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ABSTRACT

Joint Optimization of Location and Inventory Decisions

for Improving Supply Chain Cost Performance. (December 2007)

Burcu Barış Keskin, B.S., Boǧaziçi University, İstanbul, Turkey;

M.S., Boǧaziçi University, İstanbul, Turkey

Co–Chairs of Advisory Committee: Dr. Halit Üster
Dr. Sıla Çetinkaya

This dissertation is focused on investigating the integration of inventory and facility

location decisions in different supply chain settings. Facility location and inventory

decisions are interdependent due to the economies of scale that are inherent in trans-

portation and replenishment costs. The facility location decisions have an impact

on the transportation and replenishment costs which, in turn, affect the optimal in-

ventory policy. On the other hand, the inventory policy dictates the frequency of

shipments to replenish inventory which, in turn, affects the number of deliveries, and,

hence, the transportation costs, between the facilities. Therefore, our main research

objectives are to:

• compare the optimal facility location, determined by minimizing total trans-

portation costs, to the one determined by the models that also consider the

timing and quantity of inventory replenishments and corresponding costs,

• investigate the effect of facility location decisions on optimal inventory decisions,

and

• measure the impact of integrated decision-making on overall supply chain cost
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performance.

Placing a special emphasis on the explicit modeling of transportation costs, we

develop several novel models in mixed integer linear and nonlinear optimization pro-

gramming. Based on how the underlying facility location problem is modeled, these

models fall into two main groups: 1) continuous facility location problems, and 2)

discrete facility location problems. For the stylistic models, the focus is on the de-

velopment of analytical solutions. For the more general models, the focus is on the

development of efficient algorithms. Our results demonstrate

• the impact of explicit transportation costs on integrated decisions,

• the impact of different transportation cost functions on integrated decisions in

the context of continuous facility location problems of interest,

• the value of integrated decision-making in different supply chain settings, and

• the performance of solution methods that jointly optimize facility location and

inventory decisions.
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CHAPTER I

INTRODUCTION

Interest in supply chain management (SCM) has grown in both industry and academia

over the past two decades. The main factors that have contributed to this trend are

i) an aspiration for cost reduction, ii) the rise of the systems concept, and iii) the

impact of the core-competency strategy.

Aspiration for Cost Reduction Since the 1980s, several important SCM initia-

tives, such as just-in-time manufacturing, lean production, and total quality

management, have improved production processes and reduced the associated

production costs. However, the constantly increasing level of competition among

companies has created an extensive need for improvements in logistics in terms

of cost reductions and/or service level increases. To further reduce costs, com-

panies have begun to investigate supply chain initiatives focusing on inbound

and outbound logistics.

In 2004, logistics costs were equivalent to approximately 8.6% of the U.S. gross

domestic product (GDP), which corresponds to $1,015 billion. This is an in-

crease from $528 billion in 1984 (Wilson, 2005) and a jump of $71 billion from

2003 (an increase of 7.5%). The largest part of the increase can be attributed

to rising transportation costs (particularly in the trucking industry), which rep-

resents over 50% of the total cost of logistics. In Table 1, we present the rise

in total logistics cost and its components (inventory, transportation, and ad-

ministrative costs) in relation to GDP (Wilson, 2005). This trend of increasing

total logistics planning costs, including transportation, inventory holding, and

This dissertation follows the style and format of Operations Research.
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administrative costs, has triggered more industry interest in supply chain prac-

tices due to the potential of substantial savings that can be achieved through

better planning and management of complex logistics systems.

The Rise of the Systems Concept in SCM Since the industrial revolution, achiev-

ing best practice has focused managerial attention on functional specialization.

The prevailing belief was that better performance of a specific function led to

greater efficiency of the overall process. Over the past few decades, it has become

increasingly apparent that functions, although individually performed best in

their class, do not necessarily combine or aggregate to achieve the lowest total

cost or most effective processes. Hence, many companies have started breaking

traditional organizational barriers to cooperation and coordination among dif-

ferent functional departments. However, it has been challenging for companies

to redirect their traditional emphasis on functionality in an effort to focus on

process improvement.

This challenge can be overcome by adopting a systems concept, which is an

analytical framework that seeks total integration of the components essential

to achieving the stated objectives. The goal of the systems analysis method-

ology is to create a whole or integrated effort, which is greater than the sum

of the individual parts or components. Such integration creates a synergistic

interrelationship between components in pursuit of higher overall achievement.

The components of a logistical system are typically called functions. The logis-

tical functions are order processing, transportation and distribution, inventory

control, warehousing, material handling, and packaging. The systems analysis

perspective in logistics transforms traditional supply chain arrangements from

loosely linked groups of independent businesses that buy and sell inventory to
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TABLE 1. The Cost of the U.S. Business Logistics System in Relation to the Gross

Domestic Product (GDP)

Year GDP Inventory Transportation Administrative Total Cost

$ Tr. Costs Costs Costs Cost % of GDP

1984 3.93 240 268 20 528 13.4%

1985 4.22 227 274 20 521 12.3%

1986 4.46 217 281 20 518 11.6%

1987 4.74 225 294 21 540 11.4%

1988 5.10 251 313 23 587 11.5%

1989 5.48 282 329 24 635 11.6%

1990 5.80 283 351 25 659 11.4%

1991 6.00 256 355 24 635 10.6%

1992 6.34 237 375 24 636 10.0%

1993 6.66 239 396 25 660 9.9%

1994 7.07 265 420 27 712 10.1%

1995 7.40 302 441 30 773 10.4%

1996 7.82 303 467 31 801 10.2%

1997 8.30 314 503 33 850 10.2%

1998 8.75 321 529 34 884 10.1%

1999 9.27 333 554 35 922 9.9%

2000 9.82 374 594 38 1006 10.2%

2001 10.13 320 609 37 966 9.5%

2002 10.49 301 582 35 918 8.8%

2003 11.00 301 607 36 944 8.6%

2004 11.74 332 644 39 1015 8.6%
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each other into a managerially coordinated initiative to emphasize market im-

pact, overall efficiency, continuous improvement, and overall competitiveness.

Hence, in recent years, the objective of SCM has shifted to increase the ef-

ficiency and effectiveness across the entire supply chain network by taking a

systems approach (Simchi-Levi et al., 2007). However, there is still a widely

recognized lack of tools for achieving the systems approach in logistics.

The Impact of Core-Competency Strategy Prahalad and Hamel (1990) argue

that a number of companies have achieved significantly better results than

their competitors by focusing on only a few competencies, or so-called core-

competencies, and by outsourcing other non-core activities to companies that

have a core competence in those activities. This strategy has gained a lot of

attention from large, highly vertically-integrated companies, such as Philips

Electronics, Unilever, Procter & Gamble, General Motors, etc. and has been

adopted at a fast pace (de Kok and Graves, 2003). In the early nineties, a num-

ber of companies recognized SCM as one of their core competencies. This led to

the creation of Vendor Managed Inventory (VMI) concepts. On the other hand,

outsourcing of the physical distribution and its increased impact on customer

service have stimulated the emergence of third party logistics (3PL) service

providers. Furthermore, deregulation of the transportation industry has led to

the development of a variety of transportation modes and reduced transporta-

tion costs, helping to improve the performance of VMI and 3PL applications

(Muriel and Simchi-Levi, 2003).

In light of all these trends, both the theory and practice of SCM concentrate

heavily on three important logistical components- facility location, inventory, and

transportation decisions (Ballou, 1998). Focusing on these components, we integrate
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the supply chain to achieve a better overall cost performance and take advantage of

new supply chain initiatives such as VMI and 3PL.

Traditionally, facility location, inventory, and transportation decisions are treated

separately or pairwise. For instance, given inventory decisions, the traditional facility

location problem focuses on the trade-off between transportation and fixed facility

costs (Daskin, 1995). On the other hand, inventory policy decisions are optimized

to balance the trade-off between inventory holding and fixed replenishment costs, as-

suming that the underlying supply chain network structure and the transportation

costs in the system are known. In general, these replenishment costs represent the

ordering costs as well as the transportation costs inherent in the system.

In the last decade, the integration of inventory and transportation decisions has

received increasing attention. Several researchers including Federgruen and Zipkin

(1984); Yano and Gerschak (1989); Gallego and Simchi-Levi (1990); Anily and Feder-

gruen (1993); Federgruen and Simchi-Levi (1995); Viswanathan and Mathur (1997);

Chan et al. (2002); Çetinkaya and Lee (2002); Toptal et al. (2003); Çetinkaya et al.

(2006) analyze integrated inventory and transportation models and provide manage-

rial insights. Bertazzi and Speranza (2000) and Çetinkaya (2004) provide detailed

reviews on integrated inventory and transportation models.

The interaction between facility location and inventory decisions dates back to

the 1960s (Baumol and Wolfe, 1958; Heskett, 1966). However, until recently, ex-

isting logistics models ignored this interaction. One stream of research addresses

this interaction by placing a particular emphasis on the inclusion of inventory costs,

without explicitly optimizing and coordinating inventory decisions, in network de-

sign problems (Croxton and Zinn, 2005; Daskin et al., 2002; Erlebacher and Meller,

2000; Jayaraman, 1998; Nozick and Turnquist, 1998, 2001; Shen et al., 2003; Shen

and Daskin, 2005; Shu et al., 2005). Another stream of research proposes integration,
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i.e., simultaneous optimization, of location and inventory decisions (Drezner et al.,

2003; McCann, 1993; Romeijn et al., 2007; Teo and Shu, 2004). However, research in

integrated location-inventory models is still new, and the existing literature does not

explicitly consider the impact of realistic transportation costs in multi-stage distribu-

tion systems.

Facility location and inventory decisions are connected through the transporta-

tion costs in the system. Facility location decisions have an impact on transportation,

and, hence, on replenishment costs which, in turn, affect the optimal inventory pol-

icy. On the other hand, the inventory policy dictates the frequency of shipments to

replenish inventory, which, in turn, affects the number of deliveries, and, hence, the

transportation costs, between facilities. As a result, facility location and inventory

decisions are interdependent due to the economies of scale inherent in transportation

and replenishment costs. Therefore, for improved supply chain cost performance,

we need to optimize these problems simultaneously in an integrated manner. The

absence of optimization models that can do so motivated this dissertation research.

In response to the lack of integrated facility location and inventory models in the

current literature, in this dissertation, we investigate the following research questions:

• How does an optimal facility location that is determined by minimizing total

transportation and fixed facility costs differ from one that is determined by

models that also take into account the timing and quantity of inventory replen-

ishments and the corresponding costs?

• How do facility location decisions affect the optimal inventory policy parame-

ters?

• What is the benefit of integrating location and inventory decisions in terms of

overall supply chain cost performance?
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Facility location decisions are strategic level decisions, whereas inventory decisions are

tactical level decisions. Therefore, addressing these research questions contributes to

the literature by investigating opportunities for the coordination of strategic and

tactical decisions.

I.1. Scope of the Dissertation

In order to address these research questions, in this dissertation, we analyze the

integration of facility location and inventory in both continuous and discrete location

models with the following primary objectives:

• Analyze the interaction between facility location and inventory policy decisions

under explicit transportation costs in different supply chain settings,

• Develop novel models and solution methods that rely on mixed integer pro-

gramming, nonlinear optimization, heuristics, and meta-heuristics for the joint

optimization of location and inventory decisions while placing an emphasis on

the explicit consideration of realistic transportation cost functions in different

supply chain settings,

• Evaluate the impact of joint optimization on the supply chain cost performance

in different supply chain settings, and

• Provide managerial insights to improve system-wide efficiency.

More specifically, the models proposed fall into two main groups based on the

underlying facility location problem modeled, that is i) continuous facility location

problems with inventory considerations and ii)discrete facility location problems with

inventory considerations.
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Continuous Facility Location Problems with Inventory Considerations In con-

tinuous facility location problems, the objective is to find the coordinates of the

new facility while minimizing the weighted distances between the new facil-

ity and the existing facility locations. In a typical continuous facility location

problem, the weight of an existing location is a coefficient that converts the dis-

tance (between that facility and the new facility) into cost by considering the

annual demand of that facility. In this research, however, we utilize inventory-

policy-parameter-dependent weights by incorporating inventory decisions into

the continuous facility location problem.

We consider two-stage and three-stage continuous location problems with in-

ventory considerations. In the former, the distribution network consists of an

uncapacitated central DC (the location of which is to be determined) and a set

of geographically dispersed retailers whose locations are known. Each retailer

faces a constant (i.e., deterministic and stationary) retailer-specific demand for

a single product that must be met without shortage or backlogging. To satisfy

the demand in a timely manner, the retailers hold inventory, and hence, incur

inventory holding costs. Furthermore, retailers incur fixed replenishment costs

as well as transportation costs each time they replenish their stock from the

central DC whose location is to be determined. The central DC does not hold

inventory and satisfies the retailers’ order quantity via direct shipments at every

replenishment instant. The problem is to determine the inventory policy pa-

rameters of the retailers and the location of the central DC simultaneously while

minimizing transportation, inventory holding, and fixed replenishment costs.

The three-stage distribution system of interest is a generalization of the two-

stage distribution system. The three-stage distribution system consists of a
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supplier, a central DC to be located, and a set of retailers that face deterministic

and stationary demand. In this system, the central DC is now also an inventory

holding location that incurs fixed replenishment and inventory holding costs.

Hence, we explicitly model the outside supplier to account for the transportation

costs between the supplier and the central DC. The problem is to determine the

optimum location of the central DC, as well as the coordinated parameters of the

inventory policies of the retailers and the central DC simultaneously, so that the

system-wide transportation, holding, and replenishment costs are minimized.

Discrete Facility Location Problems with Inventory Considerations In dis-

crete facility location models, instead of calculating the coordinates of the new

facility location, we evaluate a list of candidate facilities to determine which,

and how many, facilities to select. In the discrete facility location setting, we

consider two-stage and three-stage distribution systems with inventory consid-

erations.

In a two-stage distribution system, at the first stage, we consider a set of ge-

ographically dispersed and established retailers with deterministic stationary

demand. They incur inventory holding and inventory replenishment costs and

replenish their inventory from a specific DC periodically. At the second stage,

we have a set of candidate facilities for central DCs. Each DC serves a pool

of retailers; however, the number and the locations of the DCs are not given a

priori.

The three-stage distribution system generalizes the two-stage distribution sys-

tem. In this system, similarly as in the continuous setting, we take inventory

considerations at the DCs into account. Hence, we explicitly model the sup-

pliers at the third stage, and we explicitly consider the assignment decisions
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among the suppliers and the DCs as well as the transportation costs among

these facilities.

The models in the discrete facility location setting are generalizations of the

models considered in the continuous facility location setting for two reasons.

First, we consider selecting multiple DCs from a list of candidate facilities.

Second, along with specifying the number of DCs and their locations, we make

DC-retailer assignment decisions, i.e., which retailers are served by which DC,

in both two-stage and three-stage models and supplier-DC assignment decisions,

i.e., which DCs are served by which supplier, in three-stage models. These two

generalizations bring additional combinatorial complexity into the models.

Next, we present some brief information about the specific problems we investi-

gate under these two general headings.

I.1.1. Continuous Facility Location Problems with Inventory Considera-

tions in Two-Stage Supply Chains

We consider a two-stage distribution system consisting of a central DC, the loca-

tion of which is to be determined, and a set of geographically dispersed retailers as

shown in Figure 1. Each retailer faces a constant (i.e., deterministic and stationary)

retailer-specific demand for a single product that must be met without shortages or

backlogging. To satisfy the demand in a timely manner, the retailers hold inventory,

and hence, incur inventory holding costs. Furthermore, the retailers incur fixed re-

plenishment costs as well as transportation costs each time they replenish their stock

from the central DC whose location is to be determined.

In this problem, the central DC does not carry inventory. This situation com-

monly occurs when the central DC does not incur any fixed or transportation costs
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FIGURE 1. Two-Stage Continuous Facility Location Problems with Inventory Con-

siderations

when receiving replenishments from an outside supplier but rather incurs a per unit

cost for each item purchased. For this system, we do not need to explicitly model

the link between the outside supplier and the DC since the costs associated with

the inclusion of this link are sunk costs. This problem setting is clearly applicable

when the “DC” is a manufacturer that performs production on a lot-for-lot basis,

and, hence, does not carry any finished goods inventory. Consequently, the distri-

bution system associated with this case is a two-stage distribution system where the

main concern is to minimize the inventory replenishment and holding costs at the

retailers and the transportation costs from the central DC to the retailers. In order

to balance the trade-off between transportation costs and inventory replenishment

and holding costs, we determine the central DC location and the retailers’ inventory

policy parameters simultaneously.

An important novelty of problems in the continuous facility location setting is

the explicit consideration of realistic transportation costs. In this problem, we con-

sider quantity-based, distance-based, and quantity-and-distance-based transportation
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costs. Depending on how the transportation costs are modeled, the integrated facil-

ity location-inventory problem in two-stage distribution systems leads to different

solutions as we discuss in Chapter III.

We also investigate the impact of integrated decision-making by comparing the

cost of joint optimization with the cost of a benchmark solution, which is called the

sequential solution, where the central DC location and inventory decisions are speci-

fied in a sequential order. That is, we first determine the location of the central DC

by considering the annual demands of the retailers as the weights in the location prob-

lem. Next, we calculate the value of the inventory policy parameters by minimizing

the inventory replenishment and holding costs and the transportation costs between

the retailers and the central DC. Note that the sequential solution approach does

not consider the impact of inventory policy decisions on the location of the central

DC. This is the main distinction between the joint optimization and the sequential

solution approaches. We report the results based on this comparison in Chapter III.

I.1.2. Continuous Facility Location Problems with Inventory Considera-

tions in Three-Stage Supply Chains

The three-stage distribution system of interest, given in Figure 2, is a generalization

of the two-stage distribution system discussed in Section I.1.1 since the central DC,

whose location is to be determined, is now an inventory keeping location and incurs

fixed replenishment and inventory holding costs. Hence, the inventory policy of the

central DC must be coordinated with the inventory policies of the retailers. This

characteristic brings additional complexity into the models and solution techniques.

Under this setting, our goal is to find the optimum location of the central DC as

well as the parameters of the inventory policies of the retailers and the central DC

simultaneously so that the system-wide transportation, holding, and replenishment
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costs are minimized.

FIGURE 2. Three-Stage Continuous Facility Location Problems with Inventory Con-

siderations

In Chapter IV, considering quantity-based, distance-based, and quantity-and-

distance-based transportation cost functions, we analyze the properties of the inte-

grated facility location-inventory problem in three-stage systems and develop efficient

solution procedures. It is important to note that, given the central DC location, the

proposed problem reduces to the single warehouse multi-retailer (SWMR) lot-sizing

problem with deterministic stationary demand. As we will discuss in Chapter II,

Roundy (1985) shows that the power-of two policies are 94% and 98% effective in

solving the single warehouse multi-retailer (SWMR) lot-sizing problem with deter-

ministic and stationary demand when the base period is fixed and variable, respec-

tively. Hence, while studying the integrated facility location and inventory problem in

the three-stage distribution system, we restrict ourselves to the power-of-two policies

for coordinating the inventory decisions of the central DC and the retailers.

As a special case, we also consider a distribution system with a single supplier, a
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central DC, and a single retailer. For this case, given the central DC location, we have

the single warehouse single retailer (SWSR) lot-sizing problem with deterministic

stationary demand as a subproblem. Integer ratio policies are effective in solving

the SWSR lot-sizing problem with deterministic stationary demand (Goyal, 1976;

Roundy, 1984). Hence, for problems with a single supplier, a central DC, and a

single retailer, we consider only integer-ratio policies. We also discuss the solution of

this special case in Chapter IV.

In order to quantify the value of integrated decision-making, we develop several

benchmark models that reflect certain real-life practices, including VMI applications.

We compare each benchmark model with the integrated facility location-inventory

model and report the results, i.e. savings or losses, of this comparative analysis in

Chapter IV.

I.1.3. Fixed Charge Facility Location Problems with Inventory Consid-

erations

We consider fixed charge facility location problems (FCFLP) with inventory decisions

as given in Figure 3. From a candidate set, we consider establishing a number of DCs

to serve geographically dispersed retailers with deterministic stationary demand. In

this setting, retailers hold inventory, but DCs do not. Hence, we explicitly account

for the inventory holding and replenishment costs at the retailers and the transporta-

tion costs between the retailers and their respective DCs. For transportation costs,

we focus on distance-based transportation costs. This type of transportation cost

function is a generalization of a per mile per unit transportation cost and represents

the interaction between the facility location and the inventory problems clearly.

Furthermore, each DC has a facility-specific fixed operational cost. Due to the

existence of this fixed cost, there is a trade-off between the tactical and strategic costs.



15

FIGURE 3. The Problem Setting for Fixed Charge Facility Location Problems with

Inventory Considerations

Under this setting, the goal is to minimize the total costs in the system, including

the total inventory replenishment and holding costs, the total transportation costs

between the DCs and the retailers, and the fixed operational costs of the selected

DCs by determining

• the number and locations of DCs,

• the assignment of each selected DC to a retailer, and

• the inventory decisions of each retailer.

With this objective in mind, in Chapter V, we model the FCFLP problem with

inventory considerations. We first consider the case where the DCs do not have any

capacity restrictions. For this problem, we develop a Lagrangian-relaxation based

heuristic. We provide computational results that depict the performance of these

algorithms as well as the value of integrated decision-making in the discrete setting.

Next, we consider generalizations of the problem for different real-life capacity restric-

tions. We then examine the influence of each capacity restriction on the structural

properties of the problem formulation and its solution approaches. Finally, via com-

putational tests, we measure the value of integrated decision-making under capacity
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restrictions.

I.1.4. Production Distribution System Design Problems with Inventory

Considerations

Production-distribution networks provide an effective tool to model the manufactur-

ing and logistics activities of a firm. In general, a production distribution system

design (PDSD) involves the determination of the best configuration relating to the

locations and sizes of the suppliers (plants) and DCs (warehouses), their technology

content, their product offerings, and the transportation decisions required to achieve

a firm’s long term goals. Generalizing the problem settings in the continuous fa-

cility location problem and FCFLP, we consider a three-stage PDSD problem with

inventory considerations as given in Figure 4. In the first stage, there are retailers

FIGURE 4. The Problem Setting for Production Distribution System Design Prob-

lems with Inventory Considerations

(customers) with stationary and deterministic demand at established locations. The

second stage consists of candidate locations for the DCs. Each retailer replenishes its

inventory from a particular established DC at the second stage via direct shipments.
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DCs are also inventory holding points, and they replenish their inventory from the

capacitated suppliers located at the third stage via direct shipments. Hence, the co-

ordination of inventory issues raised in the three-stage continuous facility location

problem are also relevant for this problem setting. At the third stage, there are a set

of potential capacitated suppliers. We assume that capacities at the supplier locations

are known. Under this setting, the goal is to minimize the total costs in the system,

including the total inventory replenishment and holding costs of the retailers and the

DCs, the total transportation costs between the DCs and the retailers and between

the suppliers and DCs, and the fixed operational costs of selected DCs and suppliers

by determining

• the number and locations of DCs,

• the number and locations of suppliers,

• the assignment of each selected DC to a retailer,

• the assignment of each selected supplier to each selected DC, and

• the inventory decisions of each retailer and each selected DC.

While it is a general design concern, a PDSD problem with the above described

characteristics is also related to the redesign of the existing system of a firm where

suppliers with certain capacity limitations are mainly set-up with their corresponding

technologies; however, the outbound supply chain needs to be evaluated for increased

service efficiency and cost effectiveness.

In Chapter VI, we explicitly model the problem formulation and develop efficient

solution procedures to

• evaluate the impact of inventory decisions on the number and selection of the
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potential DCs as well as the retailer-to-DC and DC-to-supplier assignment de-

cisions,

• analyze the impact of DC locations on inventory decisions, and

• quantify the benefits of joint optimization.

I.2. Organization of the Dissertation

The dissertation is organized as follows. In Chapter II, we present a brief overview of

the literature in location and inventory theory in relation to the models discussed in

this dissertation. In this chapter, we also review the existing work on joint location-

inventory models. Chapters III and IV concentrate on continuous location models

in two- and three-stage distribution systems. In Chapter III, we consider a general-

ized Weber problem with inventory considerations. On the other hand, in Chapter

IV, we address the issues regarding inventory policy coordination as well as facility

location. In Chapters V and VI, we focus on discrete facility location problems in

two- and three-stage distribution systems, respectively. In Chapter V, we discuss

FCFLP problems with inventory considerations. This is followed by a discussion of

production distribution system design problems with inventory considerations in VI.

Finally, in Chapter VII, we conclude with a brief summary of the research results

and a discussion of the potential impact of this dissertation on future research and

practice.



19

CHAPTER II

LITERATURE REVIEW

Most logistics research has treated location theory and inventory theory separately.

The traditional literature in location theory focuses on modeling the trade-off be-

tween an annual fixed facility location and transportation costs, and location models

typically do not include inventory related costs and/or decisions. For a summary of

location models, the reader is referred to texts by Daskin (1995); Drezner (1995);

Drezner and Hamacher (2004); Hurter and Martinich (1989); and Love et al. (1988).

On the other hand, the existing literature in inventory theory, which assumes that

strategic location decisions are made and the corresponding supply chain network

structure is given, offers a variety of models for computing the optimal inventory pol-

icy parameters based on the trade-off between inventory replenishment and holding

costs. For a detailed review of inventory models, the reader is referred to the texts

by Axsäter (2006); Graves and Kan (1993); Nahmias (2004); and Zipkin (2000).

After the advent of the systems concept, increased attention has been paid to op-

timizing the supply chain as a whole. The systems concept is an analytical framework

that seeks the total integration of those supply chain components essential for achiev-

ing stated, but often conflicting, objectives. Texts by Chopra and Meindl (2003);

Shapiro (2006); and Simchi-Levi et al. (2007) provide reviews of the systems concept

and its uses in supply chain management.

In this chapter, we review the logistics literature relevant to the models intro-

duced in this dissertation. In Sections II.1 and II.2, we present overviews of location

and inventory theory, respectively. In Section II.3, we provide a critical review of

integrated location-inventory models.
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II.1. Overview of Location Theory

Location theory, as applied to SCM, focuses on mathematical models for determining

the number of facilities (e.g., DCs) and their locations as well as the facility (e.g.,

DC-retailer) assignments. There are four components that characterize location prob-

lems (ReVelle and Eiselt, 2005): (1) the customers (e.g., retailers) who are already

presumed to be located at certain points, (2) the facilities that will be located, (3)

a space in which customers and facilities are/will be located, and (4) a metric that

indicates the distances between the facilities and the customers. Location problems

are also classified as continuous and discrete facility location problems. In this sec-

tion, we provide a brief background of the models in continuous and discrete location

theory that will be introduced in later chapters.

In continuous location problems, the facilities can generally be located anywhere

on the plane. The single facility continuous location problem was first introduced by

Fermat in the 17th century, and it arises frequently in many real-life situations where

a central facility is to be located so as to minimize the travel time or costs of serving

a geographically dispersed set of existing locations. The work by Weber (1929) is the

first known research in this category and is considered the formal origin of location

theory. The single facility continuous location problem appears in the literature under

different names including the Weber problem, the general Fermat’s problem (Kuhn,

1973), the generalized Weber problem (Morris, 1981), the Fermat-Weber Problem

(Brimberg and Love, 1993), and the single facility location problem (Rosen and Xue,

1991). In the remainder of the dissertation, we refer to this problem as the Weber

problem.
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II.1.1. The Weber Problem

The objective of the Weber problem is to determine the coordinates of a single facility

on a plane such that the weighted sum of the distances to given demand points on the

plane are minimized. Finding the optimal location of this new facility is equivalent

to solving the following optimization problem (Love et al., 1988):

min
X

W (X) =
n∑

j=1

wjd(X,Aj),

where

n is the number of existing facilities (or, “demand points”),

wj converts the distance between the new facility and existing

facility j into cost, and wj > 0,

X = (x1, x2) is the location of the new facility,

Aj = (aj1, aj2) is the location of the existing facility,

d(X,Aj) is the distance between the new facility and existing facility j.

The solution of the continuous location problem depends on the distance norm

utilized in the model. In this dissertation, we consider two commonly employed norms

in continuous facility location studies: namely, the squared Euclidean distance norm

given by

d(X,Aj) = (x1 − aj1)
2 + (x2 − aj2)

2, ∀ j = 1, . . . , n,

and the more general ℓp distance norm given by

d(X,Aj) = (|x1 − aj1|p + |x2 − aj2|p)1/p, ∀ j = 1, . . . , n, p ≥ 1,

where p = 1 and p = 2 represent the well-known rectangular and Euclidean distances,

respectively. The single facility continuous location problem with Squared Euclidean
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and Euclidean distance appear as subproblems in our joint optimization models.

The solution of the Weber problem with the squared Euclidean distance leads

to a simple, closed-form solution known as the center-of-gravity formula (Love et al.,

1988):

x1 =

∑n
j=1 wjaj1∑n

j=1 wj
and x2 =

∑n
j=1 wjaj2∑n

j=1 wj
. (2.1)

The Euclidean distance, ℓ2, refers to the straight line distance and is commonly

used in continuous facility location problems. The single facility location problem with

Euclidean distance is solved by a steepest-descent algorithm known as the Weiszfeld

Algorithm (Weiszfeld, 1937). Many researchers have investigated the convergence

properties of the Weiszfeld Algorithm including Brimberg and Love (1993); Kuhn

(1973); Morris (1981); Ostresh (1978); Üster and Love (2000).

On the other hand, if more general ℓp distances are employed, X = (x1, x2) is

computed using the well-known generalization of the iterative Weiszfeld procedure

developed by Morris and Verdini (1979). That is, due to discontinuities in the deriva-

tives at the existing demand locations under ℓp distances, the following hyperbolic

approximation, denoted by ℓ̃p(u,v), is utilized to approximate the ℓp distance between

two locations X = (x1, x2) and Aj = (aj1, aj2), j = 1, . . . , n:

ℓ̃p(X,Aj) =
[
((x1 − aj1)

2 + ǫ)p/2 + ((x2 − aj2)
2 + ǫ)p/2

]1/p
, p ≥ 1, ǫ > 0. (2.2)

Although this approximation is not a norm, since it lacks the stationarity property,

i.e., ℓ̃p(0) 6= 0, it is still a convex function of X as shown by Morris and Verdini

(1979). Hence, the iterative procedure for computing X is derived using the first
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order conditions which lead to

xk+1
1 =

∑n
j=1 wj

(
(xk

1 − aj1)
2 + ǫ

) p
2
−1
(
ℓ̃p(X

k,Aj)
)1−p

aj1

∑n
j=1 wj

(
(xk

1 − aj1)2 + ǫ
) p

2
−1
(
ℓ̃p(Xk,Aj)

)1−p and (2.3)

xk+1
2 =

∑
I∪{0} wj

(
(xk

2 − aj2)
2 + ǫ

) p
2
−1
(
ℓ̃p(X

k,Aj)
)1−p

aj2

∑
I∪{0} wj

(
(xk

2 − aj2)2 + ǫ
) p

2
−1
(
ℓ̃p(Xk,Aj)

)1−p . (2.4)

Here, Xk = (xk
1, x

k
2) denotes the location at iteration k = 1, 2, . . . . Note that this

procedure is convergent for p ≥ 1, (Üster and Love, 2000), and there exists another

very efficient algorithm for the case of rectangular distances, i.e., if p = 1, (Love et al.,

1988).

In discrete facility location problems, there are a set of demand points (retailers)

and a set of potential (candidate) facility sites whose locations are known. Typically,

the objective is to select a number of facilities from the candidate set so that the sum

of fixed facility costs and transportation costs are minimized. These problems are

generally represented with mixed integer programming formulations. Considerable

attention has been devoted to discrete models for the location of plants and ware-

houses in different supply chain settings. In this review, we pay particular attention

to the FCFLP problem with, and without, capacities and the production distribution

system design problem.

II.1.2. The Fixed Charge Facility Location Problem

The FCFLP problem determines the number and location of facilities, to be located

among a set of potential facility sites, to serve a set of known demand locations

so that the total cost, including the fixed charge of locating the facilities and the

transportation costs is minimized. The mathematical models for these problems

involve two sets of decision variables. The first set includes the location variables that
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determine whether a facility should be located at a candidate facility site. The second

set contains the assignment (allocation) variables that determine the assignment or

allocation of customers to the open facilities.

The FCFLP problem is classified as the uncapacitated facility location problem

or the capacitated facility location problem based on the capacity restrictions of the

potential facility sites. The classical uncapacitated FCFLP represents the founda-

tion on which all other facility location problems are based. It was first formulated

by Balinski (1964). Since then, a great deal of research has been carried out to de-

velop models and algorithms in the area of facility location including the works by

Aikens (1985); Brimberg and Love (1994); Davis and Ray (1969); Efroymson and Ray

(1966); Ellwein (1970); Ghosh (2003); Hajiaghayi et al. (2003); Harkness and ReVelle

(2003); Hoefer (2003); Jaramillo et al. (2002); Jones et al. (1994); Krarup and Pruzan

(1983); Kuehn and Hamburger (1963); Manne (1964); McGinnis and White (1983);

and Soland (1974).

Before providing the classical formulation of the FCFLP, we introduce the fol-

lowing notation for the problem parameters:

I set of demand points (retailers), indexed by i.

J set of potential facility locations, indexed by j.

fj fixed cost of locating a facility at site j ∈ J .

Di annual demand at demand point i ∈ I.

cij cost per unit to ship from facility site j ∈ J to demand point i ∈ I.

We introduce the following decision variables:

xj =





1, if we locate a facility at site j ∈ J ,

0, otherwise.
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yij =






1, if demand point i ∈ I is assigned to a facility at candidate site j ∈ J ,

0, otherwise.

We now formulate the FCFLP as follows:

Minimize
∑

j∈J

fjxj +
∑

i∈I

∑

j∈J

Dicijyij (FCFLP)

subject to

∑

j∈J

yij = 1, ∀i ∈ I. (2.5)

yij ≤ xj , ∀i ∈ I and ∀j ∈ J . (2.6)

xj ∈ {0, 1}, ∀j ∈ J . (2.7)

yij ∈ {0, 1}, ∀i ∈ I and ∀j ∈ J . (2.8)

The objective function minimizes the sum of the fixed cost of locating facilities

and the total transportation cost from the facilities to demand points. Constraints

(2.5) ensure that each demand point is assigned to exactly one facility. Constraints

(2.6) state that demand points can only be assigned to the facilities that are located

or opened. Constraints (2.7) and (2.8) are the integrality constraints. Constraints

(2.8) are referred to as single-sourcing constraints since they assure that each demand

point is served by only one facility. Note that, even if the assignment variables were

defined as continuous, due to the structure of the FCFLP model, these variables would

be binary. Another important property of the FCFLP is that since the facilities are

uncapacitated, each demand point will be assigned to the nearest open facility.

It should be noted that the FCFLP is NP-hard (Krarup and Pruzan, 1983).

To solve the FCFLP problem efficiently, different solution methods, both exact and
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heuristic, have been suggested since the 1960s. Kuehn and Hamburger (1963), in their

heuristic, use only an add routine. However, Feldman et al. (1966) use both add and

drop routines to improve the computation time. The first algorithm to guarantee an

optimal solution for the uncapacitated case is presented by Efroymson and Ray (1966).

Later, a branch and bound algorithm is provided by Soland (1974) for identifying an

optimal solution . Erlenkotter (1978) develops a dual-based algorithm for the FCFLP

that is very effective. Some approximation algorithms also exist for the FCFLP (see

Youssef and Mahmoud (1994), Shmoys et al. (1997)).

The capacitated facility location problem is one of the main extensions of the

classical FCFLP. We define the following parameters in addition to the ones defined

for the FCFLP:

Wj maximum annual capacity of a candidate facility j, ∀j ∈ J .

Then, the formulation of the capacitated FCFLP differs from the uncapacitated

FCFLP by the addition of the following constraint:

∑

j∈J

Diyij ≤Wjxj , ∀j ∈ J . (2.9)

Note that with the inclusion of the capacity constraints (2.9), the constraints

(2.6) become logically redundant. However, keeping these constraints strengthens

the linear relaxation of the problem. The Lagrangian relaxation method has been

applied to solve the capacitated FCFLP by relaxing the assignment constraints or

the capacity constraints (Daskin (1995)). Van-Roy (1986) proposes a Cross Decom-

position algorithm that combines the dual-based method of Erlenkotter (1978) and

the Lagrangian relaxation methods.

For extended reviews on the FCFLP problem, one can refer to papers by Bran-

deau and Chiu (1989), Kilkenny and Thisse (1999), Krarup and Pruzan (1983), Aikens



27

(1985), and McGinnis and White (1983).

II.1.3. The Production Distribution System Design Problem

Geoffrion and Graves (1974) were the first researchers to formally define and discuss

a production distribution system design problem. They point out that a commonly

occurring problem in distribution system design is the optimal location of intermediate

distribution facilities between plants (supply points) and customers (demand points).

In their paper, a multi-commodity capacitated single period version of this problem is

formulated as a mixed integer linear program. A solution technique based on Benders

Decomposition is developed, implemented, and successfully applied to a real problem.

Several characteristics of the problem, such as locating DCs and/or plants, and

capacity considerations at the plants and/or warehouses help us classify different

production distribution system design problems. Some PDSD problems consider

three-stage networks including plants, DCs, and customers, whereas some others con-

sider four-stage networks including suppliers or raw material providers to the three-

stage network. Another important classification in PDSD research is the stage(s) at

which the facilities are located. There are studies that consider locating only DCs,

only plants, or both. Most researchers (Kuehn and Hamburger, 1963; Geoffrion and

Graves, 1974; Kaufman et al., 1977; Ro and Tcha, 1984; Lee, 1991; Cohen and Moon,

1991; Hindi and Basta, 1994) do not limit the number of facilities to be located.

On the other hand, in some studies (Pirkul and Jayaraman, 1996, 1998; Keskin and

Üster, 2007a,b) the number of facilities is limited, similar to the p-median problem.

Considering capacity at different levels is another classification criterion. Capacity

limitations can be only at the DCs, only at the plants, or at both. The capacity

limitations at the plants are handled in two ways. Some researchers (Geoffrion and

Graves, 1974; Cohen and Moon, 1991; Hindi and Basta, 1994; Jayaraman and Pirkul,
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2001) consider product specific capacities at the plants, i.e., each plant has a par-

ticular capacity for each product, and several others consider an overall production

capacity (Pirkul and Jayaraman, 1996, 1998; Keskin and Üster, 2007a,b) for all prod-

ucts. Another important distinction in PDSD studies is the distribution sourcing,

which can be either single sourcing or multi-sourcing. In single sourcing, each cus-

tomer is assigned to only one warehouse at the upper level, but in multi-sourcing,

there is no such restriction. Single-sourcing and multi-sourcing assumptions are more

important for capacitated problems since, in the absence of the capacity constraints,

multi-sourcing is effectively the same as single-sourcing. Finally, another significant

difference in PDSD models is the fixed cost considerations at the facilities.

In Table 2, we provide a summary of the research on PDSD studies related to our

problem. Solution approaches for these problems are optimization algorithms within

the framework of Benders’ Decomposition (Geoffrion and Graves, 1974; Lee, 1991;

Cohen and Moon, 1991); heuristics based on branch-and-bound (Kaufman et al.,

1977; Ro and Tcha, 1984; Hindi and Basta, 1994); and Lagrangian relaxation (Pirkul

and Jayaraman, 1996, 1998; Jayaraman and Pirkul, 2001). However, these techniques

consume extensive amounts of time and effort to find an optimal solution for realistic

sized problems. On the other hand, several metaheuristic approaches, including scat-

ter search, tabu search, and genetic algorithms, have been shown to be effective in

solving relatively large size problems (Keskin and Üster, 2007a,b; Syarif et al., 2002).

These results suggest that it is worthwhile to utilize metaheuristic approaches for

PDSD problems.

There exists a large body of research on the modeling and design of various

components of integrated production distribution systems. For comprehensive review

papers in this area, see Erengüç et al. (1999), Geoffrion and Powers (1995), Goetschal-

ckx et al. (2002), Sarmiento and Nagi (1999), and Thomas and Griffin (1996).
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II.2. Overview of the Inventory Theory

The control and maintenance of inventories of physical goods is a problem common

to all enterprises in all sectors of a given economy. According to Hadley and Whitin

(1963), an inventory policy is defined as any solution of the inventory problem that

specifies when to replenish the inventory and how much to order for replenishment.

These are the two fundamental issues that must be addressed in managing inventories.

Hence, the inventory theory literature focuses on developing and evaluating policies

for effective management of inventories in the supply chain.

There are tremendous differences between existing inventory systems due to the

nature of demand and number of inventory keeping facilities, and, hence, complexity

and size. For example, demand can be deterministic or stochastic depending on

the uncertainty inherent in the system. Also, demand can be treated as stationary or

time-varying (dynamic). Our focus, in this dissertation, is on deterministic stationary

demand, and, hence, the following review concentrates on this particular case. In

particular, we review the Economic Order Quantity (EOQ) model and the multi-stage

inventory models. As a special case of the latter, we introduce the Single Warehouse

Single-Retailer (SWSR) lot-sizing problem.

II.2.1. The Economic Order Quantity (EOQ) Model

The EOQ model is the simplest and the most fundamental of all inventory models

(Harris, 1915; Nahmias, 2004). It deals with the ordering and storage of a single

product by a single facility. The goal is to decide how much to order per shipment

such that the fixed ordering (setup) and holding costs are minimized. Hence, the EOQ

model describes an important trade-off between fixed ordering and holding costs, and

it is the basis for the analysis of many complex systems.
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In the EOQ model, the demand rate at the facility is deterministic and stationary

with D units per unit time. The demand must be met without shortages or backlogs.

Furthermore, there is no lead time. The costs include

K fixed ordering (setup) cost,

c direct unit ordering cost,

h inventory holding cost per unit of product per year.

Then, we formulate the total average annual cost C(Q) as a function of the order

quantity Q:

C(Q) = K
D

Q
+ cD +

hQ

2
.

The three terms composing C(Q) are annual ordering cost, annual purchase cost,

and annual inventory holding cost, respectively. Since C(Q) is a convex function of

order quantity Q, the optimal order quantity Q∗ is found by taking the first derivative

of C(Q) with respect to Q and setting it equal to zero. Doing so we obtain:

Q∗ =

√
2KD

h
.

Then, the optimal cost per year C∗ is:

C∗ =
√

2KDh + cD.

II.2.2. Multi-stage Inventory Models

If there is more than a single inventory keeping facility, the interaction between these

facilities may require the coordination of replenishments. The integrated models

that optimize inventory decisions of several vertically connected facilities in a supply

chain are known as multi-stage inventory models. Interest in multi-stage models

with deterministic stationary demand was initiated by Goyal (1976) and Schwarz

(1973). Papers in this area focus on the interaction between one inventory keeping
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facility (namely, a supplier, a distribution center, or a warehouse) and one or more

stocking facilities (namely, retailers) under deterministic stationary demand. These

papers establish the foundations for the single warehouse single retailer (SWSR) and

the single warehouse multi-retailer (SWMR) deterministic lot-sizing literature. Both

SWSR and SWMR lot-sizing models, under deterministic stationary demand with

infinite planning horizon and instantaneous replenishments, appear as subproblems

in this dissertation. Hence, we refer in detail to these models and their solution

approaches in our analysis.

The SWSR lot-sizing problem under deterministic stationary demand is the basis

for the multi-stage inventory models since it considers two stock-keeping (inventory-

keeping) locations, i.e., a single warehouse and a single retailer. The problem is to

find the order quantities of the warehouse and the retailer, Qw and Qr, respectively, so

that the total cost at the warehouse and the retailer, including the inventory ordering

and inventory holding costs, is minimized. The traditional SWSR lot-sizing problem

assumes that the warehouse and the retailer cooperate and determine their inven-

tory replenishment strategies using a centralized approach. Using this centralized

approach, it is desirable to coordinate the inventory decisions of the warehouse and

the retailer. For this purpose, many researchers consider lot-for-lot and integer-ratio

policies. The lot-for-lot policy refers to an integrated replenishment strategy for the

warehouse and the retailer where the order quantity Qw of the warehouse is equiv-

alent to the order quantity Qr of the retailer, i.e., Qw = Qr. This policy definitely

coordinates the inventory replenishment decisions in the supply chain.

On the other hand, the integer ratio policy states that the warehouse’s order

quantity is an integer-multiple n of the retailer’s order quantity, that is Qw = nQr.

Since its origination (Goyal, 1976), this model has been referred to as the basic

deterministic model in multi-stage inventory systems in many of the inventory books
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(e.g. Silver et al., 1998, p.477). We introduce the following notation for this problem:

D deterministic, constant demand rate at the retailer, in units/unit time.

Kw fixed ordering (setup) cost associated with a replenishment at the warehouse.

Kr fixed ordering cost associated with a replenishment at the retailer.

h′
w the inventory holding cost per unit per unit time at the warehouse.

h′
r the inventory holding cost per unit per unit time at the retailer, h′

r > h′
w.

Tw the reorder interval of the warehouse, Tw = Qw/D.

Tr the reorder interval of the retailer, Tr = Qr/D.

Under integer ratio policies, the main objective of the SWSR lot-sizing problem is

to determine the integer ratio n and the retailer’s order quantity Qr while minimizing

the total average annual cost in the system. The total average annual cost for the

system under integer ratio policies is given as

KrD

Qr
+

h′
rQr

2
+

KwD

nQr
+

h′
w(n− 1)Qr

2
,

where the first two terms are average ordering and inventory holding costs at the

retailer and the last two terms are the similar costs incurred by the warehouse.

