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ABSTRACT 

 

Influence of Environmental Parameters on Penoxsulam Control of Alligatorweed 

(Alternanthera philoxeroides) in Rice (Oryza sativa). (May 2008) 

Samuel Duane Willingham, B.S.; M.S., University of Florida 

Chair of Advisory Committee: Dr. J. M. Chandler 

 

   Alligatorweed is a perennial plant which reproduces vegetatively and has spread from 

waterways into canals and ultimately into rice fields of Louisiana and Texas.  

Penoxsulam is a new acetolactate synthase (ALS) inhibiting broad-spectrum herbicide 

that was registered for rice in 2005.  Previous research on alligatorweed control has 

focused mainly in aquatic areas and in the rice producing regions of Louisiana with little 

success.  Research is limited using penoxsulam for alligatorweed control in rice 

production and results vary between year and location.  Variability could be due to 

growth habit and resource allocation of this perennial species.  Therefore, field and 

laboratory experiments were conducted from 2004 to 2007 to: 1) evaluate the effects of 

select rice herbicides on alligatorweed control,  2) determine the absorption and 

translocation efficiency and the effect of propanil on penoxsulam in alligatorweed  3) 

access the environmental effects of temperature on penoxsulam efficacy and determine 

application timing to avoid antagonism with propanil and,  4) evaluate the effects of 

flood timing and rice cultivars on rice root stunting and plant foliar injury from 

penoxsulam applications. 
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   Alligatorweed control was obtained from penoxsulam or bispyribac-sodium applied 

alone; however, mixtures with propanil were antagonistic.  Day temperatures at 21 C 

increased efficacy of penoxsulam compared to 27 and 30 C day temperatures.  Delaying 

propanil applications 3 days following penoxsulam applications were required at 21 and 

27 C and 10 days at 30 C in order to avoid antagonism.  Alligatorweed absorbed up to 

33% of penoxsulam when applied alone, but most was retained in treated leaves (29%).  

Propanil reduced penoxsulam absorption into alligatorweed with only 22% of total 

penoxsulam recovered being absorbed by alligatorweed.  More than 50% remained on 

the leaf surface of the treated leaf.  Previous research has indicated root stunting of rice 

plants from ALS inhibiting herbicides.  When various rice varieties were permanently 

flooded one week after herbicide application of penoxsulam, root stunting was greater 

compared to delaying flood establishment 7 or 14 days after treatment.  Significant root 

stunting, however, did not affect rice yield. 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

   Alligatorweed [Alternanthera philoxeroides (Mart.) Griseb.] is a member of the 

Amaranthaceae family.  It is a noxious perennial herbaceous, aquatic or terrestial plant 

with horizontal to ascending stems 1 m long that root at the nodes (Julien and Broadbent 

1980).  The aquatic form has hollow, floating, emergent and submerged stems whereas 

terrestrial forms have solid stems.  Typically, plants grow in shallow water rooted in soil 

and form dense interwoven floating mats that extend over the surface of deeper water.  

Floating mats can break away and colonize new sites.  Reproduction is entirely 

vegetative with two viable axillary buds capable of growth at all stem nodes.  On land, 

cultivation may drag stolon pieces to uninfested areas and with partial soil contact, 

produce new plants increasing infestation (Parsons and Cuthbertson 2001).  Plant 

biomass can double in the field in approximately 50 d during the summer (Brown and 

Spencer 1973).   

   Mature plants have simple or branched dark green stems, lacking hairs, up to 70 cm 

long (Julien and Broadbent 1980).  Leaves are opposite, more or less equal at the node, 

sessile or with narrowly winged petioles up to 1 cm long that clasp the stem.  Leaf 

blades are 4 to 11 cm long, 1 to 3 cm wide, lanceolate to obovate with entire margins 

and a smooth waxy surface.  Roots are relatively short and fine in water but become 

thicker and longer in soil.  Stolons root at the nodes and can produce new plants if in 

This dissertation follows the style of Weed Technology. 
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contact with soil.  Alligatorweed flower June to October, consisting of a simple terminal 

spike on an axillary peduncle 1 to 9 cm long somewhat like clover.  They are 

polygamous, male and female with perfect flowers.  Alligatorweed does not produce 

viable seed under field conditions (Center and Balciunas 1975; Julien 1995).   

   Alligatorweed is native of the South American coast from Venezuela to the Buenos 

Aires Province in Argentina (Vogt 1979) and has become widespread in tropical and 

warm temperate regions of the world (Parsons and Cuthbertson 2001).  It is a serious 

problem of waterways in the southeastern United States, the irrigation districts of 

California, and is also a problem in Argentina, the Caribbean Islands, and parts of 

Africa, India, Malaysia, Southeast Asia, Indonesia, Australia, and New Zealand 

(Hockley 1974).   

   Alligatorweed was initially introduced to the southern United States from South 

America in the early 1880’s as a contaminant of ship ballast.  The earliest known 

specimen was collected near Charleston, South Carolina in 1885 followed by 1897 in 

Alabama and 1894 in Florida (Melvin 2003; Zeiger 1967).  Alligatorweed’s potential to 

overcome an area was recognized at the turn of the 20th century, but was not taken 

seriously until the mid-1940’s when application of 2,4-D eliminated its major 

competitor, water hyacinth (Eichhornia crassipes) (Kay and Hoyle 1999).   

   Alligatorweed is now found from the northern Virginia coast, south to Florida, and 

westward to Texas, and a few infestations reported in California (USDA, NRCS 2002).  

Spread inland has been primarily due to the movement of contaminated fish nursery 

stock.  In 1981, increased infestations in the southern states were estimated only because 
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of increases of the terrestrial form in Texas and Louisiana (Confrancesco 1988).  

Increased infestations may also be due to the mild winters since it will tolerate cold 

temperatures of >5 C (Shen et al. 2005).  In the Unites States and China, frost may kill 

above ground parts but regrowth occurs in the spring (Coulson 1977).  Penfound (1940) 

found that new shoots appearing in mid-March, were 40 cm long six weeks (wk) later 

and 63 cm long at 8 wk by measurements made in the Central United States.  By 22 wk, 

plants had formed a mat that was 5 m2.   

   Alligatorweed is a noxious weed for the states of Alabama, Arizona, Arkansas, 

California, South Carolina, and Texas, and is a prohibited aquatic plant in Florida 

(USDA, NRCS 2002).  Alligatorweed is a serious weed on the west, south, and east 

coast of the United States and a problem in lowland rice in Taiwan and the United States 

(Holm et al. 1997).  It is a major weed of irrigation systems in the U.S. and in 

transplanted rice.  Alligatorweed has been recognized as an invasive and troublesome 

weed in rice in 23 provinces in China and responsible for yield losses up to 45% and $75 

million economic loss in regions south of the Yellow River (Lu et al. 2002).  Research 

on alligatorweed control has been mainly conducted with the aquatic form in water or 

irrigation canals.  Limited research data are available for alligatorweed control in rice 

and control methods are needed in Texas and Louisiana. 

   Alligatorweed possess varing levels of resistance to all aquatic herbicides currently 

available (Parsons and Cuthbertson 2001).  Multiple applications of 2,4-D kill emergent 

stems but have no effect on submerged stems.  Fenoxyprop applied twice annually 

during early to mid-summer and late autumn reduced emergent stems to the water level, 
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however, submerged stems were unaffected.  Regrowth from treated areas was rapid 

(Julien and Broadbent 1980).  In North Carolina, glyphosate effectively controlled 

aquatic alligatorweed, but did not control the terrestrial form.  Imazapyr effectively 

controlled terrestrial alligatorweed in North Carolina (Langland 1986).  In Louisiana, 

glyphosate applied mid-summer to late fall controlled alligatorweed >90% in dry ditches 

for up to 300 days after treatment (DAT).  Spring applications to young, new growth 

were the least effective.  Glyphosate applied to aquatic areas burned down alligatorweed 

to the water level; however, regrowth occurred by 45 DAT (Sandberg and Burkhalter 

1983).   

   In rice, alligatorweed has become one of the ten most troublesome weeds in Florida, 

Louisiana, and Texas (Webster 2000; 2004).  Effective control but not eradication, has 

been obtained with such herbicides as bentazon, bifenox, dicamba, fenoprop, 

pendimethalin, propanil, and triclopyr without serious damage to the crop (Julien and 

Broadbent 1980).  Bispyribac-sodium has provided at least 85% control of small 

alligatorweed all season when applied early postemergence (EPOST) or late 

postemergence (LPOST) alone or in combination with thiobencarb, bensulfuron, or 

halosulfuron.  Applications post flood to larger alligatorweed resulted in inadequate 

control (Braverman and Jordan 1996; Carey et al. 2000; Webster et al. 2003).  Propanil 

alone or tank mixed with thiobencarb provides <60% control.  Carfentrazone-ethyl plus 

clomazone applied at pegging in water seeded rice provided 90 to 94% control of 

alligatorweed 21 DAT.  Delaying application to 7 days after the flood was established 

provided 25 to 60% control (Webster et al. 1999).  Mid-September to early October 
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application of glyphosate and picloram during the fallow year provided alligatorweed 

control greater than triclopyr, dicamba, and 2,4-D when evaluated monthly through the 

growing season in Louisiana when conservation tillage practices were used (Burns and 

Williams 2006).  Mid-October or later applications did not provide adequate control.    

   Application timing of post emergent herbicides for adequate alligatorweed control is 

crucial as well as residual herbicide control.  Imazethapyr applied EPOST to 

imidazolinone-resistant drill seeded rice provided at least 85% control of alligatorweed 

when followed by (fb) bensulfuron, triclopyr, bispyribac-sodium, and propanil + 

molinate 21 DAT (Pellerin et al. 2004).  When imazethapyr was fb imazethapyr or 

carfentrazone-ethyl, control was inadequate.  By 35 DAT, control was <69% for all 

treatments.  In water seeded imidazolinone-resistant rice systems, alligatorweed control 

was inadequate with imazethapyr EPOST fb imazethapyr LPOST at 35 DAT (Pellerin et 

al. 2003).  Control >85% was achieved when LPOST applications of imazethapyr was 

mixed with bensulfuron, carfentrazone, triclopyr, bispyribac-sodium, or propanil + 

molinate.  LPOST treatments without EPOST application of imazethapyr provided 

inadequate control.   

   Penoxsulam (Grasp SC) is a new postemergence broad-spectrum herbicide developed 

by Dow AgroSciences for use in rice.  It is a member of the triazolopyrimidine 

sulfonamide family of herbicides that inhibit the acetolactate synthase (ALS) enzyme of 

susceptible species in branched-chain amino acid synthesis.  Penoxsulam received a 

reduced risk pesticide status as well as a Section 3 registration from the EPA in October 

2004 for Arkansas, Florida, Mississippi, Missouri, Louisiana, and Texas (Anonymous 
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2004).  Research data indicated that penoxsulam controls many important rice weeds 

such as Echinochloa species, northern jointvetch (Aeschynomene virginica), 

alligatorweed (Alternanthera philoxeroides), Texasweed/Mexicanweed (Caperonia 

spp.), annual sedge (Cyperus spp.), ducksalad (Heteranthera limosa), smartweed 

(Polygonum spp.), hemp sesbania (Sesbania exaltata) and many other broadleaf weeds 

(Richburg et al. 2005; Strahan 2004).  Penoxsulam also controls propanil, quinclorac and 

ACCase resistant Echinochloa spp.  Previous research indicated penoxsulam added 

broadleaf weed control to clomazone and imazethapyr in imidazolinone-tolerant rice 

where broadleaf weeds have become a problem in these systems (Lassiter et al. 2005; 

Meins et al. 2005).   

   Limited data are available on the control of alligatorweed with penoxsulam in rice 

production and results are variable between year and location.  Studies conducted in 

Louisiana in 2003, (Webster et al. 2003), achieved 86% control of alligatorweed with 

penoxsulam EPOST 18 DAT, however, by 38 DAT control declined to 65%.  Control in 

2006 using penoxsulam applied at 0.035 g ai/ha EPOST, mid-postemergence (MPOST), 

or LPOST, was >88% when evaluated 29 days after LPOST (Webster et al. 2006).  In 

Texas, O’Barr et al. (2004) reported >80% control from penoxsulam at a rate of 0.030 kg 

ai/ha EPOST.   

   Chemical control of alligatorweed has been investigated in both aquatic and terrestrial 

settings using aquatic and contact herbicides with little success.  Due to the large 

underground network of rhizomes in the terrestrial form, regrowth occurs soon after 

herbicide application (Julien and Broadbent 1980).  Imazapyr, an acetolactate synthase 
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(ALS) inhibitor, provided greater translocation to roots and long term control without 

regrowth but glyphosate caused desiccation of alligatorweed foliage but translocation 

was limited to roots (Tucker et al. 1994).  These results are similar to Bowmer et al. 

(1993) who reported that only 7% of applied glyphosate reached underground organs of 

alligatorweed.  Translocation of chlorimuron and imazaquin, both ALS inhibiting 

herbicides, was <1% to roots of pitted morningglory (Ipomoea lacunosa L.) (Shaw and 

Wesley 1993), however, 11% of imazethapyr was transported to roots of pitted 

morningglory (Kent et al. 1991).  Understanding herbicide translocation can be 

exacerbated in perennial species.  Herbicide movement could be affected by changes in 

relative sink strength of roots and shoots during establishment and growth of perennials.  

For instance, translocation of 2, 4-D in field bindweed (Convolvulus arvensis) was found 

to be different between seedling and vegetatively-propagated plants, with a more 

acropetal shift in herbicide accumulation with increasing age (Agbakoba and Goodin 

1969).  Limited translocation of herbicide to the roots of perennial species like 

alligatorweed would limit control. 

   New herbicide combinations must be tested for antagonism due to the variability 

between herbicides within a family and between weed species.  Herbicide combinations 

may reduce weed control or injure the crop.  Single applications of herbicide 

combinations for both grass and broadleaf weed control would reduce production cost 

compared to sequential applications (Ickeringill 1995).  Antagonism has been observed 

between various graminicides mixed with broadleaf herbicides (Holshouser and Coble 

1990; Vidrine et al. 1995).  Efficacy of fenoxaprop was reduced when mixed with 
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bentazon and triclopyr on grasses as well as when mixed with propanil and halosulfuron 

on barnyardgrass (Echinochloa crus-galli), but not on broadleaf signalgrass (Brachiara 

platyphylla) or Amazon sprangletop (Leptochloa panicoides) (Buehring et al. 2006; 

Jordan 1995; Stauber et al. 1991).  Zhang et al. (2005a) reported no antagonistic effect 

observed from fenoxaprop mixed with propanil + molinate or bentazon on 

barnyardgrass.  However, triclopyr, carfentrazone and halosulfuron were less 

compatible.  Cyhalofop, a newly registered graminicide, displayed antagonism with 

three broadleaf herbicides, triclopyr, propanil, and halosulfuron on both propanil-

resistant and susceptible barnyardgrass and broadleaf signalgrass (Scherder et al. 2005).   

   Reductions in efficacy when graminicides are mixed with ALS or photosystem II (PS 

II) herbicides have been partially explained by reductions in herbicide absorption and 

translocation.  Propanil reduced the translocation of cyhalofop out of the treated leaf in 

barnyardgrass when combined and when propanil was applied 1 day before cyhalofop 

(Scherder et al. 2005).  This may be due to the leaf burn and loss of membrane integrity.  

Propanil is a broad spectrum herbicide used in rice that inhibits the Hill reaction at PS II 

causing chlorosis within a few days (Senseman 2007).  Bentazon, similar to propanil, is 

known to reduce sucrose production and translocation by inhibition of electron transport 

in PS II (Fuerst and Norman 1991).  Penoxsulam, a phloem-mobile herbicide, may be 

inhibited when translocation and sucrose production is also inhibited by propanil 

(Devine et al. 1990).  Bentazon decreased absorption and translocation of imazethapyr in 

“Olathe” pinto bean (Phaseolus vulgaris), common ragweed (Ambrosia artemisiifolia) 

and redroot pigweed (Amaranthus retroflexus L.) (Bauer et al. 1995a; Bauer et al. 
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1995b; Hager et al. 1999).  Pyribenzoxim translocation was reduced when applied to 

barnyardgrass in combination with propanil (Koo et al. 2000).  Through the development 

of penoxsulam, tank mixes with various herbicides such as propanil have been evaluated 

for efficacy using different modes of action.  Antagonism has not been identified except 

for alligatorweed control.  O’Barr et al. (2004) reported possible antagonism between 

penoxsulam and propanil on alligatorweed.  Possible antagonism between propanil and 

penoxsulam may be a result of reduced translocation from reduced sucrose production 

from propanil inhibiting predominately phloem-mobile herbicides.  

   Antagonism has been successfully alleviated by increasing application rates of the 

antagonized herbicide or by applying the herbicides sequentially separated by a few days 

(Culpepper et al. 1998; Palmer et al. 2000).  The antagonistic affect of bromoxynil on 

quizalofop for large crabgrass (Digitaria sanguinalis) and yellow foxtail (Setaria 

glauca) control was minimized when bromoxynil was applied 6 d prior or 3 d after 

quizalofop (Culpepper et al. 1999).  Corkern et al. (1998) reported bromoxynil 

antagonism was reduced when applied 3 d prior or 7 d after the fluazifop application.  

Triclopyr and halosulfuron antagonism to cyhalofop was reduced when applied at least 3 

d before or after cyhalofop on propanil-resistant and susceptible barnyardgrass and 

broadleaf signalgrass, however propanil was antagonistic when tank mixed with 

cyhalofop (Scherder et al. 2005).  Sequential application increased control.  Propanil 

treatment during the period of 1 d before through 5 d after pyribenzoxim application was 

antagonistic and showed greater antagonism the shorter the interval between applications 

(Koo et al. 2000).  Increasing the rate of the antagonized herbicide had little effect on the 
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amount of antagonism without reaching control equal to the single application (Barnes 

and Oliver 2004; Culpepper et al. 1999; Koo et al. 2000).   

   Environmental conditions at application may alter the efficacy of herbicides by 

changing absorption and translocation as well as the level of weed control (Coupland 

1983; Kudsk et al. 1990).  Air temperature and soil moisture can cause plant stress 

influencing leaf cuticular composition and foliar penetration, therefore, decreasing the 

activity of herbicides (Hsaio 1973; Hull et al. 1975).  Foliar application of 

imazamethabenz controlled wild oat greater at 16/10 C (day/night) than at 11/7 or 26/16 

C compared to blackgrass (Alopecurus myosuroides) with greater control at 26/16 C 

(Shaner and O’Connor 1991).  Glyphosate applications to quackgrass (Elymus repens) 

provided greater control as temperature, humidity, and light increased (Coupland 1983).  

Geier et al. (1999) reported that plant dry weight reduction was greater at 10/5 C than at 

21/7 C for cheat (Bromus secalinus), however, just the opposite for wheat (Triticum 

aestivum) at 7% soil moisture.  As soil moisture increased, percent dry weight reduction 

increased without differences between temperatures.  Absorption and translocation can 

also be deterred by temperature and soil moisture and can vary between weed species 

and/or herbicides.  Translocation of pyrithiobac in velvetleaf (Abutilon theophrasti), 

metribuzin in jointed goatgrass (Aegilops cylindrical), downy brome (Bromus tectorum), 

and wheat, and atrazine in common bean and redroot pigweed was greater at higher 

temperatures (30 to 25 C) and soil moistures (field capacity and ¾ field capacity) than 

lower temperatures and soil moisture (Al-Khatib et al. 1992; Buman et al. 1992; 

Harrison et al. 1996).  In contrast, wheat and wild oat absorbed and translocated more 
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sulfosulfuron at lower temperatures, 15/13 C day/night temperature, and downy brome 

was unaffected (Olson et al. 1999). 

