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ABSTRACT 

 

Analysis of TRU-Fueled VHTR Prismatic Core  

Performance Domains.  (December 2007) 

Tom Goslee Lewis, III, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Pavel Tsvetkov 

The current waste management strategy for spent nuclear fuel (SNF) mandated by the 

U.S. Congress is the disposal of high-level waste (HLW) in a geological repository at 

Yucca Mountain.  Ongoing efforts on closed-fuel cycle options and difficulties in 

opening and safeguarding such a repository have led to investigations of alternative 

waste management strategies.  One potential strategy would make use of fuels containing 

transuranic (TRU) nuclides in nuclear reactors.  This would prolong reactor operation on 

a single fuel loading and by doing so, would reduce current HLW stockpiles. The 

analysis has already shown that high-temperature gas-cooled reactors (HTGRs) and their 

Generation IV extensions, very-high-temperature reactors (VHTRs), have encouraging 

performance characteristics that will allow for prolonged operation with no intermediate 

refueling, as well as for transmutation of TRUs.  

The objective of this research was to show that TRU-fueled VHTRs have the possibility 

of prolonged operation on a single fuel loading while retaining their Generation IV safety 

features.  In addition, this research evaluated performance characteristics, and identified 

operational domains of these systems, as well as the possibility of HLW reduction. 

A whole-core, 3-D model of a power size prismatic VHTR with a detailed temperature 

distribution was developed for calculations with the SCALE 5.1 code package.  Results 

of extensive criticality and depletion calculations with multiple fuel loadings showed that 

VHTRs are capable and suitable for autonomous operation when loaded with TRU fuel.
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NOMENCLATURE 

 

3D 3 Dimensional 
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AHA Acetohyroxamic Acid 
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LFR Lead-Cooled Fast Reactor 

LWR Light Water Reactor 

MA Minor Actinide 

MSR Molten Salt Reactor 

MT Metric Ton 

MWth Megawatt Thermal 

NRC Nuclear Regulatory Commission 

ORNL Oak Ridge National Laboratory 

P&T Partitioning and Transmutation 

PUREX Plutonium Uranium Reduction and Oxidation 

PWR Pressurized Water Reactor 

RGPu Reactor Grade Plutonium 

SCWCR Super-critical Water Cooled Reactor 

SFR Sodium-Cooled Fast Reactor 

SNF Spent Nuclear Fuel 

TBP Tri-Butyl-Phosphate 

TRISO Tristructual Isotropic 

TRU Transuranics 

U.S. United States 

UREX Uranium Extraction 

VHTR Very-High Temperature Reactor 
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I. INTRODUCTION 

It is clear that the past 200 years have seen a leap in humankind’s progress, most notably 

in the medical and engineering fields, which have drastically altered the way humanity 

interacts with nature.  What once was thought impossible has become integrated in the 

framework of our society and sustains our existence.  This is most evident in our 

capability to release and harvest the energy encapsulated in the very building blocks of 

nature itself.  This statement of course, refers to the advent of nuclear power and its 

ability to harvest the binding energy of the nucleus.  As with the use of any technology, 

unanticipated obstacles are encountered and lessons are learned that lead the 

practitioners in an ever-broadening path of knowledge.  A path that constantly requires 

questioning of what was once known and for us to retool the now outdated methods we 

use to unleash the power of the atom.  As humanity has traveled this path, the public has 

become much more interested in effects of technology on the environment and the 

constant accelerating need of cleaner and, more importantly, sustainable yet safe energy.  

There has been a renewed interest in nuclear energy with demands not only for the future 

but for final solutions of such issues like nuclear waste management. 

The U.S. Congress has mandated the disposal of high-level waste (HLW) in a geological 

repository at Yucca Mountain.  With over thirty billion dollars available for the 

construction and management of the repository, difficulties in opening and safeguarding 

it have led to investigations of alternative waste management strategies.  One potential 

strategy would make use of reactor fuels containing transuranic (TRU) nuclides in 

nuclear reactors.  For example, to prolong reactor operation on a single fuel loading and, 

by doing so, to reduce current HLW inventories. Analysis has already shown that high-

temperature gas-cooled reactors (HTGRs) and their Generation IV extensions, very-high  

 
 
___________ 
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temperature reactors (VHTRs), have encouraging performance characteristics that will 

allow for prolonged operation without intermediate refueling, as well as for 

transmutation of TRUs [1]. 

I.A The Fuel Cycle 

The first nuclear reactor went critical in 1942 and hove operated commercially since 

1956, demonstrating an excellent safety record.  Currently there are over 400 nuclear 

power reactors operating in 31 countries, accounting for about one-fifth of the electrical 

generation worldwide [2].  In the U.S, commercial reactors operate under a once-through 

fuel cycle.  At the end of this cycle, spent nuclear fuel (SNF) is considered as HLW 

when it is accepted for permanent disposal.  This is due to the Nuclear Regulatory 

Commission (NRC) defining HLW as either [3]:  

1. Spent reactor fuel when it is accepted for disposal. 

2. Waste materials remaining after spent fuel is reprocessed. 

The current policy in the U.S. is for all HLW from SNF to be placed in the Yucca 

Mountain geological repository.  By law when the waste is emplaced in the mountain, 

the waste has to be retrievable, which opens the possibility that the mountain can 

behave, in a sense, as an energy reserve [3].  For this to be true, the U.S. has to undergo 

a fuel cycle shift, most probably to one of the following three: 

1. Partial recycling.  In this cycle a portion of the SNF is reprocessed, where a 

fraction of the actinide material is recovered and fabricated into new fuel, most 

likely in the form of mixed-oxide (MOX) for thermal reactors. 

2. Full fissile recycling.  In this scenario all SNF is recovered and reprocessed for 

the extraction of Pu and U-233 for fuel in both thermal and fast reactors.  This 

process would occur several times until recycling is no longer feasible. 

3. Full actinide recycle.  In this final scenario, all the SNF would be processed and 

all the actinides would be used as fuel in fast reactors that would be capable of 

higher actinide destruction [4]. 
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The removal of low-level waste (LLW) and stable nuclides can reduce the amount of 

nuclear waste requiring permanent disposal.  Waste inventory estimates show that at the 

time of waste acceptance, there will be more than 70,000 tons of waste located at power 

reactor sites spread across 39 states [5].  This amount of waste is more then enough to 

completely fill the geological repository at the capacity mandated by the current U.S. 

law [6].  Most of this waste is a result of the operation of the U.S. light-water reactor 

(LWR) fleet (~60% pressurized water reactors [PWR]). 

An average PWR produces approximately 30 tons of SNF per year characterized by 

burnup levels of about 40 GWd/tHM. There are around 11.5 kg/SNF tone of TRUs 

composed of approximately 10 kg of Plutonium and 1.5 kg of minor actinides (MAs).  

The remainder consists of fission products (FPs) (~30 kg) and depleted uranium (DU) 

[7].   

Elements labeled as TRUs have atomic numbers greater than 92 (uranium) and are 

created in nuclear reactors from 238U via neutron capture events and beta minus decays 

that result in the formation of higher elements.  A subset of TRUs, MAs, is composed of 

Np, Am, and Cm. MAs have very different cross-sections when compared to U and Pu.  

For example, Np-237 and Am-241 have very large neutron capture cross-sections when 

compared to U-238.  Furthermore, many of Np-237 and Am-241 daughter nuclides have 

very large fission cross-sections, thus causing the MAs to burn much faster then the U-

238 found in LEU fuel [8].  

TRUs are the major source of long-term radioactivity in SNF, while FPs are the major 

contributor to the short-term (500 years) decay heat, radioactivity and local  (e.g., water-

table and topsoil) toxicity due to their ease of mobility in the environment (e.g., I-129) 

[9].  If the SNF were to be “partitioned” and “transmutated” (P&T), the resulting fuel 

waste would require only 1000 years to reach the emission levels of natural uranium 

[10].   Neutron emission and decay heat of TRUs are shown in Table I [7].  
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Table I.  TRU Neutron Emission and Decay Heat 

Nuclide Half-life 
(years) 

Thermal Fission 
Cross-section (b) 

Total Neutron Emission 
Assuming Oxide (1/g-s) 

Decay Heat 
(W/g) 

Pu-238 87.7 17.9 36000 0.56

Pu-239 2.41E+04 748 96 0.002

Pu-240 6.54E+03 0.06 1300 0.007

Pu-241 14.4 1013 1.23 0.004

Pu-242 3.76E+05 0.0026 2000 0.0001

Np-237 2.14E+06 0.022 0.9 0.00002

Am-241 4.32E+02 3 7000 0.11

Am-243 7.38E+03 0.12 540 0.007

Cm-242 4.46E-01 5.1 2.90E+07 120

Cm-243 2.85E+01 618 1.30E+05 1.7

Cm-244 1.81E+01 1 1.20E+07 2.8

Cf-252 2.65E+00 33 2.35E+12 39

 

Partitioning is the separation of SNF into desired chemical subsets via either a wet or dry 

chemical process.  This is a crucial step for transmutation to occur, allowing for these 

chemical subsets to be used in special targets or as a nuclear fuel. Current research 

efforts in partitioning technology focus on improving these processes and reducing 

secondary wastes.  Additionally, research is being directed toward specific elements, 

such as curium, due to safety challenges of fuel/target manufacturing [11].  

As with all advanced technologies, difficulties exist most notably with the separation of 

MAs such as Am, Cm, and the lanthanides due to their nearly identical chemical 

properties.  The most widely used industrial partitioning process is called PUREX (Pu U 

Reduction and Oxidation).  PUREX is a wet chemical extraction process based on nitric 

acid dissolution of the fuel and solvent extraction of U and Pu using tri-butyl-phosphate 

(TBP).  Currently this process is capable of removing both U and Pu at more then 90.0% 

(up to 99.88%) from SNF, but Am, Cm and other MAs are not removed individually and 

are simply lumped together with the FPs [12].   
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The sister process to PUREX is UREX (Uranium Extraction).  UREX is a modification 

of the front end of the PUREX process.  It uses the reagent acetohyroxamic acid (AHA) 

to complex Pu and reduce its valence so that the Pu will remain in the aqueous phase 

when the uranium is extracted into TBP.  This addition to the PUREX process allows for 

a very high recovery rate of the U from SNF.  This also leaves the Pu and TRUs with the 

minor actinides, and fission products.  Such methods are suitable for the retrieval and 

processing of TRUs as nuclear fuels. UREX is also attractive from the viewpoint of non-

proliferation, since Pu and MAs remains in the same waste stream.  The Pu would be 

very difficult to separate from the MAs, making the waste stream less attractive for 

clandestine weapon programs. There are currently five widely-accepted UREX 

processes, each in a different stage of development and each with its own promises and 

drawbacks.  These UREX processes differ from one another by the production of 

different waste streams [13].  The products of each process are shown in Table II. 

 

Table II. UREX Processes 

Process Prod #1 Prod # 2 Prod # 3 Prod # 4 Prod # 5 Prod # 6 Prod # 7 

UREX+1 U Tc Cs/Sr TRU+Ln*    

UREX+1a U Tc Cs/Sr TRU All FP   

UREX+2 U Tc Cs/Sr Pu+Np Am+Cm+LN* FP  

UREX+3 U Tc Cs/Sr Pu+Np Am+Cm All FP  

UREX+4 U Tc Cs/Sr Pu+Np Am Cm All FP 

*Ln-subgroup of FPs composed of elements in the Lanthanide series. 

 

Technetium removal is important because of its major long-term contribution to dose 

levels at a geological repository. Cs and Sr play the major role in the decay heat 

generation at a repository. Thus, the separation of these nuclides would improve the 

repository operations and potentially increase its storage capacity.  It is important to note 

that all UREX processes require considerable cooling time of the SNF before 

partionioning.  This is, in part, due to dose limitations for the operation of reprocessing 
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facilities and radiation damage to chemicals used in these processes.  Additional 

technologies, such as pyro-processing or TRUEX, give the possibility of decreasing the 

needed cooling time between spent fuel discharge and reprocessing [2].   