Note from Figure 5 that the inventory profile at the warehouse does not follow

the usual sawtooth pattern, even though the demand at the retailer is deterministic

and constant. This is due to withdrawals of size Qr every Tr time units from the

warehouse’s inventory. With conventional definitions of inventories, the determina-

tion of average inventory levels become more complicated than the sawtooth pattern

as shown with the above formulation. Therefore, many researchers prefer to use a

concept known as echelon inventory, introduced by Clark and Scarf (1960). The ech-

elon inventory of stage j (in a general multi-stage setting) is defined as the number

of units in the system that are at, or have passed through, stage j but have as yet
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FIGURE 5. Inventory Levels for the SWMR Lot-sizing Problem.

Warehouse’s inventory level

Retailer’s inventory level

Qw

Qr

Time

Time

Tr

Tr

2Tr

2Tr

3Tr

3Tr

Tw

Actual physical inventory level

Echelon inventory of the warehouse

not been specifically committed to the external demand. In Figure 5, we provide

the inventory profiles of a warehouse and the retailer when n = 3. This figure also

illustrates the echelon inventory at the warehouse. As can be seen from the figure, it

is simple to compute the average echelon inventory since the sawtooth pattern at the

warehouse re-emerges. However, in order to estimate inventory holding costs at the

warehouse and the retailer, we should define the echelon inventory holding costs as

the incremental cost of moving the product from the warehouse to the retailer so that

the inventory costs are not double-counted. For instance, for the SWSR problem, the
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echelon holding cost for the warehouse is hs = h′
s, and the echelon holding cost for

the retailer is hr = h′
r − hs. With the echelon inventory concept, the total average

annual cost for the system under integer ratio policies is given as

KrD

Qr

+
hrQr

2
+

KsD

nQr

+
hsnQr

2
.

Since the SWSR lot-sizing problem appears as a subproblem in several integrated

location-inventory models in Chapter IV, the solution methods for this problem are

further discussed in that chapter.

The SWMR lot-sizing problem under deterministic stationary demand is a gen-

eralization of several classical inventory models including the SWSR lot-sizing prob-

lem. Arkin, Joneja, and Roundy (1989) show that the SWMR lot-sizing problem

is NP-hard. An optimal inventory policy for the SWMR lot-sizing problem has not

been found. However, considering an infinite horizon and instantaneous deliveries,

Schwarz (1973) proves that if an optimal policy for the deterministic stationary de-

mand SWMR lot-sizing problem exists, it has the following properties:

• Zero Inventory Ordering : Each facility orders when its inventory is zero.

• Last Minute Ordering : The warehouse orders only when at least one retailer

orders.

• Stationarity Between Orders: At each retailer, all orders placed between two

successive orders at the warehouse are of equal size.

Still, the structure of the optimal inventory policy for the deterministic SWMR prob-

lem may be exceedingly complex. Even if it could be computed efficiently, its com-

plexity would make it unattractive to implement in practice (Graves and Schwarz,

1977). However, in a seminal paper, Roundy (1985) shows that the best power-of-two
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policy, where the replenishment intervals are chosen as power-of-two multiples of a

base period, has an average cost that is within either 2% (when the base period is

variable) or 6% (when the base period is fixed) of a lower bound of the minimum

cost value. The SWMR inventory models have been studied extensively since this

seminal work; for details, see the review paper by Muckstadt and Roundy (1993).

Simchi-Levi et al. (2004) summarizes the classical SWMR model and its solution

under power-of-two policies. The notation for the SWMR problem is as follows:

I set of retailers, indexed by i ∈ I.

Di deterministic and stationary demand rate at retailer i ∈ I.

K0 fixed ordering (setup) cost associated with a replenishment at the warehouse.

Ki fixed ordering cost associated with a replenishment at retailer i ∈ I.

h′
0 the inventory holding cost per unit per unit time at the warehousee.

h′
i the inventory holding cost per unit per unit time at retailer i ∈ I, h′

i ≥ h′
0.

h0 echelon holding cost rate at the warehouse, h0 = h′
0.

hi echelon holding cost rate at retailer i ∈ I, hi = h′
i − h0.

Tb base planning period.

T0 the reorder interval of the warehouse.

Ti the reorder interval of the retailer i ∈ I.

T the reorder interval’s vector, T = (T0, T1, . . . , Tn).

Using echelon inventory, the SWMR problem is formulated as follows:

Min Z(T) =
K0

T0
+
∑

i∈I

1

2
h0 Di max{T0, Ti}+

∑

i∈I

Ki

Ti
+
∑

i∈I

1

2
hi Di Ti (SWMR)

subject to

Ti = 2viTb and vi ∈ Z, for i = 0, . . . , n. (2.10)

T ∈ R
n+1
+ . (2.11)



36

In the objective function of the SWMR problem, the first two terms represent the

average annual ordering and holding costs at the warehouse, respectively, and the

last two terms represent the total average annual ordering and holding costs at the

retailers, respectively. Note that, with constraint (2.10), the reorder intervals of the

retailers and the warehouse are restricted to a value that is a power-of-two multiple

of a base period, Tb.

In this dissertation, the SWMR problem appears as a subproblem in several

integrated location-inventory models, especially in the models discussed in Chapters

IV and VI.

II.3. Overview of the Joint Location-Inventory Models

As early as the 1960s (Heskett, 1966; Ballou, 1998), the lack of research investigating

the interaction between facility location and inventory decisions was recognized as

one of the deficiencies of existing logistics models. Heskett (1966) was one of the first

to point out the interaction between the inventory and location models. However, he

suggests that the dimensional inconsistency of location and inventory problems pre-

vents integrated location-inventory research since the location problem is a strategic

decision and the inventory problem is an operational decision. Ballou (1998, p.39)

states that logistics planning deals with four major problems regarding customer ser-

vice levels, facility location, inventory, and transportation decisions. These problem

areas are interrelated and should be planned as a whole, although the common ap-

proach is to plan them separately. Each one of these problems has an important

impact on supply chain system design.

A recent line of work, including the research by Barahona and Jensen (1998);

Croxton and Zinn (2005); Daskin et al. (2002); Erlebacher and Meller (2000); Jayara-
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man (1998); Miranda and Garrido (2004); Nozick and Turnquist (1998, 2001); Shen

et al. (2003); Shen and Daskin (2005); Shu et al. (2005); Snyder et al. (2003); Teo et al.

(2001), presents a remedy to this deficiency in integrated location-inventory theory

by placing particular emphasis on the inclusion of inventory costs in network design

problems. An even better approach for eliminating this deficiency is to consider joint

optimization of facility location and inventory decisions. However, research in this

area is still limited (Drezner et al., 2003; McCann, 1993; Romeijn et al., 2007; Teo

and Shu, 2004). This dissertation contributes to this line of work in the integrated

location-inventory theory literature. In the next two sections, we discuss these two

streams of research in detail.

II.3.1. Inclusion of Inventory Costs in Facility Location Models

The first stream of research considers inventory costs (e.g., order, holding, backlog

and shortage costs) in the context of distribution system design while ignoring the

effects of the inventory ordering policies on the optimal network design.

In one of the early papers in this context, Barahona and Jensen (1998) consider

a two-stage location model with fixed inventory costs and develop a solution method

based on Dantzig-Wolfe Decomposition. For a three-stage network design model,

Jayaraman (1998) models in-transit inventory and linear cycle stock costs together

with fixed facility location costs and unit-based transportation costs under determin-

istic demand to determine the number and location of plants and distribution centers

(DCs).

Under stochastic demand, Teo et al. (2001) consider a two-stage location model

with fixed inventory costs; however they ignore transportation costs. They develop a
√

2-approximation algorithm. Considering stochastic demand, Nozick and Turnquist

(1998) analyze the impact of integrating inventory costs into a two-stage fixed-charge
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facility location model. A basic premise of the work by Nozick and Turnquist (1998)

is the consideration of safety stock costs to provide a desired level of service, together

with other fixed location and transportation costs, in determining the optimal number

of DCs and their locations. This paper provides a linear approximation for safety

stock costs as a function of the number of DCs. In a more recent paper, Nozick and

Turnquist (2001) extend the analysis done by Nozick and Turnquist (1998) to consider

a two-stage multi-product system under stochastic demand where safety stocks are

considered at both the DC and plant level. Under this setting, they determine the

number of DCs located and what products to stock at each level. They also show

that the demand for individual products at the DCs affect which products each DC

should stock.

Erlebacher and Meller (2000) revisit the idea of including inventory costs in

a two-stage distribution system with stochastic demand. The differences between

the models by Nozick and Turnquist (1998) and Erlebacher and Meller (2000) are

the consideration of continuously represented customer locations and the rectilinear

distances between the DCs and the customer locations in the latter. For this setting,

Erlebacher and Meller develop a nonlinear mixed integer programming formulation

to determine the number and location of the DCs that serve a number of customers

(e.g., retailers) and the allocations between the DCs and the customers. However,

their model is NP-hard and cannot be solved using exact methods. Hence, Erlebacher

and Meller develop an enumeration procedure to determine the number of DCs and

a heuristic for allocating the DCs to the customers.

Croxton and Zinn (2005) extend the analysis by Nozick and Turnquist (1998) to

consider a three-stage multi-product network design problem where the number and

location of DCs are determined while minimizing total transportation, fixed location,

and safety stock costs. This model is tested based on data from a national retailer,
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and due to explicit consideration of inventory costs, an immediate result is a reduced

number of DCs.

Daskin et al. (2002), Shen et al. (2003), and Shu et al. (2005) also study a two-

stage network design problem under stochastic demand. However, these papers are

motivated by the distribution of perishable and expensive blood products to local

hospitals, and their goal is to locate regional centers for blood platelets in the first

stage and assign these centers to local hospitals by considering the fixed locations

and transportation costs as well as safety stock costs. For this specific application,

different formulations and solution approaches are presented including a Lagrangian

relaxation algorithm (Daskin et al., 2002) and a set-covering problem with branch-

and-price approach (Shen et al., 2003; Shu et al., 2005). The main result, other

than the theoretical and algorithmic contributions in these papers, is that integrating

facility location decisions with the cost of inventory risk-pooling explicitly has an

impact on the number of regional centers located.

Several researchers extend the research by Daskin et al. (2002); Shen et al. (2003);

Shu et al. (2005) in different directions considering similar problem settings. Snyder

et al. (2003) describe the random parameters of the model by using discrete scenarios.

Each scenario dictates the demand and cost information that drives the supply chain

model. They minimize the expected cost of the system across all the scenarios. Ozsen

(2004) considers capacity restrictions at the first stage. The capacity constraints are

defined based on how the inventory is managed. Hence, her model evaluates the

trade-off between having more DCs in order to have sufficient system capacity versus

ordering more frequently through the definition of capacity. Shen and Daskin (2005)

consider a customer service element and develop practical methods for the evaluation

of cost/service trade-offs.
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II.3.2. Joint Optimization of Facility Location and Inventory Decisions

In this proposed dissertation, our focus is not only on incorporating inventory costs

in the facility location problem but also on determining inventory policy parameters

together with facility location decisions. Hence, the limited existing research by

Drezner et al. (2003); McCann (1993); Romeijn et al. (2007); Teo and Shu (2004)

on joint optimization of facility location and inventory policy parameters is closely

related to our research problems.

McCann (1993) considers a two-stage supply chain that consists of a warehouse

and two markets (e.g., retailers) where the only inventory keeping point is the ware-

house and the location of the warehouse is unknown. Hence, the problem is to find

the optimum location and the optimum order quantity of the warehouse while mini-

mizing total inventory and transportation costs in the system. The location problem

studied by McCann (1993) is a continuous Weber problem. Moreover, the inventory

problem is a single-facility lot-sizing problem that can be solved using the EOQ for-

mula. McCann shows that the location of the warehouse, obtained using constant

transportation costs, does not coincide with the location obtained using total logistics

costs. As an extension of McCann’s work, Drezner et al. (2003) consider the problem

of locating a central warehouse given the locations of a fixed number (≥ 2) of multiple

local warehouses where the central warehouse does not keep inventory, but the local

warehouses do. They show that the solution determined by the traditional approach,

that minimizes the total transportation costs only, differs from the one determined

by the approach that also takes into account the inventory and service costs.

Finally, considering the discrete facility location problem setting, Teo and Shu

(2004) study a warehouse-retailer network design problem that incorporates trans-

portation and inventory cost functions under deterministic stationary demand over
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an infinite planning horizon in a two-stage distribution system. Their goal is to deter-

mine how many warehouses to setup, where to locate them, how to serve the retailers

using these warehouses, and the optimal inventory policies for the warehouses and

the retailers so that the total of transportation, fixed facility, inventory replenish-

ment, and holding costs is minimized. In their model, the transportation costs are

per unit per mile costs. They do not explicitly consider the impact of trip distances

and frequencies on the transportation costs, and hence, they do not account for the

interdependency of the inventory and the facility location problem explicitly. They

show that the network design problem can be modeled approximately (to within 98%

accuracy) as a set-partitioning problem that can be efficiently solved using the column

generation method. Romeijn et al. (2007) extend the work by Teo and Shu (2004)

to consider demand variability and capacity congestion by including safety stock and

congestion costs in the model. They also formulate the problem as a set-partitioning

problem and solve it using a column generation approach.
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TABLE 2. Summary of Related PDSD Studies

Legend: Y: Yes, N: No, U: Unlimited, L: Limited, I: Individual, C: Overall,

M: Multi, S: Single

Kuehn and Geoffrion and Kaufman et al. Ro and Tcha
Hamburger (1963) Graves (1974) (1977) (1984)

Stages 3 3 3 3
DC Location Y Y Y Y

Plant Location N N Y Y
Number of Locations U U U U

DC Capacity N Y N N
Plant Capacity N I N N
Sourcing (S/M) M S M M
DC Fixed Cost Y Y Y Y

Plant Fixed Cost N N Y Y

Lee (1991) Cohen and Hindi and Pirkul and
Moon (1991) Basta (1994) Jayaraman (1996)

Stages 3 3 3 3
DC Location Y N Y Y

Plant Location N Y N Y
Number of Locations U U U L

DC Capacity Y N Y Y
Plant Capacity N I I C
Sourcing (S/M) M M M S
DC Fixed Cost Y N Y Y

Plant Fixed Cost N Y N Y

Pirkul and Jayaraman and Syarif et al. Keskin and Üster
Jayaraman (1998) Pirkul (2001) (2002) (2007a); (2007b)

Stages 3 4 4 3
DC Location Y Y Y Y

Plant Location Y Y Y N
Number of Locations L L L L

DC Capacity Y Y Y Y
Plant Capacity C I C C
Sourcing (S/M) M S M M
DC Fixed Cost Y Y Y Y

Plant Fixed Cost Y Y Y N
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CHAPTER III

CONTINUOUS FACILITY LOCATION PROBLEMS

IN TWO-STAGE SUPPLY CHAINS

In this chapter, we develop and analyze an integrated location and inventory model

for a two-stage supply chain in a continuous facility location problem setting. The

underlying location problem in this model is similar to the Weber problem discussed in

Section II.1.1. We consider a set of geographically dispersed retailers whose locations

are known, and we locate a central DC to serve these retailers. Each retailer operates

under the assumptions of the EOQ model discussed in Section II.2.1. That is, each

retailer faces a constant (i.e., deterministic and stationary) retailer-specific demand

for a single product that must be met without shortage or backlogging. To satisfy the

demand in a timely manner, the retailers hold inventory, and, hence, incur inventory

holding costs. Furthermore, the retailers incur fixed replenishment costs as well as

transportation costs each time they replenish their stock from the central DC whose

location is to be determined. The central DC does not have any capacity restrictions,

and it satisfies the retailers’ order quantity via direct shipments at every replenishment

instant.

The main assumption regarding this problem is that the central DC does not

carry inventory. Typically, the central DC does not carry inventory when there is

a per unit cost for each item purchased and no cost to receive replenishment from

the outside supplier. For this system, we do not need to explicitly model the link

between the outside supplier and the DC since the costs associated with the inclusion

of this link are sunk costs. This problem setting is clearly applicable if the “DC” is

a manufacturer that performs production on a lot-for-lot basis and, hence, does not

carry any finished goods inventory. Consequently, the distribution system associated
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with this problem is a two-stage distribution system as given in Figure 6.

FIGURE 6. Two-Stage Continuous Facility Location Problems with Inventory Con-

siderations

In this problem, the main concern is to minimize the inventory replenishment

and holding costs at the retailers as well as the transportation cost from the central

DC to the retailers. In order to balance the trade-off between transportation costs

and inventory replenishment and holding costs, we determine the central DC location

and the retailers’ inventory policy parameters simultaneously. Both the modeling and

the solution of this problem depend heavily on the estimation of the distance between

facilities and the transportation cost structures inherent in the system. In order to

estimate the distance, we use two distance norms, squared Euclidean distance and

Euclidean distance.

This chapter is organized as follows. The next section introduces the notation

in this chapter as well as the general model with generic transportation costs and

distance estimates. In Section III.2, we discuss the transportation cost structures

considered in this integrated location-inventory problem. We examine the specific

models resulting from different transportation costs in Sections III.3, III.4, and III.5.
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Problems where transportation costs are modeled as a function of distance pose the

most challenge in this chapter. We present numerical results regarding the solution

of these models as well as the value of integrated decision-making in two-stage dis-

tribution systems in Section III.6. We conclude by summarizing the key results in

Section III.7.

III.1. General Model and Notation

In this section, we define the notation to facilitate the technical discussion. First, we

define the following parameters:

I set of retailers, i = 1, . . . , n.

Pi location of retailer i, Pi = (ai, bi), ∀i ∈ I.

Di constant demand rate at retailer i, ∀i ∈ I.

D total demand at the central DC, D =
∑

i Di.

h′
i inventory holding cost rate for each unit of inventory at

each retailer i, ∀i ∈ I.

Ki fixed ordering cost of each retailer i, ∀i ∈ I.

d(A, B) the distance between points A and B.

The decision variables of the problem are:

Qi order quantity of retailer i from the central DC, ∀i ∈ I.

Q vector of order quantities, i.e., Q = {Q1, . . . , Qn}.

Ti reorder interval of retailer i, Ti = Qi/Di, ∀ i ∈ I.

T vector of reorder intervals, i.e., T = {T1, . . . , Tn}.

X location of the central DC, X = (x, y).

di the distance between the central DC and retailer i, i.e., d(X, Pi).

The order quantity and the reorder interval of retailer i, i.e., {Qi, Ti} for i ∈ I,

dictates the inventory policy of that retailer. We denote the transportation cost per
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replenishment from the central DC to retailer i, ∀i ∈ I, with αi, where αi can be

a function of order quantity Qi, or distance di between that retailer and the DC, or

both Qi and di, ∀i ∈ I, as we discuss in Section III.2.

We observe that the transportation cost for each order impacts the inventory

policy as an additional order setup cost. Furthermore, the reorder interval implies

an order frequency that determines the number of trips between the retailer and

the central DC, which in turn, affects the transportation cost. Hence, there is a

strong interrelation between the inventory policy of the retailers and the location of

the central DC. Solving for these decisions separately, or in a sequential manner, is

suboptimal. The best approach is to optimize these decisions simultaneously. For

this reason, we minimize the total average annual cost for the integrated location-

inventory problem:

min
X,T

Z(X,T) =

n∑

i=1

αi

Ti
+

n∑

i=1

{
Ki

Ti
+

1

2
h′

iTiDi

}
. (3.1)

In this formulation, the first term is the transportation cost for each order, and

the second term is the inventory policy related costs, including the fixed ordering

cost and the inventory holding cost at each retailer location. Note that in Equation

3.1, the total average annual cost for the integrated location-inventory problem is

modeled in terms of the reorder intervals of the retailers. However, since the demand

is constant and stationary, the reorder quantities can be calculated using the relation

Qi = TiDi, ∀i ∈ I.

Using the relation between the reorder quantity and the reorder intervals, we can

rewrite the total average annual cost for the integrated location-inventory problem in
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terms of reorder quantities as follows:

min
X,Q

Z(X,Q) =

n∑

i=1

αiDi

Qi
+

n∑

i=1

{
KiDi

Qi
+

1

2
h′

iQi

}
. (3.2)

The solution of this problem depends heavily on the structure of the transporta-

tion costs. When the transportation cost structures include distance related terms,

the solution of the problem is influenced by how the distance between two points

is modeled. For this problem, we use the distance norms that are most common in

continuous facility location problems: the squared Euclidean distance and the Eu-

clidean distance (see, Section II.1.1). In the next section, we discuss the form of the

transportation costs considered in this research.

III.2. Transportation Costs

An important novelty of the problems in this chapter and in Chapter IV is the ex-

plicit consideration of realistic transportation costs. A transportation service incurs a

number of costs such as labor, fuel, maintenance, terminal, roadway, administrative,

and others. In general, transportation costs can be represented by two components.

The first component comprises fixed costs, including terminal charges, roadway ac-

quisition, transport equipment, and carrier administration. The second component

depends on volume, distance, and services provided, and it includes line-haul costs,

such as fuel, labor, handling, pickup, and delivery. Line-haul transport rates are gen-

erally based on two important dimensions: distance and shipping quantity (volume).

More specifically, we concentrate on the following three transportation cost functions

(see Figure 7):

• As a function of quantity shipped, Figure 7a:

αi(Qi) = pq + rqQi, i ∈ I. (3.3)
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FIGURE 7. Transportation Cost Functions

CostCostCost

Qi Qidi di

pq p qd pd

rq r qd rd

(a) (b) (c)

Here, rq > 0 represents the delivery cost per unit item weight, and p q ≥ 0

represents the bundling cost. If p q > 0, there are both economies of scale and

economies of distance associated with (3.3). Otherwise, there are no economies

of scale, but only economies of distance. In this context, economies of scale

refers to a diminishing unit transportation cost with increased quantity, and

economies of distance refers to a diminishing unit transportation cost with in-

creased distance. An example of (3.3) arises in the context of the regular postal

service (USPS) where the rate of the transportation cost depends on the weight

(or size) of the package but not the distance in domestic delivery.

• As a function of quantity and distance, Figure 7b:

αi(Qi, di) = p qd + rqdQidi, i ∈ I. (3.4)

In (3.4), r qd > 0 represents the delivery cost per unit per mile, and p qd ≥ 0

represents the carrier administration costs. If p qd > 0, there are both economies
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of scale and economies of distance associated with (3.4). Otherwise, there are

neither economies of scale nor economies of distance. This class of transporta-

tion cost functions arises in common carrier delivery services such as FedEx and

DHL. The cost of delivery via FedEx not only depends on the size (dimensions

and weight) of the package but also depends on the distance di.

• As a function of distance traveled, Figure 7c:

αi(di) = pd + rddi, i ∈ I. (3.5)

In (3.5), rd > 0 denotes the delivery cost per mile, and pd ≥ 0 represents the

fixed cost of loading/unloading the truck destined to retailer i. If pd > 0, there

are both economies of scale and economies of distance associated with (3.5).

Otherwise, there are only economies of scale. This class of transportation cost

functions arises in railroad delivery using a very spacious cargo container, i.e.,

an uncapacitated truck. The rate of the transportation cost depends on the

distance traveled (mileage cost) but not the quantity shipped.

III.3. Models with Quantity-based Transportation Costs (PI-Q)

In this section, we discuss the analysis of the two-stage integrated location inventory

model with quantity-based transportation costs. In other words, the transportation

cost per replenishment αi, for i ∈ I, given in the general formulation (3.2), is a

function of the order quantity and follows the structure of Equation 3.3. Then, the

model is re-written as

min
X,Q

Z(X,Q) =

n∑

i=1

(pq
i + rq

i Qi)Di

Qi
+

n∑

i=1

{
KiDi

Qi
+

1

2
h′

iQi

}
.
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LEMMA 1 For the two-stage integrated location-inventory model with quantity-based

transportation costs as in Equation 3.3, the central DC location and the reorder quan-

tities of the retailers are independent of each other. The central DC location can be

anywhere on the plane. The reorder quantity of each retailer is given by

Qi =

√
2(Ki + pq

i )Di

h′
i

, ∀i ∈ I.

Regarding the analysis of this problem, we have the following remarks:

• Since the transportation costs do not depend on the distance, the central DC

can be located anywhere on the plane regardless of how the distance is modeled.

• The variable portion of the transportation cost per replenishment rq
i , i ∈ I, has

no impact on either the location of the central DC or on the reorder quantities

of the retailers.

• The fixed portion of the transportation cost per replenishment pq
i , i ∈ I, acts

as an additional setup (ordering) cost for each retailer and has an impact on

the reorder quantity.

III.4. Models with Quantity- and Distance-based Transportation Costs

(PI-Qd)

In this section, we discuss the analysis of the two-stage integrated location inventory

model with quantity-based and distance-based transportation costs. Specifically, αi,

for i ∈ I, given in the general formulation (3.2), is a function of order quantity and

distance and follows the structure of 3.4. Then, the model is re-written as

min
X,Q

Z(X,Q) =

n∑

i=1

(pqd
i + rqd

i Qidi)Di

Qi
+

n∑

i=1

{
KiDi

Qi
+

1

2
h′

iQi

}
.
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We reorganize this cost function:

min
X,Q

Z(X,Q) =

n∑

i=1

widi +

n∑

i=1

{
(Ki + pqd

i )Di

Qi
+

1

2
h′

iQi

}
,

where wi = rqd
i Di, the weight of each facility in the location problem.

Note that based on this formulation, the first term in this formulation denotes

the Weber problem where we determine the location of the central DC by minimizing

weighted distances to the existing retailer locations. As discussed in Section II.1.1,

the solution of the Weber problem depends on the distance norm assumptions. For

squared Euclidean distance, we have a closed form solution for the location of the

central DC given by 2.1. For Euclidean distance, ℓ2, we employ the Weiszfeld algo-

rithm to locate the central DC. On the other hand, the second and third terms under

the summation represent a modified EOQ formulation for each retailer. Hence, the

order quantity of each retailer can be calculated by a modified EOQ formula.

The following lemma summarizes the previous technical discussion.

LEMMA 2 For the two-stage integrated location-inventory model with transporta-

tion costs structures (3.4), the facility location and the inventory problems are sepa-

rable:

• The location of the central DC depends on the solution of the following Weber

problem:

min
X

n∑

i=1

widi,

where wi = rqd
i Di and di = d(Pi,X) for i ∈ I.

• The reorder quantity of each retailer is given by

Qi =

√
2(Ki + pqd

i )Di

h′
i

, ∀i ∈ I.
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III.5. Models with Distance-based Transportation Costs

In this section, we discuss the analysis of the two-stage integrated location inventory

model with distance-based transportation costs. In particular, αi for i ∈ I, given in

the general formulation (3.2), is a function of distance and follows the structure of

3.5. Then, the total cost function is expressed as

min
X,Q

Z(X,Q) =
n∑

i=1

(pd
i + rd

i di)Di

Qi

+
n∑

i=1

{
KiDi

Qi

+
1

2
h′

iQi

}
. (3.6)

Note that even after we reorganize this cost function, the facility location and

the inventory problems are not separable due to the first term:

min
X,Q

Z(X,Q) =
n∑

i=1

rd
i Didi

Qi

+
n∑

i=1

{
(Ki + pd

i )Di

Qi

+
1

2
h′

iQi

}
.

The first term contains location and order quantity related decision variables. Hence,

the solution of the two-stage integrated facility location problem with distance-based

transportation costs is more complicated. Furthermore, it depends on how the dis-

tance is modeled. In the rest of this section, we analyze this problem with respect to

the squared Euclidean and Euclidean distances which we call Model 1 and Model 2,

respectively.

III.5.1. Model 1: PI-d-SE

In this section, we analyze problem (3.6) under squared Euclidean distances:

min
X,Q

Z(X,Q) =

n∑

i=1

rd
i Di[(x− ai)

2 + (y − bi)
2]

Qi
+

n∑

i=1

{
(Ki + pi)Di

Qi
+

1

2
h′

iQi

}
.

Before discussing a solution technique, we analyze the properties of the cost

function.

PROPERTY 1 The cost function, Z(X,Q), is jointly convex in X and Q.
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Proof: For each retailer i ∈ I, consider the function

Zi(X, Qi) =
rd
i Di[(x− ai)

2 + (y − bi)
2]

Qi
+

(Ki + pd
i )Di

Qi
+

1

2
h′

iQi.

Then, the overall cost function can be rewritten as Z(X,Q) =
∑n

i=1 Zi(X, Qi). We

first show that Zi(X, Qi) is jointly convex in X and Qi, ∀i ∈ I. Then, since the

summation of convex functions is convex, the result follows.

Consider the Hessian of Zi(X, Qi), Hi, for any retailer i ∈ I.

Hi =




∂2Zi(X,Qi)

∂Q2
i

∂2Zi(X,Qi)
∂Qi∂x

∂2Zi(X,Qi)
∂Qi∂y

∂2Zi(X,Qi)
∂x∂Qi

∂2Zi(X,Qi)
∂x2

∂2Zi(X,Qi)
∂x∂y

∂2Zi(X,Qi)
∂y∂Qi

∂2Zi(X,Qi)
∂y∂x

∂2Zi(X,Qi)
∂y2




=




2Di((Ki+pd
i )+rd

i [(x−ai)2+(y−bi)2])

Q3
i

−2rd
i Di(x−ai)

Q2
i

−2rd
i Di(y−bi)

Q2
i

−2rd
i Di(x−ai)

Q2
i

2rd
i Di

Qi
0

−2rd
i Di(y−bi)

Q2
i

0
2rd

i Di

Qi




. (3.7)

We check the principal minors of Hi:

• △1 =
2Di((Ki+pd

i )+rd
i [(x−ai)2+(y−bi)2])

Q3
i

> 0.

• △2 =
4rd

i Di

Q4
i
{(Ki + pd

i ) + rd
i (y − bi)

2} > 0.

• △3 =
8D3

i (rd
i )2[Ki+pd

i ]

Q5
i

> 0.

Based on these results, Hi is positive definite. Even if the fixed portion of the trans-

portation cost pd
i and the fixed replenishment cost Ki were to be zero, Hi would

be positive semi-definite. Hence, Zi(X, Qi) is a convex function ∀i ∈ I. Therefore,

Z(X,Q) is jointly convex in X and Q. �

PROPERTY 2 Given the central DC location X, the optimal order quantity for
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retailer i, i ∈ I, is given as

Q∗
i (X) =

√
2Di((Ki + pd

i ) + rd
i [(x− ai)2 + (y − bi)2])

h′
i

. (3.8)

Proof: Given the central DC location, the average annual cost function becomes

only a function of the retailers’ order quantity Q. By updating the setup cost using

the transportation cost, we obtain

Z(X,Q) =

n∑

i=1

{
((Ki + pd

i ) + rd
i [(x− ai)

2 + (y − bi)
2])Di

Qi
+

1

2
h′

iQi

}
.

This formulation is the summation of n-EOQ formulations with the updated setup

cost (Ki + pd
i ) + rd

i [(x− ai)
2 + (y − bi)

2]. Therefore, each retailer’s order quantity is

given with the modified EOQ-formula:

Q∗
i (X) =

√
2Di((Ki + pd

i ) + rd
i [(x− ai)2 + (y − bi)2])

h′
i

, ∀i ∈ I.

�

PROPERTY 3 Given the order quantity for retailers Q̃, the location of the central

DC is calculated using the closed form formula:

x∗(Q̃) =

∑n
i=1

Diaird
i

eQi∑n
i=1

Dird
i

eQi

and y∗(Q̃) =

∑n
i=1

Dibird
i

eQi∑n
i=1

Dird
i

eQi

. (3.9)

Proof: When the order quantity for retailers Q̃ is given, the second and third

terms in the average annual cost function become constant parameters. Furthermore,

let wi =
rd
i Di

eQi
be the weight for each retailer i ∈ I. Then, the average annual cost

function is expressed as

C(X) = Z(X, Q̃) =

n∑

i=1

{
wi[(x− ai)

2 + (y − bi)
2] + Ai

}
,

where Ai =
(Ki+pd

i )Di

eQi
+ 1

2
h′

iQ̃i. In this formulation, the first term is the single facility
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location problem with squared Euclidean distance using the updated weights wi.

Therefore, the solution of this problem is given with the closed-form formula of the

center-of-gravity of the retailer locations, i.e.,

x∗(Q̃) =

∑n
i=1 wiai∑n
i=1 wi

=

∑n
i=1

Diair
d
i

eQi∑n
i=1

Dird
i

eQi

and y∗(Q̃) =

∑n
i=1 wibi∑n
i=1 wi

=

∑n
i=1

Dibir
d
i

eQi∑n
i=1

Dird
i

eQi

�

Using the relations given in property 2 and property 3, we observe that

• the distance between the central DC and the retailers, hence the central DC

location, impacts the setup cost of the inventory problem, which in turn affects

the order quantity of the retailers,

• the economic order quantity of each retailer impacts the number of trips between

the retailer and the central DC. The trip number is given as Di

Qi
. When Qi is

lower for some retailer i, the number of trips between the central DC and that

retailer are higher. This results in a higher weight for that retailer in the location

problem.

Using these properties, we reorganize the cost function Z(X,Q), just in terms of the

central DC location:

C(X) = Z(X,Q∗(X)) =

n∑

i=1

√
2Dih′

i((Ki + pd
i ) + rd

i [(x− ai)2 + (y − bi)2]).

Note that C(X) is convex in X, and there is a unique minimizer of this function,

X∗ = (x∗, y∗). Whenever X∗ is calculated, the optimal order quantity for each retailer

is given by Property 2.

Next, we determine the unique minimizer X∗. For this purpose, we define the
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first order conditions for C(X). The gradient of C(X) is given as

∇C(X) =




∂C(X)
∂x

∂C(X)
∂y


 (3.10)

=




∑n
i=1

√
2Dih′

ir
d
i (x−ai)√

(Ki+pd
i )+rd

i [(x−ai)2+(y−bi)2]

∑n
i=1

√
2Dih′

ir
d
i (y−bi)√

(Ki+pd
i )+rd

i [(x−ai)2+(y−bi)2]


 . (3.11)

Although equating the first order conditions to zero to solve for the minimizer of

C(X) is necessary and sufficient, it is not possible to solve ∇C(X) = 0 in a closed

form formula. Instead, we develop the following iterative algorithm given in Display

III.5.1.

DISPLAY 1 The iterative algorithm for squared Euclidean Distance

STEP 0: Set iterationNo← 0. Set ǫ to a predetermined small number.
Initialize (xk, yk) by setting it to any point on the plane R

2.
STEP k+1:

(xk+1, yk+1) =




∑n
i=1

√
Dih′

iai√
(Ki+pd

i )+rd
i [(xk−ai)2+(yk−bi)2]

∑n
i=1

√
Dih′

i√
(Ki+pd

i )+rd
i [(xk−ai)2+(yk−bi)2]

,

∑n
i=1

√
Dih′

ibi√
(Ki+pd

i )+rd
i [(xk−ai)2+(yk−bi)2]

∑n
i=1

√
Dih′

i√
(Ki+pd

i )+rd
i [(xk−ai)2+(yk−bi)2]




STOPPING CONDITION: The procedure stops when ‖Xk+1 −X
k‖ < ǫ.

In the iterative algorithm, starting with a random location, we update the lo-

cation of the central DC using the formula given in Step (k + 1). This algorithm

attempts to solve the first order conditions, ∇C(X) = 0, iteratively. Our aim is

to show that this is a steepest descent algorithm that converges to the optimal so-

lution for the two-stage integrated facility location-inventory problem with squared

Euclidean distance-based transportation costs.

Note that the Weiszfeld Algorithm for the Weber problem with Euclidean dis-
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tance norms is very similar to the iterative algorithm given in Display III.5.1. Many

researchers have investigated the convergence properties of the Weiszfeld Algorithm,

including Brimberg and Love (1993); Kuhn (1973); Morris (1981); Ostresh (1978);

Üster and Love (2000). Ostresh (1978) proved that for any starting point X0, the

iterative algorithm converges to X∗. We generalize these results to our problem to

prove the convergence. As a remark, when (Ki + pd
i ) = 0 and the weight wi is defined

as
√

2Dih′
ir

d
i for all i ∈ I, the problem reduces to the Weber problem as follows:

C(X) =
n∑

i=1

√
2Dih′

ir
d
i

√
(x− ai)2 + (y − bi)2 =

n∑

i=1

wi

√
(x− ai)2 + (y − bi)2.

Hence, the Weiszfeld algorithm is valid for this special case.

For (Ki + pd
i ) > 0 for all i ∈ I, to prove the convergence, we define the following

mapping:

T : X→ T (X) :




∑n
i=1

√
Dih′

iai√
(Ki+pd

i )+rd
i [(x−ai)2+(y−bi)2]

∑n
i=1

√
Dih′

i√
(Ki+pd

i )+rd
i [(x−ai)2+(y−bi)2]

,

∑n
i=1

√
Dih′

ibi√
(Ki+pd

i )+rd
i [(x−ai)2+(y−bi)2]

∑n
i=1

√
Dih′

i√
(Ki+pd

i )+rd
i [(x−ai)2+(y−bi)2]


 .

Let X∗ be the unique minimum for C(X). By convexity and the differentiability

of C(X), the first order conditions are necessary and sufficient for the minimizer.

Therefore, ∇C(X∗) = 0. In other words, the point X = X∗ if and only if ∇C(X) = 0.

An immediate result of the definition of mapping T (X) and ∇C(X∗) = 0 is the

following corollary.

COROLLARY 1 If X = X∗, then T (X) = X.

LEMMA 3 The minimizer X∗ is in the convex hull of the existing retailer locations,

Ω.

Proof: If X∗ is an existing retailer location, by definition, it is in the convex hull Ω.
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Otherwise, using ∇C(X) = 0, we have the following equations:

x∗ =

∑n
i=1

√
Dih′

iai√
(Ki+pd

i )+rd
i [(x∗−ai)2+(y∗−bi)2]

∑n
i=1

√
Dih′

i√
(Ki+pd

i )+rd
i [(x∗−ai)2+(y∗−bi)2]

,

y∗ =

∑n
i=1

√
Dih′

ibi√
(Ki+pd

i )+rd
i [(x∗−ai)2+(y∗−bi)2]

∑n
i=1

√
Dih′

i√
(Ki+pd

i )+rd
i [(x∗−ai)2+(y∗−bi)2]

.

For each i ∈ I, define

λi =

√
Dih′

i√
(Ki+pd

i )+rd
i [(x∗−ai)2+(y∗−bi)2]

∑n
i=1

√
Dih′

i√
(Ki+pd

i )+rd
i [(x∗−ai)2+(y∗−bi)2]

.

By definition, λi > 0, ∀i ∈ I, and
∑n

i=1 λi = 1. Then, x∗ =
∑n

i=1 λiai and y∗ =

∑n
i=1 λibi. Hence, X∗ = (x∗, y∗) is given by the weighted sum of the existing retailer

locations with positive weights that sum to 1. Hence, X∗ is in the convex hull Ω. �

The next lemma proves that the iterative algorithm does not overshoot the op-

timal DC location.

LEMMA 4 If T (X) 6= X, then C(T (X)) < C(X).

Proof: Considering the definition of T (X), it can be shown that T (X) is the unique

minimum of strictly convex function

f(X) =

n∑

i=1

√
Dih′

i√
(Ki + pd

i ) + rd
i [(x− ai)2 + (y − bi)2]

((Ki+pd
i )+rd

i [(x−ai)
2+(y−bi)

2]).

Since X 6= T (X),

f(T (X)) < f(X)

=

n∑

i=1

√
Dih′

i((Ki + pd
i ) + rd

i [(x− ai)
2 + (y − bi)

2])√
(Ki + pd

i ) + rd
i [(x− ai)2 + (y − bi)2]

= C(X). (3.12)
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On the other hand, f(X) can be rewritten as

f(X) =

n∑

i=1

√
2Dih′

i

gi(X)
(gi(X))2,

where gi(X) =
√

(Ki + pd
i ) + rd

i [(x− ai)2 + (y − bi)2], for all i ∈ I. Using this revised

form, consider f(T (X)):

f(T (X)) =

n∑

i=1

√
2Dih′

i

gi(X)
(gi(T (X))− gi(X) + gi(X))2

=
n∑

i=1

√
2Dih′

i

gi(X)

{
(gi(X))2 + 2gi(X)[gi(T (X))− gi(X)] + [gi(T (X))− gi(X)]2

}

=

n∑

i=1

√
2Dih′

igi(X) +

n∑

i=1

2
√

2Dih′
igi(T (X))−

n∑

i=1

2
√

2Dih′
igi(X)

+
n∑

i=1

√
2Dih′

i

gi(X)
[gi(T (X))− gi(X)]2

= C(X) + 2C(T (X))− 2C(X) +
n∑

i=1

√
2Dih

′
i

gi(X)
[gi(T (X))− gi(X)]2. (3.13)

By using Equations 3.12 and 3.13, we obtain

f(T (X)) = 2C(T (X))− C(X) +
∑n

i=1

√
2Dih′

i

gi(X)
[gi(T (X))− gi(X)]2 < C(X).

Organizing the second and third parts of the above inequality, 2C(T (X)) < 2C(X)

is acquired, proving the required result. �

THEOREM 1 (Convergence Theorem)

Given any X0, define Xk = T k(X0) for k = 1, . . . , n. Then, limk→∞ Xk = X∗.

Proof: The properties of C(X) are proven to be aligned with the properties of the

Weber problem with one difference. In C(X), there are no discontinuities at the

existing retailer locations. Hence, the convergence theorem for Weber problem by

Kuhn (1973) applies to C(X). We outline the proof here for completeness.

The sequence Xk lies in the convex hull Ω, which is a compact set. By the
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Bolzano-Weierstrass theorem, every bounded infinite set has an accumulation point.

Hence, the bounded sequence {Xk} must have a monotonic subsequence {Xkl} which

must converge because it is monotonic and bounded. Furthermore, since the convex

hull Ω is a closed set, it contains the limit of {Xkl} such that

lim
l→∞

Xkl = X.

We need to show that X = X∗. If Xk+1 = T k+1(X0) = Xk, then the sequence will

repeat itself, and X∗ = Xk by Corollary 1. Otherwise, by Lemma 4, we have

C(X0) > C(X1) > . . . > C(Xk) > . . . C(X∗).

Hence, limk→∞ C(Xkl)− C(T (Xkl)) = 0. Then, due to the continuity of T , we have

C(X)− C(T (X)) = 0. Therefore, X = T (X), and by Corollary 1, X = X∗. �

III.5.2. Model 2: PI-d-E

Using the Euclidean distance norm, problem (3.6) is expressed as

Z(X,Q) =

n∑

i=1

Dir
d
i

√
(x− ai)2 + (y − bi)2

Qi
+

n∑

i=1

{
(Ki + pd

i )Di

Qi
+

1

2
h′

iQi

}
.

In order to solve for the central DC location and the retailers’ inventory policies,

we investigate the properties of this cost function.

PROPERTY 4 Given X = X̃, Z(X̃,Q) is a convex function of Q, and each order

quantity is given as

Q∗
i (X̃) =

√
2Di[(Ki + pd

i ) + rd
i

√
(x̃− ai)2 + (ỹ − bi)2]

h′
i

, ∀i ∈ I.

Proof: Given the DC location X, the first term of the total average annual

cost function regarding the transportation costs between the retailers and the DC
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acts as an additional replenishment cost on each order. Hence, the average annual

cost function is the summation of n-EOQ cost formulations with the modified setup

cost (Ki + pd
i )+ rd

i

√
(x̃− ai)2 + (ỹ − bi)2 for each retailer i ∈ I. Therefore, the result

follows. �

PROPERTY 5 Given Q = Q̃, Z(X, Q̃) is a convex function of X, and X is ob-

tained using the Weiszfeld algorithm.

Proof: When the inventory policy parameters of the retailers are known, the total

average annual cost function is given as

Z(X, Q̃) =
n∑

i=1

Dir
d
i

√
(x− ai)2 + (y − bi)2

Q̃i

+ A,

where A =
∑n

i=1

{
(Ki+pd

i )Di

eQi
+ 1

2
h′

iQ̃i

}
is a constant. Furthermore, let wi =

rd
i Di

eQi
.

Then, the average annual cost function can be represented as

Z(X, Q̃) =
n∑

i=1

wi

√
(x− ai)2 + (y − bi)2 + A,

that is the shifted Weber problem with Euclidean distances. Hence, X is solved by

the Weiszfeld Algorithm. �

PROPERTY 6 Z(X,Q) is neither convex nor concave jointly in X and Q.

Proof: Similar to the proof of Property 1, we consider the convexity of the function

Zi(X, Qi) =
rd
i Di

√
(x− ai)2 + (y − bi)2

Qi
+

(Ki + pd
i )Di

Qi
+

1

2
h′

iQi,

for each retailer i ∈ I, since the overall cost function can be rewritten as Z(X,Q) =
∑n

i=1 Zi(X, Qi).
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Consider the Hessian of Zi(X, Qi), Hi, for any retailer i ∈ I.

Hi =




∂2Zi(X,Qi)
∂Q2

i

∂2Zi(X,Qi)
∂Qi∂x

∂2Zi(X,Qi)
∂Qi∂y

∂2Zi(X,Qi)
∂x∂Qi

∂2Zi(X,Qi)
∂x2

∂2Zi(X,Qi)
∂x∂y

∂2Zi(X,Qi)
∂y∂Qi

∂2Zi(X,Qi)
∂y∂x

∂2Zi(X,Qi)
∂y2




=




2Di((Ki+pd
i )+rd

i

√
(x−ai)2+(y−bi)2)

Q3
i

−rd
i Di(x−ai)

Q2
i

√
(x−ai)2+(y−bi)2

−rd
i Di(y−bi)

Q2
i

√
(x−ai)2+(y−bi)2

−rd
i Di(x−ai)

Q2
i

√
(x−ai)2+(y−bi)2

rd
i Di(y−bi)

2

Qi[(x−ai)2+(y−bi)2]3/2

−rd
i Di(x−ai)(y−bi)

Qi[(x−ai)2+(y−bi)2]3/2

−rd
i Di(y−bi)

Q2
i

√
(x−ai)2+(y−bi)2

−rd
i Di(x−ai)(y−bi)

Qi[(x−ai)2+(y−bi)2]3/2

rd
i Di(x−ai)2

Qi[(x−ai)2+(y−bi)2]3/2




.

