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ABSTRACT 
 
 

Physiological Applications for Determining Water Use Efficiency  

Among Cotton Genotypes. (May 2008) 

Joshua Brian Bynum, B.S. West Texas A&M University; M.S., Texas A&M University 
 

Chair of Advisory Committee: Dr. J. Tom Cothren 
 

 

Drought stress can substantially alter plant metabolism by decreasing plant 

growth and photosynthesis. The lack of rapid and reliable screening criteria and 

measurement techniques for determining water use efficiency (WUE) of crop plants has 

greatly restricted progress in this critical area of crop improvement. In grain sorghum 

(Sorghum bicolor L.), WUE was associated with the transpiration ratio [CO2 

assimilation (A) / transpiration rate (E), A:E] from leaf gas exchange measurements. 

Research is needed to identify drought effects on plant productivity and to exploit the 

use of this knowledge in breeding and agronomic efforts. Therefore, the objectives of 

this study were to determine if differences in A:E and other physiological parameters 

existed between two selected cotton (Gossypium hirsutum L.) genotypes and to evaluate 

the response of cotton genotypes experiencing water stress at two different growth stages 

on biomass production and yield. 

Two experiments were conducted using two cotton genotypes differing in 

drought tolerance. Each experiment was repeated three times in a randomized complete 

block design with six replications. In Experiment I, the water stress treatment was 

induced by withholding water when the plants reached the 4-node growth stage. The 
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water stress treatment in Experiment II was imposed at early bloom. Gas exchange and 

chlorophyll fluorescence measurements were collected during dry-down and recovery 

periods to determine water stress effects on plant physiology. Biomass was partitioned 

following the recovery period, to examine phenotypic responses of plants exposed to 

water stress. 

The results of these experiments indicate that A:E is significantly increased as 

leaf water potential (ψL) decreases with no differences in A:E between the two 

genotypes. Gas exchange measurements showed significant decreases with declining ψL 

and significant increases upon re-watering; yet, no differences were observed between 

the two genotypes. Chlorophyll fluorescence was not different between genotypes in 

either light- or dark-adapted leaves. In Experiment I TAM 89E-51 had a significantly 

greater seedcotton yield; however, in Experiment II TAMCOT 22 had the greater yield. 

These experiments suggest that the effects of water stress on cotton are a function of the 

intensity of the stress and the growth stage in which the stress is experienced. 
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 CHAPTER I 

INTRODUCTION 

Drought is considered a predominant factor for restricting crop yields in 

agriculture.  An understanding of the response of plants to water deficit is important in 

efforts to model cotton growth, estimate irrigation needs, and breed drought-resistant 

cultivars (Pace et al., 1999). The ability of breeders to select more water use efficient 

cultivars has the potential to seriously impact the economic return for producers. 

Cotton (Gossypium hirsutum L.) is considered one of the most drought-tolerant 

field crops grown in the United States. However, the Federal Crop Insurance 

Corporation rates drought the greatest cause of disasters experienced by cotton 

producers. While considered to be drought-tolerant relative to other crop species, cotton 

responds well to supplemental water by producing yields proportional to rainfall or 

supplemental irrigation. Reports suggest that irrigation may enhance cotton yields by 

224 to 448 kg ha-1 over dryland. Of the 5.6 million hectares of cotton planted in 2005 in 

the United States, ~70% were under dryland production. With the large hectarage of 

cotton under dryland or limited irrigation practices, the utility of water use efficient 

cultivars would convey a tremendous advantage to producers and the market. Cotton 

cultivars that can endure and/or recover from drought are needed to minimize yield loss 

in dryland areas and to reduce the water needs of irrigated production. 

The lack of simple, rapid, and reliable screening criteria and measurement  

_________________________ 

This dissertation follows the style and format of Crop Science. 
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techniques for water use efficiency (WUE) of crop plants has greatly restricted progress 

in this critical area of crop improvement (Hall et al., 1990). In grain sorghum (Sorghum 

bicolor L.), WUE was associated with the transpiration ratio [CO2 assimilation (A) / 

transpiration rate (E), A:E] from leaf gas exchange measurements (Peng and Krieg, 

1992). A better understanding of how drought stress affects physiological parameters 

and overall plant growth is fundamental. Research is needed to identify how plant 

productivity is affected by drought and to exploit this knowledge in breeding and 

agronomic efforts to improve yield under drought stress and WUE. 

LITERATURE REVIEW 

Drought Stress and Plant Productivity 

 Drought stress can substantially alter plant metabolism by decreasing plant 

growth and photosynthesis, thus having a profound affect on agriculture (Tezara et al., 

1999). The nature and extent to which drought stress affects plants is a function of the 

intensity and duration of the stress, as well as of the genetically-determined capacity of 

species to cope with the environment (Chaves, 1991).  

Drought stress is purported to impact a number of plant processes and elicit many 

detrimental responses on plant productivity. Drought stress is reported to reduce leaf 

expansion (Hsiao, 1973; Masle and Passioura, 1987), reduce the number of leaves on 

sympodial branches (Krieg and Sung, 1986), decrease leaf elongation rate (Cutler and 

Rains, 1977), lower dry matter accumulation and water use efficiency (Quisenberry et 

al., 1981), and to decrease plant height, leaf area, and total nodes (Pace et al., 1999). 

Many of these responses, such as reduced growth and decreased size of leaf canopy due 
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to stress-induced senescence, are of potential value for plant survival and adaptation to 

drought (Chaves, 1991).  

Productivity of plants is greatly depressed by water deficiency (Austin et al., 

1986). However, the effect of water stress on the mechanisms of CO2 assimilation 

(Boyer, 1971; Boyer, 1976; Boyer and Younis, 1983; Lawlor, 1983; Longstreth et al., 

1980; Sharkey and Seemann, 1989) has not been analyzed in sufficient detail, in 

genotypes differing in assimilation capacity, to show how the photosynthetic mechanism 

may be modified to improve assimilation under water stress (Fischer et al., 1981; 

Lawlor, 1983; Mahon and Hobbs, 1981; Sharkey and Seemann, 1989; Von Caemmerer 

and Farquhar, 1981). Currently, there is no single measure of plant water status that can 

be correlated with all the numerous effects of water stress (Kramer, 1988). 

Leaf Gas Exchange 

Photosynthesis is an essential process to maintain plant growth and development. 

It is well known that photosynthetic systems in higher plants are sensitive to drought 

stress (Falk et al., 1996). The rate of photosynthesis, in combination with the leaf area, 

determines plant productivity (Austin et al., 1986; Gillford and Evans, 1981; Gutteridge 

and Keys, 1985; Lawlor et al., 1989). Therefore, the functional state of photosynthesis 

has been considered an ideal physiological activity to monitor the health and vitality of 

plants (Clark et al., 2000). It is generally assumed that drought-induced decreases in 

photosynthesis are due primarily to stomatal closure, which decreases CO2 availability in 

the mesophyll, rather than to the direct effect on the capacity of the photosynthetic 

apparatus (Genty et al., 1987; Cornic 1994). Although stomatal regulation of leaf gas 
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exchange under drought conditions has been well documented (Tenhunen et al., 1987), 

inactivation of photosynthetic activity due to non-stomatal effects has also been reported 

(Boyer et al., 1987). Lawlor (1995) presented strong evidence that water stress affects 

mesophyll metabolism and reduces photosynthetic capacity. This occurred as a 

consequence of decreased ribulose bisphosphate (RuBP) synthesis (Gimenez et al., 

1992), decreased rubisco activity and reductions in carboxylation efficiency (Martin and 

Ruiz-Torres, 1992), or both (Plaut and Federman 1991; Faver et al., 1996). Tezara and 

Lawlor (1995) reported that stomatal control of photosynthetic rate becomes 

progressively less effective as water stress intensifies. It is well established that the rate 

of photosynthesis is depressed at moderate leaf water deficits (Lange et al., 1971). 