The expansion of the fuel cycle is crucial for the sustainability of nuclear fuel resources.  

All current and under construction nuclear power plants operate with uranium as the fuel 

source.  Using only currently identified conventional uranium resources there is 

approximately 80 years of power production possible assuming no increase in nuclear 

energy demands or change in how fuel is used (i.e. traditional LWR reactors).  If there is 

a shift to a closed-fuel cycle with fast reactors only, estimates show that without 

dramatically increasing nuclear power demand, approximately 5000 years could be 

supported by existing fuel reserves.  Though, a switch to fast reactors cannot occur 

immediately, switching to double-strata fuel cycle, that uses traditional thermal reactors 

and dedicated fast reactors could sustain current energy demands [16].  

Partitioning technologies such as those discussed, are crucial for future fuel cycles that 

promise the capability to reduce the HLW stockpiles, increase reactor fuel reserves, 

make possible advanced fuels containing TRU and MA for prolonged life cores, and 

extend the capacity of the Yucca Mountain repository reducing the need for additional 

repositories [8]. Partitioning technology is just one step in these future cycles; there is 

also a need for new reactor designs, advanced transmutation fuels, and global 

partnerships to assure non-proliferation.  These needs are being addressed globally with 

the founding of several research partnerships. 

I.B Generation-IV Reactor Systems 

To meet the demand for clean and reliable energy, the Generation-IV International 

Forum (GIF) was founded in early 2000 to investigate and develop technologies that 

could be incorporated into the next generation of power reactors. Through this 

international partnership around 100 different systems were evaluated to meet goals set 

forth by the forum [17]:  
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1. Generation IV nuclear energy systems will provide sustainable energy generation 

that meets clean air objectives and promotes long-term availability of systems 

and effective fuel utilization for worldwide energy production. 

2. Generation IV nuclear energy systems will minimize and manage their nuclear 

waste and notably reduce the long-term stewardship burden, thereby improving 

protection for the public health and the environment. 

3. Generation IV nuclear energy systems will have a clear life-cycle cost advantage 

over other energy sources. 

4. Generation IV nuclear energy systems will have a level of financial risk 

comparable to other energy projects. 

5. Generation IV nuclear energy systems operations will excel in safety and 

reliability. 

6. Generation IV nuclear energy systems will have a very low likelihood and degree 

of reactor core damage. 

7. Generation IV nuclear energy systems will eliminate the need for offsite 

emergency response.  

8. Generation IV nuclear energy systems will increase the assurance that they are a 

very unattractive and the least desirable route for diversion or theft of weapons-

usable materials, and provide increased physical protection against acts of 

terrorism. 
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Of the nearly 100 systems studied by GIF, six were chosen in late 2002 based on the 

ability of the system to meet the goals outlined above [17].  Three of these systems (the 

VHTR, super-critical water-cooled reactor (SCWCR), molten salt reactor (MSR)) can 

operate with a thermal spectrum.  The lead-cooled fast reactor (LFR), gas cooled fast 

reactor (GFR), sodium-cooled fast reactor (SFR), super-critical water-cooled reactor 

(SCWCR), and molten salt reactor (MSR) can operate as fast reactor systems. Of these 

six concept systems, the VHTR is the most likely GEN IV system to be available in the 

near term (~2020) [14].   

I.C  Very High Temperature Reactors 

VHTR technology is based on concepts developed for the U.S. Fort St. Vrain and Peach 

Bottom reactors [10], as well as on the extensive international experience involving such 

facilities as the German AVR and THTR, Swiss PROTEUS, Chineese HTR-10, 

Japanese HTTR and Russian GROG and ASTRA.  The VHTR concept should be 

designed as a high-efficiency system capable of supplying electricity and process heat to 

a broad spectrum of high-temperature and energy-intensive processes.  The reference 

reactor is a 600 MWth, helium-cooled core connected to an intermediate heat exchanger 

to deliver process heat, although direct cycles without the need of a heat exchanger have 

been proposed.  The reactor supplies heat with core coolant (helium) outlet temperatures 

up to 1,000 degrees Celsius [18].  Further VHTR reference operation parameters are 

shown in Table III. 
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Table III. VHTR Reference Design 

Reactor Parameter Reference Value 

Reactor power 600 MWth 

Coolant inlet/outlet temperature 600/1000 °C 

Maximum Fuel Temperature  

         Normal Operation 1400 °C 

         Accident Conditions 1800 °C 

Core inlet/outlet pressure Dependent on process 

Coolant Helium 

Core Power Density 5.8 MWth/m3 

Net plant efficiency >50% 

Core Geometry Annular 

Plant Design Life 60 years 

Safety Design Philosophy Passive 

 

 

The high thermodynamic efficiency of VHTRs is due to their power generation cycle 

being based on a high-temperature Brayton cycle.   The systems are passively safe 

because of their low-power density and refractory core materials. The low-power density 

in VHTRs is important in accidents where a loss of cooling requires that energy 

produced before reactor shutdown, as well as decay heat produced after shutdown can, 

be dissipated within the reactor by conduction and radiative heat transfer without 

material failure, specifically the TRISO (TRIstructual ISOtropic)-coated fuel particles.  

In particular, VHTRs will have several containment layers to minimize the radionuclide 

release to the environment.  These layers include: 

1. The fuel kernel, 

2. Particle coatings, specifically SiC, 

3. Compact/Pebble graphite matrix, 

4. Primary coolant pressure boundary, and 

5. Vented, low-pressure confinement building, 
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Of these five containment layers, the most important is the particle coatings.  The 

performance of these coatings during reactor operation is strongly related to the 

manufacturing process.  Currently there are 8 potential failure mechanisms associated 

with particle failure related to radionuclide release and are listed below [19]: 

1. Failure of the SiC coating by thermal decomposition, 

2. Failure of the SiC coating by fission product/SiC interaction, 

3. Failure of the SiC coating due to kernel migration in the presence of a thermal 

gradient, 

4. Heavy-metal dispersion during SiC coating deposition and subsequent 

accelerated SiC corrosion during irradiation, 

5. Irradiation-induced failure of the OPyC coating, 

6. Pressure-induced failure in particles without manufacturing defects, 

7. Pressure-induced failure in particles with manufacturing defects, and 

8. Coating damage during fuel manufacture, resulting in heavy metal 

contamination. 

VHTRs have a flexible fuel cycle (i.e., cycles not simply based on a once through LEU 

cycle), allowing for wide range of fuels (e.g., LEU, TRU, reactor grade Pu (RGPu), etc.).  

The fuel cycle flexibility gives VHTRs the capability to undergo high burnup between 

refueling, exemplified by the concept of Deep Burn [20].   

Deep Burn is a concept proposed and formally patented by General Atomics (GA) for 

systems such as the modular helium reactor (MHR) that makes use of thermalized 

neutrons and high-burnup fuel forms for the reduction/destruction of TRUs produced by 

LWRs.  The Deep Burn process is a balance of the fission and neutron-capture-followed-

by fission processes that result in a regulated fuel consumption rate [21].  The possibility 

of such an approach is made possible by the TRISO-coated fuel particles being capable 

of high burnup (burnup is limited by the molecular structure of a material to withstand 

radiation damage).  To account for radiation damage effects, fuel performance limits are 

expressed in terms of fast neutron fluence.  For of TRISO particles, the fast neutron 

fluence limits, depending on TRISO configuration, are around 5x1025 n/m2 [19].  The 
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graphite moderation in a VHTR is also important in the deep burn process, by producing 

more opportunities for thermal neutrons to interact with fissionable nuclides and 

epithermal neutrons to interact with non-fissionable nuclides (neutron capture events for 

transmutation).  Neutrons in the epithermal range, when captured, also provide a strong 

negative reactivity feedback effect as the fuel temperature increases [22].  Additionally, 

the ceramic-coated fuel particle size can be adjusted, effectively changing the carbon to 

heavy metal ratio (C/HM), as well as changing self-shielding within the particles, which 

results in a change in the rate of fission and capture reactions. 

There are two possible core types for a VHTR system, the first being a pebble-bed core, 

such as the Chinese HTR-10, and the second being a prismatic (hexagonal block) core 

such as the Japanese HTTR [23].  The prismatic core is composed of reflector blocks, 

fuel blocks, coolant blocks and control rod guide blocks. These blocks are hexagonal 

graphite blocks that are arranged side-by-side in a honeycomb configuration and then 

stacked vertically in columns to create the core [10].  This is shown in Fig. 1, which 

illustrates the two core configurations considered in this thesis. 
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Fig. 1. Three and four fuel-ring VHTR configurations. 

 

The pebble-bed core is composed of a cavity created by graphite reflector blocks that are 

filled with billiard-ball-sized graphite, spheres containing TRISO-coated fuel particles. 

Basic features of a TRISO-coated fuel particle are shown in Fig. 2.  The TRISO coating 

on the fuel provides a miniature containment vessel for each fuel particle, allowing 

retention of fission fragments at high temperatures [14].  The core is cooled with helium 

that flows through gaps between neighboring graphite spheres.  The pebble-bed design 

has the unique possibility of continuous refueling by the addition and removal of pebbles 

during reactor operation [10], thus decreasing the need for reactor downtime. Both core 
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types can achieve similar performance characteristics and both utilize the TRISO-coated 

fuel particles.   
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Fig. 2. TRISO-coated fuel particle. 

 

These systems are usually considered to operate under a thermal-neutron spectrum, but 

have the possibility of their spectrum being shifted to a harder spectrum by changing the 

fuel-to-moderator ratio.  Due to spectrum shifting, there is a possibility to use VHTRs in 

waste management via incorporating non-traditional fuels that contain different loadings 

of plutonium, uranium, and MAs [7,8].  The spectrum shifting takes advantage of the 

more favorable fission cross-sections for nuclides in TRUs at higher energies (i.e., 

harder spectrum). The utilization of MAs, from light-water reactor (LWR) fuel, for the 

prolonged-life VHTRs would reduce the need for the creation of more geological 
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repository volume per decade of reactor operation, if implemented in advanced fuel 

cycles such as those being developed in the Advanced Fuel Cycle Program [23].  

I.D Advanced Fuel Cycle Program 

In 2003, the Department of Energy’s (DOE) Advanced Fuel Cycle Initiative (AFCI) was 

launched as an outgrowth of the Congress-authorized Advanced Accelerator Application 

(AAA) program [24].  The program mission was to “develop and demonstrate 

technologies that would enable the transition to an environmental, social, economical, 

and political acceptable advanced fuel cycle [25]”.  Goals of the program were: 

1. Reduce the long-term environmental burden of nuclear energy through more 

efficient disposal of waste materials, 

2. Enhance the overall nuclear fuel cycle proliferation resistance via improved 

technologies for SNF management, 

3. Enhance energy security by extracting energy recoverable from SNF, ensuring 

that uranium resources do not become a limiting factor for nuclear power, and 

4. Improve fuel-cycle management, while continuing competitive fuel-cycle 

economics and excellent safety performance of the entire fuel-cycle system, 

Preliminary analysis of possible AFCI technologies for nuclear waste management 

options has shown that the cost of a geological repository at the Yucca Mountain site 

could be reduced by several billion dollars and the need for a second repository could be 

significantly delayed while increasing the amount of domestic nuclear resources [25].   

The increase of domestic nuclear resources is paramount for the sustainability of the 

industry. 

The AFCI program has now been transformed into the Global Nuclear Energy 

Partnership (GNEP) program, which is the DOE response to President Bush’s Advanced 

Energy Initiative. The GNEP program has similar goals but is more robust by realizing 

that the nuclear industry is not a domestic entity but rather a global enterprise that 

assumes contributions from other nations in order to meet future needs.  It envisions a 
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secure, closed, fuel-cycle with supplier nations providing affordable safe reprocessed 

fuel that can then be transferred to other nations who agree to use nuclear energy for 

power production as demonstrated in Fig. 3. 
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Including Gen IV Systems
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Fig. 3. GNEP fuel cycle concept. 