We check the principal minors of Hi using Maple’s1 built-in function ‘positive-

semidef.’ We observe that the first principal minor of the Hessian matrix is positive;

however, the other principal minors are negative. Hence, Zi(X, Qi) is neither convex

nor concave for i ∈ I. Therefore, the result follows. �

Figure 8 illustrates the average annual cost function for a particular problem

instance. Although the overall shape of the function looks like a bowl, there are

definite cusps that disturb the convexity.

Using Property 5, we organize the cost function as

C(X) = Z(X,Q∗(X)) =

n∑

i=1

√
2Dih

′
i[(Ki + pd

i ) + rd
i

√
(x− ai)2 + (y − bi)2].

Unfortunately, due to Property 6, C(X) is not convex in X. In order to solve for the

optimal DC location and the corresponding inventory policy parameters, we further

investigate the structural properties of C(X).

If Ki + pd
i = 0, for all i ∈ I, then

C(X) =
n∑

i=1

wi

√
ℓ2(X,Pi), (3.14)

1Maple is a mathematics software by Maplesoft, Inc.
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FIGURE 8. The Average Annual Cost Function with Euclidean Distances
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where wi =
√

2Dih
′
ir

d
i and ℓ2(X,Pi) is the Euclidean distance between X and Pi.

Hence, this is a generalized Weber problem. For such a generalized Weber problem,
∑n

i=1 wi[ℓ2(X,Pi)]
k, with 0 < k < 1, Cooper (1968) showed that the existing facility

locations Pi, i ∈ I, are the local minima. In Equation 3.14, since k = 1/2, the result

applies for this special case.

The following theorem extends these results to the case where the summation of

fixed costs (Ki + pd
i ) are positive for some retailer i.

THEOREM 2 If Ki + pd
i > 0, ∀i, the existing retail locations, Pi, are the local

minima of C(X).
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Proof: To simplify the equations, for all i ∈ I, define Ai = 2(Ki+pd
i )h

′
iDi, Bi =

2Dih
′
ir

d
i , and Ci(X) =

√
Ai + Bi

√
(x− ai)2 + (y − bi)2. Then, C(X) =

∑n
i=1 Ci(X).

The gradient of C(X) is

∇C(X) =




∂C(X)
∂x

∂C(X)
∂y




=




∑n
i=1

Bi(x−ai)

2Ci(X)
√

(x−ai)2+(y−bi)2

∑n
i=1

Bi(y−bi)

2Ci(X)
√

(x−ai)2+(y−bi)2


 . (3.15)

Since ∇C(X) is not defined for existing retailer locations, we cannot use the first

and second order conditions to prove the local minima. Instead, we use a directional

derivative. For a point (x, y) to be a local minimum for every unit vector U = (u1, u2),

the directional derivative of C(X) in this direction must be positive.

For retailer j ∈ I, consider a neighborhood around Pj such that for all 0 < t < ǫj ,

max
i6=j

d

dt
Ci(Pj + tU) > −Mj ,

where Mj is a positive real number. Consider

(
d

dt
)C(Pj + tU) =

(
d

dt

)( n∑

i=1

Ci(Pj + tU)

)

=
n∑

i=1

i6=j

(
d

dt
)Ci(Pj + tU) +

d

dt
Cj(Pj + tU)

> −
n∑

i=1

i6=j

Mj +
d

dt

√
Aj + Bjt, since ‖U‖ = 1,

= −Mj(n− 1) +
Bj

2
√

Aj + Bjt
.
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Now, choose t < ǫj such that

Bj

2
√

Aj + Bjt
> Mj(n− 1).

Then, for 0 < t < t, d
dt

C(Pj + tU) > 0, which establishes the result. �

After proving Theorem 2, we revisit Figure 8. The well defined-dips in the total

cost function with Euclidean distance are due to the existing retailer locations. As

the facility location X = (x, y) approaches each retailer location Pi = (ai, bi), the

Euclidean distance portion of the total cost function will approach zero, producing a

dip in the total cost function. In our graphical analysis, we observed that the dips

are well-defined and sharp when the fixed costs (Ki + pd
i , for i ∈ I) are close to zero.

On the other hand, when the fixed costs are substantial, the dips are smoother and

the overall shape of the cost function resembles a bowl shape.

We modified the iterative algorithm developed for the squared Euclidean distance

to take advantage of the structural properties of the cost function with the Euclidean

distances. The algorithm given in Display 2 has two main steps. In the first step, we

check the existing retailer locations as to their potential for being the DC location

and calculate the corresponding total cost. The retailer location with the lowest total

cost is recorded as the best DC location. Then, in the second step, for a fixed number

of iterations, we loop through the iterative algorithm. At each iteration, starting

with a random DC location, we update the DC location using the formula given in

Step (2.b) until we cannot improve it any further. At this point, we calculate the

cost associated with this location. If this cost is better than the best cost (C∗) we

have obtained thus far, we update the best cost and best DC location. Otherwise, we

repeat the iterative algorithm until a fixed number of iterations is satisfied.
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III.6. Numerical Results

In this section, our aim is to demonstrate the impact of joint decision-making re-

garding DC location and inventory policy parameters. For this purpose, we develop

a benchmark model to solve for the DC location and the inventory policy parame-

ters sequentially. We compare the cost of the benchmark model with joint facility

location-inventory models using two different experiments. In the first experiment,

we test the impact of the randomness of the problem parameters among different

retailers on the joint decision-making. In the second experiment, we test the impact

of different problem parameters via a factorial design.

In the remainder of this section, we first describe the benchmark model in detail.

In Section III.6.2, we present the configuration of the two numerical experiments. In

Sections III.6.3 and III.6.4, we discuss the results of the numerical test with respect

to the squared Euclidean and Euclidean distances. Finally, we conclude with some

key points from our analysis in Section III.6.5.

III.6.1. A Benchmark Model: Sequential Approach (BM-SA)

In real world applications, it is quite typical to decide on the strategic problem vari-

ables first. Afterwards, based on the strategic decisions, tactical and operational

decisions are determined. In developing our sequential approach BM-SA, we follow

this simple logic. We first locate the central DC by solving the following Weber

problem:

min
X

∑

i∈I

wid(X,Pi),

where wi = cDi, and c is the per unit per mile transportation cost. As we discussed

earlier in Chapter II, the solution of this problem depends on the modeling of the

distance. For squared Euclidean distance, the location of the DC X∗ is given with a
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closed formula 2.1. On the other hand, for the Euclidean distance, X∗ is found by

implementing the Weiszfeld Algorithm (Weiszfeld, 1937).

Next, inventory decisions are addressed by solving the corresponding multi-

retailer EOQ problem with the updated setup costs:

n∑

i=1

{
(Ki + pd

i + rd
i d(X∗,Pi))Di

Qi
+

1

2
h′

iQi

}
.

The reorder quantity Qi of each retailer i is given by the closed form formulas in

Properties 2 and 4 for squared Euclidean and Euclidean distances, respectively.

Then, the cost of the benchmark model (BM-SA) is given as

ZBM−SA =
√

2(Ki + pd
i + rd

i d(X∗,Pi))Dih
′
i.

Recall that for the models where the transportation cost is modeled as a function

of quantity (PI-Q) and as a function of both quantity and distance (PI-Qd), the fa-

cility location and the inventory problems are separable. Therefore, for those models,

the joint model and the sequential benchmark model would return the same answer.

Hence, we compare only the sequential benchmark model with models (PI-d-SE) and

(PI-d-E).

III.6.2. Experiments

We measure the value of the integrated framework by comparing the cost of the BM-

SA with the costs of the PI-d-SE for the squared Euclidean distance and the PI-d-E

for the Euclidean distance. For this purpose, we develop two experimental settings.

In the first experiment, we analyze detailed results based on four data groups that

consist of 5, 20, 35, and 50 retailers. In each group, we have 500 problem instances,

generated randomly using the uniform distributions in Table 3, resulting in a total of

2,000 problem instances.
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TABLE 3. Experiment 1: Parameter Values, i ∈ I.

Parameters Range

Di U[350,1400]
Ki U[75, 300]
h′

i U[5,10]
pi U[425,1700]
ri U[1.35,1.65]
Pi U[0,100]× U[0,100]
|I| 5, 20, 35, 50

The value of integrated decision-making is given by the percentage gain due to

using PI-d instead of BM-SA:

Percentage gain from integrated decision-making (% ) =
ZBM−SA − ZPI−d

ZBM−SA
× 100,

where ZPI−d is the cost of the solution suggested by the relevant distance and ZBM−SA

is the cost of the benchmark model. While reporting the results, we present the

minimum, average, and maximum percentage gains in the objective function value.

In the second experiment, our goal is to infer the impact of problem parameters

on the value of the integrated decision-making. For this purpose, we analyze a total

of 32, 000 problem instances obtained via a factorial design of the demand and cost

parameters in Table 4. We considered 4 factors: demand, fixed replenishment and

TABLE 4. Experiment 2: Bounds on the Parameter Values, i ∈ I
Parameters Di h′

i Ki + pd
i rd

i

Low (L) 350 5 500 0.75
High (H) 1400 10 2000 3

transportation costs, holding cost, and mileage cost. Hence, the factorial design con-

sists of 16 combinations as shown in Table 5. For each combination, we generate 500

instances by changing the retailer locations randomly using the uniform distribution



69

TABLE 5. Factorial Design
Parameters

Di hi Ki + pd
i rd

i

1 L L L L
2 L L L H
3 L L H L
4 L L H H
5 L H L L
6 L H L H
7 L H H L
8 L H H H
9 H L L L
10 H L L H
11 H L H L
12 H L H H
13 H H L L
14 H H L H
15 H H H L
16 H H H H

U[0,100]× U[0,100].

We test the results of the factorial design four data groups that consist of 5, 20,

35, and 50 retailers. In each data group, there are 8, 000 problem instances. We report

the average percentage gain for each data group and each factorial combination.

III.6.3. Results: PI-d-SE

In this section, we report the results for the PI-d-SE regarding the value of integrated

decision-making based on the two numerical experiments explained in the previous

section.

The results of the first experiment are given in Table 6. This table summarizes

the minimum, average, and maximum percentage gains for 500 problem instances

for each data group. In all of the data groups, there are several instances where the

solution of the benchmark model returns the same solution as the PI-d-SE, and hence,
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TABLE 6. Results of Experiment 1 for PI-d-SE
|I| Minimum gain (%) Average gain (%) Maximum gain (%)

5 0.000 0.416 5.236
20 0.000 0.126 1.242
35 0.000 0.076 1.032
50 0.000 0.046 0.565

the minimum gain between these two solutions is zero. The average percentage gain

is less than 0.5%, however it can be as high as 5.2%. When we consider the dollar

amount associated with these percentage gains, these differences are significant.

An important observation from the results presented in Table 6 is that the average

and maximum percentage gains decrease as the number of retailers in the system

increase. In other words, the benefits of integrated decision-making is off-set by the

introduction of additional retailers in the system.

TABLE 7. Results of Experiment 2 for PI-d-SE
Parameters Average Gains for Data groups

Di h′
i Ki + pd

i rd
i 5 20 35 50

1 L L L L 0.56 0.13 0.07 0.05
2 L L L H 1.35 0.35 0.19 0.13
3 L L H L 0.06 0.02 0.01 0.01
4 L L H H 0.47 0.12 0.07 0.05
5 L H L L 0.45 0.13 0.08 0.05
6 L H L H 1.35 0.33 0.20 0.14
7 L H H L 0.06 0.02 0.01 0.01
8 L H H H 0.45 0.13 0.07 0.05
9 H L L L 0.47 0.14 0.08 0.05
10 H L L H 1.31 0.33 0.20 0.14
11 H L H L 0.06 0.02 0.01 0.01
12 H L H H 0.43 0.13 0.07 0.05
13 H H L L 0.47 0.13 0.07 0.06
14 H H L H 1.38 0.33 0.19 0.14
15 H H H L 0.06 0.02 0.01 0.01
16 H H H H 0.45 0.13 0.07 0.05
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In the second experiment, we test the impact of problem parameters on the

value of integrated decision-making. In Table 7, we report the average percentage

gains for each factorial combination. The average gains are the highest when the

mileage cost (rd
i , ∀i ∈ I) is set at a low value and the sum of fixed replenishment

and transportation costs (Ki + pd
i , ∀i ∈ I) is set at a high value. Furthermore, the

average gains are the lowest for high values of rd
i and low values of Ki + pd

i , ∀i ∈ I.

On the other hand, changes in demand (Di, ∀i ∈ I) and holding costs (h′
i, ∀i ∈ I)

do not influence the value of integrated decision-making.

III.6.4. Results: PI-d-E

In this section, we report the results for the PI-d-E regarding the value of integrated

decision-making based on the two numerical experiments.

In Table 8, we present the results for the first experiment: the minimum, average,

and maximum gains between the PI-d-E and BM-SA for 500 problem instances. For

all data groups, the average gain is less than 0.03%. Even the maximum gain is less

than 0.6%. Hence, the main finding is that the value of integrated decision-making

with Euclidean distances is not as significant as the value of integrated decision-

making with squared Euclidean distances. Furthermore, the pattern of percentage

gains decreasing as the number of retailers increases is also observed in the compar-

ative results of the PI-d-E and BM-SA.

TABLE 8. Results of Experiment 1 for PI-d-E
|I| Minimum gain (%) Average gain (%) Maximum gain (%)

5 0 0.022 0.596
20 0 0.007 0.081
35 0 0.004 0.071
50 0 0.002 0.023
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Although the percentage gains between the PI-d-E and BM-SA are low, we are

still interested in how the problem parameters contribute to the percentage gains.

In Table 9, we present the average percentage gains for each factorial combination.

The findings are similar to the findings from the comparison of the PI-d-SE and the

BM-SA. The average gains are the highest when rd
i , ∀i ∈ I is set at a low value

and Ki + pd
i , ∀i ∈ I is set at a high value. Furthermore, the difference between the

benchmark model and the PI-d-E is insignificant for high values of rd
i and low values

of Ki + pd
i , ∀i ∈ I. On the other hand, changes in Di, ∀i ∈ I, and h′

i, ∀i ∈ I, do not

influence the value of integrated decision-making.

TABLE 9. Results of Experiment 2 for PI-d-E
Parameters Average Gains for Data sets

Di h′
i Ki + pd

i rd
i 5 20 35 50

1 L L L L 0.0001 0.0000 0.0000 0.0000
2 L L L H 0.0048 0.0012 0.0007 0.0004
3 L L H L 0.0000 0.0000 0.0000 0.0000
4 L L H H 0.0001 0.0000 0.0000 0.0000
5 L H L L 0.0001 0.0000 0.0000 0.0000
6 L H L H 0.0046 0.0012 0.0007 0.0005
7 L H H L 0.0000 0.0000 0.0000 0.0000
8 L H H H 0.0001 0.0000 0.0000 0.0000
9 H L L L 0.0001 0.0000 0.0000 0.0000
10 H L L H 0.0049 0.0012 0.0007 0.0005
11 H L H L 0.0000 0.0000 0.0000 0.0000
12 H L H H 0.0001 0.0000 0.0000 0.0000
13 H H L L 0.0001 0.0000 0.0000 0.0000
14 H H L H 0.0043 0.0012 0.0007 0.0005
15 H H H L 0.0000 0.0000 0.0000 0.0000
16 H H H H 0.0001 0.0000 0.0000 0.0000

III.6.5. Concluding Remarks

In this section, our main goal is to shed some light on the value of integrated decision-

making for problems PI-d-SE and PI-d-E. We compared the cost of the PI-d-SE and
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the PI-d-E with the cost of a benchmark model (BM-SA) in two different numerical

experimental settings. The main findings are as follows:

• Integrated decision-making is more influential when squared Euclidean distances

are used rather than Euclidean distances.

• The savings due to integrated decision-making are more pronounced when there

is a lesser number of retailers.

• The most influential problem parameters are fixed replenishment and trans-

portation costs as well as mileage cost.

These findings provide insights and outline the conditions for when it is beneficial to

consider integrated location-inventory models instead of the traditional models.

III.7. Summary and Conclusions

In this chapter, we analyzed the integration of facility location and inventory deci-

sions in a continuous facility location problem setting for a two-stage supply chain.

We showed that the underlying location problem in this model is similar to the clas-

sical Weber problem and the underlying inventory problem is a multi-retailer EOQ

problem. We also argued that the link between these classical location and inventory

problems is the transportation costs.

We discussed three main transportation cost structures that arise in the context

of real-life applications. Considering these different transportation cost structures,

we developed and analyzed three different integrated location and inventory models,

namely, PI-Q, PI-Qd, and PI-d. The analysis of PI-Q and PI-Qd are trivial mainly

due to the simplifications in the average annual cost function for these models. In

PI-Q, the central DC can be located anywhere on R
2, and the order quantity of
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each retailer is determined using a modified EOQ formula. Furthermore, PI-Qd is

separable in terms of location and inventory decisions, i.e., the location of the central

DC has no impact on the inventory policy parameters of each retailer, and vice versa.

For PI-d, we investigated the problem using squared Euclidean and Euclidean

distance norms, i.e. PI-d-SE and PI-d-E. For the PI-d-SE and PI-d-E, the trans-

portation cost associated with each retailer’s replenishment has an impact on the

inventory policy parameters of the retailer as an additional replenishment setup cost.

On the other hand, the corresponding replenishment interval affects the number of

trips between the retailer and the central DC, which in turn impacts the annual

transportation cost. Hence, there is a strong relation between the optimal inventory

policy parameters and the location of the central DC. Hence, the sequential solution

is suboptimal. For the PI-d-SE and PI-d-E, the technical solution contributions and

the practical insights for the value of integrated decision-making are explained below.

The PI-d-SE is a nonlinear optimization problem with an objective function that

is jointly convex in location and inventory decisions. Using this characteristic of the

objective function, we devise an iterative algorithm that converges to the optimal

central DC location and parameters of the inventory policies of the retailers. The

PI-d-E is also a nonlinear optimization problem. However, the objective function of

the PI-d-E problem is neither convex nor concave in location and inventory decisions.

On the other hand, we prove that the existing retail locations, Pi, are local minima

for the central DC location, and we propose an effective search algorithm.

In order to measure the value of integrated decision-making, we developed a

benchmark model that we refer to as the BM-SA. We reported the average percentage

gain due to using the PI-d-SE and PI-d-E for 34,000 problem instances under two

different experiment settings. Our findings show that integrated decision-making is

more influential when squared Euclidean distances are used rather than Euclidean
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distances. Furthermore, the percentage gain is influenced the most due to the trade-

off between the fixed replenishment plus the fixed transportation cost and the variable

transportation cost.

The results of this chapter can be extended in many ways. One significant

generalization is to consider inventory decisions and the coordination of inventory

policies of the central DC and the retailers. We will analyze this generalization in

Chapter IV. Another significant generalization is to consider multiple potential DC

sites in a discrete facility location problem setting, which we analyze in Chapter

V. Another noteworthy extension, that is beyond the scope of this dissertation, is

to consider more generalized transportation costs, including quantity- and distance-

based discounted freight rates, as well as capacitated truck-load and less-than-truck-

load rates.
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DISPLAY 2 The algorithm for PI-d-E

STEP 1:

C∗ ←∞.

for i ∈ I do

X← Pi.

C = C(X).

if C < C∗
then

C∗ ← C.

X
∗ ← X.

end if

end for

STEP 2:

iterNo← 1.

Set maxIterNo.

for iterNo < maxIterNo do

k ← 0.

Set ǫ to a predetermined small number.

STEP 2.a: Initialize X
k = (xk, yk) by setting it to any point on the plane R

2.

STEP 2.b: Calculate

X
k+1 =




∑n
i=1

√
Dih′

iaiq
(Ki+pd

i )+rd
i

√
(xk−ai)2+(yk−bi)2

∑n
i=1

√
Dih′

iq
(Ki+pd

i )+rd
i

√
(xk−ai)2+(yk−bi)2

,

∑n
i=1

√
Dih′

ibiq
(Ki+pd

i )+rd
i

√
(xk−ai)2+(yk−bi)2

∑n
i=1

√
Dih′

iq
(Ki+pd

i )+rd
i

√
(xk−ai)2+(yk−bi)2




while ‖Xk+1 −X
k‖ > ǫ do

k ← k + 1.

Repeat STEP 2.b.

end while

CiterNo = C(Xk).

if CiterNo < C∗
then

C∗ ← CiterNo.

X
∗ ← X

k.

end if

end for

STEP 3: Return X∗ as the DC location.
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CHAPTER IV

CONTINUOUS FACILITY LOCATION PROBLEMS IN THREE-STAGE

SUPPLY CHAINS

In this chapter, we investigate the integration of facility location and inventory deci-

sions in a continuous facility location problem setting in three-stage supply chains. In

particular, we consider a three-stage distribution system consisting of a single supplier

at a known location, a central DC whose location is to be determined, and multiple

geographically dispersed retailers at known locations.

We examine the case where the DC’s (once established) and the retailers’ in-

ventory systems are operated under the assumptions of the classical single-warehouse

multi-retailer (SWMR) problem studied by Roundy (1985). That is, the retailers face

deterministic constant demand rates for a single product that must be met without

shortage or backlogging, and they receive supply from the central DC (once estab-

lished) via direct shipments at the expense of replenishment costs, which include

retailer-specific fixed ordering (setup) costs as in Roundy (1985) as well as additional

transportation costs. Inventory held at each retailer accrue holding costs.

The central DC is also a potential inventory keeping location subject to holding

costs, and it replenishes from the supplier by incurring replenishment costs, which

also consist of a fixed ordering cost as in Roundy (1985) as well as an additional

transportation cost. The supplier does not carry any inventory and replenishes on a

lot-for-lot basis to fulfill orders from the DC, and, hence, inventory related costs at

the supplier are sunk costs and immaterial for our purposes, as in Roundy (1985).

Clearly, this setting is applicable when the supplier is a manufacturer who incurs

linear production costs only or inventory holding is prohibited at the supplier. Also,

as in Roundy (1985), replenishment lead times are assumed negligible and there are
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no capacity restrictions. Although per-unit costs (of production/replenishment and

transportation) and a fixed cost of establishing the warehouse can be incorporated in

the proposed model in a trivial fashion, they are omitted without loss of generality

since they are, in fact, immaterial for our purposes.

This problem of interest is a generalization of the two-stage distribution system

discussed in Chapter III since the central DC, whose location is to be determined,

is now an inventory keeping location and incurs a fixed replenishment and inventory

holding cost. Hence, the inventory policy of the central DC must be coordinated with

the inventory policies of the retailers. This characteristic brings additional complex-

ity to the models and solution techniques. Considering the setting described above,

the problem is the simultaneous optimization of central DC location and inventory

replenishment decisions with the objective of minimizing the system-wide transporta-

tion, fixed ordering, and inventory holding costs. Since we consider the case where

the DC location is represented by two continuous decision variables corresponding to

the unknown coordinates of the DC as in Chapter III, the underlying problem is a

generalization of both

• the Weber problem (Love et al., 1988), to explicitly consider the inventory

decisions along with transportation, fixed ordering and inventory holding costs,

and

• the SWMR problem (Roundy, 1985), to explicitly consider the DC location

decision along with transportation costs.

The resulting model is applicable in traditional distribution, crossdocking, and

vendor-managed inventory (VMI) applications as discussed next.

In the context of a traditional distribution application, suppose that the sup-

plier is a manufacturer who does not have an on-site inventory keeping facility, and,
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hence, is interested in establishing an intermediate distribution center (DC) for serv-

ing multiple smaller warehouses called bins, i.e., “retailers,” at existing geographically

dispersed locations, say, throughout a state, via direct shipments from the DC. If the

distribution operations, i.e., warehousing and transportation, are managed centrally

by the supplier, it may make economical sense to establish a central DC for coor-

dinating outbound shipments in order to realize economies of scale inherent in bulk

transportation from the manufacturer to the DC while at the same time minimiz-

ing the system-wide distribution costs including transportation, fixed ordering, and

inventory holding costs.

If economical, the proposed model leads to a solution where the DC does not

carry inventory, and, hence, is operated as a cross-docking facility that receives

consolidated loads of shipments, from the manufacturer, where each individual ship-

ment is eventually destined to a specific bin via direct delivery from the cross-docking

facility.

Now, suppose that the supplier is a distributor who is interested in implementing

a VMI program in collaboration with its retailers for replenishing its inventory at

retail locations. In a typical VMI application, the inventory in the entire system,

including inventory at the retailers, is owned by the supplier who is the sole decision

maker designing the replenishment plan and overseeing the transportation operations

(Bernstein et al., 2007; Çetinkaya and Lee, 2000). Hence, the distributor is, in fact,

interested in minimizing the system-wide distribution costs which, in this case, include

inventory related costs. If each retailer requests a direct delivery for prompt and

hassle-free replenishments, then the supplier should evaluate two options:

O1. Developing a replenishment plan with retailer-specific deliveries directly from

the supplier location.
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O2. Developing an integrated location-inventory strategy by establishing a central

DC to coordinate (i) consolidated loads of shipments to the DC from the supplier

location and (ii) direct shipments from the central DC to the retailers.

The first option can be evaluated using the existing literature whereas in order to

evaluate the latter option the distributor is faced with the problem of interest in this

chapter.

We emphasize that our focus here is on the impact of coordinated replenishments

considering the case of direct deliveries between the successive tiers of the underlying

distribution system. Incorporation of cost savings associated with vehicle routing for

simultaneous optimization of location and inventory decisions in the setting we con-

sider remains an important and challenging practical problem for future investigation.

Vehicle routing related generalizations of joint location inventory model are aimed at

extending Herer and Roundy’s (Herer and Roundy, 2000) results developed consid-

ering the case where the central DC location is known, and our analysis provides a

foundation for these generalizations as well.

In summary, considering a basic setting with practical motivations, we investi-

gate the impact of location decisions on inventory decisions and vice versa. A careful

investigation of these impacts requires integrated decision-making, a task which leads

to an interesting optimization problem generalizing the basic models of location the-

ory and inventory theory. As we demonstrate later, the solution of the problem

obtained using integrated decision-making differs greatly from the one obtained using

the traditional sequential decision-making–where the location decision precedes the

inventory decisions –as far as the system-wide costs are concerned.

The organization of this chapter is as follows. In the next section, we present

the problem notation as well as the general problem formulation with generic trans-
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portation costs. In Sections IV.2 and IV.3, we investigate the general problem with

quantity-based PII-Q and quantity- and distance-based PII-Qd transportation costs

in three-stage supply chains, respectively. In Section IV.4, we analyze the problem

with distance-based transportation costs, PII-d. This section presents the most dif-

ficult cases of the problem. In the following sections IV.5 and IV.6, we consider

analytical and structural properties of the problem PII-d that leads to efficient algo-

rithms. In Section IV.7, we present numerical results regarding the effectiveness of the

algorithmic approaches as well as the value of integrated decision-making. Finally,

Section IV.8 summarizes our key findings from the analysis of continuous facility

location problems in three-stage supply chains and concludes the chapter.

IV.1. General Model and Notation

As mentioned in the introduction, our modeling assumptions are similar to those in

the SWMR problem setting except for the explicit consideration of (i) the central

DC location decision and (ii) transportation costs associated with deliveries from the

supplier to the central DC and from the central DC to the retailers. In particular,

we consider quantity-based (3.3), quantity- and distance-based (3.4), and distance-

based (3.5) transportation costs as in Chapter III. For this reason, unlike the SWMR

problem, we take into account the facility locations–representing the supplier, DC,

and retailers–explicitly.

More specifically, we consider a total of n ≥ 2 retailers. The known locations of

the supplier and the retailers are denoted by P0 = (a0, b0) and Pi = (ai, bi), i ∈ I =

{1, . . . , n), respectively. The unknown DC location is denoted by X = (x, y). We

treat x and y as decision variables.

To proceed with the mathematical model, we summarize the notation introduced
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so far and define some additional parameters:

I set of retailers, I = {1, . . . , n).

P0 location of the supplier, P0 = (a0, b0).

Pi location of retailer i, Pi = (ai, bi), ∀i ∈ I.

Di demand rate faced by retailer i, ∀i ∈ I.

D total demand rate, D =
∑

i Di.

h′
0 inventory holding cost rate for each unit of inventory at the DC.

h′
i inventory holding cost rate for each unit of inventory at retailer i,

h′
i ≥ h′

0, ∀i ∈ I.

h0 echelon holding cost rate at the DC, h0 = h′
0.

hi echelon holding cost rate at retailer i, hi = h′
i − h′

0, ∀i ∈ I.

K0 fixed ordering cost of the DC.

Ki fixed ordering cost of retailer i, ∀i ∈ I.

Tb fixed base period (set a priori).

α0 transportation cost per replenishment to the DC from the supplier.

αi transportation cost per replenishment to retailer i, ∀i ∈ I, from the DC.

The decision variables of the problem are:

T0 reorder interval of the DC.

Ti reorder interval of retailer i, ∀ i ∈ I.

T vector of reorder intervals, T = (T0, . . . , Tn).

Q0 order quantity of the DC from the supplier.

Qi order quantity of retailer i from the DC, ∀i ∈ I.

Q vector of order quantities, Q.

X vector of unknown DC location, X = (x, y).

Before constructing the mathematical model, let us recall the problem setting
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FIGURE 9. Problem Setting.

P0
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P1 Pn

K0, h0
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Q0, T0

Q1, T1 Qn, Tn

described in detail in previous section and illustrated by Figure 9. The main assump-

tions of this setting that relate to the decision variables and cost parameters can be

summarized as follows:

• The DC is replenished at successive reorder intervals of T0 incurring α0 + K0,

which represents the total costs of transportation and ordering per DC replen-

ishment.

• Retailer i ∈ I is replenished at successive reorder intervals of Ti incurring

αi + Ki, i ∈ I, which represents the total costs of transportation and ordering

per retailer replenishment.

• Echelon holding costs accumulate at rate h0 at the DC over T0 and at rate hi,

at retailer i over Ti.

• The reorder intervals, T0, . . . , Tn, are chosen as power-of-two multiples of a fixed

base period, Tb.
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Under these assumptions, the system-wide average annual total costs of trans-

portation, fixed ordering, and inventory holding, denoted by Z(X,T), can be ex-

pressed as

Z(X,T) =
α0

T0

+
K0

T0

+
∑

i∈I

1

2
h0 Di max{T0, Ti}

+
∑

i∈I

αi

Ti
+
∑

i∈I

Ki

Ti
+
∑

i∈I

1

2
hi Di Ti. (4.1)

In (4.1), the first three terms represent the average annual costs at the DC, and

the last three terms represent the average annual costs at the retailers. In particular,

the first term is the average annual transportation cost from the supplier to the DC,

the second and third term are the average annual ordering and holding costs at the

DC, respectively. The fourth term is the total average annual transportation cost

from the DC to retailers, and, finally, the fifth and sixth terms represent the total

average annual ordering and holding costs at the retailers, respectively. We note that

(4.1) does not include an annual fixed cost for establishing the DC as we assume that

this cost is independent of the DC location, and therefore, a sunk cost that is immate-

rial for our purposes. Likewise, the per-unit costs (of production/replenishment and

transportation) are omitted without loss of generality since it is trivial to show that

they lead to constant annual cost terms in (4.1), and, hence, they are also immaterial

for our purposes. Treating the DC location, X = (x, y), and reorder intervals of the

warehouse and retailers, T = (T0, . . . , Tn), as our decision variables, the integrated

location-inventory problem of interest, denoted by (PII ), can be formulated as the

following mixed integer nonlinear program:
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Min Z(X,T) (PII )

subject to

Ti = 2viTb and vi ∈ Z, for i = 0, . . . , n. (4.2)

T ∈ R
n+1
+ , X ∈ R

2. (4.3)

The solution of PII is greatly influenced by the structure of the transportation

costs (αi, i = 0, . . . , n) in the problem. Hence, we analyze this integrated location-

inventory problem of interest under three different transportation cost structures in-

troduced in Chapter III. In particular, we will consider quantity-based (3.3), quantity-

and distance-based (3.4), and distance-based (3.5) transportation costs in (4.1).

IV.2. Models with Quantity-based Transportation Costs (PII-Q)

This section focuses on the analysis of the integrated location-inventory problem in

continuous facility location problem setting in three-stage distribution systems where

the transportation costs from the supplier to the DC (α0) and from the DC to the

retailers (αi, ∀i ∈ I) are modeled as a function of quantity as in (3.3). With this

transportation cost structure, the general model (4.1) is specialized as

Z(X,T) =
pq

0 + rq
0Q0

T0

+
K0

T0

+
∑

i∈I

1

2
h0 Di max{T0, Ti}

+
∑

i∈I

pq
0 + rq

0Q0

Ti
+
∑

i∈I

Ki

Ti
+
∑

i∈I

1

2
hi Di Ti. (4.4)

It is important to note that the model does not contain any cost term related to

the location of the central DC. In other words, there are no terms that restrict the

location of the DC, or penalize the distance between the DC and the other facilities.

The location of the DC can be anywhere on the plane. Therefore, the location problem
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and the inventory policy decisions are independent of each other. Moreover, after

re-organizing the terms of the cost function, we obtain a shifted SWMR lot sizing

problem:

Z(X,T) =
∑

i∈I∪{0}

rq
i Di +

K ′
0

T0

+
∑

i∈I

K ′
i

Ti

+
∑

i∈I

1

2
h0Di max{T0, Ti}+

∑

i∈I

1

2
hiDiTi,

where w0 = D, K ′
0 = K0 +pq

0, and K ′
i = Ki +pq

i , for all i ∈ I. In this formulation, the

first term is a constant, and the remaining cost terms are equivalent to the SWMR

lot sizing problem. Hence, the inventory policy parameters are determined by solving

this corresponding SWMR lot sizing problem as explained in Section II.2.2 using the

algorithm developed by Roundy (1985).

The following lemma summarizes this important result.

LEMMA 5 1. When the transportation costs in (4.1) are modeled as in (3.3),

the inventory policy problem and the location problem are independent.

2. The DC can be located anywhere on the plane.

3. The inventory policy decisions can be found by solving the modified SWMR

model with new setup costs K ′
0 = K0 + pq

0 and K ′
i = Ki + pq

i at the warehouse

and at retailer i ∈ I, respectively. The overall cost of the SWMR is augmented

by total variable transportation cost, i.e.,
∑n

i=0 rq
i wi.

As a special case, we investigate this problem for a single supplier, central DC,

and a single retailer distribution system. Then, the underlying inventory problem

share the similar characteristics of the (SWSR) lot sizing problem discussed in Section

II.2.2. For this special case, we consider the following objective function:

Z(X,Q) = D(rq
0 + rq

1) + (pq
0 + K0)

D

Q0
+

1

2
h1Q1 + (pq

1 + K1)
D

Q1
+

1

2
h1Q1

= min
Q

c + k′
0

D

Q0

+
1

2
h0Q0 + k′

1

D

Q1

+
1

2
h1Q1,
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where D = D1, c = D(rq
0 + rq

1) and K ′
i = pq

i +Ki for i = 0, 1. Note that, again in this

special case, there are no restrictions regarding the location of the central DC. Hence,

the problem is reduced to determining inventory policy parameters, which, in this

case, are Q0 and Q1. Recalling that the underlying inventory problem is equivalent

to the SWSR lot sizing problem, this problem can be solved effectively by restricting

ourselves to integer ratio policies. Let Q1 = Q and Q0 = m ∗Q1 := m ∗Q, where m

is an integer multiple. With this change in the objective function, we obtain

Z = c + K ′
0

D

mQ
+ K ′

1

D

Q
+

1

2
h0mQ +

1

2
h1Q.

In this formulation, the decision variables are Q and m. The following lemma outlines

how to compute these variables:

LEMMA 6 1. Optimal m∗ value is given with the equation

m∗ = arg min{Z(⌊m0⌋), Z(⌈m0⌉)}

where

m0 =

√
K ′

0h1

K ′
1h0

.

2. The optimal value of the cost Z and order quantity Q as a function of m∗ is

given as

Z∗(m∗) = D(rq
0 + rq

1) +

√
2D(K ′

0h0 + K ′
1h1) + 2DK ′

1h0m∗ + 2D
K ′

0h1

m∗

and

Q∗(m∗) =

√
2(K ′

0 + m∗K ′
1)D

m∗(m∗h0 + h1)
.

3. The inventory policy parameters (Q∗, m∗) do not have an effect on location

decision.

Proof: The proof of the first two parts directly follows from Çetinkaya and Lee
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(2002), p. 551.

For the last part, since there is no restriction on the DC location regarding the

costs or constraints, the DC can be located anywhere on the line from the supplier

to the retailer, independent of the value of m∗. �

IV.3. Models with Quantity- and Distance-based Transportation Costs

(PII-Qd)

In this section, we analyze the case where the transportation costs in the three-stage

distribution system are a function of quantity and distance as in (3.4). With this

type of transportation cost structures, the general cost function (4.1) is re-written as

Z(X,T) =
pqd

0 + rqd
0 Q0d(X,P0)

T0
+

K0

T0
+
∑

i∈I

1

2
h0 Di max{T0, Ti}

+
∑

i∈I

pqd
i + rqd

i Qid(X,Pi)

Ti

+
∑

i∈I

Ki

Ti

+
∑

i∈I

1

2
hi Di Ti. (4.5)

Using the properties of the SWMR lot sizing problem including zero inventory order-

ing property and the relation Qi = Ti ∗Di
1, we re-organize (4.5):

Z(X,T) =
∑

i∈I∪{0}

rqd
i Didi +

K0 + pqd
0

T0
+
∑

i∈I

1

2
h0 Di max{T0, Ti}

+
∑

i∈I

Ki + pqd
i

Ti

+
∑

i∈I

1

2
hi Di Ti, (4.6)

where di = d(X,Pi) for i ∈ I ∪ {0}.

In this formulation, the first and fourth cost terms contain only DC-location

related decision variables, and the rest of the cost terms contain only inventory-

related decision variables. Hence, the location or distance related decision variables

do not interact with the decision variables regarding the inventory policy parameters.

1D0 = D
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With this characteristic property, the problem reduces to finding a solution to the

location problem (defined by the first cost term) and a solution to the inventory

problem (defined by the rest of the cost terms) separately. In fact, letting the weight

of each facility wi = rqd
i Di, for i ∈ I ∪ {0}, the location problem is a Weber problem.

The following lemma summarizes this structural result.

LEMMA 7 For PII-Qd, the facility location and the inventory problems are sepa-

rable, i.e.,

Z(X,T) = ZL(X) + ZI(T),

where

ZL(X) =
∑

i∈I∪{0}

rqd
i Did(X,Pi) and

ZI(T) =
∑

i∈I∪{0}

K ′
i

T0
+
∑

i∈I

1

2
h0 Di max{T0, Ti}+

∑

i∈I

1

2
hi Di Ti,

where K ′
i = Ki + pqd

i for i ∈ I ∪ {0}.

In Lemma 7, ZL(X) is the Weber problem, and its solution depends on the

distance norm as explained in Section II.1.1. On the other hand, ZI(T) is the SWMR

lot-sizing problem and is solved by Roundy’s algorithm (see Section II.2.2).

IV.3.1. Single-Retailer Case (PII-Qd-SR)

In this subsection, we consider a special case of PII-Qd with only one retailer. Hence,

Lemma 7 holds, and the average annual cost for PII-Qd-SR is given as

Z(X,Q) = ZL(X) + ZI(Q),
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where

ZL(X) = Drqd
0 d0 + Drqd

1 d1,

ZI(Q) = K ′
0

D

Q0
+

1

2
h0Q0 + K ′

1

D

Q1
+

1

2
h1Q1,

where K ′
i = pqd

i + Ki, for i = 0, 1.

In this formulation, ZL(X) is a special Weber problem with only two existing

facilities, and ZI(Q) is the SWSR lot sizing model. To solve ZI(Q), we follow an

analysis similar to the one in Section IV.2. The optimal order quantity of the retailer

Q and integer multiple m∗ is estimated with the closed-form formula in Lemma 6.

The following lemma gives us the optimal location of the central DC X∗ =

(x∗, y∗):

LEMMA 8 Optimal location X∗ = (x∗, y∗) of the central DC satisfies one of the

three conditions depending on the relation between the unit transportation costs from

the supplier to the DC (rqd
0 ) and from the DC to the retailer (rqd

1 ):

1. If rqd
0 > rqd

1 , X∗ = (x∗, y∗) = P0 = (a0, b0).

2. If rqd
1 > rqd

0 , X∗ = (x∗, y∗) = P1 = (a1, b1)

3. Otherwise, rqd
1 = rqd

0 , the warehouse can be anywhere on the line connecting the

retailer and the supplier.

Proof: Since ZL(X) is a special Weber problem with only two existing facilities, the

feasible region for ZL(X) has only two extreme points. These are the location of the

supplier, P0 = (a0, b0), and the location of the retailer, P1 = (a1, b1). Furthermore,

the convex hull of the two extreme points is a line. We assume that a norm is used to

represent the distances so that the triangular inequality holds. Thus, we only consider

the points on the line (or the roadway) that connects the supplier and the retailer as
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potential DC locations. We let d represent the total distance between the supplier and

the retailer and d0 represent the distance between the DC and the supplier. Then,

the distance between the DC and the retailer is given by d− d0.

Assume that rqd
0 > rqd

1 . Let the optimum location of the facility be X∗ = (x∗, y∗),

some point on the line |P0P1| other than P0 = (a0, b0).

Let Z∗
I and Z∗

L be the optimum cost of ZL(X) and ZI(Q), respectively. Since

ZL(X) and ZI(Q) are separable, the optimal cost of PII-Qd-SR, Z∗, is equal to the

optimal cost of the inventory problem Z∗
I and the cost of the location problem:

Z∗ = Z∗
I + D

{
rqd
0 d0 + rqd

1 d1

}

= Z∗
I + D

{
rqd
0 d0 + rqd

1 [d− d0]
}

> Z∗
I + Drqd

1 d

where the last inequality follows from the assumption rqd
0 > rqd

1 and locating the DC

at P0 = (a0, b0). However, since Z∗ is the optimal solution, this is a contradiction.

Hence, the DC is optimally located at the supplier, x∗ = a0 and y∗ = b0.

Similarly, for the second case, when rqd
0 < rqd

1 , the minimum cost facility location

occurs when d0 = d and d1 = 0. Therefore, the optimal DC location is at P1. In

the third case, the general cost function does not change by changing the location of

the DC. Therefore, both of the extreme points, P0 and P1, and, in fact, any convex

combination of these extreme points which is actually the whole convex hull for this

case, are optimal. �

IV.4. Models with Distance-based Transportation Costs (PII-d)

In this section, we analyze the integrated location and inventory problem in three

stage distribution systems where the transportation costs are a function of distance
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as in (3.5). With this type of transportation cost structure, the general cost function

(4.1) is re-written as

Z(X,T) =
pd

0 + rd
0d(X,P0)

T0
+

K0

T0
+
∑

i∈I

1

2
h0 Di max{T0, Ti}

+
∑

i∈I

pd
i + rd

i d(X,Pi)

Ti
+
∑

i∈I

Ki

Ti
+
∑

i∈I

1

2
hi Di Ti. (4.7)

In this formulation, second, third, fifth, and sixth cost terms contain only inventory-

related decision variables. However, the first and fourth terms not only contain

inventory-related decision variables but also DC-location related decision variables.

Hence, the location or distance related decision variables heavily interact with the de-

cision variables regarding the inventory policy parameters. This interaction demon-

strates the need for simultaneous optimization of location and inventory decisions.

However, due to this strong interaction, the solution PII-d-MR is quite complicated.

In order to be able to understand this problem and provide a solution framework, in

the next two sections, Sections IV.5 and IV.6, we investigate analytical and algorith-

mic properties of the problem.

Before concluding this section, we present an analytical solution for a special

case of the problem with distance-based transportation cost where there is only one

retailer in the three-stage distribution system.

IV.4.1. Single Retailer Case (PII-d-SR)

In this section, we consider a special case of PII-d where there is a single retailer

whose demand rate is denoted by D. Since the integer ratio policies are effective in

solving the single retailer lot-sizing problem (Goyal, 1976; Roundy, 1985), we restrict

the inventory policy to this class of policies, i.e., we assume that the warehouse’s

order quantity, Q0 = T0D, is an integer multiple m of the retailer’s order quantity
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Q1 = T1D so that Q0 = mQ1. As in Section IV.3.1, we assume that a norm is used to

represent the distances so that the triangular inequality holds and we let d represent

the total distance between the supplier and the retailer and d0 represent the distance

between the warehouse and the supplier. Then, the distance between the warehouse

and the retailer is given by d−d0. Also, letting K ′
i = pi+Ki, for i = 0, 1 and rewriting

(4.7), the single-retailer problem is given by

Min Z(d0, Q1, m) = rd
0D

d0

mQ1
− rd

1D
d0

Q1
+ rd

1D
d

Q1
+ K ′

0

D

mQ1
+ K ′

1

D

Q1

+
1

2
h0mQ1 +

1

2
h1Q1 (4.8)

subject to

0 ≤ d0 ≤ d, Q1 ∈ R+, m ∈ Z+.

Here, Z(d0, Q1, m) represents the average annual total costs of transportation, fixed

ordering, and inventory holding as a function of the decision variables d0, the distance

between the warehouse and the supplier; Q1, the order quantity of the retailer; and

m, the number of retailer reorder intervals within the warehouse reorder interval.