Several reports have documented the remarkable resistance of the photosynthetic 

apparatus to dehydration, which allows for the maintenance of full photosynthetic 

capacity by the leaves, thus permitting a rapid recovery of the plant after rehydration 

(Kaiser, 1982, 1987; Cornic et al., 1989). Despite great progress in understanding the 

effects of water stress on photosynthesis, there is still no unified concept of the events 

that reduce photosynthetic efficiency (Lawlor, 1995). 

Chlorophyll Fluorescence 

A review of the literature overwhelmingly reveals in excess of 3500 papers on 

chlorophyll fluorescence, of which ~20% have implications for agricultural issues. 

Chlorophyll fluorescence has evolved as a very useful and informative indicator for 

photosynthetic electron transport in intact leaves, algae, and isolated chloroplasts 

(Briantais et al. 1986; Renger and Schreiber 1986; Schreiber and Bilger 1987, 1992; 
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Krause and Weis 1991; Karukstis 1991). Assessing the health or integrity of the internal 

apparatus driving the photosynthetic process within a leaf (i.e., the thylakoid membrane) 

using chlorophyll fluorescence provides a rapid and accurate technique of detecting and 

quantifying plant tolerance to stress (Glynn et al., 2002). 

Light energy absorbed by chlorophyll molecules in a leaf can undergo one of 

three fates: it can be used to drive photosynthesis (photochemistry), excess energy can 

be dissipated as heat or it can be re-emitted as light (chlorophyll fluorescence). The 

above three processes occur in competition, such that any increase in the efficiency of 

one will result in a decrease in the yield of the other two. Therefore, by measuring the 

yield of chlorophyll fluorescence, information about changes in the efficiency of 

photochemistry and heat dissipation are gained (Maxwell and Johnson, 2000). For 

reasons so far unknown, at room temperature the variable fluorescence originates almost 

exclusively from photosystem II (PSII) (Schreiber et. al., 1986). Hence, fluorescence 

changes reflect primarily the state of PSII and the operating efficiency of PSII is related 

to A (Genty et al., 1989, 1990). The PSII operating efficiency is determined by the 

ability to drive photochemistry rather than non-photochemical processes. This 

relationship between the PSII operating efficiency and A in leaves allows fluorescence 

to be used to detect differences in the response of plants to environmental challenges 

and, consequently, to screen for tolerance to environmental stresses such as drought. 

Since photosynthetic traits are closely correlated with the rate of carbon exchange, 

chlorophyll fluorescence parameters allow us to estimate the influence of environmental 
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stress on plant growth and yield (Araus et al., 1998; Guo and Li 2000; Fracheboud et al., 

2004). 

OBJECTIVES 

The objectives of this study are to (i) determine if differences in A:E and 

physiological parameters, such as gas exchange rate and chlorophyll fluorescence, exist 

between two selected cotton genotypes and (ii) evaluate the response of two different 

cotton genotypes experiencing water stress at two different growth stages on biomass 

production and yield. 
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CHAPTER II 
 

METHODS AND MATERIALS 
 

PLANT MATERIAL AND TREATMENTS 
 

Two experiments were conducted using two cotton (Gossypium hirsutum L.) 

genotypes differing in drought tolerance chosen from the Texas A&M University Cotton 

Improvement Laboratory. Selection was based on previous drought tolerance 

experiments (unpublished data). Plants of the more tolerant cultivar, TAMCOT 22, and 

the less tolerant experimental line, TAM 89E-51, were grown in plastic pots (31 cm in 

diameter and 31 cm in height) under glasshouse conditions at the Plant Growth Facility 

of the Institute of Plant Genomics and Biotechnology at Texas A&M University. Each 

pot was filled with 12 kg of sterilized potting mix. The potting mixture contained peat 

moss, vermiculite, perlite, and dolomitic lime stone. Nutrient requirements were 

supplied weekly using a 20-20-20 complete fertilizer. Air temperature during the day 

and night was maintained at 28 °C with a photoperiod of 14L/10D h. Each experiment 

was repeated three times and all were designed as a randomized complete block with six 

replications. An additional set of six replicates were potted for biomass partitioning. 

Leaf water potential (ψL) was maintained at values > -1.3 MPa by frequent watering 

except when stress treatments were imposed. The gradual water stress was monitored 

daily using a pressure chamber to measure ψL on the third fully expanded leaf from the 

plant apex. When ψL values reached ~3.5 MPa, pots were rewatered and recovery 

measurements were collected. In Experiment I, the water stress treatment, induced by 

withholding water, occurred when the plants reached the 4-node growth stage. 
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Experiment II was conducted similarly to Experiment I; however, in Experiment II the 

water stress treatment was initiated at first flower. 

LEAF GAS EXCHANGE MEASUREMENTS 

Gas exchange measurements were collected from the third fully expanded leaf 

from the plant apex using a portable LI-6400 (LI-COR Inc., USA). CO2 assimilation rate 

(A) [µmol (CO2) m-2 s-1], stomatal conductance (gs) [mol (H2O) m-2 s-1], intercellular 

CO2 concentration (Ci) [µmol (CO2) mol-1 (air)], and transpiration rate (E) [mol (H2O)  

m-2 s-1] were calculated as described in the LI-6400 users manual (LI-COR Biosciences, 

2002).  The relative humidity of the leaf chamber (6 cm2) was set at 50% during 

measurements.  The CO2 flux was regulated to an inside leaf chamber concentration of 

370 µmol (CO2) mol-1. A light response curve of control (well-watered) plants was 

conducted to determine the light saturation level of each genotype (Fig. 1). The light 

response curve indicated that both genotypes were light-saturated at a photosynthetic 

photon flux density (PPFD) of 1200 µmol (photons) m-2 s-1. Therefore, a light source 

(6400-02B LED; LI-COR Inc., USA) was used to maintain PPFD at 1200 µmol 

(photons) m-2 s-1 during gas exchange measurements. Measurements were collected in 

two-day intervals from 1000 to 1300 h, similarly in both experiments.  

CHLOROPHYLL FLUORESCENCE MEASUREMENTS 

 Light- and dark-adapted leaves were used to measure chlorophyll fluorescence 

with a PAM-2100 portable fluorometer (Heinz Walz GmbH, Germany). Dark adaptation 

was obtained by attaching light-exclusion clips to the leaf surface in situ for 30 minutes 

prior to each reading. Minimal fluorescence (Fo) and the maximum quantum yield of  
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Fig. 1. Light response curves for two cotton genotypes (TAM 89E-51 and TAMCOT 

22). CO2 assimilation rate (µmols m-2 s-1) values are the mean of six replications.  
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PS II (Fv/Fm) are two parameters collected that were of interest. The quantum yield of 

PS II was determined by means of the ratio of variable (Fv) to maximum chlorophyll 

fluorescence (Fm), which is defined as the efficiency of excitation capture by open PS II 

centers (Araus et al., 1998). 