 

By the creation of the nuclear energy market, as shown in Fig. 3, GNEP aims to 

accomplish its mission of increasing U.S. and global energy security, reduce the risk of 

proliferation and improve the environment.  Spent Nuclear Fuel (SNF) recycling is 

paramount to the success of GNEP and is the underlying bond between the AFCI and 

Gen IV Forum [6, 26].   



16 

I.E Research Objectives 

The objectives of this research is to analyze TRU-fueled VHTR prismatic core 

configurations and determine performance domains for VHTRs fueled with TRUs and 

designed for prolonged operation without intermediate refueling.  This overall objective 

leads to several research targets: 

1. Develop a 3D whole-core model representing a power-size VHTR (VHTR 

capable of 600 MWth+) that accounts for neutronics and thermal characteristics, 

2. Develop a 3D temperature distribution that can conceivably be expected in a 

VHTR configuration and incorporate it into the developed VHTR model, 

3. Develop a robust Matlab script that allows automated model generation for use 

with the SCALE 5.1 code system incorporating the developed temperature 

distribution and supporting parametric studies, 

4. Develop a series of Matlab and Perl scripts facilitating efficient post-processing 

of simulation results representing VHTR configurations, 

5. Analyze basic performance characteristics of the VHTR BOL configurations 

with LEU, RGPu and TRUs, 

6. Analyze performance domains for TRU-fueled VHTRs designed for prolonged 

operation without intermediate refueling, and 

7. Analyze safety and transmutation characteristics of the feasible TRU-fueled 

VHTR configurations. 

Meeting the objectives and research targets of this research is possible because VHTR 

prismatic core designs have the inherent flexibility of component configuration, fuel 

utilization, and fuel management.  Flexibility in the component configuration allows for 

the C/HM ratio to be adjusted.  C/HM adjustments allow for neutron spectrum shifts, 

which give the ability to create a harder spectrum in the VHTR core.  Harder spectra, in 

the case of TRU fuels, result in self-stabilization effects extending operation without 

intermediate refueling. 
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II. APPLIED COMPUTER CODE SYSTEMS 

Fig. 4 shows the code system formed and implemented for studies presented in this 

research.  The neutronics analysis using the 3D, whole-core VHTR model was 

performed using the ORNL SCALE (Standardized Computer Analysis for Licensing 

Evaluation) code system. The standard SCALE 5.1 TRITON sequence has been 

upgraded to allow fuel cycle modeling accounting for double heterogeneity effects. This 

option was implemented for this project by the ORNL staff (Dr. Mark DeHart) and was 

not available in the standard distribution package. A combination of Matlab, Excel, and 

Perl was used to build SCALE input files and analyze SCALE output data as shown in 

Fig. 4. 

 

II.A  SCALE 5.1 Code System 

The SCALE code system was being developed and is supported at Oak Ridge National 

Laboratory (ORNL) under a co-sponsorship of the NRC and DOE.  It is a multi-purpose 

computer code system for the analysis of nuclear facilities and packages including but 

not limited to reactor physics, fuel cycle, criticality safety, shielding, lattice physics, 

radiation source terms, SNF and HLW characterization.   

The combination, execution and communication between various SCALE functional 

modules are maintained by control modules. This analysis is based on the capabilities of 

TRITON and CSAS25 control modules and the corresponding sequences. The SCALE 

Material Information Processor Library (MIPLIB) allows specifying nuclides, elements, 

and mixtures based on the Standard Composition Library as well as other keyword and 

geometry input that is relevant to cross-section processing [27].   
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Fig. 4. Applied computer code system. 
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II.B  CSAS25 

Criticality Safety Analysis Sequences (CSAS) were developed for the SCALE code 

system to provide automated, problem-dependent, cross-section processing followed by 

the calculation of a modeled system neutron multiplication factor.  CSAS25 is a one of 

several control sequences within CSAS that uses KENO V.a to evaluate criticality of 3D 

systems.   CSAS25 is used exclusively in this research for the determination of VHTR 

performance characteristics at the beginning of life (BOL).   CSAS25 allows for near-

explicit accounting for lattice effects due to double heterogeneity features that are 

characteristic for all HTGRs including VHTRs. 

Double heterogeneity can be thought of as a double-level geometry. In VHTRs, the first 

geometry level is formed by randomly–distributed TRISO-coated particles within a 

graphite matrix of the fuel compact.  The second level is formed by a regular hexagonal 

lattice of fuel compacts within fuel blocks. A special treatment must be used for such 

systems because of substantial differences in neutron distributions at each heterogeneity 

level. Each compact has a fuel region containing thousands of micro-particles that form 

a universe, which clearly exhibits features of an infinite lattice by itself. Only peripheral 

particles feel the presence of neighboring compacts. As a result, the core neutron 

distribution is formed by neutron media within each compact and then at the block and 

the whole core levels. 
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Fig. 5 illustrates the SCALE double heterogeneity treatment as it is executed in CSAS25. 

When CSAS25 is executed in SCALE 5.1 for models that contain double heterogeneity 

cell data (e.g., VHTRs), several functional modules are called upon, including [27]: 

1.  BONAMI performs unresolved resonance self-shielding calculations for 

nuclides that have Bondarenko data associated with their cross 

sections, 

2.  WORKER creates an AMPX working format library from a master format 

library, 

3.  CENTRM uses a pointwise continuous cross-section library (with 10,000 to 

70,000 points) and a cell description to generate a pointwise 

continuous flux spectrum by solving the Boltzmann transport 

equation for a 1-D spherical or cylindrical system. This module 

provides necessary capabilities for cross section weighting to 

account for double heterogeneity lattice effects, 

4.  PMC using the pointwise continuous flux spectrum created in 

CENTRM, collapses pointwise continuous cross sections to a set 

of multigroup cross-sections over primarily the resolved 

resonance range that can be used by KENO, XSDRNPM, or 

TRITON, 
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5.  XSDRNPM provides cell-weighted cross-sections based on the specified unit 

cell and can calculate the k-eff for a 1-D system by several 

methods, most importantly in this thesis via the Sn method that is 

best used for systems that have many regions of dissimilar cross-

sections (e.g. compacts).  In the SCALE double heterogeneity 

treatment XSDRNPM is used solely to compute multiplication 

characteristics for lattices of particles and compacts. It is not used 

in the actual working library generation process. The CENTRM is 

used to account for double heterogeneity effects, 

6.  ICE creates a single combined homogenized point cross-section library 

from libraries created by PMC, CENTRM, and BONAMI for use 

by KENO V.a, 

7.  CHOPS computes pointwise flux disadvantage factors and creates 

homogenized point cross-sections, 

8.  WAX creates a combined working library of homogenized cross-

sections, 

9.  CAJUN combines homogenized point cross-section libraries, 

10. AJAX removes unused mixtures from the final master library, and 

11. KENO V.a calculates k-effective of a 3-D system as well as the modeled 

system’s nuclear characteristics (e.g. fluxes). 
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Fig. 5. CSAS25 sequence for double heterogeneous VHTR model. 
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II.C TRITON 

TRITON was developed to handle 2D and 3D depletion scenarios such as axial 

enrichment of Boiling Water Reactors (BWRs) and the ring effect associated with strong 

absorbers.  There are a total of 5 TRITON sequences, each one having unique abilities 

while sharing common subroutines.  In this research, the TRITON T5-DEPL sequence 

was used with a modification to allow for depletion of double heterogeneous materials.  

This sequence uses the KENO V.a functional module at the 3D whole-core modeling 

level.  As illustrated in Fig. 6, the standard SCALE 5.1 TRITON sequence was expanded 

to add the double heterogeneity processing [27]. 
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Fig. 6. Modified SCALE TRITON sequence with double heterogeneity processing. 
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II.D SCALE Limitations 

CSAS25 was developed to use simple input data and prepare problem-dependent cross-

sections for use in calculating the effective neutron multiplication factor of a 3-D system 

using KENO V.a.   Some of the limitations of the CSAS25 sequence are the result of 

using preprocessed multigroup cross sections. Other limitations, due to assumptions in 

the Nordheim integral treatment as implemented in CSAS, can be eliminated by using 

CENTRM/PMC as the resolved resonance processor. The CENTRM/PMC is used in the 

present analysis. Limitations in CSAS25 are as follows: 

1. Two-dimensional (2-D) effects, such as fuel rods in assemblies where some 

positions are filled with control rod guide tubes, burnable poison rods and/or fuel 

rods of different enrichments, cannot be accounted for at the lattice level of the 

working library processing. The cross sections are processed as if the rods are in 

an infinite lattice of identical elements. These effects are then accounted for at 

the whole-core modeling level, and 

2. Cannot model annular fuel rods for second level cells, equivalent cylindrical fuel 

rods must be used, and 

3. Maximum number of cross-sections (based on available memory) limits the 

depth of details allowed for in a model. 

The SCALE TRITON T5-DEPL sequence was developed to use simple input data and 

allow for 3D depletion using KENO V.a and ORIGEN-S.   Some of the limitations of 

the sequence are the result of using ORIGEN-S [27].  
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III. VHTR PRISMATIC CORE MODEL 

The following section describes how a 3D full-core model of a power-size VHTR 

configuration was created.  Though, there are no power-size VHTRs built, there is an 

abundance of data provided for HTGRs and smaller prototype VTHRs (e.g., HTR10 and 

HTTR) as well as expected design criteria for power-size VHTRs.  The model for this 

research was developed to take advantage of the robust capabilities of SCALE 5.1, 

including the complexity of adding a temperature distribution to the model.  This 

temperature distribution for the VHTR model can be obtained by the addition of more 

materials and regions.  This is exemplified in the most complex model, where a total of 

511 different materials were used to encompass major features of a VHTR.  These 

features range from graphite blocks to the individual coatings of TRISO particles. The 

sequential creation of SCALE inputs and their corresponding output required an 

automated process.  This process was managed through a Matlab script, that was capable 

of producing and managing the creation of inputs and analyses of their corresponding 

outputs by reading and recording model parameters in excel files [27].   

III.A  3D Whole-Core Model of a Power-Size VHTR 

The geometry of the VHTR was created for use with SCALE 5.1 sequences focusing on 

KENO V.a. at the whole-core modeling level. The model created is a near exact 

depiction of the expected physical description of a power-size VHTR.  The fundamental 

building blocks of the reactor (e.g., fuel blocks and its constituents) and the ratio of these 

blocks (i.e,. control rod guide blocks to fuel block ratio) to one another are based on 

HTTR design parameters [28], while the overall configuration of the reactor has been 

developed following the DOE VHTR design requirements [21, 19, 18, 23].  The final 

core layout showing the VHTR fuel and reflector locations is shown in Fig. 7.  
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Fig. 7.  3D whole-core model of a power-size VHTR. 

figure not to scale, dimensions in cm 

 

KENO V.a allows for a large assortment of elementary shapes, whose combination 

allow for complex geometries to be modeled.  The blocks modeled for this research were 

adapted to the limitations of KENO V.a.  The adaptation made was to model individual 

blocks as cylinders (shown as green in Fig. 8) and then place these in a larger graphite 

structure (shown as red in Fig. 8).  Though this is not an exact representation of the 

hexagonal fuel blocks, the same triangular pitch is used for placing all fundamental 

blocks in the core and, since each fundamental block is created from the same graphite 

base materials as the graphite that surrounds the graphite cylinders, the amount of 

graphite in the VHTR model is conserved. Fuel elements within each block, and in the 
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core, are arranged in a triangular lattice following the VHTR hexagonal geometry 

exactly by computing fuel element’s 3D coordinates. 

