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ABSTRACT

A Reduced-Order Model Based on

Proper Orthogonal Decomposition

for Non-Isothermal Two-Phase Flows. (May 2008)

Brian R. Richardson, B.S.,Texas A&M University

Chair of Advisory Committee: Dr. Paul G. A. Cizmas

This thesis presents a study of reduced-order models based on proper orthogonal

decomposition applied to non-isothermal transport phenomena in fluidized beds. A

numerical flow solver called Multiphase Flow with Interphase eXchanges (MFIX) was

used to generate a database of solution snapshots for proper orthogonal decomposi-

tion (POD). Using POD, time independent basis functions were extracted from the

data and the governing equations of the numerical solver were projected onto the basis

functions to generate reduced-order models. A reduced-order model was constructed

that simulates multi-phase isothermal and non-isothermal flow. In the reduced-order

models (ROMs) the large number of partial differential equations were replaced by a

much smaller number of ordinary differential equations. These reduced-order models

were applied to two reference cases, a time extrapolation case and a time-dependent

period boundary condition case. Three additional acceleration techniques were devel-

oped to further improve computational efficiency of the POD based ROM: 1) Database

splitting, 2) Freezing the matrix of the linear system and 3) Time step adjustment.

Detailed numerical analysis of both the full-order model, MFIX and the POD-based

ROM, including estimating the number of operations and the CPU time per iteration,

was performed as part of this study. The results of this investigation show that the

reduced-order models are capable of producing qualitatively accurate results with less
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than 5% error with a two-order of magnitude reduction of computational costs.
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NOMENCLATURE

Cp − Constant pressure specific heat

dps − Solid particle diameter

Fgs − Coefficient for the interphase force between gas and solid phases

g − Gravity acceleration

K − Diffusivity coefficient

m − Number of POD modes

M − Number of snapshots

Mw − Average molecular weight of gas

N − Number of discrete spatial grid points

p − Pressure

R − Universal gas constant

Re − Reynolds number

t − Time

T − Temperature

(u, v) − Components of velocity vector

~v − Velocity vector

(x, y) − Cartesian coordinates
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Greek symbols

α − Time-dependent orthogonal coefficients

εg − Void fraction

εs − Solids volume fraction

γg` − Fluids-solids heat transfer coefficient

γR` − Fluids/solids radiative heat transfer coefficient

µ − Viscosity

ρ − Density

ψ − General scalar

¯̄τ − Viscous stress tensor

ξ − Convection weighting factor

Superscripts

∗ − Tentative values

′ − Correction term

o − Old values

p − Term corresponding to pressure

T − Term corresponding to temperature

u − Term corresponding to x-direction velocity

v − Term corresponding to y-direction velocity
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Subscripts

e − East face of control volume

E − Center of east neighbor cell (i+1,j)

g − Gas phase

i − ith mode

j − jth mode

` − Gas or solids phase

n − North face of control volume

N − Center of north neighbor cell (i,j+1)

nb − Neighbor cells

P − Center of control volume cell (i,j)

s − Solids phase or south face of control volume

S − Center of south neighbor cell (i,j-1)

w − West face of control volume

W − Center of west neighbor cell (i-1,j)

0 − Zeroth (average) mode
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Acronyms

MFIX − Multiphase Flow with Interphase Exchanges (software)

POD − Proper Orthogonal Decomposition

PODDEC − Proper Orthogonal Decomposition (software)

ROM − Reduced-Order Model
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CHAPTER I

INTRODUCTION

A. Statement of the Problem

Simulation of two-phase flow problems is important for many applications. Results of

two-phase flow simulation is crucial for the design of coal gasifiers, oil refineries and

other types of chemical reactors. Reduced-order modeling based on proper orthogo-

nal decomposition (POD) is a computationally efficient alternative to the full-order

modeling transport phenomena in a fluidized bed. Full-order modeling for practical

problems is time consuming and computationally inefficient. In design applications,

when repetitive simulation is needed, full-order modeling may be prohibitively ex-

pensive. POD-based reduced-order models (ROMs) achieve better computational

efficiency by: (1) reducing the number of equations that need to be solved and (2)

replacing the PDEs by ordinary differential equations (ODEs). This research is a

continuation of previous work by Tao Yuan who developed POD-based reduced or-

der models to describe the transport phenomena in a fluidized bed. The focus of

this research is (1) to develop and implement POD-based ROMs for the calculation

of the solids volume fraction correction equation and energy balance equations into

the existing ROMs, (2) to develop acceleration techniques for the ROMs, and (3) to

investigate the accuracy of the POD models.

1. Transport Phenomena in Fluidized Beds

Fluidization is the phenomenon in which solid particles display fluid-like properties

due to the flow of fluids in a solids bed.16 Figure 1 shows three examples of typical

The journal model is Journal of Propulsion and Power.



2

behavior of a fluidized bed. In this study the fluidized bed consisted of a rectangular

(a) (b) (c)

Fig. 1. Typical behavior of a fluidized bed.

control volume containing solid particles and a porous bottom through which gas is

injected. The reduced-order model is not limited to this geometry. This particular

geometry was suggested by the Department of Energy Lab in Morgantown, WV,

the funding agency for this project. At low gas injection velocities as shown in

Figure 1(a), the gas percolates through the void spaces between the solid particles

and the solids remain completely at rest in a packed bed.16 When the gas injection

velocity increases beyond a certain threshold, called the minimum fluidization velocity,

the solid particles begin to display fluid-like properties as shown in Figure 1(b). At

this fluidization state, depending on the velocity of the injected gas, the particles

could exhibit flow features similar to the gas flow around them or the solids could

appear almost at rest at minimum fluidization. If the gas flow velocity is increased

beyond the terminal velocity of the solid particles, void spaces between the particles

will grow and a gas bubble may form inside the fluidized bed or the particles will be

swept out of the bed altogether as shown in Figure 1(c).16

For this study, the heat transfer in a fluidized bed are modeled by convection
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and diffusion only, without radiation, internal heat sources or chemical reactions.

Changes in the phase temperatures in the bed depend on the magnitude of the ve-

locity of the gas through the bed and the diffusivity of the gas and solids phases.

Unlike the isothermal case, gas viscosity, gas density and gas pressure vary with time

dependent changes in phase temperature. The gas phase is modeled as having the

thermochemical properties of air. The solids phase is modeled as having the ther-

mochemical properties of ash, which has a relatively large specific heat value, (Cps)

making it a poor conductor of heat. The conduction between the gas phase and

solids phase is modeled using a gas-solids heat transfer coefficient, γgs, corrected for

interphase mass transfer.18 This term is based on the temperature difference between

the gas and solids phases and the volume fraction of each phase within a cell. The

closing equations for the scalar energy equation can be found in Appendix A.

B. Background

The purpose of this section is to provide a brief summary of background information

for this study. This includes an introduction to three techniques used to reduce com-

putational time required to solve systems of equations: 1) Harmonic balance method,

2) Volterra series, and 3) Proper orthogonal decomposition (POD). Of the three meth-

ods POD is the most attractive method for computational applications. POD is the

only true reduced-order model presented in this section, since POD reduces the size

of the system being solved by transforming the governing PDEs into ODEs.

1. Harmonic Balance Method

Harmonic balance method is a way to extend a time linearization approach to non-

linear unsteady problems. The idea of the harmonic balance method is to expand
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the flow solution terms in a Fourier series in time. This transforms the solution from

the time domain to the frequency domain. Harmonic balance method is not a true

reduced-order model because, when applied, the system still retains the same original

dimensions of the full-order model.

For an example application of the harmonic balance method consider a differen-

tial equation that contains an explicit function of time, τ .

ẍ+ x = µ ∗ f(x, ẋ, τ) (1.1)

The first approximation of x(τ) was found using another approximate solution method

called the averaging method.1 The harmonic solution of Equation 1.1 can be written

as

x(τ) = a cos τ + b sin τ (1.2)

where amplitudes a and b are constants with respect to the periodic solution and

are defined in a phase plane that rotates with respect to a representative point.

Amplitudes a and b in the rotating phase plane are related to x in the x− y plane by

the rotation angle τ and with an angular velocity of unity. The parameter µ is a small

number near zero. Equation 1.2 is substituted into the expression of the differential

equation given by Equation 1.1. Since a and b are constants over the period, [0, 2π]

all time derivatives of a and b are set to zero. Equating the coefficients of sin(τ) and

cos(τ) separately to zero gives the following relationship1

∫ 2π

0

f(a cos(τ) + b sin(τ), a sin(τ) + b cos(τ), τ) sin(τ)dτ = 0 (1.3)

∫ 2π

0

f(a cos(τ) + b sin(τ), a sin(τ) + b cos(τ), τ) cos(τ)dτ = 0 (1.4)

Higher order approximation is achieved by expanding the periodic solution into a

Fourier expansion with unknown coefficients. The Fourier series expansion is again
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treated as the assumed solution and substituted into the original governing differen-

tial equations. The unknown Fourier coefficients can be fixed by setting the sine and

cosine terms of the respective frequencies equal to zero and simultaneously solving

the obtained set of equations.1 The fixed Fourier coefficient terms of the periodic

solution represent the frequencies of the assumed solution. Normally only terms con-

taining the harmonic frequency and a few additional frequencies are used to construct

an approximate solution. Other additional frequency terms can usually be omitted

from the approximation for most cases.1 Similar to the use of modes in POD, the

use of additional frequencies results in a closer approximation but slows numerical

computation.

The harmonic balance method has been applied most commonly to low-order

problems with non-linear oscillations.2 A specific application called the method of

multiple scales has been used in the simulation of limit cycle oscillation (LCO) for an

airfoil in transonic flow.4 Hall et al. developed a harmonic balance method to model

nonlinear aerodynamic problems with large shock motions.5

2. Volterra Series Method

The Volterra series method is composed of three major concepts: 1) expressing the

system as an infinite sum of homogeneous terms, 2) bounding the time interval to

ensure convergence and 3) determining the kernel functions of the Volterra series.

A system that can be described as an infinite sum of homogeneous terms is called

a Volterra system.3 Equation 1.5 represents the response of a time-invariant, non-

linear, continuous-time system about an initial state w(0) = W0 due to an input u(t)

as a Volterra series.2

w(t) = h0 +

∫ t

0

h1(t− τ)u(τ)dτ +

∫ t

0

∫ t

0

h2(t− τ1, t− τ2)u(τ1)u(τ2)dτ1dτ2 (1.5)
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+
N
∑

n=3

∫ t

0

..

∫ t

0

hn(t− τ1, ..., t− τn)u(τ1)...u(τn)dτ1...dτn (1.6)

Equation 1.5 contains three types of terms. The first term is steady-state and satisfies

the initial condition h0 = W0. The second term in the equation is called the first

response term. The term h1 is the first-order kernel and is identified by measuring

the response of the system to a unit impulse at τ1 = 0. The additional terms contain

the second-order kernel, h2 and nth-order kernels hn respectively. The second order

kernel is identified by measuring the system response in two dimensions resulting

from two inputs at two different times.2 In as far, only continuous-time unit impulse

response systems have been presented. However, discrete-time unit impulse responses

are less abstract and far more practical for any type of numerical application.

Convergence conditions are needed to ensure that the Volterra system represented

by an infinite series is a meaningful one for computation. A Volterra system can only

be considered a good approximation if the Volterra system representation converges.

Convergence of a Volterra series is dependent on the magnitude of the input function

and degree of system non-linearity.2 Convergence conditions normally bind both the

time interval and u(τ).3 Usually as the time interval is increased, the input bound,

u(τ), must be made smaller and vise versa.3 Boyd showed that convergence of the

Volterra series is not guaranteed when the maximum value of the input exceeds some

system dependent critical value.8 Finding appropriate bounds for a physical problem

is a challenging requirement of the Volterra series method.

Applications of Volterra method reduced-order models have been used primarily

to study aeroelastic phenomenon. Identification of the linearized and non-linearized

Volterra kernels is a fundamental step in the development of Volterra based ROMs.

However, an additional step is needed to transform the kernels into linearized and

nonlinear state-space systems.2 Silva and Raveh successfully used the eigenvalue



7

realization algorithm (ERA) to generate a linear state-space ROM for aeroelastic

applications.6 Additionally Lucia and Beran used ERA to develop a mixed POD-

Volterra ROM algorithm.7

3. Reduced-Order Modeling

The purpose of reduced-order modeling is to replace the direct numerical integration

of a large number of PDEs by a much smaller number of equations which are usually

ODEs. In previous work, researchers have developed many techniques to construct

ROMs for a variety of problems in many different fields. The following summary

of previous research is focused mainly on proper orthogonal decomposition and flow

phenomena investigation.

a. Proper Orthogonal Decomposition

The purpose of this section is to present background information on the mathematical

theory of proper orthogonal decomposition. The bulk of this information is heavily

based on the work of Cizmas and Palacios and is cited accordingly.

Let us assume we have an ensemble of observations {u(x, ti)}, that represent

results from experimental observations or numerical analysis. These scalar functions

are assumed to form a linear infinite-dimensional Hilbert space L2 on a spatial do-

main D.14 From that ensemble of observations, POD extracts time-independent or-

thonormal basis functions {φk(x)} and time-dependent orthonormal time coefficients

{αk(ti)}, such that the reconstruction

u(x, ti) =
∑

k

αk(ti)φk(x) (1.7)
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is optimal in the sense that the average least-square truncation error

εm =

〈∥

∥

∥

∥

∥

u(x, ti)−
m
∑

j=1

αj(ti)φj(x)

∥

∥

∥

∥

∥

2〉

(1.8)

is a minimum for any given number m of basis functions over all possible sets of basis

functions.14 Herein || · || denotes the L2-norm given by

||f || = (f, f)
1

2 ,

where (, ) denotes the Euclidean inner product. 〈 · 〉 denotes an ensemble average

over a number of observations

〈 f 〉 = 1

N

N
∑

j=1

f(x, tj).

The optimum condition specified by Eq. (1.8) is equivalent to finding functions

φ that maximize the normalized averaged projection of u onto φ

max
φ∈L2(D)

〈|(u, φ)|2〉
||φ||2 , (1.9)

where | · | denotes the modulus.14

The optimum condition specified by Eq. (1.9) reduces to10

∫

D

〈u(x)u∗(x′)〉φ(x′)dx′ = λφ(x). (1.10)

The POD basis is therefore composed of the eigenfunctions {φj} of the integral equa-

tion (1.10). The kernel function of the integral equation (1.10) is the averaged auto-

correlation function

〈u(x)u∗(x′)〉 ≡ R(x, x′).

In practice, the state of a numerical model is only available at discrete spatial

grid points. Thus the observations in the ensemble are vectors instead of continuous
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functions. The autocorrelation function in the discrete case is replaced by the tensor

product matrix14

R(x, x′) =
1

M

M
∑

i=1

u(x, ti)u
T (x′, ti), (1.11)

where M is the number of observations contained in the ensemble.

