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ABSTRACT

Preconditioning of Discontinuous Galerkin Methods

for Second Order Elliptic Problems. (December 2007)

Veselin Asenov Dobrev, B.S., Sofia University

Chair of Advisory Committee: Dr. Raytcho Lazarov

We consider algorithms for preconditioning of two discontinuous Galerkin (DG)

methods for second order elliptic problems, namely the symmetric interior penalty

(SIPG) method and the method of Baumann and Oden.

For the SIPG method we first consider two-level preconditioners using coarse

spaces of either continuous piecewise polynomial functions or piecewise constant (dis-

continuous) functions. We show that both choices give rise to uniform, with respect

to the mesh size, preconditioners. We also consider multilevel preconditioners based

on the same two types of coarse spaces. In the case when continuous coarse spaces

are used, we prove that a variable V-cycle multigrid algorithm is a uniform precondi-

tioner. We present numerical experiments illustrating the behavior of the considered

preconditioners when applied to various test problems in three spatial dimensions.

The numerical results confirm our theoretical results and in the cases not covered by

the theory show the efficiency of the proposed algorithms.

Another approach for preconditioning the SIPG method that we consider is an

algebraic multigrid algorithm using coarsening based on element agglomeration which

is suitable for unstructured meshes. We also consider an improved version of the al-

gorithm using a smoothed aggregation technique. We present numerical experiments

using the proposed algorithms which show their efficiency as uniform preconditioners.

For the method of Baumann and Oden we construct a preconditioner based on

an orthogonal splitting of the discrete space into piecewise constant functions and
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functions with zero average over each element. We show that the preconditioner

is uniformly spectrally equivalent to an appropriate symmetrization of the discrete

equations when quadratic or higher order finite elements are used. In the case of linear

elements we give a characterization of the kernel of the discrete system and present

numerical evidence that the method has optimal convergence rates in both L2 and

H1 norms. We present numerical experiments which show that the convergence of

the proposed preconditioning technique is independent of the mesh size.
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CHAPTER I

INTRODUCTION

In recent years, the discontinuous Galerkin (DG) finite element methods have become

a popular tool for the discretization of partial differential equations which can be ap-

plied to a large variety of problems. In contrast to the standard (Galerkin) finite

element methods where the discrete spaces are chosen to preserve the natural con-

tinuity properties of the underlying PDE, the DG methods use discrete spaces with

relaxed or no continuity restrictions across element boundaries. In order to impose

the lost natural continuity weakly (without which one cannot expect good approxi-

mation properties) the DG methods introduce modifications to the bilinear and linear

forms of the variational formulation of the problem.

Although the first DG methods were used to discretize hyperbolic equations,

there are a number of DG methods for second-order elliptic equations. A unified

analysis of a large class of such methods is presented in [2]. Among those are: the

method of Babuška and Zlámal [3]; the symmetric interior penalty (IP or SIPG)

method [18], [27], [1]; the method of Bassi and Rebay [4]; the method of Brezzi et

al. [12]; the local discontinuous Galerkin (LDG) method [15]; the method of Baumann

and Oden [5]; and the non-symmetric interior penalty (NIPG) method [22]. Table

1.1, taken from [2], summarizes some of the properties and error estimates for these

DG methods. The columns “Symm.” and “Cons.” show if the bilinear form of the

method is symmetric and if the method is consistent (i. e. the exact solution satisfies

the variational equation of the method). The columns “H1” and “L2” give the order of

the error estimate in H1-like and L2 norms when the discrete spaces use polynomials

This dissertation follows the style of the SIAM Journal on Numerical Analysis.
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Table 1.1. Properties of DG methods for second-order elliptic problems

Method Symm. Cons. H1 L2

Babuška–Zlámal [3] X × hp hp+1

SIPG [18] X X hp hp+1

Bassi–Rebay [4] X X [hp] [hp+1]

Brezzi et al. [12] X X hp hp+1

LDG [15] X X hp hp+1

NIPG [22] × X hp hp

Baumann–Oden [5], p ≥ 2 × X hp hp

of degree p (the [·] brackets indicate that the estimates are in certain seminorms).

An important practical aspect of any discretization method is the ability to effi-

ciently solve the resulting system of algebraic equations which can easily have a very

large number of unknowns especially in two and three spatial dimensions. The use of

DG discrete spaces further increases the number of unknowns compared to standard

discretizations. This emphasizes even further the importance of efficient solvers for

DG methods. A standard approach for solving large linear systems of equations with

sparse matrices is to use an iterative method (e. g. PCG) coupled with a precon-

ditioner to accelerate the convergence rate of the iteration. The multigrid methods

are widely considered to be the best choice for the construction of preconditioners

when a hierarchy of discretizations is available. It is well known that when applied

to systems arising from standard finite element discretizations of second-order elliptic

problems, the multigrid preconditioners are optimal and therefore they are a natural

choice for DG methods as well.

The first work on multigrid preconditioning of DG discretizations that we are
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aware of, is [19] where the authors introduce and analyze a variable V-cycle algorithm

for the SIPG method. They show that the resulting preconditioner is spectrally

equivalent to the matrix of the linear system. The proof is based on the abstract

theory from [6] and requires a weak elliptic regularity assumption for the homogeneous

continuous problem: ‖u‖1+α ≤ C‖∆u‖−1+α, for some α ∈ (1
2
, 1].

Another recent work is [9] where V-, W-, and F-cycle multigrid algorithms for

the SIPG method are considered. The algorithms are similar to the one in [19] in

that they use the same sequence of coarse spaces. Assuming the same weak elliptic

regularity, the authors prove that the energy norms of the error propagation operators

are bounded by c/mα when the number of smoothing steps m is sufficiently large:

m ≥ m0. Their analysis is based on the theory developed by the authors in earlier

papers and uses estimates in certain mesh-dependent scale of discrete norms.

Another recent work on preconditioning for the SIPG method is [13] where the

authors consider multilevel Schwarz algorithms that give rise to uniform precondi-

tioners. In contrast to [19], their analysis does not require regularity assumption. In

addition the algorithm can be applied to problems on meshes with hanging nodes

satistying mild grading conditions. The construction is based on a stable splitting of

the discontinuous finite element space into conforming (continuous) subspace and a

suitable non-conforming (discontinuous) subspace.

In Chapter III we consider algorithms for preconditioning of the SIPG method.

First, we introduce two-level methods based on two choices for the coarse space both

defined on the same triangulation as the DG discretization space V : the first one

consists of the continuous functions in V , and the second one is the space of piecewise

constant functions. We show that for both two-level preconditioners the energy norm

of the error propagation operator is less than 1 uniformly in h. These results are

contained in [16]. In the second part of Chapter III we introduce multigrid extensions
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of the two-level preconditioners based on hierarchy of coarse spaces of the same type as

the coarse spaces of the two-level methods. We prove that the variable V-cycle method

using continuous coarse spaces gives rise to a spectrally equivalent preconditioner for

the SIPG linear system which to the best of our knowledge is a new result. Our

analysis is similar to the one used in [19]. We present numerical experiments in 3D

that illustrate the theoretical results and investigate numerically some cases that are

not covered by the analysis. The multilevel results are summarized in [17].

In Chapter IV we introduce algebraic multigrid (AMG) preconditioners for the

SIPG method which can be used when the triangulation of the domain is unstruc-

tured. Our approach is to use AMGe based on element agglomeration introduced in

[10], [20]. We use piecewise constant spaces on the coarse triangulations consisting of

agglomerated elements and use the natural embeddings of these discontinuous spaces

to define interpolation and coarse-level operators. We also consider a smoothed aggre-

gation version using the ideas introduced in [25], [26]. The efficiency of the proposed

AMG methods is investigated numerically and compared to the multigrid methods of

Chapter III when possible.

In the last Chapter V we introduce and study a preconditioner for the non-

symmetric method of Baumann and Oden. We start by studying the properties

of the bilinear form of the method on the discrete DG space. Namely, we use an

equivalent mixed formulation of the method to prove that the bilinear form satisfies

an inf-sup condition in a suitable norm when quadratic or higher order elements are

used. In the case of linear elements we characterize the kernel of the linear operator

corresponding to the bilinear form, derive an equivalent form for the inf-sup condition

and finally we show that it does not always hold with constant independent of h. We

present numerical evidence that in this case (linear elements) the method has optimal

convergence rates in both L2 and H1 norms. Also, we show that the norm used in the
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inf-sup condition we proved defines a symmetric and positive definite preconditioner

for a symmetrization of the non-symmetric system of the DG method. The action of

the preconditioner requires the solution of a problem on the piecewise constant space

with the SIPG bilinear form. If this smaller problem is solved exactly or replaced

by an optimal preconditioner (e. g. using multigrid) the resulting preconditioner for

the symmetrized system is also optimal. The results in this chapter are new and the

preconditioning technique we introduced is the first optimal one that we know of. We

conclude Chapter V with numerical experiments that confirm our analysis.
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CHAPTER II

MODEL PROBLEM AND DG METHODS

In this chapter we introduce the model second order elliptic problem that we will

consider. We also describe the general domain discretization and notation that we

use. Then we proceed to introduce the discontinuous Galerkin methods that we will

consider and establish some of their basic properties.

2.1. Model Second-Order Elliptic Problem

Let Ω be polyhedral domain in Rd, d = 2, 3 with Lipschitz boundary and let n denote

the outward unit normal vector to ∂Ω. Assume that the boundary is decomposed

in two disjoint components ∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅ with ΓD having positive

boundary measure. We consider the following second-order elliptic boundary value

problem:

−∇ · (a∇u) = f in Ω,

u = uD on ΓD,

(a∇u) · n = uN on ΓN .

(2.1)

Here u is the unknown function and a, f , uD, and uN are given functions. We assume

that f ∈ L2(Ω), uD ∈ H1/2(ΓD), uN ∈ H−1/2(ΓN) and that the coefficient matrix

a ∈ (L∞(Ω))d×d is symmetric, uniformly bounded and positive definite, that is there

exist positive constants a0 and a1 such that

0 < a0|ξ|2 ≤ (a(x)ξ) · ξ ≤ a1|ξ|2, ∀ξ ∈ Rd, a. e. x ∈ Ω. (2.2)

Let ũD ∈ H1(Ω) be an extension of uD inside the domain (i. e. ũD|ΓD
= uD) and

define the space

H1
0 (Ω; ΓD) =

{
v ∈ H1(Ω) : u|ΓD

= 0
}
.
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It is well known that an equivalent variational formulation of the problem (2.1) is:

find u ∈ ũD +H1
0 (Ω; ΓD) such that

(a∇u,∇v) = (f, v) + 〈uN , v〉ΓN
, ∀v ∈ H1

0 (Ω; ΓD), (2.3)

where (·, ·) denotes the inner product in L2(Ω) and L2(Ω)d, and 〈·, ·〉ΓN
denotes the

duality between H−1/2(ΓN) and H
1/2
00 (ΓN).

2.2. Domain Discretization

Let T = {T} be a simplicial discretization of the domain Ω into finite elements T

that is the elements are triangles when d = 2 and tetrahedra when d = 3. We assume

that T is a regular triangulation, that is the intersection of any two elements is either

empty or a common vertex, edge, or face. We also assume that the elements are shape

regular: there exists a constant γ such that

hT

ρT

≤ γ, ∀T ∈ T ,

where hT denotes the diameter of the element T and ρT — the diameter of the largest

ball inscribed in T .

The set of all edges (d = 2) or faces (d = 3) of the elements in T will be denoted

by E and we will refer to its elements as faces for both d = 2 and d = 3. Let Ei

and Eb denote the sets of all interior and all boundary faces, respectively. We will

assume that the Dirichlet boundary, ΓD, is the union of a non-empty set of boundary

faces which we will denote by ED. Similarly, EN = Eb \ ED will denote the faces where

Neumann boundary condition is imposed. Thus, we have

ΓD = ∪ED ΓN = ∪EN .
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For a given face F ∈ E , TF will denote the set of the elements that share the face

F . Similarly, for an element T ∈ T , ET will denote the set of all faces of T . On the

union of all faces in E we define the following piecewise constant function

hE |F = |F |
1

d−1 , ∀F ∈ E ,

where |F | denotes the Rd−1 dimensional measure of F . Since we assumed that the

triangulation is simplicial and shape regular, if F ∈ E is one of the faces of an element

T ∈ T then

c0hT ≤ hE |F ≤ c1hT ,

with constants c0 and c1 independent of T and F .

2.3. Function Spaces and Notation

We define the following “broken”, with respect to the triangulation T , Sobolev space:

Hs(T ) =
{
v ∈ L2(Ω) : v|T ∈ Hs(T ), ∀T ∈ T

}
, for s ≥ 0.

We will consider the following discretization space of discontinuous piecewise polyno-

mial functions of degree r ≥ 1:

V ≡ V(T , r) =
{
v ∈ L2(Ω) : v|T ∈ Pr(T ), ∀T ∈ T

}
.

Let F ∈ Ei be a face shared by two elements, Ti and Tj from T (see Figure 2.1); we

denote the unit vector normal to F pointing from Ti to Tj by n (thus we choose and

fix a direction for each interior face). For boundary face F , n will denote the unit

normal vector pointing outside of Ω. Let w be a function defined on both sides of F

as wi and wj from the side of the elements Ti and Tj, respectively. For example, w

can be the trace of a function in Hs(T ), s > 1/2, or the normal derivative, ∇u ·n, of a
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Ti

T j

nF

Fig. 2.1. Interior edge shared by two elements.

function u ∈ Hs(T ), s > 3/2. For such w we define the jump and average operators:

[[w]] = wi − wj and {w} =
1

2
(wi + wj).

Thus, the direction for the jump [[w]] is determined by our choice of the direction of

the normal vector n. For a boundary face F and w defined only on the interior side

of it as wi we set

[[w]] = wi and {w} = wi.

For a function u ∈ H1(T ) we will use the notation ∇u to denote the element by

element derivative of u instead of its distributional derivative:

∇u ∈ L2(Ω) : (∇u)|T = ∇(u|T ), ∀T ∈ T , ∀u ∈ H1(T ).

For functions p, q ∈ L2(∪S) defined on the union of some set of faces S, e.g. S = E ,

we will use the following notation

〈p, q〉S =
∑
F∈S

∫
F

p q =

∫
∪S

p q.
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2.4. Discontinuous Galerkin Methods

In order to define the DG methods considered in this section we will assume that the

coefficients a and uN are smooth. Namely, we assume that uN ∈ L2(ΓN) and that a

is piecewise (W 1
∞)d×d with respect to the triangulation T . This allows us to define

traces of (a∇u) when u ∈ Hs(T ) for s > 3/2. Let u, v ∈ Hs(T ) for some s > 3/2

and define the DG bilinear form

A(u, v) = (a∇u,∇v)− 〈{a∇u · n} , [[v]]〉Ei∪ED

+ σ 〈{a∇v · n} , [[u]]〉Ei∪ED
+
〈
κh−1

E aE [[u]], [[v]]
〉
Ei∪ED

and the linear form

L(v) = (f, v) + 〈uN , v〉EN
+ σ 〈uD, a∇v · n〉ED

+
〈
κh−1

E aEuD, v
〉
ED
,

where the choices of σ = ±1 and κ ≥ 0 will define different DG methods and aE is a

restriction of the coefficient a to the faces; one possible choice for aE is

aE = {an · n} .

It is not hard to see that the definition is independent of our choices for the directions

of the normal vectors n on the interior faces. The following choices for σ and κ define

some of the well known DG methods:

• σ = −1 and κ ≥ κ0 sufficiently large define the symmetric interior penalty (IP

or SIPG) method (see [27], [1], [2]).

• σ = +1 and κ > 0 define the non-symmetric interior penalty (NIPG) method

(see [22], [2]).

• σ = +1 and κ = 0 define the method of Baumann and Oden (see [5], [21], [22],

[2]).
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Using the defined bilinear and linear forms the discrete DG problem can be written

as: find u ∈ V such that

A(u, v) = L(v), ∀v ∈ V .

Next, we look at some of the basic properties of these methods.

Proposition 1. All three of the above methods are consistent. That is, if the exact

solution U to (2.1) is in Hs(Ω) for some s > 3/2 then we have

A(U, v) = L(v), ∀v ∈ Hs(T ).

Proof. Let v ∈ Hs(T ) be arbitrary test function. Multiplying the first equation

in (2.1) by v, integrating over Ω and then integrating by parts over each element

separately gives

(f, v) = (−∇ · (a∇U), v) =
∑
T∈T

(a∇U,∇v)T − 〈a∇U · nT , v〉∂T

where nT is the unit outward vector normal to ∂T . Since a∇U ∈ H(div; Ω) its normal

component has no jump through interior faces and using the basic algebraic equality

(w1 · n1)z1 + (w2 · n2)z2 = {w · n} [[z]] + [[w · n]] {z}

we can rewrite the second term in the sum as

∑
T∈T

〈a∇U · nT , v〉∂T = 〈{a∇U · n} , [[v]]〉Ei∪ED
+ 〈uN , v〉EN

where we also used the definition of jump and average on ED and the last equation

in (2.1) on EN . Thus, we arrive at the equality

(a∇U,∇v)− 〈{a∇U · n} , [[v]]〉Ei∪ED
= (f, v) + 〈uN , v〉EN
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which combined with the obvious equalities (since [[U ]] = 0 on Ei, and [[U ]] = U = uD

on ED)

σ 〈{a∇v · n} , [[U ]]〉Ei∪ED
= σ 〈uD, a∇v · n〉ED〈

κh−1
E aE [[U ]], [[v]]

〉
Ei∪ED

=
〈
κh−1

E aEuD, v
〉
ED
,

gives the desired consistency.

We now look at the boundedness and coercivity properties of the bilinear form

A(·, ·) with respect to the norm

|||v|||2 = |||v|||2a,κ = (a∇v,∇v) +
〈
κh−1

E aE [[v]], [[v]]
〉
Ei∪ED

, ∀v ∈ H1(T ). (2.4)

We begin with the following discrete estimate:

Lemma 1. Let T be a non-degenerate simplex in Rd and F — one of its faces. If

φ ∈ Pr(T ) is a polynomial of degree r then

‖φ‖2
0,F ≤ C

|F |
|T |

‖φ‖2
0,T

where C depends only on d and r. Here ‖ · ‖0,S and |S| denote the norm in L2(S) and

the measure of S, respectively.

Proof. Let T̂ be a reference simplex in Rd and let F̂ be one of its faces. Let

x = G(x̂) = Bx̂+ b

be the affine transformation that transforms T̂ to T and F̂ to F . Since G is affine,

the function

φ̂(x̂) = φ(G(x̂))

is a polynomial of degree r and therefore

‖φ̂‖2
0,F̂

≤ C‖φ̂‖2
0,T̂
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because ‖ · ‖0,F̂ is a seminorm in the finite dimensional space Pr(T̂ ). The Jacobians

JF and JT of the transformations F̂ → F and T̂ → T are constant and we can express

them from the equalities

|F | =
∫

F

1dS =

∫
F̂

1|JF |dŜ = |JF ||F̂ |

|T | =
∫

F

1dx =

∫
T̂

1|JT |dx̂ = |JT ||T̂ |.

Thus, we have (even for φ|F ∈ L2(F ), φ ∈ L2(T ))

‖φ‖2
0,F = |JF |‖φ̂‖2

0,F̂
=
|F |
|F̂ |

‖φ̂‖2
0,F̂

‖φ‖2
0,T = |JT |‖φ̂‖2

0,T̂
=
|T |
|T̂ |

‖φ̂‖2
0,T̂

(2.5)

and therefore

‖φ‖2
0,F =

|F |
|F̂ |

‖φ̂‖2
0,F̂

≤ C
|F |
|F̂ |

‖φ̂‖2
0,T̂

= C
|F |
|F̂ |

|T̂ |
|T |

‖φ‖2
0,T .