 

Hexagon
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Fig. 8.  Hexagon prismatic blocks modeled as cylinders. 

 

The VHTR is built from a combination of three distinctive/fundamental building blocks.  

These basic blocks (fuel block, coolant block, and control rod guide block) are given a 

local temperature distribution depending on each block function and location within the 

model.  Each basic block is built from an identical cylindrical graphite block that has had 

a handling hole bored into the top surface.  Basic blocks are differentiated from one 

another by the addition of bore holes whose size and number are related to the blocks 

purpose as shown in Fig. 9.  
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Fig. 9.  A graphite block and the three fundamental blocks (as modeled). 

 

III.A.1  Fuel Block 

In a prismatic core, all fissile and fertile material is placed in TRISO particles. The 

particles are placed in a graphite compact, located in a larger hexagonal graphite prism 

(fuel block).  The modeled fuel block is composed of seven essential components: a 

large graphite cylindrical block, annular fuel rods surrounding helium channels, graphite 

fuel rod sleeves, coolant channels surrounding the graphite sleeves, a handling hole, and 

burnable poison rods.  Fuel blocks are arranged in three or four rings depending on the 
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core configuration, shown in Fig. 1.  These rings surround a central graphite reflector are 

stacked upon each other to a height of 13 blocks.  All fuel blocks have a radius of 17.9 

cm and a height of 58 cm [28].  There are a total of 31 fuel rods placed in the block with 

room for an additional two fuel rods.  The locations of these two optional fuel rods can 

be placed in regions of the block that are currently modeled as solid graphite.  This is 

shown in Fig. 10. The design details are given in Table IV. 
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Fig. 10.  Fuel block layout. 
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Table IV.  Fuel Block Design Data 

Type Pin-in-Block 

Configuration Cylindrical 

Material Graphite 

Density 1.76 g/cc 

Impurities Boron 

Height 58 

Width Across Flats 36 

Number of Fuel Holes in Block 31 

Fuel Hole Diameter 4.1 cm 

Fuel Hole Height 58.0 cm 

Number of Burnable Poison Holes 3 

Burnable Poison Hole Diameter 1.5 cm 

Burnable Poison Hole Height 50.0 cm 

 

Fuel rods are 54.6 cm tall, have a 0.5 cm radius inner cylindrical void of helium, 

followed by a series of axial stacked compacts (modeled as a single rod as shown in Fig. 

11) that extends to a radius of 1.3 cm.  The compact contains TRISO particles 

encapsulated by a graphite matrix.  The compact is enveloped by a graphite sleeve that 

extends to 1.7 cm, and finally by a layer of coolant to an outer radius of 2.05 cm.   This 

arangement is shown in Fig. 11 and the properties are shown in Table V.   
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Fig. 11. Fuel rod and coolant channel. 

 

Table V.  Fuel Rod/Graphite Sleeve Properties 

Fuel Compact 

Number of Fuel Particles Varies 

Graphite Matrix Density 8.54E-2 atoms/barn-cm 

Graphite Boron Impurity Density 1.07E-7 atoms/barn-cm 

Inner Diameter 1.0 cm 

Outer Diameter 2.6 cm 

Effective Height of Fuel Rod 54.6 cm 

Graphite Sleeve 

Material Graphite 

Graphite Density 1.76 g/cc 

Graphite Impurity  Boron 

Inner Diameter 2.6 cm 

Outer Diameter 3.4 cm 

Height 54.6 cm 
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In the center top of a fuel block there is a handling hole composed of three helium filled 

cylinders stacked on each other.  Proceeding from the top to bottom, the radius of the 

cylinders start at 2 cm, then 1.5 cm, and finally a 2.25 cm .  The top cylinder extends 

down 9 cm, the next an additional 6 cm, while the bottom helium cavity extends a final 

10 cm, giving a full height of the handling hole of 25 cm as shown in Fig. 12.  The 

helium inside the handling though modeled, is not neutronically important but was 

modeled for completeness. 

 

2 cm
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Fig. 12.  Handling hole filled with helium. 

 

There are a total of three burnable poison holes in each fuel block, two of which contain 

burnable poisons while the third is filled with helium.  Each cylindrical hole is 50 cm in 

length starting at 4.2 cm from the bottom of the fuel block, with a radius of 0.75 cm.  

The holes containing BP contain two individual BP rods, one positioned at the top of the 
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cavity while the other is placed at the bottom, each extending to a height of 20 cm and 

axially separated by a graphite plug as shown in Table VI. 

 

Table VI.  Burnable Poison Rod Properties 

Number of Burnable Poison Holes Available 3 

Number of Burnable Poison Holes Used 2 

Number of Burnable Poison Holes Unused 1 

Burnable Poison Rods in A Hole 2 

Height of Burnable Poison Rods 20 cm 

Height of Gap Between Burnable Poison Rods 10 cm 

Burnable Poison B4C 

Material Between Burnable Poison Rods Carbon 

Material in Empty Burnable Poison Hole Helium 

 

Compacts (modeled as annular fuel rods) were filled with TRISO particles at varying 

volume fractions and varying fissile fuels for this research.  Though a multiple of 

different fuels were analyzed for this research, only one TRISO particle configuration 

was modeled based on TRISO particles used in the HTTR.  Each particle had a dioxide 

fuel containing boron impurities with an atom density of 7.25x10-02 atom/barn-cm, and 

four coatings slisted in Table VII. 
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Table VII.  TRISO Particle Specifications 

Parameter Dimensions [cm] Mix Number 

Fuel Radius 0.030405 1 

Coating 1 Thickness 0.00587 2 

Coating 2 Thickness 0.00292 3 

Coating 3 Thickness 0.00287 4 

Coating 4 Thickness 0.00456 5 

Compact Graphite Matrix n/a 6 

Name Mix Number Atom Density [atom/barn-cm] 

Fuel (X-Dioxide) 1 7.25E-02 

Graphite 2 5.73E-02 

Graphite 3 9.42E-02 

Silicon 4 4.81E-02 

Carbon 4 4.81E-02 

Graphite 5 9.74E-02 

Graphite 6 8.54E-02 

Boron-10 6 2.12E-08 

Boron-11 6 8.55E-08 

 

III.A.2  Control Rod Guide Block 

Control rod guide blocks were composed of identical-sized graphite blocks and handling 

holes as found in the fuel block, but differed by the absence of the fuel and BP holes and 

the presence of control rod guide holes.  There were three control guide holes placed 

evenly in the block.  These guide holes were modeled as cylindrical, helium-filled 

cavities that extended the full height of the block and had a radius of 6.15 cm, as shown 

in Fig. 13. 
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Fig. 13. Control rod guide block. 

 

III.A.3  Coolant Block 

Coolant blocks are nearly indistinguishable from fuel blocks, but they lack BP holes and 

instead of fuel holes they contain coolant holes in the same location that the fuel holes 

would have been placed.  Coolant holes extend the full height of the block and are 

hollow cylinders filled with helium with a 2.05 cm radius as shown in Fig. 14. 

 



36 

Handling Hole

Coolant
Channel

 

Fig. 14. Coolant block. 

 

III.A.4  Active Core and Reflector 

The modeled VHTR system is subdivided into the active core and reflector regions.  The 

active core is annular in shape and composed of a combination of fuel and control rod 

guide blocks placed in a 3 or 4 ring configuration.   The active core is surrounded by 

inner and outer reflectors that extend from below the active core to above it.  The fuel 

and control rod guide blocks are stacked axially to a height of 754 cm by placing a total 

of 13 fuel/control block upon each other.  In the case of the three ring configuration a 

total of 66 fuel blocks are placed in a single axial layer.  With 13 layers this brings a 

total of 858 fuel blocks in the active core.  In this configuration there are 36 control rod 

guide blocks placed throughout each axial layer for a total of 468 in the entire active 

core.   

As stated above, the active core surrounds an inner reflector and itself surrounded by an 

outer reflector.  The inner reflector is modeled as a solid graphite cylinder that extends 

from below the active core to above it.  Though the reflector is modeled as a cylinder, it 

represents solid graphite blocks with the same dimensions as all other fundamental 
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blocks, as to create a tight triangular pitched array.  The only assumption made in 

modeling the reflectors was not to model the solid graphite blocks with handling holes.   

In this viewpoint that the reflector is composed of individual solid graphite blocks, the 

inner reflector stretches 9 blocks across at its  maximum width and then reduces to a 

width to a minimum of 5 blocks.  This best demonstrated in Fig. 15. 

 

Table VIII.  Reference VHTR Parameters vs. as Modeled 

Parameter Referenced Values (3/4 Ring Configuration) 

Active Core Shape Annular Annular 

No. of Fuel Columns 102 102/126 

Active Core Height 7.93 m 7.93 m 

Core Effective Inner Diameter 2.96m 2.96/2.33 m 

Core Effective Outer Diameter 4.83 m 4.83 m 

Top Reflector Height 1.2 m 1.2 m 

Bottom Reflector Height 1.6m 1.6 m 

Outer Reflector Diameter 6.88 m 6.8 m 

 

The outer reflector surrounds the active core and extends the same length as the inner 

reflector, as well as extends above and below the active core.  The outer reflector above 

and below the active core is composed of control rod guide blocks and coolant blocks.  

There are a total of 330 coolant blocks and 180 control rod guide blocks  Outside the 

active cores radius the outer reflector is modeled as an annular cylinder that extends 

from the active core out to a radius of 3.4 meters.  The space surrounding the outer 

reflector is modeled as a void.  Comparison of the referenced VHTR and the modeled 

VHTR parameters are shown in Table VIII. 
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Inner Reflector
Modeled as a
Solid Cyliner

Outer Reflector
Modeled as a
Solid Cyliner

 

Fig. 15.  Reflector representation in the VHTR model. 

 

III.B  Temperature and Coolant Flow Model 

The temperature distribution for the CSAS VHTR model is based on work done for the 

thermal response of VHTR [15].  The general model characteristics are summarized in 

the Table IX: 
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Table IX.  VHTR Temperature Derivation Information 

PARAMETER VALUE UNITS 

Core Thermal Power 600 MW 

Helium Flow Rate through the Core 320 kg/s 

Avg. Helium inlet/outlet temperature 490/1000 C 

Core inner and outer avg. Diameter 2.96/4.84 m 

Core Height 8 m 

Average Active Core Temp. ~1300 K 

 

This information was evaluated and a general temperature distribution was created 

within the limits of CSAS25 (e.g. memory limit).  Fig. 16 gives the temperature 

distribution developed for the three fuel-ring VHTR configurations used in CSAS25 

models.  For the four fuel-ring configuration, the inner two rings were given the same 

temperature distribution as that given to the inner ring in the three fuel-ring 

configuration. 

The inner and outer reflectors have three radial regions and fifteen axial regions.  The 

top reflector has three axial regions and nine radial regions while the bottom has two 

axial regions and the same nine radial regions. The active core is composed of a total of 

thirteen axial and three radial regions.  To reduce the model due to memory allocation 

limits associated with the SCALE 5.1, more than one region was modeled with the same 

material.  This is the case with graphite blocks within the active core.  With thirteen 

axial and three radial regions, a total of 39 temperature varying graphite blocks would be 

needed to fully capture the available detail allowed for in the model.  Due to the 

limitations, the axial temperature distribution in the core is reduced to nine regions but 

the three radial regions were retained.  Thus, in the active core, only 27 temperature 

unique graphite blocks were used. 
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Fig. 16.  3D temperature distribution in the VHTR model. 
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The coolant flow is shown in Fig. 17. It was assumed that more graphite would be 

needed in regions of higher temperatures to dissipate residual decay heat in a loss of 

coolant accident.   
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Fig. 17. Coolant flow in the VHTR model.
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III.C  Transmutation Efficiency Analysis Model 

One of the objectives of this research was to analyze the transmutation capability of 

LWR SNF compositions in extended-life VHTRs.  To facilitate this analysis, a fuel-

cycle scheme had to be created.  The potential of recycling and reprocessing of spent 

fuel involves partitioning and separating nuclides into various waste streams that can 

either be reused as fuel or placed in a geological repository.  With the wide variety of 

UREX systems currently being investigated, it has been assumed that a UREX or a 

UREX-derivative system will be available when VHTRs come online that will have the 

capability of near perfect efficiency in the separation of U, TRU, and FPs from LWR 

waste streams.  Fig. 18 shows the envisioned fuel cycle and the LWR waste streams 

expected.  In this figure, a PWR element with a fuel loading of 3.75% enriched uranium 

is burnt for 41,200 MWd/MTHM and cooled for 23 years is reprocessed into TRU and 

LEU fuel forms.  Table X gives the expected waste streams that are produced from a 

UREX stream and are used this research as the basis of fuel compositions. 