Although the first term of (4.8) contains all three decision variables in a nonlinear

fashion, the optimal solution, denoted by (d∗
0, Q

∗
1, m

∗), can be computed easily using

Theorem 3. Before we proceed with this result, let us define

Z1(m) =

√

2D

(
rd
1dh1 + K ′

0h0 + K ′
1h1 + (rd

1dh0 + K ′
1h0)m +

K ′
0h1

m

)
, (4.9)

Z2(m) =

√

2D

(
rd
0dh0 + K ′

0h0 + K ′
1h1 + K ′

1h0m +
(rd

0dh1 + K ′
0h1)

m

)
, (4.10)

m1 =

√
K ′

0h1

K ′
1h0 + rd

1dh0

, and m2 =

√
rd
0dh1 + K ′

0h1

K ′
1h0

. (4.11)

THEOREM 3 Based on the ratio rd
0/r

d
1, m∗ is given by one of the following three

cases:
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• If rd
0/r

d
1 < m1, then m∗ = arg min{Z2(⌊m2⌋), Z2(⌈m2⌉)}.

• If m1 ≤ rd
0/r

d
1 ≤ m2, then m∗ = arg min{Z1(⌊m1⌋), Z1(⌈m1⌉), Z2(⌊m2⌋), Z2(⌈m2⌉)}.

• If rd
0/r

d
1 > m2, then m∗ = arg min{Z1(⌊m1⌋), Z1(⌈m1⌉)}.

In all cases,

d∗
0 =





0, if m∗ ≤ rd
0/r

d
1

d, otherwise
and

Q∗
1 =

√
2D(d∗

0(r
d
0 −m∗rd

1) + m∗rd
1d + K ′

0 + K ′
1)

m∗(h0m∗ + h1)
, (4.12)

i.e., in the case m∗ ≤ rd
0/r

d
1, the optimal warehouse location coincides with the sup-

plier, and in the case m∗ > rd
0/r

d
1, the optimal warehouse location coincides with the

retailer location. Furthermore, when rd
0/r

d
1 is an integer and m∗ = rd

0/r
d
1, then any

point on the line between the supplier and the retailer, including the end points, is

optimal.

Proof: For fixed values of m and d0, we consider the problem minQ1>0{Z(d0, Q1, m)}

for which it is easy to show that the unique optimal solution, denoted by Q∗
1(d0, m),

is given by

Q∗
1(d0, m) =

√
2D(d0[rd

0 −mrd
1] + mrd

1d + K ′
0 + K ′

1)

m(h0m + h1)
. (4.13)

Substituting (4.13) in (4.8), we have

Z(d0, Q
∗
1(d0, m), m) =

√
2D(d0[rd

0 −mrd
1] + mrd

1d + K ′
0 + K ′

1m)(h0m + h1)

m
. (4.14)

Next, for a fixed value of m, we consider the problem min0≤d0≤d{Z(d0, Q
∗
1(d0, m), m)}.

We observe that Z(d0, Q
∗
1(d0, m), m) is a increasing function of d0 if m < rd

0/r
d
1

whereas it is a decreasing function of d0 if m > rd
0/r

d
1. Furthermore, it is inde-

pendent of d0 when m = rd
0/r

d
1. It follows that the optimal solution of this problem,
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denoted by d∗
0(m), is

d∗
0(m) =





0, if m < rd
0/r

d
1,

[0, d], if m = rd
0/r

d
1,

d, if m > rd
0/r

d
1.

(4.15)

Then using (4.14), it is easy to show that

Z(d∗
0(m), Q∗

1(d0, m), m) =





Z1(m), m ≤ rd
0/r

d
1,

Z2(m), m > rd
0/r

d
1,

where Z1(m) and Z2(m) are given by (4.9) and (4.10), respectively.

In order to compute m∗, we now consider the problem minm∈Z+
{Z(d∗

0(m), Q∗
1(d0, m), m)}.

Observe that Z(d∗
0(m), Q∗

1(d0, m), m) is continuous, and both functions Z1(m) and

Z2(m) are of the form
√

α + βm + γ/m where α, β, and γ are positive constants.

Although
√

α + βm + γ/m is not convex, it is straightforward to show that (see

Çetinkaya and Lee (2002), p. 551 for a proof), the unique relaxed (non-integer) mini-

mizer
√

γ/β of α+βm+γ/m also minimizes
√

α + βm + γ/m. Further,
√

α + βm + γ/m

is strictly decreasing over m <
√

γ/β and strictly increasing over m >
√

γ/β. Using

these results, it is now easy to verify that Z1(m) is strictly decreasing over m < m1

and strictly increasing over m > m1. Likewise, Z2(m) is strictly decreasing over

m < m2 and strictly increasing over m > m2. Noting that m1 < m2, either one of

the following three cases holds:

• If rd
0/r

d
1 < m1 then Z(d∗

0(m), Q∗
1(d0, m), m) is a continuous, unimodal function

with a relaxed minimum at m = m2 > m1 so that

m∗ = arg min{Z2(⌊m2⌋), Z2(⌈m2⌉)}.

• If m1 ≤ rd
0/r

d
1 ≤ m2, Z(d∗

0(m), Q∗
1(d0, m), m) is a continuous bimodal function
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with only two local relaxed minimums at m1 and m2 so that

m∗ = arg min{Z1(⌊m1⌋), Z1(⌈m1⌉), Z2(⌊m2⌋), Z2(⌈m2⌉)}.

• If m2 < rd
0/r

d
1 then Z(d∗

0(m), Q∗
1(d0, m), m) is a continuous, unimodal function

with a relaxed minimum at m = m1 < m2 so that

m∗ = arg min{Z1(⌊m1⌋), Z1(⌈m1⌉)}.

Once m∗ is computed d∗ and Q∗ are computed by substituting m∗ in (4.13) and

(4.15). �

IV.5. Analytical Analysis for PII-d-MR

In this section, we analyze the important characteristics of PII-d-MR that are ex-

ploited for developing algorithmic approaches in Section IV.6. These characteristics

relate to (i) the relationship between our problem and the SWMR and Weber prob-

lems, (ii) the impact of distance modeling assumptions, and (iii) the implications of

the use of power-of-two policies for coordinating replenishments.

IV.5.1. Properties of PII-d-MR that Relate to the SWMR and Weber

Problems

Upon a closer examination of Z(X,T) in (4.7), we observe that the first and fourth

terms contain both location and inventory decision variables demonstrating the in-

terrelationship between, and, hence, the need for simultaneous optimization of, these

two sets of decision variables. Also, these two terms demonstrate that location and

inventory decisions are interrelated through transportation costs. Letting Si(X) =



97

Ki + pi + rd
i d(X,Pi), i ∈ I ∪ {0}, in (4.7) leads to

Z(X,T) =
∑

i∈I∪{0}

Si(X)

Ti
+
∑

i∈I

1

2
h0Di max{T0, Ti}+

∑

i∈I

1

2
hiDiTi. (4.16)

Examining the terms of Z(X,T) in (4.16), it is easy to observe that PII-d-MR resem-

bles the SWMR problem where the “inventory replenishment” costs Si(X), i ∈ I∪{0},

change with respect to the unknown DC location. This is because consideration of the

per-mile transportation cost, rd
i , i ∈ I ∪{0}, leads to a DC-location-dependent replen-

ishment cost term, rd
i d(X,Pi), in Si(X). This observation, in turn, clearly demon-

strates the unique feature of the integrated location-inventory problem at hand and

the complication associated with the underlying coordinated replenishment problem.

Likewise, letting wi(Ti) = rd
i /Ti, i ∈ I ∪ {0}, in (4.7) leads to

Z(X,T) =
∑

i∈I∪{0}

wi(Ti)d(X,Pi) +
∑

i∈I∪{0}

pi + Ki

Ti

+
∑

i∈I

1

2
h0 Di max{T0, Ti}+

∑

i∈I

1

2
hi Di Ti. (4.17)

Observe that the first term of Z(X, T) in (4.17) resembles the objective function of the

Weber problem where the traditional weights associated with the existing locations

are now given by the “implied weights” wi(Ti), i ∈ I ∪ {0}, that change with respect

to the to-be-computed inventory policy parameters. Noting that, Ti = Qi/Di, i ∈

I ∪ {0}, where Qi is the replenishment quantity corresponding to the reorder in-

terval Ti, we have wi(Ti) = Ti/r
d
i = (rd

i /Qi)Di. That is, from the facility location

perspective, explicit consideration of reorder interval Ti, i ∈ I ∪ {0}, associated with

location Pi, results in an inventory-policy-parameter-dependent weight given by rd
i /Ti,

or, an implied per-unit-per-mile cost given by rd
i /Qi. This observation, also, clearly

demonstrates the unique feature of the integrated location-inventory at hand and the

complication associated with the underlying facility location problem.
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Finally, using (4.16) and (4.17), it is easy to verify the following remark.

REMARK 1 Given the DC location X, PII-d-MR reduces to the SWMR problem,

and, given the inventory policy T, PII-d-MR reduces to the Weber problem.

IV.5.2. Properties of PII-d-MR Based on Distance Functions

In order to represent the distances as a function of the unknown DC location, we con-

sider two commonly employed norms in continuous facility location studies; namely,

the squared Euclidean distance norm and the more general ℓp distance norm where

p = 1 and p = 2 represent the well-known rectangular and Euclidean distances, re-

spectively. It is clear that independent of the distance function, each of the first

and fourth terms of Z(X,T) in (4.7) is a function of both the location of the DC,

X = (x, y), and the inventory policy parameters, T.

The following remark is based on the well-known results, in inventory theory

(Roundy, 1985) and continuous facility location theory (Love et al., 1988), that relate

to the observation in Remark 1.

REMARK 2 Considering the squared Euclidean or ℓp distances, for a fixed X,

Z(X,T) in (4.7) is convex in T, and for a fixed T, Z(X,T) in (4.7) is convex

in X.

Let Xo(T) = (xo(T), yo(T)) denote the solution of PII-d-MR for a fixed T.

Remark 1 implies that if squared Euclidean distances are employed then

xo(T) =

∑
i∈I∪{0} wi(Ti)ai∑

I∪{0} wi(Ti)
and yo(T) =

∑
i∈I∪{0} wi(Ti)bi∑

I∪{0} wi(Ti)
, (4.18)

whereas if ℓp distances are employed then Xo(T) is computed using the well-known

generalization of the iterative Weiszfeld procedure developed by Morris and Verdini

(1979) as explained in Section II.1.1. Next, we summarize the properties of PII-d-MR
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regarding the distance functions by presenting formal results without explicit proofs.

We note that

• Lemma 9 is based on well-known results in location theory (Brimberg and Love,

1995),

• Lemma 10 can be proved in a straightforward fashion using the definiteness

characteristics of the associated Hessians, and

• the convexity properties of Z(X,T) in Theorem 4 follows from Lemma 10.

LEMMA 9 Letting Ω denote the convex hull of the existing locations i ∈ I ∪ {0},

we have Xo(T) ∈ Ω under both the squared Euclidean and ℓp distances.

LEMMA 10 Let fse, fp : R ∗ R ∗ R
+ → R where

fse(x, y, T ) =
(x− a)2 + (y − b)2

T
and fp(x, y, T ) =

(|x− a|p + |y − b|p)1/p

T
.

The function fse is jointly convex and fp is neither convex nor concave in (x, y, T ).

THEOREM 4 Under the squared Euclidean distances, the cost function Z(X,T)

is jointly convex in X and T. Under the ℓp distances, however, Z(X,T) is neither

convex nor concave in X and T.

IV.5.3. Properties of PII-d-MR Based on Power-of-Two Policies

We denote the optimum solution of PII-d-MR by (XP ,TP ) where XP = (xP , yP ) and

TP = (T P
0 , . . . , T P

n ). If the first constraint (4.2) of PII-d-MR is ignored, we obtain a

relaxed problem which we denote by R-d-MR. We represent the optimum solution of

R-d-MR by (X∗,T∗) where X∗ = (x∗, y∗) and T∗ = (T ∗
0 , . . . , T ∗

n). Clearly, Z(X∗,T∗)

provides a lower bound on Z(XP ,TP ), and, hence, a careful analysis of R-d-MR is
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useful for obtaining a good quality solution for PII-d-MR. Next, we present some

properties regarding the relationship between these two problems and their solutions

(in Section IV.5.3.1) followed by an observation (in Section IV.5.3.2) and a formal

result (in Section IV.5.3.3).

IV.5.3.1. R-d-MR as a Lower Bound

Following an approach similar to the one in Roundy (1985) (also summarized in

(Simchi-Levi et al., 2004, Chapter 6)) while at the same time incorporating the DC

location X and introducing some necessary notation, we first represent the R-d-MR

in a compact form with the eventual goal of illustrating some characteristics of its

solution. To this end, we define Zi(X, T0, Ti) = Si(X)/Ti + (1/2) h0Di max{T0, Ti}+

(1/2) hiDiTi, i ∈ I, and rewrite Z(X,T) given by (4.16) as

Z(X,T) =
S0(X)

T0
+
∑

i∈I

Zi(X, T0, Ti).

For a fixed DC location, X ∈ Ω, and a fixed DC reorder interval, T0, let us first

consider the problem minTi>0 {Zi(X, T0, Ti)} , i ∈ I. Defining gi = (1/2)hiDi and

gi = (1/2)h0Di, i ∈ I, this problem can be stated as

Z∗
i (X, T0) , Zi(X, T0, T

∗
i (X, T0)) = inf

Ti>0

{
Si(X)

Ti
+ giTi +

∑

i∈I

gi max{T0, Ti}
}

.

where T ∗
i (X, T0) is the corresponding solution. In order to solve this particular prob-

lem, we define τ ′
i(X) and τi(X)–called the breakpoints for reasons that will become

obvious shortly–as follows:

τ ′
i(X) =

√
Si(X)

gi + gi
, ∀X ∈ Ω, i ∈ I, and (4.19)

τi(X) =

√
Si(X)

gi

, ∀X ∈ Ω, i ∈ I. (4.20)
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For any fixed DC location X ∈ Ω and for all i ∈ I, it is easy to observe that

τ ′
i(X) ≤ τi(X). Then, for i ∈ I, one can show that (Roundy, 1985)

Z∗
i (X, T0) =






√
2[Si(X)(gi + gi)], if T0 < τ ′

i(X),

Si(X)/T0 + (gi + gi)T0, if τ ′
i(X) ≤ T0 ≤ τi(X),

√
2[Si(X)gi] + giT0, if τi(X) < T0,

(4.21)

and, the value of Ti that minimizes Zi(X, T0, Ti), for i ∈ I, can be expressed as a

function X and T0 as follows:

T ∗
i (X, T0) =





τ ′
i(X), if T0 < τ ′

i(X),

T0, if τ ′
i(X) ≤ T0 ≤ τi(X),

τi(X), if τi(X) < T0.

Based on this result, for any given T0 and X, the retailers can be classified into the

following three sets:

• G(X, T0) , {i ∈ I : T0 < τ ′
i(X)},

• E(X, T0) , {i ∈ I : τ ′
i(X) ≤ T0 ≤ τi(X)}, and

• L(X, T0) , {i ∈ I : τi(X) < T0}.

Note that, unlike the three sets proposed by Roundy (1985), these sets do not only

depend on T0 but they also depend on X.

Defining

z(X, T0) =
S0(X)

T0
+
∑

i∈I

Z∗
i (X, T0),

we now consider the problem minT0>0 {z(X, T0)} for the fixed DC location X. To this
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end, we also define

S(X, T0) = S0(X) +
∑

i∈E(X,T0)

Si(X),

H(X, T0) =
∑

i∈E(X,T0)

(gi + gi) +
∑

i∈L(X,T0)

gi, and

M(X, T0) =
∑

i∈G(X,T0)

√
2Si(X)(gi + gi) +

∑

i∈L(X,T0)

√
2Si(X)gi.

Then, using (4.21), we have

z(X, T0) =
S(X, T0)

T0

+ H(X, T0)T0 + M(X, T0).

When X is fixed, it follows from the analysis by Roundy (1985) that S(·, ·), H(·, ·),

and M(·, ·) are constant on those intervals where G(X, T0), E(X, T0) and L(X, T0) do

not change, i.e., the values of S(·, ·), H(·, ·), and M(·, ·) change only when T0 crosses

a breakpoint, τi(X) or τ ′
i(X) for some i ∈ I, and z(X, T0) attains its minimum

at the unique positive number, denoted by T ∗
0 (X), satisfying ∂z(X, T0)/∂T0 = 0.

Specifically, when X is fixed, T0 = T ∗
0 (X) if

T0 =

√
S(X, T0)

H(X, T0)
. (4.22)

The above expression illustrates the relationship between the relaxed DC reorder

interval and X. Then, when X is fixed, we can utilize the approach derived by

Roundy (1985) to minimize z(X, T0) by beginning at the rightmost piece of the 2n+1

pieces resulting from the breakpoints, and decrease T0 from piece to piece to find the

one containing T ∗
0 (X) which, in turn, gives the corresponding retailers sets and order

intervals.

The analysis we have presented above adopts the approach presented by Roundy

(1985) for computing the solution of R-d-M assuming that X is given. It is
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important to note that although the above discussion is useful from an expository

perspective for demonstrating the impact of X on the analysis by Roundy (1985), it

does not immediately lead to an effective way of computing (X∗,T∗) because treating

X as a decision variable ruins the order-preserving property without which it is not

straightforward to construct an efficient search procedure for computing (X∗,T∗) due

to the explicit consideration of distance functions discussed in Section IV.5.2. How-

ever, if (X∗,T∗) could have been computed effectively then this would have provided

a moderate lower bound on the value of Z(XP ,TP ) as we prove in Theorem 5.

THEOREM 5 Z(X∗,T∗) ≤ Z(XP ,TP ) ≤ 1.06 Z(X∗,T∗).

Proof: Suppose (X∗,T∗) is known. Fixing the DC location at X∗, we can obtain a

feasible solution for PII-d-MR by using the approach in Roundy (1985) to transform

T∗ to its corresponding vector of power-of-two intervals. Letting TP̄ denote this

vector, we then have Z(X∗,TP̄ )/Z(X∗,T∗) ≤ 1.06 due to Remark 1 and the main

result in Roundy (1985). The feasible solution (X∗,TP̄ ) may be improved further by

finding the best location corresponding to TP̄ using the appropriate technique that

depends on the distance function employed, as described in Section IV.5.2. Letting

XP̄ denote this new location, Z(XP̄ ,TP̄ ) is clearly an upper bound for Z(XP ,TP ).

Thus, Z(XP̄ ,TP̄ )/Z(X∗,T∗) ≤ 1.06, and the result follows. �

Unfortunately, (X∗,T∗) is difficult to compute for realistic problems with large

number of retailers. Hence, our main goal is to develop algorithmic approaches that

do not necessarily rely on (X∗,T∗), but, yet, are capable of producing solutions with

similar quality.
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IV.5.3.2. On Transforming (X∗, T∗) to (XP , TP )

It is easy to observe that the proof of Theorem 5 suggests a way to generate feasible

power-of-two reorder intervals for our problem under which the error bound of 6%

holds provided that we start with (X∗,T∗). The approach relies on the use of (X∗,T∗)

along with the solution approaches for the Weber and SWMR problems. For the sake

of discussion, let us momentarily assume that (X∗,T∗) is known and consider the

following generic steps of this approach where we assume assume a base period of 1

without loss of generality:

(1) Start with (X∗,T∗) with Z(X∗,T∗).

(2) Transform T∗ to TP̄ to obtain the corresponding power-of-two reorder intervals

using T P̄
i = 2⌊log2(T ∗

i )+0.5⌋.

(We have Z(X∗,T∗) ≤ Z(X∗,TP̄ ).)

(3) Find XP̄ = arg minX Z(X,TP̄ ) using the appropriate technique that depends on

the distance function employed, as described in Section IV.5.2.

(We have Z(X∗,T∗) ≤ Z(XP̄ ,TP̄ ) ≤ Z(X∗,TP̄ ).)

(4) Find TP̄∗ = arg minT Z(XP̄ ,T).

Transform TP̄∗ to T
¯̄P using T

¯̄P
i = 2⌊log2(T P̄

i )+0.5⌋.

(We have Z(X∗,T∗) ≤ Z(XP̄ ,T
¯̄P ) ≤ Z(XP̄ ,TP̄ ) ≤ Z(X∗,TP̄ ).)

At this point, we may observe that T
¯̄P = TP̄ . Hence, a fifth step, that generates the

optimum DC location for fixed T
¯̄P does not result in a new DC location as it leads to

XP̄ which has already been obtained in Step 3. Thus, the transformation process may

terminate with no guarantee on the optimality of the power-of-two reorder intervals

implied by (XP̄ ,TP̄ ) for PII-d-MR as illustrated below.
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EXAMPLE 1 Consider a two-retailer system where P0 = (0, 0);P1 = (0, 10);P2 =

(10, 0); D1 = D2 = 100; K0 = 50; K1 = K2 = 25; h0 = 1; h1 = h2 = 3; pd
0 = 1; pd

1 =

p2 = 5; rd
0 = 3; and rd

1 = rd
2 = 5. Also, for illustrative purposes, suppose that the

squared Euclidean distances are employed.

(1) The optimal solution for R-d-MR is X∗ = (3.944, 3.944) and T∗ = (1.393, 1.393,

1.393) with Z(X∗,T∗) = 1078.84.

(2) Transforming T∗ to TP̄ , we obtain TP̄ = (1, 1, 1) and Z(X∗,TP̄ ) = 1126.63 <

1.06 Z(X∗,T∗) = 1143.57.

(3) Then XP̄ = arg min Z(X,TP̄ ) = (3.846, 3.846), and Z(XP̄ ,TP ) = 1126.38 <

Z(X∗,TP̄ ) = 1126.63.

(4) For XP̄ fixed, the solutions for R-d-MR and PII-d-MR are TP̄∗ = (1.347, 1.347,

1.347) and T
¯̄P = (1, 1, 1), respectively. Furthermore, T

¯̄P = TP , and, conse-

quently, Z(XP̄ ,T
¯̄P ) = 1126.38 = Z(XP̄ ,TP ).

However, the optimal solution is given by TP = (2, 1, 2) and XP = (2.778, 5.556) with

a cost of Z(TP ,XP ) = 1123.28 < 1126.38 = Z(XP̄ ,T
¯̄P ).

As Example 1 shows, although the rounding scheme is still effective with a 6%

error bound provided that we start with (X∗,T∗), it does not guarantee the opti-

mum power-of-two reorder intervals for PII-d-MR. Since our main goal is to develop

algorithmic approaches that do not rely on (X∗,T∗), this observation must be con-

sidered carefully for our purposes. Upon a closer look at the case illustrated above,

we conclude that the premature termination is due to the fact that the implied best

power-of-two reorder intervals for fixed DC locations X∗ and XP̄ are the same. It

is this particular conclusion that we exploit later in Section IV.6.2.1 where we de-

velop an alternative iterative approach, called the Perturb algorithm, for computing

a solution of PII-d-MR that does not necessarily rely on (X∗,T∗).
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IV.5.3.3. Bounding the Power-of-Two Reorder Intervals

Now, we prove a formal result that we utilize for bounding the power-of-two reorder

intervals in solving PII-d-MR, and we note that we exploit this result later in Section

IV.6.2.2 where we develop an alternative approach, called the Circle algorithm, for

computing a solution of PII-d-MR that does not rely on (X∗,T∗).

Using Lemma 9, it is possible to bound Si(X), i ∈ I ∪ {0}, such that Smin
i ≤

Si(X) ≤ Smax
i where

Smin
i = Ki + pi and Smax

i = Ki + pi + rd
i max

j∈I∪{0}
{d(Pi,Fj)}.

Let TP min = (T P min
0 , . . . , T P min

n ) denote the power-of-two reorder intervals represent-

ing the solution of the SWMR problem (obtained using the approach in Roundy

(1985)) with setup costs Smin = (Smin
0 , . . . , Smin

n ). Likewise, let TP max = (T P max
0 , . . . ,

T P max
n ) denote the power-of-two reorder intervals representing the solution of the

SWMR problem with setup costs Smax = (Smax
0 , . . . , Smax

n ). Also let TR min = (TR min
0 ,

. . . , TR min
n ) and TR max = (TR max

0 , . . . , TR max
n ) denote the relaxed reorder intervals

leading to TP min = (T P min
0 , . . . , T P min

n ) and TP max = (T P max
0 , . . . , T P max

n ), respec-

tively. Recalling that we denote the optimal solution of PII-d-MR by (XP ,TP ) where

TP = (T P
0 , . . . , T P

n ), we have the following theorem.

THEOREM 6 T P
i ∈ [T P min

i , T P max
i ], ∀ i ∈ I ∪ {0}.

Proof: Let SP = (SP
0 , . . . , SP

n ) where SP
i = Ki + pi + rid(XP ,Pi) for i ∈ I ∪ {0}.

Hence, SP represents the setup cost vector corresponding to XP . Also, let TR =

(TR
0 , . . . , TR

n ) denote the optimal solution of R-d-MR for X = XP .

Using the results in Roundy (1985) (partly summarized in Section IV.5.3.1), the

retailers can be divided into three disjoint and collectively exhaustive subsets, namely

G, L and E such that we have the following:
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• i ∈ G for which TR
i > TR

0 and TR
i =

√
2SP

i

(hi+h0)Di
,

• i ∈ L for which TR
i < TR

0 and TR
i =

√
2SP

i

hiDi
, and

• i ∈ E for which TR
i = TR

0 and TR
i =

√
2[SP

0
+

P
i∈E SP

i ]P
i∈E(hi+h0)Di+

P
i∈L h0Di

.

Then, it is straightforward to show that TR
i is an increasing function of SP

i , for all

i ∈ I ∪{0}. Noting that, by definition, Smin
i < SP

i < Smax
i for all i ∈ I ∪{0}, we have

TR min
i < TR

i < TR max
i , ∀ i ∈ I ∪ {0}. (4.23)

Also, for all i ∈ I ∪ {0}, the corresponding power-of-two reorder interval T P
i satisfies

1√
2

TR
i ≤ T P

i = Tb 2vi ≤
√

2TR
i , vi ∈ Z. (4.24)

Using (4.24) and (4.23), we obtain

1√
2

TR min
i <

1√
2

TR
i ≤ T P

i ≤
√

2 TR
i <

√
2 TR max

i , ∀ i ∈ I ∪ {0}. (4.25)

Now, let us first compare
√

2TR min
i with T P

i .

• If
√

2TR min
i < T P

i , then T P min
i < T P

i since, by (4.24), we have TR min
i /

√
2 ≤

T P min
i ≤

√
2TR min

i .

• If T P
i ≤

√
2TR min

i , then T P min
i = T P

i since, by (4.25), we have TR min
i /

√
2 < T P

i

and there is only one power-of-two value between TR min
i /

√
2 and

√
2TR min

i .

Similarly, let us compare TR max
i /

√
2 with T P

i .

• If T P
i < TR max

i /
√

2, then T P
i < T P max

i since, by (4.24), we have TR max
i /

√
2 ≤

T P max
i ≤

√
2TR max

i .

• If TR max
i /

√
2 ≤ T P

i , then T P
i = T P max

i since, by (4.25), we have T P
i < (

√
2)TR max

i

and there is only one power-of two value between TR max
i /

√
2 and

√
2TR max

i .

Therefore, we conclude that T P min
i ≤ T P

i ≤ T P max
i for all i ∈ I ∪ {0}, and this

completes the proof. �
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IV.6. Algorithmic Approaches for PII-d-MR

In this section, we present algorithmic approaches for the solution of the integrated

location-inventory problem in three-stage distribution systems with continuous facil-

ity location setting. We emphasize that these approaches do not assume any spe-

cific form of the distance function. First, in Section IV.6.1, we address the issue of

computing a solution of R-d-MR. Second, in Section IV.6.2, we develop methods for

computing a solution of PII-d-MR that do not necessarily rely on the optimal solution

of R-d-MR. In the remainder of this section, considering Remark 1,

• the best relaxed or power-of-two reorder intervals corresponding to a fixed DC

location (i.e., fixed vector of setup costs) are obtained using the approach in

Roundy (1985), and

• the best DC location corresponding to a fixed vector of reorder intervals is ob-

tained by using the appropriate technique that depends on the distance function,

as described before in Section II.1.1,

without specific references to these methods.

IV.6.1. Solving R-d-MR

Although the proposed algorithmic approaches for PII-d-MR do not rely on the op-

timal solution of R-d-MR, the solution of this problem is still important because it

provides a realistic lower bound, and, hence, a useful benchmark, for our purposes. In

order to solve R-d-MR, we rely on two approaches. Namely, the L-BFGS-B Algorithm

and the IterativeRelaxed Algorithm.
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IV.6.1.1. The L-BFGS-B Algorithm

One can utilize the L-BFGS-B algorithm (Byrd et al., 1995; Zhu et al., 1997) provided

in the NEOS server2 (Czyzyk et al., 1998; Dolan, 2001; Gropp and More, 1997) for

solving R-d-MR. The L-BFGS-B algorithm is for large-scale optimization problems

with simple bounds on the variables and does not require any structure in the objective

function. It is a limited-memory quasi-Newton algorithm for bound-constrained or

unconstrained optimization. In this algorithm, the step-length is determined at each

iteration by a line-search routine that enforces a sufficient decrease condition and

a curvature condition. When the squared Euclidean are employed, the L-BFGS-B

algorithm guarantees the optimal relaxed solution (X∗,T∗) due to Theorem 4. How-

ever, if the ℓp distances are employed, then the objective function of R-d-MR is no

longer convex, and, hence, the L-BFGS-B algorithm does not guarantee (X∗,T∗).

The L-BFGS-B algorithm can still be employed to find the local optimums employing

a multi-start framework; but, this is computationally expensive. We take advantage

of the L-BFGS-B algorithm to obtain benchmarks for our computational tests in Sec-

tion IV.7. However, we note that its computational times are excessive for problems

with large number of retailers. Hence, the second approach discussed below, which

can also be implemented in a multi-start framework, presents an effective alternative

for computing a heuristic solution for R-d-MR.

IV.6.1.2. The IterativeRelaxed Algorithm

The IterativeRelaxed algorithm starts with a random DC location Xr in the convex

hull and computes the corresponding best relaxed reorder intervals (with the given

Xr), denoted by Tr, followed by computing the corresponding new best location (con-

2http://www-neos.mcs.anl.gov
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sidering the computed Tr), iteratively for a preset number of iterations leading to a

heuristic solution for R-d-MR. Based on our computational results, its average solu-

tion quality is comparable to the L-BFGS-B algorithm whereas its run-time is much

shorter. Due to these advantages, the solution obtained from the IterativeRelaxed

algorithm is also utilized as a warm-start for our proposed approaches for solving

PII-d-MR.

IV.6.2. Solving PII-d-MR

We propose three specific approaches for computing the solution of PII-d-MR effec-

tively.

IV.6.2.1. The Perturb Algorithm

Based on our discussion in Section IV.5.3.2, the best power-of-two reorder intervals

for our problem are not guaranteed by solving the underlying SWMR and Weber

problems iteratively, even if we could start with the optimal solution of R-d-MR,

(X∗,T∗). This is because these iterations generally result in premature termination.

To alleviate this situation, we utilize the observation provided before concluding Sec-

tion IV.5.3.2. More specifically, for a given DC location X, it is clear that the setup

costs, Si(X), are unique and so are the corresponding best relaxed reorder intervals.

Then, for a given DC location X, the best relaxed reorder intervals can be computed

and transformed to power-of-two reorder intervals, T. We observe that, due to this

rounding approach, there exist other locations that lead to the same power-of-two

reorder intervals as T. That is, for a fixed T, there is a region of possible locations (a

subset of point coordinates in the convex hull of retailers and the supplier) that imply

the same T. Once a T is fixed, the corresponding location problem has well-defined

“weights” and its solution gives the best location in the region for T. Fixing this
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best location as the new X and calculating the new setup costs Si(X), we can obtain

the new best relaxed reorder intervals, and then the new best power-of-two reorder

intervals.

There are now two possibilities. If the new T is different than the previous one,

then we are in a new region of locations leading to the new T. We find the new

best location, with the new weights, which is different than the previous location. On

the other hand, if the new T is the same as the previous one, then we have not left

the region of locations associated with the previous iteration (the corresponding best

location will not change). In this case, there are again two possibilities. Either a local

optimum is found or we have not been able to move out of the region of locations

leading to the same T (called premature termination earlier). The Perturb algorithm

provides a remedy to this latter situation via a perturbation of the current location

coordinates in a direction that improves the objective function value thereby either

avoiding premature termination or verifying that a local optimum is reached (if there

is no improving direction).

The Perturb algorithm is outlined in Display 3. The algorithm parameters (step

size, λ, and sweeping angle increment, δ) facilitate the perturbation process. After λ

and δ are initialized, the iterations begin with choosing a random location Xprev in the

convex hull. Given Xprev, we compute the corresponding best power-of-two reorder

intervals Tprev. Next, we compute the best location Xnext given Tprev. We iterate

one step further to obtain the new best power-of-two reorder intervals Tnext for given

location Xnext. After obtaining Tprev and Tnext, we compare these values. They may

or may not be the same. If Tprev 6= Tnext, we update the value of Tprev with Tnext

and continue with the iterative procedure at Step 4. If Tprev = Tnext, there are two

possibilities: a premature termination in the iterative procedure or the best power-of-

two reorder intervals are found. Thus, we check whether the objective function can be
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DISPLAY 3 The Perturb Algorithm.

0: Initialize step size λ and angular increment δ.

1: Pick a location Xprev in the convex hull randomly.

2: Calculate the modified setup costs Si(X
prev), ∀i ∈ I ∪ {0}.

Obtain the best power-of-two reorder intervals Tprev corresponding to Xprev.

3: Find the best facility location Xnext corresponding to Tprev.

4: Calculate the modified setup costs Si(X
next), ∀i ∈ I ∪ {0}.

Obtain the corresponding best power-of-two reorder intervals Tnext.

5: Compare Tprev and Tnext :
if Tprev 6= Tnext then

Tprev = Tnext.
Go to Step 4.

else
θ = 0.
while θ < 2π do

Xperturb = Xnext + λ(cos θ, sin θ).
Tperturb = arg minT Z(Xperturb,T).
if Z(Xperturb,Tperturb) < Z(Xnext,Tnext) then

Tprev = Tperturb.
Go to Step 4.

else
θ = θ + δ.

end if
end while

end if
Terminate with Xnext and Tnext as the solution.

improved further by perturbing the facility location Xnext. An improvement direction,

if there is one, is found by sweeping on a circle around Xnext. More specifically, we

obtain Xperturb by modifying the existing Xnext in the direction θ as much as the

step size λ. Considering location Xperturb, we compute for the corresponding best

power-of-two policy Tperturb. At this point, if the perturbed solution improves the

existing solution, we update Tprev with Tperturb and go back to the Step 4 of the

algorithm. Otherwise, using δ, we modify the direction θ, which is varied from 0◦
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to 360◦. At the end of the full circle sweep, if there does not exist an improving

direction, we terminate with Xnext and Tnext as the solution.The Perturb algorithm

produces high quality solutions, i.e., within 6% of the lower bound Z(X∗,T∗), as

evidenced by our numerical results in Section IV.7 and may find the optimum solution

under the provision that its parameters are selected carefully. If the step size is too

big, the algorithm may overshoot the optimum or fall short moving away a local

optimum. However, a relatively small step size that moves the current location to

another location in a different (improving) region of T is a better choice. On the

other hand, if the angular increment is too large, the approach may skip an improving

direction, and if it is too small, the runtime may increase.

IV.6.2.2. The Circle Algorithm

Theorem 6 suggests that one can compute the upper and lower bounds, T P min
i and

T P max
i , respectively, on the values of T P

i using Smin
i and Smax

i for all i ∈ I ∪ {0}.

The corresponding ranges, [T P min
i , T P max

i ], dictate the values of possible power-of-

two reorder intervals for each i ∈ I ∪ {0}, and if they offer a reasonable number of

possibilities then an enumeration algorithm can be utilized to find the best power-

of-two reorder intervals T P
i , i ∈ I ∪ {0} along with the implied XP . Although it

becomes immediately clear that this approach is computationally prohibitive for ge-

ographically realistic instances with large distances–where Smax
i and, hence, T P max

i

values are large–the concept of bounding the power-of-two reorder intervals is use-

ful for developing the Circle algorithm. The Circle algorithm successively considers

portions (discs), specified by circles, of the convex hull Ω and determines the best

power-of-two reorder intervals for that part of Ω. The algorithm uses the Restricte-

dEnumeration procedure, discussed later, as a subroutine to determine the possible

power-of-two reorder intervals implied by a circle of location coordinates.
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DISPLAY 4 The Circle Algorithm.

0: Initialize the circle radius R, IterNo=0 and set MaxIter.

1: Pick a location Xprev in Ω randomly (center of the circle).

2: For all i ∈ I ∪ {0}, calculate

SL
i = Ki + pi + rd

i





d(Xprev,Pi)−R, if d(Xprev,Pi) ≥ R.

0, otherwise.

SU
i = Ki + pi + rd

i (d(Xprev,Pi) + R).

3: Using the setup cost vectors SL = (SL
0 , . . . , SL

n ) and SU = (SU
0 , . . . , SU

n ) perform

the RestrictedEnumeration procedure to obtain the solution (Xnext, Tnext).

4: If the Xnext returned by the RestrictedEnumeration procedure is in the

current circle, then save the solution in Elite set. IterNo++. If IterNo<MaxIter,

go to Step 1, otherwise, go to Step 5.

Else Xprev = Xnext. IterNo++. If IterNo<MaxIter, go to Step 2, otherwise,

go to Step 5.

5: Return the solution with the lowest cost from the Elite set.

We provide the details of the Circle algorithm in Display 4. After we initialize

the radius of the circle R, we pick a location Xprev randomly in Ω and let Xprev

represent the center of the current circle. For each i ∈ I ∪ {0}, we determine the

smallest and largest setup costs (denoted by SL
i and SU

i , respectively, and computed

as explained in Display 5) considering the closest and the farthest points on the circle

from the existing location Pi. Note that if Pi falls into the circle, its SL
i is zero.

Employing the RestrictedEnumeration procedure (in Display 5), which is initialized

with SL and SU , we find the best vector of power-of-two reorder intervals (Tnext)

and a corresponding facility location Xnext. If Xnext falls into the circle, we place the

solution (Xnext, Tnext) in the Elite set and return to Step 1. Otherwise, we update

Xprev with Xnext, and return to Step 2. The iterations continue in this fashion until
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a preset maximum iteration count is reached.

We provide the details of the the RestrictedEnumeration procedure in Display 5.

The procedure determines the best power-of-two reorder intervals within a restricted

search space using the problem characteristics without performing a total enumeration

of all the possible power-of-two reorder intervals implied by the upper and lower

bounds (given by TL and TU in Display 5) on the reorder intervals. We illustrate the

procedure next using a numerical example.

EXAMPLE 2 Consider a three retailer system with SL = (1000, 100, 400, 50); SU =

(1200, 250, 500, 100); w1 = 80; w2 = 100; w3 = 160; h0 = 0.5; and h1 = h2 = h3 = 1.

The best vectors of power-of-two reorder intervals, considering SL and SU , are given

by TL = (0.5, 1, 2, 0.5) and TU = (2, 2, 2, 1), respectively, whereas the underlying

breakpoints for this problem are obtained using (4.19) and (4.20) as

τ ′L = (1.29, 2.30, 0.64), τL = (1.58, 2.82, 0.79),

τ ′U = (2.04, 2.58, 0.83), and τU = (2.50, 3.16, 1.11).

We sort these breakpoints and perform Step 3 of the RestrictedEnumeration procedure.

Over each of the 4n + 1 = 13 ranges resulting from the breakpoints, we determine

into which one(s) of the sets Ḡ, Ē and L̄ each retailer falls as illustrated in Figure

10. Also, over each of these 13 ranges we determine the set combinations for all

FIGURE 10. Ranges Resulting from the Breakpoints and Leading to the Possible Set

Combinations.

T1

T2

T3

ḠḠḠ

ḠḠḠ

ḠḠḠḠ

Ḡ
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retailers. The possible set combinations for this example are, starting from rightmost

range in Figure 10, {L̄, L̄, L̄}, {L̄, Ē, L̄}, {L̄, Ḡ, L̄}, {Ē, Ḡ, L̄}, {Ē, Ē, L̄}, {Ḡ, Ḡ, L̄},

{Ḡ, Ḡ, Ē}, {Ḡ, Ḡ, Ḡ}.

For each set combination, we determine the feasible vectors of power-of-two

reorder intervals using TL and TU . For instance, consider the set combination

{Ē, Ē, L̄}. Then, retailer 1 and 2 are in set Ē, and retailer 3 is in set L̄. Hence,

T1 = T2 = T0, and T3 < T0. Considering these restrictions, along with TL
i ≤

Ti ≤ TU
i , i = 1, 2, 3, leads to two feasible vectors of power-of-two reorder intervals,

(2, 2, 2, 0.5) and (2, 2, 2, 1), and these vectors are added to the restricted power-of-two

search space. Similarly, consider set combination {L̄, L̄, L̄} which indicates that T0 is

greater than T1, T2, and T3. However, since TL
i ≤ Ti ≤ TU

i , i = 1, 2, 3, there is no

such feasible solution. Hence, not every set combination contributes to the restricted

power-of-two search space. After forming the restricted power-of-two search space in

this manner, we compute the best facility location (X′) corresponding to each vector

of power-of-two reorder intervals in this space, and subsequently determine the best

vector of power-of-two reorder intervals (T′) for each of these possible locations. We

finally return the solution with the lowest total cost.

The Circle algorithm also produces quality solutions as evidenced in Section

IV.7. We note that if the circle radius R is large enough to cover the set I ∪

{0}, then the RestrictedEnumeration procedure takes into account all of the fea-

sible power-of-two reorder intervals implied by TP min = (T P min
0 , . . . , T P min

n ) and

TP max = (T P max
0 , . . . , T P max

n ) without performing a total enumeration, and, hence,

finds the optimal solution in one iteration. However, this iteration may take an ex-

cessive amount of time. More specifically, if R is sufficiently large then all of the

retailers are in set B (defined in Display 5). Then, each retailer has at least one range
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in Figure 10 containing all three sets, Ḡ, Ē, and L̄, simultaneously. If the ranges con-

taining all three sets coincide at least once for all retailers, then the number possible

set combinations is 3n which, in turn, implies an exponential worst-case run time.

That is, the larger the radius, the more time consuming the enumeration procedure

is, especially for systems with a large number of retailers. On the other hand, if the

radius R is zero, then the Circle algorithm becomes identical to the initial stages

(prior to the first perturbation) of the Perturb algorithm.

IV.6.2.3. A Local Search Algorithm

A local search algorithm, starting with a given initial feasible solution, finds a local

optima by iteratively generating feasible solutions with at least the same objective

value of the current solution under a given neighborhood function. We define the

neighborhood of an existing solution using the discrete neighborhood of the reorder

intervals. More specifically, let (Xk,Tk) be an existing solution where Tk = {Ti :

2viTb, ∀i ∈ I∪{0}, vi ∈ Z}. The neighborhood of Tk, N (Tk), is obtained by modifying

each of the reorder intervals in Tk, one at a time, to its closest discrete neighbors,

i.e., Tj = 2mjTb is modified as either 2mj−1Tb or 2mj+1Tb. Therefore, in a given

neighborhood, there are 2n+1 vectors of power-of-two reorder intervals. Furthermore,

this neighborhood is also constrained using Theorem 6, i.e., the reorder intervals that

are outside the bounds in Theorem 6 are not considered. We compute the best DC

location corresponding to each vector of power-of-two reorder intervals in N (Tk). We

pick the best overall solution in the existing neighborhood and compare it against the

current best solution. If it is better than the current best solution, we accept it as

the new best solution and the initial solution of the next iteration. The algorithm

terminates when no improving solution exists in the neighborhood of the current best

solution in which case a local minimum is found.
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IV.7. Numerical Results

The purpose of the numerical experiments is twofold. First, we present the com-

putational results demonstrating that our algorithms produce good quality solutions

when compared with the lower bound Z(X∗,T∗), i.e., within 6% of the lower bound,

in Section IV.7.1. Second, we discuss the potential benefit of PII-d-MR in practi-

cal decision-making situations by comparing the integrated model with benchmark

models in Section IV.7.2.

IV.7.1. Results Regarding the Performance of Algorithms

The computational results reported here were obtained considering the squared Eu-

clidean distances, i.e., the only case where Z(X∗,T∗) can be computed exactly for

benchmarking purposes. Under the ℓp distances, although the objective function of

PII-d-MR is no longer convex, our algorithms are still applicable. The results pre-

sented below offer promise that these algorithms may lead to acceptable solutions

under the ℓp distances as well–especially when they are employed in a multi-start

framework with different initial solutions.

The algorithms were implemented using C++ and run on a Pentium IV 3.2Ghz

machine with 1 GB memory considering numerous data sets. We report detailed

results based on four data groups that consist of 5, 20, 35, and 50 retailers. In

each group, we have 500 problem instances, generated randomly using the uniform

distributions in Table 10, resulting in a total of 2,000 of problem instances. We note

that computational results were also obtained for additional 20,480 problem instances

with other demand and cost parameter ranges3, and our fundamental conclusions are

3For the additional 20,480 instances, the demand and cost parameters were generated using the
approach in Chen et al. (2001) whereas the existing locations were generated as indicated in Table
10. In these instances, the demand and cost parameters of the retailers were varied only slightly,
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the same for all of the 22,480 problem instances examined. We do not report the

solution times here since they are very small, less than 1 second for the majority of

instances.