BIOMASS PRODUCTION AND SEEDCOTTON YIELD 

 Ten days after the recovery period of each experiment, six randomly selected 

water stressed and control plants were harvested for shoot material. Measurements 

included total leaf area and weight of stems, leaves, and fruit. Dry mass was determined 

following drying at 75 °C for 72 h.  

In both experiments an additional six water stressed and control plants per 

genotype were grown to maturity. At full maturity, these plants were harvested for 

seedcotton and the sum weight of all bolls on each plant was calculated as seedcotton 

yield.  

STATISTICAL ANALYSIS 

The statistical analysis system computer software was used for analysis of all 

data (SAS®; version 8.02). Data were combined over experiments where permissible. All 

means were tested with analysis of variance using the General Linear Model (GLM), and 

separated using Fisher’s Protected Least Significant Difference (LSD) at a significance 

of 10% (SAS, 1999-2001). Pearson’s correlation coefficients were determined for gas 

exchange measurements using PROC CORR in SAS. All graphical displays of data in 

this document were produced with SigmaPlot® 2008 (version 10.0) software. 
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CHAPTER III 

RESULTS AND DISCUSSION 

EXPERIMENT I 
 
 Significant correlations were present between all parameters measured using the 

LI-COR 6400 (P < 0.001) (Table 1). The greatest correlation existed between E and gs (r 

= .8691). The highest correlation with A was E (r = 0.852) followed by gs (r = 0.734) 

and Ci (r = 0.663).  

Leaf Gas Exchange Measurements  

 Pettigrew and Meredith (1994) reported differences between well-watered 

genotypes for A. Our data also showed differences for A between the two selected 

genotypes when well-watered. Therefore, data are represented as a percentage of the 

respective well-watered control. In both genotypes A significantly declined with           

ψL ≅ -1.3 MPa (P < 0.001) (Fig. 2). No differences were observed between genotypes 

for A at any ψL (P = 0.517). At a ψL = -3.3 MPa, both genotypes showed photosynthetic 

rates that were less than 30% of their respective well-watered control. However, A 

significantly increased in both genotypes upon re-watering (P < 0.001) (Fig. 3). The 

genotypes responded similarly to re-watering and showed an increase in A above 80% of 

the well-watered control by -2.5 MPa, and 100% by -1.7 MPa. 

Stomatal conductance was significantly reduced almost immediately after water 

was withheld in both genotypes (P < 0.001) (Fig. 4). TAMCOT 22 dropped to less than 

20% of its well-watered control at ψL = -1.6 MPa, whereas TAM 89E-51 fell below 20% 

at -2.0 MPa. However, there were no significant differences (P = 0.972) between the two 
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Table 1. Pearson correlation coefficients (r) for LI-6400 gas exchange variables using two cotton genotypes (TAM 89E-51 and 
TAMCOT 22) in the greenhouse, N=630. 
 Stomatal Conductance Internal CO2 Concentration Transpiration Rate 

Net Photosynthetic Rate 0.7344*** 0.6633*** 0.8520*** 

Stomatal Conductance ---------- .7344*** 0.8691*** 

Internal CO2 Concentration ---------- ---------- 0.6990*** 

*** Significant at the .001 probability level. 
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Fig. 2. Net photosynthetic rate (% of well-watered control) of two cotton genotypes 

(TAM 89E-51 and TAMCOT 22) during a dry-down period (water withheld for 14 
d) that began at node 4. Values are the mean ± SE of the mean for six replications. 
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Fig. 3. Net photosynthetic rate (% of well-watered control) of two cotton genotypes 

(TAM 89E-51 and TAMCOT 22) during a recovery period (sufficient water for 10 d) 
that began after water stress at node 4. Values are the mean ± SE of the mean for six 
replications. 
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Fig. 4. Stomatal conductance (% of well-watered control) of two cotton genotypes 

(TAM 89E-51 and TAMCOT 22) during a dry-down period (water withheld for 14 
d) that began at node 4. Values are the mean ± SE of the mean for six replications. 

 

 

 

 

 

 

 

 



 

 

16

genotypes. Upon re-watering, neither genotype reached gs levels above 20% of the well-

watered control plants until ψL were >-2.5 (Fig. 5). Once ψL had reached -1.3 MPa, 

TAMCOT 22 plants showed 100% recovery compared to the well-watered control; 

however, even at ψL indicating rehydration, the TAM 89E-51 plants did not reached the 

gs levels of the well-watered control plants. 

 Affirming the high correlation between gs and E shown in Table 1, the significant  

decrease in E due to decreasing ψL mirrored that of gs (P < 0.001) (Fig. 6). During the 

recovery period, both genotypes significantly increased to levels similar to the well-

watered controls at a ψL near -1.4 MPa (P < 0.001) (Fig. 7). 

Transpiration ratio (calculated as A:E) significantly increased in both genotypes 

as ψL decreased (P < 0.001) (Fig. 8). In both genotypes, A:E was in excess of 5 µmol 

(CO2) mol-1 (H2O) at ψL > -2.5 MPa; however, no differences were observed between 

the two genotypes. 

Chlorophyll Fluorescence 

The steady state value of fluorescence (Ft) did not significantly differ across 

changes in leaf water potential (P = 0.990) (Fig. 9). The Ft values for TAM 89E-51 were 

more erratic across a range of ψL levels than for TAMCOT 22. Values of Ft for TAM 

89E-51 ranged from 85% of the well-watered control at -1.2 MPa to 125% at -3.4 MPa.  

Quantum yield values for TAMCOT 22 ranged from 92% to 108% of the well- 

watered control across the ψL levels examined (Fig. 10). The array of quantum yield 

values for TAM 89E-51 was more broad than TAMCOT 22 and ranged from 86% to  

115% of the well-watered control. No significant differences were identified for 
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Fig. 5. Stomatal conductance (% of well-watered control) of two cotton genotypes 

(TAM 89E-51 and TAMCOT 22) during a recovery period (sufficient water for 10 d) 
that began after water stress at node 4. Values are the mean ± SE of the mean for six 
replications. 
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Fig. 6. Transpiration rate (% of well-watered control) of two cotton genotypes (TAM 

89E-51 and TAMCOT 22) during a dry-down period (water withheld for 14 d) that 
began at node 4. Values are the mean ± SE of the mean for six replications. 
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Fig. 7. Transpiration rate (% of well-watered control) of two cotton genotypes (TAM 

89E-51 and TAMCOT 22) during a recovery period (sufficient water for 10 d) that 
began after water stress at node 4. Values are the mean ± SE of the mean for six 
replications. 
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Fig. 8. Transpiration ratio (A:E) of two cotton genotypes (TAM 89E-51 and TAMCOT 
22) during periods of dry-down (water withheld for 14 d) and recovery (sufficient water 
for 10 d) that began at node 4. Values are the mean ± SE of the mean for six replications. 
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Fig. 9. Steady state value of fluorescence (% of well-watered control) of two cotton 
genotypes (TAM 89E-51 and TAMCOT 22) during periods of dry-down (water withheld 
for 14 d) and recovery (sufficient water for 10 d) that began at node 4. Values are the 
mean ± SE of the mean for six replications. 
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Fig. 10. Quantum yield of photosystem II (% of well-watered control) of two cotton 

genotypes (TAM 89E-51 and TAMCOT 22) during periods of dry-down (water 
withheld for 14 d) and recovery (sufficient water for 10 d) that began at node 4. 
Values are the mean ± SE of the mean for six replications. 
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quantum yield as ψL decreased (P = 0.991). 