There are basically two neutron reactions of interest in transmutation.  The first is 

neutron capture, which when occurring with actinides generally leads to more actinides 

and fission.  Fission for some actinides (e.g., Am-244) is much more likely with fast 

neutrons and, more generally, fission is more likely with fast neutrons.  This is where 

applicability of VHTRs is demonstrated.  As discussed in the introduction, the use of 

TRISO-coated micro-particles allows for flexible fuel loadings and for variable C/HM 

ratios.  Fig. 19 shows how a TRU-fueled VHTR can have its neutron spectrum changed 

by changing the C/HM ratio.   
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PWR
3.75 Percent LEU

Burnup=41,200 MWd/MTHM
Cooled for 23 years
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Cooled for 5 years

Yucca Mountain Repository

 

Fig. 18.  VHTR fuel cycle. 
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Table X.  Expected Waste Streams from PWR Fuel Reprocessing 

Reactor Grade Plutonium (RGPu) Vector 
Element Nuclide Composition (atom %) 

Plutonium Pu-238 2.36 
 Pu-239 61.453 
 Pu-240 26.022 
 Pu-241 4.877 
 Pu-242 5.289 

Total 100 
Transuranic (TRU) Vector 

Element Nuclide Composition (atom %) 
Neptunium Np-237 6.121 
Plutonium Pu-238 1.986 

 Pu-239 51.718 
 Pu-240 21.899 
 Pu-241 4.104 
 Pu-242 4.451 

Americium Am-241 8.25 
 Am-242m 0.02 
 Am-243 1.23 

Curium Cm-243 0.003 
 Cm-244 0.194 
 Cm-245 0.021 
 Cm-246 0.003 

Total 100 
Minor Actinide (MA) Vector 

Element Nuclide Composition (atom %) 
Neptunium Np-237 38.635 
Americium Am-241 52.079 

 Am-242m 0.127 
 Am-243 7.762 

Curium Cm-243 0.021 
 Cm-244 1.225 
 Cm-245 0.134 
 Cm-246 0.017 

Total 100 
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Fig. 19. Specturm shifting via C/HM variations. 

 

The C/HM ratio was calculated per compact, knowing the TRISO geometry, fuel rod 

geometry, and the compact material makeup in Table XI.  

 

Table XI.  TRISO Particle Composition 

Material Region Atom Density [atom/b-cm] 

Heavy Metal Fuel 2.41E-02 

C (Graphite) Coating-1 5.73E-02 

C (Graphite) Coating -2 9.42E-02 

Si (Free Gas) Coating -3 4.81E-02 

C (Free Gas) Coating -3 4.81E-02 

C (Graphite) Coating -4 9.74E-02 

C (Graphite) Compact-Matrix 8.54E-02 

B-10 Compact-Matrix 2.12E-08 

B-11 Compact-Matrix 8.55E-08 
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Knowing this information, it is possible to determine the amount of carbon and heavy 

metal is present in a TRISO particle.  Knowing that TRISO particles compose a specific 

volume fraction (VF) of each compact, then a carbon to heavy metal ratio can be 

calculated for a given compact since the volume of a single TRISO-particle (VTRISO) is 

known.  By knowing the atom densities of carbon in each coating of a TRISO particle, 

the carbon atom density in the matrix, as well as the HM atom density in a the TRISO 

particle,  the following equations can be used to obtain a C/HM ratio. 

( )C 1 C
VF

TRISO MATRIX

TRISO

VF VF
HM

⋅ + − ⋅
⋅  

4

1

4.22E-02coating n C atom
TRISO coating n

n TRISO

V
C

V
ρ− −

−
=

= =∑
 

6.68 03fuel HM atom
TRISO fuel

TRISO

V
HM E

V
ρ −= = −
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With this knowledge, C/HM can be calculated by knowing the VF of TRISO particles in 

a compact shown in Table XII. 

 

Table XII.  VF to C/HM Atom Ratio 

Volume Fraction C/HM Atom Ratio 

0.1 121.32 

0.2 57.43 

0.3 36.13 

0.4 25.48 

0.5 19.09 

0.6 14.84 

0.7 11.79 

 

Transmutation efficiency was computed in this research as a percent of TRU destruction 

(Percent Net TRU-Destruction) as well as judged on the exiting waste stream 

radiotoxicity.  The first metric is important since the Congress mandated capacity was 

limited to 70,000 MTHM that can be placed in the Yucca Mountain. The second metric 

limit is based on the maximum heat-load (11.8 kW/canister) a HLW canister can have 

when emplaced into the Yucca Mountain.  The relationship is: 

 Net TRU-Destruction % BOL EOL

BOL

MTHM MTHM
MTHM

−
=  . 
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III.D  In-Core Fuel Cycle Analysis 

In-core fuel cycle studies for this research include characteristics describing the VHTR 

performance  during its operation: 

1. Parameters of the initial fuel loading including 

a. Transuranic content 

b. Uranium content 

c. Plutonium content 

d. Minor actinide content 

2. Carbon–to-heavy metal atom ratios for compacts 

3. keff at BOL 

4. Fuel cycle length 

5. Energy spectra and fast fluences 

a. Core average 

b. Fuel rod average 

c. TRISO (coatings and kernel) 

6. Net fissile-fuel production and consumption 

7. Net fertile-fuel production and consumption 

Initial fuel loading is a BOL parameter necessary before any calculations are done.  

Since these loadings are known, the amount of fissile and fertile nuclides can be 

determined in each VTHR as well as the radiotoxity of the fuel at BOL.  Carbon to 

heavy metal atom ratios for compacts will be compared for each fuel and used to judge 

its effect on core life and TRU burnup.  Keff at BOL is calculated using CSAS25 and is 

used for the evaluation of what core configurations have acceptable BOL keff for 

depletion in TRITON.  Fuel-cycle length is the most important metric to the objective of 

this research and is measured as the point at which the keff of the core falls below 1.0.  
Energy spectra are evaluated due to their importance for core reactivity stabilization 

during operation, TRISO failure rate evaluations, as well as TRU transmutation 

efficiency calculations.  The final two metrics, net fissile-fuel production and 
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consumption and net fertile-fuel production and consumption are important 

measurements as to whether the waste stream leaving the VHTR will be usable as fuel 

after reprocessing. 
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IV.  PERFORMANCE ANALYSIS OF TRU-FUELED VHTR SYSTEMS 

OPERATING IN A SINGLE BATCH MODE 

In this section, studies of the VHTR operation domains have been performed using the 

SCALE 5.1 code package. The system is assumed to be at operational temperature. Both 

BOL and reactor operation conditions are taken into consideration. The validity of 

modeling double heterogeneous prismatic graphite reactors with SCALE was determined 

in previous studies [7]. Specifically SCALE 5 was benchmarked against experimental 

results obtained in the HTTR program.   

IV.A  Parametric Analysis at BOL Conditions 

In this section, BOL VHTR configurations  were analyzed using CSAS25 of the SCALE 

5.1 code system.  Analysis of BOL cores is important to determine systems with 

acceptable safety characteristics, as well as a desirable BOL reactivity margins.  Further 

analysis was done to determine system’s performance characteristics during operation.  

All the modeled cores in this section take advantage of both a temperature distribution 

developed in section III.B.I, as well as the complex modeling techniques allowed for 

studies using the SCALE code system (see discussion of SCALE limitations in Section 

II.A.4).   

IV.A.1  CSAS25 Double Heterogeneity Treatment 

After initial cross section processing, the CSAS25 execution begins with CENTRM 

calculations of the flux for the first level infinite lattice.  For a prismatic VHTR, the first 

level infinite lattice represents the randomly distributed TRISO particles inside of a 

graphite matrix.  The combination of particles and matrix create the compact.  This first 

level lattice is modeled by CENTRM as an infinite array of TRISO particles in the 

graphite matrix.   Cell-averaged fluxes and flux disadvantage factors are calculated and 

from these physic parameters, flux-weighted cross-sections are produced.  The cross-

sections produced for the first level lattice are used in the calculation of  the reactor 
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physics parameters for the second-level lattice.  The second-level lattice is modeled 

using CENTRM as an infinite array of fuel rods, graphite sleeves and coolant channels 

surrounding the graphite sleeves.  Core-wide physic parameters, such as fluxes and 

multiplication factors, of the system are obtained using KENO V.a. 

For comparison, the fluxes calculated during CSAS25 execution at each state of the 

double heterogeneity treatment are shown in Fig. 20.  The CENTRM flux shown for the 

first level of heterogeneity has a hard spectrum due to the moderation by the TRISO 

coatings and the interstitial graphite between particles.  This is an accurate representation 

of the energy-dependent flux that would be encountered in a fuel kernel that is not near 

the edge of a compact (i.e., away from the graphite sleeve).  At the second level of 

heterogeneity, carbon within the compact and graphite sleeves surrounding the compacts 

are taken into account. The effect is apparent by the well-defined thermal peak.  In the 

calculations at the whole core level, the flux of the compact is calculated using KENO 

V.a. accounting for the whole core geometry. The accounting of the graphite at the 

whole core modeling level has a significant effect on the magnitude of the thermal peak, 

which now is the dominant feature of the energy-dependent flux.  The change in 

magnitude of this peak from when CENTRM was used to calculated the compact’s 

spectrum to the spectrum calculated using KENO V.a, demonstrates that significant 

moderation is occurring outside the compact and graphite sleeve.  The final neutron 

spectrum, as shown in Fig. 20, was calculated for the graphite fuel block.   
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Flux within a fuel kernel as 
calculated by CENTRM.  

Carbon in TRISO coatings and 
surrounding graphite matrix 

used to compute flux.

Flux within a compact as 
calculated by CENTRM.  Only 

carbon in compact and graphite 
sleeve used to compute flux.

Flux within a compact 
calculated by KENO.  Carbon 
throughout the core used to 

compute flux.

Flux within a fuel block 
calculated by KENO.  No fast 

peak present.

Note: Three fuel-ring LEU VHTR with a C/HM atom ratio of 36 at a height of 464 cm in the inner most 
          fuel-ring. 

Fig 20. Fluxes in the VHTR systems at different levels of the double heterogeneity 
treatment. 

 

An important part of modeling with KENO V.a to analyze VTHRs is its ability to be 

used to calculate a 3D space-energy neutron distribution.  Fig. 21  demonstrates this by 

showing the flux for a LEU-fueled VHTR as a function of energy and core height for 

compacts in the innermost fuel-ring. The effects of leakage at the core ends noted by 

both the decrease in the thermal and fast flux peak magnitude demonstrate that system 

leakage has a major effect on system behavior, specifically keff.  Comparison of the 3D 

flux distribution, for a three fuel-ring and four fuel-ring system, shows no principal 

differences in the flux shape and distribution. 
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Note: Three fuel-ring LEU (7.92 at %) fueled VHTR with a C/HM atom ratio of 36 in the innermost fuel 
          ring. 

Fig 21. 3D space-energy neutron distribution in the VHTR system (neutron fluxes in 
compacts as a function of their locations in the VHTR core). 

