Chado could provide a rapid procedure to develop any organism

specific genomic bioinformatics infrastructure. Good examples of this are EquineBase

and OMIMBase. GOOF is a new contribution to the informatics component of this

research and EquineBase and OMIMBase are significant outputs from the biological

component of this work.

Advantages and flexibility of GOOF:

 GOOF is a simple, object-oriented structure, which allows users to develop their

own complex data models.

 GOOF is developed using standard and open source technology, which is reliable

and easily updated.

 102

 GOOF is a Java framework, which is easy to update and support simple

migration to different platforms.

 GOOF is a comprehensive solution for the back-end, middleware and front-end

framework, and is flexible enough to adapt to any existing genome database

system, since it is independent of the back-end database and uses the

object/relation mapping tool to connect with any major database.

 Any bioinformatics application developed with GOOF can be either simple or

complex according to requirements. There are several data object templates

available for users to construct their data schema. Or the pre-built connection

with Chado as the back end database schema allows users to make use of the

GMOD toolkit.

 The object-oriented data modeling structure in GOOF can simplify the query

interface and improve users’ data exploration.

 The modular design of GOOF’s web interface makes it a simple task to tailor

interfaces according to the needs of certain user groups.

Disadvantages of GOOF:

 GOOF is built on pure Java. GOOF cannot take advantage of BioPerl [62] to

process raw biological data.

 GOOF follows strict object-oriented rules. Any GOOF–based application has to

conform to the object-oriented pattern to develop bioinformatics infrastructures.

 Advantages of EquineBase and OMIMBase:

 EquineBase is the first bioinformatics resource for Equine genome data.

 103

 OMIMBase is the first combined OMIM and Equine genome data resource for

animal and biomedical researchers who are interested in studying genetic

diseases of the horse.

 EquineBase and OMIMBase provide a flexible and straightforward data mining

interface. Users do not have to construct queries themselves.

 EquineBase and OMIMBase integrate data mining tools (the web presentation of

GOOF) and a data visualization utility (Gbrowse).

 The back bone structure of EquineBase and OMIMBase make it easy to update

the bioinformatics infrastructure and process new types of data.

 The fact that the user schema is separated from the genomic data schema allows

easy data access management in EquineBase and OMIMBase.

7.2 Directions for Future Work

In this research study, we already showed the advantages of a genome object-

oriented informatics framework over other genome informatics framework. Through

EquineBase and OMIMBase, we demonstrated GOOF’s applicability and flexibility.

However, from an end user point of view, there are several features that need to be

developed in the future in order to make GOOF a more comprehensive data management

and data mining toolkit.

Even though GOOF was originally developed as a web accessible genomic data

management framework, some end users would like to generate a data mining report

consisting of large numbers of data entries. This requirement suggests that the web

 104

access interface would not be a good solution for these types of output. Therefore, a high

performance data mining interface is required in GOOF. This would not be difficult to

implement within the currently data transaction layer. In the web presentation layer, the

current available template could build an interface for complex data mining criteria.

This, however, creates a new problem for the system as a whole. One example of such a

scenario has users constructing a complex data mining process to query across all the

genomes in the database. This task could use significant system resources and take

several hours or even days to generate a data report. GOOF could then provide the

resulting report as a link to users and notify them automatically by email. Usually, high

throughput data mining such as this could require a significant hardware resource. This

in turn requires a job queuing system, a back end computing cluster and a database

cluster. The complexity of this kind of system is far beyond the scope of this research

study. The next research task for GOOF development should include a data mining

interface to generating high throughput reports in the background.

Should users develop their own data management schema from a scratch by

using the data object template of GOOF, a utility to transfer raw data files into XML

data entry format would be a useful future. Currently, the central development

management utility in GOOF can build a schema and load data into the target database

without directly operating on the database system. However, users would still need to

develop their own parsers to convert the raw data into XML format.

The meta-programming utility in GOOF currently only generates standard query

data transaction codes using the single data object definition. The tag for the

 105

relationships of multiple data objects should be developed to allow construction of the

data transaction codes from the meta-programming template.

EquineBase and OMIMBase will continue to be developed according the needs

of the research community and in response to the generation of new data. The new data

will in turn stimulate the development of more data mining procedures. As more users

come online and submit queries a front end proxy cache system might be needed to

improve the performance of EquineBase and OMIMBase. In addition, links to other data

source systems should be developed in the future. In other words, EquineBase and

OMIMBase should allow remote data query from other bioinformatics system across the

network. As more data mining utilities and more annotated data become available,

EquineBase and OMIMBase should significantly speed up the equine and biomedical

research in the future.

 106

REFERENCES

1. Mungall CJ, Emmert DB: A Chado case study: an ontology-based modular

schema for representing genome-associated biological information.

Bioinformatics 2007, 23(13):i337-346.

2. Stein LD, Mungall C, Shu S, Caudy M, Mangone M, Day A, Nickerson E,

Stajich JE, Harris TW, Arva A et al: The generic genome browser: a building

block for a model organism system database. Genome Res 2002, 12(10):1599-

1610.

3. Killion PJ, Sherlock G, Iyer VR: The Longhorn Array Database (LAD): an

open-source, MIAME compliant implementation of the Stanford

Microarray Database (SMD). BMC Bioinformatics 2003, 4:32-37.

4. Demeter J, Beauheim C, Gollub J, Hernandez-Boussard T, Jin H, Maier D,

Matese JC, Nitzberg M, Wymore F, Zachariah ZK et al: The Stanford

Microarray Database: implementation of new analysis tools and open source

release of software. Nucleic Acids Res 2007, 35(Database issue):D766-770.

5. Erich G, Richard H, Ralph J, John V: Design patterns: elements of reusable

object oriented software. European Journal of Control 2007, 13(5).

6. Gellersen HW, Gaedke M: Object-oriented web application development.

Internet Computing, IEEE, Washington, D.C., 1999, 3(1):60-68.

 107

7. Fayad ME, Schmidt DC, Johnson RE: Building application frameworks:

object-oriented foundations of framework design: John Wiley & Sons Inc.,

New York, NY 1999.

8. McKusick VA: Mendelian Inheritance in Man and its online version, OMIM.

Am J Hum Genet 2007, 80(4):588-604.

9. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA: Online

Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes

and genetic disorders. Nucleic Acids Res 2005, 33(Database issue):D514-517.

10. Amladi S: Online Mendelian Inheritance in Man 'OMIM'. Indian J Dermatol

Venereol Leprol 2003, 69(6):423-424.

11. Larmann C: Applying UML and patterns: an introduction to object-oriented

analysis and design and the unified process: Prentice Hall PTR, Indianapolis,

IN 2002.

12. Johnson R: J2EE development frameworks. Computer 2005, 38(1):107-110.

13. Arthur J, Azadegan S: Spring framework for rapid open source J2EE Web

application development: a case study. Proceedings of the 6th International

Conference on Software Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing and 1st ACIS International Workshop on Self-

Assembling Wireless Networks, Towson, MD 2005:90-95.

14. Wilson RJ, Goodman JL, Strelets VB: FlyBase: integration and improvements

to query tools. Nucleic Acids Res 2008, 36(Database issue):D588-593.

 108

15. Drysdale RA, Crosby MA: FlyBase: genes and gene models. Nucleic Acids Res

2005, 33(Database issue):D390-395.