No pattern of consistency could be drawn from measuring photochemical 

quenching (qP) (Fig. 11) or non-photochemical quenching (qNP) (Fig. 12). Significance 

values for both qP (P = 0.998) and qN (P = 0.997) were highly insignificant. Decreasing 

ψL appeared to have no response on these two parameters. 

 Figs. 13 through 15 display the results of dark-adapted fluorescence parameters. 

No differences were noted between genotypes for any of the dark-adapted parameters 

(Fo, P = 0.710; Fv/Fm = 0.738; Fm = 0.905). 

Biomass Production and Seedcotton Yield 

 No statistical differences were observed between the two genotypes for leaf area 

or leaf dry weight (Table 2). No differences were noted between the two genotypes for 

stem dry weight; however, as a percent of the well-watered control plants, significant 

differences were seen for stem weight in favor of TAMCOT 22 (P < 0.073). TAM 89E-

51 had a statistically greater fruit dry weight (P < 0.005), and a significantly greater 

percentage of fruit weight relative to the well-watered control (P < 0.022). Significant 

differences were observed for absolute seedcotton yield between the two genotypes in 

favor of TAM 89E-51 (P < 0.029). TAM 89E-51 had a statistically higher percentage of 

seedcotton yield relative to the well-watered control than did TAMCOT 22 (P < 0.017).  

EXPERIMENT II 

Leaf Gas Exchange Measurements 

 Both the dry-down period (Fig. 16) and recovery period (Fig. 17) indicated 

similar responses (P = 0.920 and P = 0.908, respectively) between the two genotypes 
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Fig. 11. Proportion of photosystem II reaction centers that are open (% of well-watered 

control) of two cotton genotypes (TAM 89E-51 and TAMCOT 22) during periods of 
dry-down (water withheld for 14 d) and recovery (sufficient water for 10 d) that 
began at node 4. Values are the mean ± SE of the mean for six replications. 
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Fig. 12. Non-photochemical quenching (% of well-watered control) of two cotton 

genotypes (TAM 89E-51 and TAMCOT 22) during periods of dry-down (water 
withheld for 14 d) and recovery (sufficient water for 10 d) that began at node 4. 
Values are the mean ± SE of the mean for six replications. 
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Fig. 13. Minimal fluorescence level (% of well-watered control) of two cotton genotypes 

(TAM 89E-51 and TAMCOT 22) during periods of dry-down (water withheld for 14 
d) and recovery (sufficient water for 10 d) that began at node 4. Values are the mean 
± SE of the mean for six replications. 
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Fig. 14. Maximal efficiency of photosystem II photochemistry (% of well-watered 

control) of two cotton genotypes (TAM 89E-51 and TAMCOT 22) during periods of 
dry-down (water withheld for 14 d) and recovery (sufficient water for 10 d) that 
began at node 4. Values are the mean ± SE of the mean for six replications. 
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Fig. 15. Maximal fluorescence level (% of well-watered control) of two cotton 

genotypes (TAM 89E-51 and TAMCOT 22) during periods of dry-down (water 
withheld for 14 d) and recovery (sufficient water for 10 d) that began at node 4. 
Values are the mean ± SE of the mean for six replications. 
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Table 2. Pairwise comparisons for Experiment I (water-stressed at node 4) between two cotton genotypes (TAM 89E-51 and 
TAMCOT 22) for biomass partitioning components (dry weights) and seedcotton. Values represent the mean of six 
replications. 

 Experiment 1 
 Leaf Area Leaf Stem Fruit Seedcotton 
 cm2 % of 

control grams % of 
control grams % of 

control grams % of 
control grams % of 

control 
TAM 89E-51 5626.0 51.0 37.2 33.6 16.6 27.9 4.8 69.5 161.9 99.6 

TAMCOT 22 5883.7 52.6 42.2 40.9 16.1 33.7 1.4 28.0 148.4 90.4 

p-value† .4444 .5880 .2766 .1050 .7138 .0730 .0055 .0220 .0291 .0169 

† Significance level of test. Values in italics are significant at P ≤ 0.10. 
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Fig. 16. Net photosynthetic rate (% of well-watered control) of two cotton genotypes 

(TAM 89E-51 and TAMCOT 22) during a dry-down period (water withheld for 10 
d) that began at early bloom. Values are the mean ± SE of the mean for six 
replications. 
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Fig. 17. Net photosynthetic rate (% of well-watered control) of two cotton genotypes 

(TAM 89E-51 and TAMCOT 22) during a recovery period (sufficient water for 10 d) 
that began after water stress at early bloom. Values are the mean ± SE of the mean 
for six replications. 
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with change in ψL for A. CO2 assimilation rate for both genotypes fell below 20% of the 

well-watered control plants at -3.4 MPa during the dry-down period. Each genotype 

reached full recovery relative to the well-watered control plants near -1.6 MPa. 

 Following the onset of water withholding, gs of both genotypes was significantly 

reduced to levels lower than 20% of the well-watered control near -2.5 MPa (P < 0.001) 

(Fig. 18). Upon re-watering, gs of each genotype was similar up to -2.2 MPa (P = 0.193) 

(Fig. 19). At ψL > -2.2 MPa during the recovery period, TAMCOT 22 continued to 

steadily increase gs to levels surpassing the well-watered control. However, at ψL > -2.2 

MPa, TAM 89E-51 began to level off reaching only 78% of the well-watered control. 

As in Experiment I, E mirrored the response of gs as the ψL decreased in both genotypes 

(Fig. 20). During the recovery period, the response of the genotypes was almost parallel 

for E, and both genotypes recovered to levels near 100% of the well-watered controls by 

-1.6 MPa (Fig. 21). 

 The A:E in Experiment II was similar to Experiment I (Fig. 22). As leaf water 

potential decreased, A:E significantly (P < 0.001) increased in both genotypes. The A:E 

at ψL near -3.5 MPa was higher for both genotypes in Experiment II; however, there 

were no significant differences between the genotypes for A:E (P = 0.480). 