   Since penoxsulam is an ALS inhibitor, potential rice injury was a concern.  In the past, 

ALS inhibiting herbicides have caused significant injury to rice plants.  Bispyribac-

sodium was reported to have caused 10 to 16% root injury when applied EPOST and 

LPOST to rice.  When mixed with another ALS inhibiting herbicide, bensulfuron, injury 

was 16% (Braverman and Jordan 1996).  Scasta et al. (2004) also provided evidence that 

bispyribac-sodium, especially at pre-flood, injured rice up to 30% and injury increased 

with rate.  Root length was diminished with a pre-flood application evaluated 14 DAT.  

Root injury has been identified with penoxsulam when applied to rice at the 2- to 3-leaf 

or pre-flood stage.  Both, 31 g ai/ha and 62 g ai/ha reduced root growth of ‘Cocodrie’ as 

much as 35% (Meins et al. 2005).   

   Rice tolerance to herbicides may be dependent on cultivar and timing of application.  

Triclopyr caused 25% injury to long grain ‘Lemont’ rice but only 16 and 15% injury to 

‘Mars’ and ‘Tebonnet’ rice cultivars when averaged over timings.  Bromoxynil had the 

opposite effect on the same cultivars with Lemont as most tolerant (Pantone and Baker, 

1992).  ‘Jodon’ cultivar was injured 13% when data were pooled over triclopyr rates, 

growth stages, and years; however, ‘Bengal’, ‘Cypress’, and ‘Kaybonnet’ all had < 8% 

injury.  Increasing the rate of triclopyr from 420 to 840 g ai/ha, applied at the 4-leaf rice 

stage caused 22% injury compared to 2% injury when applied at the panicle initiation 

stage.  Triclopyr applied pre-flood at 840 g ai/ha reduced yield compared to application 

at panicle initiation independent of cultivar (Jordan et al. 1998).  Bispyribac-sodium 
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caused greater injury to Bengal than Cocodrie.  Root fresh weight for Bengal was 

reduced 60 to 77% compared to the non-treated check; however, Cocodrie was only 

reduced 15 to 27% at 2 and 3 weeks after treatment (WAT) when applied at 20 (1x) and 

40 (2x) g ai/ha to 1- to 2-leaf rice.  Data for bispyribac-sodium applied at the 2- to 3-leaf 

rice stage resulted in differences similar to the 1- to 2-leaf stage (Zhang and Webster, 

2002).  Zhang et al. (2005b) concluded that ‘Earl’ cultivar was less tolerant to 

bispyribac-sodium than Bengal, Cocodrie, Cypress, ‘Wells’, ‘CL-161’, and ‘CL-141’ 

when injury, plant height, and yield was measured.  Penoxsulam caused 58 and 52% root 

pruning to Wells in Arkansas 2 WAT when applied at 35 g ai/ha (1x) and 70 g ai/ha 

(2x), respectively, at the 4-to 5-leaf rice stage (Ellis et al., 2005).  Applications made at 

1- to 2-leaf and 1 week post-flood at the same rates of penoxsulam reduced root growth 

38 to 41% and 44 to 45%, respectively.  Penoxsulam applied at the 4- to 5-leaf rice stage 

at 0.032 and 0.064 g ai/ha injured roots of Cocodrie 65 and 77% and Bengal 53 and 

63%, respectively, at 2 WAT.  ‘XL8’ cultivar was least affected by penoxsulam resulting 

in 4 and 7% root growth inhibition at the two rates, respectively.  By 3 WAT, root 

growth recovered and was equal to the root growth of the non-treated check for all 

varieties with no effect on yield (Ellis et al. 2005). 

   Flood timing influences weed control (Richard and Street 1984) and may affect the 

tolerance of rice cultivars to herbicides.  Fenoxaprop applied at the 1 tiller rice stage of 

‘Lebonnet’ cultivar resulted in higher phytotoxicity the earlier the flood was established 

(Thomas 1984).  Yield of ‘Newbonnet’ and ‘Starbonnet’ cultivars were reduced as 

flood-timing interval after application of fenoxaprop was shortened (Snipes et al. 1987).  
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Literature is limited on the tolerance of rice cultivars to penoxsulam influenced by flood 

timing and root stunting or yield.  The penoxsulam revised label (November 2004) 

indicated to delay flood establishment until 3 DAT (Anonymous, 2004).  Root stunting 

was still observed beyond timing at 3 DAT and it is not known whether root stunting 

reduce yield.   

   Alligatorweed is a noxious weed in Texas and has migrated from waterways to the 

ditches and canals that supply irrigation water to the rice fields.  As a perennial, 

alligatorweed produces a massive underground rhizome system making herbicide control 

difficult.  Control/suppression may be achieved through the growing season however 

regrowth is rapid within days.  Penoxsulam is a new herbicide for weed control in rice 

and possibly a substitute for propanil as propanil resistant weeds emerge. Obtaining a 

better understanding of penoxsulam behavior and environmental factors favoring its 

efficacy is needed.  The objectives of this research was to:  1) evaluate the effects of 

select rice herbicides on alligatorweed control,  2) determine the absorption and 

translocation efficiency of penoxsulam and the effect of propanil on penoxsulam in 

alligatorweed  3) access application timing and air temperature effects on penoxsulam 

efficacy to avoid antagonism with propanil and,  4) evaluate the effects of flood timing 

and rice cultivars on rice root stunting and plant foliar injury from penoxsulam 

applications. 
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CHAPTER II 

INFLUENCE OF FLOOD INTERVAL AND CULTIVAR ON RICE 

TOLERANCE TO PENOXSULAM* 

 

INTRODUCTION 

   Penoxsulam is a new postemergence herbicide developed for use in rice.  It is a 

member of the triazolopyrimidine sulfonamide family of herbicides that inhibit the 

acetolactate synthase (ALS) enzyme (#4.1.3.18) in branched-chain amino acid synthesis 

of susceptible weed species.  Penoxsulam controls many important weeds in rice 

including Echinochloa spp., northern jointvetch (Aeschynomene virginica L.), 

alligatorweed [Alternanthera philoxeroides (Mart.) Griseb.], Texasweed/Mexicanweed 

(Caperonia spp.), annual sedge (Cyperus spp.), ducksalad [Heteranthera limosa (Sw.) 

Willd], smartweed (Polygonum spp.), and hemp sesbania [Sesbania herbacea (P. Mill)] 

(Richburg et al. 2005; Strahan 2004).   

   Injury to rice from ALS-inhibiting herbicides has been observed (Braverman and 

Jordan 1996).  Bispyribac-sodium caused 10 to 16% root injury when applied early 

postemergence and late postemergence to rice.  Scasta et al. (2004) also provided 

evidence that bispyribac-sodium, especially when applied pre-flood, injured rice up to 

30%, and injury increased with rate.  Root length was diminished with a pre-flood 

application evaluated 14 DAT.  Root injury has been observed with penoxsulam when 

                                                 
* Reprint with permission from “Influence of flood interval and cultivar on rice (Oryza sativa) tolerance to 
penoxsulam” by Willingham, S.D., G.N. McCauley, S.A. Senseman, J.M. Chandler, R.B. Lassiter. J.S. 
Richburg, and R.K. Mann, 2008. Weed Technol., In Print.  Copyright 2008 by the Weed Science Society 
of America. 
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applied to rice at the two to three-leaf stage or at pre-flood.  Penoxsulam at 31 and 62 

g/ha reduced root growth of Cocodrie up to 35% (Meins et al. 2005).   

   Rice tolerance to herbicides may be dependent on cultivar and application timing.  

Triclopyr caused 25% foliar injury to Lemont rice but only 16 and 15% injury to Mars 

and Tebonnet, respectively, when averaged over timings (Pantone and Baker 1992).  

Bromoxynil had the opposite effect on the same cultivars, with Lemont being the most 

tolerant.  Jodon was injured 13% when data were pooled over triclopyr rates, growth 

stages, and years; however, Bengal, Cypress, and Kaybonnet were injured < 8% (Jordan 

et al. 1998).  Bispyribac-sodium caused greater injury to Bengal than Cocodrie (Zhang 

and Webster 2002).  Bengal root fresh weight was reduced 60 to 77% compared with 

nontreated.  Cocodrie root fresh weight was only reduced 15 to 27% at 2 and 3 wk after 

treatment (WAT) when bispyribac-sodium was applied at 20 and 40 g/ha to rice in the 

one to two-leaf stage.  Bispyribac-sodium applied to two to three-leaf rice resulted in 

similar differences (Zhang and Webster 2002).  In other research, Earl was less tolerant 

to bispyribac-sodium than other cultivars when foliar injury, plant height, and yield were 

measured (Zhang et al. 2005b).  Penoxsulam applied at 30 or 70 g/ha to one to two-leaf 

rice, four to five-leaf rice, and at 1 wk post-flood caused 38 and 41%, 58 and 52%, and 

45 and 44% root stunting, respectively, to Wells evaluated at 2 weeks after flood (WAF) 

(Ellis et al. 2005).  When applied to four to five-leaf rice, penoxsulam at 30 or 70 g/ha 

injured roots of Cocodrie 65 and 77% and Bengal 53 and 63%, respectively, at 2 WAT.  

Hybrib ‘XL8’ was least affected by penoxsulam resulting in <8% root growth inhibition 
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at the two rates.  By 3 WAT, root growth recovered and was equal to the non-treated 

control for all cultivars with no effect on yield (Ellis et al. 2005). 

   Flood timing influences weed control (Richard and Street 1984), and may affect the 

tolerance of rice cultivars to herbicides.  Yield of Newbonnet and Starbonnet cultivars 

were reduced as flood-timing interval after application of fenoxaprop was shortened 

(Snipes et al. 1987).   

   Currently, no data exist on the tolerance of rice cultivars to penoxsulam as influenced 

by flood timing.  Recommendations are to delay permanent flood establishment for 3 d 

after a penoxsulam application (Anonymous 2004).  However, root stunting has been 

observed beyond this timing (R. B. Lassiter, personal communication).  There has been 

no research to correlate root injury from penoxsulam or rice grain yield.  The objective 

of this study was to determine the level of rice tolerance to penoxsulam as impacted by 

flood timing for several commonly-grown cultivars and to evaluate its effect on grain 

yield.   

 

MATERIALS AND METHODS 

   Field studies were conducted in 2003 at two sites in Greenville, MS, on a producer’s 

private farm in Humphrey, AR and in 2004 in Greenville, MS, Stoneville, MS, 

Humphrey and Newport, AR, and at Eagle Lake, TX to determine the level of rice 

tolerance to penoxsulam as impacted by flood timing for several commonly-grown 

cultivars.  Soil classification and texture for each location are presented in Table 1.  All 

locations are representative of rice producing areas in Mississippi, Arkansas, and Texas.   
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Table 1.  Soil texture analysis and pH for Mississippi, Arkansas, and Texas experiment locations in 2003 and 2004. 

Location              Soil classification         %Sand   %Silt  %Clay  pH 

2003  

     Greenville, MS Mhoon silty clay loam (Fine-silty, mixed, nonacid, thermic, Typic Fluvaquents)     11         68     21    7.1 

     Greenville, MS Mhoon silt loam (Fine-silty, mixed, nonacid, thermic, Typic Fluvaquents)     25         52     22    7.1 

     Humphrey, AR Rilla silt loam (Fine silty, mixed, thermic, Typic Hapludalfs)       29         37     34    5.1 

2004 

     Greenville, MS Sharkey clay (Very-fine, montmorillonitic, nonacid, thermic Vertic)      7.5        22          70    6.4 

     Stoneville, MS Sharkey silty clay loam (Very-fine, montmorillonitic, nonacid, thermic Vertic)     11         46      42    7.3 

     Humphrey, AR Rilla loam (Fine silty, mixed, thermic Typic Hapludalfs)         52        30          18    5.5 

     Newport, AR Bosket fine sandy loam (Fine-loamy, mixed, thermic, Mollic Hapludalfs)       76        10          14    5.6 

     Eagle Lake, TX Crowley fine sandy loam (Fine, smectitic, hyperthermic, Typic Albaqualfs)      59        29          12    5.3 
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Field preparation consisted of fall disking followed by precision leveling and field 

cultivation before planting. 

   Five cultivars, including one medium-grain cultivar (Bengal) and three long-grain 

cultivars (Cypress, Wells, and Cocodrie) were drill seeded at 78 kg/ha.  The long-grain 

rice hybrid, ‘XP712’, was also included and seeded at 50 kg/ha.  Planting dates ranged 

from April 7 to April 30 during the two-year study.  Plot size was nine rows spaced 20 

cm apart by 5.4 m long.  Seeds were pretreated with the insecticide fipronil {5-amino-1-

[2,6-dichloro-4-trifluoromethyl)phenyl]-4-(trifluoromethylsulfinyl)-1H-pyrazole-3-

carbonitrile} for rice water weevil (Lissorhoptrus oryzophilus) control.  Soil fertility 

management at each location was consistant with local cultural practices and state 

recommendations.  Soil moisture was maintained by flush irrigation (briefly flooded and 

drained) to promote rice growth and herbicide incorporation. 

   The four herbicide treatments consisted of POST applications of quinclorac at 420 g 

ai/ha plus propanil at 4480 g ai/ha as the standard treatment, bispyribac-sodium at 30 

g/ha, and penoxsulam at 30 and 60 g/ha.  A crop oil concentrate1 was added to 

penoxsulam at 2.5% v/v.  A silicon-based surfactant2 at 0.125% v/v was added to 

bispyribac-sodium.  All treatments were applied to rice in the 4- to 5-leaf rice stage, with 

the permanent flood established 1, 7, or 14 days after treatment (DAT).  Weed-free 

conditions were maintained by preemergence (PRE) application of clomazone to the 

entire study immediately after planting at recommended rates by soil characteristics for 

each site.  All herbicide applications were made using a CO2 or compressed air 

pressurized backpack sprayer and boom calibrated to deliver 94 L/ha.  The site was 
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separated into three areas by levees each representing a flood timing.  Cultivars and 

herbicide treatments were randomized within each flood timing. 

   The study was designed as a split-split plot with four replications.  The main plot was 

three flood timings of 1, 7, and 14 DAT of postemergence (POST) herbicide application.  

Sub-plots consisted of the five rice cultivars and herbicide treatments were sub-subplots. 

   Visual evaluation of rice foliar injury and root growth inhibition were estimated 1, 2, 

3, and 4 WAT for each flood timing.  Foliar rice injury was evaluated using a scale of 0 

to 100% where 0 = no injury and 100 = complete rice death by comparing plant growth 

reduction to the standard treatment of quinclorac plus propanil.  Root growth inhibition 

was evaluated by extracting one randomly selected plant for each plot (Zhang and 

Webster 2002).  Plants were gently pulled to minimize root breakage and then washed to 

remove the soil from the root mass.  Ratings were a measurement of percent root 

reduction based on root mass of the treated plants compared to quinclorac plus propanil-

treated plant within each cultivar.  This was repeated for each replication and cultivar 

within each flood timing.  Rice grain was harvested using a small plot grain harvester3 

when grain moisture was approximately 20%.  Final grain yield was adjusted to 12% 

moisture content.   

   All data were subjected to the Mixed Procedure (SAS 2002).  Year, locations, 

replications (nested within year), and all interactions between these were considered 

random effects.  This allowed inferences to be made about treatments and flood timings 

over a range of environments (Carmer et al. 1989).  Herbicide treatments, flood timings, 

cultivars, and their interactions were considered fixed effects.  Data were analyzed 
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comparing flood timings, herbicide treatments and cultivars and any interactions 

between them.  Type III statistics were used to test all possible effects of fixed effects 

along with Fisher’s protected LSD to determine mean separation at the P < 0.05 level.  

Next, the flood timing that resulted in the most rice injury was then analyzed in order to 

reduce variation introduced from other flood timings.  Proc mixed Procedure was used 

for testing herbicide treatments and cultivars and their interaction.  Choosing to analyze 

one flood timing over other flood timings was determined due to the greater root growth 

inhibition (RGI) at that particular flood timing.   

 

RESULTS AND DISCUSSION 

   A flood timing by cultivar interaction occurred for RGI, therefore, data were presented 

to reflect the interaction (Table 2).  Herbicide treatments and all interaction containing 

herbicide treatments were not significant as well as the three-way interaction between 

cultivar, herbicide treatment, and flood timing.   

   At 1 week after flood establishment (WAF), RGI was similar at flood timings 1 (15 to 

21%) and 7 (16 to 18%) DAT for cultivars Bengal, Cocodrie, Cypress, and Wells (Table 

2).  Cultivar XP712 exhibited lower RGI (<5%) at these flood timings.  Root growth 

inhibition for each cultivar was similar at 1 and 7 DAT.  Root growth inhibition 

persisted at 2 WAF following flood at 1 DAT from 15 to 19% for all cultivars except 

XP712 (0%).  Bengal (19 vs 12%), Cypress (19 vs 13%), and Wells (16 vs 12%) had a 

higher RGI following flood 1 DAT compared to 7 DAT.  Cocodrie exhibited similar 

RGI at flood 1 and 7 DAT, 15 and 13% respectively, taking longer to recover, and less   
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Table 2.  Percent root growth inhibitiona from herbicide treatments as influenced by 

flood timing of 1, 7 and 14 DAT for five rice cultivars evaluated at 1 and 2 weeks after 

flood (WAF) establishmentb. 

   Flood timing (DAT) 

Evaluation date Rice cultivar Grain size 1 7 14 

    
% 

1 WAF Bengal Medium 21 Aac 17 Aa 11 Ab 

 Cocodrie Long 16 Aa 17 Aa 8 Ab 

 Cypress Long 19 Aa 18 Aa 9 Ab 

 Wells Long 15 Aa 16 Aa 10 Ab 

 XP712 Long 4 Ba 0 Ba 0 Ba 

2 WAF Bengal Medium 19 Aa 12 Ab 3 Ac 

 Cocodrie Long 15 Aa 13 Aa 2 Ab 

 Cypress Long 19 Aa 13 Ab 3 Ac 

 Wells Long 16 Aa 12 Ab 3 Ac 

 XP712 Long 0 Ba 0 Ba 0 Ba 

   a Root growth inhibition: % reduction in root mass as compared to propanil + 

quinclorac. 

   b Abbreviations: DAT, d after treatment; WAF, weeks after flood establishment. 

   c Means followed by the same uppercase letter within columns for each flood timing 

and means followed by the same lowercase letter within each cultivar are not 

significantly different using Fisher’s protected LSD at p<0.05. 
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when flooded 14 DAT (2%).  Cultivars Bengal, Cocodrie, Cypress, and Wells exhibited 

lowest RGI at 14 DAT (2 to 3%). 