16. Crosby MA, Goodman JL, Strelets VB, Zhang P, Gelbart WM: FlyBase:

genomes by the dozen. Nucleic Acids Res 2007, 35(Database issue):D486-491.

17. Rogers A, Antoshechkin I, Bieri T, Blasiar D, Bastiani C, Canaran P, Chan J,

Chen WJ, Davis P, Fernandes J et al: WormBase 2007. Nucleic Acids Res 2008,

36(Database issue):D612-617.

18. Bieri T, Blasiar D, Ozersky P, Antoshechkin I, Bastiani C, Canaran P, Chan J,

Chen N, Chen WJ, Davis P et al: WormBase: new content and better access.

Nucleic Acids Res 2007, 35(Database issue):D506-510.

19. Schwarz EM, Antoshechkin I, Bastiani C, Bieri T, Blasiar D, Canaran P, Chan J,

Chen N, Chen WJ, Davis P et al: WormBase: better software, richer content.

Nucleic Acids Res 2006, 34(Database issue):D475-478.

20. Harris TW, Stein LD: WormBase: methods for data mining and comparative

genomics. Methods Mol Biol 2006, 351:31-50.

21. Chisholm RL, Gaudet P, Just EM, Pilcher KE, Fey P, Merchant SN, Kibbe WA:

dictyBase, the model organism database for Dictyostelium discoideum.

Nucleic Acids Res 2006, 34(Database issue):D423-427.

22. Fey P, Gaudet P, Pilcher KE, Franke J, Chisholm RL: dictyBase and the Dicty

Stock Center. Methods Mol Biol 2006, 346:51-74.

 109

23. Marinelli RJ, Montgomery K, Liu CL, Shah NH, Prapong W, Nitzberg M,

Zachariah ZK, Sherlock GJ, Natkunam Y, West RB et al: The Stanford tissue

microarray database. Nucleic Acids Res 2008, 36(Database issue):D871-877.

24. Pan X, Stein L, Brendel V: SynBrowse: a synteny browser for comparative

sequence analysis. Bioinformatics 2005, 21(17):3461-3468.

25. Garzas J, Piattini M: An ontology for understanding and applying object-

oriented design knowledge. International Journal of Software Engineering and

Knowledge Engineering 2007, 17(3):407-421.

26. Sauter P, Vogler G, Specht G, Flor T: Extending the MVC design pattern

towards a task-oriented development approach for pervasive computing

applications. Organic and Pervasive Computing Arcs 2004, 2981:309-321.

27. Adamko A: UML-based modeling of data-oriented WEB applications.

Journal of Universal Computer Science 2006, 12(9):1104-1117.

28. Zarras A: A comparison framework for middleware infrastructures. Journal

of Object Technology 2004, 3(5):103-123.

29. Gomez-Perez A, Gonzalez-Cabero R, Lama M: A framework for design and

composition of semantic web services. AAAI Spring Symposium Series,

Stanford University, Palo Alto, CA 2004.

30. Li L, Liu HW: The least configuration files implement MVC model of

customized query. Dynamics of Continuous Discrete and Impulsive Systems-

Series a-Mathematical Analysis 2006, 13:1914-1921.

31. AppFuse. http://www.appfuse.org/ Accessed September 2007.

 110

32. Bauer C, King G: Hibernate in action. Manning Co., Greenwich, CT 2005.

33. Lightbody P, Carreira J: WebWork in action. Manning Co., Greenwich, CT

2006.

34. Walls C, Breidenbach R: Spring in action. Manning Co., Greenwich, CT 2005.

35. Walnes J, ebrary Inc.: Java open source programming with XDoclet, JUnit,

WebWork, Hibernate. Java Open Source library, Wiley, Indianapolis, IN 2004.

36. Ford N: Art of Java web development: Struts, Tapestry, Commons, Velocity,

JUnit, Axis, Cocoon, InternetBeans, WebWork. Manning Co., Greenwich, CT

2003.

37. Simonyi C: Meta-programming: a software production method. Dissertation

(Ph D), Dept of Computer Science, Stanford University 1977.

38. Batory D: Multi-level models in model driven development, product-lines,

and metaprogramming. IBM Systems Journal 2006, 45(3):527-540.

39. Abrahams D, Gurtovoy A: C++ template metaprogramming: concepts, tools,

and techniques from boost and beyond. Addison-Wesley Co., Boston, MA

2005.

40. Jarzabek S, Shubiao L: Eliminating redundancies with a" composition with

adaptation" meta-programming technique. Proceedings of the 9th European

Software Engineering Conference held jointly with 11th ACM SIGSOFT

International Symposium on Foundations of Software Engineering, Helsinki

Finland 2003:237-246.

 111

41. Hightower R, Lesiecki N: Java tools for extreme programming. Journal of

Computing and Information Technology 2003, 11(2):01-02.

42. Löwe W, Noga ML: Metaprogramming applied to web component

deployment. Electronic Notes in Theoretical Computer Science 2002, 65(4):106-

116.

43. Atkinson C, Kuhne T: Model-driven development: a metamodeling

foundation. Software, IEEE, Washington, D.C., 2003, 20(5):36-41.

44. Pettersson M: DML: a meta-language for compiler generation from

denotational specifications. Dept. of Computer and Information Science,

Linkoeping University, 1990.

45. Garcia R, Jarvi J, Lumsdaine A, Siek J, Willcock J: An extended comparative

study of language support for generic programming. Journal of Functional

Programming 2007, 17:145-205.

46. Basit HA, Rajapakse DC, Jarzabek S: Beyond templates: a study of clones in

the STL and some general implications. Proceedings of the 27th International

Conference on Software Engineering 2005:451-459.

47. Naftalin M, Wadler P: Java generics and collections. O'Reilly, Sebastopol, CA

2007.

48. Von Dincklage D, Diwan A: Converting Java classes to use generics. ACM

SIGPLAN Notices 2004, 39(10):1-14.

49. Ghosh D: Generics in Java and C++ - a comparative model. ACM SIGPLAN

Notices 2004, 39(5):40-47.

 112

50. Lopez-Herrejon R, Batory D, Lengauer C: A disciplined approach to aspect

composition. Proceedings of the 2006 ACM SIGPLAN Symposium on Partial

Evaluation and Semantics-based Program Manipulation 2006:68-77.

51. de Oliveira AA, Braga TH, de Almeida Maia M, da Silva Bigonha R: MetaJ: an

extensible environment for metaprogramming in Java. J Universal Computer

Science 2004, 10(7):872–891.

52. Walls C, Richards N: XDoclet in action. Manning Co., Greenwich, CT 2004.

53. Tratt L: Compile-time meta-programming in a dynamically typed OO

language. Proceedings of the 2005 Conference on Dynamic Languages

Symposium, St. Louis, MO 2005:49-63.

54. Shneiderman B: Designing the user interface: strategies for effective human-

computer interaction. Addison-Wesley Co., Boston, MA 1992.

55. Fields DK, Kolb MA, Bayern S: Web development with Java server pages.

Manning Co., Greenwich, CT 2001.

56. Hatcher E, Loughran S: JAVA development with Ant. Manning Co.,

Greenwich, CT 2003.