The derivation of the integral equation (1.9) can be generalized to vector-valued

functions such as the three-dimensional velocity fields u(x, t), where u = (u, v, w)

and x = (x, y, z). In this case, R(x, x′) is replaced by

R(x,x′) =
1

M

M
∑

i=1

u(x, ti)u
T (x′, ti). (1.12)

The eigenfunctions φj(x) are also vector valued.

C. Summary of Work

This thesis presents the development of a reduced-order model based on proper or-

thogonal decomposition to model non-isothermal transport phenomena in a fluidized

bed. Herein the POD algorithm is applied to the multiphase governing PDEs. This

reduced-order model was developed into a numerical algorithm that was used to model

a 2-D fluidized bed. The derivation of this numerical algorithm and results from the

code application are presented in this thesis.

D. Original Contributions to Work

The reduced-order model based on proper orthogonal decomposition presented in this

thesis is a continuation of previous work.9 The contribution of this author was to ap-

ply POD to the solids volume fraction correction equation and energy equation to

simulate non-isothermal two-phase flow. The numerical model generated was applied

to a fluidized bed simulation to investigate the accuracy and speed-up factor of the
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ROM. This investigation included simulating a few physical cases using many differ-

ent basis function input combinations. Herein, the author chose to present a case

that represented an optimal combination of best accuracy and best reduction of com-

putational speed found during this investigation. The results of these investigations

are shown in the Results Chapter under the sections Case I and II. Additionally, the

author investigated a time extrapolation case and a periodic boundary condition case

based on the selected optimal case found in the first investigation, Case 1. The results

of these investigations are shown in the Results Chapter under the sections Case III

and IV. The author developed three additional acceleration techniques: 1) Database

splitting, 2) Freezing the matrix of the linear system and 3) Time step adjustment.

These acceleration methods further reduced the computational time required to run

the reduced-order model. These techniques were applied to the most computational

efficient case found in the first investigation. The results of these acceleration methods

are also presented herein in the Acceleration Methods Chapter.

E. Outline of This Thesis

Chapter II describes the governing equations and boundary conditions used to model

the transport phenomena in fluidized beds. Chapter III presents the full-order model

used to numerically integrate the governing equations. Chapter IV describes the

general scheme used to construct POD-based ROMs. Chapter V presents deriva-

tion of the POD-based ROMs for approximating the solids volume fraction correction

equation and energy balance equation in fluidized beds. Chapter VI presents results

generated by applying the ROMs to an isothermal fluidized bed, non-isothermal flu-

idized bed and time extrapolation cases. The accuracy of these results is discussed

and compared with the solution obtained using the full numerical model. Chapter
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VII presents acceleration methods developed for the POD-based reduced-order mod-

els. The conclusions and future work are presented in Chapter VIII. Appendix A

describes the constitutive models used to close the transport equations. Appendix

B presents the algorithm for calculating the convection factors in the full numerical

model. Appendixes C-E present samples of input files for the POD-based ROMs.
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CHAPTER II

PHYSICAL MODEL OF NON-ISOTHERMAL TRANSPORT PHENOMENA IN

FLUIDIZED BEDS

This chapter presents the physical model used to describe the physical phenomena

in a fluidized bed. First, the basic governing equations of the multi-phase flow are

presented. Next, the basic boundary conditions for both the isothermal and non-

isothermal models are described.

A. Governing Equations

Below are the mass and momentum equations for non-isothermal transport phenom-

ena in a fluidized bed.

• Gas mass balance

∂εgρg
∂t

+5 · (εgρg~vg) = 0 (2.1)

• Solid mass balance

∂εsρs
∂t

+5 · (εsρs~vs) = 0 (2.2)

• Gas momentum balance

∂(εgρg~vg)

∂t
+5 · (εgρg~vg~vg) = −εg 5 pg +5 · ¯̄τg + εgρg~g + Fgs(~vs − ~vg) (2.3)

• Solid momentum balance

∂(εsρs~vs)

∂t
+5· (εsρs~vs~vs) = −εs5pg−5ps+5· ¯̄τs+ εsρs~g−Fgs(~vs−~vg) (2.4)

In the equations above, ε, ρ, and ~v represent the volume fraction, density, and ve-

locity vector respectively. The subscript g represents the gas phase and s, the solids
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phase. The gas-phase viscous stress ¯̄τg, gas-solid drag Fgs, granular stress ¯̄τs, and

solid pressure ps terms found in the momentum equations are needed to close the

governing equations. The constitutive models for these variables can be found in

Appendix A and are also given in Syamlal et al.17 and Syamlal.18 The scalar energy

balance equations used to model the gas and solids phase temperature fields for a

non-isothermal fluidized bed are given by:

• Gas energy balance

εgρgCpg(
∂Tg
∂t

+~vg ·5Tg) = −5·~qg+γg(Ts−Tg)−4Hrg+γRg(T
4
Rg−T 4

g ) (2.5)

• Solids energy balance

εsρsCps(
∂Ts
∂t

+~vs ·5Ts) = −5 ·~qs− γs(Ts−Tg)−4Hrs+ γRs(T
4
Rs− T 4

s ) (2.6)

where ~q`, 4Hr` and γR` represent the gas- and solids-phase conductive heat flux,

heat of reaction and gas-solids heat transfer coefficient, respectively. The subscript `

indicates the gas or solids phase (g or s).

The gas phase is modeled as a gas that obeys the ideal gas law:

ρg =
pgM
RTg

(2.7)

where M, R, and Tg denote the average molecular mass of gas, the universal gas

constant, and the gas temperature, respectively. The non-isothermal gas phase is

assumed to obey the ideal gas law for temperatures present in the studied case. The

constant pressure specific heat values Cpg and Cps are modeled as those for air and

ash particles respectively.
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B. Boundary Conditions

Figure 2 below illustrates the basic geometry of a 2-D fluidized bed. The solids

particles begin as a packed bed, settled in the lower half of the control volume. Gas

is injected at the bottom of the boundary using uniform or non-uniform distributed

jet patterns. For the non-isothermal case, the gas entering the inlet is modeled as

having a different temperature than the gas in the control volume. The left and right

boundaries are modeled as no-slip walls. Constant pressure is specified at the top of

the boundary, the gas outlet.

Fig. 2. Basic geometry and boundary conditions.
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C. Summary

This chapter presented the governing partial differential equations solved to simulate

multi-phase flow. A basic illustration was provided to show the basic boundary condi-

tions used in the investigations presented in this thesis. The next chapter will present

the discretized solids volume fraction and energy balance equations. The implemen-

tation of these equations into a reduced-order model based on proper orthogonal

decomposition is the focus of this thesis.
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CHAPTER III

FULL-ORDER MODEL

The full numerical model solves the governing PDEs (2.1)-(2.6) using a fully implicit

time marching scheme. The algorithm used to solve the equations was developed at

the U.S. Department of Energy’s National Energy Technology Laboratory (Syamlal et

al.17). The resulting computer code called MFIX (Multiphase Flow with Interphase

eXchanges), is written in FORTRAN 90, is supported on Linux/Unix platforms and

can be compiled on 32 or 64 bit processors. It is capable of handling two or three-

dimensional Cartesian and cylindrical coordinate systems for uniform or non-uniform

grids. It is capable of enforcing free-, partial- or no-slip wall boundary conditions and

conducting or non-conducting walls for heat transfer. MFIX numerically solves the

gas and solids mass and momentum equations, energy balance and species equations.

The output of the code consists of time dependent pressure, gas and solids velocities,

temperature, density and composition for a multiphase system. This chapter will

present the MFIX grid discretization and the discretized equations relevant to this

study.

A. Discretization of the Spatial Domain

MFIX uses a staggered grid arrangement as shown in Figure 3. Scalars are stored at

the cell centers. Components of velocity vectors are stored at the cell faces. Equations

for scalar variables are solved on the main grid. Equations for velocity components

are solved on the staggered grids. If the velocity components and pressure are solved

on the same grid, a checkerboard pressure field could result. The staggered grid

arrangement is used to prevent this type of unphysical solution.18 Using the staggered

grid arrangement, MFIX uses three grids, which will be described in the following
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section, to solve a two-dimensional problem.

(i, j)

(i, j + 1)

(i + 1, j)

v

u
p

Fig. 3. Grid arrangement in MFIX.

B. Discretized Governing Equations

This section describes the two-dimensional discretized governing equations for the

solids volume fraction correction and energy balance in MFIX. The other discretized

mass and momentum equations are described in detail in the MFIX Numerical Guide.18

These equations are not discussed in detail herein because they were not developed

into reduced-order models as part of this study. MFIX uses the control volume method

to discretize the governing equations.

1. Solids Volume Fraction Correction

Figure 4 shows a control volume for the scalar transport equations used by MFIX.

Point P is the center of the control volume. Points E, W , N , and S represent the

east, west, north, and south neighbor cells of the control volume. Points e, w, n, and

s represent the east, west, north, and south faces of the control volume respectively.

On the computational grid, the scalar values volume fraction (ε`) and density

(ρ`) are stored at the cell centers P , E, W , N , and S. The subscript ` indicates
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P EW

N

S

n

s

ew

Fig. 4. Control volume for scalar equations.

the phase (g or s). In order to discretize the convection terms, volume fraction and

density values at the cell faces e, w, n, and s must be evaluated. MFIX uses a

convection weighting factor ξ to calculate the volume fraction and density at each

face. Calculation of the convection weighting factor from the down wind factors is

presented by Syamlal [18, p. 13-14].

In order to successfully handle dense packing of solids, MFIX uses a solids volume

fraction correction equation that includes the effect of solid pressure in the discretized

solids mass balance equation.18 In the algorithm of MFIX, the solids volume fraction

correction equation is solved instead of the solid mass balance equation. The solids

volume fraction equation is written as18

aεP (ε
′
s)P =

∑

nb

aεnb(ε
′
s)nb + bεP , (3.1)
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where the coefficients of aε and bε are given by

aεE = [(εmρm)
∗
eee(Ks)E − ξεe(ρs)E(u

∗
s)e]Ae, (3.1a)

aεW =
[

(εmρm)
∗
wew(Ks)W + ξ̄εw(ρs)W (u∗s)w

]

Aw, (3.1b)

aεN = [(εmρm)
∗
nen(Ks)N − ξεn(ρs)N(v

∗
s)n]An, (3.1c)

aεS =
[

(εmρm)
∗
ses(Ks)S + ξ̄εs(ρs)S(v

∗
s)s
]

As, (3.1d)

aεP = (ρs)P [ξ̄
ε
e(u

∗
s)eAe − ξ̄εw(u

∗
s)wAw

+ξ̄εn(v
∗
s)nAn − ξ̄εs(v

∗
s)sAs]

+(Ks)P [(ρsε
∗
s)eeeAe + (ρsε

∗
s)wewAw

+(ρsε
∗
s)nenAn + (ρsε

∗
s)sesAs] + (ρs)P

∆V
∆t
, (3.1e)

bεP = −(ρsε∗s)e(u∗s)eAe + (ρsε
∗
s)w(u

∗
s)wAw

−(ρsε∗s)n(v∗s)nAn + (ρsε
∗
s)s(v

∗
s)sAs

− [(ε∗sρs)P − (εsρs)
o
P ]

∆V
∆t
. (3.1f)

HereinKs =
∂ps
∂εs

. In Eq. 3.1, εs
′ is the solids volume fraction correction. The correction

εs
′, is related to the solids volume fraction by summing the current value of εs with

the correction value [18, p 49]

ε` = ε`
∗ + ε`

′. (3.2)

In Eq. 3.4 the subscript ` denotes the phase and the superscript ∗ denotes the current

or uncorrected value. The volume fraction of the gas and solids phase must always

add up to 1. That is to say that εg and εs are related by

εg + εs = 1. (3.3)

Additionally another parameter called the packed bed void fraction, εg
∗, is used in

MFIX to calculate granular stress. The packed bed void fraction is the value of the
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void fraction in the bed when the solids are at rest and no fluidization is present.

2. Energy Balance Equation

The discretized energy equation is similar to the discretized scalar transport equa-

tion [18, p. 54]. Figure 4 shows the control volume for the energy balance equations

used by MFIX. On the computational grid, the scalar temperature values, T` are

stored at the cell centers P , E, W , N , and S. The subscript, `, indicates the phase (g

or s). As for the solids volume fraction correction equation, MFIX uses a convection

weighting factor, ξ, to calculate the temperature at each cell face.

The discretized transport equation for a scalar, ψ, can be written as [18, p. 18,

Eq. 3.12]

aP (ψ)P =
∑

nb

anb(ψ)nb + bP , (3.4)

where p and nb denote the cell center and neighbor cell centers respectively. For the

energy balance equation ψ = T , where T can be the gas or solids phase temperature.

The coefficients of the discretized energy balance equation were derived as

aT`E = De − (ξT`)e
2

(ε`ρ`)E(Cp` + Cp`E)(u`)eAe, (3.4a)

aT`W = Dw + (ξ̄T`)w
2

(ε`ρ`)W (Cp` + Cp`E)(u`)wAw, (3.4b)

aT`N = Dn − (ξT` )n
2

(ε`ρ`)N(Cp` + Cp`N)(v`)nAn, (3.4c)

aT`S = Ds +
(ξ̄T` )s

2
(ε`ρ`)S(Cp` + Cp`N)(v`)sAs, (3.4d)

aT`p = −
(

∑

nb(a
T`)nb +

(ρo` )Cp`4V

∆t
+ γRm(T`

o)3
)

, (3.4e)

bT`p = −
(

(ρo` )Cp`4V

4t
(T`

o)−4HRm4 V + SRC`4 V
)

, (3.4f)

(SRC`)p = γRm(T
4
Rm + 3(T`

o)4)− 4γRm(T`
o)3T`, (3.4g)
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In Equations (3.4a-f), ` denotes the phase index (g or s) of the equation. The diffusion

terms are modeled using D where [18, p.19, Eq.3.23]

De =
(K`)eAe

4xe
. (3.5)

The (K`)e flux term is shown in [18, p. 17, Eq.3.6-3.7]. The subscripts E, W , N

and S denote the cell centers of the East, West, North and South neighbor cells,

respectively. The subscripts e, w, n and s denote the East, West, North and South

face of the cell, respectively. ξ, ε, ρ, and Cp are the convection weighting factor,

gas void fraction, density and constant volume specific heat, respectively. u` and v`

are the phase velocities in the x- and y-direction. A is the area of a cell face. The

superscript o denotes ’old’ variables from the previous time step. The infinitesimal

cell volume is represented by 4V . The radiation source term, SRC`, is not used in

this study.