   These data indicate that delaying flood establishment to 14 DAT would reduce RGI by 

herbicides evaluated.  In addition, cultivar XP712 exhibited excellent tolerance to all 

herbicides with no greater than 4% RGI at any timing.  The penoxsulam label indicates 

that moist soil conditions enhance weed control allowing more herbicide to be available 

for uptake from the soil solution (Anonymous 2004).  Beginning at the two to three-leaf 

stage, rice begins to develop secondary roots that actively undergo cell division (Dunand 

1999).  ALS inhibitors delay the cell division component of growth (Ray 1982).  This 

may have led to RGI at early flood timings.  Additionally, source leaves of susceptible 

plants treated with ALS-inhibiting herbicides have a decreased supply of photosynthates 

supporting the growth of secondary roots (Devine et al. 1990).  Flooding soon after 

herbicide application increases herbicide availability for root uptake and increases injury 

potential.   

   As a worst-case scenario, evaluation of RGI from penoxsulam and bispyribac-sodium 

for five rice cultivars was analyzed again using only the earliest possible flood timing, 1 

DAT (Table 3).  The interaction between cultivar and herbicide treatment was significant 

when flood timing 1 DAT was analyzed separately from the other flood timings; 

therefore, data were presented to reflect this interaction (Table 3).  At 1 WAT, RGI was 

greater from bispyribac-sodium for Bengal (25 vs 15) and Cypress (23 vs 14%) 

compared to penoxsulam at 30 g/ha, but similar when compared to penoxsulam at 60 

g/ha (21 to 25%).  Differences among treatments were similar for Wells and Cocodrie   
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Table 3.  Percent root growth inhibitiona at flood timing 1 DATb as influenced by 

herbicide treatment for five rice cultivars. 

  Root growth inhibition 

Herbicide treatment Rate Bengal Wells Cocodrie Cypress XP712 

  
g ai/ha 

 
________________________________%________________________________ 

1 WATb  bispyribac-sodium 30 25 Aac 18 Aa 16 Aa 23 Aa 4 Ab 

                         Penoxsulam 30 15 Ba 14 Aa 13 Aa 14 Ba 3 Ab 

                         Penoxsulam 60 22 ABa 17 Aa 18 Aa 21 ABa 4 Ab 

2 WAT   bispyribac-sodium 30 20 Aa 16 Aa 10 Bb 22 Aa 2 Ac 

                         Penoxsulam 30 16 Aa 13 Aa 16 ABa 18 Aa 0 Ab 

                         Penoxsulam 60 22 Aa 21 Aa 19 Aa 18 Aa 2 Ab 

3 WAT   bispyribac-sodium 30 15 Aa 11 Aa 12 ABa 10 Ba 0 Ab 

                         Penoxsulam 30 10 Aa 11 Aa 11 Ba 10 Ba 0 Ab 

                         Penoxsulam 60 14 Aa 17 Aa 18 Aa 19 Aa 0 Ab 

   a Root growth inhibition, foliar injury: % reduction in root mass and above ground rice 

plant growth compared to propanil + quinclorac. 

  b Abbreviations: DAT, d after treatment; WAT, weeks after treatment. 

   c Means followed by the same uppercase letter within columns for each WAT and 

means followed by the same lowercase letter within each herbicide treatment for each 

WAT are not significantly different using Fisher’s protected LSD at p<0.05.   
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 with RGI ranging from 13 to 18%.  Root growth inhibition was similar among cultivars 

from each treatment except XP712, which exhibited <5% RGI (Table 3). 

  By 2 WAT, all cultivars exhibited similar RGI among herbicide treatments (13 to 22%) 

with the exception of Cocodrie showing greater RGI from penoxsulam at 60 g/ha 

compared to bispyribac-sodium (19 vs 10%) (Table 3).  Cocodrie began to recover from 

bispyribac-sodium with less RGI compared to other cultivars except cultivar XP712 at 2 

WAT.  XP712 exhibited <3% RGI, lower than the other cultivars.  At 3 WAT, RGI for 

Cocodrie treated with penoxsulam at 30 g/ha was similar to bispyribac-sodium (11 vs 

12%) and less than penoxsulam at 60 g/ha (11 vs 18%) (Table 3).  Cypress exhibited less 

RGI from bispyribac-sodium (10%) and penoxsulam at 30 g/ha (10%) compared to 

penoxsulam at 60 g/ha (19%).  Bengal and Wells showed no differences among 

herbicide treatments with RGI ranging from 10 to 17%.  Root growth inhibition was 

similar among cultivars from each treatment except XP712 with <5% RGI.   

   Herbicide treatment by cultivar interaction was significant for foliar injury.  Flood 

timing or any interaction including flood timing for plant foliar injury was not 

significant, therefore, data were presented to reflect this interaction (Table 4).  Injury 

symptoms observed were slight stunting of rice growth with very slight chlorosis.  At 1 

WAT, bispyribac-sodium showed greater foliar injury, 9 to 14%, compared with 

penoxsulam for all cultivars except XP712, which exhibited <6% injury.  Bengal foliar 

injury (14%) was greater form bispyribac-sodium compared to other cultivars (5 to 

11%).  At 2 WAT, Bengal foliar injury from penoxsulam at 60 g/ha and bispyribac-

sodium was similar (15 and 12%) and greater compared to penoxsulam at 30 g/ha (8%).   
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Table 4.  Percent foliar injury averaged across flood timings as influenced by herbicide 

treatment for five rice cultivars. 

  Foliar injury 

Herbicide treatment Rate Bengal Wells Cocodrie Cypress XP712 

   
% 

1 WATa       

Bispyribac-sodium 30 14 Aab 9 Ab 10 Ab 11 Ab 5 Ac 

Penoxsulam 30 4 Ca 3 Ba 2 Ca 3 Ba 0 Aa 

Penoxsulam 60 6 Ba 3 Ba 4 Ba 5 Ba 0 Aa 

2 WAT       

Bispyribac-sodium 30 15 Aa 10 Ab 7 Ab 8 Ab 3 Ac 

Penoxsulam 30 8 Ba 6 Aa 5 Aa 6 Aa 0 Aa 

Penoxsulam 60 12 Aa 7 Ab 7 Ab 7 Ab 0 Ac 

3 WAT       

Bispyribac-sodium 30 9 Aa 8 Aa 6 Aa 6 Aa 0 Aa 

Penoxsulam 30 8 Aa 7 Aa 6 Aa 6 Aa 0 Aa 

Penoxsulam 60 11 Aa 11 Aa 10 Aa 8 Aa 0 Aa 

   a Abbreviations:  WAT, weeks after treatment. 

   b Means followed by the same uppercase letter within columns for each WAT and 

means followed by the same lowercase letter within each herbicide treatment for each 

WAT are not significantly different using Fisher’s protected LSD at p<0.05. 
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All other cultivars showed less foliar injury (0 to 10%) compared to Bengal with 

bispyribac-sodium and penoxsulam at 60 g/ha.  By 3 WAT, there were no differences 

among herbicide treatments or cultivars.  Cultivar XP712 exhibited less than 6% foliar 

injury at all ratings (Table 4).  

   Rice grain yield is important to determine if initial root injury or foliar injury had a 

long-term adverse effect on grain development and provides a better understanding of 

the plant’s ability to recover.  Flood timing, herbicide treatment, and flood timing by 

herbicide treatment interaction for each cultivar was not significant for rice yield.  Yield 

for XP712 ranged from 10683 to 11306 kg/ha (data not shown) and Cocodrie, Cypress, 

Bengal, and Wells yield ranged from 8010 to 8991 kg/ha.  All treatments were similar to 

the standard treatment.   

   These data indicate that flood timing affected RGI for rice cultivars with penoxsulam 

and bispyribac-sodium.  Flooding 1 or 7 DAT consistently resulted in greater RGI than 

when flood was delayed to 14 DAT.  The earlier the flood timing, the longer RGI 

persisted.  By 4 WAT, rice plants recovered from initial herbicide injury.  For all 

cultivars, grain yield was not adversely affected by initial injury from herbicide 

treatments.  For the worse-case scenario at flood 1 DAT, when more herbicide was 

available for plant uptake, RGI was greater with bispyribac-sodium for Bengal and 

Cypress when compared to penoxsulam at 30 g/ha.  Differences between these 

treatments were not evident 1 week later.  Penoxsulam at 30 and 60 g/ha and bispyribac-

sodium initially inhibited root growth, however, rice plants recovered resulting in no 

yield reduction compared to the standard treatment.  These results indicate that early 
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flood timing resulted in prolonged RGI for Bengal, Wells, Cocodrie, and Cypress from 

penoxsulam, but grain yield was not adversely affected.  XP712 was most tolerant to the 

herbicide treatments and flood timings with < 5% RGI and foliar injury.  Hybrids have 

inherently higher yield potential such as XP712 providing greater yield than other 

cultivars evaluated.   
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CHAPTER III 

ALLIGATORWEED CONTROL IN RICE WITH PENOXSULAM 

 

INTRODUCTION 

   Alligatorweed [Alternanthera philoxeroides (Mart.) Griseb.] is found on the coast of 

northern Virginia, south to Florida, westward to Texas, and California (USDA 2002) as 

well as in lowland rice in Taiwan and the United States (Holm et al. 1997).  

Alligatorweed has been recognized as an invasive and troublesome weed in rice in 23 

provinces in China and is responsible for a 45% yield loss or loss of around $75 million 

in regions south of the Yellow River (Lu et al. 2002).  Alligatorweed can survive the 

mild winter of the southern U.S. by tolerating cold temperatures of >5 C (Shen et al. 

2005).  Frost may kill above ground parts but regrowth occurs in the spring (Coulson 

1977). 

   Alligatorweed is a member of the amaranthaceae family.  Reproduction is entirely 

vegetative with two viable axillary buds capable of growth at all stem nodes.  

Alligatorweed does not produce viable seed under field conditions (Center and Balciunas 

1975; Julien 1995).  On land, cultivation may drag pieces of stolons to clean areas and 

with whole or partial soil contact, new plants are produced that increase infestation 

(Parsons and Cuthbertson 2001).  Plant biomass can double in the field in approximately 

50 days during the summer (Brown and Spencer 1973).     

   Alligatorweed has become one of the ten most troublesome weeds in Florida, 

Louisiana, and Texas rice since 2000 (Webster 2000, 2004).  Effective control but not 
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eradication, has been obtained with such herbicides as bentazon, bifenox, dicamba, 

fenoprop, pendimethalin, propanil, and triclopyr without serious damage to the crop 

(Julien and Broadbent 1980).  In Louisiana, glyphosate and picloram applications mid-

summer to late fall controlled alligatorweed >90% for up to 300 days after treatment 

(DAT) greater than triclopyr, dicamba, and 2,4-D.  Spring applications to young, new 

growth were the least effective (Burns and Williams 2006).  Mid-October or later 

applications did not provide adequate control.  Bispyribac-sodium provided at least 85% 

alligatorweed control all season when applied early postemergence (EPOST) or late 

postemergence (LPOST) alone or in combination with thiobencarb, bensulfuron, or 

halosulfuron when alligatorweed is 7 to 14 cm tall.  Applications post flood when 

alligatorweed is 15 to 25 cm tall results with inadequate control from many herbicides 

(Braverman and Jordan 1996; Carey et al. 2000; Webster et al. 1999; Webster et al. 

2003).  Propanil alone or tank mixed with thiobencarb provides <60% control.   

   Timing of herbicide application and obtaining residual control from herbicides is 

important.  Imazethapyr applied EPOST to imidazolinone-resistant drill seeded rice 

provided at least 85% control of alligatorweed when followed by (fb) bensulfuron, 

triclopyr, bispyribac-sodium, or propanil + molinate 21 DAT (Pellerin et al. 2004).  

When imazethapyr was fb imazethapyr or carfentrazone-ethyl, control was inadequate.  

By 35 DAT control was <69% for all treatments mentioned.  In water seeded 

imidazolinone-resistant rice systems, alligatorweed control was inadequate with 

imazethapyr EPOST fb imazethapyr LPOST at 35 DAT (Pellerin et al. 2003).  Control 

greater than 85% was achieved when LPOST applications of imazethapyr was mixed 
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with bensulfuron, carfentrazone, triclopyr, bispyribac-sodium, or propanil + molinate.  

LPOST treatments without an EPOST application of imazethapyr provided inadequate 

control.   

   Penoxsulam (Grasp SC) is a new postemergence broad-spectrum herbicide developed 

by Dow AgroSciences for use in rice.  It is a member of the triazolopyrimidine 

sulfonamide family of herbicides that inhibit the acetolactate synthase (ALS) enzyme of 

susceptible species used in branched-chain amino acid synthesis.  Penoxsulam received a 

Reduced Risk Pesticide status as well as a Section 3 registration from the EPA in 

October 2004 for Arkansas, Florida, Mississippi, Missouri, Louisiana, and Texas 

(Anonymous 2004).  Research data indicated that penoxsulam controls many important 

weeds in rice such as Echinochloa propanil, quinclorac and ACCase resistant species as 

well as alligatorweed (Richburg et al. 2005; Strahan 2004).  

Additionally, previous research indicated penoxsulam added broadleaf weed control to 

clomazone and imazethapyr based programs where broadleaf weeds have become a 

problem in these systems (Lassiter et al. 2005; Meins et al. 2005).   

   There is limited research published on the control of alligatorweed with penoxsulam in 

rice production and these results are variable between year and location.  In Louisiana in 

2003, 86% control of alligatorweed was achieved with penoxsulam EPOST 18 DAT, 

however, by 38 DAT control declined to 65% (Webster et al. 2003).  Control in 2006 

using penoxsulam applied at 3 timings, EPOST, mid-postemergence (MPOST), or 

LPOST, was >88% when evaluated 29 days after LPOST (Webster et al. 2003, 2006).  

In Texas, O’Barr et al. (2004) reported >80% control from penoxsulam at 0.030 kg ai/ha 



31 

 

EPOST.  The objective of this study was to evaluate penoxsulam alone and in various 

tank mixes with commonly used rice herbicides at different timings in drill-seeded rice 

for effective alligatorweed control and optimal rice yield in Texas.  

 

MATERIALS AND METHODS 

   Field studies were conducted in 2004 and 2005 at four locations and in 2006 at two 

locations in the rice producing region of Texas with substantial alligatorweed 

populations.  Study sites included commercial production fields near Eagle Lake, 

Garwood, Ganado and Lissie, TX.  Soil classification and texture are presented in Table 

5.  Field preparation consisted of fall disking followed by precision leveling and field 

cultivation before planting.  Plantings dates ranged from March 22 to April 5 during the 

three year study.  Plot size was nine rows spaced 20 cm apart by 5.4 m long.  Seeds were 

pretreated with the insecticide fipronil {5-amino-1-[2,6-dichloro-4-

trifluoromethyl)phenyl]-4-(trifluoromethylsulfinyl)-1H-pyrazole-3-carbonitrile} for rice 

water weevil control.  Soil fertility management at each location was consistent with 

local cultural practices and state recommendations.  Soil moisture was maintained by 

flush irrigation (briefly flooded and drained) to promote rice growth and herbicide 

activation.   

   A randomized complete block design was utilized to analyze the data with four 

replications.  The herbicide treatments consisted of penoxsulam at 30 or 35 g ai/ha alone 
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Table 5.  Soil texture analysis and pH for Texas experiment locations in 2004, 2005, and 2006. 

Location              Soil classification      % Sand          %Silt % Clay   pH 

Eagle Lake, TX Crowley fine sandy loam (fine, smectitic, hyperthermic    59  29    12  5.3 

   Typic Albaqualfs) 

Ganado, TX  Edna fine sandy loam (fine, montmorillonitic, thermic,    55  33    12  6.1 

Vertic Hapludalfs) 

Garwood, TX  Nado-Cieno fine sandy loam (siliceous, active,     57  25    18  5.9 

 hyperthermic Albaquic Hapludalfs)  

Lissie, TX  Crowley fine sandy loam (fine, smectitic, hyperthermic    56  25    19  6.7 

   Typic Albaqualfs) 

 



 

 

33

and in combination with propanil at 3362 g/ha or triclopyr at 210 g/ha as well as 

propanil plus triclopyr applied either at the 3-leaf rice stage (EPOST) or the 4- to 5-leaf 

rice stage (LPOST).  Alligatorweed stolens were 5 to 13 cm long at EPOST and 10 to 20 

cm long at LPOST applications.  Additional LPOST applications included bispyribac-

sodium at 28 g/ha alone and in combination with propanil or triclopyr, bensulfuron at 70 

g/ha alone or with propanil, prosulfuron at 20 g/ha, quinclorac plus propanil plus 

halosulfuron at 336, 3362, and 33 g/ha, respectively, and penoxsulam plus halosulfuron.  

Treatments of bispyribac-sodium with two surfactants, a silicon-based surfactant4 at 

0.125 % v/v plus urea ammonium nitrate (UAN) and Dyne-A-Pak5 at 1% v/v were added 

in 2006.  A crop oil concentrate6 at 2% v/v was included with all treatments except with 

bispyribac-sodium which included a silicon-based surfactant at 0.125% v/v.  Grass 

control was maintained by using clomazone applied preemergence (PRE) to the entire 

study immediately after planting at 390 g/ha, recommended rate as determined by soil 

characteristics at each study location.  All herbicide applications were made using a CO2  

pressurized backpack sprayer with four flat-fan nozzle boom calibrated to deliver 140 

L/ha. 

   Visual evaluation of alligatorweed control was estimated 14 and 42 DAT using a scale 

of 0 to 100% where 0 = no control and 100 = complete weed death by comparing to the 

untreated plot.  Rice grain was harvested using a small plot grain harvester7 when grain 

moisture was approximately 20%.  Final grain yield was adjusted to 12% moisture 

content.   
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   All data were subjected to the Mixed Procedure (SAS 2002). Years, locations, 

replications (nested within year), and all interactions were considered random effects.  

This allowed inferences to be made about herbicide treatments over a range of 

environments (Carmer et al. 1989).  Herbicide treatments were considered fixed effects.  

Type III statistics were used to test all possible effects of fixed effects.  Least-square 

means were used to determine mean separation at the p< 0.05 level.   

 

RESULTS AND DISCUSSION 

   At 14 DAT, alligatorweed suppression was <69% from propanil tank mixed with 

penoxsulam at 30 g/ha or triclopyr applied EPOST or LPOST (Table 6).  Penoxsulam 

alone provided 86% control EPOST, however, only 78% LPOST on larger 

alligatorweed.  When penoxsulam was mixed with triclopyr, control was 89 and 81% 

EPOST and LPOST, respectively.  Therefore, possible antagonism between penoxsulam 

and propanil may exist.  Addition of halosulfuron with penoxsulam provided 78% 

control, similar to penoxsulam alone LPOST.  Treatments including bispyribac sodium 

and bensulfuron alone or mixed with propanil and quinclorac plus propanil plus 

halosulfuron LPOST provided <65% alligatorweed control (Table 6).   At 42 DAT, 

control from propanil mixed with penoxsulam or triclopyr was <68%.  At 42 DAT, 

alligatorweed control was 79 and 83% from penoxsulam alone or when mixed with 

triclopyr EPOST (Table 6).  LPOST applications of penoxsulam and bispyribac-sodium 

alone and with triclopyr were consistent with 81 to 92% control.  LPOST applications 

are possibly providing longer residual activity.  Penoxsulam plus halosulfuron and  
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Table 6.  Alligatorweed control and rice grain yield from penoxsulam at 30 g ai/ha in 

different weed-control programs in drill-seeded rice in 2004 and 2005a. 