Chlorophyll Fluorescence 

Although no significant differences were observed, Ft increased with decreasing 

ψL for TAM 89E-51 (P = 0.785) (Fig. 23). However, the response, in terms of Ft, to 

changes in ψL had no effect on Ft for TAMCOT 22.  
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Fig. 18. Stomatal conductance (% of well-watered control) of two cotton genotypes 

(TAM 89E-51 and TAMCOT 22) during a dry-down period (water withheld for 10 
d) that began at early bloom. Values are the mean ± SE of the mean for six 
replications. 
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Fig. 19. Stomatal conductance (% of well-watered control) of two cotton genotypes 

(TAM 89E-51 and TAMCOT 22) during a recovery period (sufficient water for 10 d) 
that began after water stress at early bloom. Values are the mean ± SE of the mean 
for six replications. 
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Fig. 20. Transpiration rate (% of well-watered control) of two cotton genotypes (TAM 

89E-51 and TAMCOT 22) during a dry-down period (water withheld for 10 d) that 
began at early bloom. Values are the mean ± SE of the mean for six replications. 
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Fig. 21. Transpiration rate (% of well-watered control) of two cotton genotypes (TAM 

89E-51 and TAMCOT 22) during a recovery period (sufficient water for 10 d) that 
began after water stress at early bloom. Values are the mean ± SE of the mean for six 
replications. 
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Fig. 22. Transpiration ratio (A:E) of two cotton genotypes (TAM 89E-51 and TAMCOT 

22) during periods of dry-down (water withheld for 10 d) and recovery (sufficient 
water for 10 d) that began at early bloom. Values are the mean ± SE of the mean for 
six replications. 

 

 

 

 

 

 

 

 



 

 

38

Leaf Water Potential (MPa)

-3.5-3.0-2.5-2.0-1.5

S
te

ad
y 

S
ta

te
 V

al
ue

 o
f F

lu
or

es
ce

nc
e 

(F
t)

(%
 o

f w
el

l-w
at

er
ed

 c
on

tro
l)

80

85

90

95

100

105

110

115

120

TAM 89E-51
TAMCOT 22

 
 
Fig. 23. Steady state value of fluorescence (% of well-watered control) of two cotton 

genotypes (TAM 89E-51 and TAMCOT 22) during periods of dry-down (water 
withheld for 10 d) and recovery (sufficient water for 10 d) that began at early bloom. 
Values are the mean ± SE of the mean for six replications. 
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 No significant effect was observed for quantum yield as ψL decreased for 

TAMCOT 22 (P = 0.913) (Fig. 24). Quantum yield values ranged from 97% to 125% 

relative to the well-watered control plants for TAM 89E-51, and tended to decrease as 

ψL decreased. In Fig. 25, the proportion of PS II reaction centers that were open (qP) at 

varying ψL mirrored the results of quantum yield. 

 Despite large variation in the data with no significant differences (P = 0.132), 

both genotypes showed an increase in non-photochemical quenching (qN; Fig. 26). 

Similar to the results of Experiment I, there were no significant differences for any of the 

dark-adapted parameters (Fo, P = 0.996; Fv/Fm, P = 0.986; Fm, P = 0.984) (Figs. 27 - 

29). 

Biomass Production and Seedcotton Yield 

 No significant differences were observed for leaf area between the two genotypes 

(Table 3). No differences between the two genotypes for leaf dry weight were reported; 

however, leaf weight expressed as a percentage of the well-watered control plants, was 

significantly (P < 0.054) greater in TAMCOT 22 than in TAM 89E-51. Stem weight, as 

a percentage of the well-watered control, was statistically (P < 0.077) greater in TAM 

89E-51. The absolute fruit weight was significantly (P < 0.001) greater for TAM 89E-

51; however, relative to the well-watered control plants, TAMCOT 22 had a 

significantly (P < 0.001) greater fruit weight. In contrast to Experiment I, absolute yield 

was statistically (P < 0.016) different in favor of TAMCOT 22. In relation to the well-

watered control plants, TAMCOT 22 had a significantly (P < 0.042) greater yield than 

TAM 89E-51. 
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Fig. 24. Quantum yield of photosystem II (% of well-watered control) of two cotton 

genotypes (TAM 89E-51 and TAMCOT 22) during periods of dry-down (water 
withheld for 10 d) and recovery (sufficient water for 10 d) that began at early bloom. 
Values are the mean ± SE of the mean for six replications. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

41

Leaf Water Potential (MPa)

-3.5-3.0-2.5-2.0-1.5P
ro

po
rti

on
 o

f P
S

II 
R

ea
ct

io
n 

C
en

te
rs

 th
at

 a
re

 O
pe

n 
(q

P
)

(%
 o

f w
el

l-w
at

er
ed

 c
on

tro
l)

80

90

100

110

120

130

140

TAM 89E-51
TAMCOT 22

 
 
Fig. 25. Proportion of photosystem II reaction centers that are open (% of well-watered 

control) of two cotton genotypes (TAM 89E-51 and TAMCOT 22) during periods of 
dry-down (water withheld for 10 d) and recovery (sufficient water for 10 d) that 
began at early bloom. Values are the mean ± SE of the mean for six replications. 
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Fig. 26. Non-photochemical quenching (% of well-watered control) of two cotton 

genotypes (TAM 89E-51 and TAMCOT 22) during periods of dry-down (water 
withheld for 10 d) and recovery (sufficient water for 10 d) that began at early bloom. 
Values are the mean ± SE of the mean for six replications. 
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Fig. 27. Minimal fluorescence level (% of well-watered control) of two cotton genotypes 

(TAM 89E-51 and TAMCOT 22) during periods of dry-down (water withheld for 10 
d) and recovery (sufficient water for 10 d) that began at early bloom. Values are the 
mean ± SE of the mean for six replications. 
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Fig. 28. Maximal efficiency of photosystem II photochemistry (% of well-watered 

control) of two cotton genotypes (TAM 89E-51 and TAMCOT 22) during periods of 
dry-down (water withheld for 10 d) and recovery (sufficient water for 10 d) that 
began at early bloom. Values are the mean ± SE of the mean for six replications. 
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Fig. 29. Maximal fluorescence level (% of well-watered control) of two cotton 

genotypes (TAM 89E-51 and TAMCOT 22) during periods of dry-down (water 
withheld for 10 d) and recovery (sufficient water for 10 d) that began at early bloom. 
Values are the mean ± SE of the mean for six replications. 
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Table 3. Pairwise comparisons for Experiment II (water-stressed at early bloom) between two cotton genotypes (TAM 89E-51 
and TAMCOT 22) for biomass partitioning components (dry weights) and seedcotton. Values represent the mean of six 
replications. 

 Experiment 1I 
 Leaf Area Leaf Stem Fruit Seedcotton 
 cm2 % of 

control grams % of 
control grams % of 

control grams % of 
control grams % of 

control 
TAM 89E-51 12944 82.2 51.4 67.6 61.3 84.5 53.1 44.0 128.2 78.9 
TAMCOT 22 12261 91.7 56.1 81.7 66.5 74.1 46.9 49.5 148.6 89.5 

p-value† .4521 .1202 .3309 .0540 .2123 .0776 .0009 .0012 .0161 .0420 

† Significance level of test. Values in italics are significant at P ≤ 0.10. 
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CHAPTER IV 

DISCUSSION 

LEAF GAS EXCHANGE MEASUREMENTS 

 The greatest correlation among gas exchange parameters existed between E and 

gs. These results were similar to reports by Peng and Krieg (1992) who found high 

correlation (r = 0.97) between E and gs in grain sorghum (Sorghum bicolor L.). The 

highest correlation with A was E, followed by gs. The values were consistent with those 

reported by Peng and Krieg (1992) with correlation values of 0.98 and 0.81 for E and gs, 

respectively, with A. 