C. Summary

This chapter presented the full-order model MFIX. The spatial discretization used in

MFIX was described. The discretized solids volume fraction correction equation and

energy balance equations were presented. In the next chapter these equations will be

implemented into a reduced-order model based on proper orthogonal decomposition.

For the remainder of this thesis, MFIX will serve as a basis of comparison for the POD

based ROM. All error analysis and computational speed-up results for the POD-based

ROM is reported in terms of MFIX results.
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CHAPTER IV

REDUCED-ORDER MODEL BASED ON PROPER ORTHOGONAL

DECOMPOSITION

The purpose of this chapter is to present the devolpment of a reduced-order model

based on proper orthoganal decomposition. The presentation of this information is

divided into two main sections. The first section presents the general scheme used to

generate the POD-based ROMs. The second section presents the application of this

scheme to the modeling of isothermal and non-isothermal transport phenomena in a

fluidized bed.

A. General Scheme for Reduced-Order Modeling Based on Proper Orthogonal De-

composition

Generation of any reduced-order model based on POD involves three basic steps: (1)

generation of a POD database; (2) modal decomposition of the field variables; and

(3) Galerkin projection of the basis functions onto the governing equations. To aid

discussion in the following sections let us use a general example PDE:

∂u

∂t
= D(u) (4.1)

where u(x, t) is a state vector; Ω is the spatial domain; (0, T ] is the temporal domain

and D(u) is the total or material derivative of u.9 In this particular example, (4.1)

could conceivably represent any of the governing equations (2.1)-(2.6).

1. Database Generation

The database is a collection of data that are solutions of the governing equation or

equations. For this example we will assume that the database has been constructed
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to represent the solutions of (4.1). The data in the database can be generated by a

number of methods including numerical solutions of the governing equations, experi-

mental measurements or a combination of the two. The database can include multiple

sets of data in the same temporal domain, but with varying physical properties such

as temperature, viscosity and particle size, in order to provide a wider base of data

input to expand the reference condition. For equations (2.1)-(2.6), MFIX was used to

generate the snapshot database. MFIX was used to compute a number of flow feature

snapshots for the pressure, void fraction, velocities and temperature distribution for

a single reference condition.

2. Modal Decomposition

The final output of the database generation step above is a set of snapshots rep-

resented by u(x, ti), i ∈ [1,M ] where M is the total number of snapshots in the

database set. We assume that u can be decomposed into a time averaged mean ū(x)

and a time dependent fluctuation u′(x, t). The basis functions φj are the eigenvectors

of the matrix R(x,x′). Using the basis functions, u(x, t) is reconstructed as

u(x, t) = ū(x) +
M
∑

j=1

αj(t)φj(x) =
M
∑

j=0

αj(t)φj(x), (4.2)

where the zeroth basis function φ0(x) is the mean ū(x) and α0(t) ≡ 1.

Method of snapshots

The database of solutions forms an eigenvalue problem that must be solved to

obtained to find the basis functions and time coefficients. A popular technique for

finding eigenvalues and eigenvectors of Equation (1.12) is the method of snapshots

proposed by Sirovich.11 When the resolution of the spatial domain N is higher than

the total number of snapshotsM , the method of snapshots is efficient. The method of
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snapshots is based on the fact that the data vectors ui and the eigenvectors φk span

the same linear space.19 Because of this condition, the eigenvectors can be written as

a linear combination of the data vectors

φk =
M
∑

i=1

vki ui, k ∈ [1,M ]. (4.3)

If (4.3) is introduced in the eigenvalue problem R(x,x′)φ(x) = λφ(x′) we obtain11

Cv = λv, (4.4)

where vk = (vk1 , v
k
2 , . . . , v

k
M) is the kth eigenvector of (4.4); C is a symmetric M ×M

matrix defined by11

Cij =
1

M
(u′(x, ti), u′(x, tj)) . (4.5)

The tensor product matrix R is calculated as

R(x,x′) =
1

M

M
∑

i=1

u′(x, ti)u
′T (x′, ti).

Thus the eigenvectors of the relatively large, N × N , matrix R are calculated by

computing the eigenvectors of the relatively small, M ×M , matrix C. In this study,

a code called PODDEC developed by Paul Cizmas and Antonio Palacios is used to

extract basis functions and time coefficients from a generated database using the

method of snapshots.

3. Galerkin Projection

Let us order the eigenvalues such that: λ1 ≥ λ2 ≥ · · · ≥ λM ≥ 0. Thus the basis

functions (eigenvectors, φj) are also ordered according to their corresponding eigen-

values. If we assume that most of the energy is contained in the first m (m < M)

POD modes, such that
∑m

j=1 λj '
∑M

j=1 λj, it is reasonable to approximate u(x, t)
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using the first m POD modes:

u(x, t) '
m
∑

j=0

αj(t)φj(x). (4.6)

Let us next substitute the above approximation of u(x, t) given by equation 4.6

into the example governing equation (4.1),

m
∑

j=1

dαj(t)

dt
φj(x) = D

(

m
∑

j=0

αj(t)φj(x)
)

. (4.7)

Projecting (4.7) along the basis function, φk(x) yields

(

φk,
m
∑

j=1

dαj(t)

dt
φj(x)

)

=

(

φk, D
(

m
∑

j=0

αj(t)φj(x)
)

)

. (4.8)

Herein transform the governing PDEs into a set of ordinary differential equations,

dαk
dt

= Fk(α1, . . . , αm), k ∈ [1,m], (4.9)

where the only unknowns are the time coefficients αk(t), k ∈ [1,m]. When deriv-

ing equation (4.9) from equation (4.8), it is important to note that we have taken

advantage of the orthonormal property of the basis functions

(φk, φj) = δkj =











1 if k = j

0 if k 6= j
,

where δkj is commonly refered to as the Kronecker delta.

The governing equations have been reduced in order by (1) replacing the PDEs

(4.1) by a system of ODEs (4.9), and (2) reducing the number of equations from N

spatial points to m modes. The linear system of ODEs (4.9) can be integrated using

appropriate ODE solvers, e.g., the fourth-order Runge-Kutta method to predict the

time history of αj, j ∈ [1,m]. The state vector u(x, t) can be reconstructed using the

approximation (4.6) with the time coefficients obtained from the ODEs (4.9). The
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values of αj can also be obtained by directly projecting the database onto the jth

basis function,

αPODj (tk) = (φj(x), u(x, tk)) , j ∈ [1,m], k ∈ [1,M ]. (4.10)

Since the time coefficients extracted using PODDEC, αPODj , are obtained by directly

projecting the basis functions onto the database, these time coefficients are considered

the ’exact’ solution of the time coefficients when compared to the time coefficients

computed by the reduced-order models. However, this ’exact’ property is only true if

the output of the ROM and MFIX are compared at the same reference conditions.

B. Reduced-Order Models Based on Proper Orthogonal Decomposition for Trans-

port Phenomena in Fluidized Beds

The purpose of this section is to present the specific derivations and techniques used

to generate the POD-based reduced-order models. For ease of explanation the POD-

ROM will be refered to by two names: (1) ODEx which simulates isothermal transport

phenomena in a fluidized bed and (2) ODEt which models non-isothermal heat trans-

fer and transport phenomena in a fluidized bed. These POD-based reduced-order

models are derived from the discretized governing differential equations described

in Section A of Chapter II. A summary of the ROMs, governing equations, and

unknowns is given in the Table I below.

A POD-based reduced-order model, Hybrid puv, was developed by Yuan for the

x- and y-momentum equations and the discretized gas pressure correction equation.20

The discretized x- and y-momentum equations and the discretized gas pressure correc-

tion equation, were projected onto the basis functions φu` , φv` , and φpg , respectively.
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Table I. A summary of governing equations and unknows of POD model.

Model Governing Equations Unknowns

ODEx x-momentum balance αug , αvg , αp

y-momentum balance αus , αvs , αεs

pressure correction

solids volume fraction

correction equation

ODEt x-momentum balance αug , αvg , αp

y-momentum balance αus , αvs , αεs

pressure correction αTg , αTs

solids volume fraction

correction equation

gas and solids energy

balance

Three systems of linear algebraic equations were obtained:20

Ãu`αu` = B̃u` , (4.11)

Ãv`αv` = B̃v` , (4.12)

Ãpgαp
′

g = B̃pg , (4.13)
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1. Reduced-order Model Based on Proper Orthogonal Decomposition for the Solids

Volume Fraction Correction Equation.

For a two-dimensional, isothermal, multiphase flow, MFIX solves the discretized x-

and y-momentum equations for the gas and solids phases, the gas pressure correction

equation and the solids volume fraction correction equation. Therefore there are six

unknowns per cell in MFIX. These unknown variables are the gas and solids velocity

components, ug, vg, us and vs, the gas pressure pg and the void fraction εg. For each

of these field variables a database composed of snapshots has been generated and the

POD basis functions φ
ug
i , φ

vg
i , φusi , φvsi , φ

pg
i and φ

εg
i have been extracted from the data

set.

a. ODEx

ODEx is a POD-based ROM generated to model isothermal flow in a fluidized bed.

ODEx is derived from the discretized momentum equations, gas pressure correction

equation and solids volume fraction correction equation used in MFIX.18 This section

will present the development of the reduced-order model for the solids volume fraction

correction equation. The development of the reduced-order models for the x- and y-

momentum equations and the gas pressure correction equation was derived by Yuan.20

Unlike Hybrid puv, developed by Yuan,20 ODEx uses a POD-based algorithm to

solve the solids volume fraction correction equation. For clarity, it is important to

note that ODEx solves for the time coefficient of the solids volume fraction correction,

αεs
′

. The time coefficient of the correction, αεs
′

, is summed with the current value of

the time coefficient of the solids volume fraction αεs∗ to get the corrected solids volume

fraction time coefficient αεs . The solids volume fraction, αεs , and void fraction, αεg ,

are related by equation 3.3. ODEx uses the basis functions extracted from εg. This
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is possible because of the relationship specified by equation 3.3.

In order for the void fraction to be physically realistic the value should belong

to the range [0, 1] for all points in the boundary. Previous work9 revealed a problem

with reconstructing the void fraction using 4.2. Occasionally the void fraction would

exceed the value of 1 in some cells of the domain. This was particularly prevalent

near the boundary between the solids bed and gas-only freeboard section and at the

inlet and outlet boundaries. Modifications made to the solids flux calculations and

an increase in the number of modes used to reconstruct the void fraction alleviated

the problem described in the previous research. The solids volume fraction correction

equation can be written as

aεp(ε
′

s)p =
∑

nb

aεnb(ε
′

s)nb + bεp, (4.14)

where the aεnb,a
ε
p and bεp coefficients are defined.18 εs(x, t) is approximated as

εs(x, t) ∼= φε0(x) +
mε
∑

i=1

(αε
′

i (t)φ
ε
i(x))nb. (4.15)

The solids volume fraction is the sum of the tentative value of the solids volume

fraction, ε∗s, and the correction value ε
′

s. It was assumed that the first mode of the

basis functions φε0, the mean value of εs, is equal to the tentative value of the solids

volume fraction ε∗s. Therefore εs can be written in terms of the basis functions and

time coefficients.

εs(x, t) ∼= ε∗s + ε
′

s = φε0(x) +
mε
∑

i=1

(αε
′

i (t)φ
ε
i(x))nb. (4.16)

Dropping the x and t notation, the solids volume fraction correction in terms of the

basis functions and time coefficients can be written as

ε
′

s
∼=

mε
∑

i=1

αε
′

i φ
ε
i . (4.17)
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Substituting (4.17) into (4.14) and projecting the new equation on the basis function,

φεk, yields the reduced-order solids volume fraction correction equation:

aεp

(

mε
∑

i=1

αε
′

i φ
ε
i , φ

ε
k

)

p
=
∑

nb

aεnb

(

mε
∑

i=1

αε
′

i φ
ε
i , φ

ε
k

)

nb
+
(

bεp, φ
ε
k

)

. (4.18)

Using (3.1)(a-f) to expand the coefficients anb, ap and bp of (4.18) yields

(ρ`)P∆V ·
mε`
∑

i=1

α̇ε`i (φ
ε`
i , φ

ε`
k ) =

−
mε`
∑

i=0

mu`
∑

j=0

(

(ρ`ε`)eee[(Km)Pφ
ε`
i − (Km)Eφ

ε`
i,e]

+[ξε`e (ρ`)Eφ
ε`
i,e + ξ̄ε`e (ρ`)Pφ

ε`
i ]φ

u`
j,eα

u`
j

)

∆y +

+
mε`
∑

i=0

mu`
∑

j=0

(

(ρ`ε`)wew[(Km)Pφ
ε`
i − (Km)Wφ

ε`
i,w]

+[ξ̄ε`w (ρ`)Wφ
ε`
i,w + ξε`w (ρ`)Pφ

ε`
i ]φ

u`
j,wα

u`
j

)

∆x−

−
mε`
∑

i=0

mv`
∑

j=0

(

(ρ`ε`)nen[(Km)Pφ
ε`
i − (Km)Nφ

ε`
i,n]

+[ξε`n (ρ`)Nφ
ε`
i,n + ξ̄ε`n (ρ`)Pφ

ε`
i ]φ

v`
j,nα

v`
j

)

∆y +

+
mε`
∑

i=0

mv`
∑

j=0

(

(ρ`ε`)ses[(Km)Pφ
ε`
i − (Km)Sφ

ε`
i,s]

+[ξ̄ε`s (ρ`)Sφ
ε`
i,s + ξε`S (ρ`)Pφ

ε`
i ]φ

v`
j,sα

v`
j

)

∆x−

−(ρ`ε`)e(u`)e∆y + (ρ`ε`)w(u`)w∆y − (ρ`ε`)n(v`)n∆y + (ρ`ε`)s(v`)s∆y −

−[(ρ`ε`)P − (ρ`ε`)
o
P ]
∆V

∆t
(4.19)

Equation (4.18) can be rearranged to generate a system of linear equations:

aεp

(

mε
∑

i=1

αε
′

i φ
ε
i , φ

ε
k

)

p
−
∑

nb

aεnb

(

mε
∑

i=1

αε
′

i φ
ε
i , φ

ε
k

)

nb
=
(

bεp, φ
ε
k

)

. (4.20)
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The linear system can be written in a more compact form:

A
ε
αε

′

= B
ε
, (4.21)

where

A
ε

ik = aεp

(

mε
∑

i=1

φεi , φ
ε
k

)

p
−
∑

nb

aεnb

(

mε
∑

i=1

φεi , φ
ε
k

)

nb
(4.22)

B
ε

i =
(

bεp, φ
ε
k

)

. (4.23)

The dimensions of Aij and Bi are m
ε x mε and mε x 1 respectively. The parameter

mε is the number of solid volume fraction modes used in the ROM calculation. Only

mε equations must be solved for the projected SVFCE given in (4.20). ODEx uses a

time marching algorithm which is similar to the algorithm used by MFIX. An outline

of the ODEx solution algorithm is given below:

• Using the time coefficients from the previous iteration or those read in from the

initial condition file for the first time step, the field variables ug, vg, us, vs, pg

and εg are reconstructed. For compressible flows, the density ρg is calculated

using the ideal gas law with constant gas temperature.