 

IV.A.2  Effects of Fissile Content on LEU-Fueled VHTRs 

Quantifying the effect of varying enrichment is important in showing how the ratio of 

fertile to fissile atoms affects both the neutron multiplication of the system as well as 

other reactor physics parameters.  These  effects were quantified for both the three fuel-

ring and four fuel-ring core configurations, by analysis of energy of the average neutron 

lethargy causing fission (EALF), system mean free path, system average neutron fission 

yield, and effective multiplication factor.   

The effect of enrichment on the energy-dependent neutron flux inside the compacts for a 

LEU-fueled VHTR core is shown in Fig. 22. This figure demonstrates that as a VHTR 

system moves from a LEU to a HEU fueled configuration, the flux within the compact 
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gains a harder spectrum, though at a considerably slower rate after an enrichment of 15% 

is reached. 
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Note: Three fuel-ring VHTR with a C/HM atom ratio of 36 in the inner most fuel-ring at a height of  
          464 cm. 

Fig 22. KENO V.a flux inside a compact as a function of LEU enrichment. 

 

The effect of enrichment on effective multiplication factor (keff), as well as its effect on 

other reactor physics parameters, is summarized in Table XII.   The relationships 

between enrichment and keff for both the three and four fuel-ring core configuration are 

shown in Fig. 23. After enrichment has increased to approximately 15%, increasing U-

235 atom concentration does not drastically change keff.   

The addition of an extra fuel-ring results in a small but constant increase in keff.  This can 

be attributed to the fact that neutrons born in any fuel block have a much higher chance 

of causing fission in that same fuel block since the MFP is on the order of centimeters 

vs. tens of centimeters needed to leave a fuel block.  The addition of keff can be attributed 

to neutrons leaking inward toward the inner reflector and thus causing fission inside the 
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additional fuel-ring.  A summary of reactor physic parameters for varying LEU 

enrichments is given in Table XIII. 

 
Table XIII. Reactor Physics Parameters for Three and Four Ring LEU-VHTR 

Configurations as a Function of LEU Enrichment 

Number of 
Rings Enrichment keff EALF [eV] Avg. Neutron Fission 

Yield MFP [cm] 

3 3 0.863 n/a n/a n/a 

3 7.92 1.181 0.2188 2.438 1.909 

3 9 1.214 0.2316 2.438 1.914 

3 10 1.239 0.2463 2.438 1.917 

3 15 1.328 0.3168 2.438 1.925 

3 20 1.379 0.3994 2.438 1.932 

3 40 1.481 0.8380 2.439 1.945 

4 3 0.903 n/a n/a n/a 

4 7.92 1.218 0.2229 2.438 1.830 

4 9 1.252 0.2376 2.438 1.833 

4 10 1.278 0.2524 2.438 1.835 

4 15 1.365 0.3295 2.438 1.845 

4 20 1.414 0.4158 2.438 1.853 

4 40 1.510 0.8926 2.439 1.869 
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Note: Three and four fuel-ring LEU-fueled VHTR with a C/HM atom ratio of 36. 

Fig 23. Keff for three and four fuel-ring LEU-fueled VHTR for varying enrichments 
 

IV.A.3  Effects of Carbon-to-Heavy Metal Ratio on LEU-Fueled VHTRs 

The next series of BOL VHTR calculations are used to determine the effects of changing 

the C/HM atom ratio in LEU systems.  This was accomplished by choosing single fuel 

enrichment and changing the number of TRISO particles in a compact.  Fuel enrichment 

was chosen assuming that it has to yield keff of approximately 1.2.  For the three fuel-

ring LEU cases an enrichment of 9% was chosen and 8.7% was chosen for the four fuel-

ring cases.  The series of CSAS25 calculations is summarized in Table XIV. 

 



57 

Table XIV. Reactor Physics Parameters for Three and Four Ring LEU-VHTR 
Configurations as a Function of C/HM Atom Ratio 

Number 
of Rings Enrichment C/HM keff EALF [eV] Avg. Neutron Fission 

Yield 
MFP 
[cm] 

3 9 249.10 0.74 n/a n/a n/a 

3 9 121.32 0.98 n/a n/a n/a 

3 9 78.73 1.09 0.17 2.44 1.89 

3 9 57.43 1.15 0.19 2.44 1.90 

3 9 36.13 1.21 0.23 2.44 1.91 

3 9 25.48 1.24 0.29 2.44 1.92 

3 9 9.51 1.26 0.57 2.44 1.94 

4 8.7 249.10 0.78 n/a n/a n/a 

4 8.7 121.32 1.02 0.15 2.44 1.80 

4 8.7 78.73 1.13 0.17 2.44 1.81 

4 8.7 57.43 1.19 0.19 2.44 1.82 

4 8.7 36.13 1.24 0.23 2.44 1.83 

4 8.7 25.48 1.27 0.29 2.44 1.84 

4 8.7 9.51 1.28 0.57 2.44 1.86 

 

 

For three fuel-ring and four fuel-ring systems, as the C/HM atom ratio is reduced, keff 

(shown in Fig. 24), EALF, and MFP increase.  The reason for this effect is due to the 

C/HM atom ratio on the energy-dependent flux inside a compact, as demonstrated in Fig. 

25.  The hardening of the spectrum by the decrease in the C/HM atom ratio is the result 

of fast neutrons encountering fewer carbon atoms and more HM atoms while traveling 

through the compact.  These neutrons are forced to thermalize outside the compact 

before causing fission or interacting with HM atoms.  The effect of these processes leads 

to a higher probability of fast-neutron-induced fissions. 
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Note: three and four fuel-ring VHTRs fueled by LEU. 

Fig 24. Keff for three and four fuel-ring VHTR fueled with LEU for varying C/HM atom 
ratios 
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Note: Three fuel-ring VHTRs fueled with LEU.  Flux taken from compacts located in the inner most rings  
          at a height of 464 cm. 

Fig 25. Energy dependent flux for a three fuel-ring VHTR fueled with LEU for varying 
C/HM atom ratios 

 

IV.A.4  Analysis of the RGPu-Fueled VHTRs 

The operational domains of RGPu-fueled cores were analyzed and compared to TRU-

fueled cores.  The reason for this comparison is the complex effect of MAs on the 

energy-dependent cross-sections and flux in TRU compositions.  Since fuel 

compositions with RGPu do not contain MAs, the analysis allows the assessment of 

effects caused by Pu in TRUs. 

Similar to Section IV.A.1, the RGPu cases were analyzed first by keeping the C/HM 

atom ratio the same (i.e., number of TRISO particles per fuel compact) while changing 

the amount of fissile content in the fuel kernels.  For RGPu, this was done by increasing 

the amount of RGPu and decreasing the amount of U-238.  The reason for this is the 

assumption that in the fuel cycle envisioned for VHTRs in this research, LWRs would 
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produce a waste stream with a specific RGPu vector that could not be changed due to 

proliferation risks and the difficulty in isolating specific Pu isotopes.  The results of 

fissile content variations for both the three fuel-ring and four fuel-ring RGPu-fueled 

cores are given in Table XV.   

 

Table XV. Reactor Physics Parameters for Three and Four Ring RGPu-VHTR 
Configurations as a Function of Fissile Content  

Number of 
Rings 

Fissile Atom 
Fraction keff EALF [eV] Avg. Neutron Fission 

Yield MFP [cm] 

3 3.32 0.99 n/a n/a n/a 

3 6.63 1.02 0.37 2.89 1.95 

3 9.95 1.04 0.46 2.89 1.96 

3 13.27 1.05 0.57 2.89 1.96 

3 16.58 1.06 0.69 2.89 1.96 

3 19.90 1.07 0.83 2.89 1.96 

3 23.22 1.08 0.99 2.89 1.97 

3 39.80 1.14 2.05 2.90 1.97 

3 59.70 1.22 4.01 2.90 1.97 

4 3.32 1.00 0.30 2.89 1.86 

4 6.63 1.04 0.38 2.89 1.88 

4 9.95 1.05 0.48 2.89 1.88 

4 13.27 1.06 0.60 2.89 1.89 

4 16.58 1.07 0.74 2.89 1.89 

4 19.90 1.08 0.90 2.89 1.89 

4 23.22 1.09 1.07 2.89 1.90 

4 39.80 1.15 2.30 2.90 1.90 

4 59.70 1.23 4.53 2.90 1.90 

 

Similar to the LEU cases, when the amount of fissile content in RGPu-fueled VHTRs is 

increased, keff, MFP, and EALF of the system increase as well.  The increase in keff from 

fissile nuclide increase is much slower in these cases compared to the LEU systems due 
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the parasitic absorption of fertile Pu being much stronger when compared to U-238.  The 

effect that fissile content has on keff is illustrated in Fig. 26.   

 
Note: Three and four fuel-ring VHTRs fueled with RGPu with a C/HM atom ratio of 36. 

Fig 26. Keff for three and four fuel-ring VHTR for varying fissile atom fractions. 
 
 

IV.A.5  Analysis of TRU-Fueled VHTRs  

The effects of C/HM variations on RGPu-VHTR configurations are analyzed by picking 

a single fissile atom fraction and changing the number of TRISO particles in a compact.  

A fissile atom fraction was chosen assuming keff  of approximately 1.2.  For the three and 

four fuel-ring RGPu cases, a fissile atom fraction of 53.06% was chosen.  This 

simplified the comparison of RGPu three ring and four ring cases.  For the TRU-fueled 

cases, keff of 1.2 wasn’t possible at the C/HM atom ratio of 36 (used for the LEU 

configurations in 4.1.1). As a result, 100% TRU-filled kernels were considered. The 
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corresponding fissile atom fraction was 55.86%.  Table XVI summarizes the results for 

the RGPu-fueled VHTRs as a function of C/HM atom ratio. 

 

Table XVI. Reactor Physics Parameters for Three and Four Ring RGPu-VHTR 
Configurations as a Function of C/HM Atom Ratio 

Number of 
Rings 

Fissile Atom 
Fraction C/HM keff 

EALF 
[eV] 

Avg. Neutron 
Fission Yield 

MFP 
[cm] 

3 53.064 1271.34 1.07 0.21 2.89 1.90 

3 53.064 632.44 1.17 0.24 2.89 1.92 

3 53.064 419.47 1.19 0.28 2.89 1.93 

3 53.064 312.99 1.19 0.32 2.89 1.94 

3 53.064 249.10 1.19 0.36 2.89 1.94 

3 53.064 78.73 1.16 1.07 2.89 1.96 

3 53.064 50.33 1.17 1.97 2.90 1.97 

3 53.064 36.13 1.19 3.29 2.90 1.97 

3 53.064 25.48 1.21 5.69 2.90 1.97 

3 53.064 19.09 1.24 9.14 2.90 1.97 

3 53.064 11.79 1.29 19.50 2.91 1.98 

4 53.064 1271.34 1.12 0.21 2.89 1.82 

4 53.064 419.47 1.23 0.28 2.89 1.85 

4 53.064 249.10 1.21 0.37 2.89 1.86 

4 53.064 78.73 1.17 1.16 2.89 1.89 

4 53.064 50.33 1.18 2.18 2.90 1.90 

4 53.064 25.48 1.23 6.49 2.90 1.90 

4 53.064 11.79 1.30 22.83 2.91 1.91 

 

Table XVI shows that as the C/HM atom ratio decreases, the EALF, and the MFP 

increases.  Unlike the LEU cases, however, keff does not always increase as the C/HM 

atom ratio decreases.  This is illustrated in Fig. 27. 
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Note: Three and four fuel-ring VHTRs fueled by RGPu. 

Fig 27. Keff for three and four fuel-ring VHTR fueled with RGPu for varying C/HM 
atom ratios. 