   Alligatorweed  
 
Herbicide treatment 

 
Rateb 

 
Timingc 

 
14 DAT 

 
42 DAT 

 
Yield 

  
g ai/ha 

  
% control 

 
___kg/ha___ 

Non-treated   0 jd 0 h 7587 f 

Penoxsulam 30 EPOST 86 ab 79 cd 9280 ab 

   + propanil 3362 EPOST 68 de 65 ef 9055 a-d 

   + triclopyr 210 EPOST 89 a 83 abc 9552 a 

Propanil + triclopyr 3362 + 210 EPOST 56 fgh 57 fg 8766 bcd 

Penoxsulam 30 LPOST 78 bcd 85 abc 8844 a-d 

   + propanil 3362 LPOST 55 f-i 67 ef 8503 cd 

   + triclopyr 210 LPOST 81 abc 91 ab 9322 ab 

Propanil + triclopyr 3362 + 210 LPOST 61 efg 66 ef 8476 cde 

Bispyribac-sodium 28 LPOST 64 ef 81 cd 9016 a-d 

   + propanil 3362 LPOST 53 ghi 60 f 8439 cde 

   + triclopyr 210 LPOST 83 ab 92 a 8992 a-d 

Bensulfuron 70 LPOST 49 hi 50 g 7746 ef 

Bensulfuron + propanil 70 + 3362 LPOST 57 fgh 61 f 8395 de 

Prosulfuron 20 LPOST 71 cde 79 cd 8666 bcd 

Quinclorac + propanil +  

   halosulfuron 

336 + 3362 

+ 33 

LPOST 45 i 73 de 8999 a-d 
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Table 6.  Continued. 

   Alligatorweed  
 
Herbicide treatment 

 
Rateb 

 
Timingc 

 
14 DAT 

 
42 DAT 

 
Yield 

  
g ai/ha 

  
% control 

 
___kg/ha___ 

Penoxsulam + halosulfuron 30 + 33 LPOST 78 bc 82 bcd 9175 ab 

   a Data were averaged over the five environments at Eagle Lake, Ganado, Garwood, and 

Lissie, TX in 2004 and 2005. 

   b Rate of penoxsulam is less than the labeled rate of 35 g ai/ha.     

   c Abbreviations: DAT,days after late postemergence treatment; EPOST, early 

postemergence (3-leaf rice); LPOST, late postemergence (4- to 5-leaf rice). 

   d Means within columns for each DAT followed by different letters are significantly 

different at p<0.05. 
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prosulfuron provided 82 and 79% control, respectively, however, <73% control from 

treatments of quinclorac plus propanil plus halosulfuron, bensulfuron alone or 

bensulfuron plus propanil.   

   In 2006 when a higher labeled rate of penoxsulam at 35 g ai/ha was used, trends were 

similar to data obtained in 2004 and 2005 (Table 7).  At 14 DAT, alligatorweed control 

ranged from 86 to 95%.  Prosulfuron, bensulfuron, and bensulfuron plus propanil 

provided <84% control.  By 42 DAT, control declined from all propanil tank mixes 

providing <73% control (Table 7).  Penoxsulam alone and mixed with triclopyr EPOST 

and LPOST, bispyribac-sodium plus triclopyr, penoxsulam plus halosulfuron, and 

bispyribac-sodium plus Dyne-A-Pak LPOST, provided >80% control.  Differences 

between EPOST and LPOST applications were less evident with penoxsulam at 35 g 

ai/ha with the exception of penoxsulam plus triclopyr LPOST at 94% (Table 7).  

Antagonistic effect of propanil on penoxsulam, bispyribac-sodium, and triclopyr was 

evident in both studies.  Using Dyne-A-Pak as a surfactant with bispyribac-sodium 

provided 89% alligatorweed control.  Bispyribac-sodium + kinetic alone or with UAN, 

data not shown, provided 73 and 74% control, respectively. 

   Rice grain yield in 2004 and 2005 ranged from 7587 to 9552 kg/ha.  Penoxsulam alone 

or with triclopyr EPOST or LPOST, halosulfuron, and bispyribac-sodium LPOST, 

yielded highest, Treatments including propanil mixed with penoxsulam, triclopyr, 

bispyribac-sodium, or bensulfuron, and bensulfuron alone LPOST (Table 6) yielded 

lower.  Penoxsulam plus propanil had high yield despite alligatorweed control of 65% 

applied EPOST.  Lowest yielding treatments included bensulfuron alone or with  
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Table 7.  Alligatorweed control and rice grain yield from penoxsulam at 35 g ai/ha in 

different weed-control programs in drill-seeded rice in 2006a. 

    
Alligatorweed 

 

 
Herbicide treatment 

 
Rate 

 
Timing b 

 
14 DAT 

 
42 DAT 

 
Yield 

  
g ai/ha 

  
% control 

 
___kg/ha__ 

Untreated   0 g c 5523 f 

Penoxsulam 35 EPOST 88 a-e 6515 a-d 

   + propanil 3362 EPOST 90 a-d 6736 a-d 

   + triclopyr 210 EPOST 92 ab 6520 a-d 

Propanil + triclopyr 3362 + 210 EPOST 92 ab 6454 b-e 

Penoxsulam 35 LPOST 86 b-e 6972 ab 

   + propanil 3362 LPOST 93 ab 6930 ab 

   + triclopyr 210 LPOST 87 a-e 6699 a-d 

Propanil + triclopyr 3362 + 210 LPOST 95 a 6355 cde 

Bispyribac-sodium 28 LPOST 90 a-d 6519 a-d 

   + Dyne-A-Pak 1% v/v LPOST 95 6850 a-d 

   + propanil 3362 LPOST 95 a 6817 a-d 

   + triclopyr 210 LPOST 92 ab 6477 b-e 

Bensulfuron 70 LPOST 82 def 5928 ef 

Bensulfuron + propanil 70 + 3362 LPOST 83 c-f 6730 a-d 

Prosulfuron 20 LPOST 76 f 

0 m 

84 bcd 

70 fgh 

84 bcd 

57 jk 

86 a-d 

73 efg 

94 a 

61 hij 

73 efg 

89 

60 ij 

92 ab 

48 l 

51 kl 

78 def 6286 de 
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Table 7.  Continued. 

    
Alligatorweed 

 

 
Herbicide treatment 

 
Rate 

 
Timing b 

 
14 DAT 

 
42 DAT 

 
Yield 

  
g ai/ha 

  
% control 

 
___kg/ha__ 

Quinclorac + propanil +  

   halosulfuron 

336 + 3362  

+ 33 

LPOST 90 abc 68 ghi 6951 ab 

Penoxsulam + halosulfuron 35 + 33 LPOST 80 ef c 80 cde 6621 a-d 

   a Data were averaged over two locations at Eagle Lake in 2006. 

   b Abbreviations: DAT,days after late postemergence treatment; EPOST, early 

postemergence (3-leaf rice); LPOST, late postemergence (4-to 5- leaf rice). 

   c Means within columns for each DAT followed by different letters are significantly 

different at p<0.05. 
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propanil and bispyribac-sodium + propanil.   

   Yield in 2006 ranged from 5523 to 6972 kg/ha.  Bispyribac-sodium plus Kinetic plus 

UAN data not shown, penoxsulam alone or with propanil, and quinclorac plus propanil 

plus halosulfuron LPOST yielded highest, higher than propanil plus triclopyr EPOST 

and LPOST, bensulfuron, and prosulfuron LPOST (Table 7). 

   This research indicates that penoxsulam can be used in rice for adequate control of 

alligatorweed applied either EPOST or LPOST.  Mixing penoxsulam with triclopyr 

enhanced control over penoxsulam alone, however, when mixed with propanil, control 

decreased significantly.  Possible antagonism may exist with penoxsulam and propanil 

mixtures.  Previous research has indicated propanil antagonism with other grass and 

broadleaf herbicides (Bauer et al. 1995a; Koo et al. 2000; Scherder et al. 2005).  This 

may be due to the leaf burn and loss of membrane integrity from propanil by reducing 

absorption and translocation of penoxsulam.  Adding halosulfuron did not increase 

control over penoxsulam alone.  Differences between EPOST and LPOST applications 

were not significant except that penoxsulam at 35 g/ha plus triclopyr LPOST provided 

increased late season alligatorweed control.  Bispyribac-sodium provided adequate 

alligatorweed control in 2004 and 2005 similar to penoxsulam, but not in 2006.  Adding 

triclopyr increased alligatorweed control but when mixed with propanil control 

decreased.  Using Dyne-A-Pak in place of kinetic plus UAN, data not shown, with 

bispyribac-sodium enhanced control of alligatorweed.  Bensulfuron with or without 

propanil, prosulfuron, and quinclorac plus propanil plus halosulfuron did not provide 

adequate alligatorweed control and reduced rice grain yield.   



 

 

41

   All season control of alligatorweed will not be achieved with presently used one 

herbicide application in Texas.  Due to the large underground network of rhizomes, 

regrowth occurs soon after treatment.  Adequate control can be achieved with certain 

herbicides and not adversely affect rice yield.  Increasing the rate of penoxsulam did not 

overcome penoxsulam antagonism with propanil observed in 2004 and 2005.  Applying 

propanil separately from penoxsulam may overcome antagonism but timing herbicide 

applications has yet to be determined.   
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CHAPTER IV 

EFFECT OF TEMPERATURE AND PROPANIL ON PENOXSULAM 

EFFICACY, ABSORPTION, AND TRANSLOCATION IN ALLIGATORWEED 

 

INTRODUCTION 

   Alligatorweed has become one of the ten most troublesome weeds of rice in Florida, 

Louisiana, and Texas (Webster 2000; 2004).  Effective control but not eradication, has 

been obtained with several rice herbicides without serious damage to the crop 

(Braverman and Jordan 1996; Carey et al. 2000; Pellerin et al. 2004; Webster et al. 1999; 

Webster et al. 2003).  Due to the large underground network of rhizomes in the 

terrestrial form, regrowth occurs soon after herbicide application (Julien and Broadbent 

1980).  Glyphosate caused desiccation of alligatorweed foliage but showed limited 

translocation to roots (Bowmer et al. 1993; Tucker et al. 1994).   Imazapyr, an 

acetolactate synthase (ALS) inhibitor, provided greater translocation to roots and long-

term control without regrowth.  Translocation to roots of pitted morningglory (Ipomoea 

lacunosa L.) was less than 1% from chlorimuron and imazaquin and 11% from 

imazethapyr (Kent et al. 1991; Shaw and Wesley 1993).  Herbicide movement could be 

affected by changes in relative sink strength of roots and shoots during establishment 

and growth of perennials.  Decreased translocation of herbicide to the roots could allow 

persistence of perennial species like alligatorweed. 

   Penoxsulam is a sulfonamide herbicide registered in 2005 for postemergence (POST) 

weed control in rice.  Since the use of multiple crop protection pesticides is often needed 
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for control of a variety of pests in rice, new herbicide combinations must be tested for 

antagonism due to the variability between herbicides within a family and between weed 

species.  Antagonism has been observed between various graminicides mixed with 

broadleaf herbicides (Holshouser and Coble 1990; Vidrine et al. 1995).  Efficacy of 

fenoxaprop was reduced when mixed with bentazon and triclopyr on grasses and when 

mixed with propanil and halosulfuron on barnyardgrass (Echinochloa crus-galli), but not 

on broadleaf signalgrass (Urochloa platyphylla) or Amazon sprangletop (Leptochloa 

panicoides) (Buehring et al. 2006; Jordan 1995; Stauber et al. 1991).  Cyhalofop 

displayed antagonism with the three broadleaf herbicides triclopyr, propanil, and 

halosulfuron on both propanil-resistant and susceptible populations of barnyardgrass and 

broadleaf signalgrass (Scherder et al. 2005).   

   Reductions in efficacy when graminicides are mixed with ALS or photosystem II (PS 

II) herbicides have been partially explained by reductions in herbicide absorption and 

translocation.  Propanil reduced the translocation of cyhalofop out of the treated leaf in 

barnyardgrass when combined and when propanil was applied 1 day before cyhalofop 

(Scherder et al. 2005).  This may be due to the leaf burn and loss of membrane integrity.  

Propanil is a broad spectrum herbicide used in rice that inhibits the Hill reaction at PS II 

causing chlorosis within a few days (Senseman 2007).  Bentazon, similar to propanil, is 

known to reduce sucrose production and translocation by inhibition of electron transport 

in PS II (Fuerst and Norman 1991).  Penoxsulam, a phloem-mobile herbicide, may be 

inhibited when translocation and sucrose production is also inhibited by propanil 

(Devine et al. 1990).  Bentazon decreased absorption and translocation of imazethapyr in 
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“Olathe” pinto bean (Phaseolus vulgaris), common ragweed (Ambrosia artemisiifolia) 

and redroot pigweed (Amaranthus retroflexus L.) (Bauer et al. 1995a; Bauer et al. 

1995b; Hager et al. 1999).  Pyribenzoxim translocation was reduced when applied to 

barnyardgrass in combination with propanil (Koo et al. 2000).  Withpenoxsulam, tank 

mixes with various herbicides such as propanil have been evaluated for efficacy.  

Antagonism has not been identified except for alligatorweed control (O’Barr et al. 

2004).  Possible antagonism between propanil and penoxsulam may be a result of 

translocation reduction from reduced sucrose production from propanil inhibiting 

predominately phloem-mobile herbicides.  

   Antagonism has been successfully alleviated by increasing application rates of the 

antagonized herbicide as well as by applying the herbicides sequentially with herbicide 

applications separated by a few days (Culpepper et al. 1998; Palmer et al. 2000).  

Bromoxynil antagonistic effect on quizalofop for large crabgrass (Digitaria sanguinalis) 

and yellow foxtail (Setaria glauca) control was minimized when bromoxynil was 

applied 6 d prior or 3 d after (Culpepper et al. 1999).  Corkern et al. (1998) reported that 

bromoxynil antagonism was reduced when applied 3 d prior or 7 d after the fluazifop 

application.  Triclopyr and halosulfuron antagonism to cyhalofop was reduced when 

applied at least 3 d before or after cyhalofop on propanil-resistant and susceptible 

barnyardgrass and broadleaf signalgrass.  However propanil was antagonistic when tank 

mixed with cyhalofop (Scherder et al. 2005).  Sequential application increased control.  

Propanil treated 1 d prior through 5 d after pyribenzoxim application was antagonistic on 

barnyardgrass and showed greater antagonism with shorter intervals between 
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applications (Koo et al. 2000).  Increasing the rate of the antagonized herbicide had little 

effect on the amount of antagonism without reaching control equal to the single 

application (Barnes and Oliver 2004; Culpepper et al. 1999; Koo et al. 2000).   

   Environmental conditions at application may alter the efficacy of herbicides by 

changing absorption and translocation (Coupland 1983; Kudsk et al. 1990).  

Temperature and soil moisture can cause plant stress influencing leaf cuticular 

composition and foliar penetration, thereby, decreasing the activity of herbicides (Hsaio 

1973; Hull et al. 1975).  Foliar application of imazamethabenz controlled wild oat 

greater at 16/10 C (day/night) than at 11/7 C or 26/16 C compared to blackgrass 

(Alopecurus myosuroides) with greater control at 26/16 C (Shaner and O’Connor 1991).  

Glyphosate applications to quackgrass (Elymus repens) provided greater control as 

temperature, humidity, and light increased (Coupland 1983).  Geier et al. (1999) reported 

that plant dry weight reduction was greater at 10/5 C than at 21/7 C for cheat (Bromus 

secalinus), however, just the opposite for wheat (Triticum aestivum) at 7% soil moisture 

from sulfosulfuron. 

   Absorption and translocation can also be deterred by temperature and soil moisture and 

can vary between weed species and/or herbicides.  Translocation of pyrithiobac in 

velvetleaf (Abutilon theophrasti), metribuzin in jointed goatgrass (Aegilops cylindrical), 

downy brome (Bromus tectorum), and wheat, and atrazine in common bean and redroot 

pigweed was greater at higher temperatures (30 to 25 C) and soil moistures (field 

capacity and ¾ field capacity) (Al-Khatib et al. 1992; Buman et al. 1992; Harrison et al. 
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1996).  In contrast, wheat and wild oat absorbed and translocated more sulfosulfuron at 

lower temperatures, 15/13 C, however, downy brome was unaffected (Olson et al. 1999). 

   With possible antagonism between propanil and penoxsulam in alligatorweed based on 

field studies, (O’Barr et al 2004; Willingham et al. unpublished 2008), application 

procedures must be evaluated to determine if propanil is actually inhibiting absorption 

and translocation of penoxsulam in alligatorweed.  The objective of this study was to 

determine the absorption and translocation efficiency of penoxsulam and the effect of 

propanil on penoxsulam in alligatorweed and to access application timing and air 

temperature effects on penoxsulam efficacy to avoid antagonism with propanil. 

 

MATERIALS AND METHODS 

Effect of Temperature and Sequential Applications.  Alligatorweed was planted in 15 

cm diameter plastic pots containing Metro Mix 2008 potting soil using stem pieces 

approximately 3cm long containing one node.  Eight nodes were planted per pot and 

grown at 30/25 C day/night temperatures with a 14-h photoperiod and watered as 

needed.  Lighting was supplied by low pressure sodium vapor lamps9, VHO fluorescent 

bulbs10, and clear incandescent bulbs11, leading to a photosynthetic photon flux density 

(PPFD) of 1,100 µmol/m2s.  Plants were grown to a height of 20 to 25 cm containing 

seven to eight leaf pairs, and were transferred to growth chambers at 30/25, 27/18, and 

21/11 C day/night temperatures providing a 14-h photoperiod.  Plants were allowed to 

acclimate to the temperature for 5 d before herbicide application.  Herbicide treatments 

consisted of either non-treated, penoxsulam at 0.035 kg ai/ha, propanil at 3.36 kg/ha, 
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penoxsulam plus propanil, penoxsulam followed by (fb) propanil at 3, 5, or 10 d after 

penoxsulam.  Treatments were applied with a CO2 backpack sprayer delivering 140 L/ha 

of water at 202 kPa pressure through a TeeJet flat-fan 8002 spray tip12 and included a 

crop oil concentrate13 at 1% (v/v). 

   The study was designed as a split-plot with four replications and the experiment was 

repeated.  Trial effects were not significant, therefore, data were pooled over 

experiments.  The main plot was temperature and sub-plots were herbicide treatments.  

Data collection consisted of visual estimation of control at 21 days after treatment 

(DAT) as a function of visual biomass reduction, with 0% indicating no control, and 

100% indicating complete control.  At 42 DAT, percent biomass reduction was 

determined by harvesting the above-ground biomass and converting the fresh weight to a 

percent reduction based on the non-treated control.   

   All data were subjected to the Mixed Procedure using SAS 2002.  Herbicide 

treatments, temperature regimes, and their interactions were considered fixed effects.  

Type III statistics were used to test all possible effects of fixed effects along with 

Fisher’s protected LSD to determine mean separation at the p < 0.05 level. 