 Pettigrew and Meredith (1994) noted significant differences between well-

watered cotton genotypes for A. Our data indicated that measurements of A between the 

well-watered controls of the two genotypes selected for the present experiments were not 

constant over time. However, the absolute values of A for each genotype were very 

consistent with the ranges of A reported by Pettigrew and Meredith (1994). Absolute 

values of A and gs were also consistent with those of Lu et al. (1997) in cotton. 

 In the present study, the response of both cotton genotypes to decreasing ψL 

concur with Brestic et al. (1995) who reported decreases in A and gs with water stress up 

to 10 d after withholding water in French beans (Phaseolus vulgaris L.). Escalona et al. 

(1999) also noted a 40% reduction in A by water stress in field grown grapevines (Vitis 

vinifera L.), and Lu and Zhang (1998) found decreases in A and gs with increasing water 

stress in wheat (Triticum aestivum L.). Our data indicated that both genotypes reached 

levels near 100% of the well-watered controls for A and gs after re-watering. This 
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suggests minimal damage to the photosynthetic mechanism by water-stress in our 

experiments. Previous studies report that A is impaired mainly by gs at moderate leaf 

water deficits, and only when drought was prolonged to the point of leaf dehydration, or 

if other stresses (heat, high light) are imposed, will electron transfer mechanisms be 

affected (Boyer and Bowen, 1970; Chaves, 1991; Cornic et al., 1992). Quick et al. 

(1992) suggested that water stress inhibits A primarily by stomatal closure. Giardi et al. 

(1996) agreed with the previous reports that only intense, long-term water stress can 

result in destruction to photochemistry mechanisms. 

 Peng and Krieg (1992) reported a significant correlation (P = 0.01) between 

WUE and A:E (r2 = 0.97) in grain sorghum. Heitholt (1989) also reported that WUE and 

A:E were strongly correlated (r2 = 0.76) across water-stress treatments in winter wheat. 

Therefore, WUE in the present study was evaluated using A:E. Our data indicated 

increases in A:E for both genotypes as ψL decreased. This finding is consistent with Lui 

et al. (2005) who also reported an increase in WUE of potato (Solanum tuberosum L.) 

under progressive soil drying. The authors attribute this response to A being less 

sensitive to water stress than gs. 

CHLOROPHYLL FLUORESCENCE MEASUREMENTS 

 Discrepancies in the literature on the effects of water stress on chlorophyll 

fluorescence parameters were due to environmental conditions. The bulk of the literature 

reporting significant changes in dark-adapted fluorescence parameters (i.e., Fv/Fm) under 

water stress were conducted under field conditions (Angelopoulos et al., 1996). In terms 

of dark-adapted fluorescence parameters, the results of the present experiments are very 
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similar to previous studies conducted under controlled environments. Lu and Zhang 

(1998) showed no effects on the PS II photochemistry of dark-adapted leaves, including 

Fv/Fm, during water stress of wheat plants. In a similar study, Pankovic et al. (1999) 

showed no differences in Fv/Fm among water-stressed sunflower (Helianthus annuus L.) 

plants when compared to a well-watered control. 

 Regarding the light-adapted fluorescence parameters (Ft, фII, qP, qNP), previous 

literature suggested that the response of plants to water stress may be species-dependent. 

Escalona et al. (1999) showed a 59% decrease in quantum yield of water-stressed, field-

grown grapevines; however, Brestic et al. (1995) reported that water stress had no 

impact on the quantum yield of French bean (Phaseolus vulgaris L.). Our data are 

consistent with those of Brestic et al. (1995), with no statistical differences seen between 

the two genotypes or as ψL decreased for quantum yield, qP and qNP. 

BIOMASS PRODUCTION AND SEEDCOTTON YIELD 

The results of these experiments were similar to results of previous literature in 

terms of biomass partitioning and seedcotton yield. Pace et al. (1999) noted a 32% 

decrease in stem weight, up to 63% decrease in leaf area, and a 35% decrease in leaf 

weight of cotton plants under water stress. Pankovic et al. (1999) reported a decrease in 

total number of leaves of sunflower plants under water stress. Peng and Krieg (1992) 

reported no significant differences among water use of grain sorghum genotypes, and 

suggested that the primary determinant of WUE was leaf area, which reflects biomass 

production. No differences were seen in the present study for leaf area or leaf weight in 

Experiment I; however, in Experiment II TAMCOT 22 had a significantly greater leaf 
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weight as a percentage of the well-watered control than TAM 89E-51. This increase in 

leaf weight may partially explain the increase in seedcotton yield exhibited by 

TAMCOT 22 in Experiment II.  
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CHAPTER V 

CONCLUSIONS 

According to data generated in these experiments, single-leaf measurements of 

A, E, and gs, did not adequately explain differences in WUE between the two genotypes. 

Light- and dark-adapted chlorophyll fluorescence parameters failed to show separation 

between the two genotypes, and could indicate that water stress alone does not lead to 

photooxidation and photoinhibition.  

Biomass partitioning, taken after the recovery period, explained differences in 

phenotypic responses between the genotypes following a water stress event. Differences 

were noted for stem weight and fruit weight in both experiments. In Experiment I (water 

stress at node 4), TAM 89E-51 had a significantly greater yield than TAMCOT 22; 

however, in Experiment II (water stress at early bloom) the statistically greater yield was 

in favor of TAMCOT 22. Since the genotypes did not respond the same to water stress 

when the stress event occurred at the two different growth stages, this indicates that 

genotypes can respond differently to water stress depending on their maturity.  

Results from these experiments suggest that the effects of water stress on cotton 

are a function of the intensity of the stress, as well as the growth stage in which the stress 

is experienced. Based on data presented in these experiments, distinguishing WUE 

between cotton genotypes should not be based on how the genotype responds during a 

water stress event at a single growth stage. Rather, the assessment should be based on 

the severity and duration of the water stress event over several growth stages. 
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APPENDIX A 

     

EXPERIMENT I – GAS EXCHANGE PARAMETERS 

     

Date Genotype Net Photosynthetic 
Rate 

Stomatal 
Conductance 

Transpiration 
Rate 

  µmol (CO2) m-2 s-1 mol (H2O) m-2 s-1 mol (H2O) m-2 s-1 

09/06/07 TAM 89E-51 23.45 0.4345 5.69 

09/08/07 TAM 89E-51 23.17 0.4447 5.75 

09/13/07 TAM 89E-51 11.80 0.0913 1.97 

09/15/07 TAM 89E-51 12.09 0.1089 2.32 

09/18/07 TAM 89E-51 17.50 0.2370 3.61 

09/20/07 TAM 89E-51 19.62 0.4057 4.17 

09/22/07 TAM 89E-51 22.57 0.6727 7.61 

02/23/08 TAM 89E-51 21.35 0.4054 6.99 

02/26/08 TAM 89E-51 18.86 0.1828 5.02 

02/28/08 TAM 89E-51 19.85 0.2168 4.36 

03/02/08 TAM 89E-51 12.17 0.1050 3.03 

03/05/08 TAM 89E-51 5.16 0.0277 0.93 

03/07/08 TAM 89E-51 19.08 0.2498 5.65 

03/09/08 TAM 89E-51 22.60 0.3368 5.87 

03/12/08 TAM 89E-51 24.33 0.8170 9.38 

04/25/08 TAM 89E-51 19.41 0.8653 8.38 

04/30/08 TAM 89E-51 21.06 0.9410 8.88 

05/02/08 TAM 89E-51 23.90 0.9420 8.90 

05/07/08 TAM 89E-51 17.94 0.2050 4.36 

05/09/08 TAM 89E-51 10.07 0.0611 1.60 

05/11/08 TAM 89E-51 4.71 0.0285 0.87 



 