TABLE 10. Parameter Values for Testing the Performance of Proposed Algorithms

Parameters Range

Di U[630,770]
K0 U[720,880]
Ki U[135,165]
h0 U[1.8,2.2]
h′

i U[6.3,7.7]
p0 U[765,935]
pi U[180,120]
r0 U[1.8,2.2]
rd
i U[1.35,1.65]

Pi U[0,100]× U[0,100]
|I| 5, 10, 35, 50

Our main findings regarding the performance of our algorithms, including the

minimum, average, and maximum percentage gaps in the objective function value

when compared to the lower bound Z(X∗,T∗), are summarized in Table IV.7.1. For

each problem instance, the gap is defined as the percentage difference

Gap (% ) =
Zalgorithm − ZL−BFGS−B

ZL−BFGS−B
× 100,

where Zalgorithm is the cost of the solution suggested by the algorithm of interest

and ZL−BFGS−B is the optimal solution of R-d-MR obtained using the L-BFGS-B

algorithm, i.e., ZL−BFGS−B = Z(X∗,T∗).

Recall that the IterativeRelaxed algorithm provides a heuristic solution for

R-d-MR. We employ this algorithm in a multi-start framework (with 50 re-starts)

and take advantage of the resulting solution as a warm-start for our algorithms de-

i.e., not as significantly as in the other 2000 instances.
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TABLE 11. Summary of Percentage Gaps for Problem Instances Generated Using the

Data in Table 10
IterativeRelaxed Perturb Circle Local Search

|I| Min Ave Max Min Ave Max Min Ave Max Min Ave Max

5 0.00 (97) 0.31 2.94 0.02 1.69 4.14 0.02 1.81 5.61 0.02 1.72 4.46

20 0.00 (27) 0.50 5.67 0.57 1.63 3.26 0.57 1.67 3.83 0.57 1.66 3.27

35 0.00 (10) 0.48 5.37 0.79 1.84 2.91 0.79 1.92 4.35 0.79 1.88 2.96

50 0.00 (7) 0.49 5.22 0.85 1.93 2.89 0.85 2.06 3.73 0.91 1.98 3.17

veloped for solving PII-d-MR. For this reason, first we discuss our findings regarding

the performance of the IterativeRelaxed algorithm by providing a comparison of the

solution quality of this algorithm with the solution of R-d-MR obtained using the

L-BFGS-B algorithm on NEOS. The first portion of Table IV.7.1 summarizes these

findings4 where the average gaps are less than 0.50% and the maximum gaps do not

exceed 5.67%. We note that the L-BFGS-B algorithm is quite slow compared to the

IterativeRelaxed algorithm which provides good heuristic solutions for R-d-MR in a

fast manner.

The second portion of Table IV.7.1 displays our findings regarding the perfor-

mance of the Perturb algorithm. Observe that the average gaps are less than 1.93%

and the maximum gaps are less than 4.14%. Although these findings are based on

the case where the solution of the IterativeRelaxed algorithm was utilized as a warm-

start, we also obtained similar average and maximum gaps for the additional 20,480

problem instances where the Perturb algorithm was initiated considering a random

DC location, i.e., the average gaps were always less than 2% and the maximum gaps

were always less than 6%. This observation provides strong evidence that the Perturb

algorithm is capable of effectively producing high quality solutions regardless of the

4The information in parentheses is the number of instances for which the IterativeRelaxed algo-
rithm finds (X∗,T∗).
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initial DC location. As we have noted earlier, the solution quality and run time of

the Perturb algorithm depends on the step size λ and the sweeping angle δ. Hence,

we tested the impact of different λ and δ values, and the best results in terms of the

solution quality and run time were obtained with λ = 0.1 and δ = 5◦ for all data

groups.

The results on the performance of the Circle Algorithm in Table IV.7.1 are

also based on the case where the solution of the IterativeRelaxed algorithm was used

as a warm-start. These results suggest that the average percentage gaps are less

than 2.06% and the maximum gaps are less than 5.61% We note that, although the

maximum gaps associated with the Circle Algorithm were sometimes larger than

6% for the additional 20,480 problem instances examined, they are always less than

6.831%. We also note that when a random initial location was used as the center

of the circle, interestingly, the average gaps were slightly better. However, in terms

of the maximum gaps, the warm-start improved on random initialization. In order

to find the best radius R in terms of both the solution quality and run time, we

also experimented with different radius values. A radius that is 10% of dmax =

maxi,j∈I∪{0}{d(Pi,Pj)} seems to perform better for all data groups.

Finally, the last portion of Table IV.7.1 displays our findings regarding the per-

formance of the Local Search algorithm where the average gaps are less than

1.98% and the maximum gaps are less than 4.46%. Again, the solution of the It-

erativeRelaxed algorithm was utilized as a warm-start for obtaining these findings.

Since the IterativeRelaxed algorithm operates on neighborhood function of power-

of-two reorder intervals, we also initialized this algorithm with a random a feasible

(power-of-two) vector and observed that this approach consistently performed worse.

However, although maximum gaps with random initialization are high (potentially

more than 6%), the average gaps are generally only slightly larger than those in Table
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IV.7.1.

In summary, these findings indicate that the proposed algorithms are capable of

effectively producing high quality solutions.

IV.7.2. Results Regarding the Practical Use of PII-d-MR

For the purpose of illustrating the potential benefit of (PII-d-MR) in practical decision-

making situations, we discuss three benchmark models, and report additional numer-

ical results where the distances are modeled using the squared Euclidean distance

norm. We note that similar numerical results can be obtained for the case where the

distances are modeled using the ℓp distance norm as well.

IV.7.2.1. Measuring the Value of Integrated Decision-Making

The first two benchmark models, called BM1 and BM2, build on the idea that location

and inventory decisions have been made sequentially in traditional applications where,

typically, facility location decisions precede inventory decisions. We call this approach

the sequential framework. We utilize BM1 and BM2 in order to quantify the cost

advantage of PII-d-MR relative to the sequential framework with the purpose of

measuring the practical value of PII-d-MR.

In BM1, we apply the typical sequential framework in our problem setting

where the DC location decision is committed first. The DC location decision can

be addressed by minimizing the annual transportation cost, via solving the problem

minX∈R2 {∑n
i=0 ciDid(X,Pi)} where ci, i ∈ I∪{0}, denotes the per-unit-per-mile cost

between the DC and existing location Pi. During our discussion in Section IV.5.1, we

have demonstrated that the per-unit-per-mile costs, in fact, depend on the inventory

policy parameters. However, within the sequential framework, due to the lack of a

better approach, we have to rely on crude estimates of ci, i ∈ I∪{0}, that may not ac-
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curately consider the impact of inventory policy parameters on per-unit per-mile costs.

One alternative is simply to focus on minimizing the total weighted distance to ad-

dress the DC location decision, by solving the problem minX∈R2 {∑n
i=0 Did(X,Pi)} ,

with the hope that the resulting solution will eventually minimize distribution related

expenses. We use this alternative in BM1 for illustrative purposes but note that one

can pick any set of crude estimates of ci, i = 0, . . . , n. The best DC location is then

given by (4.18), and this solution has a clear impact on the setup costs associated

with inventory decisions (due to distance-based transportation costs which translate

into DC-location-dependent replenishment costs) as explained in our discussion lead-

ing to (4.16). Next, inventory decisions are addressed by solving the corresponding

SWMR problem using the approach in Roundy (1985). Obviously, BM15 may per-

form very poorly when compared to PII-d-MR as it relies on the idea of decoupling

the location and inventory decisions which have been demonstrated to be coupled in

Section IV.5.1.

BM2 is similar to BM1 except that in BM2 we attempt to develop realistic

estimates of ci i ∈ I ∪ {0}, before committing the DC location decision. For this

purpose, recalling the discussion leading to and following (4.17), one can imagine to

5When the distances are modeled using the ℓp distance norm, in BM1 we solve both
minX∈R2 {∑n

i=0
Did(X,Pi)} and minX∈R2 {∑n

i=1
Did(X,Pi)} using (2.3) and (2.4) and obtain two

alternative DC locations. The former problem leads to P0 as the DC location due to the majority
theorem. Next, we proceed with solving the corresponding inventory problems associated with these
two DC locations, and adopt the approach that results in the lowest average annual total cost as
BM1.
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solve the inventory problem given by

Min
∑

i∈I∪{0}

pi + Ki

Ti
+
∑

i∈I

1

2
h0 Di max{T0, Ti}+

∑

i∈I

1

2
hi Di Ti.

subject to

Ti = 2viTb and vi ∈ Z, for i = 0, . . . , n.

T ∈ R
n+1
+ , X ∈ R

2.

Then, the resulting Ti, i ∈ I ∪ {0}, values can be utilized to obtain the implied per-

unit-per-mile costs, rd
i /Qi, i ∈ I∪{0}. In BM2, we consider the case where the facility

location decision is addressed by solving the problem minX∈R2 {∑n
i=0 ciDid(X,Pi)}

after replacing ci, i = 0, . . . , n, with these implied-per-unit-per-mile costs. As in

BM1, once the DC location decision is committed, the inventory decisions in BM2

are addressed by solving the corresponding SWMR problem using the approach in

Roundy (1985).

A numerical comparison of the cost of PII-d-MR with those of BM1 and BM2

can then be utilized to measure the value of the integrated framework we suggest

relative to the sequential one described above. For this purpose, we analyze the

2× 39 = 39, 366 problem instances obtained via a factorial design of the demand and

cost parameters in Table 12 where the existing locations are

• Case 1: P0 = (0, 0), P1 = (10, 0), P2 = (10, 10) in 19,683 problem instances,

and

• Case 2: P0 = (0, 0), P1 = (100, 0), P2 = (100, 100) in the remaining 19,683

problem instances.

We measure the value of the integrated framework by computing

Percentage gain by PII-d-MR (%) =
Z(BM ·) − Z(PII−d−MR)

Z(BM ·)

× 100,
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for each problem instance where Z(BM ·) is the cost associated with the solution of

the benchmark model of interest and Z(PII−d−MR) is the cost of the solution of PII-d-

MR obtained using the Perturb algorithm. Obviously, in all instances, the integrated

framework is preferred over the sequential one.

TABLE 12. Parameters of Benchmark Experiments, i ∈ I

Parameters Di K0 Ki h0 h′
i p0 pi r0 rd

i

Low (L) 350 400 75 1 5.5 425 100 1 0.75
Medium (M) 700 800 150 2 7 850 200 2 1.5

High (H) 1400 1600 300 4 10 1700 400 4 3

In Figure 11, we present the distribution of the percentage gains obtained by

PII-d-MR over BM1 and observe that the graph is skewed towards lower percentage

gains with the median gain of 7.1%. Hence, employing BM1 (or BM2) rather than

PII-d-MR for a quick-and-dirty analysis may seem to be reasonable at a first glance.

However, in 24,120 problem instances the gain with joint optimization is at least 5%

compared to the cost of BM1. In particular, the average and maximum percentage

gains are 7.7%, and 29.6%, respectively. These percentages when converted to dollar

amounts can result in substantial savings justifying the value of integrated framework.

One important observation is that, although the maximum gain in Case 1 (29.6%) is

higher than the maximum gain in Case 2 (26.2%), the average gain in Case 2 (9.2%)

is higher than that of Case 1 (6.3%). This observation indicates that the integrated

framework has more a pronounced impact, on the average, in Case 2 where the existing

facilities are farther apart from each other.

We have similar observations associated with BM2 for which average and maxi-

mum gains are 4.0% and 29.4%, respectively. In Case 1, the average and maximum

gains over BM2 (4.9% and 29.4%, respectively). In Case 2, the average and maximum

gains over BM2 are 3.1% and 14.2%, respectively. In both cases, these gains are less
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FIGURE 11. The Distribution of Percentage Gains by Joint Optimization Over Se-

quential Decision-Making Using BM1.
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than those over BM1, and one can argue that BM2 performs better than BM1, in

particular, in Case 2. This is because BM2 adopts a more sophisticated approach

within the sequential framework by attempting develop reasonable estimates of the

per-unit-per-mile costs. Also, the impact of having reasonable estimates of per-unit-

per-mile costs is more pronounced when the existing facilities are farther apart from

each other, as in Case 2. Nevertheless, BM2 cannot be replace PII-d-MR without

taking over a full scale analysis that compares BM2 and PII-d-MR because our re-

sults for BM2 provides clear evidence that the gains over BM2 is least 5% for a large

number of problem instances, i.e., for a total of 12,214 problem instances.

In summary, there is substantial value associated with the integrated framework

we suggest; but, it may not be always feasible to implement it due to various practi-

cal constraints, such as lack of demand and cost data associated with the inventory
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decisions. However, whenever there is opportunity, one should give serious consid-

eration to adopting this framework. Next, we proceed with an illustrative practical

application where there is, in fact, opportunity to implement PII-d-MR.

IV.7.3. A Practical Application Setting

Let us recall the VMI setting described at the beginning of the chapter. and illustrate

the use of PII-d-MR for a comparison of the two options, O1 and O2. Clearly, the cost

of O2 can be evaluated by solving PII-d-MR whereas the cost of O1 can be evaluated

by solving6 the problem

minTi>0,∈I∪{0}

{
n∑

i=1

[
p0 + r0d(P0,Pi) + Ki

Ti

+
1

2
h′

iDiTi

]}
,

whose solution is simply given by

Ti =

√
2(p0 + r0d(P0,Pi) + Ki)

h′
i

, ∀i ∈ I.

A numerical comparison of the cost of O2, evaluated by using the solution of PII-

d-MR, with the cost of O1, evaluated by using the solution of the above problem,

can then be utilized to measure the amount the supplier is willing to pay to establish

a DC. That is, the amount the supplier is willing to pay to establish a DC can be

estimated by

Savings due to O2 (%) = max

{
0,

Z(O1) − Z(O2)

Z(O1)

× 100

}
,

where Z(O1) and Z(O2) are the average annual total costs of O1 and O2, respectively.

Clearly, Z(O2) is not always superior to Z(O1) as O2 is not always preferable over O1,

6Since we consider the case where the supplier replenishes on a lot-for-lot basis, there is no cost
advantage of coordinating replenishments for the purpose of evaluating the cost of O1. Hence, the
cost of O1 can be evaluated without considering power-of-two policies.
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i.e., retailer shipments directly from the supplier may make more practical sense than

retailer shipments via a DC, especially when the retailers are not far away from the

supplier.

For the problem instances discussed in Section IV.7.2.1, we have numerical results

illustrating the savings in Case 1 and Case 2. In particular, for Case 1, out of 19,683,

in only 8735 problem instances O2 is preferable over O1, leading to average and

maximum savings of 14.4% and 48.5%, respectively. However, for Case 2, out of

19,683, in 17,799 problem instances O2 is preferable over O1, leading to average and

maximum savings of 32.3% and 63.6%, respectively. Recalling that Case 2 corresponds

to a situation where the retailers are farther apart from the supplier, these findings

are not surprising. In any case, there are substantial savings associated with O2 which

cannot be evaluated and realized without using PII-d-MR. In Figure 12, we present

the distribution of the percentage savings due to O2 for Case 2.

IV.8. Summary and Conclusion

In this chapter, we consider a three-stage distribution network–consisting of a single

supplier at a given location, a single intermediate DC whose location is to be deter-

mined, and multiple retailers at given locations–where the supplier is interested in

cost saving opportunities associated with coordinated replenishments via the to-be-

established DC. We propose an integrated location-inventory model that explicitly

considers the quantity-based, quantity- and distance-based, and just distance-based

transportation costs.

For problems PII-Q and PII-Qd, the location and inventory problems can be

decomposed. Problem PII-d require joint optimization of location and inventory

decisions since the objective functions of these problems are not separable with respect
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FIGURE 12. The Distribution of Percentage Savings Due to Establishing a Ware-

house
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to the corresponding decision variables. For PII-d-SR, we present closed form solution

for the location and inventory decision variables. Furthermore , we show that PII-

d-MR is an extension of the SWMR problem to explicitly consider the DC location

decision and DC-location-dependent replenishment costs. We also discuss that PII-

d-MR is a practical generalization of the Weber problem to explicitly consider the

inventory decisions and costs. We examine important characteristics of PII-d-MR

that relate to the SWMR and Weber problems, and we build on these characteristics

for developing solution algorithms that do not assume any specific form of the distance

function.

Considering the squared Euclidean distances, we report computational results

demonstrating the efficient and effective performance our algorithms using warm-

start. We reiterate that we do not have any significant differences in the final solu-
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tion quality when our algorithms are implemented using random initialization. We

also emphasize that, under the ℓp distances, although the convexity of the objective

function vanishes, our algorithms can be implemented in a multi-start framework and

potentially lead to acceptable solutions. Finally, we provide numerical results inves-

tigating the practical value of PII-d-MR. We conclude that substantial cost savings

are realizable by the integration of location and inventory decisions, and, one should

give serious consideration to this approach for logistical coordination.

As we have noted earlier, our focus in this chapter is on coordinated replenish-

ments considering the case of direct deliveries between the successive stages of the

underlying network. Incorporation of vehicle routing and truck capacity considera-

tions in PII-d-MR remains a noteworthy generalization. Furthermore, we propose

the generalizations of PII-d-MR to consider multiple DCs in dynamic and stochastic

demand settings. These generalizations lead to challenging research problems aimed

at extending both the existing location theory and inventory theory. We emphasize

that the multi-DC generalization can be formulated as a set-partitioning problem.

Then, our algorithms provide convenient methods of evaluating the cost performance

of each partition and, hence, they are potentially beneficial in developing an effective

solution methodology for the multi-DC problem.
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DISPLAY 5 The RestrictedEnumeration Procedure.

0: Input setup cost vectors SL = (SL
0 , . . . , SL

n ) and SU = (SU
0 , . . . , SU

n ).

1: Calculate the best vectors of power-of-two reorder intervals, TL and TU , corre-

sponding to SL and SU , respectively. This process requires the breakpoints τ ′L
i , τL

i ,

τ ′U
i , and τU

i for i ∈ I (where τ ′L
i and τ ′U

i can be computed using (4.19) and τL
i and

τU
i can be computed using (4.20)).

2: Sort the breakpoints in non-decreasing order.

3: Let A = {i ∈ I : τ ′L
i < τ ′U

i ≤ τL
i < τU

i } and B = {i ∈ I : τ ′L
i < τL

i < τ ′U
i < τU

i }.
Each retailer belongs to either in A or B. Also, let Ḡ = {i ∈ I : T0 < τ ′U

i },
Ē = {i ∈ I : τ ′L

i ≤ T0 ≤ τU
i }, and L̄ = {i ∈ I : τU

i < T0}. Over each of the 4n + 1

ranges of T0 resulting from the breakpoints, determine into which one(s) of the sets

Ḡ, Ē and L̄ each retailer falls as follows:

• Consider i ∈ A. Depending on the value of T0, i ∈ A may belong to the following

sets: For T0 > τU
i , i ∈ L̄; for τU

i ≥ T0 > τL
i , i ∈ Ē or L̄; for τL

i ≥ T0 > τ ′U
i ,

i ∈ Ē;

for τ ′U
i ≥ T0 > τ ′L

i , i ∈ Ē or Ḡ; for τ ′L
i ≥ T0, i ∈ Ḡ.

• Consider i ∈ B. Depending on the value of T0, i ∈ B may belong to the following

sets: For T0 > τU
i , i ∈ L̄; for τU

i ≥ T0 > τ ′U
i , i ∈ Ē or L̄; for τ ′U

i ≥ T0 > τL
i ,

i ∈ Ḡ, Ē, or L̄;

for τL
i ≥ T0 > τ ′L

i , i ∈ Ē or Ḡ; for τ ′L
i ≥ T0, i ∈ Ḡ.

4: Over each of the 4n + 1 ranges of T0 resulting from the breakpoints, determine

the set combinations associated each retailer.

5: For each set combination and the corresponding possible T0 values (implied

by that set combination), determine the feasible vectors of power-of-two reorder

intervals using TL and TU , and add them to the restricted power-of-two search

space.

6: For each vector in the restricted power-of-two search space find the corresponding

best DC location X′.

7: For each X′ thus obtained, determine the best T′.

8: Return the (X′,T′) with the lowest cost.
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CHAPTER V

FIXED CHARGE FACILITY LOCATION PROBLEMS WITH INVENTORY

CONSIDERATIONS

Starting with this chapter, we examine the impact of inventory decisions in the context

of discrete facility location models. In discrete facility location models, instead of

calculating the coordinates of the new facility location, we evaluate a list of candidate

facilities to determine which, and how many, facilities to select in two-stage and three-

stage settings. In this chapter, we analyze fixed charge facility location problems

arising in the context of two-stage distribution systems. In the next chapter, we

analyze production distribution system design problems arising in the context of

three-stage distribution systems.

The classical fixed charge facility location problem (FCFLP) (see Section II.1.2)

consists of two stages. In the first stage, there are geographically dispersed established

retailers. In the second stage, there is a set of potential facilities- henceforth called

distribution centers (DCs)- with fixed operational costs. The objective is to choose

a subset to open from the set of potential DCs, and then to assign the retailers to

the open DCs while minimizing the sum of the fixed location and the unit-based

transportation costs for satisfying the demand.

In this chapter, we develop models to analyze the impact on the classical FCFLP

of inventory holding at the retailers. In particular, we consider establishing a number

of DCs from a candidate set to serve geographically dispersed retailers with determin-

istic stationary demand. In this setting, each retailer operates under the assumption

of the EOQ model. That is, retailers hold inventory to meet the deterministic sta-

tionary demand. Hence, we explicitly account for the inventory holding and replen-

ishment costs at the retailers. We also account for the transportation costs associated
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with direct shipments between the retailers and their respective DCs. We model the

transportation costs as a function of distance as in (3.5). Similar to the models in

Chapters III and IV, the facility location and inventory problems are decomposable,

and, hence, the corresponding FCFLP is trivial for transportation cost functions (3.3)

and (3.4). As a result, we focus on the distance-based transportation costs given by

(3.5). This type of transportation cost function is a generalization of the per mile per

unit transportation costs that are utilized in the classical FCFLP.

We assume that each DC operates as a cross-dock facility with a facility-specific

fixed operational cost. That is, the DCs are not inventory keeping points, and, hence,

they are replenished on an as-needed basis by an external supplier incurring a sunk

cost. Therefore, there is no need to explicitly model the external suppliers. We re-

lax this assumption while considering production/distribution system network design

problems in Chapter VI. We note that due to the existence of facility-specific fixed

operational costs, there is a significant trade-off between the tactical and strategic

decisions.

In this setting, the goal is to minimize the total cost in the system, including not

only the sum of the transportation costs between the DCs and the retailers and the

fixed operational costs of selected DCs, but, also, the inventory replenishment and

holding costs at the retailers by determining

• the number and locations of DCs,

• the assignment of each selected DC to a retailer, and

• the inventory decisions of each retailer.

We emphasize, once again, that our focus is on improving the distribution sys-

tem design by considering the total operational cost of logistics, rather than just the
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facility location or inventory costs. For this purpose, we first formulate and solve

the integrated problem, considering the location, assignment, and inventory deci-

sions simultaneously. Next, we quantify the impact of integrated decision-making

by comparing the results with the solution obtained from a benchmark. As before,

the benchmark uses a sequential decision-making framework. We estimate the sav-

ings from integrated decision-making and identify those parameters that influence the

amount of savings.

We observe that the capacity limitations of the DCs impact the difficulty and

applicability of the FCFLP of interest. In this chapter, therefore, we analyze both

uncapacitated and capacitated problems with different types of practical problem

considerations.

We note that one possible application of the models in this chapter can be found

in the vendor selection literature. There are two basic decisions that need to be made

in the vendor selection process. A firm must decide which vendors it should work

with, and it must determine the appropriate annual order quantity for each selected

vendor. We refer to these two decisions together as the vendor selection problem. We-

ber et al. (1991) review seventy-four articles related to the vendor selection problem

that have appeared since 1966. Despite the economic importance and inherent com-

plexity of the vendor selection process, surprisingly little research has been devoted

to developing quantitative models to address the problem. Several researchers use

linear programming (Anthony and Buffa, 1989; Pan, 1989) and goal programming

(Buffa and Jackson, 1983), while some others propose mixed integer programming

(Chaudhry et al., 1993; Gaballa, 1974; Rosenthal et al., 1995) and mixed integer

nonlinear programming approaches (Ghodsypour and O’Brien, 2001). Current and

Weber (1994) demonstrate that vendor selection problems may be formulated within

the mathematical constructs of discrete facility location models. As a consequence,
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FIGURE 13. Fixed Charge Facility Location with Inventory Considerations
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the extensive literature devoted to formulating and solving discrete facility location

problems may be utilized for specific vendor selection problems. In particular, the

FCFLP with inventory considerations, captures important practical characteristics of

the vendor selection problem and provides a foundation for further analytical work

generalizing the existing literature in the area. More specifically, the solution of the

FCFLP with inventory considerations reveals, not only the selected vendors (DCs)

and the annual order quantities for each selected vendor, but also the replenishment

plan for each retailer.

The remainder of the chapter is organized as follows. In the next section, we

introduce the notation and the general model. In Sections V.2 and V.3, we con-

sider the corresponding uncapacitated and capacitated problems, respectively. For

both cases, we discuss the structural properties of the formulation and provide effi-

cient solution approaches. The numerical results clearly indicate the importance of

integrated decision-making and help us draw valuable insights regarding the factors

influencing the costs. Finally, in Section V.4, we summarize our findings and conclude

this chapter by discussing the potential impact of this work.
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V.1. General Model and Notation

Recalling that we are considering a two-stage distribution system as in Figure 13, we

introduce the following notation:

I set of retailers, I = {1, . . . , m).

J set of potential DCs, J = {1, . . . , n}.

Di annual demand rate faced by retailer i, ∀i ∈ I.

h′
i inventory holding cost rate for each unit of inventory at retailer i, ∀i ∈ I.

Ki fixed ordering cost of retailer i, ∀i ∈ I.

dij distance between retailer i, ∀i ∈ I, and DC j, ∀j ∈ J .

pij fixed dispatch cost per replenishment to retailer i, ∀i ∈ I,

from DC j, ∀j ∈ J .

rij variable mileage cost per replenishment to retailer i, ∀i ∈ I,

from DC j, ∀j ∈ J .

fj fixed cost of selecting DC j, ∀j ∈ J .

We have three sets of decision variables. The first set of decision variables is

associated with selecting the DCs. For each DC j, j ∈ J ,

Xj =





1, if DC j is selected,

0, otherwise.

The second set of decision variables pertains to the assignment of retailers to DCs.

For retailer i, i ∈ I, and DC j,j ∈ J ,

Yij =





1, if retailer i is assigned to DC j,

0, otherwise.

By letting assignment variables have only binary values, we ensure that each retailer
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will receive shipments from only one DC. This property is also known as single-

sourcing in the location literature. For the uncapacitated FCFLP, even if the assign-

ment variables are allowed to be fractional, due to the lack of capacity restrictions, the

assignment variables naturally assume integer values. For the capacitated FCFLP,

single-sourcing is a restrictive assumption resulting in a more difficult optimization

problem.

Finally, the third set of decision variables relates to inventory decisions of the

retailers. For each retailer i, i ∈ I, we define

Qi order quantity of retailer i, and

Ti reorder interval of retailer i.

We also define Q as the vector of the order quantities and T as the vector of the

reorder intervals. Clearly, Ti = Qi/Di, ∀i ∈ I. Hence, for the rest of the analysis,

we use Q to represent inventory decisions, keeping in mind that the corresponding

reorder intervals can be easily obtained from the order quantities.

Then, the FCFLP with inventory considerations can be formulated as the fol-

lowing mixed integer nonlinear program denoted by PIII

Min
∑

j∈J

fjXj +
∑

i∈I

∑

j∈J

{
(pij + rijdij)DiYij

Qi

}
+
∑

i∈I

{
KiDi

Qi

+
hiQi

2

}
(PIII )
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subject to

∑

j∈J

Yij = 1, ∀i ∈ I. (5.1)

Yij ≤ Xj , ∀i ∈ I and ∀j ∈ J . (5.2)

Xj ∈ {0, 1}, ∀j ∈ J . (5.3)

Yij ∈ {0, 1}, ∀i ∈ I and ∀j ∈ J . (5.4)

Qi ≥ 0, ∀i ∈ I. (5.5)

The objective function of PIII minimizes the total costs: the fixed operating cost of

opening the DCs, the transportation cost from DCs to retailers, and the inventory

replenishment and holding cost at the retailers. Constraints (5.1) ensure that the

demand of each retailer is satisfied. Constraints (5.2) establish that each retailer will

be assigned to an open (selected) DC. Constraints (5.3) and (5.4) ensure integrality,

whereas (5.5) ensure nonnegativity.

V.2. Uncapacitated Case

In this section, we present the structural properties of PIII. Next, we discuss so-

lution approaches for determining location, assignment, and inventory decisions si-

multaneously and sequentially. Finally, we provide numerical results that show the

effectiveness of the solution approaches. Through numerical tests, we also offer evi-

dence about the factors that influence the effectiveness and impact of simultaneous

decision-making.

V.2.1. Structural Properties

The objective function of PIII can be reorganized as follows:
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∑

j∈J

fjXj +
∑

i∈I

{
KiDi

Qi
+

hiQi

2
+

Di

Qi

∑

j∈J

(pij + rijdij)Yij

}
. (5.6)

For any i ∈ I and j ∈ J , let Yij be known. Then, it is easy to observe that the

second part of (5.6) is convex in Q due to the similarity of its corresponding terms

for each i ∈ I to the EOQ model in Section II.2.1. Hence, the order quantity of each

retailer i ∈ I can be calculated as

Qi =

√
2[Ki +

∑
j∈J (pij + rijdij)Yij]Di

h′
i

. (5.7)

Substituting (5.7) in (5.6), we obtain:

∑

j∈J

fjXj +
∑

i∈I

√
2[Ki +

∑

j∈J

(pij + rijdij)Yij]Dih
′
i

=
∑

j∈J

fjXj +
∑

i∈I

√
Ai +

∑

j∈J

BijYij, (5.8)

where Ai = 2KiDih
′
i and Bij = 2(pij + rijdij)Dih

′
i for i ∈ I and j ∈ J .

With these simplifications, PIII can be stated as determining the open DCs and

DC-retailer assignments so that (5.8) is minimized while satisfying the constraints

(5.1), (5.2), (5.3), and (5.4).

PROPOSITION 1 In the optimal solution of PIII, for retailer i, i ∈ I, Yi,j∗ = 1

where j∗ = arg minj∈J ′{pij + rijdij} and J ′ = {j ∈ J : Xj = 1}.

Proof:

For some retailer i ∈ I, let j∗ be the open DC with the lowest transportation

cost, pij∗ + rij∗dij∗ , among all the open DCs. Then, the cost of this assignment is

given as

C∗ =
√

2(Ki + pij∗ + rij∗dij∗)Dih′
i. (5.9)

Now, assume that in the optimal assignment, retailer i is assigned to open DC jo.
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The cost of this assignment is

Co =
√

2(Ki + pijo + rijodijo)Dih
′
i. (5.10)

Furthermore, since jo is the optimally selected facility,

√
2(Ki + pijo + rijodijo)Dih

′
i ≤

√
2(Ki + pij∗ + rij∗dij∗)Dih

′
i. (5.11)

However, for pij∗ + rij∗dij∗ ≤ pijo + rijodijo,

√
2(Ki + pij∗ + rij∗dij∗)Dih′

i ≤
√

2(Ki + pijo + rijodijo)Dih′
i. (5.12)

Using (5.11) and (5.12), we conclude that jo = j∗. �

The following theorem states an important structural result and simplifies the

solution approach.

THEOREM 7 The objective function (5.8) of PIII is equivalent to the following

equation:
∑

j∈J

fjXj +
∑

i∈I

∑

j∈J

cijYij, (5.13)

where cij =
√

2(Ki + pij + rijdij)Dih′
i, for i ∈ I and j ∈ J .

Proof: For any retailer io ∈ I and any potential DC jo ∈ J , if Yiojo = 1, the

total assignment cost denoted by TACiojo is given as the sum of the average annual

transportation, inventory holding, and replenishment costs:

TACiojo =
KioDio

Qio
+

h′
ioQio

2
+

Dio(piojo + riojodiojo)

Qio
,

since Yioj = 0 for j ∈ J \ {jo}. The order quantity for this retailer that optimizes

TACiojo is

Q∗
io =

√
2(Kio + piojo + riojodiojo)Dio

h′
io

.
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Hence, the optimal TACiojo, denoted by ciojo , for retailer io and DC jo is equal to

ciojo =
√

2(Kio + piojo + riojodiojo)Dioh
′
io .

Calculating cij for all retailers i ∈ I and all DCs j ∈ J in the same manner completes

the proof. �

COROLLARY 2 PIII reduces to the classical uncapacitated FCFLP.

V.2.2. Solution Methodology

Due to Corollary 2, PIII can be solved using the existing techniques developed for

the classical uncapacitated FCFLP (see Section II.1.2). We proceed with a discussion

of the details of a Lagrangian relaxation-based heuristic that we implement for the

following formulation of our problem:

Min
∑

j∈J

fjXj +
∑

i ∈I

√
Ai +

∑

j∈J

BijYij (5.8)

subject to

∑
j∈J Yij = 1, ∀i ∈ I. (5.1)

Yij ≤ Xj , ∀i ∈ I and ∀j ∈ J . (5.2)

Xj ∈ {0, 1}, ∀j ∈ J . (5.3)

Yij ∈ {0, 1}, ∀i ∈ I and ∀j ∈ J . (5.4)

This heuristic is an iterative procedure that utilizes a Lagrangian relaxation of the

original problem obtained by excluding the complicating constraints and incorpo-

rating them into the objective function via Lagrange multipliers that represent the

penalty coefficients for violating the relaxed constraint.

The approach has been efficiently applied to classical uncapacitated integer pro-
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gramming problems (see Geoffrion (1974); Shapiro (1979); Fisher (1981, 1985)). For

this formulation, the following Lagrangian decompositions can be stated:

(1) Relaxation with respect to constraints (5.1): For this relaxation, we

utilize Lagrangian multipliers u = {i ∈ I : ui} associated with the retailers.

The Lagrangian problem is then

(LR1) max
u

L(u) = min
X,Y

∑

j∈J

fjXj +
∑

i ∈I

√
Ai +

∑

j∈J

BijYij −
∑

i ∈I

∑

j∈J

uiYij

+
∑

i ∈I

ui (5.14)

subject to (5.2), (5.3), and (5.4).

(2) Relaxation with respect to constraints (5.2): For this relaxation, we

utilize Lagrangian multipliers v = {i ∈ I, j ∈ J : vij} associated with the

assignment of DCs to retailers. The Lagrangian problem is then

(LR2) max
v

L(v) = min
X,Y

∑

j∈J

(fj −
∑

i∈I

vij)Xj +
∑

i ∈I

√
Ai +

∑

j∈J

BijYij

+
∑

i ∈I

∑

j∈J

vijYij (5.15)

subject to (5.1), (5.3), and (5.4).

(3) Relaxation with respect to constraints (5.1) and (5.2): Using Lagrange

multipliers u and v, the Lagrangian problem is given as

(LR3) max
u,v

L(u,v) = min
X,Y

∑

j∈J

(fj −
∑

i∈I

vij)Xj +
∑

i ∈I

√
Ai +

∑

j∈J

BijYij

+
∑

i ∈I

∑

j∈J

(vij − ui)Yij +
∑

i ∈I

ui (5.16)

subject to (5.3) and (5.4).
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In our implementation, we utilize (LR2) for its ease in solving L(v) for a given

v to obtain a lower bound, based on the following steps:

0: Initialize ZLB = ∞, ZUB = 0, k = 0, vij = 0 for i ∈ I and j ∈ J , λ = 2,

ǫ1 = 0.00001, and ǫ2 = 0.001.

1: For given v, solve (LR2) for a lower bound, i.e., ZLB = L(v). If ZLB is not

improved in 30 iterations, halve λ.

2: Obtain an upper bound using the solution of (LR2). Update ZUB if necessary.

3: Update vk using subgradient optimization. Increase iteration number, i.e.,

k ← k + 1.

4: Terminate if

[1] iteration number reaches a predetermined value, i.e. k > 300,

[2] λ < ǫ1, or,

[3] ZUB − ZLB < ǫ2.

Otherwise, go back to Step 1.

Next, we explain how to obtain lower and upper bounds and how to update the

Lagrange multipliers using subgradient optimization.

V.2.3. Solving the Relaxed Problem

For fixed values of Lagrange multipliers v, we want to minimize (5.15) of formula-

tion (LR2) in order to obtain a lower bound for PIII, . By relaxing the assignment

constraints, we remove the link between DC selection/location Xj and DC-retailer

assignment Yij variables for all i ∈ I and j ∈ J . Hence, in order to minimize L(v),

we treat the X and Y variables separately.
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Consider DC selection/location variables X. There is only one term in the cost

function (5.15) with X:
∑

j∈J

(fj −
∑

i∈I

vij)Xj. (5.17)

To minimize (5.17), for all j ∈ J , we set

Xj =






1, if fj −
∑

i∈I vij < 0,

0, otherwise.
(5.18)

Next, consider the assignment variables. Using Proposition 1, we state that each

retailer is optimally assigned to the DC with the lowest operating costs. For each

retailer i ∈ I, find the DC j∗ ∈ J such that j∗i = arg minj∈J {
√

Ai + Bij +vij}. Then,

we set assignment variables for i ∈ I and j ∈ J as

Yij =





1, if j = j∗i ,

0, otherwise.
(5.19)

For any values of Lagrange multipliers, v, evaluating (5.15) using location and

assignment variables determined by (5.18) and (5.19) provides a lower bound (ZLB)

on the objective function value of PIII.

V.2.4. Obtaining an Upper Bound

The solution obtained from the relaxed problem (LR2) is likely to violate the con-

straint (5.2) since, otherwise, the solution obtained would be feasible, and, hence,

optimal for PIII.

To construct a feasible solution using the relaxed solution, we keep a set of open

facilities, J ′ ⊂ J . Next, using Proposition 1, we assign each retailer to the open DC

with the lowest operating cost. That is, for each retailer i ∈ I, determine the open
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DC ji ∈ J ′ such that

ji = arg min
j∈J ′

√
Ai + Bij .

Then, we set the assignment variables for each i ∈ I and j ∈ J as follows:

Yij =





1, if j = ji,

0, otherwise.
(5.20)

The upper bound Z is calculated by evaluating (5.8) using X and Y given in

(5.18) and (5.20), respectively. If Z < ZUB, then update the best upper bound ZUB

by setting it equal to Z.

V.2.5. Subgradient Optimization

One of the challenging issues related to the Lagrangian relaxation heuristic is the

computation of a good set of Lagrange multipliers. In general, this is known to be

a difficult task (Gavish, 1978). In practice, a good, but not necessarily optimal,

set of multipliers are calculated by using either subgradient optimization or various

multiplier adjustment methods (Bazaraa and Goode, 1979).

In our implementation, we utilize subgradient optimization to update the La-

grange multipliers (see Held et al. (1974)). Given multiplier vector vk for the kth

iteration of the Lagrangian heuristic, the next set of multipliers vk+1 are calculated

using the following rule:

vk+1
ij = max{0, vk

ij + tk(Y k
ij −Xk

j )}, (5.21)

where Xk and Yk are the optimal solution to L(vk), and tk is a positive scalar step

size. We use the following step size that is frequently used in the literature:

tk =
λ(ZUB − ZLB)∑

i ∈I

∑
j∈J (Y k

ij −Xk
j )2

,
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where λ is a scalar satisfying 0 ≤ λ ≤ 2.

V.2.6. Numerical Results

In this section, we present computational results related to the PIII. The algorithms

were implemented using C++ and run on a Pentium IV 3.2Ghz machine with 1

GB memory on numerous data sets. In particular, we conducted two computational

experiments. The first experiment focuses on the performance of the Lagrangian

heuristic over a variety of data sets. The second experiment is aimed at quantifying

the benefit of integrated decision-making via comparison of the results obtained from

joint optimization and a sequential benchmark model. In the second experiment, via

a factorial design, we also identify the parameters that influence the implication of

integrated decision-making the most.

V.2.6.1. Experiment 1: Performance of Lagrangian Relaxation

In this first experiment, our goal is to show the performance of the Lagrangian re-

laxation heuristic in solving PIII. For this purpose, we report results from 9 different

data sets where both the number of retailers and the number of potential DCs have

three alternatives. Each data set consists of either 25, 50, or 100 retailers and 10,

20, or 30 potential DCs. In each group, we have 100 problem instances, generated

randomly using the uniform distributions given in Table 13, resulting in a total of

900 problem instances.

Our main findings regarding the performance of the Lagrangian relaxation heuris-

tic, including the minimum, average, and maximum percentage gaps in the objective

function value when compared to the lower bound, are summarized in Table 14. For
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TABLE 13. Parameter Values for Experiment 1.

Parameters Range

Di U[350, 1400]
Ki U[75, 300]
h′

i U[5, 10]
pij U[425, 1700]
rij U[180, 120]
dij U[1, 150]
fj U[100000,150000]

each problem instance, the gap is defined as the percentage difference

Gap (% ) =
ZUB − ZLB

ZLB
× 100,

where ZUB is the cost of the best feasible solution suggested by the Lagrangian

relaxation heuristic, and ZLB is the cost of the lower bound obtained by solving

L(v).

TABLE 14. Performance of Lagrangian Relaxation Heuristic.

Gap(%) Duration (s.)
Data set |I| |J | Min Ave Max Min Ave Max

1 25 10 0.00 0.04 0.85 0.56 2.94 4.92
2 25 20 0.00 0.00 0.21 3.14 7.99 10.00
3 25 30 0.00 0.01 0.19 1.56 11.04 12.28
4 50 10 0.00 0.04 0.60 2.56 8.73 9.45
5 50 20 0.00 0.02 0.33 15.47 15.74 19.89
6 50 30 0.00 0.03 0.15 21.98 22.53 26.69
7 100 10 0.00 0.06 0.58 6.48 16.86 17.83
8 100 20 0.00 0.04 0.41 21.98 30.83 37.77
9 100 30 0.00 0.05 0.33 43.33 44.01 49.16

The first portion of Table 14 provides minimum, average, and maximum per-

centage gaps between upper and lower bounds for the different data sets. In all of

the data sets, we observe that the Lagrangian heuristic is very effective in solving
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PIII with average gaps less of than 0.1%. Furthermore, the maximum gaps tend to

decrease as the number of potential DCs is increased while the number of retailers

remains constant.

The second portion of Table 14 reports the duration of the heuristic for the

different data sets. The heuristic duration tends to increase as the number of retailers

and the number of potential DCs increase. This is expected since the problem is NP-

hard. Increasing problem size lengthens the runtimes of the heuristics.

V.2.6.2. Experiment 2: Impact of Integrated Decision-Making

We proceed with reporting the results for Experiment 2, which illustrates the value

of the integrated framework over the sequential framework that is commonly utilized

in practice. For this purpose, we first provide a detailed description and formulation

of the benchmark model. Next, we analyze results from two computational tests

comparing the costs using the benchmark model and the PIII.

Benchmark Model (BMIII )

Similar to the benchmark models in Chapter IV, the benchmark model (BMIII )

builds on the idea that location and inventory decisions are made sequentially and that

facility location decisions precede inventory decisions. For this purpose, in BMIII, we

first solve the following location-allocation problem regarding the selection of the DCs

and the assignment of the DCs to the retailers:

Min
∑

j∈J

fjXj +
∑

i∈I

∑

j∈J

cijYij (BMIII-LocAlloc)
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subject to

∑

j∈J

Yij = 1, ∀i ∈ I. (5.22)

Yij ≤ Xj , ∀i ∈ I and ∀j ∈ J . (5.23)

Xj ∈ {0, 1}, ∀j ∈ J . (5.24)

0 ≤ Yij ≤ 1, ∀i ∈ I and ∀j ∈ J . (5.25)

As explained in IV, due to the lack of a better approach, we have to rely on crude

estimates of cij , i ∈ I ∪ {0}, which may not accurately consider the impact of the

inventory policy parameters on per-unit per-mile costs. We let cij = αdijDi, where

α is the per-unit per-mile transportation cost which is set to 1 in our computational

tests.

This formulation is a typical formulation of the uncapacitated FCFLP1 and in

our computational tests, we solve this problem exactly using CPLEX 9.02.

Let XBM and YBM be the solution of the BMIII-LocAlloc. Next, given the

assignment variables Y BM
ij for all i ∈ I and j ∈ J , the inventory decisions of the

retailers are determined by solving the following problem:

Min
∑

i∈I

{
KiDi

Qi
+

1

2
h′

iQi +
∑

j∈J

(pij + rijdij)DiY
BM
ij

Qi

}
. (BMIII-Inv)

The optimal order quantity of retailer i ∈ I obtained from the solution of the BMIII-

Inv is

QBM
i =

√
2[Ki +

∑
j∈J (pij + rijdijY BM

ij )]Di

h′
i

.

The cost of BMIII (ZBM) is calculated using the decision variables (XBM ,YBM ,QBM),

1Although the assignment variables are modeled as a fraction of the demand of the retailer that
is served by a DC, since the facilities are uncapacitated, they will assume integer values.

2CPLEX is a trademark of ILOG, Inc.
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obtained from the solution of the BMIII-LocAlloc and the BMIII-Inv, in (5.8). We

then measure the value of the integrated framework by computing

The percentage gain by the PIII over BMIII (%) =
ZBM − ZPIII

ZBM
× 100,

where ZPIII is the cost of the PIII obtained by the Lagrangian relaxation heuristic.

Test 1: Impact of |I| and |J |

We first compare the performance of the PIII and the BMIII for 900 instances.

The main goal of this experiment is to measure the impact of integrated decision-

making for different configurations of distribution systems, i.e., for different numbers

of retailers and potential DCs.

TABLE 15. Performance of PIII Compared to the Sequential Benchmark Model.