Propanil Effects on Absorption and Translocation of Penoxsulam.  Alligatorweed 

nodes were planted in 3.8-cm diameter x 21-cm deep cones containing potting mix.  

Plants were grown in growth chambers with a 14-h photoperiod and 30 C day/25 C night 

temperature regime.  Plants were watered daily and fertilized bi-weekly with a nutrient 

solution14.  Treatments for efficacy and absorption/translocation determinations were 

applied to 20 to 25 cm tall alligatorweed plants containing seven to eight leaf pairs.  This 
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growth stage was used to simulate plants typically present at early postemergence 

(EPOST) herbicide treatments.  Treatments consisted of penoxsulam at 0.035 kg/ha plus 

a crop oil concentrate at 1% v/v and penoxsulam at 0.035 kg/ha plus propanil at 3.36 

kg/ha applied with a CO2 backpack sprayer delivering 140 L/ha of water.  Within 0.5 h 

following application of the formulated products, 6 µL of 14C-2-benzene labeled 

penoxsulam with 950 kBq/µmol specific activity and 99.1% radiochemical purity 

solution was applied in three 1-µL drops to the adaxial leaf surface of each leaf of the 

fourth leaf pair.  Plants were maintained in a growth chamber until harvest. 

   Plants were harvested 1, 12, 24 and 48 h after treatment (HAT) with 14C-penoxsulam.  

The treated leaf pair was excised and 14C-penoxsulam remaining on the leaf surface was 

removed by washing in 3 ml of deionized water for 5 s.  The treated leaf was washed in 

3 ml of methanol for 5 s to remove 14C-penoxsulam from the epicuticular wax.  Plants 

were sectioned into treated leaf, portion of plant above treated leaf, portion of plant 

below treated leaf, and roots.  Plant portions were placed in paper coin envelopes and 

dried at 55 C for 72 h.  Three ml of liquid scintillation cocktail15 was added to the leaf 

washes for quantification by liquid scintillation spectrometry16.  Oven-dried plant 

samples were combusted with a biological sample oxidizer17.  Sample radioactivity was 

quantified by liquid scintillation spectrometry. 

   The sum of 14C-penoxsulam located in leaf washes and plant sections was considered 

as total 14C recovered, which averaged 94% of applied 14C-penoxsulam.  The amount of 

radioactivity located in the water wash, methanol wash, treated leaf, above treated leaf, 

below treated leaf, and roots was expressed as a percentage of recovered radioactivity.   
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   Treatments were replicated four times and the experiment was repeated.  Treatments 

were arranged in a randomized complete block design.  Data were pooled across 

experiment because the treatment by experiment interaction was not significant.  

Treatments were subjected to ANOVA and means were separated by Fisher’s protected 

LSD test at the 5% level of probability.   

 

RESULTS AND DISCUSSION 

Effect of Temperature and Sequential Applications.  A temperature by treatment 

interaction occurred for alligatorweed control and biomass reduction.  Therefore, data 

were presented to reflect the interaction (Table 8).  At 21 DAT, alligatorweed control at 

21/11 C was above 92% from penoxsulam alone and 95% after penoxsulam fb propanil 

at 3, 5, or 10 DAT.  Delaying propanil treatment at least 3 d after penoxsulam 

application provided control equal to penoxsulam alone.  With temperatures at 27/18 C, 

control was 80% from penoxsulam alone and similar when propanil application was 

delayed 3 d.  Increased control was achieved from delaying propanil application at least 

5 d.  At 30/25 C, control was 73 to 77% from penoxsulam alone and when propanil was 

delayed 3 or 5 d but delaying propanil application 10 d was required to provide control 

greater than penoxsulam alone.  Propanil alone provided less than 60% control 

independent of temperature.  Tank mixes of propanil plus penoxsulam provided 83% 

control at 21/11 C and less than 67% at 27/18 or 30/25 C (Table 8). 

   As temperatures were increased, alligatorweed control from penoxsulam alone 
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Table 8.  Alligatorweed control 21 days after treatment as effected by temperature and 

herbicide application timing. 

  Temperature regime b 

Herbicide treatments Timing a 21/11 27/18 30/25 

   

__________________________%__________________________ 
Penoxsulam alone 93 Aa c 80 Bb 73 Bc 

Propanil alone 47 Cb 35 Dc 58 Da 

Penoxsulam +propanil tank mix 83 Ba 63 Cb 66 Cb 

Penoxsulam fb propanil 3 d after 95 Aa 80 Bb 77 Bb 

Penoxsulam fb propanil 5 d after 95 Aa 88 Aa 74 Bb 

Penoxsulam fb propanil 10 d after 95 Aa 92 Aa 88 Ab 

   a. Timing represents the application timing of propanil relative to the application of 

penoxsulam to 20 to 25 cm tall alligatorweed. 

   b. Temperature regime represents day (first number) and night (second number) 

temperatures in degrees C. 

   c. Means followed by the same uppercase letter within columns for each temperature 

regime and means followed by the same lowercase letter within each treatment are not 

significantly different using Fisher’s protected LSD at p<0.05. 
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decreased from 93% to 73% (Table 8).  Delaying propanil application 3 d after 

penoxsulam provided 95% control at 21/11 C compared to 80% at 27/18 C and 77% at 

30/25 C.  Propanil applied 5 d after penoxsulam provided 95% control at 21/11 C and 

88% at 27/18 C compared to 30/25 C at 74% control.  When propanil was delayed 10 d 

after penoxsulam, control was 88 to 95%.   

   At 42 DAT, percent biomass reduction at 21/11 C was greater than 95% from 

penoxsulam alone and from sequential applications of penoxsulam fb propanil delayed 

3, 5, or 10 d (Table 9).  Propanil alone and penoxsulam plus propanil tank mixed 

provided 51 and 83% biomass reduction, respectively.  At temperatures of 27/18 C, 

biomass reduction was similar at 75 to 77% for penoxsulam alone compared to 

penoxsulam fb delaying propanil 3 or 5 d.  Delaying propanil application 10 d provided 

biomass reduction greater than 90%.  At 30/25 C, delaying propanil 10 d after 

penoxsulam provided biomass reduction similar to penoxsulam alone at 69 and 73%, 

respectively.  Treatments of propanil alone or when tank mixed with penoxsulam 

provided less than 60% biomass reduction (Table 9). 

   Biomass reduction from penoxsulam alone decreased as temperature increased from 

100% at 21/11 C to 73% at 30/25 C (Table 9).  Delaying propanil application 3 and 5 d 

after penoxsulam provided at least 95% biomass reduction at 21/11 C.  As temperature 

was increased, percent biomass decreased from 75 and 77% at 27/18 C to 59 and 49% at 

30/25 C.  Delaying propanil 10 d provided similar biomass reduction of 96% at 21/11 C 

and 91% at 27/18 C compared to 69% biomass reduction at 30/25 C.  Propanil  
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Table 9.  Alligatorweed biomass reductiona 42 days after treatment as effected by 

temperature and herbicide application timing. 

  Temperature regimesb 

Herbicide treatments Timingc 21/11 27/18 30/25 

  __________________________%__________________________

Penoxsulam alone 100 Aad 77 Bb 73 Ab 

Propanil alone 51 Ca 29 Db 52 Ca 

Penoxsulam +propanil tank mix 83 Ba 48 Cb 56 Bb 

Penoxsulam fb propanil 3 d after 96 Aa 75 Bb 59 Bc 

Penoxsulam fb propanil 5 d after 97 Aa 77 Bb 49 Cc 

Penoxsulam fb propanil 10 d after 96 Aa 91 Aa 69 Ab 

   a. Alligatorweed biomass reduction – ((biomass non-treated plants- biomass treated 

plants)/biomass non-treated plants) *100. 

   b. Temperature regime represents day (first number) and night (second number) 

temperatures in degrees C. 

   c. Timing represents the application timing of propanil relative to the application of 

penoxsulam to 20 to 25 cm tall alligatorweed. 

   d. Means followed by the same uppercase letter within columns for each temperature 

regime and means followed by the same lowercase letter within each treatment are not 

significantly different using Fisher’s protected LSD at p<0.05. 
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alone provided less than 53% biomass reduction independent of temperature.  Tank mix 

of propanil plus penoxsulam provided 83% reduction at 21/11 C, 48% at 27/18 C and 

56% at 30/25 C (Table 9).  Reduced alligatorweed control suggests that these two 

products are antagonistic and should not be used in a tank mixture.   

Propanil Effects on Absorption and Translocation of Penoxsulam.  The amount of 

14C penoxsulam in the leaf washes was different among treatments and decreased as time 

after application increased (Table 10).  At 1 and 12 HAT, over 90% of 14C penoxsulam 

was in leaf washes.  More 14C penoxsulam remained on the leaf surface from 

penoxsulam alone compared to penoxsulam plus propanil.  The addition of propanil 

allowed more radiolabeled penoxsulam to enter the cuticle of the leaf possibly due to the 

caustic nature of propanil.  There were no differences among treatments in the plant 

sections.  By 24 and 48 HAT, more 14C penoxsulam remained on the leaf surface from 

the addition of propanil compared to penoxsulam alone (Table 10). 

   Within the cuticle of the leaf, amounts of 14C penoxsulam were similar among 

treatments (Table 10).  The addition of propanil decreased the amount of 14C 

penoxsulam absorbed into the treated leaf compared to penoxsulam alone at both 24 and 

48 HAT.  Translocation of radiolabeled material out of the treated leaf to plant sections 

above and below the treated leaf and in the roots was less than 2% with no differences 

between treatments at any harvest interval.  These results are similar to research 

conducted using glyphosate and imazapyr evaluating the amount translocated in 

alligatorweed (Bowmer et al. 1993; Bowmer and Eberbach 1993; Tucker et al. 1994).  

Less than 8% of applied glyphosate and imazapyr were translocated by 3 DAT. 
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Table 10.  Distribution of  14C- penoxsulam from treatments applied alone and with propanil at different time intervals 

following application to alligatorweed. 

 1 hour after treatment 

Treatment Water wash  Methanol wash  TLa Above TL  Below TL  Roots 

 
____________________________________________% of recovered_________________________________________ 

Penoxsulam 94.0 Ab 3.4 B 1.1 A 0.2 A 0.4 A 0.4 A 

Penoxsulam + propanil 90.4 B 7.8 A 0.6 A 0.4 A 0.3 A 0.2 A 

 12 hours after treatment 

  

___________________________________________% of recovered__________________________________________ 
Penoxsulam 71.5 A 20.6 B 6.5 A 0.3 A 0.3 A 0.3 A 

Penoxsulam + propanil 64.3 B 29.5 A 5.0 A 0.5 A 0.2 A 0.2 A 

 24 hours after treatment 

  

____________________________________________% of recovered_________________________________________ 
Penoxsulam 57.1 B 27.0 A 14.4 A 0.4 A 0.3 A 0.5 A 

Penoxsulam + propanil       63.6 A 25.7 A 8.1 B 1.5 A 0.4 A 0.3 A 
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Table 10.  Continued. 

 48 hour after treatment 

Treatment Water wash  Methanol wash  TLa Above TL  Below TL  Roots   

 
______________________________________________% of recovered_______________________________________ 

Penoxsulam 43.5 B 22.9 A 29.3 A 1.3 A 1.5 A 1.2 A 

Penoxsulam + propanil       52.1 A 24.8 A 18.6 B 1.6 A 1.1 A 1.3 A 

a  TL, Treated leaf. 

b  Means followed by the same uppercase letter within columns are not significantly different using Fisher’s protected LSD at 

P<0.05.
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   Percent biomass reduction of alligatorweed compared to non-treated plants was 

greatest at 21/11 C compared to 27/18 C and 30/25 C for all treatments.  Weed control 

can be altered by temperature and soil moisture and can vary between weed species 

and/or herbicides (Coupland 1983; Geier et al. 1999; Shaner and O’Connor 1991).  

Propanil tanked mixed with penoxsulam provided less biomass reduction compared to 

penoxsulam alone independent of temperature.  At 21 and 27 C, delaying propanil 

application at least 3 days after penoxsulam provided biomass reductions similar to 

penoxsulam applied alone.  At 27 C, delaying propanil application 10 d achieved 

biomass reduction greater than penoxsulam alone.  At 30 C, delaying propanil 

application 10 d after penoxsulam was required to achieve reductions similar to that of 

penoxsulam.  When 14C-penoxsulam was traced through alligatorweed, the addition of 

propanil reduced the amount of penoxsulam absorbed into the treated leaf.  Initially, 

more 14C-penoxsulam reached the cuticle with the addition of propanil, possibly due to 

the caustic leaf burn associated with propanil, resulting in loss of membrane integrity.  

Less than 2% of penoxsulam was translocated in alligatorweed by 48 HAT.  Extending 

the time after treatment for harvest beyond 48 HAT would possibly result in greater 14C-

penoxsulam translocated to other plant sections.  
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

   Alligatorweed is a noxious weed in Texas that has migrated from waterways to the 

ditches and canals that supply irrigation water to rice fields.  Alligatorweed is a perennial 

that produces a massive underground rhizome system difficult to control with herbicides.  

Control/suppression can be achieved throughout the growing season but regrows rapidly 

after suppression.  Penoxsulam is a new herbicide for weed control in rice and a possible 

substitute for propanil and propanil-resistant weeds. A better understanding of 

penoxsulam behavior and environmental factors favoring its efficacy is needed.  The 

objectives of this research were to:  1) evaluate the effects of select rice herbicides on 

alligatorweed control,  2) determine the absorption and translocation efficiency and the 

effect of propanil on penoxsulam in alligatorweed  3) access the environmental effects of 

temperature on penoxsulam efficacy and determine application timing to avoid 

antagonism with propanil and,  4) evaluate the effects of flood timing and rice cultivars 

on rice root stunting and plant foliar injury from penoxsulam applications. 

   Flood timing affected root growth for rice cultivars treated with penoxsulam and 

bispyribac-sodium.  Flooding 1 or 7 DAT consistently resulted in greater root growth 

inhibition (RGI) than when flood was delayed to 14 DAT.  The earlier the flood timing, 

the longer RGI persisted.  By 4 WAT, rice plants recovered from initial herbicide injury.  

Grain yield for all cultivars was not adversely affected by initial herbicide injury.  For 

the worse-case scenario more herbicide was available for plant uptake at flood 1 DAT.  
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RGI was greater with bispyribac-sodium for Bengal and Cypress when compared to 

penoxsulam at 30 g/ha.  Differences between these treatments were not evident 1 week 

later.  Penoxsulam at 30 and 60 g/ha and bispyribac-sodium initially inhibited root 

growth, however, rice plants recovered resulting in no yield reduction compared to the 

standard treatment.  XP712 was most tolerant to herbicide treatments and flood timings 

with < 5% RGI and foliar injury.  Hybrids such as XP712 inherently have higher yield 

potential than cultivars.   

   Penoxsulam can be used in rice for adequate control of alligatorweed applied either 

EPOST or LPOST.  Mixing penoxsulam with triclopyr enhanced control over 

penoxsulam alone, however, when mixed with propanil, control decreased significantly.  

This may be due to the leaf burn and loss of membrane integrity from propanil therefore 

reducing translocation of penoxsulam.  Increasing the rate of penoxsulam did not 

overcome the antagonism with propanil.  Differences between EPOST and LPOST 

applications were not significant except that penoxsulam at 35 g/ha plus triclopyr 

LPOST provided increased late season control.  Bispyribac-sodium provided adequate 

control most years but was variable.  Adding triclopyr increased alligatorweed control 

but when mixed with propanil control decreased.  Using Dyne-A-Pak, a surfactant 

containing methylated seed oil and UAN, in place of Kinetic plus UAN with bispyribac-

sodium as the surfactant, enhanced control of alligatorweed.  Complete control of 

alligatorweed all season can not be achieved with one herbicide application in Texas due 

to regrowth from the large underground network of rhizomes.  Adequate control can be 

achieved with select herbicides and rice yield is not adversely affected. 



 

  

59

   Studies conducted in the growth chambers indicated percent biomass reduction of 

alligatorweed compared to non-treated was greatest at 21/11 C compared to 27/18 C and 

30/25 C for treatments including penoxsulam and sequential applications of penoxsulam 

and propanil.  Weed control can be altered by temperature and soil moisture and can 

vary between weed species and/or herbicides (Coupland 1983, Geier et al. 1999, Shaner 

and O’Connor 1991).  Tank mixing propanil plus penoxsulam provided less biomass 

reduction compared to penoxsulam alone in the growth chambers, similar to field 

studies, independent of temperature.  Delaying propanil application at least 3 days after 

penoxsulam provided % biomass reduction similar to penoxsulam alone.  Delaying 

propanil application longer after penoxsulam will provide biomass reduction greater than 

penoxsulam alone.  At 30 C, delaying propanil application 10 d after penoxsulam was 

required to achieve reduction similar to penoxsulam.   

   When radiolabeled penoxsulam was traced through alligatorweed, the addition of 

propanil reduced the amount of penoxsulam absorbed into the treated leaf by 48 HAT.  

Initially, more 14C-penoxsulam reached the leaf cuticle with the addition of propanil, 

possibly due to the caustic leaf burn associated with propanil ultimately resulting in loss 

of membrane integrity in alligatorweed.  Penoxsulam alone or mixed with propanil by 48 

HAT resulted in less than 5% of 14C-penoxsulam translocation.  Penoxsulam is a useful 

tool providing adequate control of alligatorweed. 

 

 

 



 

  

60

LITERATURE CITED 

 

Agbakoba, C. S. O. and J. R. Goodin.  1969.  Effect of stage of growth of field bindweed  

on absorption and translocation of 14C-labeled 2, 4 – D and picloram. Weed Sci.  17: 

436-438. 

Al-Khatib, K., R. Boydston, R. Parker, and E.P. Fuerst. 1992. Atrazine phytotoxicity to 

common bean and redroot pigweed under different temperatures. Weed Sci. 40:364-

370. 

Anonymous. 2004. Grasp SC herbicide label. Dow AgroSciences LLC, Indianapolis, IN 

46268 USA: Web page: http://www.greenbook.net/docs/Label/L77062.PDF. 

Accessed January 19, 2006. 

Barnes, J.W. and L.R. Oliver. 2004. Cloransulam antagonizes annual grass control with 

aryloxyphenoxypropionate graminicide but not cyclohexanediones. Weed Technol. 

18:763-772. 

Bauer, T.A., K.A. Renner, and D. Penner. 1995a. Olathe pinto bean (Phaseolus vulgaris) 

response to postemergence imazethapyr and bentazone. Weed Sci. 43:276-282. 

Bauer, T.A., K.A. Renner, and D. Penner. 1995b. Response of selected weed species to 

postemergence imazethapyr and bentazone. Weed Technol. 9: 236-242. 

Bowmer, K.H., P.L. Eberbach, and G. McCorkelle. 1993. Uptake and translocation of 

14C-glyphosate in Alternanthera philoxeroides (Mart.) Griseb. (alligatorweed) I. 

Rhizome concentrations required for inhibition. Weed Res. 33:53-57. 

http://www.greenbook.net/docs/Label/L77062.PDF


 

  

61

Bowmer, K.H. and P.L. Eberbach. 1993. Uptake and translocation of 14C-glyphosate in 

Alternanthera philoxeroides (Mart.) Griseb. (alligatorweed).  II. Effect of plant size 

and photoperiod. Weed Res. 33:59-67. 