• The linear system of equations (4.11) and (4.12) are solved to obtain the ten-

tative values of α
ug
i (t), i ∈ [1,mug ], α

vg
i (t), i ∈ [1,mvg ], αusi (t), i ∈ [1,mus ] and

αvsi (t), i ∈ [1,mvs ]. The values are called tentative because they are calculated

based on the previous pressure field and will be corrected by the gas pressure

correction and the solids volume fraction correction respectively.

• The linear system of equations (4.13) is solved to obtain α
p′

g

i (t), i ∈ [1,mpg ], the

time coefficients of the gas pressure correction.

• The time coefficients of pg, ug and vg are corrected using the new value of α
p′

g

i (t).
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• The linear system of equations (4.34) is solved to obtain αεs
′

i (t), i ∈ [1,mεs ], the

time coefficients of the solids volume fraction correction. The void fraction, εg

is calculated using εg = 1− εs.

• The time coefficients of us, vs, and εg are corrected using the new value of

αεs
′

i (t).

• Check the convergence. If the solution is converged, ODEx advances to the next

time step.

The input data for ODEx are the basis functions of the gas and solids velocities, the

gas pressure and the void fraction. The solutions of ODEx are α
ug
i , i ∈ [1,mug ], α

vg
i ,

i ∈ [1,mvg ], αusi , i ∈ [1,mus ], αvsi , i ∈ [1,mvs ], α
pg
i , i ∈ [1,mpg ] and α

εg
i , i ∈ [1,mεg ].

An example input file for ODEx can be found in Appendix B.

2. Reduced-Order Model Based on Proper Orthogonal Decomposition for the

Scalar Energy Equations.

For a two-dimensional, non-isothermal, multiphase flow, MFIX solves the discretized

x- and y-momentum equations for the gas and solids phases, the gas pressure cor-

rection equation, the solids volume fraction correction equation and the scalar gas

and solids energy equations. Therefore there are eight unknowns per cell in MFIX.

These variables are the gas and solids velocity components, ug, vg, us and vs, the

gas pressure pg, the void fraction εg and the gas and solids temperature values Tg

and Ts. For each of these field variables a database composed of snapshots has been

generated and the POD basis functions φ
ug
i , φ

vg
i , φusi , φvsi , φ

pg
i , φ

εg
i , φ

tg
i , and φ

ts
i have

been extracted from the data set.
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a. ODEt

The projection of the scalar energy equation onto the temperature basis functions

is derived below. First, the scalar energy equation for temperature can be written

as [18, p. 54]

aP (T`)P =
∑

nb

anb(T`)nb + bP (4.24)

where ` denotes either the gas or solids phase (g or s). Next, equations (3.4e) and

(3.4f) are substituted into (4.24),

−
∑

nb

(aTm)nb(T`)P−
(ρ`)Cp`∆V

4t (T`)p = −
∑

nb

anb(T`)nb−
(ρ`)Cp`∆V

4t (T o
` )p+S

T
` (4.25)

the source terms present in the new expression are combined into the term ST
` for

convenience.

Equation (4.25) can be rearranged as

−ρ`Cp`∆V
(T`)p − (T o

` )p
4t =

∑

nb

anb((T`)nb − (T`)p) + ST` . (4.26)

Replacing
(T`)p−(T o

` )p
4t

with ∂T`
∂t

yields,

−ρ`Cp`∆V
∂T`
∂t

=
∑

nb

anb((T`)nb − (T`)p) + ST` . (4.27)

The temperature T` is approximated using the POD basis functions and time coeffi-

cients in the following equation:

T`(x, t) ∼= φT`0 (x) +
mT`
∑

i=1

αT`i (t)φT`i (x). (4.28)

Substituting (4.28) into (4.27) and dropping the x and t notation yields

−ρ`Cp`∆V
mT`
∑

i=1

α̇T`i φ
T`
i =

∑

nb

anb

mT`
∑

i=1

(φT`i,nb − φT`i )αT`i + ST` . (4.29)
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Substituting for the a coefficient terms given in Equations (3.4a - 3.4d) yields

ρ∆V ·
mT`
∑

i=1

α̇T`i φ
T`
i =

−
mT`
∑

i=0

mu
∑

j=0

(ξT`)e
2

(ε`ρ`)E(Cp` + Cp`E)∆yφ
u`
j,e(φ

T`
i,e − φT`i )αT`i α

u`
j +

+
mT`
∑

i=0

mu
∑

j=0

(ξ̄T`)w
2

(ε`ρ`)W (Cp` + Cp`E)∆yφ
u`
j,w(φ

T`
i,w − φT`i )αT`i α

u`
j −

−
mT`
∑

i=0

mu
∑

j=0

(ξT`)n
2

(ε`ρ`)N(Cp` + Cp`N)∆xφ
v`
j,n(φ

T`
i,n − φT`i )αT`i α

v`
j +

+
mT`
∑

i=0

mv
∑

j=0

(ξ̄T`)s
2

(ε`ρ`)S(Cp` + Cp`N)∆xφ
v`
j,s(φ

T`
i,s − φT`i )αT`i α

v`
j +

+
mT`
∑

i=0

(K`)e∆y(φ
T`
i,e − φT`i )αT`i +

mT`
∑

i=0

(K`)w∆y(φ
T`
i,w − φT`i )αT`i +

+
mT`
∑

i=0

(K`)n∆x(φ
T`
i,n − φT`i )αT`i +

mT`
∑

i=0

(K`)s∆x(φ
T`
i,s − φT`i )αT`i +

+ST` , (4.30)

For two-dimensional flows, AE = AW = ∆y and AN = AS = ∆x. Equation (4.30)

is the finite volume discretized scalar energy equation approximated using proper

orthogonal decomposition. The ST` terms are computed based on the previous time

step values of the gas and solids temperatures. Next, Eq. (4.30) is projected onto the
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basis functions φT`k , where k ∈ [1,mT` ]

ρ∆V ·
mT`
∑

i=1

α̇T`i (φT`i , φ
T`
k ) =

−
mT`
∑

i=0

mu
∑

j=0

(ξT`)e
2

(ε`ρ`)E(Cp` + Cp`E)∆yφ
u`
j,e(φ

T`
i,e − φT`i ), φT`k α

T`
i α

u`
j +

+
mT`
∑

i=0

mu
∑

j=0

(ξ̄T`)w
2

(ε`ρ`)W (Cp` + Cp`E)∆yφ
u`
j,w(φ

T`
i,w − φT`i ), φT`k α

T`
i α

u`
j −

−
mT`
∑

i=0

mu
∑

j=0

(ξT`)n
2

(ε`ρ`)N(Cp` + Cp`N)∆xφ
v`
j,n(φ

T`
i,n − φT`i ), φT`k α

T`
i α

v`
j +

+
mT`
∑

i=0

mv
∑

j=0

(ξ̄T`)s
2

(ε`ρ`)S(Cp` + Cp`N)∆xφ
v`
j,s(φ

T`
i,s − φT`i ), φT`k α

T`
i α

v`
j +

+
mT`
∑

i=0

(K`)e∆y((φ
T`
i,e − φT`i ), φT`k )αT`i +

mT`
∑

i=0

(K`)w∆y((φ
T`
i,w − φT`i ), φT`k )αT`i +

+
mT`
∑

i=0

(K`)n∆x((φ
T`
i,n − φT`i ), φT`k )αT`i +

mT`
∑

i=0

(K`)s∆x((φ
T`
i,s − φT`i ), φT`k )αT`i +

+(ST` , φ
T`
k ), (4.31)

Equation (4.31) can be written as

ǍT`
kkα̇

T`
k =

mT`
∑

i=0

mu
∑

j=0

F̌T`
kijα

T`
i α

u`
j +

mT`
∑

i=0

mv
∑

j=0

ǦT`kijαT`i αv`j +
mT`
∑

i=0

ȞT`
kiα

T`
i + ŠT` , (4.32)

where

ǍT`
ij = δij · (ρpφT`j ∆V , φT`i ),

F̌T`
kij = (−(ξT`ε`ρ`Cp`)e∆yφ

u`
j,e(φ

T`
i,e−φT`i ), φT`k )+((ξ̄T`ε`ρ`)w(Cp`)e∆yφ

u`
j,w(φ

T`
i,w−φT`i ), φT`k )

ǦT`kij = (−(ξT`ε`ρ`Cp`)n∆xφ
v`
j,e(φ

T`
i,e−φT`i ), φT`k )+((ξ̄T`ε`ρ`)s(Cp`)n∆xφ

v`
j,w(φ

T`
i,w−φT`i ), φT`k )
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ȞT`
li =

((K`)e∆y

∆x
(φT`i,e − φT`i ), φT`k

)

+
((K`)w∆y

∆x
(φT`i,w − φT`i ), φT`k

)

+
((K`)n∆x

∆y
(φT`i,n − φT`i ), φT`k

)

+
((K`)s∆x

∆y
(φT`i,s − φT`i ), φT`k

)

,

ŠT`k = (ST` , φT`k ).

In Eq. (4.32) the original energy balance equations have been reduced to a set of mT`

ODEs. Equation (4.32) can be rewritten in a simpler form in terms of coefficients

aT`p , aT`nb, b
T`
p and unknowns, αT` .

A
T`
αT` = B

T`
. (4.33)

where

ÃT`
ij =

(

(aT`p φ
T`
j −

∑

nb

aT`nbφ
T`
j,nb), φ

T`
i

)

,

B̃T`i = (bT`p , φ
T`
i ).

Herein the dimensions of ÃT` and B̃T` are mT`×mT` and mT`×1, respectively. ODEt

uses an iterative, time marching algorithm which is similar to the algorithm used by

MFIX. An outline of the iterative loop of the ODEt solution algorithm is given below:

• Using the time coefficients from the previous iteration or those read in from the

initial condition file for the first time step, the field variables ug, vg, us, vs, pg, εg,

Tg and Ts are reconstructed. For compressible flows, the density ρ is calculated

using the ideal gas law with the previous or reconstructed gas temperature.

The physical properties ρg and ρs are calculated. The transport properties µg,

µs and Fgs are calculated. The temperature dependent conductivity, Km, and

heat transfer coefficient, γgs, are calculated using the previous temperature field

values.

• The linear systems of equations [20, p. 248, Eq. 30-31] are solved to obtain the
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tentative values of α
ug
i (t), i ∈ [1,mug ], α

vg
i (t), i ∈ [1,mvg ], αusi (t), i ∈ [1,mus ]

and αvsi (t), i ∈ [1,mvs ] wherem indicates the number of modes used. The values

are called tentative because they are calculated based on the previous pressure

field and will be corrected by the gas pressure correction and the solids volume

fraction correction respectively.

• The linear system of equations [20, p. 249, Eq. 32] is solved to obtain α
p′

g

i (t),

i ∈ [1,mpg ], the time coefficients of the gas pressure correction.

• The time coefficients of pg, ug and vg are corrected using the new value of α
p′

g

i (t).

• The linear system of equations (4.34) is solved to obtain αεs
′

i (t), i ∈ [1,mεs ], the

time coefficients of the solids volume fraction correction. The void fraction, εg

is calculated using εg = 1− εs.

• The time coefficients of εs, us and vs are corrected using the new αεs
′

i (t) values.

• The linear systems of equations 4.33 are solved to obtain (α
Tg
i )(t), i ∈ [1,mTg ]

and αTsi (t), i ∈ [1,mTs ], the time coefficients of the gas and solids phase tem-

perature.

• Check the convergence. If the solution is converged, ODEt advances to the next

time step.

The input data for ODEt are the basis functions extracted from the database of eight

field variables generated using MFIX. The eight field variables are gas and solids

velocities, gas pressure, void fraction and gas and solids temperatures. The solutions

of ODEt are α
ug
i , i ∈ [1,mug ], α

vg
i , i ∈ [1,mvg ], αusi , i ∈ [1,mus ], αvsi , i ∈ [1,mvs ],

(α
pg
i )′, i ∈ [1,mpg ], (α

εg
i )

′, i ∈ [1,mεg ], α
Tg
i (t), i ∈ [1,mTg ] and αTsi (t), i ∈ [1,mTs ].

An example input file for ODEt can be found in Appendix C. Table II shows a list
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of the most important subroutines created for the POD-based reduced-order model,

ODEt. The routines in Table II are especially important because they are used to

perform the projection of the energy balance equations onto the temperature basis

functions, solve the linear system of equations and reconstruct the temperature values

from the computed time coefficients, αT` . Table III shows a list of the most important

subroutines modified for ODEt. Most of these routines were modified from the July

2006 version of MFIX. Most of the modifications involved adding new terms for the

POD algorithm and converting the MFIX three-dimensional, multiple-phase routines

into simpler two-dimensional, two-phase routines for ODEt. Table IV shows a list of

support subroutines modified for ODEt. The routines in Table IV are called support

routines because they are not directly used for calculation. These subroutines are

used for reading in data and declaring new variables.

Table II. Most important routines created for ODEt.

Subroutine New Subroutine Description

calc ab phi.f Projects the energy equation system onto the basis

functions extracted from the temperature snapshots

phi phi prod.f Calculates the constant basis function products

outside the iteration loop

reconstruct t m.f Reconstructs the gas and solids phase temperatures

from the basis functions and time coefficients

solve lin eq.f Replaces original BICGS solver with LU decomposition solver
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Table III. Most important routines modified for ODEt.

Subroutine Modification

allocate arrays.f Defined dynamic allocation size for the basis

function arrays, time coefficients, constant basis

function products and all new energy equation

parameters not defined in ODEx.

calc mu g.f Implemented temperature dependent µg calculation

calc k g/s.f Implemented 2-D, 2-phase version of routines

calc gama Implemented 2-D, 2-phase version of routine

conv dif phi.f Implemented 2-D, 2-phase version of routine

bc phi.f Implemented no slip wall condition

iterate.f Added write out operations for αT`

physical prop.f Sets Cp`, γR`, and ∆Hr` from input data

source phi.f Implemented 2-D, 2-phase version of routine

solve energy eq.f Modified the call line for the linear equation

solver and calc resid s to solve for the time

coefficient of temperature, αT` . Added the

call line for the new calc ab phi routine. Added

error flag to identify if T < 0.

time march.f Added lines to open and write out computed time

coefficients to the output files.

Added call statements for reconstruct t routines.
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Table IV. Support routines modified for ODEt.