Gain(%) Open DCs
Data set |I| |J | Min Ave Max %-Less Ave Max

1 25 10 10.74 20.39 30.19 89 1.56 4
2 25 20 13.76 22.85 32.57 78 1.32 4
3 25 30 11.93 24.39 31.45 81 1.47 4
4 50 10 2.38 20.88 25.71 100 2.21 4
5 50 20 2.86 22.44 28.58 92 2.01 5
6 50 30 4.89 23.82 30.26 94 2.00 4
7 100 10 17.45 21.23 24.70 99 2.73 5
8 100 20 8.48 23.25 26.99 98 3.23 6
9 100 30 15.31 24.45 28.07 94 2.85 6

We report the minimum, average, and maximum percentage gains by PIII over

the BMIII in Table 15. We also compare the number of open DCs in both approaches

and report the results. For each instance, the difference in the number of open

DCs is calculated as
∑

j∈J XBM
j −∑j∈J XPIII

j where XPIII represents the open DC

locations obtained from the solution of the PIII. In Table 15, we present the average
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and maximum differences for the PIII and the BMIII. Furthermore, we also present

the percentage of instances where the PIII has fewer open DCs than the BMIII under

‘%-Less’ column.

For all of the data sets in Table 15, we observe that significant savings are ob-

tained over the BMIII when using the PIII, with average gains of more than 20% and

maximum gains up to 32.57%. One interesting observation is that, for a given number

of retailers, the average gains increase as the number of potential DCs increase. For

instance, from data set 1 to data set 2, the average gain increases to 22.85% from

20.39%. Similarly, from data set 2 to data set 3, the average gain increases to 24.39%.

A similar pattern is observed between data sets 4, 5, 6 and data sets 7, 8, 9 as well.

In other words, when the number of potential DCs increase for a fixed number of

retailers, the PIII is more efficient than the BMIII in determining open DCs and

assignments of DCs to retailers, which translates to an increasing gap between the

costs of the PIII and BMIII.

Another interesting observation from Table 15 relates to the difference in the

number of open DCs in the solutions of the BMIII and PIII. In many of the instances,

the number of open DCs in PIII is less than those in BMIII which is not surprising.

On average, this difference is at least one DC for data sets with smaller networks

(data sets 1, 2, and 3) and can be as high as three DCs for data sets with larger

networks (data sets 8 and 9). By explicit consideration of the transportation cost

and the impact of inventory decisions on location decisions, PIII generally requires

fewer number of open DCs. For instance, for data set 4, in all of the instances, the

number of open DCs with PIII are less than with the BMIII. Hence, PIII evaluates the

trade-off among the fixed facility costs and the operating costs, including inventory

and transportation, more efficiently than the BMIII.
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Test 2: Impact of Problem Parameters

In this experiment, we measure the impact of the problem parameters on inte-

grated decision-making. For this purpose, by considering the high and low ranges in

Table 16, we first generate 27 = 128 experimental settings using a factorial design.

For each of the 128 settings, we generate 100 instances where the values of the seven

critical parameters are generated randomly, using the uniform distributions dictated

by the setting. We also note that the high and low ranges in Table 16 include the

ranges in Table 13.

TABLE 16. Factorial Design

Parameters Low (L) High (H)

Di U[315, 385] U[1260, 1540]
Ki U[67.5, 82.5] U[270, 330]
h′

i U[4.5, 5.5] U[9, 11]e
pij U[425.5, 522.5] U[1530, 1870]
rij U[0.675,0.825] U[2.7, 3.3]
dij U[30, 45] U[120, 180]
fj U[45000, 55000] U[180000, 220000]

In Tables 25, 26, 27, and 28, we present the factorial experiment settings and the

results for each setting including the minimum, average, and maximum percentage

gains for 100 instances with PIII over the BMIII. We also report the average and

maximum differences in the number of open DCs betweeen these two approaches.

We next summarize the other key points of our numerical study and establish

the trade-offs among the problem parameters to determine under which settings the

integrated decision-making has a higher impact.

• In Table 17, we provide the factorial designs that result in the 10 highest average

percentage gains. The highest average gain is 19.01%, and the maximum gain
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among these factorial designs is 33.44%. An important observation is that the

ten highest average percentage gains are attained when demand and distance are

drawn from the uniform distribution at high levels. Hence, demand and distance

appear to be the most influential parameters. This result is not surprising

considering the fact that the cost of the BMIII increases with demand and

distance, and the cost of PIII increases with the square root of demand and

distance.

TABLE 17. Factorial Designs with the 10 Highest Average Gains for PIII

F. D. Levels of Parameters Gain (%) Open DCs
No. Di Ki h′

i pij rij dij fj Min Ave Max %-Less Ave Max

67 H L L L L H L 6.26 19.01 26.88 100 3.10 5
68 H L L L L H H 1.46 18.86 33.44 100 0.80 2
72 H L L L H H H 4.08 15.19 28.84 100 0.80 2
71 H L L L H H L 1.38 14.44 21.17 100 3.10 5
84 H L H L L H H 2.95 14.42 27.52 100 0.80 2
83 H L H L L H L 1.25 14.27 20.71 100 3.10 5
75 H L L H L H L 1.04 12.66 18.10 100 3.10 5
76 H L L H L H H 1.26 12.52 24.38 100 0.80 2
88 H L H L H H H 1.36 11.27 22.97 100 0.80 2
80 H L L H H H H 1.10 11.22 22.62 100 0.80 2

Another significant observation from Table 17 is related to the difference be-

tween PIII and the BMIII in the number of open DCs. The number of open

DCs in the solution of PIII is always less than in the BMIII for all instances

of these factorial designs. The average difference can be up to 3 DCs and the

maximum difference can be as high as 5 DCs. High demand and distance levels

seem to force the benchmark model to open more (unnecessary) DCs than PIII.

• In Table 18, we provide the factorial designs that result in the 10 lowest average

percentage gains. Similar to the results in Table 17, demand and distance
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appear to be the most influential parameters. The lowest average gains are

attained when demand and distance are drawn from uniform distributions at

low levels. The 10 lowest average gains range between 0.25% and 0.41%. The

maximum gains corresponding to these factorial designs go up to 3.15% which is

quite significant considering the dollar values associated with these percentage

savings.

TABLE 18. Factorial Designs with the 10 Lowest Average Gains for PIII

F. D. Levels of Parameters Gain (%) Open DCs
No. Di Ki h′

i pij rij dij fj Min Ave Max %-Less Ave Max

54 L H H L H L H 0.00 0.25 2.08 0 0.00 0
38 L H L L L L H 0.00 0.30 2.51 0 0.00 0
62 L H H H H L H 0.00 0.35 2.20 0 0.00 0
46 L H L H H L H 0.00 0.35 2.46 0 0.00 0
22 L L H L H L H 0.00 0.36 3.01 0 0.00 0
30 L L H H H L H 0.00 0.37 2.79 0 0.00 0
50 L H H L L L H 0.00 0.37 2.76 0 0.00 0
58 L H H H L L H 0.00 0.40 2.43 0 0.00 0
42 L H L H L L H 0.00 0.40 2.69 0 0.00 0
34 L H L L L L H 0.00 0.41 3.15 0 0.00 0

As observed in Table 18, another important parameter is the fixed cost of open-

ing DCs. For the factorial designs with the 10 lowest average gains, the fixed

location costs are drawn from a uniform distribution at high levels. In all of

the factorial designs in Table 18, the number of open DCs in the solutions of

PIII and the BMIII are the same. Hence, the average and maximum difference

for the number of open DCs is zero for all of the instances in these ten factorial

designs. High levels of fixed location costs, coupled with low levels of demand

and distance, force both PIII and the BMIII to open fewer DCs, frequently,

only one DC.
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• As the above two points demonstrate, the most influential parameters influ-

encing the impact of integrated decision-making are demand and distance. In-

creasing either one, while the other parameters are kept the same, increases the

average cost savings.

• Another important influential parameter that affects integrated decision-making

is fixed location costs (fj, ∀j ∈ J ). In general, increasing fixed location costs,

while holding other parameters the same, decreases the average gap between

the costs of PIII and the BMIII. Increased fixed costs force both models to

open fewer DCs, and hence, the average costs savings are more limited. There

is an exception to this observation. For factorial designs with high demand and

distance levels, increasing the fixed location costs may not impact the average

gap between PIII and the BMIII, or it may even increase it. This is due to

the classical trade-off between fixed location costs and implied transportation

costs. If the implied transportation costs are higher than the highest levels of

the fixed transportation costs, PIII and the BMIII may open a different number

of DCs.

• The impact of other parameters on integrated decision-making can be summa-

rized as follows:

• Increasing the variable transportation cost or the fixed transportation

cost, while keeping all the other parameters the same, decreases the average

gain. Increasing either the variable or the fixed transportation cost impacts the

trade-off between the fixed location costs and transportation costs in PIII and

force PIII to open more DC locations to decrease the total transportation cost.

Hence, the total cost of PIII increases. Since a change in the variable or the

fixed transportation costs does not impact the BMIII, the average gap between
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PMIII and the BMIII decreases.

• Increasing the holding cost when all of the other parameters are kept the

same, decreases the average gain.

V.3. Capacitated Case

In this section, we introduce capacity restrictions to the generic (uncapacitated) PIII

model and analyze the impact of capacity on integrated decision-making. For this

purpose, we first discuss the potential capacity restrictions that can be posed on the

PIII and express these restrictions mathematically. We then examine their influence

on the structural properties of the PIII and its solution approaches. Finally, via

computational tests, we measure the value of integrated decision-making under these

capacity restrictions.

V.3.1. Definition of Capacity

In many of the real life problems related to distribution system design, there are sev-

eral operational constraints that further complicate the solution procedures. Some of

these restrictions, such as production (for plants) or throughput capacities (for DCs),

are considered in the context of extensions of the classical FCFLP in the previous lit-

erature. However, in the PIII, by considering inventory decisions simultaneously with

facility location decisions, we create a venue for defining other capacity restrictions

such as storage space and dispatch size and number.

For the PIII, we define the following capacity restrictions:

Throughput Capacity Throughput capacity for a DC (likewise, production capac-

ity for a plant) represents the maximum allowed throughput through that DC;

the term also means the total annual demand assigned to a DC should be less
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than the annual throughput capacity of that DC, i.e.,

∑

i∈I

DiYij ≤ PjXj , ∀j ∈ J , (5.26)

where Pj is the annual throughput capacity of DC j, j ∈ J .

The addition of this constraint to the formulation of the FCFLP complicates the

solution, see Section II.1.2. Several exact and heuristic methods are developed

for the capacitated FCFLP, including Lagrangian relaxations and Bender’s de-

composition (Daskin, 1995). We include the throughput capacity constraint in

the formulation of the PIII and refer to this new problem as the PIII-PC. We

analyze the structural properties of the PIII-PC and discuss a solution approach

in Section V.3.2.

Storage Capacity Storage capacity refers to the physical capacity of a DC. Gener-

ally, storage capacity is different from the throughput capacity due to inventory

turnover, i.e., the rate at which inventory is depleted/replenished. The rela-

tion between inventory turnover and storage capacity is not taken into account

explicitly in the context of the classical FCFLP in which operational inven-

tory considerations are omitted. In the context of the PIII, however, we can

formulate the relationship between inventory turnover and storage space by

considering
∑

i∈I

QiYij ≤ SjXj, j ∈ J . (5.27)

where Sj is the physical storage capacity of DC j, j ∈ J . This constraint states

that the storage capacity at DC j should be large enough to accommodate the

inventory that all of the retailers assigned to DC j order together. Hence, the

constraint ensures that the space limitation is never violated. Even in the worst

case, storage capacity can handle the simultaneous arrival of orders from the
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all of the retailers assigned to this DC. The right hand side of (5.27) not only

limits the storage availability but also ensures that we consider only open DCs.

Number of Dispatches In certain distribution systems, the number of dispatches

from a DC can not exceed a certain number due to restrictions regarding the

loading/unloading capabilities of the facility. However, this practical constraint

is generally overlooked in the classical FCFLP simply because the number of

dispatches out of a facility is dictated by the size of shipments. In the context

of the PIII, we can easily incorporate a restriction on the number of dispatches

as follows:
∑

i∈I

Di

Qi

Yij ≤ RjXj, j ∈ J , (5.28)

where Rj is the maximum number of dispatches from DC j, j ∈ J , annually.

Truck Capacity In many distribution systems, one of the main goals is to achieve

efficient truck utilization to minimize transportation costs by reducing the num-

ber of required trips and/or the number of trucks used for each shipment. Again,

in order to achieve this goal, the location model must take inventory decisions

into account as in the PIII. The number of trucks (or number of trips) required

by retailer i, i ∈ I, for a shipment size of Qi is given by
⌈

Qi

CT

⌉
where CT is the

truck/cargo capacity. Hence, the objective function of the PIII for considering

truck capacities is:

Min
∑

j∈J

fjXj +
∑

i∈I

∑

j∈J





(pij + rijdij)
⌈

Qi

CT

⌉
DiYij

Qi



+

∑

i∈I

{
KiDi

Qi
+

1

2
hiQi

}
.

We call the extension of the PIII with the above objective function subject to

constraints (5.1), (5.2), (5.3), (5.4), and (5.5) the PIII-TC. In this problem, if

there is not a limit on the number of available trucks, the truck capacity is not
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a hard constraint, and, hence, is referred to as an installable truck capacity. If

the number of trucks at hand, denoted by NT is also limited, we can incorporate

the following constraint
∑

i∈I

⌈
Qi

CT

⌉
≤ NT , (5.29)

into the PIII-TC.

V.3.2. Structural Properties and Analysis

In this section, we analyze the PIII with different capacity constraints. In particular,

we consider

• PIII-PC: PIII with limited throughput capacities at the potential DCs,

• PIII-SC: PIII with limited storage capacity at the potential DCs,

• PIII-DC: PIII with a limited number of annual dispatches from the potential

DCs, and

• PIII-TC: PIII with installable truck capacity.

V.3.2.1. Analysis of the PIII-PC

The PIII-PC is the most naive extension of the PIII. The relationship between the PIII

and the PIII-PC is analogous to the relationship between the classical uncapacitated

and capacitated FCFLP. Using the notation defined in Section V.1, the formulation

of the PIII-PC is as follows:

Min
∑

j∈J

fjXj +
∑

i∈I

∑

j∈J

{
(pij + rijdij)DiYij

Qi

}
+
∑

i∈I

{
KiDi

Qi
+

1

2
h′

iQi

}
(PIII-PC )
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subject to

∑

j∈J

Yij = 1, ∀i ∈ I. (5.30)

Yij ≤ Xj , ∀i ∈ I and ∀j ∈ J . (5.31)

∑

i∈I

DiYij ≤ PjXj, ∀j ∈ J . (5.32)

Xj ∈ {0, 1}, ∀j ∈ J . (5.33)

Yij ∈ {0, 1}, ∀i ∈ I and ∀j ∈ J . (5.34)

Qi ≥ 0, ∀i ∈ I. (5.35)

The above formulation is identical to the uncapacitated PIII defined in Section

V.2 except that we have now included a throughput capacity constraint (5.32). Note

that constraint (5.31) is not needed any more since the capacity constraint (5.32)

ensures that retailer i, i ∈ I, is not assigned to a potential DC j, j ∈ J , if that

DC is not open. However, considering this constraint strengthens the linear program-

ming relaxation of the classical capacitated FCFLP (Daskin, 1995). As we will show

next, the PIII-PC can be converted to the classical capacitated FCFLP, and, hence,

inclusion of constraint (5.31) is useful in computing the solution of the PIII-PC.

Since the objective functions of the PIII and the PIII-PC are the same, we can

eliminate the order quantity from the objective function of the PIII-PC via structural

properties in Section V.2.1, and we can use the following modified objective function

for the PIII-PC.

∑

j∈J

fjXj +
∑

i∈I

√
Ai +

∑

j∈J

BijYij, (5.36)

where Ai = 2KiDih
′
i and Bij = 2(pij + rijdij)Dih

′
i for i ∈ I and j ∈ J . Then,
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Theorem 7 is applicable for the PIII-PC. As a corollary, the PIII-PC can be solved

using the techniques developed for the single-source capacitated FCFLP, see Section

2.9. We present the computational results regarding the PIII-PC in Section V.3.3.

V.3.2.2. Analysis of the PIII-SC

Using the notation defined in Section V.1, the formulation of the PIII-SC is as follows:

Min
∑

j∈J

fjXj +
∑

i∈I

∑

j∈J

{
(pij + rijdij)DiYij

Qi

}
+
∑

i∈I

{
KiDi

Qi
+

1

2
hiQi

}
(PIII-SC )

subject to

∑

j∈J

Yij = 1, ∀i ∈ I. (5.37)

Yij ≤ Xj , ∀i ∈ I and ∀j ∈ J . (5.38)

∑

i∈I

QiYij ≤ SjXj , ∀j ∈ J . (5.39)

Xj ∈ {0, 1}, ∀j ∈ J . (5.40)

Yij ∈ {0, 1}, ∀i ∈ I and ∀j ∈ J . (5.41)

Qi ≥ 0, ∀i ∈ I. (5.42)

The novelty of this formulation is the explicit consideration of storage capacity related

to physical DC size in association with inventory decisions.

As we mentioned earlier, in this formulation, the storage capacity constraint is

written with a conservative worst case scenario in mind. Here, we shall not account

for the possibility that orders can be phased so that they coincide; therefore, it will be

never necessary to have the maximum order quantity of each retailer at the same time.

The following example demonstrates the value of this conservative estimate as well

as the impact of considering inventory turnover while defining capacity requirements
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clearly. Hence, it shows the importance of integrating location, assignment, and

inventory decisions.

EXAMPLE 3 Consider a particular open DC j∗ and the set of retailers that are

assigned to this DC J ∗ = {1j∗, 2j∗, 3j∗, 4j∗} with annual demands D1j∗
= 3000, D2j∗

=

1200, D3j∗
= 600, and D1j∗

= 200. Retailer 1j∗ orders monthly; 2j∗ orders every two

months; 3j∗ orders quarterly; and 4j∗ orders semi-annually. Accordingly, the annual

ordering schedule for DC j∗ is given in Table 19. The last row in Table 19 shows

TABLE 19. The Annual Ordering Schedule for DC j∗

J ∗ Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Dij∗

1j∗ 250 250 250 250 250 250 250 250 250 250 250 250 3000

2j∗ 200 200 200 200 200 200 1200

3j∗ 150 150 150 150 600

4j∗ 100 100 200

Total 700 250 450 400 450 250 700 250 450 400 450 250 5000

the monthly quantity that leaves DC j∗, and the last column summarizes the demand

of each retailer in J ∗. The maximum monthly amount served by this DC is equal to

the sum of the order quantities of retailers in J ∗, and hence, the storage space of DC

j∗ should be at least 700. On the other hand, the annual throughput of this DC (the

cumulative annual order quantity) is 5000. As a conclusion, with a storage capacity

of 700, we can serve a DC with a throughput requirement of 5000. Hence, it is not

correct to model throughput capacity as storage capacity.

Next, we discuss the structural properties of the PIII-SC leading to an efficient

solution approach for the problem. For the sake of notational clarity and ease of
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explanation, we represent the problem in the following compact form:

MinX,Y,Q F (X) + G(Y,Q) (P-SC)

subject to

H(X,Y,Q) ≤ 0, (5.43)

M(Y) = 0, (5.44)

N(X,Y) ≤ 0, (5.45)

X ∈ {0, 1}n, Y ∈ {0, 1}mn, and Q ∈ R
m
+ , (5.46)

where

F (X) =
∑

j∈J

fjXj,

G(Y,Q) =
∑

i∈I

∑

j∈J

{
(pij + rijdij)DiYij

Qi

}
+
∑

i∈I

{
KiDi

Qi
+

1

2
h′

iQi

}
,

and H(.), M(.), and N(.)are vector functions with components:

Hj(Xj ,Y,Q) =
∑

i∈I

QiYij − SjXj , j ∈ J ; (5.47)

Mi(Y) =
∑

j∈J

Yij − 1, i ∈ I; (5.48)

Nij(Xj, Yij) = Yij −Xj, i ∈ I, j ∈ J . (5.49)

This problem is a difficult mixed integer nonlinear programming (MINLP) prob-

lem, and it is NP-hard. For this problem, it is easy to see now that the discrete

variables X and Y are the complicating variables in the sense that we obtain a multi-

retailer capacitated EOQ problem when the discrete variables are temporarily held

fixed. The key idea that enables (P-SC) to be viewed as a problem in the X and

Y space is the concept of projection, sometimes known also as partitioning. The
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projection of (P-SC) onto X-Y is

v(X,Y) =min
Q

G(Y,Q) (Sub-P-SC)

subject to

H(X,Y,Q) ≤ 0, (5.50)

Q ∈ R
m
+ . (5.51)

Then, the overall problem can be rewritten as

MinX,Y F (X) + v(X,Y) (Master-P-SC)

subject to

M(Y) = 0, (5.52)

N(X,Y) ≤ 0, (5.53)

X ∈ {0, 1}n ∩ Γ, and Y ∈ {0, 1}mn ∩ Γ, (5.54)

where Γ = {X,Y : ∃Q ∈ Rm
+ and H(X,Y,Q) ≤ 0}, i.e., set Γ consists of values of

X and Y such that the problem (Sub-P-SC) is feasible.

Benders (1962) was one of the first to appreciate the importance of problem

(Sub-P-SC) as a route to solving (P-SC) in classical mixed integer programming.

Benders (1962) showed that the master problem and the subproblem can be solved

independently with information being communicated between them. The integer

solution is passed from the master problem to the subproblem, and the subproblem

generates cuts for the master problem. Geoffrion (1972) developed a framework, called

“Generalized Bender’s Decomposition”(GBD), to implement Bender’s decomposition

for nonlinear and possibly mixed integer problems.

The basic idea in the GBD is the generation, at each iteration, of an upper

bound and a lower bound on the sought solution of the original MINLP problem.
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The upper bound results from the solution of the subproblem while the lower bound

results from the solution of the master problem. The solution of the subproblem

not only provides an upper bound but also the Lagrange multipliers associated with

the constraints removed from the original problem. The master problem is derived

via nonlinear duality theory (Geoffrion, 1971) through manipulations to the original

problem. For GBD, it is shown that, as the iterations proceed, the sequence of the

lower bounds is non-decreasing, and the sequence of updated upper bounds is non-

increasing. Hence, the sequences converge in a finite number of iterations (Geoffrion,

1972).

GBD is used for solving many MINLP problems (Floudas, 1995). For solving (P-

SC), we utilize the GBD due to the special structure of our problem. That is, when the

location and assignment variables are known, the remaining problem (Sub-P-SC) is a

multi-retailer capacitated EOQ problem for each open DC. On the other hand, when

the Q = {Q1, . . . , Qm} values are known, the remaining problem is a capacitated

FCFLP. Next, we will discuss each component of the GBD and its application to

(P-SC) in detail. In particular, we will discuss

• the subproblem with feasible and infeasible cases,

• the derivation of the master problem, and

• the overall GBD procedure.

The Subproblem

Given X and Y, the problem reduces to finding a solution to a multi-retailer EOQ

problem with storage capacity for each open DC j, j ∈ J . That is, the subproblem
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at any iteration k

v(Xk,Yk) = min
Q

∑

i∈I

∑

j∈J

(pij + rijdij)DiY
k
ij

Qi
+
∑

i∈I

{
KiDi

Qi
+

1

2
h′

iQi

}

subject to

∑

i∈I

QiY
k
ij ≤ SjX

k
j , ∀j ∈ J , (5.55)

Qi ≥ 0, ∀i ∈ I, (5.56)

is decomposable for each j ∈ J , since each retailer can only be assigned to one DC.

That is, for each j ∈ J , there is a set of retailers Ij that is served by DC j, i.e.,

Ij = {i ∈ I : Yij = 1}, ∀j ∈ J . Then, the solution of the subproblem is obtained by

solving the following problem for all j ∈ J :

vj(X
k
j ,Yk) = min

Q

∑

i∈Ij

{
(pij + rijdij)DiY

k
ij

Qi

+
KiDi

Qi

+
1

2
h′

iQi

}

subject to

∑

i∈Ij

QiY
k
ij ≤ SjX

k
j , ∀j ∈ J . (5.57)

Qi ≥ 0, ∀i ∈ Ij. (5.58)

In the above, although displaying Y k
ij explicitly, i ∈ Ij and j ∈ J , is unnecessary,

keeping it in the formulation is useful for generating the cuts later.

For each j ∈ J , the above problem vj(X
k
j ,Yk) is solved following a similar

approach in Hadley and Whitin (1963)[p. 54-55]. In particular, for a fixed j ∈ J , we

first ignore constraints (5.57), i.e., we minimize the terms of the objective function

for i ∈ Ij separately to determine the order quantity Qi. This yields

Q∗
i =

√
2Di[Ki +

∑
j∈J (pij + rijdij)Y

k
ij ]

h′
i

. (5.59)
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For each j ∈ J , if Q∗
i , i ∈ Ij, satisfy constraints (5.57), then these Q∗

i are optimal,

and the capacity constraints (5.57) are not active. On the other hand, if for some

j ∈ J these Q∗
i do not satisfy constraints (5.57), then the constraint is active, and

Q∗
i of (5.59) is not optimal. To find the optimal Q∗

i , ∀i ∈ Ij , the Lagrange multiplier

technique is used.

For DCs with violated capacity constraints, j ∈ J , we form the following La-

grange function:

Lj =
∑

i∈Ij

{
(pij + rijdij)DiY

k
ij

Qi
+

KiDi

Qi
+

1

2
h′

iQi

}
+ µj



∑

i∈Ij

QiY
k
ij − SjX

k
j


 , (5.60)

where µj is the Lagrange multiplier, and µj ≥ 0, j ∈ J . For each j ∈ J , the optimal

Qi, for i ∈ Ij , is obtained from the well known KKT conditions (Bertsekas, 2004):

∂Lj

∂Qi
= 0 =

−(pij + rijdij)Di

Q2
i

− KiDi

Q2
i

+
1

2
h′

i + µj, i ∈ Ij . (5.61)

∂Lj

∂µj
= 0 =

∑

i∈Ij

Qi − sj . (5.62)

Qi ≥ 0, i ∈ Ij . (5.63)

µj ≥ 0. (5.64)

This equation system has a unique and, hence, optimal solution:

Q∗∗
i =

√
2Di[Ki + pij + rijdij]

h′
i + 2µ∗

j

, i ∈ Ij , (5.65)

where µ∗
j is the value of µj such that Q∗∗

i of (5.65) satisfy (5.62). For j ∈ J , the

equation

Wj(µj) =
∑

i∈Ij

√
Aij

Bi + µj

− sj = 0

is satisfied by a uniqueµ∗
j > 0 since

• Wj(µj) is a monotone decreasing function of µj for Aij = Di[Ki+pij+rijdij] ≥ 0
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and Bi = 1
2
h′

i ≥ 0, and

• as µj →∞, Wj(µj)→ −sj .

In our algorithm, we find such µ∗
j > 0 using a bisection algorithm.

Using this solution, we form the following cut:

L(Xk,Yk,Qk, µk) =
∑

j∈J

Lj

=
∑

j∈J

∑

i∈I

(pij + rijdij)DiY
k
ij

Qk
i

+
∑

i∈I

KiDi

Qk
i

+
1

2
h′

iQ
k
i

+
∑

j∈J

µk
j (
∑

i∈I

Qk
i Y

k
ij − SjX

k
j )

=
∑

i∈I

∑

j∈J

αk
ijY

k
ij +

∑

j∈J

βk
j Xk

j + γk, (5.66)

where

Qk
i = Q∗∗

i , i ∈ I. (5.67)

µk
j = µ∗

j , j ∈ J . (5.68)

αij =
(pij + rijdij)Di

Qk
i

+ µk
jSj , i ∈ I andj ∈ J . (5.69)

βj = −µk
j Sj, j ∈ J . (5.70)

γ =
∑

i∈I

KiDi

Qk
i

+
1

2
h′

iQ
k
i . (5.71)

If the capacity constraint (5.57) is not tight, µj = 0, and, consequently, βj = 0.

Next, we describe the master problem.

The Master Problem

The desired master problem is obtained by invoking the key ideas of the GBD

including partitioning (or projection of) problem (P-SC) onto X-Y, the dual repre-

sentation of (Sub-P-SC), and the dual representation of the feasible region of (Sub-P-

SC) Γ, (Geoffrion, 1971). By introducing a new variable η, we formulate the master
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problem as follows:

MinX,Y,η

∑

j∈J

fjXj + η (Master-P-SC)

subject to

∑

j∈J

Yij = 1, i ∈ I. (5.72)

Yij ≤ Xj, i ∈ I and j ∈ J . (5.73)

η ≥ min
Q

{
∑

i∈I

∑

j∈J

(pij + rijdij)DiYij

Qi
+
∑

i∈I

(
KiDi

Qi
+

1

2
h′

iQi

)

∑

j∈J

µj(
∑

i∈I

QiYij − SjXj)

}
, ∀µ ≥ 0. (5.74)

This formulation of the master problem is equivalent to the original formulation of the

PIII-SC. It involves, however, an infinite number of constraints, and hence, we need

to consider a relaxation of the master problem by dropping a number of constraints.

In particular, we add constraints (5.74) as needed. This reduced formulation is called

the relaxed master problem (RM-P-SC):

MinX, Y, η

∑

j∈J

fjXj + η (RM-P-SC)

subject to

(5.72), (5.73),

η ≥
∑

i∈I

∑

j∈J

αk
ijYij +

∑

j∈J

βk
j Xj + γk, for k = 1, . . . , K. (5.75)

In this formulation, the cuts (5.75) follow the same form as in (5.66). Furthermore,

they are added at each iteration as explained earlier. In (5.75), K refers to the number

of cuts generated using the subproblem. (RM-P-SC) is still a difficult mixed integer
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programming formulation. We solve (RM-P-SC) at each iteration of the GBD using

CPLEX 9.0.

Next, we describe the overall procedure of the GBD for (P-SC).

The Overall GBD Procedure

The overall procedure of the GBD follows closely from the initial framework

introduced by Geoffrion (1972). The framework developed for (P-SC) is represented

in the following steps:

1: Set UB = ∞ and bestUB = ∞. Set the counter k = 0. Select convergence

tolerance ǫ = 0.001. Solve (RM-P-SC). Let (X̂, Ŷ, η̂) be an optimal solution of

(RM-P-SC). Set LB =
∑

j∈J fjX̂j + η̂.

2: Given (X̂, Ŷ), solve (Sub-P-SC). Let UB= v(X̂, Ŷ). Update bestUB with

min{bestUB, UB}. If bestUB − LB ≤ ǫ, then terminate. Otherwise, set k =

k + 1, and (αk, βk, γk)= (α̂, β̂, γ̂). Go to Step 3.

3: Solve (RM-P-SC). Update LB. If bestUB−LB ≤ ǫ, then terminate. Otherwise,

update (X̂, Ŷ) and return to Step 2.

The algorithm iterates between Step 2 and Step 3. The termination conditions of

the algorithm imply that the solution is ǫ−optimal for the original problem (P-SC).

Note that the LB values form a non-decreasing series and the bestUB values form

a non-increasing series. However, in our computational experience, we observe that

it is possible that the same cut is generated more than once. Then, the values of

LB and bestUB are not updated any further, and the ǫ-convergence is not achieved.

In those cases, we terminate the algorithm if the same cut is generated again. We

report our computational results regarding the performance of the GBD procedure

in Section V.3.3.
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V.3.2.3. Analysis of the PIII-DC

In this section, we analyze the generalization of the PIII with limited number of

annual dispatches from the potential DCs. Using the notation defined in Section V.1,

the formulation of this problem is as follows:

Min
∑

j∈J

fjXj +
∑

i∈I

∑

j∈J

{
(pij + rijdij)DiYij

Qi

}
+
∑

i∈I

{
KiDi

Qi
+

1

2
hiQi

}
(PIII-DC )

subject to

∑

j∈J

Yij = 1, ∀i ∈ I. (5.76)

Yij ≤ Xj, ∀i ∈ I and ∀j ∈ J . (5.77)

∑

i∈I

Di

Qi

Yij ≤ RjXj, ∀j ∈ J . (5.78)

Xj ∈ {0, 1}, ∀j ∈ J . (5.79)

Yij ∈ {0, 1}, ∀i ∈ I and ∀j ∈ J . (5.80)

Qi ≥ 0, ∀i ∈ I. (5.81)

The PIII-DC is challenging to solve because of the nonlinearities both in the

objective function and constraint (5.78). In this regard, it has similarities with the

PIII-SC.

One way to approach the PIII-DC is to ignore constraint (5.78), and solve the

problem using a Lagrangian Relaxation Heuristic. If the solution satisfies the limit

on the number of dispatches, the solution is optimal for the PIII-DC. On the other

hand, if the solution does not satisfy the limit, one can modify this solution to obtain

a feasible solution for the PIII-DC. This may be a good heuristic approach to solve

the problem the PIII-DC; however, this may not guarantee an optimal solution.
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Therefore, since the structural properties of the PIII-DC are similar to those of

the PIII-SC, we develop a GBD algorithm for the PIII-DC. This algorithm follows

the same steps as the GBD for the PIII-SC except the solution of the subproblem.

We discuss the formulation and solution of the subproblem next as well as the for-

mulations of the master problem (Master-P-DC) and the relaxed master problem

(RM-P-DC).

The Subproblem

Given X and Y, the problem reduces to finding a solution to a multi-retailer

EOQ problem with dispatch limitations for each open DC j, j ∈ J . That is, the

subproblem at any iteration k

v(Xk,Yk) = min
Q

∑

i∈I

∑

j∈J

(pij + rijdij)DiY
k
ij

Qi
+
∑

i∈I

{
KiDi

Qi
+

1

2
h′

iQi

}

subject to

∑

i∈I

Di

Qi
Y k

ij ≤ RjX
k
j , ∀j ∈ J , (5.82)

Qi ≥ 0, ∀i ∈ I, (5.83)

is decomposable for each j ∈ J , since each retailer can only be assigned to one DC

as in Section V.3.2.2. Let Ij = {i ∈ I : Yij = 1}, ∀j ∈ J . Then, the solution of the

subproblem is obtained by solving the following problem for all j ∈ J :

vj(X
k
j ,Yk) =min

Q

∑

i∈I〉

{
(pij + rijdij)DiY

k
ij

Qi

+
KiDi

Qi

+
1

2
h′

iQi

}

subject to
∑

i∈Ij

Di

Qi
Y k

ij ≤ RjX
k
j . (5.84)

Qi ≥ 0, ∀i ∈ Ij . (5.85)

For each j ∈ J , the problem vj(X
k
j ,Yk) is solved via the approach in Hadley and
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Whitin (1963)[p. 56-57]. To find the optimal Q∗
i , ∀i ∈ Ij , the Lagrange multiplier

technique is used. In particular, for each j ∈ J , we form the following Lagrange

function:

Lj =
∑

i∈Ij

{
(pij + rijdij)DiY

k
ij

Qi

+
KiDi

Qi

+
1

2
h′

iQi

}
+ µj(

∑

i∈Ij

Di

Qi

Y k
ij −RjX

k
j ), (5.86)

where µj is the Lagrange multiplier, and µj ≥ 0, j ∈ J . For all j ∈ J , the optimal

µ∗
j and Q∗

i , for i ∈ Ij , are obtained from the well known KKT conditions (Bertsekas,

2004):

∂Lj

∂µj

= 0 =
∑

i∈Ij

Di

Qi

− Rj . (5.87)

∂Lj

∂Qi

= 0 =
−(pij + rijdij)Di

Q2
i

− KiDi

Q2
i

+
1

2
h′

i −
µjDi

Q2
i

, i ∈ Ij. (5.88)

Qi ≥ 0, i ∈ Ij . (5.89)

µj ≥ 0. (5.90)

From (5.88), the optimal order quantity is given as

Q∗
i =

√
2Di[pij + rijdij + Ki + µ∗

j ]

hi
, i ∈ Ij, j ∈ J . (5.91)

By substituting (5.91) in (5.87) for j ∈ J , we obtain

Wj(µ
∗
j) =

∑

i∈Ij

√
Dihi√

Ki + pij + rijdij + µ∗
j

−Rj .

There is a unique µ∗
j ≥ 0 such that Wj(µ

∗
j ) = 0 since

• Wj(µ
∗
j ) is a decreasing function of µ∗

j , and

• as µ∗
j →∞, Wj(µ

∗
j)→ −Rj .

This unique µ∗
j is found using a bisection algorithm.
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Using the solution of the subproblem, we form the following cut:

L(Xk,Yk,Qk, µk) =
∑

j∈J

Lj

=
∑

j∈J

∑

i∈I

(pij + rijdij)DiY
k
ij

Qk
i

+
∑

i∈I

KiDi

Qk
i

+
1

2
h′

iQ
k
i

+
∑

j∈J

µk
j (
∑

i∈I

Di

Qk
i

Y k
ij − RjX

k
j )

=
∑

i∈I

∑

j∈J

αk
ijY

k
ij +

∑

j∈J

βk
j Xk

j + γk, (5.92)

where

Qk
i = Q∗

i , i ∈ I. (5.93)

µk
j = µ∗

j , j ∈ J . (5.94)

αij =
(pij + rijdij)Di

Qk
i

+ µk
j

Di

Qk
i

, i ∈ I andj ∈ J . (5.95)

βj = −µk
j Rj , j ∈ J . (5.96)

γ =
∑

i∈I

KiDi

Qk
i

+
1

2
h′

iQ
k
i . (5.97)

If the dispatch capacity constraint (5.84) is not tight, µk
j = 0, and, consequently,

βj = 0.

The Master Problem

After discussing the subproblem and its solution, we are ready to present the

formulation of the master problem for the PIII-DC. Again, by introducing a new
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variable η, we formulate the master problem as follows:

MinX,Y,η

∑

j∈J

fjXj + η (Master-P-DC)

subject to

∑

j∈J

Yij = 1, i ∈ I. (5.98)

Yij ≤ Xj , i ∈ I and j ∈ J . (5.99)

η ≥ min
Q

{
∑

i∈I

∑

j∈J

(pij + rijdij)DiYij

Qi

+
∑

i∈I

(
KiDi

Qi

+
1

2
h′

iQi)

∑

j∈J

µj(
∑

i∈I

Di

Qi

Yij −RjXj)

}
, ∀µ ≥ 0. (5.100)

This formulation of the master problem is equivalent to the original formulation of

the PIII-DC. It involves, however, an infinite number of constraints, and hence, we

consider a relaxation of the master problem where we drop constraints (5.100) and

add a number of them as needed. This reduced formulation is called the relaxed

master problem (RM-P-DC) and is given by

MinX, Y, η

∑

j∈J

fjXj + η (RM-P-SC)

subject to

(5.98), (5.99),

η ≥
∑

i∈I

∑

j∈J

αk
ijYij +

∑

j∈J

βk
j Xj + γk, for k = 1, . . . , K. (5.101)

In this formulation, the cuts (5.101) follow the same form as in (5.92). Furthermore,

they are added at each iteration as explained earlier. In (5.101), K refers to the

number of cuts generated for the subproblems. (RM-P-DC) is still a difficult mixed
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integer programming formulation. We solve (RM-P-DC) at each iteration of the GBD

algorithm using CPLEX 9.0.

The overall procedure of the GBD is the same as in Section V.3.2.2. We present

the computational results regarding the performance of the algorithm in Section V.3.3.

V.3.2.4. Analysis of PIII-TC

In this section, we analyze a generalization of the PIII with installable truck capacity.

Using the notation defined in Section V.1, the formulation of the PIII-TC is as follows:

Min
∑

j∈J

fjXj +
∑

i∈I

∑

j∈J





(pij + rijdij)
⌈

Qi

CT

⌉
DiYij

Qi



+

∑

i∈I

{
KiDi

Qi

+
1

2
hiQi

}

subject to

∑

j∈J

Yij = 1, ∀i ∈ I. (5.102)

Yij ≤ Xj , ∀i ∈ I and ∀j ∈ J . (5.103)

Xj ∈ {0, 1}, ∀j ∈ J . (5.104)

Yij ∈ {0, 1}, ∀i ∈ I and ∀j ∈ J . (5.105)

Qi ≥ 0, ∀i ∈ I. (5.106)

Observe that in this case the nonlinearity is in only the objective function. As we will

show next, we can eliminate this nonlinearity by converting the PIII-TC to the clas-

sical uncapacitated FCFLP, and, hence, the PIII-TC can be solved via the techniques

developed for the uncapacitated FCFLP (see Section II.1.2).

First, note that, if X and Y are known, then the remaining problem is a multi-

retailer EOQ-model with a generalized replenishment cost structure. Let Ij = {i ∈
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I : Yij = 1} for a given j ∈ J . Then, for each j ∈ J and each i ∈ Ij , we solve the

following EOQ problem with a generalized replenishment cost structure:

g(Qi) =
(Ki + (pij + rijdij)

⌈
Qi

CT

⌉
)Di

Qi
+

1

2
h′

iQi. (5.107)

For a single-retailer EOQ model with similar generalized replenishment costs, Toptal

et al. (2003) provide an algorithm to find the optimal order quantity. Since our

problem is decomposable for each retailer, we can utilize the algorithm by Toptal

et al. (2003) to find the optimal order quantity for each retailer. Here, we reiterate

the algorithm for our problem in (5.107) for the sake of completeness.

Algorithm for finding Q∗

For retailer i ∈ Ij and j ∈ J :

1: Compute QEOQ
i =

√
2KiDi/h′

i.

2: Let N denote the integer such that NCT < QEOQ
i ≤ (N + 1)CT . Compute

QN+1
i =

√
2Di[Ki + (N + 1)(pij + rijdij)]

h′
i

.

If QN+1
i ≥ (N + 1)CT , then go to Step 3. Otherwise, go to Step 4.

3: Q∗
i = arg min{g(NCT ), g((N + 1)CT )}. Stop.

4: Q∗
i = arg min{g(NCT ), g(QN+1

i )}. Stop.

Observe that the optimal Q∗
i generated by this algorithm is given by

arg min{g(QN+1
i ), g(NCT ), g((N + 1)CT )}.

Hence, for each i ∈ I and j ∈ J , we can obtain the order quantities of the
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retailers via this algorithm. Let

cij =
(Ki + (pij + rijdij)

⌈
Q∗

i

CT

⌉
)Di

Q∗
i

+
1

2
h′

iQ
∗
i .

Then, we can restate the PIII-TC as follows:

MinX, Y

∑

j∈J

fjXj +
∑

i∈I

∑

j∈J

cijYij

subject to

(5.102), (5.103), (5.104), and (5.105),

and this formulation is equivalent to the formulation of the uncapacitated FCFLP.

Hence, the following corollary summarizes the desired result.

COROLLARY 3 The PIII-TC can be solved using the techniques developed for the

uncapacitated FCFLP.

REMARK 3 If the number of trucks at hand is also limited, then the above approach

is no longer sufficient. The solution approaches for that problem remain a challenging

problem for future research.

V.3.3. Numerical Results

In this section, we present numerical results for the problems PIII-PC, PIII-SC, and

DC. Again, the computational results for the PIII-PC illustrate the impact of in-

tegrated decision-making. For the PIII-PC, we first describe the benchmark model

that represents the typical practice. Next, we provide a numerical comparison the

PIII-PC and the benchmark model. We not only quantify the benefits obtained

from integrated decision-making, but we also identify the problem parameters that

contribute the most to these benefits.
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The computational results for the PIII-SC and the PIII-DC show the perfor-

mance of the GBD algorithm with these problems. Since these models are only appli-

cable when location and inventory decisions are made simultaneously, there is no fair

benchmark with which to compare these models to measure the value of integrated

decision-making.

All of the numerical results are obtained through algorithms implemented using

C++ and run on a Pentium IV 3.2Ghz machine with 1 GB memory.

V.3.3.1. Numerical Results Regarding the PIII-PC

In this section, we first introduce a benchmark model that is comparable to PIII-

PC. We describe the benchmark model, its assumptions, formulation and solution in

detail. Next, we perform two different types of computational experiments. In the

first experiment, we investigate the impact of the network structure and the problem

size on the integrated decision-making. In the second experiment, we perform a

factorial design to identify the influential parameters affecting the impact of integrated

decision-making.

Benchmark Model (BMIII-PC )

Similar to the benchmark model in Section V.2.6, the benchmark model (BMIII-

PC ) builds on the idea that location and inventory decisions are made sequentially

and that facility location decisions precede inventory decisions. For this purpose, in

the BMIII-PC, we first solve the following capacitated single-source FCFLP regarding

the selection of DCs and assignment of DCs to the retailers:

Min
∑

j∈J

fjXj +
∑

i∈I

∑

j∈J

cijYij (BMIII-PC-Loc)
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subject to

∑

j∈J

Yij = 1, ∀i ∈ I.

Yij ≤ Xj , ∀i ∈ I and ∀j ∈ J .

∑

i∈I

DiYij ≤ PjXj, ∀j ∈ J .

Xj ∈ {0, 1}, ∀j ∈ J .

Yij ∈ {0, 1}, ∀i ∈ I and ∀j ∈ J .

Similarly to Section V.2.6, cij represents an estimate for per-unit per-mile transporta-

tion cost. This formulation is the typical formulation of the single source capacitated

FCFLP and can be solved via several different methods developed for the FCFLP

(see Section II.1.2). In our computational tests, we solve this problem exactly using

CPLEX 9.0 to obtain XBM and YBM .

Next, given the assignment variables Y BM
ij for all i ∈ I and j ∈ J , the inventory

decisions of retailers are determined by solving the following problem:

min
Q

∑

i∈I

{
KiDi

Qi
+

1

2
h′

iQi +
∑

j∈J

(pij + rijdij)DiY
BM
ij

Qi

}
. (BMIII-PC-Inv)

The optimal order quantity of retailer i ∈ I obtained from the solution of the BMIII-

PC-Inv is

QBM
i =

√
2[Ki +

∑
j∈J (pij + rijdijY BM

ij )]Di

h′
i

, i ∈ I.