 

Fig. 27 shows for a C/HM atom ratio between 75 and 400, there is a transition on how 

keff is related to the C/HM atom ratio inside the compact.  Table XVI shows that in this 

range the EALF is far more strongly dependent on the C/HM ration when compared to 

the for C/HM atom ratio above 400.  This is illustrated in Fig. 28.  This figure shows that 

between 400 and 75 C/HM the EALF begins to increase much faster than for a C/HM 

above 400.  When the C/HM falls below 75, EALF begins to increase at an even faster 

rate. 
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Fig 28. EALF for three and four fuel-ring VHTR fueled with RGPu for varying C/HM 
atom ratios. 

 

The effect of C/HM on the flux in the RGPu-VHTR is more complex when compared to 

the effects observed in the LEU-VHTR systems.  In Fig. 29, a distinct thermal peak and 

fast peak can be seen.  This figure was produced for the RGPu-VHTR core with the 

C/HM atom ratio of 249 and keff of 1.19.  For comparison, the flux shown in Fig. 30 is 

from the same VHTR but with a C/HM atom ratio of 36 and keff of 1.19.  The flux shape 

in this reactor has no thermal peak in the compact.  Figs. 29 and 30 show the energy-

dependent flux for VHTR configuration that rest on opposite sides of the keff dip in Fig, 

27.  From the flux spectra shown in these figures, the keff anomaly shown as a dip in Fig. 

27 can be explained as the transition from a thermal system to a system with a hard 

spectra.   
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When Fig. 30 (hard spectra) is compared to Fig. 25 (illustrating that low C/HM atom 

ratio LEU systems exhibit a thermal peak), the question of the thermal peak loss for 

RGPu systems with low C/HM atom ratio is raised.  This loss can be explained by the 

nuclear characteristics of the RGPu vectors and reduction in moderation in the VHTRs 

with low C/HM atom ratios.  This results in a decrease in the resonance escape 

probability as well as an increase in fission induced by fast neutrons. 
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Note: Three fuel-ring RGPu (53.064 fissile atom fraction) VHTRs with a C/HM atom ratio of 249 in the  
          inner most fuel-ring. 

Fig 29. KENO V.a flux inside a compact for an RGPu-fueled system with a distinct 
thermal peak. 
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Note: Three fuel-ring RGPu (53.064 fissile atom fraction) VHTRs with a C/HM atom ratio of 36 

in the inner most fuel-ring. 

Fig 30. KENO V.a flux inside a compact for an RGPu-fueled system without a distinct 
thermal peak. 

 

 

A series of varied C/HM reactor configurations were modeled for TRU-fueled VHTRs 

and the results of these models are given in Table XVII. 
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Table XVII. Reactor Physics Parameters for Three and Four Ring TRU-VHTR 
Configurations as a Function of C/HM Atom Ratio 

Number 
of Rings 

Fissile Atom 
Fraction C/HM keff 

EALF 
[eV] 

Avg. Neutron Fission 
Yield MFP [cm] 

3 53.064 1271.34 1.00 0.21 2.89 1.90 

3 53.064 845.40 1.05 0.23 2.89 1.92 

3 53.064 632.44 1.08 0.25 2.89 1.92 

3 53.064 504.66 1.08 0.27 2.89 1.93 

3 53.064 419.47 1.08 0.29 2.89 1.93 

3 53.064 358.62 1.08 0.31 2.89 1.94 

3 53.064 312.99 1.08 0.34 2.89 1.94 

3 53.064 249.10 1.07 0.39 2.89 1.95 

3 53.064 206.51 1.06 0.46 2.89 1.95 

3 53.064 176.08 1.06 0.53 2.89 1.95 

3 53.064 153.26 1.05 0.61 2.89 1.96 

3 53.064 78.73 1.04 1.37 2.90 1.97 

3 53.064 25.48 1.10 8.69 2.91 1.98 

3 53.064 11.79 1.17 32.77 2.92 1.98 

4 53.064 1271.34 1.04 0.21 2.89 1.82 

4 53.064 845.40 1.09 0.23 2.89 1.83 

4 53.064 632.44 1.11 0.25 2.89 1.84 

4 53.064 504.66 1.11 0.27 2.89 1.85 

4 53.064 419.47 1.11 0.30 2.89 1.85 

4 53.064 249.10 1.09 0.41 2.89 1.87 

4 53.064 176.08 1.08 0.55 2.89 1.88 

4 53.064 78.73 1.05 1.51 2.90 1.89 

4 53.064 25.48 1.11 10.05 2.91 1.91 

4 53.064 11.79 1.18 38.38 2.92 1.91 

 

 

Table XVII shows that, as the C/HM atom ratio decreases, the EALF and the MFP 

increases, much like VHTRs behave with RGPu fuel.  Like the RGPu cases, keff does not 
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always increase as the C/HM atom ratio decreases.  This attribute is illustrated in Fig. 

31.  In Fig. 31, it is apparent that in TRU-fueled cores, keff behave similarly to RGPu keff 

when C/HM is changed but at a lower keff.  This behavior is expected, accounting for 

nuclear physics of TRU and reduction in moderation of low C/HM atom ratios similarly 

as discussed with RGPu-fueled VHTRs. 

 

 

 
Note: Three and four fuel-ring VHTRs fueled by LEU, RGPu or TRU. 

Fig 31. Keff for three and four fuel-ring VHTR fueled with TRU for varying C/HM 
atom ratios with LEU and RGPu cases shown for comparison. 

 

The effect of C/HM on the flux in the TRU-fueled VHTRs is far more complex when 

compared to the effects on LEU systems and more complex than the RGPu-fueled 
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systems.  In Fig. 32, a distinct thermal peak and fast peak can be seen in the flux.  This 

figure was produced for the TRU-fueled core with the C/HM atom ratio of 505.  For 

comparison, the flux shown in Fig. 33 is for a TRU-fueled VHTR with a C/HM atom 

ratio of 25.  The flux shape in this reactor has no thermal peak present in the compact but 

when compared to Fig. 34 (the same core but with a C/HM ratio of 12) the fast peak has 

grown in magnitude and the slowing down region has been noticeably reduced in 

magnitude.  This indicates that low C/HM TRU-fueled systems are capable of utilizing 

fast neutrons much better than higher ratio systems.  The ability of these systems to 

utilize fast and slowing down neutrons could prove beneficial in allowing for long core 

lives. 
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Note: Three fuel-ring TRU (55.86 fissile atom fraction) VHTR with a C/HM atom ratio of 505 in the inner  
          most fuel-ring. 

Fig 32. Flux calculated by KENO V.a inside a compact for a TRU-fueled system with a 
distinct thermal peak. 
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Note: Three fuel-ring TRU (55.86 fissile atom fraction) VHTR with a C/HM atom ratio of 25 in the inner  
         most fuel-ring. 

Fig 33. Flux calculated by KENO V.a inside a compact for a TRU-fueled system without 
a distinct thermal peak. 
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Note: three fuel-ring TRU (55.86 fissile atom fraction) VHTR with a C/HM atom ratio of 12 in the inner  
          most fuel-ring. 

Fig 34. KENO V.a flux inside a compact for a TRU-fueled system without a distinct 
thermal peak and higher magnitude fast flux peak. 

 

Fig. 35 shows the energy dependent flux in four cases for TRU-fueled VHTRs.  This 

figure demonstrates that, from fission energies to approximately energies of 1 keV, the 

flux for each core is about constant in shape but not in magnitude.  After a C/HM ratio 

has dropped to approximately 100, the addition of more fuel significantly increases keff 

of the system such that compacts acts solely as a fast neutron source requiring neutrons 

to exit the compact before thermalization can occur.  Such systems could prove more 

difficult to control and require further safety analysis. 
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Fig 35. Flux calculated by KENO V.a inside a compact for a TRU-fueled systems. 
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IV.B  Simplified Model 

In this section the development of a simplified VHTR model is discussed.  Due to 

limitations of T5-DEPL, a simplified version of the model used in the CSAS25 

calculation was needed.  Specifically, T5-DEPL, as available in SCALE 5.1 when 

released in 2006 could not deplete double heterogeneous materials.  Due to the close 

working relationship between Texas A&M and the SCALE group at ORNL, SCALE 5.1 

was patched to allow for the depletion of one double heterogeneous material.  Another 

further simplification was needed to reduce computation time for each T5-DEPL case.   

At each time-step in the a T5-DEPL model, new cross-sections have to be generated due 

changes in radionuclide concentrations.  The radionuclide concentrations affect the 

energy-dependent flux shape and thus the reaction rates leading to depletion.  In 

complex models, cross-section processing can take upwards of five hours for each time-

step.  With multiple time-steps, a T5-DEPL calculation could take two weeks to 

complete.  To avoid such a scenario the calculation time was reduced by the removal of 

the temperature distribution.  As stated in Section III, a temperature distribution was 

created by the addition of materials but with varying temperatures.  Without these 

materials, there are fewer cross-sections that have to be processed at each time-step, 

requiring less computation time for a single T5-DEPL case. 

The same physical geometry was used for both the simplified model and the detailed 

models used for BOL characterization in Section IV.B.  To contrast the effects of having 

and not having a temperature distribution, four CSAS25 cases were evaluated with core 

configurations was identical to the four cases investigated in Section IV.B.  The only 

difference between these cases is the active core average temperature (1250 K) used 

throughout the geometry.   To clarify, each case was physically the same, had the same 

number of materials, but for each set of twin cases, one case had a temperature 

distribution while the other had a single temperature throughout the model. Results of 
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these cases are shown in Table XVIII and are compared to the results for the same core 

configurations as part of the investigations in Section IV.A. 

 

Table XVIII. Results of Isothermal Core Average Temperature on CSAS25 Results 

LEU Three Fuel-ring Configuration Enrichment=9% C/HM=36 

Temp. Dist. keff EALF [eV] Avg. Neutron Fission Yield MFP [cm] 

No 1.220 0.238486 2.43878 1.91514 

Yes 1.214 0.231661 2.4388 1.91412 

LEU Three Fuel-ring Configuration Enrichment=9% C/HM=10 

Temp. Dist. keff EALF [eV] Avg. Neutron Fission Yield MFP [cm] 

No 1.26575 0.571847 2.44185 1.94242 

Yes 1.26076 0.566728 2.44188 1.94045 

TRU Three Fuel-ring Configuration Fissile Atom Fraction=55.86% C/HM=505 

Temp. Dist. keff EALF [eV] Avg. Neutron Fission Yield MFP [cm] 

No 1.08946 0.276809 2.89104 1.92939 

Yes 1.08206 0.269326 2.89128 1.92861 

TRU Three Fuel-ring Configuration Fissile Atom Fraction =9% C/HM=12 

Temp. Dist. keff EALF [eV] Avg. Neutron Fission Yield MFP [cm] 

No 1.17548 33.33804 2.91770 1.98172 

Yes 1.173 32.7658 2.91787 1.98003 

 

The results summarized in Table XVIII show that systems have nearly identical reactor 

physics properties.  These results led to the conclusion that the lack of a temperature 

distribution does not dramatically alter the VHTR modeling results, when accounted for 

by an accurate average temperature. 