The next lemma is well known in the case of a slowly varying coefficient a with

small or no jumps and when the elements are shape regular. We derive a slightly

more general estimate:

Lemma 2. Let F ∈ E be one of the faces of the element T ∈ T , v ∈ L2(F ) and

u ∈ Pr(T ). Assume that the matrix coefficient a satisfies

αTAT ξ · ξ ≤ a(x)ξ · ξ ≤ AT ξ · ξ, ∀ξ ∈ Rd, a. e. x ∈ T,

where αT > 0 is a constant and AT is a constant s. p. d. matrix. Then for any κ > 0

we have ∫
F

(a∇u · n)v ≤ C

κ

hE |F
αT

|F |
|T |

(a∇u,∇u)T +
κ

4

〈
h−1
E (an · n)v, v

〉
F
,

with a constant C that depends only on d and r.
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Proof. Since the matrix coefficient a is s. p. d. we can define its square root a
1
2 and

write∫
F

(a∇u · n)v =

∫
F

(a
1
2∇u) · (a

1
2n)v ≤

∫
F

|a
1
2∇u||a

1
2n| |v|

≤ ‖β−
1
2 |a

1
2∇u|‖0,F‖β

1
2 |a

1
2n|v‖0,F ≤

1

2β
‖|a

1
2∇u|‖2

0,F +
β

2
‖|a

1
2n|v‖2

0,F ,

where we take β = κ/(2hE). The second term becomes

β

2
‖|a

1
2n|v‖2

0,F =
κ

4

〈
h−1
E (an · n)v, v

〉
F

and the first term can be estimated

1

2β
‖|a

1
2∇u|‖2

0,F =
hE
κ

∫
F

a∇u · ∇u ≤ hE
κ

∫
F

AT∇u · ∇u =
hE
κ

d∑
i=1

‖(A
1
2
T∇u)i‖2

0,F .

Each component of A
1
2
T∇u is a polynomial of degree (r − 1) and therefore we can

apply Lemma 1

hE
κ

d∑
i=1

‖(A
1
2
T∇u)i‖2

0,F ≤ C
hE
κ

|F |
|T |

d∑
i=1

‖(A
1
2
T∇u)i‖2

0,T = C
hE
κ

|F |
|T |

∫
T

AT∇u · ∇u

≤ C

κ

hE
αT

|F |
|T |

∫
T

a∇u · ∇u.

to complete the proof.

Corollary 1. Let κ > 0 be arbitrary constant and let aE be defined by

aE = {an · n} .

Then the following estimate holds: ∀u ∈ V ,∀v ∈ Hs(Ω), s > 3/2

〈{a∇u · n} , [[v]]〉Ei∪ED
≤ CC1

1

κ
(a∇u,∇u) +

κ

4

〈
h−1
E aE [[v]], [[v]]

〉
Ei∪ED

where

C1 = max
T∈T ,F∈ET

{
(hE |F )|F |
αT |T |

}
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and C depends only on d and r.

Remark 1. It is clear that if the elements are shape regular as we assumed earlier

then C1 is independent of hT since

(hE |F )|F |
|T |

' hTh
d−1
T

hd
T

= 1.

Also, note that C1 is independent of any jumps that the coefficient a may have across

interior faces. For example, if it is piecewise constant w. r. t. the mesh T then αT = 1.

With the help of Corollary 1 we can derive the following

Proposition 2. The bilinear form A(·, ·) of all three methods is bounded on the

discrete space V in the |||·|||a,κ norm (with κ = 1 for the method of Baumann and

Oden). The bilinear form of the SIPG method is coercive provided that κ ≥ κ0 > 0 is

sufficiently large; the NIPG bilinear form is coercive for any κ > 0 (but the constant

in the boundedness grows like 1/κ for small κ). All constants in these bounds are

independent of hT and any jumps of the coefficient a across interior faces.

Proof. The boundedness follows easily from Corollary 1 and the coercivity of the

NIPG form is obvious. In the case of the SIPG method we can estimate

A(v, v) = (a∇v,∇v) +
〈
κh−1

E aE [[v]], [[v]]
〉
Ei∪ED

− 2 〈{a∇v · n} , [[v]]〉Ei∪ED

≥ (a∇v,∇v) +
〈
κh−1

E aE [[v]], [[v]]
〉
Ei∪ED

− 2

(
CC1

1

κ
(a∇v,∇v) +

κ

4

〈
h−1
E aE [[v]], [[v]]

〉
Ei∪ED

)
= (1− 2CC1/κ)(a∇v,∇v) +

1

2

〈
κh−1

E aE [[v]], [[v]]
〉
Ei∪ED

.

Thus, if 2CC1/κ < 1 the coercivity will follow.

Note that all the estimates in the Proposition are valid only on the discrete space

V .
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CHAPTER III

PRECONDITIONING THE SIPG METHOD

In this chapter we consider preconditioning techniques for the symmetric interior

penalty (SIPG) method. First, we consider two-level methods based on coarse spaces

defined on the same mesh as the SIPG method. We prove that the resulting two-level

preconditioners are uniformly (with respect to the mesh size) spectrally equivalent to

the matrix of the discrete linear system and present numerical experiments that illus-

trate that. We then proceed to define natural multilevel extensions of the two-level

methods. We analyze one of the multilevel methods using the abstract theory from

[8]. We show that a variable V-cycle method gives rise to uniform preconditioner. We

conclude the chapter with numerical experiments that test the presented multilevel

methods.

3.1. Two-Level Methods

3.1.1. Description and Abstract Estimate

Consider a general subspace V0 ⊂ V of the discrete space where we will seek a solution

and define the operators A : V → V , A0 : V0 → V0, the L2-orthogonal projector

Q : V → V0, and the A(·, ·) orthogonal projector P : V → V0 by:

(Au, v) = A(u, v), ∀u, v ∈ V

(A0u, v) = A(u, v), ∀u, v ∈ V0

(Qu, v) = (u, v), ∀u ∈ V , ∀v ∈ V0

A(Pu, v) = A(u, v), ∀u ∈ V , ∀v ∈ V0,
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where (·, ·) denotes the L2(Ω) inner product. Also let R : V → V be a general

smoother. For an operator M : X ⊂ V → V we will use M t : V → X to denote its

transpose with respect to the (·, ·) inner product:

(M tu, v) = (u,Mv), ∀u ∈ V , ∀v ∈ X.

Similarly, M∗ : V → X will denote the transpose of M with respect to the A(·, ·)

inner product:

A(M∗u, v) = A(u,Mv), ∀u ∈ V , ∀v ∈ X.

We consider the following two-level preconditioner B : V → V defined by the algo-

rithm: given g ∈ V compute Bg by

1. pre-smoothing: x = Rtg

2. correction: y = x+ q, where q ∈ V0 is the solution of

A0q = Q(g − Ax).

3. post-smoothing: z = y +R(g − Ay).

4. then Bg = z.

In order to study the convergence properties of the two-level preconditioner B we

introduce the so called error propagation operator E = I −BA which can be written

in the following product form

E ≡ I −BA = (I −RA)(I − P )(I −RtA).
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To see this, let e ∈ V be arbitrary and set g = Ae. Then using step 3 in the algorithm

we get

Ee = e−Bg = e− z = e− y−R(g−Ay) = (e− y)−RA(e− y) = (I −RA)(e− y).

Now using step 2 we can write

e−y = e−x− q = e−x−A−1
0 Q(g−Ax) = (e−x)−A−1

0 QA(e−x) = (I−P )(e−x),

where we used the equality A−1
0 QA = P which can be derived from the definitions.

To this end, take arbitrary u ∈ V and v ∈ V0 and write

(QAu, v) = (Au, v) = A(u, v) = A(Pu, v) = (A0Pu, v).

Since QAu and A0Pu are in V0 and v ∈ V0 was arbitrary we conclude that QAu =

A0Pu and therefore QA = A0P since u ∈ V was also arbitrary. Finally, using step 1

we find that

e− x = e−Rtg = e−RtAe = (I −RtA)e

and consequently combining the above equalities we obtain the product form of E:

Ee = (I −RA)(e− y) = (I −RA)(I − P )(e− x) = (I −RA)(I − P )(I −RtA)e.

A standard way of estimating the convergence properties of the linear iterative process

xi+1 = xi +B(b− Axi)

for solving the equation Ax = b given an arbitrary initial guess x0, is to estimate the

energy operator norm of E

‖E‖A = sup
v

‖Ev‖A

‖v‖A

, where ‖v‖A = (Av, v)1/2.



19

Since we have that

x− xi+1 = x− xi −B(Ax− Axi) = (I −BA)(x− xi) = E(x− xi),

proving a bound of the form

‖E‖A < 1 (3.1)

will guarantee the convergence of the linear iterative method. In addition such an

estimate, combined with the fact (to be established in the next theorem) that E is

symmetric and positive semi-definite with respect to the A(·, ·) inner product will

give the inequalities (with δ = ‖E‖A)

0 ≤ (AEv, v) ≤ δ(Av, v)

which are equivalent to

(1− δ)(Av, v) ≤ (ABAv, v) ≤ (Av, v),

that is the condition number of BA is bounded by 1/(1 − δ). Thus, B is a good

preconditioner for A that can be used in the preconditioned conjugate gradient (PCG)

method to solve iteratively the equation Ax = b.

The next theorem gives sufficient conditions in the abstract setting presented so

far that give rise to an estimate of the form (3.1).

Theorem 1. The error propagation operator E ≡ I −BA is symmetric and positive

semi-definite in the inner product A(·, ·). Also, if we assume that the following two

conditions hold:

1. smoothing property: there exists ω > 0 such that

ω

λ
(v, v) ≤ (R̄v, v), ∀v ∈ V , (3.2)



20

where R̄ = R +Rt −RtAR and λ is the largest eigenvalue of A.

2. approximation property: there exists an operator Q̃ : V → V0 such that

‖v − Q̃v‖2 ≤ Ĉλ−1(Av, v) ∀v ∈ V . (3.3)

then we have that

‖E‖A ≤ 1− ω

Ĉ
< 1.

Proof. Let K = I −RA then ∀u, v ∈ V

A(K∗u, v) = A(u,Kv) = (u, (A− ARA)v) = ((A− ARtA)u, v) = A((I −RtA)u, v)

or K∗ = I −RtA and therefore the product form of E can be written as

E = K(I − P )K∗.

Since P is the A-orthogonal projector onto V0 we have that P ∗ = P and P 2 = P .

The former of these two equalities easily implies the symmetry of E in the A inner

product

E∗ = (K∗)∗(I − P ∗)K∗ = K(I − P )K∗ = E.

To see that E is positive semi-definite we note that I − P = (I − P )2 and therefore

A(Ev, v) = A(K(I − P )2K∗v, v) = A((I − P )K∗v, (I − P )K∗v) ≥ 0.

The symmetry of E allows us to write its norm as

‖E‖A = sup
v∈V

A(Ev, v)

A(v, v)
= sup

v∈V

A((I − P )K∗v, (I − P )K∗v)

A(v, v)
= ‖(I − P )K∗‖2

A.

Using the fact that ‖M‖A = ‖M∗‖A, we have

‖E‖A = ‖(I − P )K∗‖2
A = ‖((I − P )K∗)∗‖2

A = ‖K(I − P )‖2
A.
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Letting v = Az in the smoothing property and using the equality

(AKz,Kz) = (Az, z)− (R̄Az,Az)

we obtain the following equivalent form

(AKz,Kz) ≤ (Az, z)− ω

λ
(Az,Az), ∀z ∈ V .

We want to estimate ‖K(I−P )v‖2
A for any v ∈ V . Letting z = (I−P )v in the above

form of the smoothing property we get

‖K(I − P )v‖2
A = ‖Kz‖2

A ≤ (Az, z)− ω

λ
(Az,Az). (3.4)

We will now use the approximation property to estimate (Az, z). Since Q̃z ∈ V0 we

have

A(Pv, Q̃z) = A(v, Q̃z), or A(z, Q̃z) = 0

and therefore

(Az, z) = (Az, z − Q̃z) ≤ (Az,Az)
1
2‖z − Q̃z‖ ≤ (Az,Az)

1
2 Ĉ

1
2λ−

1
2 (Az, z)

1
2

or

(Az, z) ≤ Ĉλ−1(Az,Az).

This is equivalent to

−ω
λ

(Az,Az) ≤ ω

Ĉ
(Az, z)

which we can use in (3.4) to get

‖K(I − P )v‖2
A ≤

(
1− ω

Ĉ

)
(Az, z).
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Notice that (I − P ) is the A-orthogonal projection onto its image and therefore

(Az, z) = ‖(I − P )v‖2
A ≤ ‖v‖2

A

which combined with the estimate above gives

‖K(I − P )v‖2
A ≤

(
1− ω

Ĉ

)
‖v‖2

A

or we get the final result of the theorem

‖E‖A = ‖K(I − P )‖2
A ≤ 1− ω

Ĉ
.

Note that the smoothing property in the theorem is the same as the assumption

SM.1 used in [8].

3.1.2. Coarse Spaces and Analysis

We consider the following two coarse spaces as V0:

1. the space of continuous piecewise polynomials of the same degree r as in the

space V

Vc =
{
v ∈ C(Ω) : v|T ∈ Pr(T ), ∀T ∈ T

}
= C(Ω) ∩ V .

When restricted to this space the SIPG bilinear form simplifies to

A(u, v) = (a∇u,∇v)− 〈a∇u · n, v〉ED

+ 〈a∇v · n, u〉ED
+
〈
κh−1

E aEu, v
〉
ED
, ∀u, v ∈ Vc.

2. the space of piecewise constant functions

V =
{
v ∈ L2(Ω) : v|T = const, ∀T ∈ T

}
.



23

In this case the form simplifies to

A(u, v) =
〈
κh−1

E aE [[u]], [[v]]
〉
Ei∪ED

, ∀u, v ∈ V .

In the analysis of the two two-level methods resulting from the two choices of the

coarse space we will assume that the triangulation T is globally quasi-uniform, i. e.

there exists a constant c > 0 such that

ch ≤ hT ≤ h, ∀T ∈ T , where h = max
T∈T

hT .

We begin with the following

Proposition 3. Let λ be the largest eigenvalue of the operator A. Then

λ ≡ sup
v∈V

(Av, v)

(v, v)
' h−2.

Proof. Let v ∈ V be arbitrary then using Proposition 2 we get

A(v, v) ≤ C |||v|||2 = (a∇v,∇v) +
〈
κh−1

E aE [[v]], [[v]]
〉
Ei∪ED

≤
∑
T∈T

a1|v|21,T + Cκh−1
∑

F∈Ei∪ED

a1‖ [[v]]‖2
0,F ,

where a1 is the upper bound on a from (2.2). The first sum is easily estimated using

an inverse inequality (cf. Theorem 3.2.6 in [14])

∑
T∈T

a1|v|21,T ≤ Ca1h
−2(v, v).

To estimate the second term we use Lemma 1

‖ [[v]]‖2
0,F ≤ C

∑
T∈TF

‖v|T‖2
0,F ≤ Ch−1

∑
T∈TF

‖v‖2
0,T

and therefore after summation over the faces we get

A(v, v) ≤ Ch−2(v, v)
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which means that λ ≤ Ch−2. To see that the estimate is asymptotically sharp we

consider the following v ∈ V : let T0 ∈ T be some fixed element and let v|T0 ∈ Pr(T0)

be arbitrary non-zero polynomial and let v|T ≡ 0 for all other elements T ∈ T \{T0}.

For such v we have

A(v, v) = (a∇v,∇v)T0 +
∑

F∈ET0
\EN

〈
κh−1

E aEv, v
〉

F
' |v|21,T0

+ κh−1
∑

F∈ET0
\EN

‖v‖2
0,F

From Theorems 3.1.2 and 3.1.3 in Ciarlet’s book [14] one can derive the equivalence

|v|21,T0
' hd−2|v̂|2

1,T̂

where T̂ is a reference simplex and v̂(x̂) = v(G(x̂)) with G being the affine transfor-

mation from T̂ to T0. Also, as we saw in Lemma 1 we have

‖v‖2
0,F ' hd−1‖v̂‖2

0,F̂

where F̂ = G−1(F ). Thus we arrive at the norm equivalence

A(v, v) ' hd−2

|v̂|2
0,T̂

+
∑

F∈ET0
\EN

‖v̂‖2
0,F̂

 .

On the other hand the L2 norm of this special v is equivalent to (cf. Lemma 1)

(v, v) = ‖v‖2
0,T0

' hd‖v̂‖2
0,T̂
.

Now, it is easy to see that if we fix one such v we get

λ = sup
z∈V

(Az, z)

(z, z)
≥ (Av, v)

(v, v)
' h−2.

In the next theorem we prove that the smoothing property (3.2) (which is inde-

pendent of the coarse space V0) from Theorem 1 holds for some well known smoothers.
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We use the abstract theory from [7], [8].

Theorem 2. The smoothing property (3.2) holds with constant ω independent of h for

any of the following (point) smoothers: scaled Jacobi, Gauss-Seidel, and symmetric

Gauss-Seidel when applied to the SIPG bilinear form.

Proof. Let {φi}n
i=1, n = dimV be an ordering of the standard nodal basis in V and let

V i be the one-dimensional space spanned by φi. Let Pi : V → V i be the A orthogonal

projector onto V i

A(Piu, v) = A(u, v), ∀u ∈ V , ∀v ∈ V i

and define the matrix σ with entries

σij =


0 if PiPj = 0

1 otherwise.

According to the abstract theory in [8], Section 8 we need to check the following two

conditions:

1. there exists a constant C1 > 0, independent of h such that

‖σ‖∞ ≡ max
i=1...n

n∑
j=1

|σij| ≤ C1.

2. there exists a constant C2 > 0, independent of h such that for each v ∈ V there

is a decomposition v =
∑

i v
i, with vi ∈ V i, satisfying

n∑
i=1

‖vi‖2 ≤ C2‖v‖2.

The condition PiPj = 0 is equivalent to the following conditions

A(PiPju, v) = 0, ∀u, v ∈ V ⇐⇒ A(Pju, Piv) = 0, ∀u, v ∈ V
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the latter of which is clearly equivalent to

A(u, v) = 0, ∀u ∈ Vj,∀v ∈ V i

that is the spaces V i and Vj are A-orthogonal which in this case is equivalent to

A(φi, φj) = 0. Thus, σ has the sparsity pattern of the stiffness matrix. Since

A(φi, φj) 6= 0 is only possible when φi and φj correspond to (have support in) the

same element or two elements with a common face, it is clear that we can choose C1

depending only on the polynomial degree r and the dimension d. Since V is the direct

sum of all spaces V i there is only one possible decomposition for the second condition.

Let v =
∑

i v
i, vi ∈ V i be that decomposition and let IT denote the set of indices

i for which φi has support in T ∈ T . Note that each basis function has support in

exactly one element so {IT} are a decomposition of the set {1, . . . , n}. Therefore

(v, v) =
∑
T∈T

(v, v)T =
∑
T∈T

(vT , vT )T

where

vT (x) =
∑
i∈IT

vi(x) =


v(x) x ∈ T

0 x /∈ T.