The cost of BMIII-PC (ZBM ) is calculated using the decision variables (XBM ,

YBM ,QBM), obtained from the solutions of the BMIII-Loc and the BMIII-Inv, in

(5.8). We then measure the value of the integrated framework by computing

The percentage gain of the PIII-PC over the BMIII-PC (%) =
ZBM − ZPIII−PC

ZPIII−PC
×100,
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where ZPIII−PC is the cost of the PIII-PC.

Test 1: Impact of |I| and |J |

We first compare the performance of the PIII-PC and the BMIII-PC for 900

instances using data given in Table 13. As before, the main goal of this experiment

is to measure the impact of integrated decision-making for different configurations of

the distribution systems, i.e., for different numbers of retailers and potential DCs,

under throughput capacity constraints.

We generate the throughput capacity randomly using the uniform distribution

U [Lcap, Ucap] for each DC j ∈ J where Lcap = 4∗
P

i∈I Di

|I|
and Ucap = 16∗

P
i∈I Di

|I|
. With

this capacity restriction, each DC, on average, will be capable of serving a random

number of retailers between 4 and 16.

We report the minimum, average, and maximum percentage gain of the PIII-

PC over the BMIII-PC in Table 20 for different configurations of the distribution

systems. We also compare the number of open DCs in both approaches and report

the results. For each instance, the difference in the number of open DCs is calculated

as
∑

j∈J XBM
j −∑j∈J XPIII−PC

j where XPIII−PC is obtained from the solution of the

PIII-PC. In Table 20, we also present the minimum, average, and maximum difference

in the number of open DCs for the PIII-PC and the BMIII-PC.

In all of the data sets in Table 20, we observe that significant gains are obtained

with the PIII-PC over the BMIII-PC, with average gains more than 34.85% and

maximum gains up to 61.42%. One interesting observation is that, for a given number

of retailers, the average gain increases as the number of potential DCs increases.

Similarly to the findings in Section V.2.6, integrated decision-making adds gains above

sequential decision-making by the increment of the number of potential DC locations.
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TABLE 20. Performance of the PIII-PC Compared to the Sequential Benchmark

Model BMIII-PC.

Gain(%) Open DCs
Data set |I| |J | Min Ave Max Min Ave Max

1 25 10 4.37 34.85 60.17 0 2.14 4
2 25 20 3.36 37.40 58.21 0 2.60 5
3 25 30 5.39 37.48 60.63 0 2.78 5
4 50 10 6.60 39.52 61.42 2 3.84 6
5 50 20 7.10 39.96 58.79 0 4.49 8
6 50 30 5.09 40.86 61.07 1 4.69 8
7 100 10 8.34 39.65 59.64 4 5.65 9
8 100 20 2.89 40.38 60.31 4 7.52 10
9 100 30 5.25 41.26 59.35 1 7.40 11

Similarly, for a given number of potential DCs, the average gain increases as the

number of retailers increases. Hence, as the distribution network gets larger, it is

more beneficial to consider the PIII-PC.

From the results in Table 20, we also observe that using the PIII-PC reduces the

number of open DCs significantly. In the uncapacitated case PIII, there are instances

where the number of open DCs in the PIII is larger than the number in the BMIII (see

Section V.2.6). For the PIII-PC, this is no longer the case. For all of the instances in

all data sets, the number of open DCs in the PIII-PC is less than the BMIII-PC. On

average, this difference is at least two DCs for data sets with smaller networks (data

sets 1, 2, and 3) and can be as high as seven DCs for data sets with larger networks

(data sets 8 and 9). Due to the explicit consideration of transportation costs and

the impact of inventory decisions on location decisions, the PIII-PC requires fewer

number of open DCs.

Test 2: Impact of Problem Parameters

In this experiment, to measure the impact of the problem parameters on in-
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tegrated decision-making, we use the factorial design setting introduced in Section

V.2.6 while comparing the PIII-PC and the BMIII-PC. The throughput capacity is

generated in the same way as in Test 1. In Tables 29, 30, 31, and 32, we present

the factorial experiment settings and the results for each setting including the mini-

mum, average, and maximum percentage gains for 100 instances and the average and

maximum differences in the number of open DCs for the two approaches.

The results we obtain follow the key findings for PIII as in Section V.2.6. Further-

more, due to the impact of the throughput capacity, the savings are more pronounced.

We next summarize the other key points of our numerical study and establish the

trade-offs among the problem parameters to determine under which settings the in-

tegrated decision-making has a higher impact.

• In Table 21, we provide the settings that result in 10 highest average percentage

gains. The highest average gain is 42.57%, and maximum gain among these

factorial designs is 63.61%. One of our main observations is that the ten highest

average percentage gains are attained when demand and distance is obtained

from uniform distributions at high levels. Hence, demand and distance appear

to be the most influential parameters as in the comparison of the BMIII and

the PIII.

Another important observation from Table 21 is related to the difference in

the number of open DCs between the PIII-PC and the BMIII-PC. The average

difference in the number of DCs can be up to 6 DCs and the maximum difference

can go as high as 8 DCs. High demand and distance levels force the BMIII-

PC to open more (unnecessary) DCs than the PIII-PC. This difference is more

distinct due to the impact of throughput capacity.

• In Table 22, we provide the factorial design settings that result in 10 lowest av-



184

TABLE 21. Factorial Designs with the 10 Highest Average Gains for PIII-PC

F. D. Levels of Parameters Gain (%) Open DCs
No. Di Ki h′

i pij rij dij fj Min Ave Max Min Ave Max

68 H L L L L H H 11.18 42.57 55.72 1 3.03 4
72 H L L L H H H 1.04 37.14 48.91 1 3.02 5
84 H L H L L H H 6.73 36.21 47.12 1 3.04 5
76 H L L H L H H 6.82 32.83 43.14 1 3.04 5
88 H L H L H H H 5.32 31.38 50.90 1 3.07 5
80 H L L H H H H 3.76 31.08 61.59 1 3.05 5
67 H L L L L H L 22.53 30.78 37.77 4 6.08 8
100 H H L L L H H 3.03 30.45 63.61 1 3.05 5
3 L L L L L H L 3.03 30.45 63.61 1 3.05 5
92 H L H H L H H 0.97 26.74 36.09 1 3.05 5

erage percentage gains. Similar to the results in Table 21, demand and distance

appear as the most influential parameters. The lowest average gains occur when

demand and distance are drawn from uniform distributions at low levels. The

ten lowest average gains range between 0.51% and 1.18%. The maximum gains

corresponding to these settings go up to 11.07% which is significant.

TABLE 22. Factorial Designs with the 10 Lowest Average Gains for PIII-PC

F. D. Levels of Parameters Gain (%) Open DCs
No. Di Ki h′

i pij rij dij fj Min Ave Max Min Ave Max

62 L H H H H L H 0.00 0.51 5.25 0 0.00 0
58 L H H H L L H 0.00 0.52 2.80 0 0.00 0
54 L H H L H L H 0.00 0.62 3.38 0 0.00 0
50 L H H L L L H 0.00 0.76 6.39 0 0.00 0
46 L H L H H L H 0.00 0.81 11.07 0 0.00 0
34 L H L L L L H 0.00 0.84 4.42 0 0.00 0
22 L L H L H L H 0.00 0.94 4.72 0 0.00 0
14 L L L H H L H 0.00 0.94 5.81 0 0.00 0
18 L L H L L L H 0.00 1.13 9.96 0 0.00 0
6 L L L L H L H 0.00 1.18 6.02 0 0.00 0

As observed in Table 22, another important parameter is the fixed cost of open-
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ing DCs. For the factorial designs with the ten lowest average gains, the fixed

location costs are drawn from a uniform distribution at high levels. In all of the

factorial designs in Table 22, the number of open DCs in the solutions of the

PIII-PC and the BMIII-PC are the same. Hence, the average and maximum

difference for the number of open DCs are zero for all of the instances in these

ten factorial designs. High levels of fixed location costs, coupled with low levels

of demand and distance, force both the PIII-PC and the BM-III-PC to open

fewer DCs, often, only one DC.

• The impact of other parameters on integrated decision-making is similar to our

earlier comparison of the PIII and the BMIII.

V.3.3.2. Numerical Results Regarding the PIII-SC

In this section, we present computational results regarding the performance of the

GBD algorithm. We test the PIII-SC for 900 instances generated using the data

given in Table 13. For these instances the storage capacity Sj for each potential DC

j ∈ J is generated randomly using the uniform distribution U [SLcap, SUcap] for each

DC j ∈ J where Lcap =
P

i∈I Di

|I|
and Ucap = 4 ∗

P
i∈I Di

|I|
. With this storage capacity

restriction, each DC, on average, will be capable of serving a random number of

retailers from 1 to 4.

The main goal of this experiment is to

• demonstrate the quality of the solution generated by the GBD,

• present the time and number of iterations required to achieve that result, and

• compare the performance of the GBD with a generic mixed integer nonlinear

programming solver.
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To demonstrate the performance of the GBD, we record the percentage gap

between the best upper and lower bounds returned by the algorithm, the number of

cuts generated, and the duration of the algorithm. For each problem instance, the

gap is defined as the percentage difference

Gap(UB-LB) (% ) =
ZUB

PIII−SC − ZLB
PIII−SC

ZLB
PIII−SC

× 100,

where ZUB
PIII−SC is the cost of the best feasible solution suggested by the GBD and

ZLB
PIII−SC is the lower bound on the optimal solution of the PIII-SC.

Furthermore, for comparing the solution provided by the GBD algorithm with

the generic methods, we utilize the MINLP algorithm on the NEOS server3 (Czyzyk

et al., 1998; Dolan, 2001; Gropp and More, 1997) for solving the PIII-SC. The MINLP

implements a branch-and-bound algorithm searching a tree whose nodes correspond

to continuous nonlinearly constrained optimization problems. The continuous prob-

lems are solved using filterSQP, a Sequential Quadratic Programming solver which

is suitable for solving large nonlinearly constrained problems. For each problem in-

stance, we define the gap between the solution returned by the MINLP and the lower

bound on the optimal solution of the PIII-SC as the percentage difference

Gap(Neos-LB) (% ) =
ZMINLP − ZLB

PIII−SC

ZLB
PIII−SC

× 100.

In Table 23, for each data set, we provide the minimum, average, and maximum

percentage gaps, number of cuts, and duration of the 100 instances. The first portion

of Table 23 summarizes the findings regarding the percentage gaps. The average gap

between the upper bound and lower bound varies between 1.05% and 2.79%. The

maximum gap can go as high as 9% for larger data sets 8 and 9. On the other hand,

3http://www-neos.mcs.anl.gov
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TABLE 23. Results of the GBD for PIII-SC

GAP (UB-LB)(%) GAP(Neos-LB)(%) Cuts Duration (s.)
DS Min Ave Max Min Ave Max Min Ave Max Min Ave Max
1 0.01 2.38 7.28 0.08 8.83 27.98 3 9.17 17 0.16 1.29 7.16
2 0.01 2.79 7.38 0.10 8.92 29.91 3 10.17 18 0.31 3.62 13.53
3 0.05 2.49 7.01 0.32 10.47 28.63 3 10.90 19 0.67 6.76 25.16
4 0.00 2.27 7.53 0.00 7.08 20.28 5 12.86 25 0.36 8.39 34.36
5 0.00 1.87 7.09 0.31 9.39 23.65 4 12.65 30 1.94 23.85 90.09
6 0.00 1.92 7.19 0.25 9.99 26.91 4 13.00 27 2.20 37.52 179.37
7 0.00 1.16 6.93 0.05 9.24 34.88 5 15.82 39 2.06 77.49 1675.57
8 0.00 1.05 8.91 - - - 5 15.14 39 8.59 500.70 19663.30
9 0.00 1.77 9.16 - - - 5 13.94 72 9.69 741.59 21062.50

the generic MINLP algorithm has average gaps around 9%, and maximum gaps up

to 34.88%. Furthermore, the generic MINLP cannot solve instances in data set 8 and

9. On the other hand, the GBD is quite effective in solving the PIII-SC.

In terms of speed, for smaller distribution systems (data sets 1, 2, 3, and 4), the

GBD algorithm is quite fast with an average duration of less than 10 seconds and

a maximum duration up to 34.36 seconds. For data sets 8 and 9, the duration is

higher with average times of 500.70 and 741.59 seconds, respectively. The maximum

duration for these data sets can be as high as six hours although the number of

cuts added only up to seventy-two. Hence, the main driver behind this duration of

the GBD method is the solution of the relaxed master problem which is currently

solved by CPLEX. As a future research direction, an alternative, and possibly faster,

solution approach can be developed to improve the current GBD implementation.

Although the maximum durations for data sets 8 and 9 are higher, NEOS could not

provide a solution for these data sets. Note that we do not report and compare the

duration of the solution provided by NEOS for two reasons. First, it is not possible to

obtain the duration of the algorithms in NEOS. Secondly, even if it were possible, it

would not be fair to compare these durations since they are run on different computer

configurations.



188

TABLE 24. Results of the GBD for PIII-DC

GAP (UB-LB)(%) GAP(Neos-LB)(%) Cuts Duration (s.)
DS Min Ave Max Min Ave Max Min Ave Max Min Ave Max
1 0.00 0.15 3.48 0.00 0.46 7.80 1 2.18 8 0.05 0.16 1.20
2 0.00 0.33 5.84 0.00 0.54 5.84 1 2.17 8 0.06 0.27 2.81
3 0.00 0.69 6.37 0.00 1.06 9.08 1 2.09 9 0.09 0.39 3.30
4 0.00 0.25 7.33 0.00 0.28 7.33 1 2.87 11 0.06 0.89 6.70
5 0.00 0.61 8.16 0.00 0.69 8.16 1 2.80 12 0.09 2.55 48.77
6 0.00 0.46 8.99 0.00 0.50 8.99 1 3.16 10 0.16 4.11 28.92
7 0.00 0.42 5.29 0.00 0.43 5.30 1 3.35 15 0.09 3.99 65.50
8 0.00 0.50 6.43 0.00 0.50 6.43 1 3.47 18 0.20 18.41 425.20
9 0.00 0.51 6.72 0.00 0.51 6.72 1 3.63 12 0.34 438.84 17598.50

V.3.3.3. Numerical Results Regarding the PIII-DC

In this section, we present computational results regarding the performance of the

GBD algorithm for the PIII-DC. Again, we report results for 900 instances generated

using the data given in Table 13. For these instances, the dispatch capacity Rj for each

potential DC j ∈ J is generated randomly using the uniform distribution U [10, 50]

for each DC j ∈ J . With this dispatch capacity restriction, each DC, on average,

will be capable of filling at least 10 and at most 50 orders per year.

With this experiment, which is similar to the experiment for the PIII-SC, our aim

is to demonstrate the quality of the solution generated by the GBD by presenting the

percentage gaps between the upper bound and the lower bound, the duration of the

algorithm, and the number of iterations required to achieve the result. We also com-

pare the performance of the GBD with generic mixed-integer nonlinear programming

solvers.

In Table 24, for each data set, we provide the minimum, average, and maximum

percentage gaps, number of cuts, and duration of the 100 instances. The first portion

of Table 24 summarizes the findings regarding the percentage gap. The average gap

between the upper bound and lower bound varies between 0.15% and 0.69%, which

shows the effectiveness of the GBD in solving the PIII-DC. However, the maximum
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gap can be as high as 9%. For the PIII-DC, the performance of the generic MINLP

algorithm is quite close to the performance of the GBD. For data instances in data

sets 5 to 9, the best feasible solutions obtained by GBD are the same, or slightly

better than, the solutions obtained by the MINLP algorithm.

In terms of the duration of the algorithm, the GBD algorithm is quite fast for

data sets 1 to 7 with an average duration of less than 5 seconds and a maximum

duration of up to 65.50 seconds. For data set 8, the duration is slightly higher with

an average and a maximum time of 18.41 and 425.20 seconds, respectively. Data set 9

is the only data set that takes significant time with an average and maximum time of

438.84 seconds and approximately 5 hours, respectively. The average and maximum

number of cuts for all of the data sets are less than 4 and 20 cuts, respectively. Hence,

the main driver behind the duration of the algorithm is the solution of the relaxed

master problem, which we are currently solving with CPLEX. As a future research

direction, an alternative and possibly, faster solution -probably an heuristic- approach

can be developed to improve the current GBD implementation for the PIII-SC and

PIII-DC.

V.4. Summary and Conclusions

In this chapter, we generalize the classical FCFLP problem to consider inventory

decisions at the retailers. In particular, we consider establishing a number of DCs

from a candidate set to serve geographically dispersed retailers with stationary and

deterministic demand. Each retailer operates under the assumptions of the EOQ

model. In order to exploit the complex trade-offs in distribution system design, our

goal is to minimize the total costs in the system including inventory holding and

ordering costs, direct transportation costs, and fixed facility (DC) location costs.
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We classify this problem with respect to the capacity restriction. When the po-

tential DCs do not have a capacity restriction, the problem PIII is a generalization of

the uncapacitated FCFLP. For the PIII, we show that the problem can be converted

to an equivalent uncapacitated FCFLP, and, hence, can be solved via the techniques

developed for the FCFLP. To quantify the benefits from integrated decision-making,

we compare the solution of the PIII with a benchmark model where the facility loca-

tion decisions precede the inventory decisions. From our computational experiments,

we conclude that there are, on average, 25% to 30% savings with the integrated ap-

proach over the benchmark model. Furthermore, the demand of retailers, distance

between the retailers and DCs, and fixed costs of the DCs emerge as the parame-

ters that have the most influence on the savings. For the problem instances with

higher demands and farther distances, it is more beneficial to utilize the integrated

location-inventory model in order to efficiently exploit the trade-offs in the distribu-

tion system, and, hence, realize more cost savings. For problem instances with lower

demands and closer distances, the fixed costs of the DCs appear as an influential

parameter due to the classical trade-off among the fixed facility location costs and

the implied transportation costs.

For the purpose of studying capacity restricted extensions of the PIII, we first

discuss capacity considerations in real-life distribution systems. We consider four

different types of capacity restrictions: throughput capacity restrictions, storage ca-

pacity restrictions, and dispatch capacity restrictions at the DCs, and the truck/cargo

capacity restrictions on the transportation links. We call the corresponding problems

the PIII-PC, PIII-SC, PIII-DC, and PIII-TC, respectively. Under these different

capacity restrictions, we revise the model PIII and its solution approaches.

We show that the PIII-PC can be converted to the classical capacitated FCFLP,

and, hence, can be solved via the techniques developed for the capacitated FCFLP.
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We compare the PIII-PC with a benchmark that relies on sequential decision-making

to quantify the benefits associated with integrated decision-making. In our compu-

tational tests, we observe that due to the impact of capacity restriction, the savings

with the PIII-PC rise to, on average, 65%-70% savings over the benchmark model.

As in the PIII, the demand of retailers, distance between the retailers and DCs, and

fixed costs of the DCs emerge as the most influential parameters affecting savings.

The PIII-SC, PIII with storage capacities, and the PIII-DC , PIII with dispatch

capacities, include the order quantities of retailers in capacity constraints which make

the problems more challenging. For these problems, we develop GBD-based algo-

rithms by exploiting the structure of the problems. Compared to the generic MINLP

solver, the algorithms provide good quality solutions with short durations.

The PIII-TC is the PIII with installable truck capacities. In the PIII-TC, we

take into account the truck/cargo costs in the objective function. We show that

the PIII-TC can be converted to an equivalent uncapacitated FCFLP problem and,

hence, can be solved via the techniques developed for the uncapacitated FCFLP.

In conclusion, the contributions of this chapter can be summarized as follows:

• developing integrated location and inventory models generalizing the uncapac-

itated and capacitated FCFLP,

• analyzing these models and developing efficient solution approaches,

• identifying the conditions where integrated decision-making is beneficial, and

• quantifying the benefits from integrated decision-making.

In future research, the results of this chapter can be extended in many ways.

One noteworthy extension would be to consider a three-stage distribution system

with inventory considerations at both the DC and retailer levels. The coordination
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of inventory issues raised in the three-stage continuous facility location problem in

Chapter IV are also relevant for this problem setting. We analyze this particular

problem in the next chapter. Other areas for future research might include

• improving the solution mechanism developed for the PIII-SC and the PIII-DC,

• hard truck capacities for the PIII-TC,

• including several capacity considerations in the same model, for instance, con-

sidering dispatch and storage capacities simultaneously, and

• the impact of uncertainty of demand on the models, solution approaches, and

results.
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TABLE 25. Results of Experiments with Factorial Design Settings for PIII : Part 1
F. D. RANGES of PARAMETERS GAIN (%) OPEN DCs
No. Di Ki h′

i pij rij dij fj Min Ave Max Ave Max
1 315 385 67.5 82.5 4.5 5.5 427.5 522.5 0.675 0.825 30 45 45000 55000 0 0.93 3.50 0.00 0
2 315 385 67.5 82.5 4.5 5.5 427.5 522.5 0.675 0.825 30 45 180000 220000 0.00 0.56 4.15 0.00 0
3 315 385 67.5 82.5 4.5 5.5 427.5 522.5 0.675 0.825 120 180 45000 55000 0.79 10.83 21.98 0.80 2
4 315 385 67.5 82.5 4.5 5.5 427.5 522.5 0.675 0.825 120 180 180000 220000 0.00 1.80 7.18 0.00 0
5 315 385 67.5 82.5 4.5 5.5 427.5 522.5 2.7 3.3 30 45 45000 55000 0.00 0.70 3.04 0.00 0
6 315 385 67.5 82.5 4.5 5.5 427.5 522.5 2.7 3.3 30 45 180000 220000 0.00 0.45 3.58 0.00 0
7 315 385 67.5 82.5 4.5 5.5 427.5 522.5 2.7 3.3 120 180 45000 55000 1.27 8.59 17.66 0.80 2
8 315 385 67.5 82.5 4.5 5.5 427.5 522.5 2.7 3.3 120 180 180000 220000 0.00 1.29 5.90 0.00 0
9 315 385 67.5 82.5 4.5 5.5 1530 1870 0.675 0.825 30 45 45000 55000 0.00 0.80 2.96 0.00 0
10 315 385 67.5 82.5 4.5 5.5 1530 1870 0.675 0.825 30 45 180000 220000 0.00 0.45 3.41 0.00 0
11 315 385 67.5 82.5 4.5 5.5 1530 1870 0.675 0.825 120 180 45000 55000 0.33 7.40 14.90 0.80 2
12 315 385 67.5 82.5 4.5 5.5 1530 1870 0.675 0.825 120 180 180000 220000 0.00 1.39 5.14 0.00 0
13 315 385 67.5 82.5 4.5 5.5 1530 1870 2.7 3.3 30 45 45000 55000 0.00 0.71 2.81 0.00 0
14 315 385 67.5 82.5 4.5 5.5 1530 1870 2.7 3.3 30 45 180000 220000 0.00 0.41 3.20 0.00 0
15 315 385 67.5 82.5 4.5 5.5 1530 1870 2.7 3.3 120 180 45000 55000 0.11 6.30 13.35 0.80 2
16 315 385 67.5 82.5 4.5 5.5 1530 1870 2.7 3.3 120 180 180000 220000 0.00 1.15 4.65 0.00 0
17 315 385 67.5 82.5 9 11 427.5 522.5 0.675 0.825 30 45 45000 55000 0.00 0.79 3.09 0.00 0
18 315 385 67.5 82.5 9 11 427.5 522.5 0.675 0.825 30 45 180000 220000 0.00 0.47 3.62 0.00 0
19 315 385 67.5 82.5 9 11 427.5 522.5 0.675 0.825 120 180 45000 55000 0.72 8.50 17.07 0.80 2
20 315 385 67.5 82.5 9 11 427.5 522.5 0.675 0.825 120 180 180000 220000 0.00 1.44 5.77 0.00 0
21 315 385 67.5 82.5 9 11 427.5 522.5 2.7 3.3 30 45 45000 55000 0.00 0.56 2.64 0.00 0
22 315 385 67.5 82.5 9 11 427.5 522.5 2.7 3.3 30 45 180000 220000 0.00 0.36 3.01 0.00 0
23 315 385 67.5 82.5 9 11 427.5 522.5 2.7 3.3 120 180 45000 55000 0.42 6.09 13.09 0.80 2
24 315 385 67.5 82.5 9 11 427.5 522.5 2.7 3.3 120 180 180000 220000 0.00 0.94 4.55 0.00 0
25 315 385 67.5 82.5 9 11 1530 1870 0.675 0.825 30 45 45000 55000 0.00 0.75 2.71 0.00 0
26 315 385 67.5 82.5 9 11 1530 1870 0.675 0.825 30 45 180000 220000 0.00 0.41 3.01 0.00 0
27 315 385 67.5 82.5 9 11 1530 1870 0.675 0.825 120 180 45000 55000 0.24 5.60 11.30 0.80 2
28 315 385 67.5 82.5 9 11 1530 1870 0.675 0.825 120 180 180000 220000 0.00 1.14 4.08 0.00 0
29 315 385 67.5 82.5 9 11 1530 1870 2.7 3.3 30 45 45000 55000 0.00 0.66 2.56 0.00 0
30 315 385 67.5 82.5 9 11 1530 1870 2.7 3.3 30 45 180000 220000 0.00 0.37 2.79 0.00 0
31 315 385 67.5 82.5 9 11 1530 1870 2.7 3.3 120 180 45000 55000 0.76 4.68 9.88 0.80 2
32 315 385 67.5 82.5 9 11 1530 1870 2.7 3.3 120 180 180000 220000 0.00 0.89 3.58 0.00 0
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TABLE 26. Results of Experiments with Factorial Design Settings for PIII : Part 2
F. D. RANGES of PARAMETERS GAIN (%) OPEN DCs
No. Di Ki h′

i pij rij dij fj Min Ave Max Ave Max
33 315 385 270 330 4.5 5.5 427.5 522.5 0.675 0.825 30 45 45000 55000 0.00 0.71 2.78 0.00 0
34 315 385 270 330 4.5 5.5 427.5 522.5 0.675 0.825 30 45 180000 220000 0.00 0.41 3.15 0.00 0
35 315 385 270 330 4.5 5.5 427.5 522.5 0.675 0.825 120 180 45000 55000 0.34 6.20 12.92 0.80 2
36 315 385 270 330 4.5 5.5 427.5 522.5 0.675 0.825 120 180 180000 220000 0.00 1.13 4.52 0.00 0
37 315 385 270 330 4.5 5.5 427.5 522.5 2.7 3.3 30 45 45000 55000 0.00 0.48 2.34 0.00 0
38 315 385 270 330 4.5 5.5 427.5 522.5 2.7 3.3 30 45 180000 220000 0.00 0.30 2.51 0.00 0
39 315 385 270 330 4.5 5.5 427.5 522.5 2.7 3.3 120 180 45000 55000 0.62 4.15 9.34 0.80 2
40 315 385 270 330 4.5 5.5 427.5 522.5 2.7 3.3 120 180 180000 220000 0.00 0.65 3.38 0.00 0
41 315 385 270 330 4.5 5.5 1530 1870 0.675 0.825 30 45 45000 55000 0.00 0.72 2.53 0.00 0
42 315 385 270 330 4.5 5.5 1530 1870 0.675 0.825 30 45 180000 220000 0.00 0.40 2.69 0.00 0
43 315 385 270 330 4.5 5.5 1530 1870 0.675 0.825 120 180 45000 55000 0.39 4.13 8.45 0.80 2
44 315 385 270 330 4.5 5.5 1530 1870 0.675 0.825 120 180 180000 220000 0.00 0.94 3.55 0.00 0
45 315 385 270 330 4.5 5.5 1530 1870 2.7 3.3 30 45 45000 55000 0.00 0.63 2.38 0.00 0
46 315 385 270 330 4.5 5.5 1530 1870 2.7 3.3 30 45 180000 220000 0.00 0.35 2.46 0.00 0
47 315 385 270 330 4.5 5.5 1530 1870 2.7 3.3 120 180 45000 55000 0.13 3.39 7.15 0.80 2
48 315 385 270 330 4.5 5.5 1530 1870 2.7 3.3 120 180 180000 220000 0.00 0.69 3.06 0.00 0
49 315 385 270 330 9 11 427.5 522.5 0.675 0.825 30 45 45000 55000 0.00 0.66 2.55 0.00 0
50 315 385 270 330 9 11 427.5 522.5 0.675 0.825 30 45 180000 220000 0.00 0.37 2.76 0.00 0
51 315 385 270 330 9 11 427.5 522.5 0.675 0.825 120 180 45000 55000 0.71 4.54 9.57 0.80 2
52 315 385 270 330 9 11 427.5 522.5 0.675 0.825 120 180 180000 220000 0.00 0.88 3.55 0.00 0
53 315 385 270 330 9 11 427.5 522.5 2.7 3.3 30 45 45000 55000 0.00 0.43 2.11 0.00 0
54 315 385 270 330 9 11 427.5 522.5 2.7 3.3 30 45 180000 220000 0.00 0.25 2.08 0.00 0
55 315 385 270 330 9 11 427.5 522.5 2.7 3.3 120 180 45000 55000 0.37 3.01 6.36 0.80 2
56 315 385 270 330 9 11 427.5 522.5 2.7 3.3 120 180 180000 220000 0.00 0.45 2.44 0.00 0
57 315 385 270 330 9 11 1530 1870 0.675 0.825 30 45 45000 55000 0.00 0.72 2.40 0.00 0
58 315 385 270 330 9 11 1530 1870 0.675 0.825 30 45 180000 220000 0.00 0.40 2.43 0.00 0
59 315 385 270 330 9 11 1530 1870 0.675 0.825 120 180 45000 55000 0.44 3.33 6.26 0.80 2
60 315 385 270 330 9 11 1530 1870 0.675 0.825 120 180 180000 220000 0.00 0.80 3.13 0.00 0
61 315 385 270 330 9 11 1530 1870 2.7 3.3 30 45 45000 55000 0.00 0.63 2.25 0.00 0
62 315 385 270 330 9 11 1530 1870 2.7 3.3 30 45 180000 220000 0.00 0.35 2.20 0.00 0
63 315 385 270 330 9 11 1530 1870 2.7 3.3 120 180 45000 55000 1.80 2.66 5.07 0.80 2
64 315 385 270 330 9 11 1530 1870 2.7 3.3 120 180 180000 220000 0.00 0.55 2.64 0.00 0
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TABLE 27. Results of Experiments with Factorial Design Settings for PIII : Part 3
F. D. RANGES of PARAMETERS GAIN (%) OPEN DCs
No. Di Ki h′

i pij rij dij fj Min Ave Max Ave Max
65 1260 1540 67.5 82.5 4.5 5.5 427.5 522.5 0.675 0.825 30 45 45000 55000 0.06 7.08 14.32 0.80 2
66 1260 1540 67.5 82.5 4.5 5.5 427.5 522.5 0.675 0.825 30 45 180000 220000 0.00 1.36 4.96 0.00 0
67 1260 1540 67.5 82.5 4.5 5.5 427.5 522.5 0.675 0.825 120 180 45000 55000 6.26 19.01 26.88 3.10 5
68 1260 1540 67.5 82.5 4.5 5.5 427.5 522.5 0.675 0.825 120 180 180000 220000 1.46 18.86 33.44 0.80 2
69 1260 1540 67.5 82.5 4.5 5.5 427.5 522.5 2.7 3.3 30 45 45000 55000 0.34 6.20 12.92 0.80 2
70 1260 1540 67.5 82.5 4.5 5.5 427.5 522.5 2.7 3.3 30 45 180000 220000 0.00 1.13 4.52 0.00 0
71 1260 1540 67.5 82.5 4.5 5.5 427.5 522.5 2.7 3.3 120 180 45000 55000 1.38 14.44 21.17 3.10 5
72 1260 1540 67.5 82.5 4.5 5.5 427.5 522.5 2.7 3.3 120 180 180000 220000 4.08 15.19 28.84 0.80 2
73 1260 1540 67.5 82.5 4.5 5.5 1530 1870 0.675 0.825 30 45 45000 55000 0.74 4.45 8.84 0.80 2
74 1260 1540 67.5 82.5 4.5 5.5 1530 1870 0.675 0.825 30 45 180000 220000 0.00 1.03 3.70 0.00 0
75 1260 1540 67.5 82.5 4.5 5.5 1530 1870 0.675 0.825 120 180 45000 55000 1.04 12.66 18.10 3.10 5
76 1260 1540 67.5 82.5 4.5 5.5 1530 1870 0.675 0.825 120 180 180000 220000 1.26 12.52 24.38 0.80 2
77 1260 1540 67.5 82.5 4.5 5.5 1530 1870 2.7 3.3 30 45 45000 55000 0.39 4.13 8.45 0.80 2
78 1260 1540 67.5 82.5 4.5 5.5 1530 1870 2.7 3.3 30 45 180000 220000 0.00 0.94 3.55 0.00 0
79 1260 1540 67.5 82.5 4.5 5.5 1530 1870 2.7 3.3 120 180 45000 55000 4.40 11.07 15.99 3.10 5
80 1260 1540 67.5 82.5 4.5 5.5 1530 1870 2.7 3.3 120 180 180000 220000 1.10 11.22 22.62 0.80 2
81 1260 1540 67.5 82.5 9 11 427.5 522.5 0.675 0.825 30 45 45000 55000 0.11 5.36 10.84 0.80 2
82 1260 1540 67.5 82.5 9 11 427.5 522.5 0.675 0.825 30 45 180000 220000 0.00 1.11 4.01 0.00 0
83 1260 1540 67.5 82.5 9 11 427.5 522.5 0.675 0.825 120 180 45000 55000 1.25 14.27 20.71 3.10 5
84 1260 1540 67.5 82.5 9 11 427.5 522.5 0.675 0.825 120 180 180000 220000 2.95 14.42 27.52 0.80 2
85 1260 1540 67.5 82.5 9 11 427.5 522.5 2.7 3.3 30 45 45000 55000 0.71 4.54 9.57 0.80 2
86 1260 1540 67.5 82.5 9 11 427.5 522.5 2.7 3.3 30 45 180000 220000 0.00 0.88 3.55 0.00 0
87 1260 1540 67.5 82.5 9 11 427.5 522.5 2.7 3.3 120 180 45000 55000 3.62 10.43 15.35 3.10 5
88 1260 1540 67.5 82.5 9 11 427.5 522.5 2.7 3.3 120 180 180000 220000 1.36 11.27 22.97 0.80 2
89 1260 1540 67.5 82.5 9 11 1530 1870 0.675 0.825 30 45 45000 55000 0.29 3.50 6.62 0.80 2
90 1260 1540 67.5 82.5 9 11 1530 1870 0.675 0.825 30 45 180000 220000 0.00 0.89 3.28 0.00 0
91 1260 1540 67.5 82.5 9 11 1530 1870 0.675 0.825 120 180 45000 55000 2.57 9.55 13.66 3.10 5
92 1260 1540 67.5 82.5 9 11 1530 1870 0.675 0.825 120 180 180000 220000 0.33 9.70 19.28 0.80 2
93 1260 1540 67.5 82.5 9 11 1530 1870 2.7 3.3 30 45 45000 55000 0.44 3.33 6.26 0.80 2
94 1260 1540 67.5 82.5 9 11 1530 1870 2.7 3.3 30 45 180000 220000 0.00 0.80 3.13 0.00 0
95 1260 1540 67.5 82.5 9 11 1530 1870 2.7 3.3 120 180 45000 55000 0.75 7.96 11.62 3.10 5
96 1260 1540 67.5 82.5 9 11 1530 1870 2.7 3.3 120 180 180000 220000 0.97 8.80 17.60 0.80 2
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TABLE 28. Results of Experiments with Factorial Design Settings for PIII : Part 4
F. D. RANGES of PARAMETERS GAIN (%) OPEN DCs
No. Di Ki h′

i pij rij dij fj Min Ave Max Ave Max
97 1260 1540 270 330 4.5 5.5 427.5 522.5 0.675 0.825 30 45 45000 55000 0.30 3.96 8.11 0.80 2
98 1260 1540 270 330 4.5 5.5 427.5 522.5 0.675 0.825 30 45 180000 220000 0.00 0.93 3.50 0.00 0
99 1260 1540 270 330 4.5 5.5 427.5 522.5 0.675 0.825 120 180 45000 55000 4.13 10.72 15.48 3.10 5
100 1260 1540 270 330 4.5 5.5 427.5 522.5 0.675 0.825 120 180 180000 220000 0.79 10.83 21.98 0.80 2
101 1260 1540 270 330 4.5 5.5 427.5 522.5 2.7 3.3 30 45 45000 55000 0.08 3.31 6.94 0.80 2
102 1260 1540 270 330 4.5 5.5 427.5 522.5 2.7 3.3 30 45 180000 220000 0.00 0.70 3.04 0.00 0
103 1260 1540 270 330 4.5 5.5 427.5 522.5 2.7 3.3 120 180 45000 55000 3.55 7.11 10.58 3.10 5
104 1260 1540 270 330 4.5 5.5 427.5 522.5 2.7 3.3 120 180 180000 220000 1.27 8.59 17.66 0.80 2
105 1260 1540 270 330 4.5 5.5 1530 1870 0.675 0.825 30 45 45000 55000 0.41 2.93 4.97 0.80 2
106 1260 1540 270 330 4.5 5.5 1530 1870 0.675 0.825 30 45 180000 220000 0.00 0.80 2.96 0.00 0
107 1260 1540 270 330 4.5 5.5 1530 1870 0.675 0.825 120 180 45000 55000 3.66 7.15 10.33 3.10 5
108 1260 1540 270 330 4.5 5.5 1530 1870 0.675 0.825 120 180 180000 220000 0.33 7.40 14.90 0.80 2
109 1260 1540 270 330 4.5 5.5 1530 1870 2.7 3.3 30 45 45000 55000 1.61 2.71 4.62 0.80 2
110 1260 1540 270 330 4.5 5.5 1530 1870 2.7 3.3 30 45 180000 220000 0.00 0.71 2.81 0.00 0
111 1260 1540 270 330 4.5 5.5 1530 1870 2.7 3.3 120 180 45000 55000 2.73 5.67 8.25 3.10 5
112 1260 1540 270 330 4.5 5.5 1530 1870 2.7 3.3 120 180 180000 220000 0.11 6.30 13.35 0.80 2
113 1260 1540 270 330 9 11 427.5 522.5 0.675 0.825 30 45 45000 55000 0.40 3.21 6.01 0.80 2
114 1260 1540 270 330 9 11 427.5 522.5 0.675 0.825 30 45 180000 220000 0.00 0.79 3.09 0.00 0
115 1260 1540 270 330 9 11 427.5 522.5 0.675 0.825 120 180 45000 55000 0.62 7.73 11.25 3.10 5
116 1260 1540 270 330 9 11 427.5 522.5 0.675 0.825 120 180 180000 220000 0.72 8.50 17.07 0.80 2
117 1260 1540 270 330 9 11 427.5 522.5 2.7 3.3 30 45 45000 55000 1.72 2.62 4.93 0.80 2
118 1260 1540 270 330 9 11 427.5 522.5 2.7 3.3 30 45 180000 220000 0.00 0.56 2.64 0.00 0
119 1260 1540 270 330 9 11 427.5 522.5 2.7 3.3 120 180 45000 55000 1.87 4.51 7.23 2.91 5
120 1260 1540 270 330 9 11 427.5 522.5 2.7 3.3 120 180 180000 220000 0.42 6.09 13.09 0.80 2
121 1260 1540 270 330 9 11 1530 1870 0.675 0.825 30 45 45000 55000 1.15 2.41 3.87 0.25 2
122 1260 1540 270 330 9 11 1530 1870 0.675 0.825 30 45 180000 220000 0.00 0.75 2.71 0.00 0
123 1260 1540 270 330 9 11 1530 1870 0.675 0.825 120 180 45000 55000 2.57 5.35 8.08 2.59 4
124 1260 1540 270 330 9 11 1530 1870 0.675 0.825 120 180 180000 220000 0.24 5.60 11.30 0.80 2
125 1260 1540 270 330 9 11 1530 1870 2.7 3.3 30 45 45000 55000 1.00 2.11 3.55 0.28 2
126 1260 1540 270 330 9 11 1530 1870 2.7 3.3 30 45 180000 220000 0.00 0.66 2.56 0.00 0
127 1260 1540 270 330 9 11 1530 1870 2.7 3.3 120 180 45000 55000 1.39 3.99 6.22 2.45 4
128 1260 1540 270 330 9 11 1530 1870 2.7 3.3 120 180 180000 220000 0.76 4.68 9.88 0.80 2
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TABLE 29. Results of Experiments with Factorial Design Settings for PIII-PC : Part 1
F. D. RANGES of PARAMETERS GAIN (%) OPEN DCs
No. Di Ki h′

i pij rij dij fj Min Ave Max Ave Max
1 315 385 67.5 82.5 4.5 5.5 427.5 522.5 0.675 0.825 30 45 45000 55000 2.592079 11.50 23.96 0.79 2
2 315 385 67.5 82.5 4.5 5.5 427.5 522.5 0.675 0.825 30 45 180000 220000 0.00 1.23 6.59 0 0
3 315 385 67.5 82.5 4.5 5.5 427.5 522.5 0.675 0.825 120 180 45000 55000 3.03 30.45 63.61 3.05 5
4 315 385 67.5 82.5 4.5 5.5 427.5 522.5 0.675 0.825 120 180 180000 220000 9.97 26.58 43.70 0.78 2
5 315 385 67.5 82.5 4.5 5.5 427.5 522.5 2.7 3.3 30 45 45000 55000 0.77 10.31 22.54 0.80 2
6 315 385 67.5 82.5 4.5 5.5 427.5 522.5 2.7 3.3 30 45 180000 220000 0.00 1.18 6.02 0.00 0
7 315 385 67.5 82.5 4.5 5.5 427.5 522.5 2.7 3.3 120 180 45000 55000 15.97 24.89 34.20 2.95 5
8 315 385 67.5 82.5 4.5 5.5 427.5 522.5 2.7 3.3 120 180 180000 220000 2.13 22.94 40.92 0.79 2
9 315 385 67.5 82.5 4.5 5.5 1530 1870 0.675 0.825 30 45 45000 55000 0.74 7.19 15.83 0.78 2
10 315 385 67.5 82.5 4.5 5.5 1530 1870 0.675 0.825 30 45 180000 220000 0.00 1.19 19.56 0.00 0
11 315 385 67.5 82.5 4.5 5.5 1530 1870 0.675 0.825 120 180 45000 55000 13.11 21.24 29.34 3.01 5
12 315 385 67.5 82.5 4.5 5.5 1530 1870 0.675 0.825 120 180 180000 220000 2.23 19.60 36.37 0.79 2
13 315 385 67.5 82.5 4.5 5.5 1530 1870 2.7 3.3 30 45 45000 55000 0.44 6.78 15.24 0.79 2
14 315 385 67.5 82.5 4.5 5.5 1530 1870 2.7 3.3 30 45 180000 220000 0.00 0.94 5.81 0.00 0
15 315 385 67.5 82.5 4.5 5.5 1530 1870 2.7 3.3 120 180 45000 55000 11.52 19.46 29.96 3.02 5
16 315 385 67.5 82.5 4.5 5.5 1530 1870 2.7 3.3 120 180 180000 220000 0.02 18.25 34.36 0.81 2
17 315 385 67.5 82.5 9 11 427.5 522.5 0.675 0.825 30 45 45000 55000 0.06 9.20 18.95 0.80 2
18 315 385 67.5 82.5 9 11 427.5 522.5 0.675 0.825 30 45 180000 220000 0.00 1.13 9.96 0.00 0
19 315 385 67.5 82.5 9 11 427.5 522.5 0.675 0.825 120 180 45000 55000 15.97 25.01 50.92 3.05 5
20 315 385 67.5 82.5 9 11 427.5 522.5 0.675 0.825 120 180 180000 220000 4.70 21.83 37.91 0.76 2
21 315 385 67.5 82.5 9 11 427.5 522.5 2.7 3.3 30 45 45000 55000 0.14 7.67 15.65 0.76 2
22 315 385 67.5 82.5 9 11 427.5 522.5 2.7 3.3 30 45 180000 220000 0.00 0.94 4.72 0.00 0
23 315 385 67.5 82.5 9 11 427.5 522.5 2.7 3.3 120 180 45000 55000 12.02 19.26 27.05 3.02 5
24 315 385 67.5 82.5 9 11 427.5 522.5 2.7 3.3 120 180 180000 220000 0.77 18.38 34.70 0.80 2
25 315 385 67.5 82.5 9 11 1530 1870 0.675 0.825 30 45 45000 55000 0.05 5.55 12.21 0.78 2
26 315 385 67.5 82.5 9 11 1530 1870 0.675 0.825 30 45 180000 220000 0.00 1.55 51.10 0.01 1
27 315 385 67.5 82.5 9 11 1530 1870 0.675 0.825 120 180 45000 55000 10.20 16.83 29.94 3.06 5
28 315 385 67.5 82.5 9 11 1530 1870 0.675 0.825 120 180 180000 220000 4.28 15.79 30.42 0.80 2
29 315 385 67.5 82.5 9 11 1530 1870 2.7 3.3 30 45 45000 55000 0.73 5.35 15.42 0.78 2
30 315 385 67.5 82.5 9 11 1530 1870 2.7 3.3 30 45 180000 220000 0.00 1.67 58.71 0.01 1
31 315 385 67.5 82.5 9 11 1530 1870 2.7 3.3 120 180 45000 55000 8.78 14.71 24.05 3.01 5
32 315 385 67.5 82.5 9 11 1530 1870 2.7 3.3 120 180 180000 220000 2.34 13.92 28.32 0.80 2
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TABLE 30. Results of Experiments with Factorial Design Settings for PIII-PC : Part 2
F. D. RANGES of PARAMETERS GAIN (%) OPEN DCs
No. Di Ki h′