IV.C  Safety of VHTRs 

In this section, the reactivity coefficients were calculated to evaluate safety 

characteristics of TRU-fueled VHTRs.  Four isothermal VHTR configurations were 
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modeled with CSAS25.  These four cases are identical to the four isothermal cases used 

in Section IV.B but these cases used a core average temperature of 1350 K.  Using these 

four cases, isothermal temperature coefficients were evaluated as: 

 1

1 1

1n n
n

n n n n

k k
k k T T

ρ +

+ +

−
= ⋅

⋅ −
  

 

Where: 

nρ :  Temperature coefficient between nT and 1nT +  ( )/ /k k KΔ  

nT :    Core Temperature at thn  measurement ( )K   

1nT + :   Core Temperature at 1thn +  measurement ( )K   

nk :  Effective Multiplication Factor at nT  

1nk + :  Effective Multiplication Factor at 1nT +  

The results of these four cases are shown in Table XIX, with the corresponding 

temperature reactivity coefficient. 
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Table XIX. Isothermal Temperature Reactivity Coefficients 

Case Summary 
Temperature 

Reactivity Coefficient 
( )/ /k k KΔ  

LEU 
C/HM=80 

Enrichment=9% 
-1.95E-05 

LEU 
C/HM=30 

Enrichment=9% 
-3.43E-05 

TRU 
C/HM=70 -5.07E-05 

TRU 
C/HM=025 -7.16E-05 

 

Calculated temperature reactivity coefficients for TRU-fueled VHTRs were found to be 

more negative then LEU-fueled VHTRs.  In TRU systems, low C/HM systems have a 

temperature reactivity coefficient approximately the same as shown for high C/HM 

systems.  In LEU systems, a low C/HM atom ratio core has approximately half the 

negative reactivity as a high C/HM system.  This is caused by the harder spectrum which 

lowers the probability that a neutron will be absorbed in the broadened U-238 resonance 

capture cross-section.   

IV.D  Single-Batch Operation of theTRU-Fueled VHTRs 

In this section, depletion cases were investigated for three fuel-ring VHTR cores based 

on characterizations of VHTR BOL operation domains in Section IV.A.  Only TRU and 

LEU-fueled configurations were considered..  The TRU fuel composition used in this 

section differed in that fuel was not modeled as a dioxide (i.e., HM without oxygen in 

the fuel kernel).  The effect of this simplification is negligibly small.  As was 

demonstrated in prior sections, a 3D representation of the energy-dependent flux can be 

generated.  The energy-dependent flux is generated at each time step in the T5-DEPL 

calculation.  Fig. 36 shows the flux for a TRU-fueled VHTR with a low C/HM atom 

ratio of 11. 
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Fig 36. Energy-dependent flux during reactor operation for TRU-fueled VHTRs. 

 

In Fig. 36, the energy dependent flux for the compact is shown for each time step of 

reactor operation.  The hard spectrum encountered in the CSAS25 BOL calculations is 

still evident for core lives in T5-DEPL cases.   

IV.D.1  Core Life-Time 

Several TRU-fueled VHTR configurations have been analyzed to determine the effect of 

the C/HM atom ratio on the single-batch core lifetime.  Fig. 37 illustrates the TRU-

fueled VHTR operation in a single-batch mode. 
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Fig 37. Single-batch operation of TRU-fueled VHTR configurations as a function of the 
C/HM atom ratio per compact. 

The TRU-fueled VHTR configurations were considered assuming their operation at 103 

MW/MTHM.  Fig 37 illustrates that the core lifetime of 9 years is possible if attained 

fast fluence levels can be tolerated by TRISO particles.  Furthermore, by simply 

adjusting the C/HM atom ratio inside a compact, the corresponding compact adjustment 

can extend core life-time from less than three years to nine years. 

Several LEU-fueled VHTR configurations were analyzed to determine the effect of both 

enrichment and C/HM on core lifetime.  Figs. 38 though 40 illustrate the results of these 

calculations.  Fig. 38 shows results for 20% enriched LEU, Fig. 39 shows results for 

15% enriched LEU, and finally Fig. 40 shows results for 10% enriched LEU. 
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The longest core life possible is shown to be approximately four years, less than half of 

what was calculated for TRU-fueled cores.  Changes in C/HM atom ration inside the 

compact have little effect on core life-time. One important exception is that lower C/HM 

atom ratios have shorter core-lives than higher C/HM atom ratio LEU fuel cores.   This 

is due to the lack in RGPu creation from the capture of thermalizing neutrons in U-238 

resonances during beginning of core life.  

 

 

Fig 38. Single-batch operation of 20% LEU-fueled VHTR configurations as a function 
of the C/HM atom ratio per compact. 
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Fig 39. Single-batch operation of 15% LEU-fueled VHTR configurations as a function 
of the C/HM atom ratio per compact. 
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Fig 40. Single-batch operation of 10% LEU-fueled VHTR configurations as a function 
of the C/HM atom ratio per compact. 

 

IV.D.2  Fast Fluence Levels in the TRU-Fueled VHTRs Operating in a Single-Batch  
Mode 

Fast fluence, as discussed in Section II, is one of the most limiting factors in the 

operation of TRU VHTRs for extended lifetimes.  Fig. 41 shows the fast fluence a 

TRISO particle would endure during core operation for cores shown to have the longest 

operation time. 
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Fig 41. Fast fluence for longest operating VHTR configurations. 
 

Fig. 41 shows that the highest fluence  is approximately 7x1022 n/cm2 whereas limiting 

fast fluence for TRISO particles is 5x1022 n/cm2.  With three orders of magnitude 

difference between safety limits and calculated fast fluences for the longest core 

lifetimes, the conclusion could be drawn TRU containing TRISO particles could be 

safely used for extended batch operation. 

IV.D.3  TRU Destruction in VHTRs 

As stated in Section I, TRU-fueled VHTRs have the possibility of TRU destruction.  The 

calculated TRU destruction rates for TRU-fueled VHTR cores are shown in Table XX. 
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Table XX. TRU Destruction Rate 

C/HM 
Atom Ratio 

Core Life 
[years] 

TRU Destruction 
[% MTHMdestroyed] 

9 9 33.62% 

11 8 29.86% 

23 7 26.03% 

33 6 22.26% 

53 6 22.21% 

112 5 18.44% 

229 2 7.36% 

 

As shown in Table XX, the destruction rate of TRU for VHTR is proportional to core 

life-time, where core life-time is dependent on the C/HM atom ratio in the compact.  It is 

also important to note that low C/HM atom ratio cores contain more TRISO particles 

(i.e., more fuel) than do higher ratio cores.   

IV.D.4  Radiotoxicity at EOL 

When spent fuel is sent to the Yucca Mountain Geological Repository, SNF is going to 

be assessed on two factors.  First, before a waste form can enter the subsurface 

environment, the waste package has to fall below a specific heat emission requirement.  

The heat a waste package emits is based on the configurations of the waste package and 

the activity and corresponding energy released from the waste.  Since a waste package 

has not been designed to handle VHTR waste forms, SNF from a VHTR was judge on 

the energy being released per MTHM and energy being released per volume of HM that 

was originally placed in the reactor.  Since the fuel originally placed in the VHTR was 

based on the average PWR TRU waste stream, calculations were performed on the 

longest lived core TRU VHTR configuration, so that the EOL actinide concentrations 

emitted the same energy per MTHM and energy per volume of HM exiting the reactor.  
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The second and most important criterion for SNF entering the geological repository is 

activity of the HLW.  This is due to the dose requirements on personal working in the 

facility.  Since dose levels are closely related to activities, activities of the actinide waste 

exiting the longest lived VHTR were analyzed based on the two metrics discussed for 

the energy emission requirements above.  Fission products were not analyzed, under the 

assumption that they can be removed from a VHTR waste stream as was done with the 

PWR waste stream shown in Section III.  Results of these calculations are shown in 

Table XXI. 

 

Table XXI.  TRU HLW from Longest VHTR Core Life 

Time Required To Reach Same Energy Release per Fuel Volume 71 years 

Time Required To Reach Same Energy Release per MTHM 164 years 

Time Required To Reach Same activity per Fuel Volume 10 years 

Time Required To Reach Same Energy Release per MTHM 23 years 
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V.  CONCLUSIONS 

A 3D whole-core model representing a power-size VHTR, accounting for both 

neutronics and thermal characteristics, was developed within the maximum limitations 

of the SCALE 5.1 code system.  Both three and four fuel-ring annular core 

configurations were developed and analyzed.  A 3D temperature distribution was 

developed based on conceivable operation conditions of a 600 MWth VHTR and was 

incorporated into the whole-core model for utilization in BOL CSAS25 calculations.  

The reactivity effects of the developed temperature distribution were compared to 

isothermal core distributions.  Matlab and Perl scripts were developed and coupled with 

Excel files for rapid automated CSAS25 and T5-DEPL model generation, incorporating 

the developed 3D temperature distribution for use in CSAS25 parametric studies.  

Further, Matlab and Perl scripts were developed and utilized for efficient post-

processing of simulation results obtained from SCALE 5.1 model outputs. 

The effects on BOL criticality and fluxes were evaluated for varying U-235 enrichments 

and fissile nuclide fractions for RGPu three and four fuel-ring VHTR configurations.  A 

strong dependence on BOL excess reactivity was found in both LEU and RGPu-fueled 

cores.  The loss of a thermal peak in the neutron-energy spectra inside the compacts was 

shown for high fissile nuclide fractions in RGPu-fueled cores.  A decrease in the 

magnitude of the thermal peak was shown for LEU-fueled systems.  Excess reactivity at 

BOL was increased in LEU, RGPu, and TRU-fueled four fuel-ring configurations when 

compared to three fuel-ring configurations with identical fuel loadings.  No measurable 

effects were found between three and four fuel-ring configurations with respect to the 

neutron energy spectra.   

The effects on BOL criticality and fluxes were evaluated for varying C-to-HM atom 

ratios inside the compact.  Ratios were changed by varying the packing fraction of 

TRISO particles inside the compact. A strong dependence on BOL excess reactivity was 

found in both LEU, RGPu and TRU-fueled cores.  Increases in excess reactivity was 
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found for all three fuel types when the C/HM atom ratio was lowered, though in TRU 

and RGPu cases, the excess reactivity dropped for an intermediate range of C/HM atom 

ratios as a result of the systems moving from a thermal operation to systems with a hard 

neutron spectra.  Neutron energy spectra were found to be capable of shifting by C/HM 

atom ratio adjustments in all three fuel types.  

The effect of having a temperature distribution to BOL excess reactivity calculation was 

evaluated by the comparison of identical models that had hard or thermal spectras for 

TRU and LEU-fueled cores, for cases with and without a temperature distribution.  

Results showed that, when appropriate average core temperatures were used, excess 

reactivity changes were negligible. 

Isothermal temperature reactivity coefficients were found to be adequately negative for 

LEU and TRU-fueled VHTRs.  Additionally, TRU-fueled VHTRs were found to be 

safer due to a larger negative magnitude isothermal temperature reactivity coefficient 

then LEU-fueled VHTRs.  Fast fluences were calculated for TRU and LEU-fueled cores 

and were found to be satisfactory in all sustainable core lives. 

LEU and TRU-fueled VHTR models core operation lives were evaluated via the 

depletion of fuel within the double heterogeneous compacts via a non-public distributed  

version of TRITON through the T5-DEPL sequence. Nine year core-lives were found 

possible for single batched TRU-fueled cores without intermediate refueling during 

continuous operation conditions.  Four year core-lives were possible for single batched 

LEU-fueled cores without intermediate refueling during continuous operation 

conditions. 

Heavy metal destruction rates of approximately thirty-three percent were found possible 

for TRU-fueled VHTRs operating for extended core-lives and low C/HM atom ratios.  

Radiotixicity of exiting heavy metal waste streams of extended core lives was found to 

require minimal cooling time when compared to intial heavy metal fuel loading. 
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The characterization of TRU-fueled VTHRs resulting from the research showed 

promising results for future work.  Future work should include but not be limited to: 

• Coupled thermodynamic and neutronic codes for detailed investigation in 

relation to power distribution through core-life. 

• Parametric studies of multiple fuel loading, fuel types, and fuel configurations for 

utilization of neutron energy spectra axial and radial distributions. 

• Cross-section sensitivity studies related to composition changes during core-life. 

• Quantification of uncertainty effects related to nuclear data and design 

parameters. 

• Cost feasibility of long-life TRU-fueled VHTRs. 

TRU-fueled VHTRs show promise in regards to protecting the environment while 

addressing the needs for cleaner and, more importantly, sustainable safe energy.  This is 

possible due to the inherent safety, low environmental impact, and proliferation 

resistance of very high temperature reactors. 
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