Let {ψi}m
i=1 be the nodal basis on a reference simplex T̂ and consider v̂ =

∑m
i=1 ξiψi,

ξi ∈ R. Then if we denote v̂i = ξiψi we have

m∑
i=1

‖v̂i‖2
T̂

=
m∑

i=1

‖ξiψi‖2
T̂

=
m∑

i=1

ξ2
i ‖ψi‖2

T̂
'

m∑
i,j=1

ξiξj(ψi, ψj)T̂ = ‖v̂‖2
T̂

where we used the fact that the Gramm matrix {(ψi, ψj)T̂} is spectrally equivalent

to its diagonal {‖ψi‖2
T̂
}. Then using the equality (cf. Lemma 1)

‖φ‖2
,T =

|T |
|T̂ |

‖φ̂‖2
0,T̂
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we can derive the equivalence

‖vT‖2 '
∑
i∈IT

‖vi‖2

with the same constants as on the reference simplex. After summation over all ele-

ments we get

‖v‖2 =
∑
T∈T

‖vT‖2 '
∑
T∈T

∑
i∈IT

‖vi‖2 =
n∑

i=1

‖vi‖2

which verifies the second condition of the abstract theory. Then Theorems 8.1 and 8.2

from [8] imply that the scaled Jacobi and Gauss-Seidel smoothers satisfy the smooth-

ing property. The symmetric Gauss-Seidel smoother can be analyzed by considering

the sequence of spaces {V i}2n
i=1 with V i for i = 1, . . . , n as before and V i = V2n+1−i,

i = n + 1, . . . , 2n. This choice results in doubling of the constant C1, and C2 can be

taken to be the same.

Our next step is to prove the approximation property (3.3) in the two cases we

consider V0 = V and V0 = Vc. We consider the former case first.

Theorem 3. Let Q : V → V be the L2-orthogonal projection onto V. Then the

following estimate holds

‖v −Qv‖2 ≤ Ch2(∇v,∇v) ≤ Ch2A(v, v), ∀v ∈ V .

Since λ ' h−2 this is exactly the approximation property (3.3) with Q̃ = Q.

Proof. Since the space V is discontinuous the projection Q is local: (Qu)|T is equal

to the average of u over T

(Qu)|T =
1

|T |
(u, 1)T .

Therefore (v − Qv) has zero average over every element T in T and we have the
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estimate (cf. Theorem 3.1.4 in [14])

‖v −Qv‖2 =
∑
T∈T

‖v −Qv‖2
0,T ≤ Ch2

∑
T∈T

|v|21,T = Ch2(∇v,∇v).

Using the coercivity of A(·, ·) in the norm (2.4) (see Proposition 2) we get

a0(∇v,∇v) ≤ (a∇v,∇v) ≤ |||v|||2 ≤ CA(v, v)

where a0 is the constant in the lower bound of (2.2). This completes the proof.

Before we consider the case V0 = Vc we prove the following

Lemma 3. Let G = (V,E) be a connected graph with V = {1, . . . , n} and let E ⊂

V × V be such that if (i, j) ∈ E then (j, i) ∈ E but (i, i) /∈ E for any i ∈ V . Let

vi ∈ R, i ∈ V then

∑
i∈V

(vi − v̄)2 ≤ n2
∑

(i,j)∈E
i<j

(vi − vj)
2, where v̄ =

1

n

∑
i∈V

vi.

Proof. Let k, l ∈ V be arbitrary, k 6= l, and let (i0, i1, . . . , im) be a path connecting

k and l where no vertex is repeated (so that m < n), i. e. i0 = k, im = l and

(ij−1, ij) ∈ E, j = 1, . . . ,m. Then

(vk − vl)
2 =

(
m∑

j=1

(vij−1
− vij)

)2

≤ m
m∑

j=1

(vij−1
− vij)

2 ≤ n
∑

(i,j)∈E
i<j

(vi − vj)
2. (3.5)

We have

(vk − v̄)2 =

(
n∑

l=1

1

n
(vk − vl)

)2

≤ n
n∑

l=1

1

n2
(vk − vl)

2 ≤ n
∑

(i,j)∈E
i<j

(vi − vj)
2

where in the last inequality we used (3.5) for each term (vk − vl)
2. Summation over

k ∈ V completes the proof.

Now we consider the case V0 = Vc.
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Theorem 4. There exists a projector Qc : V → Vc such that

‖v −Qcv‖2 ≤ Ch 〈[[v]], [[v]]〉Ei
≤ Ch2A(v, v), ∀v ∈ V .

Proof. Let let us denote by N̂ the following set of nodes on a reference d-simplex T̂

N̂ =
{
p ∈ Rd : λ̂i(p) = ki/r, ki ∈ {0, 1, . . . , r},∀i = 1, . . . , d+ 1

}
where {λ̂i}d+1

i=1 are the barycentric functions on T̂ which satisfy
∑d+1

i=1 λ̂i = 1. Then

we define the set of all nodes for the triangulation T by

N =
⋃
T∈T

GT (N̂ )

where GT denotes the affine transformation from T̂ to T . Note that with this choice

of N̂ and the assumption that the mesh is regular (i. e. two elements either do not

intersect or their intersection is a common vertex, edge, or face), we have that if an

edge or face S is shared by two or more elements then the nodes on S from each of

those elements coincide. For each node η ∈ N we denote the set of all elements that

share that node by

Tη = {T ∈ T : η ∈ T}.

Similarly, we denote the set of all interior faces that share a node η by

Eη = {F ∈ Ei : η ∈ F}.

Note that the pair (Tη, Eη) defines a graph for every node η in the following sense: the

vertices of the graph are the elements in Tη and each face F ∈ Eη defines an edge of

the graph connecting the two elements that share that face, TF (note that TF ⊂ Tη).

Given a function v ∈ V , its degrees of freedom are given by (assuming the
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elements T are open sets)

vη,T = lim
x→η
x∈T

v(x), ∀(η, T ) ∈ N × T : η ∈ T .

Note that v ∈ Vc if and only if ∀η ∈ N we have

vη,T1 = vη,T2 = vη, ∀T1, T2 ∈ Tη.

Now we can define the projector Qc : V → Vc by defining its values at the nodes

(Qcv)(η) =
1

|Tη|
∑
T∈Tη

vη,T , ∀η ∈ N ,

where |Tη| stands for the number of elements in the set Tη. As a first step in proving

the estimate for Qc we will find estimates for ‖v‖2 and 〈[[v]], [[v]]〉Ei
in terms of the

degrees of freedom {vη,T}. By mapping the polynomial v|T to a reference simplex T̂

we get (cf. (2.5))

‖v‖2
0,T ' hd‖v̂‖2

0,T̂
= hd

∑
i∈N̂

∑
j∈N̂

v̂(i)v̂(j)(ψ̂i, ψ̂j)T̂ ' hd
∑
i∈N̂

v̂(i)2,

where ψ̂i denotes the nodal basis function corresponding to the node i; for the last

equivalence we used the fact that the Gramm matrix {(ψ̂i, ψ̂j)T̂} is spectrally equiv-

alent to the identity. Since v̂(η̂) = vη,T , where η = GT (η̂) we have

‖v‖2 =
∑
T∈T

‖v‖2
0,T ' hd

∑
T∈T

∑
η∈N∩T

v2
η,T = hd

∑
η∈N

∑
T∈Tη

v2
η,T

Let us introduce the notation

[[v]]η,F = vη,T1 − vη,T2 , ∀(η, F ) ∈ N × Ei : η ∈ F ,

where T1 and T2 are the two elements that have F as a common face and the normal

vector n to F points outside of T1 (this determines the sign of [[v]]η,F ). Since [[v]]|F is
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a polynomial of degree r, using an argument similar to above one can show that

〈[[v]], [[v]]〉Ei
' hd−1

∑
F∈Ei

∑
η∈N∩F

[[v]]2η,F = hd−1
∑
η∈N

∑
F∈Eη

[[v]]2η,F .

Let v ∈ V , vc = Qcv, and denote vc
η = vc(η), ∀η ∈ N then

‖v −Qcv‖2 ' hd
∑
η∈N

∑
T∈Tη

(
vη,T − vc

η

)2
= hd

∑
η∈Ni

∑
T∈Tη

(
vη,T − vc

η

)2
,

where Ni is the set of all nodes which belong to at least two elements; for all other

nodes vη,T = vc
η. It is clear that if η ∈ N \ Ni then the set Eη is empty because Tη

has only one element and consequently

〈[[v]], [[v]]〉Ei
' hd−1

∑
η∈Ni

∑
F∈Eη

[[v]]2η,F .

It is now clear that the following estimate (with C independent of η and h)

∑
T∈Tη

(
vη,T − vc

η

)2 ≤ C
∑
F∈Eη

[[v]]2η,F , ∀η ∈ Ni (3.6)

will prove the first estimate of the theorem. To prove such an estimate we will use

Lemma 3 but first we need to see that the graph (Tη, Eη) is connected. This is not

hard to see when N is in the interior of Ω. When η ∈ ∂Ω one can use the assumption

that the boundary is Lipschitz. Thus, we can apply Lemma 3 to prove (3.6) with

C = |Tη|2 which can be bounded independent of η and h because of the assumptions

on the mesh T . The proof of the estimate

‖v −Qcv‖2 ≤ Ch 〈[[v]], [[v]]〉Ei

is now completed. Using the definition (2.4) of the norm |||·||| and the coercivity of

A(·, ·) with respect to it we get

Ch 〈[[v]], [[v]]〉Ei
≤ Ch2

〈
κh−1

E aE [[v]], [[v]]
〉
Ei∪ED

≤ Ch2 |||v|||2 ≤ Ch2A(v, v),
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Fig. 3.1. Coarse meshes for the second (left) and third (right) test problems.

which finalizes the proof of the theorem.

3.1.3. Numerical Experiments

We present numerical results for three test problems of elliptic equations with homo-

geneous Dirichlet boundary conditions on the whole boundary:

• Test Problem 1: The equation −∆u = 1, u|∂Ω = 0 in the cube Ω = (0, 1)3.

• Test Problem 2: The equation −∇· (a∇u) = 1, u|∂Ω = 0 in Ω = (0, 1)3 \ [0.5, 1)3

(see Figure 3.1) where the coefficient a has jumps (a 3-D checkerboard pattern)

as follows: a = 1, in (I1× I1× I1)∪ (I2× I2× I1)∪ (I1× I2× I2)∪ (I2× I1× I2)

and a = ε, in the other parts of Ω, where I1 = (0, 0.5] and I2 = (0.5, 1], and we

vary the value of ε to test the efficiency of the preconditioners with respect to

the size of the jumps.

• Test Problem 3: The equation −∆u = 1, u|∂Ω = 0 in the domain shown on Fig-

ure 3.1. The discretization of the domain (shown on the figure) is unstructured

and has some thin elements, i. e. elements T for which ρT/hT is small.

For all test examples we have used a coarse tetrahedral mesh (corresponding to “Level

0”) which is uniformly refined to form a sequence of meshes with “Level k” denoting
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the mesh obtained after k uniform refinements. The discretization is using linear and

quadratic elements. The value of the penalty term was experimentally chosen to be

κ = 10 for linear, and κ = 20 for quadratic finite elements for Test Problems 1, 2; for

Test Problem 3 we had to increase κ because of thin elements in the mesh, namely

we used κ = 15 for linear and κ = 30 for quadratic FE. We run experiments with

both two-level preconditioners presented above:

• Method I, using the coarse spaces Vc, and

• Method II, using the coarse space V .

In all cases we use one pre-smoothing and one post-smoothing step with a symmetric

Gauss-Seidel smoother. The preconditioned conjugate gradient (PCG) method was

used to approximately solve the resulting linear systems with relative accuracy of

10−8, i. e. we iterate until the error measured by (rtBr)1/2 is reduced by a factor

of 108. The coarse level systems that need to be solved to apply the preconditioner

are also solved by a PCG iteration with the same relative accuracy using symmetric

Gauss-Seidel as a preconditioner.

We report the number of iterations (denoted by “iter” in the tables) it took the

PCG method to converge and the average reduction factor (denoted by “arf”) which

is defined as

arf =

(
(rt

nBrn)1/2

(rt
0Br0)

1/2

)1/n

where n is the number of iterations and ri is the i-th residual. This means that (arf)n

will be roughly 108 but it gives a finer way of measuring convergence compared to

the number of iterations.

The results for Test Problem I using linear and quadratic finite elements (FE)

are presented in Tables 3.1 and 3.2, respectively. The columns in the tables represent

the refinement level. The rows labeled with “S dof” give the number of degrees of
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freedom (dof) in the space S which is one of the spaces V , Vc, or V . In the other rows

(labeled with “iter/arf”) we give the number of iterations and the average reduction

factors when using the two-level preconditioner based on the corresponding coarse

space.

Table 3.1. Two-level preconditioners, Test Problem 1, linear FE

Level 2 Level 3 Level 4 Level 5 Level 6

V dof 3,072 24,576 196,608 1,572,864 12,582,912

Vc dof 189 1,241 9,009 68,705 536,769

Vc, iter/arf 13/0.2307 13/0.2304 13/0.2238 12/0.2094 12/0.1973

V dof 768 6,144 49,152 393,216 3,145,728

V , iter/arf 19/0.3786 21/0.4047 21/0.4028 21/0.3999 20/0.3967

Table 3.2. Two-level preconditioners, Test Problem 1, quadratic FE

Level 1 Level 2 Level 3 Level 4 Level 5

V dof 960 7,680 61,440 491,520 3,932,160

Vc dof 189 1,241 9,009 68,705 536,769

Vc, iter/arf 9/0.1237 10/0.1478 10/0.1425 9/0.1267 9/0.1151

V dof 96 768 6,144 49,152 393,216

V , iter/arf 18/0.3591 27/0.5027 31/0.5425 30/0.5408 30/0.5353

From the tables we see that the number of iterations remains bounded when we

refine the mesh. This result agrees with our theoretical results which say that the

condition number of the preconditioned system is bounded which implies that the

number of iterations is also bounded. When linear elements are used Method II uses

roughly two times more iterations than Method I even though Vc (the coarse space
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of Method I) has less degrees of freedom than V (the coarse space of Method II); on

the other hand, note that the matrix on V has very simple sparsity pattern — it has

at most 5 non-zero entries per row. When quadratic elements are used Method I uses

about three times less iterations and has just slightly larger number of dofs in the

coarse space compared to Method II. Therefore we can say that Method I is better

than Method II for this Test Problem.

The results for Test Problem 2 using linear FE are given in Table 3.3 where we

give the number of iterations and average reduction factors for Method I and Method

II in the top and bottom parts of the table, respectively.

For both methods, if we consider a fixed value of ε, the number of iterations

slowly increases with the first 2-3 levels of refinement and then stabilizes (it is almost

constant) for the finer triangulations. For Method I, the number of iterations at

which this stabilization occurs doubles when ε decreases from 1 to 10−3 and then

slowly decreases with ε. This can be clearly seen in the last column (“Level 5”) in the

top part of the table. However, such dependence is fairly weak for such wide range

of the parameter ε. For Method II, the number of iterations is almost completely

independent of ε. Notice that even the average reduction factors seem to converge to

a fixed number as ε → 0. Comparing the results for both methods, we can see that

Method II converges in less iterations than Method I for the smaller values of ε when

the mesh is fine enough. This suggests that Method II is probably the better choice

for problems with large jumps in the elliptic coefficient.

In our analysis of the two-level Methods I and II, many of estimates we proved

depend on the ratio a1/a0 where a0 and a1 are the constants from assumption (2.2).

For Test Problem 2, a1/a0 = ε and therefore our theory is not independent of ε.

However, the presented numerical results suggest that the convergence is independent

of ε.
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Table 3.3. Two-level preconditioners, Test Problem 2, linear FE

Level 1 Level 2 Level 3 Level 4 Level 5

V dof 1,344 10,752 86,016 688,128 5,505,024

Vc dof 117 665 4,401 31,841 241,857

ε = 1 14/0.2432 14/0.2605 14/0.2545 13/0.2412 13/0.2313

ε = 0.1 15/0.2827 18/0.3450 19/0.3711 19/0.3745 19/0.3700

ε = 0.01 17/0.3374 21/0.4001 25/0.4720 27/0.4990 27/0.5055

ε = 0.001 17/0.3325 21/0.4054 26/0.4798 28/0.5106 29/0.5252

ε = 10−4 17/0.3196 21/0.4022 25/0.4768 27/0.5037 28/0.5128

ε = 10−5 16/0.3012 20/0.3975 24/0.4540 26/0.4843 27/0.4984

ε = 10−6 15/0.2909 19/0.3791 22/0.4275 24/0.4622 25/0.4743

V dof 336 2,688 21,504 172,032 1,376,256

ε = 1 18/0.3527 20/0.3950 21/0.4051 21/0.4024 21/0.3980

ε = 0.1 20/0.3734 21/0.4036 21/0.4099 21/0.4098 21/0.4069

ε = 0.01 19/0.3644 20/0.3938 21/0.4017 21/0.4048 21/0.4039

ε = 0.001 18/0.3552 20/0.3917 21/0.4002 21/0.4055 21/0.4042

ε = 10−4 18/0.3467 20/0.3883 21/0.3997 21/0.4056 21/0.4043

ε = 10−5 17/0.3374 19/0.3716 21/0.3997 21/0.4056 21/0.4043

ε = 10−6 17/0.3314 19/0.3674 21/0.3997 21/0.4056 21/0.4043
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Table 3.4. Two-level preconditioners, Test Problem 3, linear FE

Level 1 Level 2 Level 3 Level 4

V dof 24,032 192,256 1,538,048 12,304,384

Vc dof 1,445 9,693 70,633 538,513

Vc, iter/arf 18/0.3511 18/0.3485 17/0.3359 19/0.3739

V dof 6,008 48,064 384,512 3,076,096

V , iter/arf 34/0.5743 37/0.6077 40/0.6267 43/0.6494

In Table 3.4 we present the results for Test Problem 3. This problem is a test

for the preconditioners on unstructured mesh having thin elements. Such elements

introduce geometrical anisotropy which makes the problem harder. For the mesh

sequence that we consider this anisotropy is not very strong — the highest aspect

ratio is around 12. The numerical results show that the number of iterations is almost

independent of the refinement level. However, if we compare the results for this Test

Problem and Test Problem 1 we can see an increase in the number of iterations. This

increase is slightly larger for Method II than it is for Method I. From this we can

conclude that both two-level methods are sensitive to geometrical anisotropies which

is not unexpected since we use a simple point smoother.



38

3.2. Multilevel Methods

3.2.1. Multigrid Setup and Algorithms

We assume that we have a sequence of nested simplicial triangulations (we will also

call them meshes) of the domain Ω which we denote with Tk, k = 1, . . . , J , with T1

being the coarsest triangulation. The triangulations are nested in the sense that every

element in Tk is the union of elements in the finer mesh Tk+1. We will also assume

that all meshes are regular, i. e. any two elements (in the same mesh) either do not

intersect or their intersection is a common vertex, edge, or face. Finally, we assume

that the elements are shape regular and the meshes are globally quasi-uniform, that

is there exist constants γ > 0 and c > 0 such that

hT

ρT

≤ γ, ∀T ∈ Tk, ∀k = 1, . . . , J (shape regularity)

chk ≤ hT ≤ hk, ∀T ∈ Tk, ∀k = 1, . . . , J (global quasi-uniformity)

where ρT denotes the diameter of the largest ball contained in T , hT is the diameter

of T , and

hk = max
T∈Tk

hT , k = 1, . . . , J.

Similarly to the notation introduced in the previous chapter we will use Ek, Ek
i , Ek

b ,

Ek
D, Ek

N to denote the different sets of faces with the index k indicating that the sets

are faces of the mesh Tk. To define Ek
D we need to assume that ΓD is the union of

some boundary faces on the coarsest level, E0
b , and as a consequence — on all levels.