57. Jarzabek S, Pettersson U: Cost-effective engineering of web applications

pragmatic reuse: building web application product lines. International

Conference on Software Engineering, Shanghai, China 2006:1053-1054.

58. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL: GenBank.

Nucleic Acids Res 2008, 36(Database issue):D25-30.

 113

59. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment

search tool. Journal of Molecular Biology 1990, 215(3):403-410.

60. Schneidewind NF: Experience report on using object-oriented design for

software maintenance. Journal of Software Maintenance and Evolution-

Research and Practice 2007, 19(3):183-201.

61. Papastavrou S, Chrysanthis PK, Samaras G, Pitoura E: an evaluation of the

Java-based approaches to web database access. International Journal of

Cooperative Information Systems 2001, 10(4):401-422.

62. Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C, Fuellen

G, Gilbert JG, Korf I, Lapp H et al: The Bioperl toolkit: Perl modules for the

life sciences. Genome Res 2002, 12(10):1611-1618.

 114

APPENDIX A: INSTALLATION OF GOOF

GOOF is released as a zip or tar.gz package. Once it is unzipped, there is a

“goof” folder, which contains all of Java libraries, source codes and configuration files.

Before developing applications based on GOOF, install JDK (v5 or higher, which

has been tested), ant (v1.6.5 or higher), MySql or PostgreSQL, and Tomcat (v 5.5, which

has been tested). Set up the environment variables: JAVA_HOME, ANT_HOME,

CATALINA_HOME for UNIX or Windows platform.

1. Build a new applications. Run “ant new”, which basically renames and replace

the application variables and packages. It generates a new folder with the new

application name. This is the foundation of a GOOF application.

=========================

ant new

=========================

=========================

Buildfile: build.xml

Trying to override old definition of datatype resources

clean:

 [echo] Cleaning build and distribution directories

init:

new:

 [echo]

 [echo] +---+

 115

 [echo] | -- Welcome to the Application Wizard! -- |

 [echo] +---+

 [echo]

 [input] What would you like to name your application [myapp]? [myapp]

BovineQTL

 [input] What would you like to name your database [mydb]? [mydb]

BovineQTL

 [input] What package name would you like to use [edu.tamu.goof]? [edu.tamu.goof]

edu.tamu.bovineqtl

 [echo] Creating new application named 'BovineQTL'...

 [echo] Repackaging info written to rename.log

 [echo] +---+

 [echo] | -- Application created successfully! -- |

 [echo] | Now you should be able to cd to your application and run: |

 [echo] | > ant setup war |

 [echo] +---+

BUILD SUCCESSFUL

Total time: 22 seconds

==========================

2. Setup the connection with the database. If you decide to use PostgreSQL or

MySQL, please uncomment the corresponding sections in build.properties, which

overrides the default setting in properties.xml. The default setting for database

 116

connection is PostgreSQL. Please modify the database property (database

address, user name, password and the name of database) in propoerties.xml.

=================

ant setup-db

=================

Run "ant setup-db". This creates a database according to the schema of data

models (src/dao/edu/tamu/goof/dao/model) and load data into the database from

/metadata/sql/sample-data.xml.

3. Setup SMTP mail server in web/WEB-INF/classes/mail.properties.

4. Setup Tomcat server. Modify the properties of tomcat in properties.xml.

5. Build application.

===================

ant clean

===================

This cleans the old codes generated by the previous building.

===================

ant war

===================

This builds the war file for the whole application, if you don't want to deploy the

application directly to the Tomcat server. It creates goof.war in /dist/webapps/.

===================

ant deploy

 117

===================

This command builds the war file and automatically deploy the application to the

web application package of the Tomcat server.

===================

ant undeploy

===================

This removes applications from the Tomcat server.

==========================

ant undelpoy clean deploy

==========================

This is what I usually run if there is no change in the data model

6. Build a new data driven application. Then please refer to the GOOF section of

this study for details of how to build the data model, data transaction and web

actions.

7. Customize interface.

WEB-INF/classes/ApplicationResources.properties defines the content of the

interface. In web/WEB-INF/styles/, there are some CSS files from the internet for

default applications. In web/WEB-INF/common/, modify footer.jsp and header.jsp.

 118

APPENDIX B: DATA MODEL LAYER - Contig.java

package edu.tamu.goof.model;

import java.util.Date;

import java.util.ArrayList;

import java.util.HashSet;

import java.util.Iterator;

import java.util.List;

import java.util.Set;

import org.apache.commons.lang.builder.ToStringBuilder;

import org.apache.commons.lang.builder.ToStringStyle;

import edu.tamu.goof.model.Clone;

/**

 * @hibernate.class table="contig"

 * @struts.form include-all="true" extends="BaseForm"

 */

public class Contig extends BaseObject {

 private String c_name;

 private String c_uorc;

 private Date c_date;

 private String c_seq;

 private String c_anno_bov;

 119

 private String c_anno_hum;

 private Set clones = new HashSet();

 public Contig() {}

 public Contig(String c_name) {

 this.c_name = c_name;

 }

 /**

 * @return Returns the id.

 * @hibernate.id column="c_name" tag-class="identity"

 * type="string" not-null="true" length="254"

 */

 public String getC_name() {

 return this.c_name;

 }

 public void setC_name(String c_name) {

 this.c_name = c_name;

 }

 /**

 * @hibernate.property column="c_uorc" length="1" type="string" not-null="true"

 */

 public String getC_uorc() {

 return this.c_uorc;

 120

 }

 public void setC_uorc(String c_uorc) {

 this.c_uorc = c_uorc;

 }

 /**

 * @hibernate.property column="c_date" type="timestamp"

 */

 public Date getC_date() {

 return this.c_date;

 }

 public void setC_date(Date c_date) {

 this.c_date = c_date;

 }

 /**

 * @hibernate.property column="c_seq" type="text" not-null="true"

 */

 public String getC_seq() {

 return this.c_seq;

 }

 public void setC_seq(String c_seq) {

 this.c_seq = c_seq;

 121

 }

 /**

 * @hibernate.property column="c_anno_bov" type="text" not-null="true"

 */

 public String getC_anno_bov() {

 return this.c_anno_bov;

 }

 public void setC_anno_bov(String c_anno_bov) {

 this.c_anno_bov = c_anno_bov;

 }

 /**

 * @hibernate.property column="c_anno_hum" type="text" not-null="true"

 */

 public String getC_anno_hum() {

 return this.c_anno_hum;

 }

 public void setC_anno_hum(String c_anno_hum) {

 this.c_anno_hum = c_anno_hum;

 }

 122

 /**

 * @hibernate.set table="contig_clone" cascade="save-update" lazy="false"

 * @hibernate.collection-key column="c_name"

 * @hibernate.collection-many-to-many class="edu.tamu.goof.model.Clone"

column="r_name"

 */

 public Set getClones() {

 return clones;

 }

 /**

 * Adds a clone for the contig

 * @param clone

 */

 public void addClone(Clone clone) {

 getClones().add(clone);

 }

 public void setClones(Set clones) {

 this.clones = clones;

 }

 /**

 * Convert contig clones to LabelValue objects for convenience.