Subroutine Modification

basis mod.f Added temperature basis function definitions

get data.f Added statement to print error flag for undefined input

parameters

namelist.inc Added number of modes for temperature parameters, n Tm,

and initial values of Cp`, γR`, and ∆Hr` to list of

parameters to be read from the input file, puv.dat

param mod.f Added definitions for nT g and nT s, the integer

number of modes used for temperature reconstruction

read basis.f Modified routine to read the temperature basis functions

from the PODDEC generated basis function files

set ic.f Modified routine to read the first time coefficients for

temperature from the PODDEC generated time coefficient

files to generate an initial field solution

time coe mod.f Added definitions for αTg and αTs , the gas and solids

phase temperature time coefficients
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b. Boundary Conditions for ODEx/ODEt

ODEx and ODEt use ghost cells to enforce a no-penetration boundary condition on

the boundaries of the control volume. Boundary behavior is also implicitly communi-

cated to the ROM by the modes extracted from the original MFIX data. The initial

boundary values of the field variables in the ghost cells are determined by the re-

construction step. Within the sub-iteration the no-penetration and no-slip boundary

conditions are specified by altering ghost cell coefficients in the assembled Ã matrix.

This step is performed before projection of the Ã matrix onto the basis functions.

The projected Ã matrix system is solved for the new time coefficients. The iterative

calculation begins again with a new reconstruction of the field variables. The follow-

ing two paragraphs explain the boundary condition specification procedure in greater

detail. In the following paragraphs, ODEx and ODEt will be refered to as ODEx to

shorten the naming notation.

The basic implementation of the no-penetration, no-slip boundary condition in

ODEx was created using the assumption that the boundary conditions are constant.

At the beginning of each time step the initial boundary values are set by the first

reconstruction of the field variables using the time coefficients and basis functions.

During iterative calculation steps the boundary conditions are enforced so that the

flux between the ghost cells and the cells along the computational domain perimeter is

zero. This is achieved by specifying the coefficients of the assembled matrices before

projection onto the basis functions. For flow parallel to the walls the boundary

condition specified at the internal face of the ghost cell is of equal magnitude but

opposite direction of the adjacent face.

The basic implementation of the no-penetration, no slip boundary condition

described above is not sufficient for time dependent boundary conditions. Imple-
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mentation of time dependent boundary conditions in ODEx involved specifying the

exact boundary condition used in the full model MFIX. As an example, a simulation

was run in MFIX where the central jet velocity (vg) along the lower boundary of

the control volume varied by 12.6 + 3.15 ∗ SIN(60 ∗ t)cm/s, where t is the physical

time of the calculation. In ODEx the value of the central jet velocity (vg) was also

set to 12.6 + 3.15 ∗ sin(60 ∗ t)cm/s for the ghost cells. The no-penetration, no-slip

boundary condition is maintained along the perimeter of the computational domain

in the sub-iterations exactly as described in the previous paragraph.

C. Summary

The first section in this chapter presented the general scheme for generating the

POD-based ROMs. An example governing equation (4.1) was used to illustrate the

basic steps used to generate POD-based ROMs. In general the order of the governing

equations are reduced by (1) replacing governing PDEs with a system of ODEs and

(2) reducing the number of equations from N spatial points to m selected modes for

each time step. PODDEC is used to extract a basis for modal decomposition from

a database of snapshots. The database of snapshots is used to benerate the auto-

correlation matrix R(x,x′). This eigenvalue problem is solved for time independent

orthonormal basis functions, φk, and time dependent time coefficients, αk. The basis

functions and time coefficients are used for modal decomposition of the field variable.

The PDE is projected onto the basis functions to form a system of ODEs.

The second section in this chapter described two POD-based ROMs generated to

model flow features in a fluidized bed. The first, ODEx, models isothermal transport

phenomena in a fluidized bed. The second, ODEt, simulates non-isothermal heat

transfer for convection in a fluidized bed.
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The discretized solids volume fraction correction equation and the discretized

energy balance equation were projected onto the basis functions φεs and φT` , respec-

tively. Two systems of linear algebraic equations were obtained:

Ãεsαε
′

s = B̃εs , (4.34)

ÃT`αT` = B̃T` , (4.35)

The steps of the POD-ROM algorithm were presented. A description of subroutines

that were modified or created for the reduced-order model were included. This was

done to aid understanding of the numerical implementation of the solution algorithm.

A description of the no-penetration and no-slip boundary conditions implemented in

the ROM was presented. Results from the POD-based ROM developed in the section

are presented in the next section.
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CHAPTER V

RESULTS

The purpose of this chapter is to present the results of the POD-based ROMs de-

rived in the previous chapter. Four cases are investigated. Each case is a two-phase

simulation consisting of one gas and one solids phase. The first case is an isothermal

flow simulation. The second case is similar to the first except non-isothermal flow is

modeled. The third case is an investigation into the ability to perform time extrapo-

lation with the ROMs. The fourth case is an investigation of the ability of ODEx to

simulate a periodic time dependent boundary condition.

A. Case I: Isothermal Flow

Case I is a multi-phase model and consists of one gas and one solids phase. The

geometry, boundary conditions and computational domain of Case I are shown in

Figures 5(a) and 5(b). The computational domain consists of a rectangular uniform

grid. As described in the Physical Model chapter, Section B, air enters the through

the lower boundary. A central jet with a velocity of 12.6 cm/s is surrounded on both

sides by a lower velocity (1.0 cm/s) distributed gas inlet. The central jet inlet is

1.0 cm wide. The specific parameters of Case I are listed in Table V and are based

on parameters used by Yuan.9 The particle diameter is assumed to be uniform and

constant. The gas and solids phases are each modeled as a single species and the flow

is non-reacting.
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Fig. 5. Case I: geometry, boundary conditions, and computational grid.
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Table V. Parameters of Case I.

Parameter Description Value

xlength Length of the domain in x-direction 25.4cm

ylength Length of the domain in y-direction 76.5cm

imax Number of cells in x-direction 108

jmax Number of cells in y-direction 124

v1 Jet gas inflow velocity 12.6cm/s

v2 Distributed gas inflow velocity 1.0cm/s

ps Static gas pressure at outlet 1.01× 106g/(cm·s2)

Tg0 Gas temperature 297K

µg0 Gas viscosity 1.8× 10−4g/(cm· s)

tstart Start time 0s

tstop Stop time 1s

4t Initial time step 1.0× 10−4s

ρso Constant solids density 1.0g/cm3

Dp Solids particle diameter 0.5mm

hs0 Initial packed bed height 38.25cm

ε∗g Packed bed void fraction 0.40

It is important to note that MFIX uses CGS units by default.

POD is applied to the database of snapshots computed by MFIX for six field variables

modeled using the parameters in Table V. The first six POD basis functions of εg,

pg, ug, vg,us, and vs are shown in Figures 6-12, respectively. φ0 is the basis function

that corresponds to the average mode.
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Fig. 8. Case I: first six basis functions of ug.
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Fig. 9. Case I: first six basis functions of vg.
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Fig. 10. Case I: first six basis functions of us.

φvs0 φvs1 φvs2 φvs3 φvs4 φvs5

Fig. 11. Case I: first six basis functions of vs.
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Tables VI and VII show the percentage of the energy captured by each individual

mode and the cumulative energy captured by the sum over the modes for each field

variable.

Table VI. Energy variation for the gas pressure and gas velocities.

Number pg ug vg

of Modes Energy Total Energy Total Energy Total

[%] [%] [%] [%] [%] [%]

1 99.938 99.938 90.102 90.102 85.018 85.018

2 0.589 99.997 6.274 96.377 13.646 98.664

3 0.024 99.999 2.914 99.291 0.986 99.650

4 0.004 99.999 0.305 99.596 0.248 99.898

5 0.000 99.999 0.220 99.815 0.074 99.972

6 0.000 99.999 0.120 99.993 0.013 99.985

7 0.000 99.999 0.026 99.996 0.008 99.993

8 0.000 99.999 0.017 99.997 0.004 99.997
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Table VII. Energy variation for the solids velocities and void fraction.

Number us vs εg

of Modes Energy Total Energy Total Energy Total

[%] [%] [%] [%] [%] [%]

1 80.644 80.644 96.559 96.559 68.597 68.597

2 15.373 96.017 2.018 98.577 27.541 96.138

3 1.818 97.835 1.069 99.647 3.691 99.829

4 1.252 99.086 0.203 99.850 0.112 99.941

5 0.495 99.582 0.121 99.971 0.043 99.983

6 0.223 99.804 0.018 99.989 0.014 99.998

7 0.098 99.902 0.007 99.996 0.001 99.999

8 0.068 99.970 0.002 99.999 0.000 99.999
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1. Case I Results

For the test case chosen, the number of modes used and the energy spectrum captured

by the chosen number of modes for each of the six state variables are shown in

Table VIII.

Table VIII. Cumulative energy captured by the chosen number of modes.

Variable Number of Modes Symbol Cumulative Energy

[%]

pg 2 Npg 99.997

ug 2 Nug 96.377

vg 5 Nvg 99.972

us 8 Nus 99.970

vs 6 Nvs 99.989

εg 7 Nεg 99.999

The modes were chosen as a compromise between the accuracy and computa-

tional speed up of the reduced-order model. The selection of this mode combination

was just one from a large number of mode combinations investigated. Due to the

complex relationships between the six field variables modeled, discerning a distinct

pattern between the number of modes used, the accuracy of the solution and the

computational advantage was quite difficult. For example, it was discovered that de-

creasing the number of modes used to describe ug improved the solution of vs when

the number of modes for the other variables remain fixed. This type of relationship is

not intuitive and was only discovered by numerical experiments. The gas pressure and

gas velocity variables can accurately be represented by only a few modes. Through
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numerical testing, it was found that convergence of the solution was most sensitive to

the number of pressure modes used. The solids velocities and void fraction parame-

ters require more modes to capture because the solids flow features are more complex

and have relatively small velocities when compared the gas velocities. For Case I, the

maximum gas velocity in the y-direction was 12.6 cm/s while the maximum solids

velocity in the y-direction is only 0.003 cm/s. Using the modes in Table VIII, it was

possible to demonstrate that the new ODEx code was more computationally efficient

than the previous POD, Hybrid puv code. A summary of the computational time

results for MFIX, Hybrid puv and ODEx is shown in Table IX. The required compu-

Table IX. Summary of Case I CPU times for MFIX, Hybrid puv and ODEx.

Code Npg Nug Nvg Nus Nvs Nεg tCPU [s]

MFIX - - - - - - 9761.453

Hybrid puv 2 2 5 8 6 - 3740.247

ODEx 2 2 5 8 6 7 894.317

tation time for MFIX was 9761.453 seconds, for Hybrid puv 3740.247 seconds, and for

ODEx 894.317 seconds. The POD code ODEx was 11 times faster than the full-order

model code, MFIX, and 4 times faster than the previous POD code, Hybrid puv.

The results of the ODEx and Hybrid puv codes are presented and compared with the

solution of the full numerical model in the following sections.
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Fig. 12. Case I: The first two time coefficients of pg using ODEx.
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Fig. 13. Case I: The first two time coefficients of ug using ODEx.
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One method to assess the accuracy of the POD model is to compare its com-

puted time coefficient values with those obtained by directly projecting the database

of snapshots onto the basis functions. The latter procedure is used in the proper

orthogonal decomposition of the snapshots and gives the ’exact solution’ of the time

coefficients. Comparisons of these two values are shown in Figures 12-17.

It can be seen that in most cases the time coefficients computed by ODEx match

relatively well with the “exact” time coefficients. The one major exception to this

trend can be found in the third and fourth time coefficients of vg. The results of

ODEx did not agree well with the directly projected time coefficients for these two

modes. However, since the characteristics of vg are dominated by the first two modes,

these errors do not greatly affect the solution. Occasionally, errant modes such as

these can be eliminated from the calculations because the fourth and fifth modes

are relatively small when compared to the first and second. However, in this case

using Nvg = 2 instead of Nvg = 5 required more iterations to achieve an accurate,

converged solution and therefore was detrimental to the computation speed.
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Fig. 14. Case I: The first four time coefficients of εg using ODEx.
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Fig. 15. Case I: The first four time coefficients of vg using ODEx.



57

0.2 0.4 0.6 0.8 1.0
Time (s)

−0.2

−0.1

0

0.1

0.2

0.3

F
irs

t t
im

e 
co

ef
fic

ie
nt

 o
f U

s
Exact (POD)
ODEx

0.2 0.4 0.6 0.8 1.0
Time (s)

−0.2

−0.1

0

0.1

0.2

0.3

0.4

S
ec

on
d 

tim
e 

co
ef

fic
ie

nt
 o

f U
s

Exact (POD)
ODEx

0.2 0.4 0.6 0.8 1.0
Time (s)

−0.03

−0.01

0.01

0.03

0.05

T
hi

rd
 ti

m
e 

co
ef

fic
ie

nt
 o

f U
s

Exact (POD)
ODEx

0.2 0.4 0.6 0.8 1.0
Time (s)

−0.1

−0.05

0

0.05

0.1

0.15

F
ou

rt
h 

tim
e 

co
ef

fic
ie

nt
 o

f U
s

Exact (POD)
ODEx

Fig. 16. Case I: The first four time coefficients of us using ODEx.
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Fig. 17. Case I: The first four time coefficients of vs using ODEx.

At the end of the computation, contour plots of the dependent field variables

were created at time tphysical = 1.0 second. The numerical results at the final step

of the calculation will accumulate the errors produced during the integration making

these plotted flow fields the worst case results. For comparison, Case I was also tested

using a hybrid POD model called Hybrid puv. This POD model is referred to as a

hybrid because the calculation of the void fraction was done by numerically solving the

governing PDE rather than using a reduced-order model. Because of this, Hybrid puv

is able to more accurately compute the void fraction and solids volume fraction but the

higher accuracy comes with the cost of reduced computational efficiency. The contour
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plots in Figures 18-20 show the six state variables as computed by MFIX, Hybrid puv

and ODEx with the exception of the void fraction results for Hybrid puv because the

void fraction is computed using the same method as in MFIX. Each column of plots

represent one state variable. The contour plots show good correlation between

the flow features computed by the full numerical model MFIX and the reduced-

order models. The one exception can be found in the y-direction solids velocity, vs,

computed by ODEx. It is shown in Figure 20 that ODEx correctly computes most

of the vs flow features but contains errors in the central region of the bed. This

error is partially attributed to the small magnitude of the vs velocities relative to the

magnitude of the other velocities. The accuracy of vs diminishes when fewer modes

are used for any of the solids parameters in ODEx. The accuracy of the y-direction

solids velocities is particularly sensitive to changes in the number of modes used for

the void fraction. This dependence on additional state variables makes it difficult

to achieve greater computational efficiency by simply reducing the number of modes

used to represent the solids parameters. For example, Nus could easily be reduced

from its current value of 8 to 3 modes and still give reasonably accurate results for the

x-direction solids velocities. However, the solution for the y-direction solids velocities

would become very poor. The ODEx model does achieve a one order of magnitude

computational speed-up compared to MFIX and is capable of calculating qualitatively

accurate results for Case I using the modes shown in Table VIII.
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Fig. 18. Contour plots at tphysical = 1.0 seconds using MFIX, Hybrid and ODEx: gas
pressure (pg) and void fraction (εg).
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and vg gas velocities.