We will also use the “broken” Sobolev spaces

Hs(Tk) =
{
v ∈ L2(Ω) : v|T ∈ Hs(T ), ∀T ∈ Tk

}
, for s ≥ 0,
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the discrete spaces of discontinuous piecewise polynomial functions of degree r ≥ 1:

Vk =
{
v ∈ L2(Ω) : v|T ∈ Pr(T ), ∀T ∈ Tk

}
,

and the corresponding continuous and piecewise constant discrete spaces

Vc
k =

{
v ∈ C(Ω) : v|T ∈ Pr(T ), ∀T ∈ Tk

}
= C(Ω) ∩ Vk

Vk =
{
v ∈ L2(Ω) : v|T = const, ∀T ∈ Tk

}
.

For functions u and v in Hs(Tk), s >
3
2
, the k-th level symmetric interior penalty

(SIPG) bilinear form is given by

Ak(u, v) = (a∇u,∇v)− 〈{a∇u · nk} , [[v]]〉Ek
i ∪Ek

D

− 〈{a∇v · nk} , [[u]]〉Ek
i ∪Ek

D
+
〈
κh−1

Ek
aEk

[[u]], [[v]]
〉
Ek

i ∪Ek
D

and the corresponding linear form by

Lk(v) = (f, v) + 〈uN , v〉Ek
N
− 〈uD, a∇v · nk〉Ek

D
+
〈
κh−1

Ek
aEk

uD, v
〉
Ek

D

where once again we use ∇u to denote the element-by-element derivative if u. With

these definitions, the interior penalty discontinuous Galerkin discretization method

for our elliptic problem (2.1) reads: find uh ∈ VJ such that

AJ(uh, v) = LJ(v), ∀v ∈ VJ . (3.7)

For convenience, we will use |||·|||k to denote the energy norm on Vk:

|||u|||k = Ak(u, u)
1
2 , ∀u ∈ Vk

and the k-th level |||·||| from (2.4) we will now denote by

|||v|||2∗,k = (a∇v,∇v) +
〈
κh−1

Ek
aEk

[[v]], [[v]]
〉
Ek

i ∪Ek
D

, ∀v ∈ H1(Tk).
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As we showed in Proposition 2, for large enough κ, we have the following norm

equivalence on Vk:

|||v|||k ' |||v|||∗,k , ∀v ∈ Vk, (3.8)

with constants independent of hk.

We will now define a general multigrid algorithm based on a sequence of nested

spaces with bilinear forms that are not inherited. The algorithm presented here is a

version of the one given in Section 7 of [8] for the case of nested spaces.

Let M1 ⊂ M2 ⊂ · · · ⊂ M eJ ⊂ L2(Ω) be sequence of nested finite dimensional

spaces and let Ak : Mk × Mk → R be given s. p. d. bilinear forms. Define the

operators Ak : Mk →Mk, Qk : L2(Ω) →Mk, and Pk : Mk+1 →Mk by

(Aku, v) = Ak(u, v), ∀v ∈Mk, k = 1, . . . , J̃

(Qku, v) = (u, v), ∀v ∈Mk, k = 1, . . . , J̃

Ak(Pku, v) = Ak+1(u, v), ∀v ∈Mk, k = 1, . . . , J̃ − 1

where (·, ·) denotes the inner product in L2(Ω). Assume we are given the smoothing

operators Rk : Mk →Mk and set

R
(`)
k =


Rk if ` is odd,

Rt
k if ` is even,

where Rt
k denotes the adjoint of Rk with respect to (·, ·). Let mk be a given number

of pre- and post-smoothing iterations, p — a given number of correction steps, and

set B1 = A−1
1 , then Bk is defined recursively: given g ∈Mk

1. pre-smoothing: define x` ∈Mk, ` = 0, . . . ,mk by: set x0 = 0 and

x` = x`−1 +R
(`+mk)
k (g − Akx

`−1), ` = 1, . . . ,mk.
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2. correction: define ymk = xmk + qp where qp ∈ Mk−1 is defined by: set q0 = 0

and then for ` = 1, . . . , p set

q` = q`−1 +Bk−1[Qk−1(g − Akx
mk)− Ak−1q

`−1].

3. post-smoothing: define y` ∈Mk, ` = mk + 1, . . . , 2mk by

y` = y`−1 +R
(`+mk)
k (g − Aky

`−1).

4. Bkg = y2mk .

We will consider the multigrid algorithms arising from the following two choices of

spaces Mk and bilinear forms Ak:

1. Method I, based on the spaces Vc
k: J̃ = J + 1 and

Mk =


Vc

k, k = 1, . . . , J

VJ , k = J + 1

Ak =


Ak, k = 1, . . . , J

AJ , k = J + 1.

2. Method II, based on the spaces Vk: J̃ = J + 1 and

Mk =


Vk, k = 1, . . . , J

VJ , k = J + 1

Ak =


Ak, k = 1, . . . , J

AJ , k = J + 1.

Remark 2. One can generalize the above two methods by choosing an integer j0 ∈

[1, J ] and setting

Mk =


Vc

k, k = 1, . . . , j0

Vk−1, k = j0 + 1, . . . , J + 1

Ak =


Ak, k = 1, . . . , j0

Ak−1, k = j0 + 1, . . . , J + 1

and similarly using the spaces Vk.
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Remark 3. A natural choice is to let J̃ = J , Mk = Vk, and Ak = Ak, ∀k. The

resulting algorithm was considered and analyzed by Gopalakrishnan and Kanschat

in their paper [19]. Our analysis of Method I in the following section was strongly

influenced by their work.

Remark 4. Another approach is to choose Ak = AJ , ∀k, in all of the above mentioned

methods. This leads to a nested-inherited setting. However, the penalty term in AJ

which is preserved in the coarse levels operators introduces high frequencies in them

which in turn makes the standard approach to the multigrid analysis inapplicable. A

version of this method will be used in our algebraic approach presented in the next

chapter.

3.2.2. Analysis

In this section we analyze Method I using the approach from [19] which is based on

the abstract theory from [8]. We begin with the following error estimate:

Lemma 4. Consider the case of homogeneous Dirichlet boundary condition, uD = 0,

and assume that the solution U of (2.1) is in H1+α(Ω) for some 1
2
< α ≤ 1. Let

Uk ∈ Vk (or Vc
k, we will consider both cases simultaneously) be the solution of

Ak(Uk, v) = Lk(v), ∀v ∈ Vk (Vc
k).

Then the following error estimate holds

|||U − Uk|||∗,k ≤ Chα
k‖U‖1+α

with a constant C independent of hk.

Proof. As we showed in Proposition 1 that the IP method is consistent:

Ak(U, v) = Lk(v), ∀v ∈ H1+α(Tk)
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which combined with the definition of Uk gives the Galerkin orthogonality:

Ak(U − Uk, v) = 0, ∀v ∈ Vk (Vc
k). (3.9)

We will use the following norm on H1+α(Tk)

|||u|||2α,k = |||u|||2∗,k +
∑
T∈Tk

h2α
k |u|21+α,T

which is equivalent to |||·|||∗,k on Vk due to the inverse inequality |u|1+α,T ≤ Ch−α
k |u|1,T .

We want to show that the bilinear form Ak(·, ·) is bounded in the norm |||·|||α,k for

arbitrary functions in H1+α(Tk). Let T ∈ Tk be an element and F one of its faces

and let φ ∈ Hα(T ) then using a trace theorem on a reference d-simplex T̂ we have

‖φ̂‖2
0,F̂

≤ C‖φ̂‖2
α,T̂
, with F̂ = G−1(F ), and φ̂(x̂) = φ(G(x̂)),

where G : T̂ → T is the affine transformation from T̂ to T : x = G(x̂) = Bx̂ + b.

Using the definition of the seminorm | · |α for α < 1 and change of the variables we

have

|φ̂|2
α,T̂

=

∫
T̂

∫
T̂

|φ̂(x̂)− φ̂(ŷ)|2

|x̂− ŷ|d+2α
dx̂ dŷ ≤ ‖B‖d+2α

| detB|2

∫
T

∫
T

|φ(x)− φ(y)|2

|x− y|d+2α
dx dy

where we used the equality dx = | detB|dx̂ and the estimate

|x− y| = |Bx̂+ b−Bŷ − b| ≤ ‖B‖|x̂− ŷ|.

Since ‖B‖ . hk and | detB| ' hd
k (see [14], Section 3.1), we get

|φ̂|2
α,T̂

. h2α−d
k |φ|2α,T

which is also valid for α = 1 (see [14], Section 3.1). Using this estimate, the trace
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inequality from above, and the equalities (2.5) on page 13 we obtain the estimate

‖φ‖2
0,F ' hd−1

k ‖φ̂‖2
0,F̂

. hd−1
k

(
‖φ̂‖2

0,T̂
+ |φ̂|2

α,T̂

)
. h−1

k

(
‖φ‖2

0,T + h2α
k |φ|2α,T

)
.

Let u, v ∈ H1+α(Tk) then using the above inequality for the derivatives of u one easily

shows that∫
F

(a∇u · n) [[v]] ≤ ‖a∇u · n‖0,F‖ [[v]]‖0,F ≤ C
(
|u|21,T + h2α

k |u|21+α,T

) 1
2 h

− 1
2

Ek
‖ [[v]]‖0,F

which, in turn, implies that

〈{a∇u · n} , [[v]]〉Ek
i ∪Ek

D
≤ C

(∑
T∈Tk

|u|21,T + h2α
k |u|21+α,T

) 1
2 〈
h−1
Ek

[[v]], [[v]]
〉 1

2

Ek
i ∪Ek

D

≤ C |||u|||α,k |||v|||α,k .

This estimate implies the boundedness of Ak(·, ·) in the norm |||·|||α,k. Let wk ∈ Vk

(Vc
k) then using the coercivity part of (3.8), the Galerkin orthogonality (3.9) and the

boundedness we just established we get

|||Uk − wk|||2α,k ≤ C |||Uk − wk|||2∗,k ≤ CAk(Uk − wk, Uk − wk)

= CAk(U − wk, Uk − wk) ≤ C |||U − wk|||α,k |||Uk − wk|||α,k

which simplifies to

|||Uk − wk|||α,k ≤ C |||U − wk|||α,k .

Combining this with the triangle inequality gives

|||U − Uk|||α,k ≤ |||U − wk|||α,k + |||Uk − wk|||α,k ≤ C |||U − wk|||α,k

that is Uk is a quasi-optimal approximation to U from the space Vk (Vc
k) in the norm

|||·|||α,k. We take wk = ΠkU to be the Scott-Zhang interpolation of U in the continuous

piecewise linear space which preserves the homogeneous boundary condition (see [24])
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so that we have

[[U − wk]]|F = 0, ∀F ∈ Ek
i ∪ Ek

D.

Note that we take wk to be linear even when r > 1, i. e. when the space Vk (Vc
k) uses

higher degree polynomials. Using the the error estimate

|U − wk|1,Ω ≤ Chα
k‖U‖1+α,Ω

and the equality (here we use the linearity of wk|T )

|U − wk|1+α,T = |U |1+α,T ,

we obtain

|||U − Uk|||2α,k ≤ C |||U − wk|||2α,k ≤ C|U − wk|21,Ω + C
∑
T∈Tk

h2α
k |U − wk|21+α,T

≤ Ch2α
k ‖U‖2

1+α,Ω.

This completes the proof.

Proposition 4. Let λk denote the largest eigenvalue of Ak. Then

λk ≡ sup
v∈Mk

(Akv, v)

(v, v)
' h−2

k

where hJ+1 = hJ (when k = J + 1).

Proof. For k = J +1, MJ+1 = VJ , this is exactly Proposition 3. For k ≤ J , Mk = Vc
k,

the estimate λk ≤ Ch−2
k follows from the same Proposition and the estimate from

below can be easily obtained from the estimates therein, considering a continuous

nodal basis function in Vc
k.

Remark 5. Using the estimates from [23] (see page 454 and Theorem 3.1), one can
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show that the smallest eigenvalue of Ak is independent of hk:

inf
v∈Mk

(Akv, v)

(v, v)
' 1

and therefore the condition number of Ak is O(h−2
k ).

The next theorem is a reformulation of Theorem 7.4 form [8].

Theorem 5. Assume that the following two conditions are satisfied:

1. There exists ω > 0 not depending on k such that(
ω

λk

)
‖v‖2 ≤ (Rkv, v), ∀v ∈Mk, k = 2, . . . , J + 1 (3.10)

where Rk = Rk +Rt
k +Rt

kAkRk.

2. For some α with 0 < α ≤ 1 there exists CP independent of k such that

|Ak((I − Pk−1)v, v)| ≤ CP

(
‖Akv‖2

λk

)α

[Ak(v, v)]
1−α, (3.11)

for all v ∈Mk, k = 2, . . . , J + 1.

Assume also that for some 1 < β0 ≤ β1 we have

β0mk ≤ mk−1 ≤ β1mk.

Then there is a constant M independent of k such that

η−1
k Ak(v, v) ≤ Ak(BkAkv, v) ≤ ηkAk(v, v), ∀v ∈Mk

with

ηk =
M +mα

k

mα
k

.

Remark 6. Condition (3.10) follows from Theorem 2 when k = J + 1 and RJ+1 is

one of the smoothers from the theorem. For k ≤ J , Mk = Vc
k, (3.10) can be verified

for the same smoothers in a way similar to the standard Galerkin case.
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From now on we will assume that ΓD = ∂Ω. We will use the following regularity

assumption to prove (3.11): there exists ρ ∈ (1
2
, 1] and a constant CΩ such that the

solution, U , of the homogeneous problem (2.1) (i.e. when uD = 0) satisfies

‖U‖1+ρ ≤ CΩ‖f‖−1+ρ. (3.12)

Lemma 5. Assume that (3.12) holds. Then for all u ∈Mk, k = 2, . . . , J +1 we have

|||u− Pk−1u|||k ≤ Chρ
k‖Aku‖−1+ρ.

(Here |||·|||J+1 = |||·|||J .)

Proof. Let w ∈ H1+ρ(Ω) be the solution of (2.1) with f = Aku and uD = 0. Note

that in this case

L`(v) = (Aku, v), ∀v ∈ L2(Ω).

We start by using the triangle inequality (with |||·|||∗,J+1 = |||·|||∗,J)

|||u− Pk−1u|||k ≤ C |||u− Pk−1u|||∗,k ≤ C |||u− w|||∗,k + C |||w − Pk−1u|||∗,k . (3.13)

By the definition of Ak we have (with AJ+1 = AJ and LJ+1 = LJ if k = J + 1)

Ak(u, v) = (Aku, v) = Lk(v), ∀v ∈Mk.

Thus, u is the IP approximation of w from Mk and therefore by Lemma 4 we have

|||w − u|||∗,k ≤ Chρ
k‖w‖1+ρ. (3.14)

By the definitions of Pk−1 and Ak we have: ∀v ∈Mk−1

Ak−1(Pk−1u, v) = Ak(u, v) = (Aku, v) = Lk−1(v)
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which means that Pk−1u is the IP approximation of w from Mk−1 and so

|||w − Pk−1u|||∗,k−1 ≤ Chρ
k−1‖w‖1+ρ.

In this last estimate we want to replace |||·|||∗,k−1 with |||·|||∗,k and hk−1 with hk. We

have two cases: 1) k = J + 1 and 2) k = 2, . . . , J . The first case is trivial since by

definition

|||v|||∗,J+1 = |||v|||∗,J , ∀v ∈ H1+ρ(TJ), and hJ+1 = hJ .

In the second case, we can write for ` = k − 1, k

|||v|||2∗,` ' (∇v,∇v) +
κ

h`

∫
ΓD

v2, ∀v ∈ H1+ρ(T`) ∩ C(Ω).

Since hk−1 ' hk we have

|||v|||∗,k−1 ' |||v|||∗,k , ∀v ∈ H1+ρ(Tk−1) ∩ C(Ω),

and therefore, since (w − Pk−1u) ∈ H1+ρ(T`) ∩ C(Ω),

|||w − Pk−1u|||∗,k ≤ C |||w − Pk−1u|||∗,k−1 ≤ Chρ
k−1‖w‖1+ρ ≤ Chρ

k‖w‖1+ρ. (3.15)

Using (3.14) and (3.15) in (3.13) and then the regularity assumption (3.12) we obtain

|||u− Pk−1u|||k ≤ Chρ
k‖w‖1+ρ ≤ Chρ

k‖Aku‖−1+ρ

which completes the proof.

Lemma 6. Assume that (3.12) holds. Then condition (3.11) holds with α = ρ/2.

Proof. First we will show that

‖Aku‖−1 ≤ C |||u|||k , ∀u ∈Mk. (3.16)
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Indeed,

‖Aku‖−1 = sup
v∈H1

0 (Ω)

(Aku, v)

|v|1
≤ sup

v∈H1
0 (Ω)

(Aku, v − Πkv)

|v|1
+ sup

v∈H1
0 (Ω)

(Aku,Πkv)

|v|1
.

Using the following two estimates for Πk from [24]: for all v ∈ H1
0 (Ω)

|Πkv|1 ≤ C|v|1

‖v − Πkv‖ ≤ Chk|v|1,

we get

‖Aku‖−1 ≤ sup
v∈H1

0 (Ω)

‖Aku‖‖v − Πkv‖
|v|1

+ sup
v∈H1

0 (Ω)

|||u|||k |||Πkv|||k
|v|1

≤ Chk‖Aku‖+ C |||u|||k ,
(3.17)

where for the second term we used the fact that |||Πkv|||k ' |Πkv|1. Since Ak is a

symmetric and positive definite operator with respect to (·, ·) we have

‖Aku‖2 = (A2
ku, u) ≤ λk(Aku, u) ≤ Ch−2

k |||u|||2k .

Using this estimate in (3.17) we get (3.16).

The result of Lemma 5 gives

|||u− Pk−1u|||k ≤ Chρ
k‖Aku‖−1+ρ ≤ Chρ

k‖Aku‖1−ρ
−1 ‖Aku‖ρ. (3.18)

For the last estimate we used the fact that H−1+ρ(Ω) is an intermediate space between
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H−1(Ω) and L2(Ω). Now, using (3.18) and (3.16) we obtain

|Ak(u− Pk−1u, u)| ≤ |||u− Pk−1u|||k |||u|||k

≤ Chρ
k‖Aku‖1−ρ

−1 ‖Aku‖ρ |||u|||k

≤ Chρ
k |||u|||

1−ρ
k ‖Aku‖ρ |||u|||k

≤ C
‖Aku‖ρ

λ
ρ/2
k

|||u|||2−ρ
k

= C

(
‖Aku‖2

λk

) ρ
2

Ak(u, u)
1− ρ

2 .

This is exactly (3.11) with α = ρ/2.

3.2.3. Numerical Experiments

We consider the same three Test Problems we used for the numerical experiments

for the two-level preconditioners (see page 32 for the description of the tests). All

test runs we present here are multilevel extensions of their corresponding two-level

experiments and therefore we can compare the two in order to measure the quality

of the multigrid algorithms. The test setup is the same as before: we use the same

iterative method (PCG), stopping criterion, smoother, values for κ. Once again,

we generate a sequence of nested meshes starting with a coarse (“Level 0”) mesh

and using k times uniform refinement to obtain the “Level k” mesh. We use this

mesh hierarchy to define the multigrid algorithms as described earlier in the chapter

(see page 40, note that here we start counting the levels with “0”, not “1”). The

coarsest (“Level 0”) problems are solved using the PCG method with Gauss-Seidel

preconditioner and the same relative accuracy. As before, we will report the number of

iterations (“iter”) and the average reduction factors (“arf”). To completely, define the

multigrid preconditioners we need to specify the number of correction and smoothing

steps. We use the following three choices:
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• V-cycle: use p = 1 correction and mk = 1 pre- and post-smoothing steps at all

levels k = 1, . . . , J .