 123

 */

 public List getCloneList() {

 List contigClones = new ArrayList();

 if (this.clones != null) {

 for (Iterator it = clones.iterator(); it.hasNext();) {

 Clone clone = (Clone) it.next();

 contigClones.add(new LabelValue(clone.getR_name(),

 clone.getR_name()));

 }

 }

 return contigClones;

 }

 public boolean equals(Object o) {

 if (this == o) return true;

 if (!(o instanceof Contig)) return false;

 final Contig contig = (Contig) o;

 if (c_name != null ? !c_name.equals(contig.getC_name()) : contig.getC_name() !=

null) return false;

 return true;

 }

 public int hashCode() {

 return (c_name != null ? c_name.hashCode() : 0);

 124

 }

 public String toString() {

 return new ToStringBuilder(this, ToStringStyle.DEFAULT_STYLE)

 .append("c_name", this.c_name).toString();

 }

}

 125

APPENDIX C: DATA MODEL LAYER - ContigDao.java

package edu.tamu.goof.dao;

import java.util.List;

import edu.tamu.goof.model.Contig;

import org.springframework.dao.DataAccessException;

public interface ContigDao extends Dao {

 public List getContigs(Contig contig) throws DataAccessException;

 public List findContigs(String c_name) throws DataAccessException;

 public List searchContigAnno(String c_anno) throws DataAccessException;

 public Contig getContig(final String c_name);

 public void saveContig(Contig contig);

 public void removeContig(final String c_name);

}

 126

APPENDIX D: DATA MODEL LAYER - ContigDaoHibernate.java

package edu.tamu.goof.dao.hibernate;

import java.util.List;

import org.springframework.dao.DataAccessException;

import org.springframework.orm.ObjectRetrievalFailureException;

import edu.tamu.goof.model.Contig;

import edu.tamu.goof.dao.ContigDao;

public class ContigDaoHibernate extends BaseDaoHibernate implements ContigDao {

 public List getContigs(Contig contig) throws DataAccessException {

 return getHibernateTemplate().find("from Contig contig order by

contig.c_name");

 }

 public List findContigs(String c_name) throws DataAccessException {

 return getHibernateTemplate().find("from Contig contig where

contig.c_name like ? order by contig.c_name", "%" + c_name + "%");

 }

 public List searchContigAnno(String c_anno) throws DataAccessException {

 return getHibernateTemplate().find("from Contig contig where

contig.c_anno_bov like ? or contig.c_anno_hum like ? order by contig.c_name", new

Object[] {"%" + c_anno + "%", "%"+c_anno+"%"});

 }

 public Contig getContig(final String c_name) {

 127

 Contig contig = (Contig) getHibernateTemplate().get(Contig.class,

c_name);

 if (contig == null) {

 log.warn("uh oh, contig '" + c_name + "' not found...");

 throw new ObjectRetrievalFailureException(Contig.class, c_name);

 }

 return contig;

 }

 public void saveContig(final Contig contig) {

 if (log.isDebugEnabled()) {

 log.debug("contig's id: " + contig.getC_name());

 }

 getHibernateTemplate().saveOrUpdate(contig);

 getHibernateTemplate().flush();

 }

 public void removeContig(final String c_name) {

 getHibernateTemplate().delete(getContig(c_name));

 }

}

 128

APPENDIX E: DATA MODEL LAYER - FeatureDaoHibernate.java

package edu.tamu.goof.dao.hibernate;

import java.util.List;

import org.springframework.dao.DataAccessException;

import org.springframework.orm.ObjectRetrievalFailureException;

import org.springframework.orm.hibernate3.support.HibernateDaoSupport;

import org.springframework.orm.hibernate3.HibernateTemplate;

import org.springframework.orm.hibernate3.HibernateCallback;

import org.hibernate.criterion.*;

import org.hibernate.*;

import edu.tamu.goof.dao.FeatureDao;

import fr.inra.gmod.chado.Feature;

import fr.inra.gmod.chado.FeatureImpl;

public class FeatureDaoHibernate extends BaseDaoHibernate implements FeatureDao {

 public List searchFeatures(final String f_name, final String f_type,

 final String chr, final Integer fmin, final Integer fmax)

 throws DataAccessException {

 HibernateCallback callback = new HibernateCallback() {

 public Object doInHibernate(Session session)

 throws HibernateException {

 Criteria crit = session.createCriteria(Feature.class, "feat");

 129

 crit.add(Restrictions.like("feat.name", "%" + f_name +

"%"));

 crit.createAlias("feat.featurelocFeature", "featLoc");

 crit.createAlias("featLoc.srcfeature", "srcfeat");

 crit.add(Restrictions.like("srcfeat.uniquename","%"+chr+"%"));

 crit.add(Restrictions.gt("featLoc.fmin", fmin));

 crit.add(Restrictions.lt("featLoc.fmax", fmax));

 crit.createAlias("feat.cvterm", "type");

 crit.add(Restrictions.eq("type.name", f_type));

 return crit.list();

 }

 };

 return (List) getHibernateTemplate().execute(callback);

 }

 public FeatureImpl getFeature(Integer featureId) throws DataAccessException {

 return (FeatureImpl) getHibernateTemplate().get(FeatureImpl.class,

 featureId);

 }

 public List findFeatures(String f_name) throws DataAccessException {

 return getHibernateTemplate().find(

 "from FeatureImpl f where f.name like ?", "%" + f_name +

"%");

 130

 }

}

 131

APPENDIX F: DATA MODEL LAYER - applicationContext-hibernate.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">

 <!-- Hibernate SessionFactory -->

 <bean id="sessionFactory"

 class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">

 <property name="dataSource" ref="dataSource" />

 <property name="mappingResources">

 <list>

 <value>edu/tamu/goof/model/Role.hbm.xml</value>

 <value>edu/tamu/goof/model/User.hbm.xml</value>

 <value>edu/tamu/goof/model/Contig.hbm.xml</value>

 <value>edu/tamu/goof/model/Clone.hbm.xml</value>

 <value>edu/tamu/goof/model/Omim.hbm.xml</value>

 <value>edu/tamu/goof/model/Omimcs.hbm.xml</value>

 <value>edu/tamu/goof/model/Hg.hbm.xml</value>

 <value>edu/tamu/goof/model/Mice.hbm.xml</value>

 <value>edu/tamu/goof/model/Equine.hbm.xml</value>

 132

 </list>

 </property>

 <property name="hibernateProperties">

 <props>

 <prop key="hibernate.dialect">@HIBERNATE-

DIALECT@</prop>

 <prop key="hibernate.query.substitutions">

 true 'Y', false 'N'

 </prop>

 <prop key="hibernate.show_sql">

 false

 </prop>

 </props>

 </property>

 </bean>

 <!-- ContigDda: Hibernate implementation -->

 <bean id="contigDao"

 class="edu.tamu.goof.dao.hibernate.ContigDaoHibernate">

 <property name="sessionFactory" ref="sessionFactory" />

 </bean>

</beans>

 133

APPENDIX G: DATA TRANSACTION LAYER - ContigManager.java

package edu.tamu.goof.service;

import java.util.List;

import edu.tamu.goof.dao.ContigDao;

import edu.tamu.goof.model.Contig;

public interface ContigManager {

 public void setContigDao(ContigDao dao);

 public Contig getContig(final String c_name);

 public List findContigs(String c_name);

 public List searchContigAnno(String c_anno);

 public List getContigs(Contig contig);

 public void saveContig(Contig contig);

 public void removeContig(final String c_name);