62

X

Y

0 20 40 60
0

20

40

60

80

U_s MFIX

0.08
0.06
0.04
0.02
0

-0.02
-0.04
-0.06
-0.08

X

Y

0 20 40 60
0

20

40

60

80

V_s MFIX

0.0002
-0.0002
-0.0006
-0.001
-0.0014
-0.0018
-0.0022
-0.0026
-0.003

X

Y

0 20 40 60
0

20

40

60

80

U_s Hybrid

0.08
0.06
0.04
0.02
0

-0.02
-0.04
-0.06
-0.08

X

Y

0 20 40 60
0

20

40

60

80

V_s Hybrid

0.0002
-0.0002
-0.0006
-0.001
-0.0014
-0.0018
-0.0022
-0.0026
-0.003

X

Y

0 20 40 60
0

20

40

60

80

U_s ROM

0.08
0.06
0.04
0.02
0

-0.02
-0.04
-0.06
-0.08

X

Y

0 20 40 60
0

20

40

60

80

V_s ROM

0.0002
-0.0002
-0.0006
-0.001
-0.0014
-0.0018
-0.0022
-0.0026
-0.003

Fig. 20. Contour plots at tphysical = 1.0 second using MFIX, Hybrid and ODEx: us
and vs solids velocities.
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B. Case II: Non-Isothermal Flow

Case II models a two-phase flow that consists of one gas phase and one solids phase.

The boundary conditions of Case II are shown in Figure 21. The computational

domain of Case II is identical to that of Case I shown in Figure 5(b). The boundary

conditions are similar to those in Case I, however in Case II, the incoming gas has a

higher temperature than the initial gas and solids in the computational domain. The

specific parameters of Case II are listed in Table X. The values used for the initial

specific heat coefficients Cpg0 and Cps0 are those for air and ash at a temperature of

297 K respectively. In this case, radiation and internal heat sources are not modeled.

Heat transfer is achieved only by convection and diffusion between hot gas entering

the control volume and the gas and solids bed at an initially cooler temperature. As

in Case I, the particle diameter is assumed to be uniform and constant. The gas and

solids phases are modeled as a single species each and the flow is non-reacting.

xlength

ylength

hs0

V2,T1 V2, T1

V1, T1

T0

Fig. 21. Case II: geometry and boundary conditions.
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Table X. Parameters of Case II.

Parameter Description Value

xlength Length of the domain in x-direction 25.4cm

ylength Length of the domain in y-direction 76.5cm

imax Number of cells in x-direction 108

jmax Number of cells in y-direction 124

v1 Jet gas inflow velocity 12.6cm/s

v2 Distributed gas inflow velocity 1.0cm/s

ps Static gas pressure at outlet 1.01× 106g/(cm·s2)

Tg0 Initial gas temperature 297K

Ts0 Initial solids temperature 297K

Tg1 Inlet gas temperature 450K

µg0 Initial gas viscosity 1.8× 10−4g/(cm·s)

tstart Start time 0s

tstop Stop time 1.0s

4t Initial time step 1.0× 10−4s

ρso Constant solids density 1.0g/cm3

Dp Solids particle diameter 0.5mm

hs0 Initial packed bed height 38.25cm

Cpg0 Initial gas phase specific heat 0.25 cal/gK

Cps0 Initial solids phase specific heat 0.310713 cal/gK

ε∗g Packed bed void fraction 0.40
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Fig. 22. Case II: first six basis functions of Tg.
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Fig. 23. Case II: first six basis functions of Ts.

POD is applied to the database of output computed by MFIX for the eight field

variables modeled using the parameters in Table X. The first six POD basis functions

of Tg and Ts are shown in Figures 22 and 23. The first six POD basis functions of εg, pg,

ug, vg,us, and vs are shown in Figures 6-12 respectively in the previous section. They

are not shown here because variation between the basis functions of the isothermal

case and non-isothermal is qualitatively imperceivable in the contour plots. The six

other field variables are not completely decoupled from the the scalar energy equations

and temperature variations. The gas density, gas pressure, and gas viscosity are all

affected by the gas temperature. However, for the temperature changes present in

the flow, the change in the other flow features is qualitatively small.
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At the end of the computation, the reconstructed variables were outputted to

produce contour plots of the state variables at time tphysical = 1.0 second. Figures 24

and 25 show zoomed in views of the temperature distribution computed by MFIX

and ODEt near the jet inlet.
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Fig. 24. Contour plots at tphysical = 0.2 sec. Showing Tg and Ts gas and solids
temperature distribution using MFIX.
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Fig. 25. Contour plots at tphysical = 1.0 sec. Showing Tg and Ts gas and solids
temperature distribution using MFIX and ODEt.

In general, the figures show good agreement between the MFIX and ODEt final

temperature distribution results. For this mode set, the required CPU time for ODEt

is 1037.124 seconds. The calculation requires 11493.346 seconds of CPU time using

MFIX. Therefore the speed-up factor for this case is approximately 11.

C. Case III: Isothermal Flow, Steady Time Extrapolation

There is much interest in the use of the POD model to predict the pattern of flow

features beyond the time domain of the database. This section will present time
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extrapolated results for the non-isothermal Case I conditions using ODEx. The phys-

ical parameters, geometry and boundary conditions of Case III are identical to those

of Case I except that ODEx was allowed to run for an additional 0.5 seconds past

the physical time domain of the snapshot database. A summary of the physical pa-

rameters, geometry and boundary conditions can be found in Table V, Figure 5(a),

and Figure 5(b), respectively. For this application of time extrapolation, the field

variables were computed in the time domain of the snapshot database until reaching

a slowly varying state. Time extrapolation began at tphysical = 1.0 second. At this

time all of the field variables had reached a slowly varying state. This case tested the

ability of the POD model to predict field variable values outside of the original time

domain.

For the test case chosen, the number of modes used were Npg = 2, Nug = 2,

Nvg = 5, Nus = 8, Nvs = 5, Nεg = 5. This mode combination differs slightly from

the one used in Case I because it was discovered that this mode selection produced

slightly better results for Case III. The average required CPU time for ODEx was

1123 seconds and for MFIX was 12384 seconds. As for Case I, ODEx is 11 times

faster than MFIX for this case. Unlike the previous sections the time coefficients will

not be qualitatively compared because the time scale is different and are therefore

no longer comparable. Shown in Figures 26 and 27 are the reconstructed solutions of

the POD model and the exact solutions of MFIX for the six field variables pg, εg, ug,

vg, us and vs respectively at tphysical = 1.5 seconds. The figures show that the time

extrapolation produces similar flow features to those generated in Case I. This fact

is not surprising since the flow should be at a slowly varying condition at tphysical =

1.0 and 1.5 seconds.



69

X

Y

0 20 40 60
0

20

40

60

80

P_g MFIX

1.0123E+06
1.0121E+06
1.0119E+06
1.0117E+06
1.0115E+06
1.0113E+06
1.0111E+06
1.0109E+06
1.0107E+06
1.0105E+06
1.0103E+06
1.0101E+06

X

Y

0 20 40 60
0

20

40

60

80

P_g ROM

1.0123E+06
1.0121E+06
1.0119E+06
1.0117E+06
1.0115E+06
1.0113E+06
1.0111E+06
1.0109E+06
1.0107E+06
1.0105E+06
1.0103E+06
1.0101E+06

X

Y

0 20 40 60
0

20

40

60

80

EP_g MFIX

0.94
0.88
0.82
0.76
0.7
0.64
0.58
0.52
0.46
0.4

X

Y

0 20 40 60
0

20

40

60

80

EP_g ROM

0.94
0.88
0.82
0.76
0.7
0.64
0.58
0.52
0.46
0.4

X

Y

0 20 40 60
0

20

40

60

80

U_g MFIX

11
8
5
2

-1
-4
-7
-10
-13

X

Y

0 20 40 60
0

20

40

60

80

U_g ROM

11
8
5
2

-1
-4
-7
-10
-13

Fig. 26. Contour plots at tphysical = 1.5 sec. showing gas pressure (pg), void fraction
(εg) and x-direction gas velocity (ug) using MFIX and ODEx time extrapolation.
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Fig. 27. Contour plots at tphysical = 1.5 sec. showing y-direction gas velocities (vg)
and the x- and y-direction solids velocities (us, vs) using MFIX and ODEx time
extrapolation.
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The ROM did have some difficulty extrapolating the solids velocities. This seems

reasonable given the difficulty of the ROM to calculate the first time coefficient of us

in Figure 1 of Case I and the errors in the final solution of vs in Case I.

Figure 1 of Case I shows that for the first time coefficient of us the time coefficients

calculated using ODEx begin to deviate away from the ’exact’ POD solution near the

end of the time integration. It is possible to extrapolate the ROM time coefficients and

plot them with the POD time coefficients for the on-reference time condition. This is

shown for the time coefficients that correspond to the first mode of us in Figure 28.

If one was to imagine a time extrapolation of the POD time coefficients in Figure 28
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Fig. 28. Case III: The first time coefficients of us using time extrapolation with ODEx
compared to the ’exact’ on-reference solution, tphysical = 0.2 - 1.0 seconds.

and assuming that the line continued along its path for an additional 0.5 seconds,

it is obvious that the error between the Exact values and ODEx values would grow

with time. Since αus1 carries a significant percentage of the reconstructed solution, the

result of this error appears to be that the maximum us velocity is much higher than

that calculated by MFIX. The errant velocity only occurs at isolated locations, does

not change the overall flow pattern and is not obvious in Figure 27, but it is present

in the final results. Fewer modes were used to reocnstruct vs because this produced
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better results than the original mode combination, shown in Table VIII, used for

Case I. Like us, vs is difficult to extrapolate with good accuracy. The dominant flow

features of vs, located near the top and sides of the solids bed are well captured.

However, in the middle of the bed where the vs velocities are just above zero and

either positive or negative, accuracy decreases.

D. Case IV: Isothermal Flow, Sinusoidally Varying Boundary Conditions

In this section two isothermal cases generated by MFIX are compared. Within this

section one case will be referred to the steady case and the other will be referred to

as the unsteady case. In steady case gas is injected with a steady velocity as done

in Case I. In the unsteady case gas is injected sinusoidally as a function of time. In
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Fig. 29. Variation of the central jet at the boundary.

both cases the geometry and grid size were the same and are shown in Figure 5.

The physical parameters of both cases are shown in Table V with the exception

that for the unsteady case v1 varies with time. In the unsteady case, gas is injected

through the lower boundary at 12.6 cm/s until the end of the transient phase which

occurs during the interval 0.2 to 0.35 seconds of physical time. At tphysical = 0.35
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seconds the boundary condition of the central jet was changed to inject gas through

the lower boundary with velocity 12.6 + 3.15 sin(60t) cm/s where t is the current

physical time. the maximum Figure 29 shows the variation of the central jet velocity.

The MFIX results were used to generate 320 snapshots from 0.2 to 1.0 seconds. The

time coefficients and basis functions were extracted by applying PODDEC to the

snapshots generated by MFIX. The following ten plots in Figures 30 and 31 show the

cumulative energy spectra of the modes for gas pressure, u− and v−gas velocities,

and u− and v−solids velocities (pg, ug, vg, us and vs) for the steady jet and varying

jet cases respectively.

Another method to analyze the affect of the number of modes on the solution is to

look at the value of the reconstruction of each mode relative to the average mode over

the whole time domain. Recall that the reconstruction of any variable decomposed

into time independent basis functions (φ) and time dependent time coefficients (α) is

given by

u(x, t) ' φ0(x) +
∑

j=1

αj(t)φj(x) (5.1)

where φ0 denotes the average mode of the variable. Calculating the spatially averaged

percentage of each αj ∗ φj product compared to the average φ0 mode for each j

quantifies affect of each mode on the reconstructed solution. More precisely this

quantity, labeled Pj(t), is given by:

Pj(t) = 100 ∗ avgij
(

∑n
ij=1 αj(t)φj(ij)

φ0(ij)

)

(5.2)

where n is the total number of spatial points and avgij indicates the spatial average

over the points. Figure 32 shows Pj(t) for the steady and unsteady cases.
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Fig. 30. Cumulative energy spectra for pg, ug and vg for the steady (left) and varying
(right) jet cases.
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Fig. 31. Cumulative energy spectra for us and vs and time history of the central jet
at the boundary for the steady (left) and varying (right) jet case.
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The plots show values for gas pressure, u- and v-solids velocities respectively.

All of the percentage values are absolute values. Pj(t) gives the relative weight of

each reconstructed mode when compared to the average mode with respect to time.

For example, consider the last two plots in Figure 32 that show the weight of the

reconstructed mode values of vg. For the steady jet case, the reconstructed first mode

only represents a maximum of approximately 1% of the value of the average mode

value. This means that the first mode would only contribute a very small amount to

the reconstructed solution. By contrast, the weight of the first reconstructed mode

value of vg for the varying jet case contributes a maximum of 7% of the average.

Furthermore, the oscillations shown in the plot indicate that the time coefficient

corresponding to this mode captures some of the sinusoidal variation of the velocity

which is not present in the average mode. The plots in Figure 32 show that, in general,

the reconstructed modes of the varying velocity case contribute to a larger part of the

solution than the modes of the steady jet case. Figures 33 - 36 show contour plots

of the modes extracted by PODDEC for each case. The plots show the first several

modes for gas pressure u− and v-gas velocities respectively. The steady jet case is

shown on the left and the varying jet case is shown on the right. The average mode for

each variable is labeled ’Mode 0’. The figures show that the maximum and minimum

values are usually larger for the varying jet case than the steady case and that the

varying jet modes contain more features than the steady jet case. The contour plots

show that the average mode of vg is almost identical for the steady and varying cases.
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Fig. 32. Time history of the weight of each reconstructed mode value compared to
the average mode averaged over the spatial domain for the steady (left) and varying
(right) jet cases.
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Fig. 33. The average and first two modes of gas pressure, pg, for the steady(left) and
varying(right) jet cases.
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Fig. 34. The average and first two modes of ug velocity for the steady(left) and
varying(right) jet cases.
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Fig. 35. The average and first two modes of vg velocity for the steady(left) and
varying(right) jet cases.
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Fig. 36. The fourth mode of vg velocity and the average and first mode of void
fraction, εg, for the steady(left) and varying(right) jet case.
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Results for the unsteady injection velocity case using ODEx will now be pre-

sented in this section. Simulation of this periodic injection velocity case required

time dependent boundary conditions to be specified at the inlet for the ODEx algo-

rithm. The magnitude of the velocity of the central gas jet inlet was varied in ODEx

by 12.6+3.15 sin(60t) cm/s. This boundary condition was specified because the POD

basis modes do not communicate to ODEx the time variation specified by the original

boundary condition used in the full-order model to generate the database.