 

59

Date Genotype Net Photosynthetic 
Rate 

Stomatal 
Conductance 

Transpiration 
Rate 

  µmol (CO2) m-2 s-1 mol (H2O) m-2 s-1 mol (H2O) m-2 s-1 

05/14/08 TAM 89E-51 20.20 0.3126 6.18 

05/16/08 TAM 89E-51 18.41 0.2257 5.34 

09/06/07 TAMCOT 22 22.32 0.9265 7.47 

09/08/07 TAMCOT 22 24.05 1.1550 8.47 

09/13/07 TAMCOT 22 19.17 0.1872 3.53 

09/15/07 TAMCOT 22 10.89 0.1009 2.23 

09/18/07 TAMCOT 22 21.37 0.6510 5.92 

09/20/07 TAMCOT 22 20.75 0.6600 5.39 

09/22/07 TAMCOT 22 22.10 1.2375 8.85 

02/23/08 TAMCOT 22 21.15 0.5175 7.59 

02/26/08 TAMCOT 22 22.18 0.2523 6.34 

02/28/08 TAMCOT 22 21.10 0.2588 4.58 

03/02/08 TAMCOT 22 7.88 0.0645 2.10 

03/05/08 TAMCOT 22 6.26 0.0363 1.26 

03/07/08 TAMCOT 22 21.81 0.4985 7.21 

03/09/08 TAMCOT 22 26.11 0.7386 8.54 

03/12/08 TAMCOT 22 25.53 1.0838 9.87 

04/25/08 TAMCOT 22 20.71 1.0182 8.78 

04/30/08 TAMCOT 22 27.90 1.0320 10.01 

05/02/08 TAMCOT 22 20.00 0.9850 8.45 

05/07/08 TAMCOT 22 18.94 0.2212 3.94 

05/09/08 TAMCOT 22 11.43 0.0884 2.01 

05/11/08 TAMCOT 22 4.74 0.0272 0.73 

05/14/08 TAMCOT 22 21.44 0.6052 8.41 

05/16/08 TAMCOT 22 20.72 0.5308 6.91 
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APPENDIX B 

         

EXPERIMENT I – CHLOROPHYLL FLUORESCENCE MEASUREMENTS 

         

Date Genotype Ft фII qP qN Fo Fv/Fm Fm 

09/06/07 TAM 89E-51 0.344 0.635 0.783 0.325 0.378 0.756 1.548 

09/08/07 TAM 89E-51 0.408 0.647 0.87 0.32 0.346 0.758 1.43 

09/13/07 TAM 89E-51 0.408 0.6 0.805 0.408 0.267 0.788 1.263 

09/15/07 TAM 89E-51 0.335 0.678 0.732 0.343 0.286 0.781 1.309 

09/18/07 TAM 89E-51 0.358 0.674 0.784 0.477 0.26 0.793 1.254 

09/20/07 TAM 89E-51 0.339 0.67 0.631 0.196 0.256 0.795 1.248 

09/22/07 TAM 89E-51 0.351 0.668 0.682 0.312 0.315 0.742 1.222 

02/23/08 TAM 89E-51 0.361 0.667 0.699 0.233 0.32 0.75 1.278 

02/26/08 TAM 89E-51 0.355 0.652 0.855 0.391 0.251 0.798 1.243 

02/28/08 TAM 89E-51 0.600 0.536 0.9 0.43 0.253 0.782 1.156 

03/02/08 TAM 89E-51 0.386 0.616 0.869 0.278 0.263 0.773 1.158 

03/05/08 TAM 89E-51 0.365 0.586 0.647 0.369 0.249 0.766 1.065 

03/07/08 TAM 89E-51 0.591 0.491 0.875 0.324 0.274 0.784 1.266 

03/09/08 TAM 89E-51 0.391 0.641 0.879 0.271 0.321 0.756 1.316 
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Date Genotype Ft фII qP qN Fo Fv/Fm Fm 

03/12/08 TAM 89E-51 0.491 0.744 0.739 0.193 0.259 0.759 1.075 

04/25/08 TAM 89E-51 0.464 0.728 0.733 0.185 0.318 0.734 1.195 

04/30/08 TAM 89E-51 0.465 0.730 0.712 0.328 0.263 0.789 1.243 

05/02/08 TAM 89E-51 0.483 0.746 0.744 0.251 0.391 0.821 2.181 

05/07/08 TAM 89E-51 0.470 0.734 0.728 0.333 0.409 0.830 2.401 

05/09/08 TAM 89E-51 0.459 0.732 0.730 0.326 0.315 0.742 1.222 

05/11/08 TAM 89E-51 0.493 0.738 0.746 0.258 0.356 0.795 1.848 

05/14/08 TAM 89E-51 0.385 0.521 0.733 0.311 0.320 0.750 1.278 

05/16/08 TAM 89E-51 0.444 0.580 0.805 0.408 0.425 0.825 2.425 

09/06/07 TAMCOT 22 0.383 0.544 0.853 0.329 0.276 0.754 1.123 

09/08/07 TAMCOT 22 0.560 0.511 0.870 0.320 0.325 0.779 1.472 

09/13/07 TAMCOT 22 0.485 0.509 0.842 0.188 0.301 0.759 1.251 

09/15/07 TAMCOT 22 0.496 0.467 0.818 0.251 0.267 0.768 1.153 

09/18/07 TAMCOT 22 0.359 0.483 0.875 0.272 0.238 0.790 1.130 

09/20/07 TAMCOT 22 0.329 0.510 0.796 0.098 0.246 0.786 1.149 

09/22/07 TAMCOT 22 0.365 0.583 0.745 0.330 0.260 0.796 1.275 

02/23/08 TAMCOT 22 0.489 0.601 0.777 0.220 0.278 0.797 1.364 

02/26/08 TAMCOT 22 0.355 0.624 0.783 0.325 0.250 0.787 1.171 
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Date Genotype Ft фII qP qN Fo Fv/Fm Fm 

02/28/08 TAMCOT 22 0.359 0.446 0.787 0.330 0.410 0.836 2.507 

03/02/08 TAMCOT 22 0.456 0.747 0.865 0.223 0.445 0.823 2.510 

03/05/08 TAMCOT 22 0.475 0.748 0.865 0.197 0.251 0.798 1.243 

03/07/08 TAMCOT 22 0.446 0.738 0.784 0.477 0.453 0.817 2.478 

03/09/08 TAMCOT 22 0.644 0.687 0.796 0.098 0.433 0.818 2.373 
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APPENDIX C 

     

EXPERIMENT II – GAS EXCHANGE PARAMETERS 

     