}

 134

APPENDIX H: DATA TRANSACTION LAYER - ContigMangerImpl.java

package edu.tamu.goof.service.impl;

import java.util.List;

import edu.tamu.goof.dao.ContigDao;

import edu.tamu.goof.model.Contig;

import edu.tamu.goof.service.ContigManager;

import org.springframework.dao.DataIntegrityViolationException;

public class ContigManagerImpl extends BaseManager implements ContigManager {

 private ContigDao dao;

 public void setContigDao(ContigDao dao) {

 this.dao = dao;

 }

 public Contig getContig(final String c_name) {

 return dao.getContig(new String(c_name));

 }

 public List findContigs(String c_name) {

 return dao.findContigs(c_name);

 }

 public List searchContigAnno(String c_anno) {

 return dao.searchContigAnno(c_anno);

 }

 public List getContigs(final Contig contig) {

 135

 return dao.getContigs(contig);

 }

}

 136

APPENDIX I: DATA TRANSACTION LAYER - applicationContext-service.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:aop="http://www.springframework.org/schema/aop"

xmlns:tx="http://www.springframework.org/schema/tx"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

 http://www.springframework.org/schema/aop

http://www.springframework.org/schema/aop/spring-aop-2.0.xsd

 http://www.springframework.org/schema/tx

http://www.springframework.org/schema/tx/spring-tx-2.0.xsd">

 <aop:config>

 <aop:advisor id="userManagerTx" advice-ref="userManagerTxAdvice"

pointcut="execution(* *..service.UserManager.*(..))" order="0"/>

 <aop:advisor id="userManagerSecurity" advice-ref="userSecurityAdvice"

pointcut="execution(* *..service.UserManager.saveUser(..))" order="1"/>

 <aop:advisor id="managerTx" advice-ref="txAdvice" pointcut="execution(*

*..service.*Manager.*(..))" order="2"/>

 </aop:config>

 <tx:advice id="txAdvice">

 137

 <tx:attributes>

 <tx:method name="get*" read-only="true"/>

 <tx:method name="*"/>

 </tx:attributes>

 </tx:advice>

 <tx:advice id="userManagerTxAdvice">

 <tx:attributes>

 <tx:method name="save*" rollback-for="UserExistsException"/>

 </tx:attributes>

 </tx:advice>

 <bean id="lookupManager"

class="edu.tamu.goof.service.impl.LookupManagerImpl">

 <property name="lookupDao" ref="lookupDao"/>

 </bean>

 <bean id="manager" class="edu.tamu.goof.service.impl.BaseManager">

 <property name="dao" ref="dao"/>

 </bean>

 <bean id="userManager" class="edu.tamu.goof.service.impl.UserManagerImpl">

 <property name="userDao" ref="userDao"/>

 </bean>

 <bean id="userSecurityAdvice" class="edu.tamu.goof.service.UserSecurityAdvice">

 <property name="userCache" ref="userCache"/>

 138

 </bean>

 <bean id="userCache"

class="org.acegisecurity.providers.dao.cache.EhCacheBasedUserCache">

 <property name="cache">

 <bean class="org.springframework.cache.ehcache.EhCacheFactoryBean">

 <property name="cacheManager">

 <bean

class="org.springframework.cache.ehcache.EhCacheManagerFactoryBean"/>

 </property>

 <property name="cacheName" value="userCache"/>

 </bean>

 </property>

 </bean>

 <bean id="roleManager" class="edu.tamu.goof.service.impl.RoleManagerImpl">

 <property name="roleDao" ref="roleDao"/>

 </bean>

 <bean id="contigManager" class="edu.tamu.goof.service.impl.ContigManagerImpl">

 <property name="contigDao" ref="contigDao"/>

 </bean>

</beans>

 139

APPENDIX J: WEB PRESENTATION LAYER - ContigAction.java

package edu.tamu.goof.webapp.action;

import java.io.IOException;

import java.util.ArrayList;

import java.util.LinkedHashMap;

import java.util.List;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import org.apache.commons.lang.StringUtils;

import edu.tamu.goof.Constants;

import edu.tamu.goof.model.Contig;

import edu.tamu.goof.service.ContigManager;

import edu.tamu.goof.util.StringUtil;

import edu.tamu.goof.webapp.util.RequestUtil;

import com.opensymphony.webwork.ServletActionContext;

public class ContigAction extends BaseAction {

 private List contigs;

 private Contig contig;

 private String c_name;

 private String c_anno;

 private ContigManager contigManager;

 public List getContigs() {

 140

 return contigs;

 }

 public void setC_name(String c_name) {

 this.c_name = c_name;

 }

 public void setC_anno(String c_anno) {

 this.c_anno = c_anno;

 }

 public void setContigManager(ContigManager contigManager) {

 this.contigManager = contigManager;

 }

 public Contig getContig() {

 return contig;

 }

 public void setContig(Contig contig) {

 this.contig = contig;

 }

 public String view() throws IOException {

 if (c_name != null){

 contig = contigManager.getContig(c_name);

 }

 return SUCCESS;

 141

 }

 public String execute() {

 return SUCCESS;

 }

 public String doDefault() {

 return INPUT;

 }

 public String list() {

 contigs = contigManager.getContigs(new Contig());

 return SUCCESS;

 }

 public String search() {

 if (c_name != null){

 contigs = contigManager.findContigs(c_name);

 } else {

 return INPUT;

 }

 return SUCCESS;

 }

 public String searchAnno() {

 if (c_anno != null){

 contigs = contigManager.searchContigAnno(c_anno);

 142

 } else {

 return INPUT;

 }

 return SUCCESS;

 }

}

 143

APPENDIX K: WEB PRESENTATION LAYER - ContigView.jsp

<%@ include file="/common/taglibs.jsp"%>

<title><fmt:message key="contigDetail.title"/></title>

<content tag="heading"><fmt:message key="contigDetail.heading"/></content>

<table class="detail" cellpadding="5">

 <tr>

 <th><ww:property value="%{getText('contig.c_name')}"/></th>

 <td><ww:property value="%{contig.c_name}"/></td>

 </tr>

 <tr>

 <th><ww:property value="%{getText('contig.c_uorc')}"/></th>

 <td><ww:property value="%{contig.c_uorc}"/></td>

 </tr>

 <tr>

 <th><ww:property value="%{getText('contig.c_date')}"/></th>

 <td><ww:property value="%{contig.c_date}"/></td>

 </tr>

 <tr>

 <th><ww:property value="%{getText('contig.c_seq')}"/></th>

 <td>

 144

 <script type="text/javascript">

 var seq ="<ww:property value="%{contig.c_seq}"/>"

 var l_seq = seq.length

 var format_seq = ""

 for (var i = 0; i < l_seq; i++) {

 if (i+65 >l_seq) {

 format_seq = format_seq + seq.substring(i,l_seq-1)

 }

 else {

 format_seq = format_seq + seq.substring(i,i+65)+"\r\n"

 }

 i = i+65

 }

 document.write(format_seq.toUpperCase())