The mode set chosen for this simulation is shown in Table XI under the column

labeled, Case A. The required CPU time for ODEx is 472 seconds. The required

CPU time for MFIX is 10170 seconds. Therefore, this mode combination resulted in

a speed-up factor of 21.5. Figures 37 and 38 show plots of the ’exact’ time coeffi-

Table XI. Number of modes used for varying jet velocity cases.

Field variable Symbol Number of modes

Gas pressure Npg 1

Void fraction Nεg 2

u gas velocity Nug 3

v gas velocity Nvg 2

u solids velocity Nus 3

v solids velocity Nvs 3

cients extracted from the database using PODDEC and those computed by ODEx.

These figures show that good correlation exists between the POD and ODEx time

coefficients corresponding to the first mode. Errors become larger for time coefficients

corresponding to additional modes.
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Fig. 37. Time coefficients of gas pressure u− and v−gas velocities computed by ODEx
and corresponding exact values computed by PODDEC.
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Fig. 38. Time coefficients of void fraction, u− and v−solids velocities computed by
ODEx and corresponding exact values computed by PODDEC.
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E. Summary

In this chapter the results of four investigated cases were presented. The first case

was an isothermal flow simulation. Investigation showed that the POD-based ROM,

ODEx, produced qualitatively accurate final results and was 11 times faster than the

full-order model, MFIX. The second case was similar to the first except non-isothermal

flow was modeled. This investigation showed that ODEt was also 11 times faster than

MFIX for the case studied. The third case was an investigation into the ability to

perform time extrapolation with the POD-based ROM, ODEx. Time extrapolation

generated a slight increase in the qualitative error but did not significantly decrease

the required computation time. The fourth case is an investigation of the ability of

ODEx to simulate a periodic time dependent boundary condition. ODEx produced

good results for the first modes of the field variables. In general, errors in the time

coefficients increased for additional modes in Case IV. For the periodic boundary

condition case, the POD-based ROM, ODEx ran 21.5 times faster than the full-

order model, MFIX. In the next chapter, the first case will be further isolated and

scrutinized. The next chapter presents POD-based ROM acceleration techniques

using Case I as a basis.
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CHAPTER VI

ACCELERATION METHODS

The objective of this chapter is to present a set of acceleration techniques for POD-

based reduced-order models. These techniques include: (i) an algorithm for splitting

the snapshot database, (ii) a method for solving quasi-symmetrical matrices, and

(iii) an algorithm for time step adjustment. A detailed comparison of the full and

reduced-order model algorithms is described. The acceleration techniques proposed

for the solution of the reduced-order model are subsequently presented.

A. Structure of Numerical Algorithms

The purpose of this section is to compare and contrast the full-order model im-

plemented in the MFIX code with the reduced-order model implemented in the

ODEx code. Differences in computation time, sub-iteration time and number of

sub-iterations for a particular case are presented.

The solution algorithms used in ODEx and MFIX are similar in organization.

For a two-dimensional isothermal case, both codes must solve for six dependent field

variables: void fraction, gas pressure, and gas and solids phase velocities. Unlike

MFIX, ODEx solves for the time coefficients of each dependent field variable and

reconstructs the values from the basis functions. MFIX and ODEx use fully implicit,

time marching algorithms. At each time step sub-iterations are performed until a

residual criterion has been satisfied. The time step size is adjusted based on the

convergence rate during the calculation.

Figure 39 shows a flow chart of the code algorithm shared by ODEx and MFIX,

and the groups of common subroutines.
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Fig. 39. General MFIX/ODEx logic flowchart.



88

Figure 40 shows which groups were modified for the reduced-order model and to

what degree they were modified.

A comparison of the full-order and reduced-order models is presented to explain

the differences in computational time per subiteration. To facilitate this comparison,

the subroutines of MFIX and ODEx were divided into similar groups. Although the

role of each group is the same in MFIX and ODEx, the details of the subroutines in

the groups differ. The definitions of the groups are presented in Table XII.

Table XII. MFIX/ODEx group descriptions.

Group Description

1 Reads initial data, sets boundary and initial conditions

2 Calculates and sets initial dependent variables

3 Calculates initial values inside the time loop

4 Calculates initial values inside sub-iteration loop

5 Calculates velocity values

6 Calculates pressure and corrects velocities

7 Calculates solids volume fraction and corrects velocities

8 Checks convergence and performs final steps in iteration loop

9 Writes output

Both models spent most of computational time in groups 5, 6, and 7, as shown in

Table XIII. These three groups form the subiteration loop. Each of these three groups

are used once during a single subiteration.

Group 7 was chosen to be explored in detail for two reasons. First, the calcula-

tions in this group are a significant percentage of the total computation time. The
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Table XIII. Time profile of MFIX and ODEx codes.

Group MFIX ODEx

[s] [%] [s] [%]

1 0.396 0.004 0.874 0.097

2 0.586 0.006 0.007 0.001

3 171.655 1.794 4.987 0.555

4 0.231 0.002 25.727 2.863

5 5794.622 60.574 563.552 62.729

6 2331.241 24.370 82.377 9.169

7 1162.497 12.152 213.978 23.817

8 83.266 0.870 6.256 0.696

9 21.670 0.227 0.644 0.073

Total 9566.164 100.00 898.402 100.00

calculations in group 7 are approximately 24% of the total computation time of ODEx

and 12% for MFIX. Second, numerical testing showed that to achieve a good solution,

the void fraction often required more modes than the other field variables. Figure 41

lists, for comparison, the major subroutines of group 7 in MFIX and ODEx.

The major differences between group 7 of ODEx and MFIX are the addition of the

calc ab pp s, reconstruct u s and reconstruct v s routines in ODEx, the conglomera-

tion of calc vol frac.f into correct 1.f and the removal of adjust leq. The subroutine

calc ab pp s performs the projection of the solids volume fraction correction equa-

tion onto the basis functions described in equation (4.18). The reconstruct routines

regenerates the field variables us and vs from their corrected time coefficients. The

subroutine adjust leq was used by MFIX to adjust the type of solver used to solve
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Fig. 41. Structure of the code for group 7.

the system of equations. This routine is not necessary in ODEx because the system

of ODEs are always solved using the same solver.

To determine the most computationally expensive calculations, a time profile of

group 7 was generated for both MFIX and ODEx. These time profiles are shown in

Fig. 42. Figure 42(a) reveals that the time profile of MFIX was dominated by the

subroutine that solves the linear set of equations (3.1) for the solids volume fraction

at each grid point. In contrast, the profile of ODEx was dominated by the projection

of the basis functions. In ODEx, the computational time spent for the solution of

the linear systems of equations was less than 1% of the total computational time. If

less than three modes are used, the reconstruction of the field variables, which is part

of the correction group, uses the majority of the calculation time. The conclusions

drawn based on the solids volume fraction hold for all the dependent field variables.

To further determine the difference between the reduced-order model and the full
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Fig. 42. Time profile of group 7: a) MFIX, and b) ODEx.
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model, the number of operations was counted in the projection subroutines of ODEx.

Table XIV shows that the number of operations in ODEx varies as a quadratic

Table XIV. Number of operations estimates for the projection routines in ODEx.

Variable Additions Multiplications

um (IMAX2− 3)(JMAX2)(8Num
2 + 9Num) (IMAX2− 3)(JMAX2)(6Num

2 + 7Num)

vm (IMAX2− 2)(JMAX2)(8Nvm
2 + 9Nvm) (IMAX2− 2)(JMAX2)(6Nvm

2 + 7Nvm)

pg (IMAX2− 2)(JMAX2− 2)(6Npg
2 + 2Npg) (IMAX2− 2)(JMAX2− 2)(7Npg

2 + 2Npg)

εg (IMAX2− 2)(JMAX2− 2)(6Nεg
2 + 2Nεg) (IMAX2− 2)(JMAX2− 2)(7Nεg

2 + 2Nεg)

Table XV. Example number of multiplications performed in the routines that domi-
nate the CPU time of MFIX and ODEx.

Code IMAX JMAX Num Nvm Npg/Nεg Multiplications

ODEx 108 124 2 2 2 2.93E6

ODEx 108 124 4 4 4 9.93E6

MFIX 108 124 - - - 1.16E6

ODEx 54 62 2 2 2 0.73E6

ODEx 54 62 4 4 4 2.50E6

MFIX 54 62 - - - 0.30E6

function of the number of modes. In MFIX, the number of total operations was

approximately 28(IMAX + 2)(JMAX + 2).24 Therefore the number of operations

per subiteration in ODEx is always greater in ODEx than in MFIX1. In spite of this,

1Except for the atypical case when only one mode is used to represent each field
variable
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numerical tests showed that using the mode combination in Table VIII in the Results

section, ODEx produced accurate results and was 11 times faster than MFIX. The

speed-up is due to the fact that ODEx required fewer subiterations per time step than

MFIX. This is the result of the fact that the time step limitations in the reduced-order

model that solves ODEs were less restrictive that those of the full-order model that

solves PDEs. Consequently, ODEx could use larger time steps than MFIX.

B. Acceleration Methods

This section describes several methods developed to further decrease the computa-

tional time of the reduced-order model. Four techniques are presented herein: (i) an

algorithm for splitting the database, (ii) an algorithm for solving quasi-symmetrical

matrices, (iii) a strategy for reducing the frequency of updating Ã, and (iv) a time

step adjustment method.

1. Database Splitting

The POD basis functions are extracted from a database of snapshots generated by

numerically integrating the governing differential equations. Currently, it is common

to use a database that includes all the snapshots. Using a single database that covers

the entire time domain, however, could be too restrictive. For example, consider the

transience during the startup of the flow in a fluidized bed. The large time variation

at startup requires more modes than are necessary to model the flow features present

in the latter part of the simulation. A method to avoid this problem is to split the

database of snapshots.

Splitting the database into multiple subsets produces an auto-correlation matrix

R that contains more relative energy in the first modes. Herein, energy is defined
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as the sum of all the POD eigenvalues. The relative energy captured by the kth

mode is defined as λk/
∑M

j=1 λj.
21 As the relative energy of the first modes increases,

fewer POD modes are needed in the reconstruction (1.7) to approximate the solution.

Consequently, the computational cost of the reduced-order model decreases.

The snapshots created for the minimum fluidization case were divided into two

parts. The first part, which ranged from 0.2 to 0.35 seconds, included most of the

transient part of the flow. The second part ranged from 0.35 to 1.0 seconds and

included snapshots corresponding to the slower varying flow. Figure 43 shows the

cumulative energy of the POD modes obtained using a single database that covered

the entire time domain. Figures 44 and 45 show the cumulative energy of the POD

modes for the split databases.
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Fig. 43. Cumulative energy for a database that spans 0.2-1.0 seconds.

The energy variation extracted from the 0.2-1.0 seconds database, shown in

Fig. 43, was similar to the energy variation extracted from the transient snapshots,

shown in Fig. 44. Most of the energy extracted from the 0.35-1.0 seconds database

was, however, concentrated in the first mode, as shown in Fig. 45. This concentration

of the energy allowed capturing most of the flow features using fewer modes compared

to the transient regime.
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Fig. 44. Cumulative energy for a database
that spans 0.2-0.35 seconds.
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Fig. 45. Cumulative energy for a database
that spans 0.35-1.0 seconds.

Computing the auto-correlation matrix for each database subset is a straight

forward process. Determining the bounds of each subset such that to reduce the

computational cost is less trivial. Two methods for the separation of the snapshots

into subsets were used. The first method measured the time variation of the time

coefficients, α, of the dominant modes of each field variable. The second method

monitored the ratio between the variation of CPU time and the variation of physical

time.

In the first method, the differences between the values of the coefficients were

larger in the transient regime than the differences in the post transient period. In

addition, in the post transient period, the variation of the time coefficients was almost

constant. The advantage of this method is that the end of the transient regime can

be detected accurately during calculation. The disadvantage of this method is that

there is not a unique value that determines the limit of the transience for all six

field variables. The difference values must be calculated and monitored for several

modes for every field variables. Monitoring all of these values can, in some cases,

produce conflicting information. An alternative to monitoring all six field variables
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was to monitor only the field variables that most affect the flow. For the minimum

fluidization case, the flow features were most affected by the first modes of gas pressure

and gas velocity in the y-direction. A time history plot of the first time coefficient of

gas pressure, α
pg
1 , is shown in Fig. 46. The gas pressure time coefficients difference,

|αpg1 (t+∆t)−αpg1 (t)|, is shown in Fig. 47. In this case, the end of the transient regime

was at tphysical = 0.35 seconds.
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Fig. 46. Time history of the first time co-
efficient of gas pressure.
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Fig. 47. Time history of the variation of
the first time coefficient of gas pressure.

The second method proposed for separating the snapshots was to calculate the

ratio of the change in CPU time and the change in physical time, ∆tCPU/∆tphysical.

During transience, longer computation times are needed per time step as shown in

Fig. 48. The advantage of monitoring this parameter is that the time slope is a single

value that describes the behavior of all six field variables. The disadvantage of this

method is that it over predicts the end of the transience. The magnitude of the slope

decreased rapidly until tphysical = 0.3 seconds and continued to decrease somewhat

slower to a quasi-constant value at tphysical = 0.45 seconds. Placing the end of the

transient region at tphysical = 0.45 seconds is more conservative than the 0.35 seconds

predicted by the first method.
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Fig. 48. Slope of the total CPU time vs physical time measured at 0.01 sec. incre-
ments.

Without database splitting, the best speed-up factor with qualitatively accurate

results was 21 for the following number of modes: Npg= 2, Nug = 1, Nvg = 5, Nus =

4, Nvs = 3 and Nεg = 3, for the minimum fluidization case. Splitting the database at

tphysical = 0.35 seconds into two sets of basis functions resulted in a speed-up factor

of 30. The increase in the speed-up factor was attributed to fewer modes being used

for the post transient period.

2. Freezing the Matrix of the Linear System

The projection of the discretized differential equation onto the basis functions takes

most of the computational time of a subiteration, as shown in Fig. 42(b). Numerical

tests for a minimum fluidization case9 showed that the components of the projected Ã

matrix do not vary significantly past the transient period. To quantify the variation

of the Ã matrix, the eigenvalues of the product, Ã−1(t)Ã(t + ∆t), where ∆t is the

subiteration time step, were compared to the eigenvalues of the identity matrix. This
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comparison was performed using Ãvg matrix extracted from the transient and post

transient periods.