• variable V-cycle: use p = 1 correction and mk = 2J−k pre- and post-smoothing

steps, k = 1, . . . , J . Here J is the level at which we solve the discrete problem.

• W-cycle: use p = 2 correction and mk = 1 pre- and post-smoothing steps,

k = 1, . . . , J .

The numerical results for Test Problem 1 are presented in Tables 3.5 and 3.6 for

linear and quadratic finite elements, respectively. The rows labeled “S dof” give the

number of degrees of freedom for the space S which is one of VJ , Vc
J , or VJ . The

rows below the “S dof” row give results for the method based on the space S using

different *-cycle methods. The results are in the form “iter/arf”.

Table 3.5. Multigrid preconditioners, Test Problem 1, linear FE

Level 2 Level 3 Level 4 Level 5 Level 6

VJ dof 3,072 24,576 196,608 1,572,864 12,582,912

Vc
J dof 189 1,241 9,009 68,705 536,769

V-cycle 13/0.2322 13/0.2365 13/0.2337 13/0.2252 12/0.2124

var. V-cycle 13/0.2309 13/0.2338 13/0.2274 12/0.2134 12/0.2013

VJ dof 768 6,144 49,152 393,216 3,145,728

V-cycle 21/0.4022 30/0.5333 40/0.6229 51/0.6915 62/0.7426

var. V-cycle 20/0.3897 26/0.4795 29/0.5188 30/0.5325 31/0.5434

W-cycle 20/0.3845 24/0.4535 24/0.4632 24/0.4623 24/0.4588

For Method I we test the V-cycle and variable V-cycle methods. For both lin-

ear and quadratic elements, both *-cycle methods give almost identical number of
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Table 3.6. Multigrid preconditioners, Test Problem 1, quadratic FE

Level 1 Level 2 Level 3 Level 4 Level 5

VJ dof 960 7,680 61,440 491,520 3,932,160

Vc
J dof 189 1,241 9,009 68,705 536,769

V-cycle 10/0.1414 11/0.1729 11/0.1725 11/0.1655 10/0.1547

var. V-cycle 10/0.1329 10/0.1538 10/0.1469 10/0.1351 9/0.1179

VJ dof 96 768 6,144 49,152 393,216

V-cycle 19/0.3677 29/0.5273 41/0.6282 52/0.6963 62/0.7416

var. V-cycle 19/0.3616 28/0.5062 36/0.5867 38/0.6143 39/0.6207

W-cycle 19/0.3623 28/0.5108 35/0.5792 35/0.5890 35/0.5880

iterations independent of the refinement level. Comparing with the results for the

two-level Method I (Tables 3.1 and 3.2) we can see that the multilevel methods are

extremely close to the two-level one since the number of iterations increases by at

most 2. Note that in our theoretical analysis we proved that the variable V-cycle

Method I gives rise to a uniform preconditioner but we do not have a proof for the

V-cycle Method I, even though our tests indicate that.

For Method II, for which we do not have any theoretical results, we test all three

V-, variable V-, and W-cycle methods. The results are presented in the bottom halves

of Tables 3.5 and 3.6. We can clearly see that for the V-cycle Method II the number

of iterations increases linearly with the refinement level. In the other two cases we

observe that the number of iterations stabilizes as we refine the mesh. In the case of

W-cycle this stabilization occurs at a coarser level compared to the variable V-cycle

and the former always uses less iterations to converge than the latter. A comparison

with the two-level Method II (Tables 3.1 and 3.2) shows that the W-cycle Method II is
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very close to the two-level preconditioner in that it uses at most 20% more iterations.

Note that all these observations are valid for both linear and quadratic elements.

Comparing the results for Method I with those for W-cycle Method II we see

that the former uses about 2 times less iterations for linear and about 3.5 times less

iterations for quadratic elements than the latter. This clearly shows the advantage

(V- or variable V-cycle) Method I has over W-cycle Method II for Test Problem 1.

For Test Problem 2 we test only the V-cycle Method I and the W-cycle Method

II. The numerical results are presented in Table 3.7. From the results we see that both

preconditioners perform very similarly to their corresponding two-level counterparts

(see Table 3.3): we observe a small increase in the number of iterations in all cases.

The W-cycle Method II still converges in less iterations than V-cycle Method I for

small values of ε, even though the gap between the two is smaller than it is for the

corresponding two-level methods. To summarize, both multilevel methods converge

uniformly in both h and ε with the W-cycle Method II having a small advantage over

the V-cycle Method I for small values of ε.

The numerical results for Test Problem 3 are presented in Table 3.8. Once again

we test the V-cycle Method I and the W-cycle Method II. If we compare these results

with the corresponding two-level methods we see that there is almost no increase in

the number of iterations for Method I and only a small increase for Method II. Due

to the geometrical anisotropies introduced by the discretization of the domain we can

observe that the number of iterations are around 2 times larger compared to those we

see for the regular mesh used in Test Problem 1 (cf. Table 3.5). Clearly, the V-cycle

Method I is much better than the W-cycle Method II for this Test Problem since the

former needs less than half the iterations that the latter needs to converge.
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Table 3.7. Multigrid preconditioners, Test Problem 2, linear FE

Level 1 Level 2 Level 3 Level 4 Level 5

VJ dof 1,344 10,752 86,016 688,128 5,505,024

Vc
J dof 117 665 4,401 31,841 241,857

ε = 1 14/0.2443 14/0.2657 14/0.2634 14/0.2560 14/0.2480

ε = 0.1 15/0.2827 18/0.3512 20/0.3844 20/0.3870 20/0.3906

ε = 0.01 17/0.3377 21/0.4047 26/0.4796 28/0.5061 29/0.5286

ε = 0.001 17/0.3329 21/0.4094 26/0.4883 29/0.5164 31/0.5480

ε = 10−4 17/0.3202 21/0.4058 26/0.4825 28/0.5165 29/0.5236

ε = 10−5 16/0.3014 21/0.4020 24/0.4609 27/0.4943 28/0.5153

ε = 10−6 15/0.2911 20/0.3832 23/0.4407 25/0.4758 26/0.4913

VJ dof 336 2,688 21,504 172,032 1,376,256

ε = 1 18/0.3527 22/0.4307 24/0.4544 24/0.4561 24/0.4518

ε = 0.1 20/0.3791 23/0.4302 24/0.4577 24/0.4626 24/0.4626

ε = 0.01 19/0.3721 22/0.4316 24/0.4578 25/0.4695 25/0.4745

ε = 0.001 19/0.3710 23/0.4352 24/0.4592 25/0.4712 25/0.4768

ε = 10−4 19/0.3676 22/0.4300 24/0.4594 25/0.4715 25/0.4771

ε = 10−5 19/0.3644 21/0.4095 24/0.4594 25/0.4715 25/0.4771

ε = 10−6 18/0.3542 21/0.4033 24/0.4594 25/0.4715 25/0.4771
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Table 3.8. Multigrid preconditioners, Test Problem 3, linear FE

Level 1 Level 2 Level 3 Level 4

VJ dof 24,032 192,256 1,538,048 12,304,384

Vc
J dof 1,445 9,693 70,633 538,513

iter/arf 18/0.3530 18/0.3559 18/0.3529 19/0.3785

VJ dof 6,008 48,064 384,512 3,076,096

iter/arf 35/0.5907 40/0.6307 45/0.6578 48/0.6788
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CHAPTER IV

ALGEBRAIC MULTIGRID METHODS

In this chapter we introduce and study numerically an algebraic multigrid (AMG)

algorithm for the preconditioning of the SIPG method. In addition to the assem-

bled matrix of the SIPG method, our AMG method only requires basic topological

information about the mesh and therefore can be used on arbitrary unstructured

meshes. The basic idea is to define coarse spaces of piecewise constant functions in

order to simulate a space hierarchy similar to the one used by multigrid Method II

defined in the previous chapter which in the case of uniform refinement is readily

available. We build a sequence of nested coarse “triangulations” based on an element

agglomeration algorithm that uses only the topology of the initial finest mesh. The

corresponding piecewise constant spaces are nested and we use the natural embed-

dings to construct the inherited coarse level matrices. We also consider a smoothed

aggregation/interpolation version of the algorithm combined with more aggressive

coarsening. This approach leads to improved convergence rates. In the numerical

experiments we study not only the convergence properties of the preconditioners but

also the computational complexity of their construction and usage.

4.1. Element Agglomeration AMG

We will use the following algorithm to construct our AMG preconditioner: assume

that we are given the finest level matrix AJ of size (nJ × nJ) and the prolongation

matrices Pk of sizes (nk × nk−1), for k = 1, . . . , J ; here nk denotes the dimension

of the k-th level. We define the coarse matrices recursively using an RAP matrix

multiplication:

Ak−1 = P t
kAkPk, k = J, . . . , 1.
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Now, given the matrix Ak we can define a smoothing matrix Rk, for example Rk =

(Dk + Lt
k)
−1Dk(Dk + Lk)

−1 is the symmetric Gauss-Seidel smoother; here Dk is the

diagonal of Ak, and Lk is the strictly lower triangular part of Ak. In general Rk need

not be symmetric and therefore we denote

R
(`)
k =


Rk if ` is odd,

Rt
k if ` is even.

Given a number mk of pre- and post-smoothing steps and a number p of correction

steps we define the multigrid preconditioner BJ recursively: set B0 = A−1
0 ; then for

k = 1, . . . , J define the action of Bk on a given vector g ∈ Rnk by

1. pre-smoothing: define x` ∈ Rnk , ` = 0, . . . ,mk by: set x0 = 0 and

x` = x`−1 +R
(`+mk)
k (g − Akx

`−1), ` = 1, . . . ,mk

2. correction: define ymk = xmk + Pkq
p where q` ∈ Rnk−1 , ` = 0, . . . , p are defined

by: set q0 = 0, and

q` = q`−1 +Bk−1[P
t
k(g − Akx

mk)− Ak−1q
`−1], ` = 1, . . . , p.

3. post-smoothing: define y` ∈ Rnk , ` = mk + 1, . . . , 2mk by

y` = y`−1 +R
(`+mk)
k (g − Aky

`−1).

4. Bkg = y2mk .

Remark 7. In the multilevel setup from the previous chapter we can define the pro-

longation matrices Pk from the embeddings V1 ⊂ · · · ⊂ VJ ⊂ VJ . In this case the

AMG algorithm we just described differs from Method II in the previous chapter only
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in the choice of the coarse bilinear forms. Here we use the bilinear form AJ(·, ·) on

all levels which is the nested-inherited case.

In order to construct the prolongation (interpolation) matrices Pk we will define a

sequence of nested triangulations {Tk}J
k=1 and use the natural embeddings of the

corresponding piecewise constant spaces
{
Vk

}J

k=1
. The finest mesh TJ is the mesh

on which the matrix AJ is assembled on the discontinuous space VJ of piecewise

polynomial functions. We define the matrix PJ to be the matrix representation of the

embedding VJ ⊂ VJ in the standard bases for both spaces. For example, for linear

elements PJ has the block form

PJ =


e 0

. . .

0 e

 where e = (1, 1, 1, 1)t.

To construct the mesh hierarchy {Tk}J
k=1 we assume that we have an enumeration of

the elements in the finest mesh TJ = {TJ,1, TJ,2, . . . , TJ,m} where m = nJ−1 and the

following (m×m) adjacency matrix:

Hij =


1 if i 6= j and TJ,i, TJ,j are neighbors,

0 otherwise.

We consider two elements to be neighbors if they have a common face. Note that

H has the sparsity pattern of AJ−1 excluding the diagonal. Given the matrix H we

define the auxiliary mesh hierarchy {T ∗
k } where T ∗

k has exactly 2k elements. The

elements in T ∗
k are defined by a partition of the elements of the mesh TJ — every

element TJ,i belongs to exactly one element of T ∗
k . The mesh T ∗

0 has 1 element which

is the union of all elements in TJ . Given the mesh T ∗
k we define the next mesh T ∗

k+1

by splitting every element T ∈ T ∗
k into two elements: let `1, `2, . . . , `s be the indexes
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of the elements in TJ whose union is T :

T =
s⋃

i=1

TJ,`i

and define the (s× s) adjacency matrix of T :

H
(T )
ij = H`i`j

.

We use a graph bisection algorithm to split the graph defined by H(T ). The result, in

the form of a binary vector b ∈ {0, 1}s, defines the two new elements T0, T1 ∈ T ∗
k+1:

Ti =
⋃

j:bj=i

TJ,`j
, i = 0, 1.

We use the graph partitioning library METIS (routine METIS PartGraphRecursive)

as our bisection algorithm. Sometimes the elements T0 and/or T1 produced by METIS

are not connected which we want to avoid and therefore in those rare cases we use

a simpler bisection algorithm that generates connected elements. The process of

generating the auxiliary meshes T ∗
k is terminated when 2k ≥ m/θ where θ = 2α is

a given coarsening factor. Let ` be the smallest integer such that 2` ≥ m/θ then

J = [`/α] + 2 and we define

TJ−1 = T ∗
` , TJ−2 = T ∗

`−α, . . . T1 = T ∗
`−[`/α]α.

For example, if m = 1000, θ = 8 (α = 3) then ` = 7, J = 4 and T3 = T ∗
7 , T2 = T ∗

4 ,

T1 = T ∗
1 ; the level dimensions are n4 = 4000 (assuming linear elements), n3 = 1000,

n2 = 128, n1 = 16, n0 = 2.

To illustrate the algorithm, on Figure 4.1 we show the first two auxiliary meshes

T ∗
1 and T ∗

2 obtained when we apply our algorithm to the mesh of Test Problem 3 (see

page 32). The different colors represent the different agglomerated elements.
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Fig. 4.1. Auxiliary agglomerated triangulations: T ∗
1 (left) and T ∗

2 (right).

Remark 8. Note that even if the bisection algorithm is optimal, the complexity of

the algorithm to construct the hierarchy {Tk}J
k=1 is at least O(m logm).

Having defined the sequence of nested meshes {Tk}J
k=1, we can define their cor-

responding piecewise constant spaces
{
Vk

}J

k=1
. Then the prolongation matrix Pk for

k = 1, . . . , J − 1 is defined to be the representation of the embedding Vk ⊂ Vk+1.

4.2. Smoothed Aggregation

In this section we consider a modification of the AMG preconditioner described above

that is aimed at improving its convergence properties. The approach we present

here was first introduced in [25] and later analyzed in [26]. The idea is to smooth

the prolongation matrices {Pk} using the corresponding coarse matrices. Thus, we

replace the general prolongation Pk which was constructed using only the topology

of the mesh TJ with an improved prolongation P̃k which is designed specifically for

the fine level matrix AJ . We define P̃k and the corresponding coarse matrices Ãk as

follows: set ÃJ = AJ ; due to the large number of nonzero entries per row in AJ we
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choose to not smooth the prolongation PJ :

P̃J = PJ ÃJ−1 = AJ−1 = P t
JAJPJ .

The rest of the prolongations and matrices we define recursively:

P̃k = (I − λ−1
k Ãk)Pk Ãk−1 = P̃ t

kÃkP̃k, k = J − 1, . . . , 1

where λk is chosen so that ρ(I − λ−1
k Ãk) < 1. In the numerical experiments we used

λk =
1

2
max

i

∑
j

|(Ãk)ij| =
1

2
‖Ãk‖∞ =

1

2
‖Ãk‖1 ≥

1

2
λmax(Ãk).

This smoothing method can be viewed as a process in which we replace the piecewise

constant spaces Vk with a space spanned by the basis functions given by the columns

of the matrix product P̃J P̃J−1 · · · P̃k. Each such basis function is associated with

an element in the triangulation Tk, however its support is larger than that element.

This increase in the support of the basis functions leads to an increase in the sparsity

pattern of the matrices Ãk. In order to control the sparsity one can use more aggressive

coarsening: θ = 16, θ = 32 instead of the standard (for 3D) θ = 8. Finally, we define

the smoothed aggregation AMG preconditioner B̃J in the same way we defined BJ

replacing Pk and Ak with P̃k and Ãk, respectively.

4.3. Numerical Experiments

We use the same test setup as in the previous chapter, see pages 32, 50. In the numer-

ical experiments presented here we study the properties of the AMG preconditioners

on a sequence of geometrically refined meshes. Note that this mesh hierarchy is not

used in the construction of the preconditioners, instead we use the agglomeration

algorithm described above. We will use M1 to refer to the AMG preconditioner BJ
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Table 4.1. AMG preconditioners, Test Problem 1, linear FE

Level 2 Level 3 Level 4 Level 5 Level 6

M1, θ = 8, v. V-cycle 20/0.3893 26/0.4827 32/0.5561 41/0.6357 51/0.6944

M1, θ = 8, W-cycle 20/0.3803 24/0.4490 26/0.4917 30/0.5318 33/0.5625

M2, θ = 8, V-cycle 20/0.3788 22/0.4303 24/0.4537 25/0.4677 25/0.4745

M2, θ = 16, V-cycle 20/0.3785 24/0.4526 26/0.4867 30/0.5341 31/0.5443

M2, θ = 32, V-cycle 21/0.4066 27/0.4950 31/0.5443 37/0.6023 42/0.6398

M2, θ = 8, W-cycle 20/0.3717 21/0.4089 21/0.4056 21/0.4045 21/0.4030

M2, θ = 16, W-cycle 20/0.3718 22/0.4173 22/0.4191 22/0.4256 22/0.4261

M2, θ = 32, W-cycle 20/0.3801 24/0.4480 24/0.4629 26/0.4796 26/0.4873

based on the prolongation matrices Pk, and M2 — to the preconditioner B̃J (based

on P̃k).

We first consider Test Problem 1 discretized with linear finite elements. In Table

4.1 we present the number of iterations and average reduction factors from the PCG

method for both AMG preconditoners (M1 and M2) using the indicated coarsening

factor θ and cycle (V, variable V, or W). We observe that for M1 in both variable V-

and W-cycle the number of iterations grows with the refinement level, however the

increase in the numbers is much slower for the W-cycle. When smoothed aggregation

is used (M2) the number of iterations remains bounded in all cases except possibly the

case θ = 32 using V-cycle. As we can expect, the W-cycle gives better convergence

rates than the V-cycle and using more aggressive coarsening (larger θ) slows the

convergence.

We will use the following ratios to express the computational cost of one V-cycle
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Table 4.2. Complexity of AMG preconditioners, Test Problem 1, linear FE

Level 2 Level 3 Level 4 Level 5 Level 6

M1, θ = 8 1.079/1.192 1.081/1.210 1.082/1.216 1.083/1.221 1.083/1.224

M2, θ = 8 1.103/1.301 1.121/1.426 1.136/1.557 1.149/1.726 1.160/1.919

M2, θ = 16 1.079/1.186 1.084/1.215 1.088/1.236 1.090/1.254 1.092/1.267

M2, θ = 32 1.071/1.154 1.073/1.164 1.075/1.172 1.076/1.177 1.076/1.180

relative to the cost of a matrix-vector product with the fine level matrix AJ :

κv =
1

η(AJ)

J∑
k=0

η(Ak),

where η(A) denotes the number of nonzero entries in the sparse matrix A. For W-cycle

we use the ratio:

κw =
1

η(AJ)

J∑
k=0

2J−kη(Ak).