Braverman, M.P. and D.L. Jordan. 1996. Efficacy of KIH-2023 in dry- and water-seeded 

rice (Oryza sativa) Weed Technol. 10:876-882. 

Brown, J.L. and N.R. Spencer. 1973. Vogtia malloi, a newly introduced phycitine moth 

to control alligatorweed. Environmental Entomol. 2:519-523. 

Buehring, N.W., R.E. Talbert, and F.L. Baldwin. 2006. Interaction of graminicides with 

other herbicides applied to rice (Oryza sativa). Weed Technol. 20:215-220. 

Buman, R.A., D.R. Gealy, and A.G. Ogg, Jr. 1992. Effect of temperature on root 

absorption of metribuzin and its ethylthio analog by winter wheat (Triticum 

aestivum), jointed goatgrass (Aegilops cylindrical), and downy brome (Bromus 

tectorum). Weed Sci. 40:517-521. 

Burns, A.B. and B.J. Williams. 2006. Fall applications of glyphosate control on 

alligatorweed. Pro. South. Weed Sci. Soc. 59:60. 

Carey, V.F., G.R. Rich, and W.C. Odle. 2000. A developmental summary of rice weed 

control with Regiment (bispyribac-sodium). Proc. South. Weed Sci. Soc. 53:171. 

Carmer, S.G., W.E. Nyquist, and W.M. Walker. 1989. Least significant differences for 

combined analysis for experiments with two or three-factor treatment designs. 

Agron. J. 81:665-672. 

Center, T.D. and J. Balciunas. 1975. The effects of water quality on the distribution of 

alligatorweed and water hyacinth. United States Army Corps of Engineers 



 

  

62

Waterways Experiment Station, North Carolina, Technical Report No. 10, Pp. B3-

B13. 

Confrancesco, A.F., Jr. 1988. Alligatorweed survey of ten southern states. Miscellaneous 

Paper A-88-3. U.S. Army Corps of Engineers Waterways Experiment Station, 

Vicksburg, MS. pp 69. 

Corkern, C.B., D.B. Reynolds, P.R. Vidrine, J.L. Griffin, and D.L. Jordan. 1998. 

Bromoxynil antagonizes johnsongrass (Sorghum halepense) control with 

graminicides. Weed Technol. 12:205-208. 

Coulson, J.R. 1977. Biological control of aligatorweed, 1959-1972 in Southeast United 

States. A review and evaluation. Technical Bulletin 1574. USDA, ARS. Pp. 98. 

Coupland, D. 1983. Influence of light, temperature, and humidity, on the translocation 

and activity of glyphosate in Elymus repens. Weed Res. 23:347-349. 

Culpepper, A.S., A.C. York, D.L. Jordan, F.T. Corbin, and Y.S. Sheldon. 1999. Basis for 

antagonism in mixtures of bromoxynil plus quizalofop-P applied to yellow foxtail 

(Setaria glauca). Weed Technol. 13:515-519. 

Culpepper, A.S., A.C. York, K.M. Jennings, and R.B. Batts. 1998. Interaction of 

bromoxynil and postemergence graminicides on large crabgrass (Digitaria 

sanguinalis). Weed Technol. 12:554-559. 

Devine, M.D., H.D. Bestman, and W.H. Vandenborn. 1990. Physiological basis for the 

different phloem mobilities of chlorsulfuron and clopyralid. Weed Sci. 38:1-9. 

Dunand, R.T. 1999. Growth and Development of the Rice Plant. Louisiana Rice 

Production Handbook. Baton Rouge, LA: LSU Ag. Center, Pub 2321. Pp. 12-20. 



 

  

63

Ellis, A.T., B.V. Ottis, R.C. Scott, and R.E. Talbert. 2005. Rice cultivar rooting tolerance 

to penoxsulam (Grasp). Proc. South. Weed Sci. Soc. 58:50. 

Fuerst, E.P. and M.A. Norman. 1991. Interactions of herbicides with photosynthetic 

electron transport. Weed Sci. 39:458-464. 

Geier, P.W., P.W. Stahlman, and J.G. Harett. 1999, Environmental and application 

effects on MON 37500 efficacy and phytoxicity. Weed Sci. 47:736-739. 

Hager, A.G., K.A. Renner, O. Schabenberger, and D. Penner. 1999. Soil moisture, 

relative humidity, and bentazone affect on imazethapyr absorption and translocation 

in common ragweed (Ambrosia artemisiifolia). Weed Technol. 13:320-323. 

Harrison, A. M., R.M. Hayes, and T.C. Mueller. 1996. Environment effects cotton and 

velvetleaf response to pyrithiobac. Weed Sci. 44:241-247. 

Hockley, J. 1974. …and alligatorweed spreads in Australia. Nature. (London) 250:704. 

Holm, L., J. Doll, E. Holm, J. Pancho, and J. Herberger. 1997. World Weeds: Natural 

Histories and Distribution. John Wiley and Sons, New York. Pp. 1129. 

Holshouser, D.L. and H.D. Coble. 1990. Compatability of sethoxydim with five 

postemergence broadleaf herbicides. Weed Technol. 4:128-133. 

Hsaio, T.C. 1973. Plant response to water stress. Plant Physiol. 24:519-570. 

Hull, H.M., H.L. Morton, and J.R. Wharrie. 1975. Environmental influences on cuticle 

development and resultant foliar penetration. Bot. Rev. 41:421-452. 

Ickeringill, D. 1995. Tank mixing-its development-past, present, and future. Proc. Asp. 

Appl. Biol. 41:33-39.  



 

  

64

Julien, M. and J. Broadbent. 1980. The biology of Australian weeds. 3 Alternanthera 

philoxeroides (Mart.) Griseb. J. Australian Inst. Agric. Sci. 46:150-155. 

Julien, M.H. 1995. Alternanthera philoxeroides (Mart.) Griseb. In: Groves, R.H., 

Shepherd, R.C.H. and Richardson, R.C. (eds), The biology of Australian weeds. R.G. 

and F.J. Frankston. Pp. 1-12. 

Jordan, D.L., D.E. Sanders, S.D. Linscombe, and B.J. Williams. 1998. Response of four 

rice (Oryza sativa) cultivars to triclopyr. Weed Technol. 12:254-257. 

Jordan, D.L. 1995. Interactions of fenoxaprop-ethyl with bensulfuron and bentazon in 

dry-seeded rice (Oryza sativa). Weed Technol. 9:724-727. 

Kay, S. and S. Hoyle. 1999. Aquatic weed fact sheet, College of Agriculture and Life 

Sciences Crop Science Dept., N.C. State University. 

www.cropsci.ncsu.edu/aquaticweeds. 

Kent, L.M., G.D. Wills, and D.R. Shaw. 1991. Effect of ammonium sulfate, imazapyr, 

and environment on the phototoxicity of imazethapyr. Weed Technol. 5:202-205. 

Koo, S.J., J.S. Kim, J.S. Kim, and S.H. Kang. 2000. Antagonistic interaction of propanil 

and pyribenzoxim on barnyard grass control. Pesticide Biochem. Phys. 67:46-53. 

Kudsk, P., T. Olsen, and K.E. Thonke. 1990. The influence of temperature, humidity, 

and simulated rain on the performance of thiameturon-methyl. Weed Res. 30:261-

269. 

Langland, K.A. 1986. Management program for alligatorweed in North Carolina. Water 

Resources Research Institute Publication, Report #UNC-WRRI-86-224, North 



 

  

65

Carolina State Univ., Raleigh, NC 27695. 

http://www2.ncsu.edu/ncsu/CIL/WRRI/reports/report224.html. 

Lassiter, R.B., V.B. Langston, R.K. Mann, J.S. Richburg, and L.C. Walton. 2005. The 

effectiveness of penoxsulam in water-seeded rice and Clearfield rice systems. Proc. 

South. Weed Sci. Soc. 58:22. 

Lu, Y.L., Y.Y. Deng, J.D. Shen, and Y.H. Li. 2002. Research status quo on 

alligatorweed in China. J. Jianshu Agric. 4:46-48. 

Meins, K.B., R.C. Scott, and N.D. Pearrow. 2005. Rice tolerance and weed control with 

penoxsulam herbicide. Proc. South. Weed Sci. Soc. 58:13. 

Melvin, N. 2003. Control and management of alligatorweed. Wetland Restoration, 

Enhancement, and Management. Sect. III part J. Pp. 1-2. 

O’Barr, J.H., G.N. McCauley, V.B. Langston, and J.M. Chandler. 2004 Alligatorweed 

(Alternanthera philoxeroides) control in rice with DE-638. Proc. South. Weed Sci. 

Soc. 57:71. 

Olson, B.L.S., K. Al-Khatib, P. Stahlman, S. Parrish, and S. Moran. 1999. Absorption 

and translocation of MON 37500 in wheat and other grass species. Weed Sci. 47:37-

40. 

Palmer, E.W., D.R. Shaw, and J.C. Holloway, Jr. 2000. Broadleaf weed control on 

soybean (Glycine max) with CGA-277476 and four postemergence herbicides. Weed 

Technol. 14:617-623. 

Pantone, D.J. and J.B. Baker. 1992. Variety tolerance of rice (Oryza sativa) to 

bromoxynil and triclopyr at different growth stages. Weed Technol. 6:968-974. 



 

  

66

Parsons, W. T. and E. G. Cuthbertson. 2001. Noxious weeds of Australia. CSIRO Pub., 

Sydney Australia. 2nd edition. Pp. 155-157. 

Pellerin, K.J., Webster, E. Zhang, and D.C. Blouin. 2004. Potential use of imazethapyr 

mixtures in drill-seeded imidazolinone-resistant rice (Oryza sativa). Weed Technol. 

18:1037-1042. 

Pellerin, K.J., E.P. Webster, E. Zhang, and D.C. Blouin. 2003. Herbicied mixtures in 

water seeded imidazolinone-resistant rice (Oryza sativa). Weed Technol. 17:836-

841. 

Penfound, W.T. 1940. The biology of Achyranthes philoxeroides (Mart) Standley. Amer. 

Midland Naturalist 24:248-252. 

Ray, T.B. 1982. The mode of action of chlorsulfuron: A new herbicide for cereals. 

Pestic. Biochem. Physiol. 17:10-17. 

Richard, E.P., Jr. and J.E. Street. 1984. Herbicide performance in rice (Oryza sativa) 

under three flooding conditions. Weed Sci. 32:157-162. 

Richburg, J.S., R.B. Lassiter, V.B. Langston, R.K. Mann, and L.C. Walton. 2005. Weed 

control spectrum of penoxsulam in southern U.S. rice. Proc. South. Weed Sci. Soc. 

58:268. 

Sandberg, C.L. and A.P. Burkhalter. 1983. Alligatorweed control with glyphosate. Proc. 

South. Weed Sci. Soc. 37:336-339. 

[SAS] Statistical Analysis Systems. 2002. Software version 9.0. Statistical Analysis 

Systems Institute. Cary, NC. 



 

  

67

Scasta, J.D., J.H. O’Barr, G.N. McCauley, G.L. Steele, and J.M. Chandler. 2004. 

Regiment effect on rice growth and yield. Proc. South Weed Sci. Soc. 57:74. 

Scherder, E.F., R.E. Talbert, and M.L. Lovelace. 2005. Antagonism of cyhalofop grass 

activity by halosulfuron, triclopyr, and propanil. Weed Technol. 19:934-941. 

Senseman, S.A. 2007. Herbicide Handbook. Weed Science Society of America. 9th Ed. 

Lawrence, KS. Pp. 169-171. 

Shaner, D.L. and S.L. O’Connor. 1991. Influence of environmental factors on the 

biological activity of the imidazolinone herbicides. In The Imidazolinone Herbicides. 

Boca Raton, FL; CRC Press. Pp 103-127. 

Shaw, D.R. and M.T. Wesley. 1993. Interacting effects on absorption and translocation 

from tank mixtures of ALS-inhibiting and diphenylether herbicides. Weed Technol. 

7:693-698. 

Shen, J., M. Shen, X. Wang, and Y. Lu. 2005. Effect of environmental factors on shoot 

emergence and vegetative growth of alligatorweed. Weed Sci. 53:471-478. 

Snipes, C.E., J.E. Street, and D.L. Boykin. 1987. Influence of flood interval and cultivar 

on rice (Oryza sativa) tolerance to fenoxaprop. Weed Sci. 35:842-845. 

Stauber, L.G., P. Nastasi, R.J. Smith, A.M. Baltazar, and R.E. Talbert. 1991. 

Barnyardgrass (Echinochloa crus-galli) and bearded sprangletop (Leptochloa 

fascicularis) control in rice. Weed Technol. 5:337-344.  

Strahan, R.E. 2004. Texasweed (Caperonia palustrus) control in rice with penoxsulam. 

Proc. South. Weed Sci. Soc. 57:70. 



 

  

68

Thomas, J.M., III. 1984. Flood-water management for HOE-33171 in rice. Proc. South 

Weed Sci. Soc. 37:41. 

Tucker, T.A., K.A. Langeland, and F.T. Corbin. 1994. Absorption and translocation of 

14C-imazapyr and 14C-glyphosate in alligatorweed (Alternanthera philoxeroides). 

Weed Technol. 8:32-36. 

USDA, NRCS. 2002. Plants Profile, ALligatorweed. United States Department of 

Agriculture, Natural Resources Conservation Service. Plant database. 

http://plants.usda.gov. 

Vidrine, P.R., D.B. Reynolds, and D.C. Blouin. 1995. Grass control in soybean (Glycine 

max) with graminicides applied alone and in mixtures. Weed Technol. 9:68-72. 

Vogt, G.B. 1979. Exploration of natural enemies for alligatorweed and related plants in 

South America, appendix B, Pp 1-66. In Gangstad, E.O., R.A. Scott, Jr., and R.G. 

Cason (eds.). Biological Control of Alligatorweed. Tech Report 3. U.S. Army Corps 

of Engineers Waterways Experiment Station, Aquatic Plant Control Program. 

Vicksburg, MS. 

Webster, E.P., S.L. Bottoms, J.B. Hensley, W. Zhang, and M. Griffin. 2006 Weed 

science annual research report. Louisiana State University Ag. Center. Baton Rouge, 

LA. Pp. 31-54. 

Webster, E.P., C. Leon, C. Mudge, W. Zhang, and M. Griffin. 2003 Weed science 

annual research report. Louisiana State University Ag. Center. Baton Rouge, LA. Pp. 

1-10. 



 

  

69

Webster, E.P., F.L. Baldwin, and T.L. Dillon. 1999. The potential for clomazone use in 

rice (Oryza sativa). Weed Technol. 13:390-393. 

Webster, T. M. 2004. Weed survey - southern states. Proc. South. Weed Sci. Soc., 

57:404-426. 

Webster, T. M. 2000. Weed survey - southern states. Proc. South. Weed Sci. Soc., 

53:247-256. 

Zeiger, C.F. 1967. Biological control of alligatorweed with Agasicles sp. in Florida. 

Hyacinth Control J. 6:31-34. 

Zhang, W., E.P. Webster, D.C. Blouin, and C.T. Leon. 2005a. Fenoxaprop interactions 

for barnyardgrass (Echinochloa crus-galli) control in rice. Weed Technol. 19:293-

297.  

Zhang, W., E.P. Webster, and C.T. Leon. 2005b. Response of rice cultivars to V-10029. 

Weed Technol. 19:307-311. 

Zhang, W. and E.P. Webster. 2002. Shoot and root growth of rice (Oryza sativa) in 

response to V-10029. Weed Technol. 16:768-772. 

 
 
 
 
 
 
 

 

 

 

 



 

  

70

 

 

 

 

 

 

 

 

APPENDIX A 

CLIMATIC CONDITIONS AT TEXAS AGRICULTURAL RESEARCH AND 

EDUCATION CENTER NEAR EAGLE LAKE, TX. 

2004 GROWING SEASON 
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2004 

Date Air Temperature (°F)
Precipitation 

(in) Relative Humidity (%) 
 Max Min  Max Min 

3/1/2004 60.0 50.0 0.02 93 36 
3/2/2004 76.0 58.0 0.03 98 36 
3/3/2004 74.0 64.0 0.04 98 67 
3/4/2004 70.0 60.0 0.12 98 68 
3/5/2004 73.0 49.0 0.00 98 19 
3/6/2004 75.0 47.0 0.00 84 18 
3/7/2004 78.0 46.0 0.00 78 19 
3/8/2004 67.0 45.0 0.00 72 18 
3/9/2004 74.0 38.0 0.00 80 18 

3/10/2004 69.0 46.0 0.00 88 21 
3/11/2004 70.0 48.0 0.00 98 21 
3/12/2004 67.0 52.0 0.29 95 31 
3/13/2004 63.0 55.0 0.95 98 66 
3/14/2004 60.0 55.0 0.34 98 97 
3/15/2004 72.0 54.0 0.01 98 34 
3/16/2004 72.0 58.0 0.00 98 32 
3/17/2004 78.0 60.0 0.00 90 32 
3/18/2004 76.0 62.0 0.00 98 44 
3/19/2004 78.0 60.0 0.00 98 43 
3/20/2004 80.0 60.0 0.00 95 41 
3/21/2004 71.0 47.0 0.07 91 38 
3/22/2004 66.0 53.0 0.00 78 20 
3/23/2004 67.0 58.0 0.00 86 35 
3/24/2004 68.0 60.0 0.15 98 50 
3/25/2004 73.0 63.0 0.01 98 43 
3/26/2004 72.0 63.0 0.00 98 50 
3/27/2004 75.0 66.0 0.00 98 45 
3/28/2004 81.0 57.0 0.80 98 29 
3/29/2004 64.0 46.0 0.02 93 34 
3/30/2004 78.0 50.0 0.00 79 17 
3/31/2004 82.0 48.0 0.00 82 17 
4/1/2004 81.0 54.0 0.00 92 17 
4/2/2004 77.0 54.0 0.45 98 32 
4/3/2004 77.0 65.0 0.00 98 30 
4/4/2004 75.0 58.0 0.00 98 29 
4/5/2004 74.0 58.0 0.00 92 32 
4/6/2004 66.0 57.0 0.27 98 56 
4/7/2004 80.0 54.0 0.29 98 19 
4/8/2004 74.0 55.0 0.00 92 23 
4/9/2004 80.0 58.0 0.00 98 22 
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4/10/2004 82.0 48.0 1.43 98 22 
4/11/2004 68.5 46.0 0.18 93 75 
4/12/2004 55.0 40.0 0.15 93 37 
4/13/2004 62.0 42.0 0.00 94 23 
4/14/2004 70.0 44.0 0.00 94 20 
4/15/2004 74.0 54.0 0.00 93 28 
4/16/2004 79.0 61.0 0.00 98 29 
4/17/2004 81.0 60.0 0.00 98 29 
4/18/2004 76.0 63.0 0.00 98 27 
4/19/2004 80.0 62.0 0.00 98 22 
4/20/2004 81.0 65.0 0.00 96 31 
4/21/2004 82.0 68.0 0.00 97 35 
4/22/2004 82.0 66.0 0.00 97 35 
4/23/2004 80.0 60.0 0.78 98 37 
4/24/2004 74.0 64.0 0.18 98 37 
4/25/2004 77.0 64.0 0.32 98 55 
4/26/2004 78.0 54.0 0.00 89 27 
4/27/2004 80.0 54.0 0.00 96 19 
4/28/2004 76.0 60.0 0.02 96 30 
4/29/2004 83.0 65.0 0.00 96 38 
4/30/2004 82.0 55.0 1.05 98 46 
5/1/2004 76.5 53.0 0.58 98 35 
5/2/2004 71.0 51.0 0.00 79 20 
5/3/2004 81.0 54.0 0.00 75 18 
5/4/2004 81.0 58.0 0.00 92 20 
5/5/2004 81.0 59.0 0.00 96 27 
5/6/2004 82.0 62.0 0.00 95 27 
5/7/2004 83.0 66.0 0.00 98 29 
5/8/2004 77.0 67.0 0.10 98 49 
5/9/2004 74.0 62.0 1.36 98 44 