 </script>

 </td>

 </tr>

 <tr>

 <th><ww:property value="%{getText('contig.c_anno_bov')}"/></th>

 <td><ww:property value="%{contig.c_anno_bov}"/></td>

 </tr>

 <tr>

 145

 <th><ww:property value="%{getText('contig.c_anno_hum')}"/></th>

 <td><ww:property value="%{contig.c_anno_hum}"/></td>

 </tr>

 <tr>

 <th><ww:property value="%{getText('contig.clones')}"/></th>

 <td>

 <ww:iterator id="clone" value="%{contig.cloneList}" status="status">

 <a href="/goof/viewClone.html?r_name=<ww:property

value="value"/>">

 <ww:property value="label"/>

 <%--ww:property value="value"/--%>

 <ww:if test="!#status.last">,</ww:if>

 </ww:iterator>

 </td>

 </tr>

</table>

 146

APPENDIX L: WEB PRESENTATION LAYER - ContigSearchAnno.jsp

<%@ include file="/common/taglibs.jsp"%>

<title><fmt:message key="contigList.title"/></title>

<content tag="heading"><fmt:message key="contigList.heading"/></content>

<ww:form name="searchContigAnno" action="searchContigAnno" method="post"

validate="true">

 <ww:textfield label="%{getText('contig.c_anno')}" name="c_anno" value="c_anno"

required="true"/>

 <tr>

 <td></td>

 <td class="buttonBar">

 <input type="submit" class="button" name="search"

 value="<fmt:message key="button.search"/>" />

 <input type="button" name="cancel" class="button"

onclick="location.href='mainMenu.html'"

 value="<fmt:message key="button.cancel"/>" />

 </td>

 </tr>

</ww:form>

 147

APPENDIX M: WEB PRESENTATION LAYER - ContigList.jsp

<%@ include file="/common/taglibs.jsp"%>

<title><fmt:message key="contigList.title"/></title>

<content tag="heading"><fmt:message key="contigList.heading"/></content>

<ww:set name="contigList" value="contigs" scope="request"/>

<display:table name="contigList" cellspacing="0" cellpadding="0" requestURI=""

 defaultsort="1" id="contigs" pagesize="25" class="table" export="true">

 <display:column property="c_name" escapeXml="true" sortable="true"

 url="/viewContig.html" paramId="c_name" paramProperty="c_name"

 titleKey="contig.c_name"/>

 <display:column property="c_uorc" escapeXml="true" sortable="true"

 titleKey="contig.c_uorc"/>

 <display:column property="c_anno_bov" escapeXml="true" sortable="true"

 titleKey="contig.c_anno_bov"/>

 <display:column property="c_anno_hum" escapeXml="true" sortable="true"

 titleKey="contig.c_anno_hum"/>

 <display:setProperty name="paging.banner.item_name" value="contig"/>

 <display:setProperty name="paging.banner.items_name" value="contigs"/>

</display:table>

 148

APPENDIX N: WEB PRESENTATION LAYER - xwork.xml

<!DOCTYPE xwork PUBLIC "-//OpenSymphony Group//XWork 1.1.1//EN"

 "http://www.opensymphony.com/xwork/xwork-1.1.1.dtd">

<xwork>

 <!-- Include webwork defaults -->

 <include file="webwork-default.xml"/>

 <!-- Configuration for the default package. -->

 <package name="default" extends="webwork-default">

 <interceptors>

 <!-- Interceptor to handle allowing only admins to certain actions -->

 <interceptor name="adminOnly" class="adminInterceptor"/>

 <!-- https://issues.apache.org/struts/browse/WW-1187 -->

 <interceptor-stack name="defaultStack">

 <interceptor-ref name="exception"/>

 <interceptor-ref name="alias"/>

 <interceptor-ref name="servlet-config"/>

 <interceptor-ref name="prepare"/>

 <interceptor-ref name="i18n"/>

 <interceptor-ref name="chain"/>

 <interceptor-ref name="model-driven"/>

 <interceptor-ref name="fileUpload"/>

 149

 <interceptor-ref name="static-params"/>

 <interceptor-ref name="params"/>

 <interceptor-ref name="conversionError"/>

 <interceptor-ref name="validation">

 <param

name="excludeMethods">cancel,execute,delete,edit,list,default</param>

 </interceptor-ref>

 <interceptor-ref name="workflow">

 <param name="excludeMethods">input,back,cancel</param>

 </interceptor-ref>

 </interceptor-stack>

 <interceptor-stack name="fileUploadStack">

 <interceptor-ref name="fileUpload"/>

 <interceptor-ref name="defaultStack"/>

 </interceptor-stack>

 <interceptor-stack name="adminCheck">

 <interceptor-ref name="defaultStack"/>

 <interceptor-ref name="adminOnly"/>

 </interceptor-stack>

 </interceptors>

 <global-results>

 <result name="mainMenu" type="redirect">mainMenu.html</result>

 150

 <result name="dataAccessFailure">/WEB-

INF/pages/dataAccessFailure.jsp</result>

 </global-results>

 <global-exception-mappings>

 <exception-mapping

exception="org.springframework.dao.DataAccessException"

 result="dataAccessFailure"/>

 </global-exception-mappings>

 <action name="activeUsers" class="com.opensymphony.xwork.ActionSupport">

 <result name="success">/WEB-INF/pages/activeUsers.jsp</result>

 </action>

 <action name="mainMenu" class="com.opensymphony.xwork.ActionSupport">

 <result name="success">/WEB-INF/pages/mainMenu.jsp</result>

 </action>

 <action name="users" class="userAction" method="list">

 <interceptor-ref name="adminCheck"/>

 <result name="success">/WEB-INF/pages/userList.jsp</result>

 </action>

 <action name="editUser" class="userAction" method="edit">

 <interceptor-ref name="adminCheck"/>

 <result name="success">/WEB-INF/pages/userForm.jsp</result>

 <result name="input">/WEB-INF/pages/userList.jsp</result>

 151

 </action>

 <action name="editProfile" class="userAction" method="edit">

 <result name="success">/WEB-INF/pages/userForm.jsp</result>

 <result name="error">/WEB-INF/pages/mainMenu.jsp</result>

 </action>

 <action name="saveUser" class="userAction" method="save">

 <result name="cancel" type="redirect">users.html</result>

 <result name="input">/WEB-INF/pages/userForm.jsp</result>

 <result name="success" type="redirect">users.html</result>

 <result name="addAnother"

type="redirect">editUser.html?method=Add&from=list</result>

 </action>

 <action name="passwordHint" class="passwordHintAction">

 <result name="success">/</result>

 </action>

 <action name="reload" class="edu.tamu.goof.webapp.action.ReloadAction">

 <interceptor-ref name="adminCheck"/>

 <result name="success">/WEB-INF/pages/mainMenu.jsp</result>

 </action>

 <!--Contig-START-->

 <action name="contigs" class="contigAction" method="list">

 <result name="success">/WEB-INF/pages/contigList.jsp</result>

 152

 </action>

 <action name="searchContigs" class="contigAction" method="search">

 <result name="input">/WEB-INF/pages/contigSearch.jsp</result>

 <result name="success">/WEB-INF/pages/contigList.jsp</result>

 <result name="cancel" type="redirect">mainMenu.html</result>

 <result name="null" type="redirect">mainMenu.html</result>

 </action>

 <action name="searchContigAnno" class="contigAction"

method="searchAnno">

 <result name="input">/WEB-INF/pages/contigSearchAnno.jsp</result>

 <result name="success">/WEB-INF/pages/contigList.jsp</result>

 <result name="cancel" type="redirect">mainMenu.html</result>

 </action>

 <action name="viewContig" class="contigAction" method="view">

 <result name="success">/WEB-INF/pages/contigView.jsp</result>

 </action>

 <!--Contig-END-->

 </package>

</xwork>

 153

APPENDIX O: WEB PRESENTATION LAYER - action-servlet.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">