In Table 4.2 we give these relative complexities (in the form “κv/κw”) for Test Prob-

lem 1 using linear elements. In all cases the complexities are small and do not increase

substantially with the refinement level. The only exception is when smoothed aggre-

gation is used (M2) with coarsening factor θ = 8 and even in this case the increase is

noticeable only for W-cycle. This effect was expected and it is due to the increased

number of nonzero entries per row in the coarse matrices Ãk. As we expected, using

aggressive coarsening (θ = 16, 32) resolved this problem.

The algorithm for constructing the AMG preconditioners can be divided into two

steps: 1) element agglomeration or construction of the prolongation matrices Pk and

2) construction of the coarse matrices Ak or Ãk (including the construction of P̃k).

As we noted in Remark 8 our algorithm for step 1 is not optimal, however in our tests

we observed that it is not much slower than step 2 even for the largest problems. To
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Table 4.3. Setup cost of AMG preconditioners, Test Problem 1, linear FE

Level 2 Level 3 Level 4 Level 5 Level 6

M1, θ = 8 1.376 1.382 1.384 1.385 1.386

M2, θ = 8 1.972 2.557 3.440 5.032 7.559

M2, θ = 16 1.580 1.712 1.809 1.910 1.983

M2, θ = 32 1.501 1.562 1.597 1.623 1.638

measure the complexity of step 2 we compute the complexity of all matrix-matrix

products involved in the step and divide by η(AJ): for M1 we use

κs =
1

η(AJ)

J∑
k=1

[
µ(Ak, Pk) + µ(P t

k, AkPk)
]
,

where µ(A,B) denotes the number of floating point multiplications needed to perform

the matrix-matrix multiplication of the sparse matrices A and B; for M2 we compute

κs =
1

η(AJ)

J∑
k=1

[
µ(Sk, Pk) + µ(Ãk, P̃k) + µ(P̃ t

k, ÃkP̃k)
]
,

where Sk = I − λ−1
k Ãk is the prolongation smoother (P̃k = SkPk). The results are

presented in Table 4.3. As we can expect due to the increasing sparsity pattern of the

coarse matrices Ãk, the relative setup complexity of the smoothed aggregation AMG

(M2) preconditioner with standard coarsening factor θ = 8 increases substantially

with the refinement level. As we see from the results, using aggressive coarsening

reduces the setup cost significantly. In all cases, except [M2, θ = 8], the relative

setup complexities increase slowly but remain relatively small and bounded.

We next consider Test Problem 3 discretized with linear finite elements. In

Table 4.4 we present the number of PCG iterations and average reduction factors for

the indicated AMG preconditioners. In all cases we observe a linear increase in the
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Table 4.4. AMG preconditioners, Test Problem 3, linear FE

Level 1 Level 2 Level 3 Level 4

M1, θ = 8, W-cycle 35/0.5903 43/0.6465 49/0.6860 56/0.7163

M2, θ = 8, V-cycle 36/0.5897 41/0.6370 46/0.6687 51/0.6940

M2, θ = 16, V-cycle 37/0.6019 45/0.6598 52/0.6974 60/0.7331

M2, θ = 32, V-cycle 39/0.6147 49/0.6851 60/0.7341 72/0.7713

M2, θ = 8, W-cycle 34/0.5786 38/0.6125 41/0.6348 44/0.6547

M2, θ = 16, W-cycle 35/0.5835 39/0.6229 43/0.6481 46/0.6682

M2, θ = 32, W-cycle 36/0.5906 42/0.6413 47/0.6731 51/0.6940

Table 4.5. Complexity of AMG preconditioners, Test Problem 3, linear FE

Level 1 Level 2 Level 3 Level 4

M1, θ = 8 1.084/1.219 1.084/1.226 1.084/1.228 1.084/1.229

M2, θ = 8 1.125/1.440 1.140/1.579 1.151/1.741 1.161/1.924

M2, θ = 16 1.085/1.219 1.089/1.242 1.090/1.255 1.091/1.266

M2, θ = 32 1.073/1.163 1.074/1.170 1.075/1.174 1.075/1.176

iterations with the refinement level. This is not unexpected because similar behavior

can be observed for the two-level method using the coarse space V (see the last row

in Table 3.4 on page 37). If we compare the results with those for Test Problem 1 we

see that the convergence for this Test Problem is slower which can be explained with

the geometrical anisotropies of the mesh. In Tables 4.5 and 4.6 we give the relative

complexities to apply the preconditioner and for the setup stage, respectively. The

results are very similar to those for Test Problem 1 — the complexities are small and

bounded for all cases except the smoothed aggregation AMG (M2) preconditioner
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Table 4.6. Setup cost of AMG preconditioners, Test Problem 3, linear FE

Level 1 Level 2 Level 3 Level 4

M1, θ = 8 1.384 1.386 1.386 1.386

M2, θ = 8 2.589 3.594 5.143 7.726

M2, θ = 16 1.747 1.860 1.940 2.005

M2, θ = 32 1.572 1.608 1.629 1.643

using coarsening factor θ = 8.
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CHAPTER V

THE METHOD OF BAUMANN AND ODEN

For functions u and v in Hs(T ), s > 3
2
, the bilinear form of the method of Baumann

and Oden is

A(u, v) = (a∇u,∇v) + 〈{a∇v · n} , [[u]]〉Ei∪ED
− 〈{a∇u · n} , [[v]]〉Ei∪ED

and the its linear form is

L(v) = (f, v) + 〈uN , v〉EN
+ 〈uD, a∇v · n〉ED

.

With these definitions, the Baumann-Oden discontinuous Galerkin method for our

elliptic problem (2.1) reads: find u ∈ V such that

A(u, v) = L(v), ∀v ∈ V . (5.1)

5.1. Mixed Formulation

We consider the following L2-orthogonal decomposition of the discrete space V into

a direct sum

V = V ⊕ V0

where

V =
{
v ∈ L2(Ω) : v|T = const, ∀T ∈ T

}
V0 =

{
v ∈ V : (v, w) = 0, ∀w ∈ V

}
that is V is the space of piecewise constant functions and V0 is the space of the piece-

wise polynomial functions (of degree r) with average 0 over each element. Consider
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the restriction of the form A(·, ·) to V0 × V which we will denote by B(·, ·)

B(v0, ū) = A(ū, v0) = 〈{a∇v0 · n} , [[ū]]〉Ei∪ED
, ∀ū ∈ V , ∀v0 ∈ V0.

Note that ∀v̄ ∈ V and ∀u0 ∈ V0 we have

A(u0, v̄) = −〈{a∇u0 · n} , [[v̄]]〉Ei∪ED
= −A(v̄, u0) = −B(u0, v̄)

and also ∀ū, v̄ ∈ V we have

A(ū, v̄) = 0.

Thus, if we write u = u0 + ū and v = v0 + v̄ with u0, v0 ∈ V0 and ū, v̄ ∈ V then we

have

A(u, v) = A(u0, v0) + B(v0, ū)− B(u0, v̄).

Therefore, the discrete problem (5.1) can be written in the following equivalent mixed

form: find u0 ∈ V0 and ū ∈ V such that

A(u0, v0) + B(v0, ū) = L(v0), ∀v0 ∈ V0

−B(u0, v̄) = L(v̄), ∀v̄ ∈ V .
(5.2)

We will use the following inner product and corresponding norm on H1(T )

〈〈u, v〉〉 = (a∇u,∇v) +
〈
κh−1

E aE [[ū]], [[v̄]]
〉
Ei∪ED

, ∀u, v ∈ H1(T ),

|||u||| = 〈〈u, u〉〉
1
2 , ∀u ∈ H1(T ),

where ū is the L2-orthogonal projection of u onto V (that is the element-by-element

average of u). Here the parameter κ > 0 is arbitrary. Note that the spaces V0 and V

are orthogonal with respect to the inner product 〈〈·, ·〉〉. When restricted to V0 and V
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the norm simplifies to

|||u0|||2 = (a∇u0,∇u0), ∀u0 ∈ V0

|||ū|||2 =
〈
κh−1

E aE [[ū]], [[ū]]
〉
Ei∪ED

, ∀ū ∈ V .

We will study the mixed problem (5.2) using the following theorem (this is a version

of Theorem 1.1 on page 42 in [11])

Theorem 6. Assume that the bilinear forms A(·, ·) and B(·, ·) are bounded:

A(u0, v0) ≤ α1 |||u0||| |||v0||| , ∀u0, v0 ∈ V0

B(u0, v̄) ≤ β1 |||u0||| |||v̄||| , ∀u0 ∈ V0,∀v̄ ∈ V ,

the bilinear form A(·, ·) is coercive on V0: there exists α0 > 0 such that

α0 |||u0|||2 ≤ A(u0, u0), ∀u0 ∈ V0,

and that the bilinear form B(·, ·) satisfies the following inf-sup condition: there exists

β0 > 0 such that

β0 |||ū||| ≤ sup
v0∈V0

B(v0, ū)

|||v0|||
∀ū ∈ V . (5.3)

Then the mixed problem (5.2) has a unique solution (u0, ū) and the following estimates

hold

|||u0||| ≤
1

α0

‖L‖V ′0 +
1

β0

(
1 +

α1

α0

)
‖L‖V ′

|||ū||| ≤ 1

β0

(
1 +

α1

α0

)
‖L‖V ′0 +

α1

β2
0

(
1 +

α1

α0

)
‖L‖V ′

(5.4)

where

‖L‖V ′0 = sup
v0∈V0

L(v0)

|||v0|||
and ‖L‖V ′ = sup

v̄∈V

L(v̄)

|||v̄|||
.

Corollary 2. Under the assumptions of Theorem 6, the bilinear form A(·, ·) is
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bounded on the space V:

A(u, v) ≤ 2 max{α1, β1} |||u||| |||v||| , ∀u, v ∈ V

and satisfies the inf-sup condition:

c |||u||| ≤ sup
v∈V

A(u, v)

|||v|||
∀u ∈ V

with c = (γ2
1 + 2γ2

2 + γ2
3)
−1/2

where γi are the constants from the stability estimate

(5.4):

γ1 =
1

α0

γ2 =
1

β0

(
1 +

α1

α0

)
γ3 =

α1

β2
0

(
1 +

α1

α0

)
.

Proof. The boundedness follows easily from the assumptions: let u = u0+ū, v = v0+v̄

with u0, v0 ∈ V0 and ū, v̄ ∈ V then

A(u, v) = A(u0, v0) + B(v0, ū)− B(u0, v̄)

≤ α1 |||u0||| |||v0|||+ β1 |||ū||| |||v0|||+ β1 |||u0||| |||v̄|||

≤ max{α1, β1}
(
2 |||u0|||2 + |||ū|||2

) 1
2
(
2 |||v0|||2 + |||v̄|||2

) 1
2

≤ 2 max{α1, β1} |||u||| |||v||| .

The inf-sup condition follows from the stability estimates (5.4). Let u ∈ V , u = u0+ ū

with u0 ∈ V0, ū ∈ V and define

Lu(v) = A(u, v), ∀v ∈ V .

It is clear that the pair (u0, ū) is the unique solution to (5.2) with L = Lu and

therefore the estimates (5.4) hold:

|||u0|||2 ≤
(
γ2

1 + γ2
2

) (
‖Lu‖2

V ′0
+ ‖Lu‖2

V ′
)

|||ū|||2 ≤
(
γ2

2 + γ2
3

) (
‖Lu‖2

V ′0
+ ‖Lu‖2

V ′
)
.
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Adding these two inequalities gives

|||u|||2 = |||u0|||2 + |||ū|||2 ≤
(
γ2

1 + 2γ2
2 + γ2

3

) (
‖Lu‖2

V ′0
+ ‖Lu‖2

V ′
)
.

Notice that

‖Lu‖V ′ = sup
v∈V

Lu(v)

|||v|||
= sup

v∈V

A(u, v)

|||v|||

and therefore to complete the proof we need to show that

‖Lu‖2
V ′ = ‖Lu‖2

V ′0
+ ‖Lu‖2

V ′ . (5.5)

This equality follows from the fact that V0 and V are orthogonal with respect to the

inner product 〈〈·, ·〉〉. Indeed, if we define ` ∈ V , `0 ∈ V0, and ¯̀∈ V by

〈〈`, v〉〉 = Lu(v), ∀v ∈ V ,

〈〈`0, v0〉〉 = Lu(v0), ∀v0 ∈ V0,〈〈
¯̀, v̄
〉〉

= Lu(v̄), ∀v̄ ∈ V ,

then for any v = v0 + v̄, v0 ∈ V0, v̄ ∈ V using the orthogonality we have

〈〈`, v〉〉 = Lu(v) = Lu(v0) + Lu(v̄) = 〈〈`0, v0〉〉+
〈〈

¯̀, v̄
〉〉

= 〈〈`0, v〉〉+
〈〈

¯̀, v
〉〉

=
〈〈
`0 + ¯̀, v

〉〉
that is ` = `0 + ¯̀. Therefore |||`|||2 = |||`0|||2 +

∣∣∣∣∣∣¯̀∣∣∣∣∣∣2 and noticing that

‖Lu‖V ′ = |||`||| ‖Lu‖V ′0 = |||`0||| ‖Lu‖V ′ =
∣∣∣∣∣∣¯̀∣∣∣∣∣∣

we obtain (5.5).

Our next goal is to verify that the assumptions of the above theorem and Corol-

lary hold with constants independent of the element sizes. We begin with the following

Lemma 7. The non-symmetric bilinear form A(·, ·) is bounded and coercive on the
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discrete space V0 with respect to the |||·||| norm and with constants in the bounds

independent of {hT}.

Proof. The coercivity is easy to see because for any u0 ∈ V0 we have

A(u0, u0) = (a∇u0,∇u0) = |||u0|||2 .

To prove the boundedness it is sufficient to show that

〈{a∇v0 · n} , [[u0]]〉Ei∪ED
≤ C |||v0||| |||u0||| , ∀u0, v0 ∈ V0.

To this end, consider a face F ∈ E and let Ti, Tj ∈ TF be two elements for which

F is a common face (Ti and Tj may be the same element too). Also, let vi be the

restriction of v0 to Ti and uj — the restriction of u0 to Tj. Then we have∫
F

(a∇vi · n)uj ≤ ‖a∇vi · n‖0,F‖uj‖0,F ≤ C‖∇vi‖0,F‖uj‖0,F

≤ Ch−1
Tj
‖∇vi‖0,Ti

‖uj‖0,Tj
.

For the last estimate we used Lemma 1 and the fact that hTi
' hE |F ' hTj

. Using

the fact that uj has zero average over Tj we get

h−1
Tj
‖uj‖0,Tj

≤ C‖∇uj‖0,Tj

and thus the above estimate becomes∫
F

(a∇vi · n)uj ≤ C‖∇vi‖0,Ti
‖∇uj‖0,Tj

.

Since the term 〈{a∇v0 · n} , [[u0]]〉Ei∪ED
is a sum of terms like the left hand side of the

last estimate (with a coefficient ±1/2 or 1), we obtain

〈{a∇v0 · n} , [[u0]]〉Ei∪ED
≤ C (a∇v0,∇v0)

1
2 (a∇u0,∇u0)

1
2 = C |||v0||| |||u0|||

which implies the boundedness of A(·, ·).
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Lemma 8. The bilinear form B(·, ·) is bounded (with C independent of {hT}):

B(v0, ū) ≤
C√
κ
|||v0||| |||ū||| , ∀v0 ∈ V0,∀ū ∈ V .

Proof. Let T ∈ T be an element and F ∈ E be one of its faces. Then using the

estimates in the proof of Lemma 2 we have∫
F

(a∇v0 · n) [[ū]] ≤ C√
κ

(a∇v0,∇v0)
1
2
T

〈
κ(an · n)h−1

E [[ū]], [[ū]]
〉 1

2

F
.

If F is an interior face and we denote the union of the two elements that share the

face F by S = ∪TF then using the above estimate we can write∫
F

{a∇v0 · n} [[ū]] ≤ C√
κ

(a∇v0,∇v0)
1
2
S

〈
κaEh

−1
E [[ū]], [[ū]]

〉 1
2

F
.

Summation over F ∈ Ei ∪ ED gives

B(v0, ū) = 〈{a∇v0 · n} , [[ū]]〉Ei∪ED
≤ C√

κ
(a∇v0,∇v0)

1
2
〈
κaEh

−1
E [[ū]], [[ū]]

〉 1
2

Ei∪ED

which is the desired boundedness.

Remark 9. In the last two Lemmas 7 and 8 we do not need to assume that the mesh is

globally quasi-uniform and therefore the estimates are valid on locally refined meshes

as long as the elements are shape regular (non-degenerate). Under the assumptions of

Lemma 2 on the coefficient a, the estimate of Lemma 8 is independent of any jumps

the coefficient has across interior faces. On the other hand, the boundedness estimate

in Lemma 7 does not seem to hold independently of such jumps.

The last of the assumptions of Theorem 6 we need to verify is the inf-sup condi-

tion (5.3) for the bilinear form B(·, ·). We will consider two cases: 1) quadratic and

higher order elements, i. e. r ≥ 2, and 2) linear elements, r = 1.
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5.2. Quadratic and Higher Order Elements

We begin with the following simple observation:

Lemma 9. The lowest order Raviart-Thomas finite element space, RT0, is contained

in the space of the gradients of quadratic polynomials, ∇P2,

RT0 ⊂ ∇P2.

Proof. First we consider the 2D case (triangle elements). The functions in RT0 have

the form  ax+ b

ay + c


which is the gradient of

(a/2)(x2 + y2) + bx+ cy.

In the 3D case (tetrahedral elements) RT0 functions have the form
ax+ b

ay + c

az + d


which is the gradient of

(a/2)(x2 + y2 + z2) + bx+ cy + dz.

Lemma 10. Assume that the coefficient a is scalar and piecewise constant with respect

to the mesh T . Then the following inf-sup condition holds for simplicial meshes

(i.e. meshes build from triangles or tetrahedra) and for quadratic and higher order
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elements, r ≥ 2

|||ū||| ≤ C
√
κ sup

v0∈V0

B(v0, ū)

|||v0|||
, ∀ū ∈ V

with C independent of {hT}, the coefficient a, and κ.

Proof. Denote the lowest order Raviart-Thomas space on the mesh T by

RT0(T ) = {w ∈ H(div; Ω) : w|T ∈ RT0, ∀T ∈ T } .

The degrees of freedom of w ∈ RT0(T ) are the integrals
∫

F
w · n for all faces F ∈ E .

Note that [[w · n]]F = 0 for all interior faces F ∈ Ei and that (w · n)|F is constant.

Take a fixed ū ∈ V and define the vector function w ∈ RT0(T ) by

(w · n)|F =


(h−1

E [[ū]])|F ∀F ∈ Ei ∪ ED

0 ∀F ∈ EN .

Let T be an element and let ŵ denote the mapping of w|T back to the reference

element T̂ via Piola’s transformation. The following estimate holds (see [11], page

98)

‖w‖2
0,T ≤ Ch2−d

T ‖ŵ‖2
0,T̂
.