Date Genotype Net Photosynthetic 
Rate 

Stomatal 
Conductance 

Transpiration 
Rate 

  µmol (CO2) m-2 s-1 mol (H2O) m-2 s-1 mol (H2O) m-2 s-1 

09/28/07 TAM 89E-51 19.80 0.6726 8.43 

10/02/07 TAM 89E-51 13.47 0.0284 0.86 

10/04/07 TAM 89E-51 6.12 0.0123 0.12 

10/06/07 TAM 89E-51 13.90 0.2050 3.86 

10/09/07 TAM 89E-51 12.33 0.4373 5.31 

10/11/07 TAM 89E-51 20.10 0.6480 8.04 

03/21/08 TAM 89E-51 16.86 0.3270 5.25 

03/23/08 TAM 89E-51 16.52 0.1816 3.73 

03/26/08 TAM 89E-51 5.42 0.0179 0.64 

03/28/08 TAM 89E-51 10.27 0.0811 2.06 

03/30/08 TAM 89E-51 15.60 0.2507 4.16 

04/02/08 TAM 89E-51 15.54 0.3153 4.29 

05/07/08 TAM 89E-51 20.56 0.6000 7.00 

05/09/08 TAM 89E-51 13.70 0.1360 3.24 

05/11/08 TAM 89E-51 1.14 0.0167 0.49 

05/14/08 TAM 89E-51 7.81 0.0393 1.00 

05/17/08 TAM 89E-51 18.50 0.8370 7.44 

05/23/08 TAM 89E-51 20.80 0.5040 7.27 

05/25/08 TAM 89E-51 21.20 0.5150 6.58 

09/28/07 TAMCOT 22 20.10 0.7450 8.90 

10/02/07 TAMCOT 22 12.51 0.0223 0.44 
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Date Genotype Net Photosynthetic 
Rate 

Stomatal 
Conductance 

Transpiration 
Rate 

  µmol (CO2) m-2 s-1 mol (H2O) m-2 s-1 mol (H2O) m-2 s-1 

10/04/07 TAMCOT 22 6.32 0.0123 0.15 

10/06/07 TAMCOT 22 14.90 0.3029 4.62 

10/09/07 TAMCOT 22 16.77 0.5055 6.58 

10/11/07 TAMCOT 22 21.77 0.8477 8.50 

03/21/08 TAMCOT 22 21.54 0.8226 8.74 

03/23/08 TAMCOT 22 15.88 0.1474 3.07 

03/26/08 TAMCOT 22 8.85 0.0225 1.37 

03/28/08 TAMCOT 22 8.75 0.0628 1.42 

03/30/08 TAMCOT 22 15.44 0.3984 5.88 

04/02/08 TAMCOT 22 16.08 0.2924 4.12 

05/07/08 TAMCOT 22 20.50 0.8226 8.74 

05/09/08 TAMCOT 22 16.90 0.2330 4.10 

05/11/08 TAMCOT 22 1.29 0.0154 0.42 

05/14/08 TAMCOT 22 9.38 0.0505 1.31 

05/17/08 TAMCOT 22 13.20 0.0971 2.27 

05/25/08 TAMCOT 22 22.57 0.8082 7.38 
 
 
 
 
 
 
 
 
 
 
 
 
 



      

 

65

APPENDIX D 

         

EXPERIMENT II – CHLOROPHYLL FLUORESCENCE MEASUREMENTS 

         

Date Genotype Ft фII qP qN Fo Fv/Fm Fm 

09/28/07 TAM 89E-51 0.430 0.737 0.910 0.205 0.400 0.839 2.478 

10/02/07 TAM 89E-51 0.435 0.729 0.920 0.260 0.390 0.835 2.358 

10/04/07 TAM 89E-51 0.425 0.737 0.953 0.344 0.416 0.819 2.301 

10/06/07 TAM 89E-51 0.421 0.733 0.937 0.359 0.405 0.824 2.299 

10/09/07 TAM 89E-51 0.455 0.720 0.932 0.380 0.440 0.825 2.513 

10/11/07 TAM 89E-51 0.650 0.570 0.570 0.410 0.456 0.822 2.558 

03/21/08 TAM 89E-51 0.510 0.655 0.655 0.422 0.426 0.825 2.431 

03/23/08 TAM 89E-51 0.418 0.758 0.991 0.365 0.451 0.824 2.558 

03/26/08 TAM 89E-51 0.425 0.741 0.945 0.353 0.459 0.821 2.558 

03/28/08 TAM 89E-51 0.410 0.744 0.943 0.385 0.461 0.820 2.558 

03/30/08 TAM 89E-51 0.510 0.655 0.655 0.422 0.428 0.830 2.519 

04/02/08 TAM 89E-51 0.429 0.746 0.940 0.309 0.426 0.833 2.553 

05/07/08 TAM 89E-51 0.421 0.752 0.938 0.316 0.481 0.754 1.956 

05/09/08 TAM 89E-51 0.410 0.760 0.909 0.236 0.419 0.792 2.016 
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Date Genotype Ft фII qP qN Fo Fv/Fm Fm 

05/11/08 TAM 89E-51 0.458 0.746 0.945 0.321 0.328 0.819 1.810 

05/14/08 TAM 89E-51 0.436 0.710 0.957 0.310 0.334 0.816 1.815 

05/17/08 TAM 89E-51 0.403 0.773 0.982 0.282 0.491 0.783 2.266 

05/23/08 TAM 89E-51 0.434 0.763 0.939 0.231 0.384 0.815 2.069 

05/25/08 TAM 89E-51 0.400 0.750 0.965 0.404 0.379 0.799 1.885 

09/28/07 TAMCOT 22 0.358 0.756 0.956 0.361 0.408 0.796 2.000 

10/02/07 TAMCOT 22 0.429 0.748 0.904 0.332 0.345 0.809 1.808 

10/04/07 TAMCOT 22 0.431 0.750 0.949 0.274 0.416 0.788 1.963 

10/06/07 TAMCOT 22 0.456 0.736 0.980 0.462 0.419 0.787 1.969 

10/09/07 TAMCOT 22 0.445 0.739 0.925 0.385 0.368 0.815 1.981 

10/11/07 TAMCOT 22 0.570 0.560 0.560 0.494 0.374 0.810 1.969 

03/21/08 TAMCOT 22 0.875 0.354 0.354 0.471 0.344 0.828 1.998 

03/23/08 TAMCOT 22 0.650 0.570 0.570 0.410 0.331 0.823 1.866 

03/26/08 TAMCOT 22 0.510 0.655 0.655 0.422 0.346 0.823 1.953 

03/28/08 TAMCOT 22 0.469 0.650 0.650 0.477 0.338 0.819 1.861 

03/30/08 TAMCOT 22 0.765 0.288 0.287 0.581 0.345 0.820 1.916 

04/02/08 TAMCOT 22 0.483 0.519 0.519 0.608 0.330 0.823 1.866 

05/07/08 TAMCOT 22 0.570 0.637 0.637 0.386 0.415 0.783 1.913 
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Date Genotype Ft фII qP qN Fo Fv/Fm Fm 

05/09/08 TAMCOT 22 0.431 0.756 0.949 0.274 0.339 0.803 1.720 

05/11/08 TAMCOT 22 0.431 0.706 0.706 0.426 0.328 0.820 1.821 

05/14/08 TAMCOT 22 0.519 0.621 0.621 0.465 0.318 0.812 1.690 

05/17/08 TAMCOT 22 0.508 0.644 0.644 0.442 0.315 0.819 1.736 

05/25/08 TAMCOT 22 0.505 0.622 0.622 0.478 0.345 0.809 1.808 
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