 <bean id="adminInterceptor"

class="edu.tamu.goof.webapp.interceptor.UserRoleAuthorizationInterceptor">

 <property name="authorizedRoles" value="admin"/>

 </bean>

 <bean id="userAction" class="edu.tamu.goof.webapp.action.UserAction"

scope="prototype">

 <property name="userManager" ref="userManager"/>

 <property name="roleManager" ref="roleManager"/>

 <property name="mailEngine" ref="mailEngine"/>

 <property name="message" ref="mailMessage"/>

 <property name="templateName" value="accountCreated.vm"/>

</bean>

 <bean id="passwordHintAction"

class="edu.tamu.goof.webapp.action.PasswordHintAction" scope="prototype">

 <property name="userManager" ref="userManager"/>

 <property name="mailEngine" ref="mailEngine"/>

 154

 <property name="message" ref="mailMessage"/>

 </bean>

 <!--Contig-START-->

 <bean id="contigAction" class="edu.tamu.goof.webapp.action.ContigAction"

scope="prototype">

 <property name="contigManager" ref="contigManager"/>

 </bean>

 <!--Contig-END-->

 <!-- Add additional actions here -->

</beans>

 155

APPENDIX P: WEB PRESENTATION LAYER - menu-config.xml

<?xml version="1.0" encoding="UTF-8"?>

<MenuConfig>

 <Displayers>

 <Displayer name="Velocity"

type="net.sf.navigator.displayer.VelocityMenuDisplayer"/>

 </Displayers>

 <Menus>

 <Menu name="MainMenu" title="mainMenu.title" page="/mainMenu.html"

width="120">

 <Item name="ListContig" title="menu.listContig"

page="/contigs.html"/>

 <Item name="SearchContig" title="menu.searchContig"

page="/searchContigs!default.html"/>

 <Item name="SearchContigAnno" title="menu.searchContigAnno"

page="/searchContigAnno!default.html"/>

 </Menu>

 <Menu name="UserMenu" title="menu.user" description="User Menu"

page="/editProfile.html" roles="admin,user"/>

 <Menu name="AdminMenu" title="menu.admin" description="Admin Menu"

roles="admin" width="120" page="/users.html">

 <Item name="ViewUsers" title="menu.admin.users" page="/users.html"/>

 156

 <Item name="ActiveUsers" title="mainMenu.activeUsers"

page="/activeUsers.html"/>

 </Menu>

 <Menu name="Logout" title="user.logout" page="/logout.jsp"

roles="admin,user"/>

 </Menus>

</MenuConfig>

 157

APPENDIX Q: GOOF DEVELOPERS’ SURVEY

Survey questions:

 Is the MVC structure of GOOF generic and flexible to construct a new

project? Does the integrated structure of GOOF help the development

procedure? Does the data model layer make it easy to construct a database

application?

 Does GOOF reduce the programming lines of work for a bioinformatics/web

database project? What is the percentage of reduced code that you estimate

by comparing with other approaches? Please compare it to different

programming languages and frameworks that you have used before.

 Does GOOF reduce the time of development work since it is a new

framework for a developer? How about the learning curve?

 Does GOOF help to update a bioinformatics system when adding new

functions and interface?

 What are your suggestions for GOOF? What are the advantages and

shortcomings of GOOF? What is the wish list of features of GOOF?

Participant #1 (Bioinformatics developer with Java beginner experience and PHP,

database expert):

1. The structure of goof: is it clear to construct a new project.

Yes, once I grasped the concept, I have found the three layer model approach to

be effective and efficient.

 158

2. Does GOOF reduce the program lines of development work for a new project?

Percentage? Compare it to the old version of the QTL viewer.

By comparing the number of files and cumulative lines in the original php

version of the Bovine QTL Viewer I can say that the object oriented format presented by

goof reduces the code by approximately fifty percent by ratio. The updated Bovine QTL

Viewer implements more data but still has reduced the code.

3. Does GOOF reduce the time of development work since it is a new framework for a

developer? How about the learning curve?

As I am not a native java developer, it took probably more time than usual to

begin development. Nevertheless, once I understood the basic structure things picked

up.

4. Does GOOF help on the maintenance and update capability of a bioinformatics

system? In terms of adding new functions, and interface?

Certainly, because all levels of the goof structure are independent of one another,

making modifications and updates has been streamlined.

5. Suggestions on GOOF? Pros and cons? The wish list of functions in GOOF?

I think the most significant module of the Chado, sequence, should have

variables/values publicly available across all files in the web layer. This would

streamline construction and allow the user to focus on design. Nevertheless, overall a

robust system.

Participant #2 (Java web application developer; Java expert, database expert):

1. Is the MVC structure of GOOF generic and flexible to construct a new project? Does

 159

the integrated structure of GOOF help the development procedure? Does the data model

layer make it easy to construct a database application?

 We usually build our own MVC structure. For the particular type of project, in

your case, a bioinformatics system, it saves a lot of time. For non-Java developer, the

data model is easy to build a new schema. For a complicated schema, the data model

layer is useful. But for a simple database or several easy database queries, the direct

database call is enough.

2. Does GOOF reduce the programming lines of work for a bioinformatics/web database

project? What is the percentage of reduced code that you estimate by comparing with

other approaches? Please compare it to different programming languages and framework

that you have used before.

 For a web database project, MVC is the best and most common structure. For a

large database project, it is worthy to build a MVC structure. I don’t think I need to write

many codes for a project by using the fix structure of GOOF. 90% of configurations in

MVC are done already by GOOF. That is the most headache part.

3. Does GOOF reduce the time of development work since it is a new framework for a

developer? How about the learning curve?

There is no learning curve for me. But I got to know what GOOF is built for.

4. Does GOOF help to update a bioinformatics system when adding new functions and

interface?

 If following the templates, adding a new function or an interface is easy. But if I

want something out of template, I have to understand the links in GOOF.

 160

5. What are your suggestions for GOOF? What are the advantages and shortcomings of

GOOF? What is the wish list of features of GOOF?

 For your bioinformatics project, GOOF is the way to go. For a general web

application, GOOF has some restrictions and limitation. The layout of interface is not

flexible if we want other background or banner or different menu structure. I usually

don’t deal with CSS.

Participant #3 (C/C++ and database developer, Java beginner, Database expert):

1. Is the MVC structure of GOOF generic and flexible to construct a new project? Does

the integrated structure of GOOF help the development procedure? Does the data model

layer make it easy to construct a database application?

 The MVC is complicated at the beginning for me. But I like it separated the

database connection and interface. GOOF is a really big integrated framework. The data

model layer is very useful to deal with a lot of queries. I know JAVA and .Net all do it in

that way.

2. Does GOOF reduce the programming lines of work for a bioinformatics/web database

project? What is the percentage of reduced code that you estimate by comparing with

other approaches? Please compare it to different programming languages and

frameworks that you have used before.