On the reference element the term ‖ŵ‖2
0,T̂

is equivalent to the sum of the squares of

the degrees of freedom

‖ŵ‖2
0,T̂

'
∑

F̂

(∫
F̂

ŵ · n̂
)2

where the sum is over the faces F̂ of T̂ . Since the degrees of freedom are preserved

under the Piola transformation (and the direction of n only changes the sign) we get

‖w‖2
0,T ≤ Ch2−d

T

∑
F∈ET

(∫
F

w · n
)2

≤ C
∑
F∈ET

h2−d
E hd−1

E

∫
F

(w · n)2

where ET denotes the set of all faces of T and we used the fact that (w ·n) is constant
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over each face. Multiplying by the constant coefficient a, summing over all elements

T , and using the definition of (w · n) we obtain the estimate

(aw,w) ≤ C
∑

F∈Ei∪ED

∫
F

{a}h−1
E [[ū]]2 =

C

κ

〈
κaEh

−1
E [[ū]], [[ū]]

〉
Ei∪ED

=
C

κ
|||ū|||2 . (5.6)

Now, using Lemma 9 we can construct a piecewise quadratic function z satisfying

∇z|T = w|T and

∫
T

z = 0, ∀T ∈ T ,

so that z ∈ V0. Note that the same piecewise quadratic z is used for all polynomial

degrees r ≥ 2. In addition, since w has continuous normal components across interior

faces, we have that

{a∇z · n} |F = {a} (∇z · n)|F = {a} (w · n)|F = (aEh
−1
E [[ū]])|F , ∀F ∈ Ei ∪ ED.

Also, using (5.6) we have that

|||z|||2 = (a∇z,∇z) = (aw,w) ≤ C

κ
|||ū|||2 .

Combining the above equality for {a∇z · n} and last estimate we obtain

|||ū||| =
κ
〈
aEh

−1
E [[ū]], [[ū]]

〉
Ei∪ED

|||ū|||
=
κ 〈{a∇z · n} , [[ū]]〉Ei∪ED

|||ū|||
=
κB(z, ū)

|||ū|||

≤ C
√
κ
B(z, ū)

|||z|||
≤ C

√
κ sup

v0∈V0

B(v0, ū)

|||v0|||
.

5.3. Linear Elements

In this section we will study the properties of the bilinear form B(·, ·) in the case of

linear elements, r = 1. Introduce the linear operator B : V0 → V ′ and its transpose
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Bt : V → V ′0 by

(Bv0)(v̄) = (Btv̄)(v0) = B(v0, v̄), ∀v0 ∈ V0, ∀v̄ ∈ V .

Note that the inf-sup condition (5.3) is equivalent to the estimate

c |||ū||| ≤ ‖Btū‖V ′0 , ∀ū ∈ V

and therefore a necessary condition for the inf-sup condition is that the kernel of the

operator Bt is trivial: KerBt = {0}. We will show that for certain types of meshes

KerBt is not trivial when linear elements are used and therefore the inf-sup condition

(5.3) does not hold in that case.

In this section we will assume that the coefficient a = 1. We begin with the

following auxiliary

Lemma 11. Let T be a non-degenerate d-simplex with faces {Fi}d+1
i=1 , and let {ni}d+1

i=1

be the outward normals to the faces. Then

d+1∑
i=1

αi|Fi|ni = 0, (αi ∈ R)

if and only if αi = αj, ∀i, j.

Proof. Let w ∈ Rd be arbitrary, then using the divergence theorem we get

w ·

(
d+1∑
i=1

|Fi|ni

)
= w ·

(∫
∂T

n

)
=

∫
∂T

w · n =

∫
T

div w = 0

which implies that
d+1∑
i=1

|Fi|ni = 0.

Since any d of the normal vectors {ni} are linearly independent the above equality

completes the proof.

Definition 1. We will call the mesh T a checkerboard mesh if it satisfies the following
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property: there exists a coloring of the elements with two colors such that the neighbors

of every element have a color different from the color of the element itself. (Two

elements are neighbors if they have a common (d− 1)-dimensional face).

Definition 2. We will call the mesh T connected if there exists a path between

every two elements of the mesh. A path between T and T ′ is a sequence of ele-

ments T1, T2, . . . , Tn such that T1 = T , Tn = T ′ and {Ti, Ti+1} are neighbors for all

i = 1, . . . , n− 1.

The following lemma gives a characterization of KerBt.

Lemma 12. Let T be a connected simplicial mesh and r = 1 (linear elements). Then

KerBt is non-trivial in the following two cases:

• The mesh T is a checkerboard mesh and ΓD = ∂Ω. In this case KerBt is one-

dimensional and is spanned by the checkerboard function defined as +1 at the

elements with one of the colors (from the definition of checkerboard mesh) and

−1 at the elements with the other color.

• We have ΓN = ∂Ω. In this case KerBt is the one-dimensional space of all

constant functions.

In all other cases KerBt = {0}.

Proof. Let v0 ∈ V0, ū ∈ V . Consider an interior face F ∈ Ei and let T1 and T2 be the

two elements that share the face F (T1 6= T2). Denote vi = v0|Ti
, ui = ū|Ti

, i = 1, 2

and let ni be the vector normal to F pointing outside of Ti, i = 1, 2. Assume that

n|F = n1 then we have

({∇v0 · n} [[ū]])|F =
1

2
(∇v1 · n +∇v2 · n)(u1 − u2)

= (∇v1 · n1)
1

2
(u1 − u2) + (∇v2 · n2)

1

2
(u2 − u1)
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Thus, if we define the double valued function [ū] on F by

([ū]|∂T1)|F =
1

2
(u1 − u2) =

1

2
(ū|T1 − ū|T2)

([ū]|∂T2)|F =
1

2
(u2 − u1) =

1

2
(ū|T2 − ū|T1)

we can rewrite the bilinear form B(·, ·) as

B(v0, ū) =
∑
F∈Ei

∫
F

{∇v0 · n} [[ū]] +
∑

F∈ED

∫
F

(∇v0 · n)ū

=
∑
T∈T

∫
∂T

(∇v0 · nT )[ū]

where nT = ±n is the normal vector pointing outside of T and we extended the

definition of [ū] to ∂Ω by

[ū]|F =


ū, F ∈ ED

0, F ∈ EN .

Observing that ∇v0 is constant over the elements we can write

B(v0, ū) =
∑
T∈T

∇v0 ·
∫

∂T

nT [ū]. (5.7)

We want to show that

KerBt =

{
ū ∈ V :

∫
∂T

nT [ū] = 0, ∀T ∈ T
}
. (5.8)

Assume that ū ∈ KerBt then B(v0, ū) = 0, ∀v0 ∈ V0. In particular, we can take v0

such that

∇v0|T =

∫
∂T

nT [ū]

and therefore

0 = B(v0, ū) =
∑
T∈T

∣∣∣∣∫
∂T

nT [ū]

∣∣∣∣2
which proves the “⊆” part of (5.8). The other direction “⊇” of (5.8) is easy to see
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given (5.7). With the help of Lemma 11 the condition
∫

∂T
nT [ū] = 0 can be replaced

by [v̄]|∂T = const and thus we have the characterization

KerBt =
{
ū ∈ V : [ū]|∂T = const, ∀T ∈ T

}
.

Using the definition of [ū] the condition [ū]|∂T = const can be interpreted as follows:

• If T ∈ T is arbitrary, then ū has the same value at all neighbor elements of T .

• If T is such that ET ∩ ED 6= ∅ (recall that ET denotes the set of all faces of T ),

then the value of ū at the neighbor elements of T is minus the value of ū at T .

• If T is such that ET ∩ EN 6= ∅, then the value of ū at the neighbor elements of

T is the same as the value of ū at T .

Let ū ∈ KerBt and let T0 ∈ T be a fixed boundary element (i. e. ET0 ∩ Eb 6= ∅).

Denote the value of ū at T0 by α = ū|T0 and let T ∈ T be an arbitrary element. Since

the mesh is connected there exists a path from T0 to T : T0, T1, . . . , Tn = T . Using

the above three properties of the functions in KerBt we can conclude that

ū|Ti
= (−1)iα, i = 1, . . . , n if ET0 ∩ ED 6= ∅

ū|Ti
= α, i = 1, . . . , n if ET0 ∩ EN 6= ∅.

(5.9)

Thus, knowing the value of ū on the fixed boundary element T0 allows us to recover

the function everywhere. This shows that KerBt has dimension at most 1.

If T is checkerboard mesh and ΓD = ∂Ω then the checkerboard function ū satisfies

[ū]|∂T = 1 when ū|T = 1 and [ū]|∂T = −1 when ū|T = −1 and therefore ū ∈ KerBt.

Since the dimension of KerBt is at most 1, we have KerBt = span {ū}.

If ΓN = ∂Ω then the constant function ū ≡ 1 satisfies [ū]|∂T = 0 for all T ∈ T .

As in the previous case this means that KerBt = span {ū}.

To prove that KerBt = {0} in all other cases we will show that if KerBt is
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non-trivial then we have one of the two cases above. Let ū ∈ KerBt, ū 6= 0. We

want to show that either ED = ∅ or EN = ∅. If EN 6= ∅ then the second equality in

(5.9) implies that ū ≡ const and therefore [ū]|∂T = 0 for all T ∈ T . If we also assume

that ED 6= ∅ then for any F ∈ ED we have 0 = [ū]|F = ū|F which is a contradiction.

Thus, either ΓN = ∂Ω or ΓD = ∂Ω. In the latter case we need to show that T is a

checkerboard mesh. This follows from the first equality in (5.9) since α 6= 0.

Remark 10. The kernels of the operators A : V → V ′ and At : V → V ′ defined by

(Au)(v) = (Atv)(u) = A(u, v), ∀u, v ∈ V

coincide with the kernel of Bt: KerA = KerAt = KerBt.

Proof. Let u ∈ KerA then

0 = (Au)(u) = A(u, u) = (∇u,∇u)

that is u ∈ V and therefore

0 = (Au)(v0) = A(u, v0) = B(v0, u), ∀v0 ∈ V0

that is u ∈ KerBt. Similarly, if u ∈ KerAt then u ∈ V and

0 = (Atu)(v0) = A(v0, u) = −B(v0, u), ∀v0 ∈ V0

that is u ∈ KerBt. Conversely, if ū ∈ KerBt then for any v ∈ V decomposed as

v = v0 + v̄, v0 ∈ V0, v̄ ∈ V we have

(Aū)(v) = A(ū, v) = B(v0, ū) = 0

(Atū)(v) = A(v, ū) = −B(v0, ū) = 0,

that is ū ∈ KerA ∩KerAt. This completes the proof.
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In the remainder of the section we will derive an equivalent form of the inf-sup

condition (5.3). Let CR(T ) be the linear non-conforming Crouzeix-Raviart finite

element space on the mesh T :

CR(T ) =

{
v ∈ L2(Ω) : v|T ∈ P1(T ), ∀T ∈ T , and

∫
F

[[v]] = 0, ∀F ∈ Ei

}
and define the operator P : V → CR(T ) by: for all F ∈ E

(Pū)(MF ) =


{ū} (MF ), F ∈ Ei ∪ EN

0, F ∈ ED,

where MF denotes the midpoint of the face F . Using the definitions of P and [·] we

can show that the following equality holds for any ū ∈ V

([ū]|∂T )(MF ) = (ū|T )(MF )− (Pū)(MF ), ∀T ∈ T and F ∈ ET . (5.10)

Indeed, if F ∈ Ei is an interior face shared by the elements T1 and T2 and we denote

ui = (ū|Ti
)(MF ), i = 1, 2 then we have

(ū|T1)(MF )− (Pū)(MF ) = u1 −
1

2
(u1 + u2) =

1

2
(u1 − u2) = ([ū]|∂T1)(MF ).

If F ∈ ED and T is the element for which F is a face, then

(ū|T )(MF )− (Pū)(MF ) = (ū|T )(MF )− 0 = ([ū]|∂T )(MF ).

Finally, if T is a boundary element with a face F ∈ EN , then

(ū|T )(MF )− (Pū)(MF ) = (ū|T )(MF )− (ū|T )(MF ) = 0 = ([ū]|∂T )(MF ).

Note that if v is linear on F we have∫
F

v = |F | v(MF )
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and therefore (5.10) implies that for any ū ∈ V we have∫
F

[ū]|∂T =

∫
F

(ū− Pū)|T , ∀T ∈ T and F ∈ ET . (5.11)

Lemma 13. The following equalities hold

sup
v0∈V0

B(v0, ū)

|||v0|||
=

(∑
T∈T

|T |−1

∣∣∣∣∫
∂T

nT [ū]

∣∣∣∣2
)1/2

= ‖∇(ū− Pū)‖, ∀ū ∈ V .

(Note that we use ∇ to denote the element-by-element gradient.)

Proof. Let us define z ∈ V0 by

∇z|T = |T |−1

∫
∂T

nT [ū] and

∫
T

z = 0, ∀T ∈ T .

Then using formula (5.7) we can write for any v0 ∈ V0:

B(v0, ū) =
∑
T∈T

∇v0 ·
∫

∂T

nT [ū] =
∑
T∈T

|T |(∇v0 · ∇z) = (∇v0,∇z)

and therefore we have

sup
v0∈V0

B(v0, ū)

|||v0|||
= sup

v0∈V0

(∇v0,∇z)
(∇v0,∇v0)1/2

= |||z||| =

(∑
T∈T

|T |−1

∣∣∣∣∫
∂T

nT [ū]

∣∣∣∣2
)1/2

which is the first equality we had to prove. To establish the second equality we will

show that ∇(ū− Pū) = ∇z. Let T ∈ T and w ∈ Rd be arbitrary, then using (5.11),

the fact that (w ·nT ) is constant over each face of T , and the divergence theorem we

obtain

w ·
∫

∂T

nT [ū] =

∫
∂T

(w · nT )[ū] =

∫
∂T

(w · nT )(ū− Pū)

=

∫
T

(div w)(ū− Pū) +

∫
T

w · ∇(ū− Pū) = w ·
∫

T

∇(ū− Pū).

This implies that ∫
∂T

nT [ū] =

∫
T

∇(ū− Pū) = |T |∇(ū− Pū)|T .
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Comparing with the definition of z we see that ∇z = ∇(ū− Pū) and therefore

sup
v0∈V0

B(v0, ū)

|||v0|||
= |||z||| = ‖∇z‖ = ‖∇(ū− Pū)‖ = ‖∇Pū‖.

The proof is complete.

Lemma 14. The following two-sided estimate holds with constants independent of

the element diameters {hT}:

|||ū|||2 ' κ
∑
T∈T

h−2
T ‖ū− Pū‖2

0,T , ∀ū ∈ V .

Proof. Let ū ∈ V be arbitrary. Note that the values of [ū]|F on the two sides of an

interior face F differ only by their sign and therefore ([ū]|F )2 is single-valued and by

the definition of [·] we have ([[ū]]|F )2 = 4([ū]|F )2 and therefore (for κ = 1)

|||ū|||2 =
∑
F∈Ei

∫
F

h−1
E [[ū]]2 +

∑
F∈ED

∫
F

h−1
E ū2 =

∑
F∈Ei

∫
F

h−1
E 4[ū]2 +

∑
F∈ED

∫
F

h−1
E [ū]2

'
∑
F∈Ei

∫
F

h−1
E 2[ū]2 +

∑
F∈ED

∫
F

h−1
E [ū]2 =

∑
T∈T

∫
∂T

h−1
E [ū]2

=
∑
T∈T

∑
F∈ET

(hE |F )d−2([ū]|F )2 '
∑
T∈T

h−2
T ‖ū− Pū‖2

0,T .

For the last equivalence we used (5.10), the fact that hE |F ' hT when F ∈ ET , and

the following estimate valid for linear v|T

‖v‖2
0,T ' hd

T

∑
F∈ET

(v(MF ))2

which is easily derived by mapping to a reference simplex.

As a result of the last two lemmas we can write the inf-sup condition (5.3) in the

following equivalent (for linear elements) form:

c
∑
T∈T

h−2
T ‖ū− Pū‖2

0,T ≤ ‖∇(ū− Pū)‖2 = ‖∇Pū‖2, ∀ū ∈ V . (5.12)



85

0 h 2h

0

h

2h

T

0 0

0 0

1

Fig. 5.1. Checkerboard mesh for the unit square (left) and the new mesh obtained

after refinement of T (right).

Unfortunately, this estimate does not always hold with constant c independent of h.

To show that we consider the following example: let Ω = (0, 1)2 be the unit square,

ΓD = ∂Ω, and let Tc be the checkerboard mesh shown on the left side of Figure 5.1.

We define a new mesh T obtained from Tc by bisecting the element T as shown on

the right side of the figure. Note that the mesh T is not checkerboard. Let z̄ be the

checkerboard function on the mesh Tc that is defined as +1 at the white elements

and −1 at the gray elements. We define V , V , V0, P , etc. on the mesh T as before.

We have that P z̄ vanishes at the midpoints of all boundary edges because ΓD = ∂Ω.

Using the definition of z̄ it is easy to see that P z̄ also vanishes at the midpoints of all

interior edges except the one that we used to bisect T as shown on the right side of

Figure 5.1. Thus, P z̄ is identically zero on all elements in T except the two elements

obtained from bisecting T which we will denote by T1 and T2. Moreover, P z̄ is equal

to the nodal basis function in CR(T ) corresponding to the edge shared by T1 and T2

and one can easily compute that ‖∇P z̄‖2 = 4. We have

‖∇P z̄‖2∑
τ∈T h

−2
τ ‖z̄ − P z̄‖2

0,τ

≤ 4∑
τ∈T \{T1,T2} h

−2‖z̄‖2
0,τ

=
4h2

1− h2/4
≤ 16

3
h2, (h ≤ 1)
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and therefore the constant c in (5.12) cannot exceed 16h2/3 and consequently β0 .

h/κ
1
2 where β0 is the constant in (5.3).

This example shows that the inf-sup condition for linear elements is closely re-

lated to the properties of the mesh and some assumptions on the triangulation need

to be made (in addition to KerBt = {0}) in order to be able to prove the estimate

independently of the element diameters hT if that is at all possible.

We conclude this section with a numerical test investigating the convergence

rates of the method of Baumann and Oden with linear elements in L2 and H1-like

norms. We solve the problem −∆u = f in the unit cube Ω = (0, 1)3 with Dirichlet

boundary conditions imposed on the whole boundary ΓD = ∂Ω and with the following

exact solution u = −(x2 + y2 + z2)/6. We use a coarse tetrahedral mesh (“Level 0”)

that we refine uniformly to obtain a sequence of nested meshes. Thus, the elements

in the “Level k” mesh have diameters hk = 2−kh0. All meshes (except the coarsest

“Level 0” mesh) are checkerboard and therefore the operators A and At have the

same kernel which consists of all checkerboard functions (see Lemma 12 and Remark

10). With our choice of the exact solution and the triangulations we have that

L(v) = 0, ∀v ∈ KerAt, that is the discrete linear systems are compatible. From the

multiple discrete solutions we select the one that is L2-orthogonal to the checkerboard

functions. The results from this numerical experiment are presented in Table 5.1. The

top part of the table gives the L2 and “H1” norms of the error. We have broken the

“H1” norm into its two components:

“grad”: (∇v,∇v)1/2 and “jump”:
〈
h−1
E [[v]], [[v]]

〉1/2

Ei∪ED
.