The eigenvalues of Ãvg varied by approximately 4.1 ∗ 10−3% between time steps

in the transient period. The eigenvalues varied by approximately 6.7 ∗ 107% between

time steps in the period after transience. Table XVI shows the eigenvalues of Ãvg

extracted from the transient and post transient periods. To reduce computational

time, the Ã matrices of the linear systems (4.11)-(4.34) were no longer updated every

subiteration. The B̃ vectors, however, were updated every subiteration. Freezing of

Table XVI. Eigenvalues of Ãvg extracted from the transient and post transient peri-
ods.

tphysical[s] λ1 λ2 λ3 λ4 λ5

0.25 1.000000000 1.000000000 1.000000000 0.999982334 0.999936216

0.90 1.000000000 1.000000000 1.000000000 1.000000000 0.999999933

the matrix was implemented by calculating the Ã matrix for the first subiteration at

the beginning of each time step. Then for the next subiteration the Ã matrix was

held fixed and only the B̃ vector in the Ãx = B̃ system (4.11)-(4.34) was recomputed.

Freezing was only performed for every other subiteration. This application of freezing

resulted in a 6.0% increase in error averaged over all the field variables and a 10.1%

decrease of computational time. The increase in error and decrease of computational

time were measured with respect to the case when freezing was not used. Errors of

the ROM when freezing was not used, εNF , and with freezing, εF , compared to the

full-order model solution are shown in Table XVII. The error, ε, for gas pressure, pg,

was defined as:

εpg =

∑

N(p
ODEx
g − pMFIX

g )

N ∗ 101000 (6.1)
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where N is the total number of points in the spatial domain. The error is normalized

by the pressure at the outlet 101000 Pa. Similarly, the velocity errors and solids

volume fraction errors are normalized by the gas inlet velocity 12.6 cm/s and the

maximum value of εs, 1.0, respectively. The percentage difference of error between

the two ROM, εD, cases is defined as:

εD = 100 ∗ |εNF − εF |
εNF

(6.2)

Table XVII. ROM errors at tphysical = 1.0 seconds with and without freezing.

Variable εNF [%] εF [%] εD [%]

ug 1.655 ∗ 10−3 1.649 ∗ 10−3 0.362

vg 0.068 0.072 5.882

us 3.361 ∗ 10−4 3.322 ∗ 10−4 1.160

vs 1.452 ∗ 10−4 1.782 ∗ 10−4 22.727

pg 1.555 ∗ 10−3 1.644 ∗ 10−3 5.723

εs 3.551 ∗ 10−5 3.541 ∗ 10−5 0.282

Avg. 0.012 0.013 6.023

The relationship between the computational time and the physical time was

used herein to determine when to freeze the matrix. Figure 49 shows a plot of this

relationship for the minimum fluidization case. After tphysical = 0.4 seconds the

relationship between the iteration time and physical time was close to linear. This

indicated that the transient period had ended.

Applying the freezing algorithm to ODEx at the physical time of 0.4 seconds

resulted in a 10% decrease in computational time. Given that freezing the projection
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Fig. 49. Relationship between physical time and CPU time.

of the Ã matrix greatly reduces the number of operations per subiteration, a 10%

decrease in required CPU time is a small improvement. This reduced gain was due

to an increase in the number of subiterations, which diminished the benefit of saving

computational time by not updating the Ã matrix.

3. Time Step Adjustment

MFIX and ODEx use an identical method to adjust the time step of the time inte-

gration. During integration time step size adjustment is determined by the speed of

convergence of the calculation. Both codes use two parameters to adjust the time

step during calculation: (1) the frequency of the time step adjustment and (2) the

size of the time step adjustment. Given identical initial time steps and time step

adjustment parameters, the time step size in ODEx increased by at least one order

of magnitude, while the time step in MFIX remained almost constant, as shown in

Fig. 50.
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Fig. 50. Time step size vs. physical time: a) MFIX, and b) ODEx.

The time step cannot grow unbounded because the time accuracy of the results

would diminish. The maximum time step size can be manually set based on the time

scale of the simulated flow phenomena. Three time step parameters were modified

in ODEx to achieve a faster computation time: (1) the frequency of the time step

adjustment, (2) the size of the time step adjustment and (3) the size of the initial

time step.

It was found through numerical tests that the most effective time step adjustment

to speed up ODEx was to increase the initial time step size. Time step size growth

during the transient region was more limited than in the post transient period to

satisfy convergence. As shown in Fig. 50b the time step did not grow steadily in

the initial part of the calculation. Due to this restriction in the transient period,

increasing the initial time step resulted in a limited computational speed up. For

example, changing the initial time step size from 10−4 to 10−3 seconds reduced the

computational time by approximately 9% for any mode combination for the minimum

fluidization case. This relatively small reduction in computational time did not reflect

the order of magnitude decrease of the initial time step. Much of the computational

speed up was lost because it was necessary to reduce the larger initial time step size

to satisfy convergence during the initial transient calculations.
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4. Summary of Acceleration Methods

A summary of the speed-up factors achieved by the various versions of the reduced-

order model ODEx is given in Table XVIII. The speed-up factors are reported with

respect to the full-order model code, MFIX. All the ODEx versions used the set of

modes: Npg= 2, Nug = 1, Nvg = 5, Nus = 4, Nvs = 3 and Nεg = 3.

Table XVIII. Speed-up factors: ODEx with acceleration methods vs. MFIX.

Speed-up Factor

MFIX 1

ODEx with no acceleration method 21

ODEx with database splitting 30

ODEx with projection freezing 23

ODEx with time step adjustment 25

ODEx with database splitting 114

and time step adjustment

Restriction of time step size growth caused by the initial transient calculations led

to the combination of database splitting and adjustment of the initial time step size.

First the database was split into a transient and post transient period. This allowed

the use of a small initial time step for the transient calculations and a relatively large

initial time step and fewer modes for the post transient calculations. The combination

of these two methods resulted in a two orders of magnitude speed-up factor of ODEx

compared to MFIX for the minimum fluidization case.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

This chapter presents the conclusions derived from this work. In addition, recom-

mendations for future work are presented.

A. Conclusions

In this thesis a POD-based reduced-order model has been developed to simulate

isothermal and non-isothermal transport phenomena in a fluidized bed. Results were

presented for both the POD-based ROM and full-order model for comparison. The

presented cases used for comparison were a minimum fluidization case, a time extrap-

olation case using the POD-based ROM and an unsteady, periodic inlet boundary

condition case. The results show that the POD-based ROM produces qualitatively

accurate results while only requiring a few basis functions for each field variable.

Additionally this thesis presented four acceleration methods for reduced-order

models based on the proper orthogonal decomposition method: (i) database splitting,

(ii) an algorithm for solving quasi-symmetrical matrices, (iii) freezing the matrix of

linear system, and (iv) a time step adjustment.

The database splitting algorithm used the fact that fewer modes were needed

for reconstruction when the integration was divided. The snapshots created for the

minimum fluidization case were divided into two parts. The first part, which ranged

from 0.2 to 0.35 seconds, included most of the transient part of the flow. The second

part ranged from 0.35 to 1.0 seconds and included snapshots corresponding to the

slower varying flow. Compared to the first integration period, relatively few modes

were needed for the second period of integration.

The matrix freezing approach increased the computational efficiency by reducing
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the number of operations performed during the post transient calculations. Although

the Ã matrix was not for every subiteration, the right hand side vector, B̃, was

updated every subiteration because it was necessary and computationally inexpensive.

Only a small decrease in the computation time (10%) was obtained, since the number

of subiterations increased in order to achieve a converged solution.

Time step adjustments used the fact that the time step size could be increased

to a larger value in the POD-based ROM than in MFIX. It was found through nu-

merical tests that the most effective method to speed up the ROM was to adjust the

initial time step size. To overcome relatively strict time step size limitations during

the transient period, the time step adjustment and database splitting acceleration

techniques were used together. This combination of methods achieved a two orders

of magnitude increase in computational efficiency.

B. Future Work

The challenge for the future is to apply the POD-based ROM developed in this thesis

to more dynamic cases with larger amounts of flow field unsteadiness. Additionally

POD may be applied to the field variables as a whole instead of individually. The

lessons learned from this investigation may eventually be applied to generate a POD-

based reduced-order model of aeroelastic phenomena.
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APPENDIX A

CONSTITUTIVE MODELS

Gas phase stress tensor

The gas viscous stress tensor ¯̄τg is assumed to be of the Newtonian form

¯̄τg = 2µg
¯̄Dg − λgtr(

¯̄Dg)
¯̄I,

where µg is the gas phase viscosity; λg = −2/3µg; ¯̄I is an identity tensor; ¯̄Dg is the

gas phase strain rate tensor, given by

¯̄Dg =
1

2

[

5~vg + (5~vg)T
]

.

Solid phase stress tensor

MFIX uses the following model to compute the solid phase stress tensor

¯̄τs =











¯̄τPs if εg ≤ ε∗g: Plastic Regime

¯̄τVs if εg > ε∗g: Viscous Regime
,

where ε∗g is the packed-bed void fraction at which a granular flow regime transition is

assumed to occur and ε∗g is usually set to the void fraction at minimum fluidization.17

The superscript P stands for plastic regime and V for viscous regime.

• Plastic Regime:

pPs = 1025(ε∗g − εg)
10

¯̄τPs = 2µPs
¯̄Ds
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µPs =
pPs sinφ

2
√

I2Ds

Herein ¯̄Ds denotes the solid phase strain rate tensor. φ is the angle of internal friction.

I2Ds
is the second invariant of the deviator of ¯̄Ds:

I2Ds
=

1

6

[

(Ds11 −Ds22)
2 + (Ds22 −Ds33)

2 + (Ds33 −Ds11)
2
]

+D2
s12 +D2

s23 +D2
s31.

• Viscous Regime:

pVs = K1sε
2
sΘs

¯̄τVs = 2µVs
¯̄Ds + λVs tr(

¯̄Ds)
¯̄I

λVs = K2sεs
√

Θs

µVs = K3sεs
√

Θs

K1s = 2(1 + es)ρsg0s

K2s = 4dpsρs(1 + es)εsg0s/(3
√
π)− 2

3
K3s

K3s =
dpsρs

√
π

6(3− es)
[1 + 0.4(1 + es)(3es − 1)esg0s ] +

dpsρs8εsg0s(1 + es)

10
√
π

K4s =
12(1− e2s)ρsg0s

dps
√
π

g0s =
1

1− εs
+ 1.5εs

(

1

1− εs

)2

+ 0.5ε2s

(

1

1− εs

)3

Herein es is the coefficient of restitution for particle-particle collisions. dps is the solid

particle diameter. The granular temperature Θs is given by

Θs =















−K1sεstr(
¯̄Ds) +

√

K2
1str

2( ¯̄Ds) + 4K4sεs

[

K2str
2( ¯̄Ds) + 2K3str(

¯̄D2
s)
]

2εsK4s















2
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Gas-solid momentum transfer

Fgs =
3ρgεsεg
4V 2

rsdps

(

0.63 + 4.8
√

Vrs/Res

)2

|~vs − ~vg|

Vrs = 0.5
(

A− 0.06Res +
√

(0.06Res)2 + 0.12Res(2B − A) + A2
)

A = ε4.14g

B =











0.8ε1.28g if εg ≤ 0.85

ε2.65g if εg > 0.85

Res =
dps |~vs − ~vg| ρg

µg

Gas-solids heat transfer

The gas-solids heat transfer coefficient γgm quantifies the heat transfer between the

gas and solids phases. The term γ0gm is the gas-solids heat transfer coefficient not

corrected for the interphase mass transfer. MFIX uses the following equation to

calculate the gas-solids heat transfer coefficient

γgm =
CpgR0m

exp
(

CpgR0m

γ0
gm

)

− 1

γ0gm =
6kgεsmNum

d2pm

Num = (7− 10εg + 5ε2g)(1 + 0.7Re0.2m Pr1/3) + (1.33− 2.4εg + 1.2ε2g)Re
0.7
m Pr1/3

where the subscript m denotes the gas or solids phase, Num is the Nusselt number,

Pr is the Prandtl number and R0m is the rate of transfer of mass from the mth solids

phase to the 0th (or gas) phase.
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Gas and solids conduction

MFIX uses the following equations to model the gas and solids phase conduction:

~qg = −kg 5 Tg

~qsm = −ksm5 Tsm
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APPENDIX B

SAMPLE INPUT FILE FOR ODEX

# ODEx input file for Case I

#

# 1.1 Run control section

#

TSTART = 0.2028

TSTOP = 1.0

DT = 1.D-4

MAX_NIT = 30

DT_MAX = 1.D0

DT_MIN = 1.D-6

DT_FAC = 0.9D0

TOL_RESID = 1.D-4

TOL_DIVERGE = 1.D2

#

# 1.2 Geometry and discretization section

#

XLENGTH = 25.4D0 IMAX = 108

YLENGTH = 76.5D0 JMAX = 124

DISCRETIZE = 2

#

# 1.3 Physical properties section

#

MU_g0 = 1.8D-4

MW_g0 = 29.D0

T_g0 = 297.D0

RO_s0 = 1.00

D_p = 0.05

C_e = 0.8

Phi = 30.0

EP_star = 0.4

#

# 1.4 POD mode section

#

nP_g = 2

nU_g = 2

nV_g = 5

nU_s = 8

nV_s = 6

nEP_g = 7
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APPENDIX C

SAMPLE INPUT FILE FOR ODET

#

# ODEt input file for Case II

#

# 1.1 Run control section

#

TSTART = 0.2028

TSTOP = 1.0

DT = 1.D-4

MAX_NIT = 30

DT_MAX = 1.D0

DT_MIN = 1.D-6

DT_FAC = 0.9D0

TOL_RESID = 1.D-4

TOL_DIVERGE = 1.D2

#

# 1.2 Geometry and discretization section

#

XLENGTH = 25.4D0 IMAX = 108

YLENGTH = 76.5D0 JMAX = 124

DISCRETIZE = 2

#

# 1.3 Physical properties section

#

MU_g0 = 1.8D-4

MW_g0 = 29.D0

T_g0 = 297.D0

RO_s0 = 1.00

C_PG0 = 0.25

GAMA_RG0 = 0.0

GAMA_RS0 = 0.0

D_p = 0.05

C_e = 0.8

Phi = 30.0

EP_star = 0.4

#

# 1.4 POD mode section

#

nP_g = 2
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nU_g = 2

nV_g = 5

nU_s = 8

nV_s = 6

nEP_g = 7

nT_g = 9

nT_s = 3
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