5/10/2004 83.0 67.0 1.50 98 38 
5/11/2004 77.0 65.0 0.49 98 55 
5/12/2004 83.0 73.0 0.06 98 53 
5/13/2004 82.0 62.0 2.33 92 55 
5/14/2004 75.0 59.0 0.00 94 43 
5/15/2004 79.0 62.0 0.00 96 36 
5/16/2004 84.0 66.0 0.00 98 29 
5/17/2004 85.0 68.0 0.20 98 37 
5/18/2004 87.0 68.0 0.02 98 32 
5/19/2004 88.0 70.0 0.00 98 28 
5/20/2004 87.0 69.0 0.00 98 29 
5/21/2004 85.0 69.0 0.00 98 31 
5/22/2004 86.0 68.0 0.00 98 27 
5/23/2004 86.0 68.0 0.00 98 29 
5/24/2004 88.0 70.0 0.00 98 27 
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5/25/2004 88.0 69.0 0.00 96 29 
5/26/2004 86.0 68.0 0.00 96 28 
5/27/2004 90.0 72.0 0.00 97 27 
5/28/2004 90.0 73.0 0.00 97 30 
5/29/2004 87.0 76.0 0.00 94 38 
5/30/2004 87.0 77.0 0.01 95 49 
5/31/2004 93.0 70.0 0.01 95 31 
6/1/2004 94.0 70.0 0.00 95 30 
6/2/2004 92.0 66.0 0.06 97 29 
6/3/2004 90.0 67.0 0.00 96 26 
6/4/2004 93.0 65.0 0.30 96 27 
6/5/2004 90.0 71.0 0.00 97 26 
6/6/2004 90.0 73.0 0.00 97 25 
6/7/2004 91.0 68.0 1.64 98 27 
6/8/2004 80.0 70.0 1.59 92 66 
6/9/2004 86.0 75.0 0.07 97 41 

6/10/2004 88.0 73.0 0.42 96 34 
6/11/2004 88.0 74.0 0.14 96 36 
6/12/2004 89.0 74.0 0.01 98 31 
6/13/2004 91.0 69.0 0.02 98 29 
6/14/2004 89.0 74.0 0.01 98 31 
6/15/2004 90.0 70.0 0.00 98 25 
6/16/2004 81.0 68.0 0.06 98 57 
6/17/2004 82.0 72.0 0.25 98 53 
6/18/2004 88.0 72.0 0.82 98 38 
6/19/2004 91.0 72.0 0.00 97 29 
6/20/2004 91.0 73.0 0.00 93 24 
6/21/2004 92.0 73.0 0.00 96 24 
6/22/2004 92.0 75.0 0.00 95 27 
6/23/2004 82.0 72.0 0.40 96 59 
6/24/2004 78.0 72.0 2.18 97 59 
6/25/2004 81.0 69.0 0.31 98 62 
6/26/2004 81.0 67.0 1.72 98 54 
6/27/2004 83.0 73.0 0.01 96 40 
6/28/2004 89.0 73.0 0.38 97 34 
6/29/2004 88.0 73.0 0.01 97 38 
6/30/2004 84.0 72.0 0.41 97 51 
7/1/2004 82.0 73.0 0.15 97 67 
7/2/2004 89.0 74.0 0.00 96 32 
7/3/2004 91.0 74.0 0.00 95 26 
7/4/2004 91.0 72.0 0.00 95 30 
7/5/2004 91.0 74.0 0.00 92 26 
7/6/2004 92.0 73.0 0.00 95 28 
7/7/2004 94.0 73.0 0.00 95 25 
7/8/2004 90.0 68.0 0.00 95 26 
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7/9/2004 93.0 73.0 0.00 94 26 
7/10/2004 86.0 69.0 0.00 95 42 
7/11/2004 87.0 71.0 0.63 95 33 
7/12/2004 89.0 71.0 0.43 94 31 
7/13/2004 92.0 71.0 0.00 95 26 
7/14/2004 93.0 72.0 0.00 95 21 
7/15/2004 95.0 73.0 0.00 79 20 
7/16/2004 94.0 73.0 0.00 86 20 
7/17/2004 93.0 74.0 0.00 90 23 
7/18/2004 93.0 72.0 0.00 93 25 
7/19/2004 90.0 70.0 0.00 86 20 
7/20/2004 91.0 71.0 0.00 93 23 
7/21/2004 92.0 71.0 0.00 94 29 
7/22/2004 92.0 72.0 0.06 95 26 
7/23/2004 92.0 72.0 0.00 96 27 
7/24/2004 93.0 72.0 0.21 96 25 
7/25/2004 93.0 74.0 0.00 84 20 
7/26/2004 96.0 69.0 0.10 92 19 
7/27/2004 87.0 68.0 0.00 94 30 
7/28/2004 91.0 69.0 0.00 95 26 
7/29/2004 94.0 74.0 0.00 95 26 
7/30/2004 96.0 74.0 0.00 95 20 
7/31/2004 96.0 74.0 0.00 91 19 
8/1/2004 95.0 75.0 0.00 87 22 
8/2/2004 97.0 73.0 0.00 90 23 
8/3/2004 96.0 75.0 0.00 93 21 
8/4/2004 96.0 73.0 0.00 92 19 
8/5/2004 97.0 75.0 0.00 90 16 
8/6/2004 99.0 76.0 0.00 90 16 
8/7/2004 90.0 69.0 0.00 84 29 
8/8/2004 89.0 68.0 0.00 85 22 
8/9/2004 92.0 71.0 0.00 84 18 

8/10/2004 95.0 73.0 0.00 83 15 
8/11/2004 92.0 73.0 0.00 89 26 
8/12/2004 95.0 68.0 0.03 91 18 
8/13/2004 95.0 61.0 0.00 84 17 
8/14/2004 87.0 64.0 0.00 86 18 
8/15/2004 87.0 63.0 0.00 87 17 
8/16/2004 88.0 62.0 0.00 88 17 
8/17/2004 90.0 62.0 0.00 89 16 
8/18/2004 91.0 64.0 0.00 90 17 
8/19/2004 95.0 68.0 0.00 95 19 
8/20/2004 96.0 74.0 0.00 96 20 
8/21/2004 98.0 71.0 0.06 93 18 
8/22/2004 88.0 73.0 0.12 96 18 
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8/23/2004 92.0 73.0 0.27 93 27 
8/24/2004 92.0 74.0 0.05 95 35 
8/25/2004 97.0 75.0 0.00 95 18 
8/26/2004 98.0 76.0 0.00 94 22 
8/27/2004 98.0 72.0 0.00 94 17 
8/28/2004 97.0 73.0 0.00 94 21 
8/29/2004 92.0 71.0 0.00 94 27 
8/30/2004 86.0 71.0 0.00 94 27 
8/31/2004 92.0 70.0 0.00 92 16 
9/1/2004 90.0 65.0 0.00 89 20 
9/2/2004 88.0 65.0 0.00 92 18 
9/3/2004 82.0 57.0 0.02 95 28 
9/4/2004 82.0 69.0 0.00 95 42 
9/5/2004 89.0 69.0 0.00 96 29 
9/6/2004 94.0 71.0 0.00 95 23 
9/7/2004 95.0 71.0 0.00 96 18 
9/8/2004 82.0 72.0 0.00 94 31 
9/9/2004 87.0 66.0 0.00 93 18 

9/10/2004 89.0 66.0 0.00 91 16 
9/11/2004 93.0 68.0 0.00 89 17 
9/12/2004 93.0 70.0 0.00 87 18 
9/13/2004 95.0 71.0 0.00 92 15 
9/14/2004 90.0 71.0 0.00 95 28 
9/15/2004 90.0 71.0 3.50 95 34 
9/16/2004 92.0 73.0 0.00 96 25 
9/17/2004 94.0 73.0 0.00 91 17 
9/18/2004 95.0 72.0 0.00 94 17 
9/19/2004 96.0 71.0 0.00 96 16 
9/20/2004 92.0 66.0 0.00 88 17 
9/21/2004 89.0 66.0 0.00 92 18 
9/22/2004 80.0 65.0 0.00 95 37 
9/23/2004 87.0 67.0 0.01 95 30 
9/24/2004 90.0 67.0 0.00 95 18 
9/25/2004 88.0 67.0 0.00 96 27 
9/26/2004 87.0 66.0 0.00 96 27 
9/27/2004 89.0 65.0 0.00 85 18 
9/28/2004 85.0 65.0 0.00 85 19 
9/29/2004 90.0 62.0 0.00 88 16 
9/30/2004 89.0 62.0 0.00 91 17 
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APPENDIX B 

CLIMATIC CONDITIONS AT TEXAS AGRICULTURAL RESEARCH AND 

EDUCATION CENTER NEAR EAGLE LAKE, TX. 
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2005 

Date Air Temperature (°F)
Precipitation 

(in) Relative Humidity (%) 
 Max Min  Max Min 

3/1/2005 66.0 46.0 0.01 98 24 
3/2/2005 71.0 46.0 0.00 98 24 
3/3/2005 59.0 46.0 1.35 98 74 
3/4/2005 58.0 44.0 0.01 98 47 
3/5/2005 71.0 46.0 0.00 98 45 
3/6/2005 70.0 47.0 0.29 98 31 
3/7/2005 70.0 47.0 0.11 98 72 
3/8/2005 71.0 47.0 0.44 98 33 
3/9/2005 67.0 49.0 0.00 74 19 

3/10/2005 72.0 47.5 0.00 81 19 
3/11/2005 77.0 46.0 0.00 87 18 
3/12/2005 73.0 48.0 0.00 85 17 
3/13/2005 80.0 52.0 0.00 82 31 
3/14/2005 87.0 44.0 0.00 78 17 
3/15/2005 68.0 47.0 0.00 73 21 
3/16/2005 59.0 44.0 0.35 90 32 
3/17/2005 52.0 38.0 0.07 90 35 
3/18/2005 62.0 40.0 0.00 82 22 
3/19/2005 75.0 49.0 0.01 94 20 
3/20/2005 81.0 53.0 0.42 96 21 
3/21/2005 73.0 58.0 0.00 97 29 
3/22/2005 77.0 62.0 0.00 97 37 
3/23/2005 77.0 46.0 0.00 94 16 
3/24/2005 75.0 51.0 0.00 96 19 
3/25/2005 80.0 57.0 0.00 94 19 
3/26/2005 82.0 63.0 0.00 98 22 
3/27/2005 73.0 47.0 0.21 95 33 
3/28/2005 59.0 42.0 0.00 90 24 
3/29/2005 76.0 48.0 0.00 92 18 
3/30/2005 75.0 59.0 0.00 92 33 
3/31/2005 85.0 64.0 0.00 97 17 
4/1/2005 79.0 55.0 0.00 84 23 
4/2/2005 75.0 55.0 0.00 83 19 
4/3/2005 74.0 44.0 0.00 82 63 
4/4/2005 76.0 57.0 0.00 83 63 
4/5/2005 76.0 59.0 0.00 89 51 
4/6/2005 78.0 57.0 0.12 95 38 
4/7/2005 78.0 54.0 0.00 83 18 
4/8/2005 78.0 54.0 0.00 83 18 
4/9/2005 81.0 54.0 0.00 97 18 
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4/10/2005 82.0 63.0 0.00 97 28 
4/11/2005 78.0 68.0 0.86 97 38 
4/12/2005 77.0 46.0 0.00 97 48 
4/13/2005 81.0 50.0 0.00 80 15 
4/14/2005 83.0 51.0 0.00 82 15 
4/15/2005 76.0 53.0 0.00 84 19 
4/16/2005 76.0 51.0 0.00 95 21 
4/17/2005 81.0 55.0 0.00 98 18 
4/18/2005 79.0 62.0 0.00 88 22 
4/19/2005 77.0 60.0 0.00 94 29 
4/20/2005 78.0 64.0 0.01 97 33 
4/21/2005 81.0 67.0 0.01 96 32 
4/22/2005 84.0 67.0 0.00 96 27 
4/23/2005 85.0 54.0 0.07 93 30 
4/24/2005 73.0 46.0 0.00 95 17 
4/25/2005 74.0 58.0 0.02 96 17 
4/26/2005 68.0 60.0 0.34 98 51 
4/27/2005 76.0 50.0 0.00 84 18 
4/28/2005 85.0 54.0 0.00 93 15 
4/29/2005 86.0 67.0 0.00 92 17 
4/30/2005 77.0 44.0 0.00 91 83 
5/1/2005 68.0 47.0 0.00 93 28 
5/2/2005 74.0 50.0 0.00 82 19 
5/3/2005 77.0 54.0 0.00 80 19 
5/4/2005 78.0 57.0 0.18 89 19 
5/5/2005 76.0 54.0 0.00 84 19 
5/6/2005 80.0 59.0 0.00 92 18 
5/7/2005 83.0 59.0 0.00 98 18 
5/8/2005 81.0 69.0 0.00 80 28 
5/9/2005 73.0 60.0 3.70 98 49 

5/10/2005 80.0 63.0 0.01 98 34 
5/11/2005 85.0 69.0 0.00 94 30 
5/12/2005 84.0 69.0 0.00 94 25 
5/13/2005 83.0 68.0 0.00 94 28 
5/14/2005 83.0 66.0 0.00 94 20 
5/15/2005 84.0 65.0 0.00 80 18 
5/16/2005 85.0 65.0 0.00 86 17 
5/17/2005 80.0 60.0 0.52 92 27 
5/18/2005 82.0 63.0 0.03 95 24 
5/19/2005 86.0 66.0 0.00 94 25 
5/20/2005 87.0 68.0 0.00 94 21 
5/21/2005 89.0 69.0 0.00 88 17 
5/22/2005 94.0 70.0 0.00 87 18 
5/23/2005 93.0 72.0 0.00 85 18 
5/24/2005 91.0 67.0 0.00 89 19 
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5/25/2005 90.0 70.0 0.00 88 20 
5/26/2005 92.0 71.0 0.00 88 17 
5/27/2005 85.0 68.0 1.55 93 31 
5/28/2005 88.0 69.0 0.00 91 24 
5/29/2005 86.0 66.0 0.70 92 23 
5/30/2005 84.5 67.5 2.47 92 36 
5/31/2005 83.0 69.0 0.01 94 30 
6/1/2005 88.0 65.0 0.34 93 21 
6/2/2005 84.0 65.0 0.00 91 26 
6/3/2005 89.0 70.0 0.00 89 26 
6/4/2005 87.0 73.0 0.00 92 30 
6/5/2005 89.0 74.0 0.00 90 28 
6/6/2005 91.0 74.0 0.00 92 27 
6/7/2005 91.0 75.0 0.00 90 26 
6/8/2005 90.0 75.0 0.00 89 26 
6/9/2005 90.0 73.0 0.00 92 27 

6/10/2005 89.0 71.0 0.00 92 25 
6/11/2005 91.0 72.0 0.00 89 20 
6/12/2005 92.0 72.0 0.00 89 17 
6/13/2005 92.0 72.0 0.00 88 20 
6/14/2005 91.0 73.0 0.00 93 26 
6/15/2005 96.0 75.0 0.00 92 16 
6/16/2005 95.0 73.0 0.00 82 17 
6/17/2005 94.0 72.0 0.00 87 19 
6/18/2005 94.0 72.0 0.00 88 17 
6/19/2005 95.0 74.0 0.00 87 16 
6/20/2005 94.0 70.0 0.00 89 16 
6/21/2005 92.0 68.0 0.00 87 16 
6/22/2005 93.0 69.0 0.00 86 15 
6/23/2005 94.0 70.0 0.00 84 15 
6/24/2005 94.0 68.0 0.00 85 15 
6/25/2005 94.0 69.0 0.00 81 15 
6/26/2005 95.0 71.0 0.00 87 15 
6/27/2005 94.0 70.0 0.00 86 16 
6/28/2005 94.0 70.0 0.00 88 17 
6/29/2005 95.0 70.0 0.00 89 14 
6/30/2005 96.0 73.0 0.00 88 16 
7/1/2005 97.0 75.0 0.00 84 16 
7/2/2005 98.0 75.0 0.00 86 15 
7/3/2005 98.0 75.0 0.00 88 15 
7/4/2005 97.0 75.0 0.00 85 16 
7/5/2005 98.0 72.0 0.00 88 17 
7/6/2005 99.0 74.0 0.00 89 14 
7/7/2005 102.0 76.0 0.12 80 14 
7/8/2005 98.0 69.0 0.55 88 15 
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7/9/2005 92.0 71.0 0.00 85 18 
7/10/2005 90.0 71.0 0.00 83 22 
7/11/2005 96.0 73.0 0.00 82 16 
7/12/2005 95.0 73.0 0.00 85 16 
7/13/2005 96.0 75.0 0.00 88 16 
7/14/2005 97.0 74.0 0.00 90 16 
7/15/2005 98.0 71.0 1.55 91 15 
7/16/2005 98.0 71.0 2.06 91 48 
7/17/2005 85.0 73.0 0.48 91 35 
7/18/2005 90.0 75.0 0.26 91 27 
7/19/2005 92.0 73.0 0.01 90 23 
7/20/2005 93.0 75.0 0.00 90 25 
7/21/2005 92.0 74.0 0.05 91 24 
7/22/2005 91.0 74.0 0.13 91 27 
7/23/2005 95.0 73.0 0.04 88 16 
7/24/2005 94.0 74.0 0.00 88 18 
7/25/2005 93.0 75.0 1.24 88 20 
7/26/2005 93.0 73.0 0.00 88 19 
7/27/2005 94.0 72.0 0.00 88 18 
7/28/2005 92.0 72.0 0.00 88 18 
7/29/2005 95.0 73.0 0.00 89 18 
7/30/2005 94.0 75.0 0.06 89 26 
7/31/2005 92.0 69.0 0.00 83 16 
8/1/2005 105.0 71.0 0.00 84 16 
8/2/2005 96.0 73.0 0.00 84 15 
8/3/2005 95.0 74.0 0.00 85 17 
8/4/2005 94.0 74.0 0.00 85 16 
8/5/2005 94.0 72.0 0.00 85 17 
8/6/2005 91.0 71.0 0.07 86 24 
8/7/2005 96.0 74.0 0.00 84 16 
8/8/2005 94.0 73.0 0.00 84 16 
8/9/2005 96.0 74.0 0.02 84 16 