The bottom part of the table gives the corresponding convergence ratios. Clearly,

we observe optimal convergence in both L2 and “H1” norms — O(h2) and O(h),

respectively.
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Table 5.1. Convergence of the method of Baumann and Oden with linear elements

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

L2, ×10−6 4409. 1068. 257.0 62.34 15.28 3.777

grad, ×10−4 495.9 241.8 118.8 58.84 29.27 14.60

jump, ×10−4 299.8 123.3 50.71 21.68 9.736 4.560

L2 — 4.129 4.154 4.122 4.080 4.046

grad — 2.051 2.034 2.019 2.010 2.005

jump — 2.431 2.432 2.339 2.227 2.135

5.4. Preconditioning

Earlier in this chapter we proved that the inf-sup condition and boundedness

c |||u||| ≤ sup
v∈V

A(u, v)

|||v|||
≤ C |||u||| , ∀u ∈ V (5.13)

hold when V is built from quadratic or higher order elements (r ≥ 2). In this section

we will show how this estimates can be used to define preconditioners for the discrete

problem (5.1). Let {φi}n
i=1 be a basis for V and let us define the matrices A and B

with entries given by

Aij = A(φj, φi) and Bij = 〈〈φj, φi〉〉 , i, j = 1, . . . , n.

Note that B is symmetric and positive definite and A is non-symmetric and its entries

are given by A(φj, φi) and not by A(φi, φj). If we define the column vectors x and b

with entries

xi : u =
n∑

i=1

xiφi and bi = L(φi), i = 1, . . . , n
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then the discrete problem (5.1) can be written as

Ax = b.

If we also define the column vector y with entries

yi : v =
n∑

i=1

yiφi, i = 1, . . . , n

we can write (5.13) in the following equivalent form

c(xtBx)1/2 ≤ sup
y∈Rn

ytAx

(ytBy)1/2
≤ C(xtBx)1/2, ∀x ∈ Rn.

Substituting y = B− 1
2 z inside the supremum above we get

sup
y∈Rn

ytAx

(ytBy)1/2
= sup

z∈Rn

ztB− 1
2Ax

(ztB− 1
2BB− 1

2 z)1/2
= |B− 1

2Ax| = (xtAtB− 1
2B− 1

2Ax)1/2,

where | · | denotes the Euclidean norm on Rn. Thus, after squaring, we get the

following equivalent form of (5.13)

c2xtBx ≤ xtAtB−1Ax ≤ C2xtBx, ∀x ∈ Rn.

These estimates mean that AtB−1A is spectrally equivalent to B. This suggests the

following approach to solving the equation Ax = b: write the equation in the form

AtB−1Ax = AtB−1b

and apply the preconditioned conjugate gradient (PCG) method to this system using

B−1 as a preconditioner. Note that every PCG iteration will require the following

number of matrix-vector multiplications: one with the matrix A, one with At, and two

with the preconditioner B−1. If we replace the matrix B with a spectrally equivalent

matrix B̃

c1x
tBx ≤ xtB̃x ≤ c2x

tBx, ∀x ∈ Rn
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then for all x ∈ Rn we have

c

c2
(xtB̃x)1/2 ≤ c

√
c2

(xtBx)1/2 ≤ 1
√
c2

sup
y∈Rn

ytAx

(ytBy)1/2
≤ sup

y∈Rn

ytAx

(ytB̃y)1/2
and

sup
y∈Rn

ytAx

(ytB̃y)1/2
≤ 1
√
c1

sup
y∈Rn

ytAx

(ytBy)1/2
≤ C
√
c1

(xtBx)1/2 ≤ C

c1
(xtB̃x)1/2

and therefore the following spectral equivalence holds

(c/c2)
2xtB̃x ≤ xtAtB̃−1Ax ≤ (C/c1)

2xtB̃x, ∀x ∈ Rn.

Note that the estimate for the condition number of B−1AtB−1A increased by a factor

of (c2/c1)
2 when we replaced B with B̃.

In the remainder of this section we describe how one can compute the action of

B−1 or an appropriate B̃−1. Let {φ}k
i=1 be a basis for Pr on the reference element T̂

such that (for example the standard nodal basis)

k∑
i=1

φi ≡ 1.

We introduce the new basis {ψi}k
i=1

ψ1 =
k∑

i=1

φi ≡ 1, ψi = φi − αiψ1, i = 2, . . . , k

where αi are chosen so that (ψi, 1)T̂ = 0; if we set gij = (φi, φj)T̂ , gi =
∑

j gij =

(φi, 1)T̂ , and g =
∑

i gi = |T̂ |, then αi = gi/g. Note that {ψi}k
i=1 form a basis since

every φi can be expressed in terms of {ψj}

φi = ψi + αiψ1, i = 2, . . . , k φ1 = ψ1 −
k∑

i=2

φi.

Define the (k × k) matrices C = {cij} and D = {dij} from the equalities

ψi =
k∑

j=1

cijφj φi =
k∑

j=1

dijψj, i = 1, . . . , k.
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It is easy to see that DC = I and that they have the form

C =



1 1 · · · 1

−α2 1− α2 −α2

...
. . .

−αk −αk 1− αk


D =



α1 −1 · · · −1

α2 1 0

...
. . .

αk 0 1


.

Let T1, . . . , Tm be an enumeration of the elements in T . We assume that the matrices

A and B are defined based on the following basis for V (in the given order)

Φ = {φ1
1, . . . , φ

1
k, φ

2
1, . . . , φ

2
k, . . . , φ

m
1 , . . . , φ

m
k }

where for i = 1, . . . , k and j = 1, . . . ,m

φj
i (x) =


φi(G

−1
j (x)), x ∈ Tj

0, x /∈ Tj

and Gj is the affine mapping from T̂ to Tj. Let us also define the following ordered

bases for V

Ψ1 = {ψ1
1, . . . , ψ

1
k, ψ

2
1, . . . , ψ

2
k, . . . , ψ

m
1 , . . . , ψ

m
k }

Ψ2 = {ψ1
2, . . . , ψ

1
k, ψ

2
2, . . . , ψ

2
k, . . . , ψ

m
2 , . . . , ψ

m
k , ψ

1
1, . . . , ψ

m
1 }

where ψj
i is defined from ψi in the way φj

i was defined from φi. Note that for every

element Ts we have

ψs
i =

k∑
j=1

cijφ
s
j φs

i =
k∑

j=1

dijψ
s
j , i = 1, . . . , k

ψs
1|Ts = 1, and (ψs

i , 1)Ts = 0, for i = 2, . . . , k. Thus, the first m(k − 1) functions in

Ψ2 form a basis for V0 and the last m functions — a basis for V . If we denote by B1

and B2 the matrix representations of the inner product 〈〈·, ·〉〉 in the bases Ψ1 and Ψ2,
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respectively, then we have

B1 = PB2P
t,

where P is the permutation matrix that reorders the basis Ψ2 into Ψ1. Similarly, if

D̃ is the matrix of the coefficients from the representation of the basis Φ in terms of

the basis Ψ1, then

B = D̃B1D̃
t.

Indeed, if Φ = {φ̃i}n
i=1, Ψ1 = {ψ̃i}n

i=1, and φ̃i =
∑n

j=1 d̃ijψ̃j then

(B)ij =
〈〈
φ̃j, φ̃i

〉〉
=

〈〈
n∑

s=1

d̃jsψ̃s,
n∑

t=1

d̃itψ̃t

〉〉
=

n∑
s,t=1

d̃jsd̃it(B1)ts = (D̃B1D̃
t)ij.

In our case the matrix D̃ is block-diagonal

D̃ =


D 0

. . .

0 D

 and D̃−1 = C̃ =


C 0

. . .

0 C

 .

Using the above equalities for B and B1 we get the following expression for B−1

B−1 = (D̃PB2P
tD̃t)−1 = C̃tPB−1

2 P tC̃.

Since V0 and V are orthogonal in the 〈〈·, ·〉〉 inner product and

〈〈u0, v0〉〉 = (a∇u0,∇v0) ∀u0, v0 ∈ V0,

the matrix B2 has the block-diagonal form

B2 =



B(1) 0

. . .

B(m)

0 B
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where B(s) is the (k − 1)× (k − 1) matrix with entries

(B(s))ij =
〈〈
ψs

j+1, ψ
s
i+1

〉〉
= (a∇ψs

j+1,∇ψs
i+1), i, j = 1, . . . , k − 1

and B is the matrix representation of the bilinear form

〈〈ū, v̄〉〉 =
〈
κaEh

−1
E [[ū]], [[v̄]]

〉
Ei∪ED

, ū, v̄ ∈ V

in the standard (for V) basis {ψ1
1, . . . , ψ

m
1 }. The matrix B(s) can be computed using

the equality

B(s) = ĈB̂(s)Ĉt,

where Ĉ is the matrix obtained from C by removing the first row and

(B̂(s))ij = (a∇φs
j ,∇φs

i ), i, j = 1, . . . , k.

Since every matrix-vector multiplication with B−1

B−1 =


Ct 0

. . .

0 Ct

P



(B(1))−1 0

. . .

(B(m))−1

0 (B)−1


P t


C 0

. . .

0 C



requires a matrix-vector multiplication with all matrices (B(s))−1 we can precompute

and store them since they are of fixed small size. On the other hand B is an (m×m)

matrix and its inverse is not sparse. Therefore we can assemble and store the sparse

matrix B and then solve (e. g. using an iterative method) the equation By = x every

time we need to evaluate y = (B)−1x. To avoid this exact (or almost exact) solve we

can replace (B)−1 with a preconditioner B̂−1. Note that if B̂ is spectrally equivalent
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to B then the resulting B̃, defined by

B̃−1 =


Ct 0

. . .

0 Ct

P



(B(1))−1 0

. . .

(B(m))−1

0 B̂−1


P t


C 0

. . .

0 C

 ,

will be spectrally equivalent to B. To define a preconditioner B̂ one can use a multi-

grid algorithm based on the sequence of nested spaces (using the notation introduced

on page 39)

V1 ⊂ V2 ⊂ · · · ⊂ VJ = V

and the bilinear forms

〈〈ū, v̄〉〉k =
〈
κh−1

Ek
aEk

[[ū]], [[v̄]]
〉
Ek

i ∪Ek
D

, ∀ū, v̄ ∈ Vk.

Note that this method is almost the same as the multigrid Method II used for the

preconditioing of the SIPG method (see page 41). The only difference is that Method

II has one additional level MJ+1 = VJ = V . On all other levels the spaces are the

same and the bilinear forms coincide since 〈〈·, ·〉〉k is equal to the k-th level SIPG

bilinear form on the space Vk.

5.5. Numerical Experiments

In this section we present numerical experiments using the preconditioners described

in the previous section. The majority of the tests use quadratic finite elements since

this is the case for which we proved that the inf-sup condition (5.3) holds indepen-

dently of h and as a consequence B and B̃ are uniform preconditioners in this case. We

use W-cycle multigrid algorithm (as described above) with symmetric Gauss-Seidel
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smoothing to define the preconditioner B̂ used in the definition of B̃. We tested the

following combinations of iterative solvers and preconditioners:

• M1: apply the PCG method to the symmetrized system AtB−1Ax = AtB−1b

using B−1 as the preconditioner. This is a “two-level”-type method since we

need to solve a coarse problem to define the action of B−1.

• M2: apply the PCG method to the symmetrized system AtB̃−1Ax = AtB̃−1b

using B̃−1 as the preconditioner.

• M3: apply the GMRES method to the original system Ax = b using B̃−1 as the

preconditioner.

• M4: apply the GMRES(10) method (GMRES restarted every 10 iterations) to

the original system Ax = b using B̃−1 as the preconditioner.

The linear systems are solved with the same relative accuracy of 10−8, that is the

stopping criterion is (ei/e0) < 10−8 where e2i = rt
iMri for PCG and e2i = rt

iM
tMri

for GMRES where ri is the i-th residual and M is the preconditioner. We discretize

and solve the same Test Problems as in the previous chapters which are described on

page 32. As we did earlier, for each domain we generate a sequence of nested meshes

starting with a coarse (“Level 0”) tetrahedral mesh and then using k times uniform

refinement to obtain the “Level k” mesh.

In Table 5.2 we present the results for Test Problem 1 using quadratic elements.

For these tests the parameter κ in the definition of 〈〈·, ·〉〉 was chosen to be κ = 1.

Note that, in contrast to the SIPG method, the choice of κ affects the preconditioner

but not the matrix A. The first two rows in the table give the number of degrees of

freedom (dof) in the discretization space V and the piecewise constant space V . The

other rows give the number of iterations for the corresponding solution methods M1–
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Table 5.2. Preconditioners for the method of Baumann and Oden, Test Problem 1,

quadratic FE

Level 1 Level 2 Level 3 Level 4 Level 5

V dof 960 7,680 61,440 491,520 3,932,160

V dof 96 768 6,144 49,152 393,216

M1 22 46 53 53 52

M2 37 55 78 86 88

M3 54 79 88 87 85

M4 87 109 108 107 103

M4. From these results we see that in all cases the iteration counts remain bounded

with the refinement of the mesh. Comparing the results for M1 and M2 we see that

replacing the exact coarse solve in B (method M1) with the multigrid preconditioner

in B̃ (method M2) results in about 70% increase in the number of iterations in the

worst case. If we compare the results for M2 and M3 we see that they both converge

for about the same number of iterations. However, each iteration in the PCG method

(M2) requires two matrix-vector multiplications with B̃−1, one with A and one with

At, whereas the GMRES method (M3) requires just one action of B̃−1 and one of

A. On the other hand every iteration in the GMRES method requires an increasing

number of vector updates — every new iteration uses one additional vector update

compared to the previous iteration. One way of dealing with this problem is to restart

the GMRES method after a certain number of iterations. With this approach the

number of vector updates remains small but usually the convergence is slower. In our

tests using GMRES(10) (method M4) we see an increase in the number of iterations

of about 20–25% compared to the standard GMRES (method M3).
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Table 5.3. Preconditioners for the method of Baumann and Oden, Test Problem 2,

quadratic FE

Level 1 Level 2 Level 3 Level 4

V dof 3,360 26,880 215,040 1,720,320

V dof 336 2,688 21,504 172,032

M1, ε = 1 37 40 40 40

M1, ε = 0.1 56 69 70 70

M1, ε = 0.01 241 401 462 461

M2, ε = 1 40 56 65 66

M3, ε = 1 64 68 68 65

M4, ε = 1 76 77 78 76

In Table 5.3 we present the results for Test Problem 2 using quadratic elements.

Here, as in the previous Test Problem, we took κ = 1. The first two rows in the

table give the number of degrees of freedom (dof) for the spaces V and V . The rest

of the rows give the number of iterations for the indicated solution method and value

of the parameter ε. In all cases we observe that the iterations remain bounded as we

refine the mesh. However, decreasing the value of ε results in a substantial increase

in the number of iterations as seen from the results for method M1. Since we observe

this effect when using the preconditioner B, we can not expect better results for B̃

(methods M2–M4). This numerical results confirm, as indicated in Remark 9, that

the estimate of Lemma 7 depends on the jumps of the coefficient a across interior

faces (note that the other Lemmas 8 and 10 leading to the inf-sup condition and

boundedness estimates (5.13) are independent of such jumps). The rest of the results

in Table 5.3 are for the case ε = 1 and we observe a behavior very similar to Test

Problem 1 with slightly better convergence rates for all methods.
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Table 5.4. Preconditioners for the method of Baumann and Oden, varying κ, Test

Problem 1, quadratic FE

Level 1 Level 2 Level 3 Level 4 Level 5

M4, κ = 0.25 149 169 168 180 166

M4, κ = 0.5 108 129 127 130 124

M4, κ = 1 87 109 108 107 103

M4, κ = 2 73 103 103 103 102

M4, κ = 4 68 107 110 110 107

M4, κ = 8 87 144 128 137 131

With the next set of numerical experiments we test the effect of varying the

parameter κ. The results for Test Problem 1 using method M4 are presented in Table

5.4. For this case we see that the optimal choice is around κ = 2. Increasing or

decreasing the value of κ away from this optimal value results in an increase in the

number of iterations. The results show that the optimal value is fairly independent

of the refinement level. Therefore one can use coarse problems to determine a value

of κ close the optimal that can be used for the large problems.

In the final set of numerical experiments presented here we use linear finite ele-

ments to discretize Test Problem 1. All the meshes we used (levels 2–6) are checker-

board and since ΓD = ∂Ω the discrete linear systems are singular and the kernel of

the operators A and At consists of all checkerboard functions (see Lemma 12 and Re-

mark 10). With the right hand side of Test Problem 1 (f = 1) and the triangulations

we use we have that L(v) = 0, ∀v ∈ KerAt, i. e. the discrete linear equations are

compatible. We apply method M1 with the zero vector as initial approximation of

the solution. Even though the matrices of the linear systems are singular the PCG

method converges in all cases we tested. The number of iterations for various values
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Table 5.5. Preconditioners for the method of Baumann and Oden, Test Problem 1,

linear FE

Level 2 Level 3 Level 4 Level 5 Level 6

M1, κ = 0.025 52 79 83 79 74

M1, κ = 0.05 49 70 68 66 65

M1, κ = 0.1 48 63 63 64 58

M1, κ = 0.2 46 64 66 64 62

M1, κ = 0.4 44 72 77 74 69

M1, κ = 0.8 46 90 96 90 83

of κ are listed in Table 5.5. In all these tests the solution we obtain is orthogonal (as

a vector in Rn) to the vector representation of the checkerboard function. This means

that the solution is L2-orthogonal to the checkerboard functions since the tetrahedra

in each of our meshes have the same volume. Unfortunately, we do not have a rig-

orous explanation of this observation. Our theoretical results do not cover the case

of linear elements. However, the numerical results clearly show that the number of

iterations remains bounded as we refine the mesh. Also, we see that the optimal

value for κ is around 0.1 which is much smaller than the optimal value for method

M4 with quadratic elements (our previous test). Even though it is natural to expect

that replacing the preconditioner B in method M1 with B̃ (method M2) will still give

uniform (with respect to h) convergence, this is not confirmed by our tests. In fact,

when using method M2, we observe a substantial increase in the number of iterations

with the refinement of the mesh.
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CHAPTER VI

SUMMARY

We have developed and numerically tested a number of preconditioners for two dis-

continuous Galerkin (DG) methods for second order elliptic problems. The two DG

methods are the symmetric interior penalty (SIPG) method and the method of Bau-

mann and Oden.

In Chapter III we introduced two- and multilevel preconditioners for the SIPG

method based on two types of coarse spaces consisting of (1) continuous piecewise

polynomial or (2) piecewise constant functions. We proved that both two-level pre-

conditioners and the multilevel preconditioner based on continuous coarse spaces give

convergence rates independent of the mesh size. The presented numerical experi-

ments confirm these results. Even though we do not have theoretical results for the

multilevel preconditioner based on piecewise constant coarse spaces, in the numerical

experiments we observe uniform convergence for the W-cycle.

In Chapter IV we introduced an algebraic multigrid (AMG) preconditioner for

the SIPG method that uses coarsening based on element agglomeration. We also con-

sidered a version of the algorithm using a smoothed aggregation technique designed

to improve the convergence. A major advantage of these AMG methods over the

methods of Chapter III is the fact that they can be used on unstructured meshes. We

do not have theoretical analysis for the proposed AMG preconditioners, however the

numerical experiments we presented showed that they give uniform or almost uniform

convergence rates.

In Chapter V we presented an approach for constructing a preconditioner for

the method of Baumann and Oden. We proved that this preconditioner is spectrally

equivalent to an appropriate symmetrization of the discrete linear system when the
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finite elements used are quadratic or higher order. In the case of linear finite elements

we gave a characterization of the kernel of the discrete operator and presented nu-

merical experiments showing optimal convergence rates for the DG method in both

L2 and H1 norms. The numerical results presented in the end of the chapter con-

firmed the theoretical result that the proposed preconditioner gives convergence rates

independent of the element size when used in a PCG iteration applied to the sym-

metrized discrete linear system. In addition, we observed similar behavior when the

preconditioner was used in a GMRES or restarted GMRES iteration applied to the

original linear system.
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