 GOOF does a lot of things already. Once the data model is built, the query part is

easy. No SQL. I like the criteria search. In term of connecting database, and building a

query, GOOF maybe save more than 40~50% of code. PHP or Perl has the database

connection session issue. GOOF basically takes care of it. It’s not worried any more.

 161

3. Does GOOF reduce the time of development work since it is a new framework for a

developer? How about the learning curve?

 I’m not a Java developer. There is a learning curve for me. The structure of

GOOF is quite clear. The OO structure is easy to understand.

4. Does GOOF help to update a bioinformatics system when adding new functions and

interface?

 Yes. The MVC does help.

5. What are your suggestions for GOOF? What are the advantages and shortcomings of

GOOF? What is the wish list of features of GOOF?

 I would like to have a more detail documentation. An example GOOF

application should be helpful.

 162

APPENDIX R: EQUINEBASE END USERS’ SURVEY

Survey questions:

 Does the search interface in EquineBase help you find the target data fast and

easily?

 Is easy it to navigate the interface and find the function that you need? Do

you like the layout of menus?

 What are your favorite functions of EquineBase? Do you have any suggestion

on improving the interface?

Participant #1(equine genetics researcher):

Nice looking windows. LOVE, that you can sort the results by name etc. That's a

one-up on UCSC. I'd like to see the address of each hit in the results window, helps me

orient and pick which ones really are on the chr I’m looking for, then I could search

either in order on the chr or by name. Like the download options, definitely helps keep

multiple search results neat and orderly, rather than the stacks of printed screen shots I

have now!

V2 Repeat Search: Got it to work after a bit of fiddling, ie, does "start position"

need commas, does "chromosome" need chr, do I need to clear the box that says "repeat

family", some simple instructions on format, or an example search would be good.

(Along those lines, is the 100k search window just a trial?) What do the orange asterisks

mean? Can I not search using the repeat name, it's too tempting not to try and pull up all

incidences of say... "ERE2" in a particular 100k window. So far, in the repeat results, if

I click on a hit the Gbrowse pic isn't coming up.

 163

 V1 Repeats: Ditto on the missing Gbrowse view (seems to get stuck,)

V1 Features: no luck with repeat masker track, got this error

I am using a test region of chr3, starting at 71100000.

 piler track seems to work pretty well, can’t always link out by clicking the

Gbrowse view, sometimes is says “landmark not recognized”

 ESTs work, though it was a bit educational trying to find one to use as an

example, didn’t realize just how thin they are. But it is a little awkward

that the EST track doesn’t appear in the Gbrowse view that comes up

when I click the search hit. Made me think for a second I’d been sent to

the wrong place. Could maybe show only the relevant track on that view,

then I can pick other tracks once I click out to the full viewer. This

Gbrowse view is much prettier, and easier than I thought, I use the link

out button on the ABCC to get an idea of the neighborhood for SNPs, the

window does that without having to click, and I can get more info if I

need to without having to cut and paste an address.

 SNPs work great, wish I could see the position though in the search

result, helps me decide which is nearest my target, or sort by quality (I

know, I am demanding .

 Contig, can’t get anything at all to come up on that, maybe I’m doing

something wrong?

 no luck with tRNAs, can’t find any on the browser anyway

 164

 ditto w/ mRNAs but there isn’t an mRNA track really, so I don’t know

what that’s all about.

 Genes, now this is a problem, even in regions where there are genes in the

browser, I can’t get any to come up in the search…?

 V1 Gene Description: no luck here either, I was pretty excited about it,

but I can’t get any hits, anywhere, even with searches like “gene” or “

ligand” in regions where I have just found genes using the browser. User

error? Bummer….

Participant #2 (Genetics researcher):

1. Does the search interface in EquineBase help you find the target data fast and easily?

 It is easy to understand which menu I should use to search data. Some search

interface is confusing. I don’t know what I should put into the search box. I tried

something and it didn’t come up with anything. Any example? Do you support

GenBank ID search? Do you any other search options on EST or SNP track?

OMIMBase is better than NCBI.

2. Is easy it to navigate the interface and find the function that you need? Do you like the

layout of menus?

 The layout of interface is clean. “Search Features” menu is unclear to me.

3. What are your favorite functions of EquineBase? Do you have any suggestion on

improving the interface?

 The search result table export function is useful. I don’t have to drag down

mouse to select the data. Gbrowse view is good. I like it is integrated into the search

 165

interface. The pop-up window on Gbrowse is very cool. Can you have the pop-up

window in EquineBase to show some explanations on the search box?

Participant #3 (Animal genetics researcher with some knowledge of database):

 The interface is clean and straightforward. Gbrowse view integration is handy.

Each menu represents a group of functions. I like that different users could see different

menus.

 One feature search is to search different tracks. It is clean and easy to find

the target feature. It is a function which Gbrowse should have.

 Feature search is very fast. But Gbrowse view is slow. And some of

Gbrowse view does not show up.

 The search result table export function is very helpful.

Suggestions and bugs:

 Different tracks should have different ranges to choose. I understand a big

range search can hit the server very hard.

 It should allow to search across two tracks or more at the same time. It

should be useful.

 Top menu could be crowded if you have more functions. Left-hand menu

should be good.

 Do I have to fill every field when searching?

 I love to see some functions which show what kind of data or some

statistics report of data in the database? For instance, how many genes

annotated by March 2008?

 166

 There is no result sometime? Or the search jumps back the menu or the

search interface? Is it bug? Some warning messages would be helpful.

Participant #4 (Animal genetics researcher):

 I played your website. The overall structure is good. The layout of menu is clear

to understand. Gbrowse view is handy so that I don’t have to jump to another website for

that. There should be some example on OMIMBase search and Gene description search

boxes. Sometimes, I could not find any results. Any warning message? The website is

fast.

Participant #5 (Genetics researcher):

 1. Does the search interface in EquineBase help you find the target data fast and

easily?

 The search interface is very clear. The research result list format is better than

NCBI. I like the export options. The website is fast. Gbrowse view is slow. I guess that

is Perl problem. It might be better to have separated menus for each track. What should I

put in OMIMBase search box?

2. Is easy it to navigate the interface and find the function that you need? Do you like the

layout of menus?

 The layout of interface is simple. Left-hand menu could give your more space if

you have more functions.

3. What are your favorite functions of EquineBase? Do you have any suggestion on

improving the interface?

 I like the Gbrowse view. Each database is one top level menu. Show a summary

 167

of data in your database. So I know what data I can query in your database. You should

have some feedback link.

The report of Observation #1 (Animal genetics researcher):

 Top menu is easy to understand.

 It is fast to find the data.

 Fill-in box is confusing.

 The interface is friendly.

 Gbrowse view is a bonus.

 Result list table is useful.

 Export option is useful.

 Frequent questions on selecting range options.

 The performance website is good.

 168

VITA

Name: Ning Wei

Address: 3-22, BLVG #22

 Fuxingmenwai St,

 Beijing, 100000

 P.R.China

Email Address: xiaoningning@yahoo.com

Education: B.E., Mechanical Engineering and Computer Science, University of

Tsinghua, Beijing, China 2002

 M.S., Computer Science, University of Oklahoma, 2002