8/10/2005 94.0 73.0 0.00 85 17 
8/11/2005 97.0 71.0 0.00 85 16 
8/12/2005 95.0 73.0 0.00 87 17 
8/13/2005 96.0 74.0 0.01 87 17 
8/14/2005 96.0 75.0 0.00 86 17 
8/15/2005 93.0 75.0 0.15 88 27 
8/16/2005 95.0 74.0 0.05 88 17 
8/17/2005 91.0 72.0 0.36 88 27 
8/18/2005 96.0 72.0 0.00 88 16 
8/19/2005 96.0 73.0 0.00 87 17 
8/20/2005 96.0 72.0 0.00 88 16 
8/21/2005 97.0 71.0 0.00 88 15 
8/22/2005 98.0 75.0 0.00 88 14 
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8/23/2005 98.0 75.0 0.00 88 15 
8/24/2005 98.0 74.0 0.00 86 15 
8/25/2005 99.0 74.0 0.00 86 15 
8/26/2005 95.0 75.0 0.00 86 17 
8/27/2005 97.0 74.0 0.00 86 16 
8/28/2005 97.0 72.0 1.73 91 14 
8/29/2005 92.0 73.0 0.00 87 22 
8/30/2005 93.0 72.0 0.00 83 17 
8/31/2005 96.0 73.0 0.00 83 15 
9/1/2005 97.0 73.0 0.00 84 14 
9/2/2005 95.0 73.0 0.00 86 16 
9/3/2005 90.0 72.0 0.13 86 23 
9/4/2005 90.0 73.0 0.00 87 24 
9/5/2005 95.0 67.0 0.00 82 14 
9/6/2005 96.0 69.0 0.00 83 14 
9/7/2005 93.0 67.0 0.00 83 16 
9/8/2005 91.0 66.0 0.00 78 15 
9/9/2005 93.0 67.0 0.00 82 16 

9/10/2005 92.0 70.0 0.00 83 15 
9/11/2005 87.0 74.0 0.08 89 35 
9/12/2005 86.0 72.0 0.00 85 22 
9/13/2005 87.0 72.0 0.23 89 35 
9/14/2005 93.0 72.0 0.03 89 23 
9/15/2005 95.0 73.0 0.00 89 18 
9/16/2005 96.0 74.0 0.00 88 18 
9/17/2005 95.0 73.0 0.00 88 17 
9/18/2005 96.0 72.0 0.00 89 16 
9/19/2005 97.0 71.0 0.00 90 15 
9/20/2005 94.0 70.0 0.00 89 15 
9/21/2005 97.0 72.0 0.00 87 14 
9/22/2005 99.0 72.0 0.00 85 13 
9/23/2005 101.0 71.0 0.00 96 13 
9/24/2005 96.0 78.0 0.00 96 14 
9/25/2005 96.0 73.0 0.00 82 14 
9/26/2005 104.0 76.0 0.00 85 12 
9/27/2005 104.0 75.0 0.00 85 13 
9/28/2005 104.0 76.0 0.00 84 12 
9/29/2005 102.0 75.0 0.00 86 14 
9/30/2005 89.0 69.0 0.00 88 19 
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APPENDIX C 

CLIMATIC CONDITIONS AT TEXAS AGRICULTURAL RESEARCH AND 

EDUCATION CENTER NEAR EAGLE LAKE, TX. 

2006 GROWING SEASON 
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2006 

Date Air Temperature (°F)
Precipitation 

(in) Relative Humidity (%) 
 Max Min  Max Min 

3/1/2006 74.0 50.0 0.00 92 23 
3/2/2006 80.0 57.0 0.00 92 19 
3/3/2006 81.0 56.0 0.00 93 20 
3/4/2006 75.0 46.0 0.00 94 18 
3/5/2006 72.0 50.0 0.00 90 22 
3/6/2006 79.0 49.0 0.00 90 31 
3/7/2006 81.0 64.0 0.00 91 20 
3/8/2006 79.0 63.0 0.00 90 25 
3/9/2006 80.0 64.0 0.00 86 23 

3/10/2006 82.0 48.0 0.00 91 15 
3/11/2006 84.0 56.0 0.00 93 25 
3/12/2006 85.0 70.0 0.00 78 24 
3/13/2006 85.0 70.0 0.02 78 27 
3/14/2006 74.0 47.0 0.00 78 17 
3/15/2006 73.0 43.0 0.00 81 17 
3/16/2006 69.0 48.0 0.00 83 22 
3/17/2006 84.0 63.0 0.00 87 25 
3/18/2006 77.0 65.0 0.00 88 25 
3/19/2006 75.0 70.0 0.15 90 35 
3/20/2006 76.0 61.0 0.27 91 35 
3/21/2006 76.0 44.0 0.05 91 16 
3/22/2006 66.0 41.0 0.00 88 19 
3/23/2006 58.0 42.0 0.02 85 25 
3/24/2006 52.0 31.0 0.00 83 25 
3/25/2006 60.0 33.0 0.00 80 20 
3/26/2006 69.0 38.0 0.00 77 18 
3/27/2006 73.0 54.0 0.00 82 17 
3/28/2006 72.0 58.0 0.01 86 37 
3/29/2006 66.0 54.0 0.67 92 42 
3/30/2006 74.0 59.0 0.40 92 47 
3/31/2006 78.0 66.0 0.00 92 31 
4/1/2006 82.0 70.0 0.02 89 29 
4/2/2006 83.0 70.0 0.00 88 25 
4/3/2006 83.0 67.0 0.00 88 25 
4/4/2006 86.0 66.0 0.00 88 20 
4/5/2006 83.0 65.0 0.00 90 22 
4/6/2006 84.0 65.0 0.00 90 19 
4/7/2006 80.0 65.0 0.00 87 29 
4/8/2006 87.0 52.0 0.00 90 20 
4/9/2006 73.0 50.0 0.00 90 19 
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4/10/2006 80.0 47.0 0.00 86 16 
4/11/2006 80.0 49.0 0.00 91 16 
4/12/2006 80.0 58.0 0.00 90 19 
4/13/2006 80.0 62.0 0.00 91 30 
4/14/2006 84.0 59.0 0.00 93 17 
4/15/2006 84.0 62.0 0.00 91 18 
4/16/2006 85.0 63.0 0.00 90 20 
4/17/2006 88.0 69.0 0.00 88 18 
4/18/2006 94.0 68.0 0.00 86 17 
4/19/2006 91.0 67.0 0.00 88 17 
4/20/2006 90.0 69.0 0.00 89 18 
4/21/2006 88.7 66.7 1.17 92 18 
4/22/2006 87.3 64.3 0.00 92 21 
4/23/2006 86.0 62.0 0.00 91 17 
4/24/2006 86.0 65.0 0.00 92 21 
4/25/2006 85.0 70.0 0.00 90 27 
4/26/2006 90.0 55.0 0.00 87 19 
4/27/2006 74.0 55.0 0.00 91 25 
4/28/2006 79.0 56.0 0.00 90 19 
4/29/2006 86.0 64.0 0.20 82 25 
4/30/2006 83.0 57.0 0.01 82 17 
5/1/2006 87.0 59.0 0.00 80 14 
5/2/2006 90.0 60.0 0.00 89 17 
5/3/2006 89.0 70.0 0.08 89 18 
5/4/2006 90.0 67.0 0.00 88 16 
5/5/2006 91.0 66.0 0.09 88 16 
5/6/2006 89.0 62.0 1.09 92 16 
5/7/2006 84.0 65.0 0.03 85 77 
5/8/2006 83.0 66.0 0.00 76 31 
5/9/2006 87.0 69.0 0.00 88 29 

5/10/2006 90.0 75.0 0.00 87 26 
5/11/2006 92.0 56.0 0.06 78 20 
5/12/2006 81.0 53.0 0.00 81 15 
5/13/2006 86.0 54.0 0.00 84 16 
5/14/2006 90.0 67.0 0.00 83 16 
5/15/2006 88.0 63.0 0.00 88 22 
5/16/2006 77.0 52.0 0.00 87 18 
5/17/2006 83.0 55.0 0.00 86 17 
5/18/2006 87.0 58.0 0.00 85 16 
5/19/2006 93.0 62.0 0.00 84 14 
5/20/2006 94.0 65.0 0.00 87 14 
5/21/2006 90.0 63.0 0.00 88 16 
5/22/2006 91.0 67.0 0.00 91 15 
5/23/2006 91.0 69.0 0.00 91 16 
5/24/2006 91.0 68.0 0.00 90 16 
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5/25/2006 94.0 69.0 0.00 90 15 
5/26/2006 94.0 71.0 0.00 85 15 
5/27/2006 93.0 72.0 0.00 88 16 
5/28/2006 93.0 71.0 0.33 84 17 
5/29/2006 83.0 70.0 0.12 89 20 
5/30/2006 87.0 71.0 0.70 85 29 
5/31/2006 84.0 67.0 0.53 89 28 
6/1/2006 75.0 68.0 0.12 89 61 
6/2/2006 85.0 69.0 0.02 89 21 
6/3/2006 89.0 69.0 0.00 86 16 
6/4/2006 91.0 67.0 0.00 87 16 
6/5/2006 91.0 70.0 0.00 85 15 
6/6/2006 90.0 68.0 0.00 85 17 
6/7/2006 91.0 68.0 0.00 87 17 
6/8/2006 92.0 71.0 0.00 83 16 
6/9/2006 93.0 70.0 0.00 85 15 

6/10/2006 95.0 69.0 0.00 86 15 
6/11/2006 94.0 68.0 0.00 88 14 
6/12/2006 93.0 62.0 0.00 89 15 
6/13/2006 96.0 65.0 0.00 90 14 
6/14/2006 102.0 72.0 0.02 89 13 
6/15/2006 93.0 67.0 0.00 88 15 
6/16/2006 95.0 71.0 0.00 87 15 
6/17/2006 91.0 75.0 0.39 88 22 
6/18/2006 87.0 70.0 1.52 89 33 
6/19/2006 91.0 74.0 0.35 88 19 
6/20/2006 88.0 72.0 0.08 87 28 
6/21/2006 78.0 71.0 1.24 89 47 
6/22/2006 90.0 72.0 0.00 89 25 
6/23/2006 92.0 71.0 0.00 90 19 
6/24/2006 93.0 72.0 0.00 91 15 
6/25/2006 90.0 74.0 0.00 82 18 
6/26/2006 94.0 71.0 0.00 82 15 
6/27/2006 92.0 65.0 0.00 81 15 
6/28/2006 89.0 65.0 0.00 81 16 
6/29/2006 91.0 66.0 0.00 80 15 
6/30/2006 90.0 69.0 0.00 80 16 
7/1/2006 91.0 71.0 0.00 85 17 
7/2/2006 88.0 70.0 1.05 91 26 
7/3/2006 84.0 71.0 0.00 91 30 
7/4/2006 83.0 73.0 0.00 89 36 
7/5/2006 88.0 71.0 3.95 92 33 
7/6/2006 85.0 72.0 0.00 92 33 
7/7/2006 87.0 73.0 0.11 91 28 
7/8/2006 88.0 74.0 0.00 89 28 
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7/9/2006 91.0 74.0 0.00 90 29 
7/10/2006 86.0 75.0 0.52 89 35 
7/11/2006 91.0 74.0 0.00 88 22 
7/12/2006 92.0 74.0 0.00 87 23 
7/13/2006 92.5 74.0 0.00 87 20 
7/14/2006 93.0 74.0 0.00 87 17 
7/15/2006 92.0 72.0 0.00 84 20 
7/16/2006 94.0 75.0 0.00 84 16 
7/17/2006 94.0 74.0 0.00 83 16 
7/18/2006 95.0 75.0 0.00 82 17 
7/19/2006 92.0 73.0 0.00 87 20 
7/20/2006 94.0 74.0 0.00 87 15 
7/21/2006 92.0 73.0 0.00 87 17 
7/22/2006 96.0 73.0 0.00 87 15 
7/23/2006 97.0 73.0 0.08 88 15 
7/24/2006 94.0 72.0 0.00 87 17 
7/25/2006 87.0 72.0 2.66 89 36 
7/26/2006 82.0 71.0 1.52 90 37 
7/27/2006 81.0 73.0 0.36 91 66 
7/28/2006 81.0 73.0 0.36 91 66 
7/29/2006 91.0 75.0 0.00 91 22 
7/30/2006 93.0 73.0 0.00 91 23 
7/31/2006 93.0 75.0 0.00 87 17 
8/1/2006 92.0 73.0 0.00 88 22 
8/2/2006 92.0 73.0 0.00 89 18 
8/3/2006 90.0 72.0 0.76 87 28 
8/4/2006 94.0 73.0 0.00 89 17 
8/5/2006 94.0 74.0 0.00 89 16 
8/6/2006 95.0 74.0 0.00 84 15 
8/7/2006 91.0 76.0 0.03 86 18 
8/8/2006 92.0 73.0 0.10 88 21 
8/9/2006 89.0 73.0 0.00 89 26 

8/10/2006 95.0 73.0 0.00 89 16 
8/11/2006 94.0 73.0 0.00 86 16 
8/12/2006 96.0 72.0 0.00 89 16 
8/13/2006 94.0 73.0 0.00 87 16 
8/14/2006 94.0 73.0 0.00 87 15 
8/15/2006 96.0 73.0 0.00 87 16 
8/16/2006 97.0 73.0 0.00 89 15 
8/17/2006 98.0 74.0 0.00 89 14 
8/18/2006 99.0 76.0 0.00 90 14 
8/19/2006 97.0 74.0 0.02 90 14 
8/20/2006 88.0 73.0 0.01 90 29 
8/21/2006 96.0 73.0 0.00 87 15 
8/22/2006 96.0 72.0 0.00 88 15 
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8/23/2006 95.0 73.0 0.13 87 16 
8/24/2006 94.0 73.0 0.00 86 16 
8/25/2006 96.0 75.0 0.00 87 15 
8/26/2006 98.0 75.0 0.00 86 14 
8/27/2006 96.0 75.0 0.10 87 16 
8/28/2006 92.0 75.0 0.03 86 22 
8/29/2006 97.0 74.0 0.00 87 15 
8/30/2006 96.0 73.0 0.00 83 15 
8/31/2006 93.0 67.0 0.00 83 15 
9/1/2006 96.0 67.0 0.00 83 14 
9/2/2006 98.0 70.0 0.02 85 14 
9/3/2006 95.0 71.0 0.04 83 15 
9/4/2006 94.0 69.0 0.00 84 15 
9/5/2006 93.0 71.0 0.02 85 16 
9/6/2006 78.0 65.0 0.09 86 32 
9/7/2006 92.0 61.0 0.00 82 15 
9/8/2006 94.0 61.0 0.00 83 14 
9/9/2006 91.0 68.0 0.48 89 16 

9/10/2006 79.0 70.0 0.04 91 52 
9/11/2006 92.0 72.0 0.00 90 40 
9/12/2006 87.0 72.0 0.10 89 27 
9/13/2006 85.0 70.0 0.00 89 27 
9/14/2006 92.0 65.0 0.00 90 15 
9/15/2006 94.0 68.0 0.00 91 15 
9/16/2006 95.0 70.0 0.00 89 15 
9/17/2006 96.0 72.0 0.00 88 16 
9/18/2006 95.0 71.0 0.80 86 16 
9/19/2006 82.0 63.0 0.04 89 37 
9/20/2006 87.0 58.0 0.00 86 16 
9/21/2006 88.0 58.0 0.00 78 16 
9/22/2006 94.0 64.0 0.00 81 17 
9/23/2006 93.0 78.0 0.00 82 20 
9/24/2006 95.0 70.0 1.62 89 18 
9/25/2006 76.0 58.0 0.00 88 20 
9/26/2006 80.0 57.0 0.00 87 18 
9/27/2006 85.0 57.0 0.00 86 16 
9/28/2006 88.0 61.0 0.00 85 17 
9/29/2006 83.0 60.0 0.00 88 22 
9/30/2006 90.0 63.0 0.00 89 17 
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SOURCES OF MATERIALS 

 

Chapter II 

 1 Crop oil concentrate, Agri-Dex®, is a nonionic spray adjuvant consisting of a 

blend of heavy paraffin based petroleum oil, ployol fatty acid esters, and 

polyethoxylated derivatives. Helena Chemical Company, 6075 Poplar Avenue, Suite 

500, Memphis, TN 38119. 

 2 Silicon based surfactant, Kinetic®, is a blend of polyalkyleneoxide modified 

polydimethylsiloxane and polyoxypropylene-polyoxyethylene block co-polymers. 

Helena Chemical Company, 6075 Poplar Avenue, Suite 500, Memphis, TN 38119. 

 3 Kubota Skyrod RX 1450, Kubota Manufacturing of America Corporation, 2715 

Ramsey Road, Gainesville, GA 30501. 

Chapter III 

 4 Silicon based surfactant, Kinetic®, is a blend of polyalkyleneoxide modified 

polydimethylsiloxane and polyoxypropylene-polyoxyethylene block co-polymers. 

Helena Chemical Company, 6075 Poplar Avenue, Suite 500, Memphis, TN 38119. 

 5 Dyne-A-Pak®, non-ionic spray adjuvant and deposition aide, proprietary blend 

of alkanolamides, alkanoates, trisiloxane, and carbamides.  Helena Chemical Company, 

Collierville, TN 38017. 

 6 Crop oil concentrate, Agri-Dex®, is a nonionic spray adjuvant consisting of a 

blend of heavy paraffin based petroleum oil, ployol fatty acid esters, and 
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polyethoxylated derivatives. Helena Chemical Company, 6075 Poplar Avenue, Suite 

500, Memphis, TN 38119. 

 7 Kubota Skyrod RX 1450, Kubota Manufacturing of America Corporation, 2715 

Ramsey Road, Gainesville, GA 30501. 

Chapter IV 

 8 MetroMix 200.  The Scotts Company.  14111 Scottslawn Road.  Marysville, 

OH  43041. 

 9 Low pressure sodium lamps, Model No. N081 470 00053, 135 W, North 

American Philips Lighting Corporation, Bank Street, Hightstown, NJ 08520. 

 10 VHO fluorescent bulbs, Model No. F22T12/CW/VHO, North American 

Philips Lighting Corporation, Bank Street, Hightstown, NJ 08520. 

 11 Clear incandescent bulbs, clear, 60 W, Osram Sylvania, 100 Endicott Street, 

Danvers, MA 01923. 

 12 8002 flat fan nozzle, TeeJet Spraying Systems Co.; Wheaton, IL 60189. 

 13 Crop oil concentrate, Agri-Dex®, is a nonionic spray adjuvant consisting of a 

blend of heavy paraffin based petroleum oil, ployol fatty acid esters, and 

polyethoxylated derivatives. Helena Chemical Company, 6075 Poplar Avenue, Suite 

500, Memphis, TN 38119. 

 14 Peter’s General Purpose 20-20-20.  The Scotts Company.  14111 Scottslawn 

Road, Marysville, OH 43041. 

 15 Carbon-14 cocktail, R.J. Harvey Instrument Company, 123 Patterson Street, 

Hillsdale, NJ 07642. 
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 16 Packard Oxidizer 306, Packard Instruments Company, 2200 Warrenville Road, 

Downers Grove, IL 60515. 

 17 Tri-carb 2500TR Liquid Scintillation Analyzer, Packard Bio-Science 

Company, 800 Research Parkway, Downers Grove, IL 60515. 
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