i pij rij dij fj Min Ave Max Ave Max
33 315 385 270 330 4.5 5.5 427.5 522.5 0.675 0.825 30 45 45000 55000 0.21 6.49 14.68 0.81 2
34 315 385 270 330 4.5 5.5 427.5 522.5 0.675 0.825 30 45 180000 220000 0.00 0.84 4.42 0.00 0
35 315 385 270 330 4.5 5.5 427.5 522.5 0.675 0.825 120 180 45000 55000 11.91 18.61 24.25 3.02 4
36 315 385 270 330 4.5 5.5 427.5 522.5 0.675 0.825 120 180 180000 220000 8.16 17.88 31.82 0.77 2
37 315 385 270 330 4.5 5.5 427.5 522.5 2.7 3.3 30 45 45000 55000 0.63 5.67 12.86 0.78 2
38 315 385 270 330 4.5 5.5 427.5 522.5 2.7 3.3 30 45 180000 220000 0.00 1.32 35.86 0.01 1
39 315 385 270 330 4.5 5.5 427.5 522.5 2.7 3.3 120 180 45000 55000 8.70 15.10 55.76 3.01 5
40 315 385 270 330 4.5 5.5 427.5 522.5 2.7 3.3 120 180 180000 220000 3.20 14.30 28.37 0.79 2
41 315 385 270 330 4.5 5.5 1530 1870 0.675 0.825 30 45 45000 55000 0.23 4.90 16.95 0.79 2
42 315 385 270 330 4.5 5.5 1530 1870 0.675 0.825 30 45 180000 220000 0.00 1.47 48.54 0.01 1
43 315 385 270 330 4.5 5.5 1530 1870 0.675 0.825 120 180 45000 55000 6.55 13.04 30.93 3.05 5
44 315 385 270 330 4.5 5.5 1530 1870 0.675 0.825 120 180 180000 220000 0.27 11.92 24.75 0.80 2
45 315 385 270 330 4.5 5.5 1530 1870 2.7 3.3 30 45 45000 55000 0.28 4.31 19.80 0.77 2
46 315 385 270 330 4.5 5.5 1530 1870 2.7 3.3 30 45 180000 220000 0.00 0.81 11.07 0.00 0
47 315 385 270 330 4.5 5.5 1530 1870 2.7 3.3 120 180 45000 55000 6.29 11.46 25.57 3.09 5
48 315 385 270 330 4.5 5.5 1530 1870 2.7 3.3 120 180 180000 220000 1.28 11.02 22.62 0.79 2
49 315 385 270 330 9 11 427.5 522.5 0.675 0.825 30 45 45000 55000 0.60 5.15 11.21 0.82 2
50 315 385 270 330 9 11 427.5 522.5 0.675 0.825 30 45 180000 220000 0.00 0.76 6.39 0.00 0
51 315 385 270 330 9 11 427.5 522.5 0.675 0.825 120 180 45000 55000 8.47 14.40 24.75 3.02 5
52 315 385 270 330 9 11 427.5 522.5 0.675 0.825 120 180 180000 220000 1.94 13.51 25.79 0.78 2
53 315 385 270 330 9 11 427.5 522.5 2.7 3.3 30 45 45000 55000 1.03 4.50 11.28 0.80 2
54 315 385 270 330 9 11 427.5 522.5 2.7 3.3 30 45 180000 220000 0.00 0.62 3.38 0.00 0
55 315 385 270 330 9 11 427.5 522.5 2.7 3.3 120 180 45000 55000 5.79 11.19 38.97 3.01 5
56 315 385 270 330 9 11 427.5 522.5 2.7 3.3 120 180 180000 220000 1.75 10.46 22.31 0.81 2
57 315 385 270 330 9 11 1530 1870 0.675 0.825 30 45 45000 55000 0.13 7.64 57.11 0.77 2
58 315 385 270 330 9 11 1530 1870 0.675 0.825 30 45 180000 220000 0.00 0.52 2.80 0.00 0
59 315 385 270 330 9 11 1530 1870 0.675 0.825 120 180 45000 55000 5.27 11.66 54.59 3.07 5
60 315 385 270 330 9 11 1530 1870 0.675 0.825 120 180 180000 220000 0.26 8.92 19.63 0.78 2
61 315 385 270 330 9 11 1530 1870 2.7 3.3 30 45 45000 55000 0.11 6.57 47.93 0.81 2
62 315 385 270 330 9 11 1530 1870 2.7 3.3 30 45 180000 220000 0.00 0.51 5.25 0.00 0
63 315 385 270 330 9 11 1530 1870 2.7 3.3 120 180 45000 55000 2.44 9.27 58.06 3.00 5
64 315 385 270 330 9 11 1530 1870 2.7 3.3 120 180 180000 220000 2.25 8.36 17.54 0.79 2
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TABLE 31. Results of Experiments with Factorial Design Settings for PIII-PC : Part 3
F. D. RANGES of PARAMETERS GAIN (%) OPEN DCs
No. Di Ki h′

i pij rij dij fj Min Ave Max Ave Max
65 1260 1540 67.5 82.5 4.5 5.5 427.5 522.5 0.675 0.825 30 45 45000 55000 13.15 20.71 28.39 3.10 5
66 1260 1540 67.5 82.5 4.5 5.5 427.5 522.5 0.675 0.825 30 45 180000 220000 1.40 18.94 35.47 0.78 2
67 1260 1540 67.5 82.5 4.5 5.5 427.5 522.5 0.675 0.825 120 180 45000 55000 22.53 30.78 37.77 6.08 8
68 1260 1540 67.5 82.5 4.5 5.5 427.5 522.5 0.675 0.825 120 180 180000 220000 11.18 42.57 55.72 3.03 4
69 1260 1540 67.5 82.5 4.5 5.5 427.5 522.5 2.7 3.3 30 45 45000 55000 11.91 18.61 24.25 3.02 4
70 1260 1540 67.5 82.5 4.5 5.5 427.5 522.5 2.7 3.3 30 45 180000 220000 8.16 17.88 31.82 0.77 2
71 1260 1540 67.5 82.5 4.5 5.5 427.5 522.5 2.7 3.3 120 180 45000 55000 17.29 26.10 61.43 6.13 8
72 1260 1540 67.5 82.5 4.5 5.5 427.5 522.5 2.7 3.3 120 180 180000 220000 1.04 37.14 48.91 3.02 5
73 1260 1540 67.5 82.5 4.5 5.5 1530 1870 0.675 0.825 30 45 45000 55000 7.74 13.79 52.15 3.02 5
74 1260 1540 67.5 82.5 4.5 5.5 1530 1870 0.675 0.825 30 45 180000 220000 0.90 12.35 25.36 0.80 2
75 1260 1540 67.5 82.5 4.5 5.5 1530 1870 0.675 0.825 120 180 45000 55000 16.16 21.80 36.03 6.08 8
76 1260 1540 67.5 82.5 4.5 5.5 1530 1870 0.675 0.825 120 180 180000 220000 6.82 32.83 43.14 3.04 5
77 1260 1540 67.5 82.5 4.5 5.5 1530 1870 2.7 3.3 30 45 45000 55000 6.55 13.04 30.93 3.05 5
78 1260 1540 67.5 82.5 4.5 5.5 1530 1870 2.7 3.3 30 45 180000 220000 0.27 11.92 24.75 0.80 2
79 1260 1540 67.5 82.5 4.5 5.5 1530 1870 2.7 3.3 120 180 45000 55000 13.19 19.91 28.36 6.12 8
80 1260 1540 67.5 82.5 4.5 5.5 1530 1870 2.7 3.3 120 180 180000 220000 3.76 31.08 61.59 3.05 5
81 1260 1540 67.5 82.5 9 11 427.5 522.5 0.675 0.825 30 45 45000 55000 9.74 16.57 47.09 3.15 5
82 1260 1540 67.5 82.5 9 11 427.5 522.5 0.675 0.825 30 45 180000 220000 3.69 15.15 29.56 0.79 2
83 1260 1540 67.5 82.5 9 11 427.5 522.5 0.675 0.825 120 180 45000 55000 17.19 24.60 30.94 6.13 8
84 1260 1540 67.5 82.5 9 11 427.5 522.5 0.675 0.825 120 180 180000 220000 6.73 36.21 47.12 3.04 5
85 1260 1540 67.5 82.5 9 11 427.5 522.5 2.7 3.3 30 45 45000 55000 8.47 14.40 24.75 3.02 5
86 1260 1540 67.5 82.5 9 11 427.5 522.5 2.7 3.3 30 45 180000 220000 1.94 13.51 25.79 0.78 2
87 1260 1540 67.5 82.5 9 11 427.5 522.5 2.7 3.3 120 180 45000 55000 12.37 20.26 41.34 6.14 8
88 1260 1540 67.5 82.5 9 11 427.5 522.5 2.7 3.3 120 180 180000 220000 5.32 31.38 50.90 3.07 5
89 1260 1540 67.5 82.5 9 11 1530 1870 0.675 0.825 30 45 45000 55000 5.04 12.78 60.97 3.05 5
90 1260 1540 67.5 82.5 9 11 1530 1870 0.675 0.825 30 45 180000 220000 0.26 9.33 20.23 0.80 2
91 1260 1540 67.5 82.5 9 11 1530 1870 0.675 0.825 120 180 45000 55000 11.43 18.73 57.07 6.09 8
92 1260 1540 67.5 82.5 9 11 1530 1870 0.675 0.825 120 180 180000 220000 0.97 26.74 36.09 3.05 5
93 1260 1540 67.5 82.5 9 11 1530 1870 2.7 3.3 30 45 45000 55000 5.27 11.70 54.59 3.07 5
94 1260 1540 67.5 82.5 9 11 1530 1870 2.7 3.3 30 45 180000 220000 0.26 8.92 19.63 0.78 2
95 1260 1540 67.5 82.5 9 11 1530 1870 2.7 3.3 120 180 45000 55000 9.58 16.54 59.08 6.12 8
96 1260 1540 67.5 82.5 9 11 1530 1870 2.7 3.3 120 180 180000 220000 15.76 24.89 33.69 3.03 5
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TABLE 32. Results of Experiments with Factorial Design Settings for PIII-PC : Part 4
F. D. RANGES of PARAMETERS GAIN (%) OPEN DCs
No. Di Ki h′

i pij rij dij fj Min Ave Max Ave Max
97 1260 1540 270 330 4.5 5.5 427.5 522.5 0.675 0.825 30 45 45000 55000 7.07 12.84 28.44 3.13 5
98 1260 1540 270 330 4.5 5.5 427.5 522.5 0.675 0.825 30 45 180000 220000 2.59 11.50 23.96 0.79 2
99 1260 1540 270 330 4.5 5.5 427.5 522.5 0.675 0.825 120 180 45000 55000 12.79 19.85 59.96 6.12 8
100 1260 1540 270 330 4.5 5.5 427.5 522.5 0.675 0.825 120 180 180000 220000 3.03 30.45 63.61 3.05 5
101 1260 1540 270 330 4.5 5.5 427.5 522.5 2.7 3.3 30 45 45000 55000 6.06 11.91 57.36 3.08 5
102 1260 1540 270 330 4.5 5.5 427.5 522.5 2.7 3.3 30 45 180000 220000 0.77 10.31 22.54 0.80 2
103 1260 1540 270 330 4.5 5.5 427.5 522.5 2.7 3.3 120 180 45000 55000 9.92 19.07 57.71 6.00 8
104 1260 1540 270 330 4.5 5.5 427.5 522.5 2.7 3.3 120 180 180000 220000 15.97 24.89 34.20 2.95 5
105 1260 1540 270 330 4.5 5.5 1530 1870 0.675 0.825 30 45 45000 55000 4.87 14.68 52.78 2.84 5
106 1260 1540 270 330 4.5 5.5 1530 1870 0.675 0.825 30 45 180000 220000 0.74 7.19 15.83 0.78 2
107 1260 1540 270 330 4.5 5.5 1530 1870 0.675 0.825 120 180 45000 55000 8.52 19.52 59.47 5.93 8
108 1260 1540 270 330 4.5 5.5 1530 1870 0.675 0.825 120 180 180000 220000 13.11 21.24 29.34 3.01 5
109 1260 1540 270 330 4.5 5.5 1530 1870 2.7 3.3 30 45 45000 55000 3.66 14.66 65.80 2.92 5
110 1260 1540 270 330 4.5 5.5 1530 1870 2.7 3.3 30 45 180000 220000 0.44 6.78 15.24 0.79 2
111 1260 1540 270 330 4.5 5.5 1530 1870 2.7 3.3 120 180 45000 55000 6.78 18.99 62.16 5.94 8
112 1260 1540 270 330 4.5 5.5 1530 1870 2.7 3.3 120 180 180000 220000 11.52 19.46 29.95 3.02 5
113 1260 1540 270 330 9 11 427.5 522.5 0.675 0.825 30 45 45000 55000 4.35 10.78 56.63 3.02 5
114 1260 1540 270 330 9 11 427.5 522.5 0.675 0.825 30 45 180000 220000 0.06 9.20 18.95 0.80 2
115 1260 1540 270 330 9 11 427.5 522.5 0.675 0.825 120 180 45000 55000 9.30 16.30 66.54 6.09 8
116 1260 1540 270 330 9 11 427.5 522.5 0.675 0.825 120 180 180000 220000 15.97 25.01 50.92 3.05 5
117 1260 1540 270 330 9 11 427.5 522.5 2.7 3.3 30 45 45000 55000 4.10 10.22 63.14 3.05 5
118 1260 1540 270 330 9 11 427.5 522.5 2.7 3.3 30 45 180000 220000 0.14 7.67 15.65 0.76 2
119 1260 1540 270 330 9 11 427.5 522.5 2.7 3.3 120 180 45000 55000 7.30 17.97 57.23 5.61 8
120 1260 1540 270 330 9 11 427.5 522.5 2.7 3.3 120 180 180000 220000 12.02 19.26 27.05 3.02 5
121 1260 1540 270 330 9 11 1530 1870 0.675 0.825 30 45 45000 55000 3.48 18.49 64.38 2.42 5
122 1260 1540 270 330 9 11 1530 1870 0.675 0.825 30 45 180000 220000 0.05 5.55 12.21 0.78 2
123 1260 1540 270 330 9 11 1530 1870 0.675 0.825 120 180 45000 55000 6.50 24.85 65.10 5.60 8
124 1260 1540 270 330 9 11 1530 1870 0.675 0.825 120 180 180000 220000 10.20 16.83 29.94 3.06 5
125 1260 1540 270 330 9 11 1530 1870 2.7 3.3 30 45 45000 55000 0.75 19.25 63.29 2.51 5
126 1260 1540 270 330 9 11 1530 1870 2.7 3.3 30 45 180000 220000 0.73 5.35 15.42 0.78 2
127 1260 1540 270 330 9 11 1530 1870 2.7 3.3 120 180 45000 55000 5.20 20.74 65.88 5.51 8
128 1260 1540 270 330 9 11 1530 1870 2.7 3.3 120 180 180000 220000 8.78 14.71 24.05 3.01 5
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CHAPTER VI

PRODUCTION DISTRIBUTION SYSTEM DESIGN PROBLEMS WITH

INVENTORY CONSIDERATIONS

Production-distribution system design (PDSD) problems are aimed at addressing

strategic and tactical decisions regarding the design and operation of supply chains. A

typical PDSD model simultaneously considers the decisions regarding plant locations,

distribution center (DC) locations, plant-DC and DC-retailer assignments as well as

product flows from plants to retailers through DCs. The objective of the PDSD

problem is to minimize the variable distribution and transportation costs as well as

the fixed costs of opening, equipping and managing plants and DCs.

Several companies including Elkem Silicone (Ulstein et al., 2006), GE Plastics

(Tyagi et al., 2004), the Kellogg Company (Brown et al., 2001), Frito-Lay Inc. (Er-

lebacher and Meller, 2000), Digital Equipment Corporation (Arntzen et al., 1995),

Ault Foods Limited (Pooley, 1994), Libbey-Owens-Ford (Martin et al., 1993), and

DowBrands Inc. (Robinson et al., 1993) have achieved substantial cost savings

through the optimization of production-distribution systems. Review papers on

PDSD (Erengüç et al., 1999; Geoffrion and Powers, 1995; Goetschalckx et al., 2002;

Sarmiento and Nagi, 1999) also summarize the benefits and challenges of integrating

the overall decision process in the whole supply chain. In particular, all of the previ-

ous studies emphasize the need for practical analytical models and efficient solution

methods to aid decision-making. With this motivation, in this chapter, we consider

an integrated location and inventory problem in the context of PDSD. The models

in this chapter generalize the previous PDSD literature by taking inventory decisions

into account and modeling the interaction between inventory and location decisions

explicitly through transportation costs. These models also generalize the problem set-
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tings in three-stage continuous facility location models in Chapter IV and two-stage

discrete facility location models in Chapter V as explained next.

We consider a three-stage PDSD problem. In the first stage, there are retailers

(customers) with stationary and deterministic demand at established locations. The

second and third stages consist of candidate locations of DCs and capacitated suppli-

ers, respectively. Opening (selecting) each DC or supplier results in a facility-specific

fixed operational cost. This problem is a generalization of the two-stage discrete

facility location problems discussed in Chapter V, since we now consider multiple

capacitated suppliers and decide on the number and the location of the suppliers as

well as the assignment of DCs to the suppliers.

Another generalization of the models in Chapter V is related to inventory con-

siderations. In this chapter, as opposed to Chapter V, inventory is kept at both the

first and the second stages. Each retailer replenishes its inventory from a particular

(established) DC at the second stage via direct shipments, and each selected DC re-

plenishes its inventory from a particular capacitated supplier located at the third stage

via direct shipments. Since the inventory is kept at both the retailer and DC levels,

the issue of coordinating inventory decisions raised in Chapter IV is also relevant for

this problem setting. We assume that the inventory systems of each selected DC

(once established) and the associated retailers are operated under the assumptions

of the classical single-warehouse multi-retailer (SWMR) problem studied by Roundy

(1985). Also, as in Roundy (1985), the replenishment lead times are assumed to be

negligible.

In designing the distribution system, we pose single-sourcing restrictions between

the selected suppliers and the DCs as well as between the selected DCs and the

retailers. In other words, each retailer can be served by only one DC, and each DC

can be served by only one supplier. Contrarily, each supplier serves a set of DCs
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and each DC serves a set of retailers. Although single-sourcing constraints make the

location problem much harder to solve due to the capacity restrictions at the suppliers,

they ease the control of the inventory decisions throughout the supply chain since the

set of retailers assigned to different DCs are disjoint. Under this setting, the problem

is the simultaneous optimization of

• the number and location of DCs,

• the number and location of suppliers,

• the assignment of each retailer to a selected DC,

• the assignment of each selected DC to a selected supplier, and

• the inventory decisions of each retailer and each selected DC.

with the objective of minimizing the total costs in the system, including (i) the in-

ventory replenishment and holding costs of the retailers and the DCs, (ii) the trans-

portation costs between the DCs and the retailers and between the suppliers and the

DCs, and (iii) the fixed operational costs of the selected DCs and suppliers.

We note that this problem is a generalization of the work by Teo and Shu (2004)

who consider a two-stage network design problem with inventory decisions and address

the issue of coordinating replenishment activities between the warehouses (DCs) and

the retailers. We generalize their setting to consider a three-stage distribution system

by modeling the number and location of capacitated suppliers as well as the impact

of trip distances and frequencies on the transportation costs. In order to capture this

impact properly, we model the transportation costs as in (3.5).

The main contributions of this chapter are as follows:

• We create a formal model that provides an integrated view of strategic facility

location decisions and operational transportation and inventory decisions.
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• We show that the PDSD problem with inventory considerations can be modeled

as a set partitioning problem.

• We develop efficient construction and improvement heuristics to find near opti-

mal solutions for the problem.

• By comparing the cost of the PDSD problem with inventory considerations with

a benchmark obtained through a sequential framework, we quantify the value

of integrated decision making. Through this comparison, we also identify the

important problem parameters that contribute the most to this value.

The remainder of the chapter is organized as follows. In the next section, we

introduce the notation and our PDSD model with inventory considerations. In Section

VI.1.1, we present a set partitioning formulation of our model. Next, in Section

VI.2, we discuss the heuristic solution approaches to this problem. In Section VI.3,

we describe the details of the benchmark model. In Section VI.4, we present the

numerical results regarding the performance of the solution approaches and the value

of integrated decision-making. Finally, in Section VI.5, we summarize our findings

and conclude the chapter by discussing the potential impact of this work.

VI.1. General Model and Notation

In this section, we present a nonlinear integer programming formulation for the PDSD

problem with inventory considerations that is described in the previous section and

illustrated in Figure 14.

To model the PDSD problem with inventory considerations, we define the fol-

lowing notation:
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FIGURE 14. The Problem Setting for PDSD Problems with Inventory Considerations

I

J

K

Xj

Zk

Yij

Vjk

Ck

TDC
j

TR
i

gk

fj

pDC
jk + rDC

jk dDC
jk

pR
ij + rR

ijd
R
ij

KDC
j

HDC
j

KR
i

HR
ij

Di

I set of retailers, I = {1, . . . , m).

J set of candidate DC locations, J = {1, . . . , n).

K set of candidate supplier locations, K = {1, . . . , K).

Di deterministic and stationary demand rate faced by

retailer i, ∀i ∈ I.

P R
i location of retailer i, ∀i ∈ I, P R

i = (aR
i , bR

i ).

P DC
j location of DC j, ∀j ∈ J , P DC

j = (aDC
j , bDC

j ).

P S
k location of supplier k, ∀k ∈ K, P S

k = (aS
k , bS

k ) .
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dDC
jk Euclidean distance between DC j and supplier k,

dDC
jk =

√
(aDC

j − aS
k )2 + (bDC

j − bS
k )2, j ∈ J and k ∈ K.

dR
ij Euclidean distance between retailer i and DC j,

dR
ij =

√
(aR

i − aDC
j )2 + (bR

i − bDC
j )2, i ∈ I and j ∈ J .

Wk annual throughput capacity at supplier k, k ∈ K.

fj fixed (annual) cost of selecting candidate DC j, j ∈ J .

gk fixed (annual) cost of selecting candidate supplier k, k ∈ K.

KDC
j fixed ordering cost of DC j, j ∈ J .

KR
i fixed ordering cost of retailer i, i ∈ I.

hR
i inventory holding cost rate for each unit of inventory at retailer i, i ∈ I.

hDC
j inventory holding cost rate for each unit of inventory at DC j, j ∈ J .

hR
i ≥ hDC

j , ∀i ∈ I and ∀j ∈ J .

HDC
j echelon holding cost rate at the DC, HDC

j = hDC
j , j ∈ J .

HR
ij echelon holding cost rate at retailer i, HR

ij = hR
i −HDC

j , ∀i ∈ I.

Tb fixed base period (set a priori).

pDC
jk fixed cost of transportation (releasing a shipment) to DC j

from supplier k, j ∈ J and k ∈ K.

pR
ij fixed cost of transportation (releasing a shipment) to retailer i

from DC j, i ∈ I and j ∈ J .

rDC
jk per mile transportation cost to DC j from supplier k, j ∈ J and k ∈ K.

rR
ij per mile transportation cost to retailer i from DC j, i ∈ I and j ∈ J .

Next, we define the decision variables. We have six sets of decision variables.

The first set of decision variables relates to selecting suppliers. For each supplier k,
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k ∈ K,

Zk =





1, if supplier k is selected,

0, otherwise.

Second, for each DC j, j ∈ J , we define

Xj =





1, if DC j is selected,

0, otherwise.

The third set of decision variables relates to the assignment of retailers to DCs. For

retailer i, i ∈ I, and DC j,j ∈ J ,

Yij =






1, if retailer i is assigned to DC j,

0, otherwise.

Next, we have a set of decision variables for assigning the suppliers to the DCs. For

DC j, j ∈ J , and supplier k, k ∈ K,

Vjk =






1, if DC j is assigned to supplier k,

0, otherwise.

Finally, the last two sets of decision variables relate to the inventory policy parameters

at the selected DCs and their retailers. For j ∈ J , TDC
j represents the reorder interval

of DC j, and for i ∈ I, TR
i represents the reorder interval of retailer i.

Before introducing the mathematical model, we recall and summarize the under-

lying modeling assumptions:

• Each selected supplier k ∈ K serves a set of DCs, but each DC j ∈ J is served

by only one supplier.

• Each selected DC j, j ∈ J , serves a set of retailers, but each retailer i, i ∈ I,

is served by only one DC. In other words, there is single-sourcing between the
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suppliers and the DCs and between the DCs and the retailers. Hence, the sets

of retailers assigned to different DCs are disjoint.

• Each candidate supplier has a facility-specific annual throughput capacity, and

the annual demand satisfied by a selected supplier cannot exceed this capacity.

• Deliveries between the suppliers and the DCs and between the DCs and the

retailers are direct and instantaneous. The sizes and frequencies of the deliveries

are determined by the inventory policy parameters. Each delivery between

two facilities results in a transportation cost. This cost consists of a fixed

(loading/unloading) cost and a variable shipment cost that depends on the

distance between the two facilities.

• Both DCs and retailers are inventory holding points. From an inventory model-

ing viewpoint, the inventories of each selected DC j ∈ J and the corresponding

set of retailers are operated under the assumptions of the single warehouse

multi-retailer (SWMR) lot sizing problem (see Section II.2.2). That is, given a

fixed DC j ∈ J , its supplier k ∈ K, and a set of retailers assigned to this DC,

i.e., Ij = {i ∈ I : Yij = 1} and Ij ⊂ I,

– DC j’s inventory is replenished at successive reorder intervals of TDC
j in-

curring pDC
jk + rDC

jk dDC
jk + KDC

j , which represents the total costs of trans-

portation and ordering per replenishment.

– Retailer i ∈ Ij is replenished at successive reorder intervals of TR
i incurring

pR
ij +rR

ij dR
ij +KR

i , i ∈ Ij , which represents the total costs of transportation

and ordering per retailer replenishment.

– Echelon holding costs accumulate at rate HDC
j at DC j over TDC

j and at

rate HR
ij , at retailer i over TR

i .
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– The reorder intervals, TDC
j and TR

i , i ∈ Ij , are chosen as power-of-two

multiples of a fixed base period, Tb.

The model can now be formulated as the following integer nonlinear program:

Min
∑

j∈J

fjXj +
∑

j∈J

gkZk +
∑

i∈I

∑

j∈J

(pR
ij + rR

ijd
R
ij)Yij

TR
i

+
∑

j∈J

∑

k∈K

(pDC
jk + rDC

jk dDC
jk )Vjk

TDC
j

+
∑

j∈J





KDC
j

TDC
j

+
∑

i∈Ij

KR
i

TR
i

+
∑

i∈Ij

1

2
HR

ijDiT
R
i +

∑

i∈Ij

1

2
HDC

i Di max{TR
i , TDC

j }



Xj

subject to
∑

j∈J

Yij = 1, ∀i ∈ I. (6.1)

∑

k∈K

Vjk = 1, ∀j ∈ J . (6.2)

Yij ≤ Xj, ∀i ∈ I and ∀j ∈ J . (6.3)

Vjk ≤ Zk, ∀j ∈ J and ∀k ∈ K. (6.4)

Vjk ≤ Xj , ∀j ∈ J and ∀k ∈ K. (6.5)
∑

i∈I

∑

j∈J

DiYijVjk ≤ CkZk, ∀k ∈ K. (6.6)

TDC
j =





2νjTb, νj ∈ Z, if Xj = 1,

N.A., O.W.
∀j ∈ J . (6.7)

TR
i = 2υiTb and υi ∈ Z, ∀i ∈ I. (6.8)

Xj ∈ {0, 1}, Yij ∈ {0, 1}, ∀i ∈ I and ∀j ∈ J . (6.9)

Zk ∈ {0, 1}, Vjk ∈ {0, 1}, ∀j ∈ J and ∀k ∈ K. (6.10)

The objective function minimizes the total cost of designing and operating the

distribution system, that is the sum of (i) the fixed cost of locating the DCs, (ii)

the fixed cost of locating the suppliers, (iii) the transportation cost from the selected



210

suppliers to the selected DCs, (iv) the transportation cost from the selected DCs

to the retailers, and (v) the annual ordering and holding costs at the DCs and the

retailers, respectively.

Constraints (6.1) ensure that each retailer is served by exactly one DC. Con-

straints (6.2) stipulate that each DC is assigned to exactly one supplier. These sets

of constraints, together with the integrality constraints (6.9) and (6.10), state that

there is single-sourcing between the first and second stage and between the second

and third stage. Constraints (6.3), (6.4), (6.5) are the assignment constraints that

ensure that only selected facilities (DCs and suppliers) are utilized in the distribution

system design. In particular, constraints (6.3) state that the retailers can be assigned

only to the selected candidate DCs. Constraints (6.4) ensure that a DC can be as-

signed only to a selected supplier. Constraints (6.5) ensure that a supplier can be

assigned only to a selected candidate DC. Constraints (6.6) ensure capacity restric-

tions at the suppliers. Constraints (6.7) and (6.8) state the power-of-two restrictions

on the reorder intervals of the selected DCs and the retailers. Finally, constraints

(6.9) and (6.10) are the standard integrality constraints.

Note that this formulation is complicated, not only due to the nonlinearities in

the objective function, but also due to the nonlinearities in the constraints (6.6).

We may eliminate the nonlinearity in the capacity constraint by introducing a new

variable that keeps track of the retailers assigned to a supplier. In particular, for

retailer i,i ∈ I, DC j, j ∈ J , and supplier k, k ∈ K, define

Wijk =





1, if retailer i is assigned to supplier k through DC j,

0, otherwise.
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Then, we can restate constraint (6.6) as follows:

∑

i∈I

∑

j∈J

DiWijk ≤ CkZk, ∀k ∈ K. (6.11)

To establish the relation of Wijk with the other assignment variables Vjk and Yij, we

introduce the following constraints:

Wijk > Vjk + Yij − 2, i ∈ I, j ∈ J , k ∈ K. (6.12)

2Wijk ≤ Vjk + Yij, i ∈ I, j ∈ J , k ∈ K. (6.13)

Now, by replacing constraints (6.6) with constraints (6.11), (6.12), and (6.13), we

eliminate the nonlinearity in the constraints at the expense of additional variables

and constraints. However, the nonlinearity in the objective function that is due to

inventory considerations still complicates the problem. Providing a solution to this

formulation even in its current form is challenging, and, hence, we formulate the

problem as a set partitioning formulation. In the next section, we discuss the set

partitioning formulation. The set partitioning formulation leads to efficient heuristic

approaches that we explain in detail in Section VI.2.

VI.1.1. Set Partitioning Model

The set partitioning problem is widely used for modeling difficult combinatorial opti-

mization problems, including vehicle routing, crew scheduling, network design, graph

partitioning, graph coloring, etc. (Balas and Carrera, 1996; Ceria et al., 1997). Sev-

eral different exact and heuristic methods are proposed to solve the set partitioning

problem (Caprara et al., 1998).

To formulate our problem as a set partitioning problem, we define an additional

decision variable. Let j be a particular DC in J , k be a particular supplier in K, and
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S be a subset of retailers in I. Then, the set partitioning decision variable is

xjkS =






1, if supplier k is selected to serve DC j, and j is used to serve

retailers in S and no one else,

0, otherwise.

Our PDSD problem with inventory considerations then reduces to finding a min-

imum cost partition of the set of retailers into subsets Sjk, j ∈ J and k ∈ K, where

Sjk denotes the subset of retailers served by DC j that is supplied by supplier k. Note

that Sjk may be empty if (i) the DC j or supplier k is not selected, and (ii) the DC

j is not assigned to supplier k.

Next, we discuss the total cost associated with a given partition. In particular,

let cjkS denote the cost of serving the retailers in S ⊂ I using DC j ∈ J which is

assigned to supplier k ∈ K. It consists of the following cost components:

• DC specific fixed location cost, fj.

• Systemwide inventory replenishment, inventory holding, and transportation

costs, denoted by IT (j, k, S). This cost is estimated by solving the following

single-warehouse multi-retailer (SWMR) lot-sizing problem:

IT (j, k, S) ≡ min

{
∑

i∈S

(pR
ij + rR

ijd
R
ij)

TR
i

+
(pDC

jk + rDC
jk dDC

jk )

TDC
j

+
KDC

j

TDC
j

+
∑

i∈S

KR
i

TR
i

+
∑

i∈S

1

2
HR

ijDiT
R
i +

∑

i∈S

1

2
HDC

i Di max{TR
i , TDC

j }
}

. (6.14)
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subject to

TDC
j = 2νjTb and νj ∈ Z. (6.15)

TR
i = 2υiTb and υi ∈ Z, ∀i ∈ S. (6.16)

TDC
j ∈ R+ and TR

i ∈ R+, ∀i ∈ S. (6.17)

Note that this SWMR lot-sizing problem takes the interaction of the inventory

decision variables and the transportation costs into account. In particular, the

transportation cost between supplier k and DC j has an explicit impact on the

reorder interval of the DC, TDC
j by influencing the total cost per replenishment

from the supplier. Similarly, the transportation cost between DC j and the

retailers in S influences the reorder interval of the retailers.

Hence, we let cjkS = fj + IT (j, k, S), for all j ∈ J , for all k ∈ K, and for all S ⊂ I.

Now, the PDSD with inventory considerations can be formulated as a set partitioning

problem in the following way:

Min
∑

j∈J

∑

k∈K

∑

S⊂I

cjkSxjkS +
∑

k∈K

gkZk (PIV-SP)

subject to

∑

j∈J

∑

k∈K

∑

S⊂I;i∈S

xjkS = 1, ∀i ∈ I. (6.18)

∑

S⊂I;i∈S

xjkS ≤MZk, ∀j ∈ J and ∀k ∈ K. (6.19)

∑

i∈S;S⊂I

∑

j∈J

DixjkS ≤ CkZk, ∀k ∈ K. (6.20)

xjkS ∈ {0, 1}, ∀j ∈ J , ∀k ∈ K, and ∀S ⊂ I. (6.21)

Zk ∈ {0, 1}, ∀k ∈ K. (6.22)
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This formulation is different than the classical set partitioning formulation due to

the selection of suppliers and the assignment of suppliers to the partitioned sets. The

objective function minimizes the total cost of serving the sets of retailers and selecting

the suppliers. Constraint (6.18) ensures that each retailer i ∈ I is assigned to a set

that is served by a single DC and a single supplier. Constraint (6.19) satisfies that

we can assign partitions to only open suppliers, where M is a big number. Constraint

(6.20) ensures that the capacity requirement at each selected supplier is satisfied.

Constraints (6.21) and (6.22) are the integrality constraints.

Formulation PIV-SP has no nonlinearity in its objective function or constraints.

However, there are a large number of variables (|J | × |K| × O(2|R|)), and cjkS can

be obtained only by solving a convex programming problem. Hence, it is not easy to

solve this formulation effectively via exact optimization methods. In this chapter, we

develop heuristic approaches for the solution of PIV. Our heuristic approaches rely

on the ideas examined in Chapter IV and utilize the results of PII-d-MR for solving a

simpler version of the problem under consideration, as will be clear in the next section.

Furthermore, the efficiency and short runtime of the heuristic approaches make it

possible for solving larger- possibly, real-life size- networks. One of the most preferred

approaches for solving the set partitioning problem is branch-and-price. Branch-and-

price is a generalization of branch-and-bound in which the nodes are processed by

solving LP relaxations via column generation (see Barnhart et al. (1994)). However,

in order to initialize a branch-and-price solution, we need a set of good solutions, i.e.

initial columns to solve. Heuristic approaches are highly effective at providing such

initial solutions for a branch-and-price implementation. For the reasons mentioned

above, we focus on heuristic approaches and leave the implementation of branch-and-

price to future research on this problem.
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VI.2. Heuristic Approaches

In this section, we first describe the solution representation and evaluation of heuristic

approaches. We begin with a construction heuristic which provides a feasible solution

to PIV. The feasible solution obtained from the construction heuristic is later used

as the initial input in two improvement heuristics.

VI.2.1. Solution Representation and Evaluation

As we observe from the set partitioning formulation PIV-SP, any feasible solution

can be represented as mutually exclusive subsets of retailers. Let S denote the set

of mutually exclusive subsets of retailers. Each S ∈ S is served by a unique DC j,

j ∈ J . The set of open DCs, J ′ ⊂ J , is defined by these unique DCs. In other

words, if DC j is serving a subset of retailers S, then j ∈ J ′. Similarly, a set of open

suppliers, K′ ⊂ K, is determined if they are serving any set of retailers.

In general, the quality of a feasible solution is represented by the value of the

objective function, or the cost it implies. To evaluate the cost, we use the objective

function of the set partitioning formulation PIV-SP. For this purpose, we let

OBJ(K′,J ′,S) =
∑

k∈K′

gk +
∑

j∈J ′

fj +
∑

j∈J ′

∑

k∈K′

∑

S∈S

IT (j, k, S)xjkS

where xjkS is the binary variable denoting whether subset S is assigned to supplier k

through DC j.

VI.2.2. A Construction Heuristic

Based on our solution representation described above, the main objective of the con-

struction heuristic for PIV is to partition the set of retailers into mutually exclusive

subsets and then determine a feasible DC-supplier assignment for each set.
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The construction heuristic utilizes a greedy approach. First, we initialize:

• the set of unserved retailers (unservedRet) as the set of retailers I,

• the set of available suppliers (aS) as the set of suppliers K,

• the set of available DCs (aDC) as the set of DCs J ,

• the set of open suppliers (oS), the set of open DCs (oDC), and the set of subsets

of retailers (S) to be empty.

Next, we sort the set of available suppliers in decreasing order according to the ratio

of their capacity to fixed facility opening cost. In order words, we start by selecting

the suppliers with the highest capacity and the lowest fixed facility opening cost.

Starting with supplier k1 at the beginning of the sorted list, we construct a new

(empty) subset of retailers S to be served by this supplier. First, among the available

DCs, we determine the closest DC j1 to this supplier. Next, we sort the unserved

retailers with respect to their proximity to this selected DC. We greedily add retailers

to subset S in the determined order as long as they satisfy the capacity constraint of

supplier k1. If a retailer is added to S, it is removed from the set of unserved retailers.

We mark k1 and j1 as open supplier and DC, respectively, and remove them from the

sets of available suppliers and DCs. These steps are repeated until all of the retailers

are served by a DC and a supplier. Finally, the construction heuristic returns the

objective function value of the solution. This procedure is shown in Display 6.

VI.2.3. Link-based Improvement Heuristic

An improvement heuristic modifies the initial feasible solution using a neighborhood

function to search for a better solution. A neighborhood function modifies the key

attributes in order to generate neighboring solutions in a heuristic search framework.
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DISPLAY 6 The Construction Heuristic.

0: Initialize: unservedRet← I, oS ← ∅, aS ← K, oDC ← ∅, aDC ← J , S ← ∅.
1: Sort aS according to the ratio Ck/gk, k ∈ K, in a decreasing order.

2: Determine S, oS, and oDC:

while |unservedRet| > 0 do

k1 ← aS[1].

S ← ∅.
remainingCap = Ck1

.

j1 = arg minj∈aDC{(pDC
j,k1

+ rDC
j,k1

dDC
j,k1

)}.
Sort unservedRet according to {(pR

i,j1
+ rR

i,j1
dR

i,j1
)} in an increasing order.

for i ∈ unservedRet do

if Di < remainingCap then

remainingCap← remainingCap−Di.

Insert i to S, remove i from unservedRet.

end if

end for

Insert S to S. Insert k1 to oS, and remove k1 from aS. Insert j1 to oDC, and

remove j1 from aDC.

end while

3: Return the cost
∑

k∈oS gk +
∑

j∈oDC fj +
∑

j∈oDC

∑
k∈oS

∑
S∈S IT (j, k, S).

For our problem, we can list the attributes of our solution as mutually exclusive

subsets of retailers and DC-supplier pairs (links) that serve these subsets.

In developing the link-based improvement heuristic, we first secure the subsets

of retailers from the initial feasible solution obtained using the construction heuristic.

Next, we construct a set of potential DC-supplier links to be used while serving

these subsets. Note that, it is possible that the set of potential DC-supplier links

may contain all the possible DC-supplier links. However, searching through such an
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extensive set for each change in the solution can be quite time-intensive. Hence, we

confine ourselves to a small subset of all of the possible DC-supplier links.

In our solution approach, we define the neighborhood of a solution through a com-

bination of simple neighborhood functions. In particular, we utilize the link exchange

neighborhood, move neighborhood, exchange neighborhood, and new set construction

functions. The link exchange neighborhood helps us modify the set of potential links

available to serve the subsets of retailers. The move and exchange neighborhoods

help us modify the contents of each subset of retailers for intensification purposes.

Finally, the new set construction function helps us construct new subsets of retailers

for diversification purposes. Combining several different simple neighborhood func-

tions helps us search the solution more thoroughly and efficiently. We explain these

components in detail below. Before concluding this section, we present an overall

framework of the link-based improvement heuristic.

VI.2.3.1. Link Exchange Neighborhood Search

Link-exchange neighborhood search is one of the most important components of the

link-based improvement heuristic since it impacts the set of potential links directly

and the solution quality indirectly. Before discussing the details of link exchange

neighborhood search, let us explain how the initial set of potential links is constructed.

As mentioned before, the set of potential links L is a subset of all of the possible

DC-supplier links. Primarily, it is set to contain 10% of all of the possible DC-supplier

links. Hence, the size of L is fixed. Let us denote this size as LSize. At the start of

the overall algorithm, we initialize L using the subsets obtained from the construction

heuristic. For each subset, we find the best DC-supplier pair and add it to the set

L until LSize is reached. Once L is established, it is utilized to determine the best

DC-supplier pairs for subsets of retailers throughout the algorithm.
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Link exchange neighborhood search helps us modifying the contents of L. In

Display 7, we provide the steps of link exchange neighborhood search. In link exchange

neighborhood search, for each link l1 ∈ L, we first find the a subset of retailers S∗ that

is served feasibly by this link at a minimum cost (zbest). The cost z(S, l1) includes

the cost of establishing the DC-supplier pair implied by link l1 as well as the total

inventory and transportation costs implied by the assignment (S, l1). Using S∗, we

search through the remaining set of all potential links (PL\L) to check if there exists

another link l2 ∈ PL \ L such that z(S∗, l2) < zbest. If we find such a link, we update

zbest and update the potential exchange link lbest1 with l2. After searching through all

of the links in PL \L, if an lbest1 exists, we swap l1 with lbest1 and modify the contents

of PL and PL. Finally, once the exchange of all of the links in L is complete, we

return the modified set L.

VI.2.3.2. Move Neighborhood Search

Move neighborhood search modifies the content of a subset S by moving a retailer

in S to another subset in the set of the subsets S. The steps of move neighborhood

search are given in Display 8.

In the beginning of the search, we initialize the best cost zbest with the best cost

obtained so far in the overall procedure that we denote as zCH . Furthermore, we

initialize the control cost z0 as infinity. Starting with a subset S1 ∈ S, we move each

retailer i in S1 to another subset S2 ∈ mathcalS. After each move, we calculate the

objective value of the new solution, zmove. Note that, before calculating the objective

value, we need to determine the DC-supplier pairs that will be serving the newly

constructed subsets S1 and S2. The best DC-supplier pairs are determined via

• a search through the potential link set, L, in the link-based improvement heuris-
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DISPLAY 7 The Link Exchange Neighborhood Search.

for ∀l1 ∈ L do

S∗ ← arg minS∈S{z(S, l1)}.
zbest ← minS∈S{z(S, l1)}.
for ∀l2 ∈ PL \ L do

Calculate z(S∗, l2).

if z(S∗, l2) < zbest then

zbest ← z(S∗, l2).

lbest1 ← l2.

improved← 1.

end if

end for

if improved = 1 then

L ← L \ {l1}. L ← L ∪ {lbest1 }.
PL ← PL \ {lbest1 }. PL ← PL ∪ {l1}.

end if

end for

Return L.

tic, and

• solving PII-d-MR for each subset and supplier combination in the PII-d-MR-

based improvement heuristic.

If, with this move, we can improve zbest, we modify S to include the new updated

S1 and S2. We update the value of zbest, and start the move neighborhood search over

taking into account the new modified S. For this purpose, the move neighborhood

searches for the “first-best-move.”

We continue in this manner until we can no longer improve zbest. At that point,

we return zbest and the associated S as the new solution.
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DISPLAY 8 The Move Neighborhood.

0: Set zbest ← zCH , z0 ←∞.

while zbest < z0 do

z0 ← zbest.

for ∀S1 ∈ S do

for ∀S2 ∈ S do

if S1 6= S2 and |S1| > 1 then

for ∀i ∈ S1 do

S1 ← S1 \ {i}. S2 ← S2 ∪ {i}. Calculate zmove.

if zmove < zbest then

zbest ← zmove. Update S. Start over.

end if

end for

end if

end for

end for

end while

Return zbest.

VI.2.3.3. Exchange Neighborhood Search

The exchange neighborhood search modifies the contents of two subsets by swapping

retailers among subsets. The steps of the exchange neighborhood search are given in

Display 9.

In the beginning of the search, we initialize the best cost zbest with the best cost

zCHobtained so far in the overall procedure. We also initialize the control cost z0 as

infinity. Starting with two subsets S1 ∈ S and S2 ∈ S, such that S1 6= S2, we swap

each retailer i in S1 with another retailer j in subset S2 ∈ S. After each exchange,
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DISPLAY 9 The Exchange Neighborhood.

0: Set zbest ← zCH , z0 ←∞.

while zbest < z0 do

z0 ← zbest.

for ∀S1 ∈ S do

for ∀S2 ∈ S do

if S1 6= S2 then

for ∀i ∈ S1 do

for ∀j ∈ S2 do

S1 ← S1 \ {i}. S1 ← S1 ∪ {j}. S2 ← S2 \ {j}. S2 ← S2 ∪ {i}.
Calculate zexchange.

if zexchange < zbest then

zbest ← zexchange. Update S. Start over.

end if

end for

end for

end if

end for

end for

end while

Return zbest.

we calculate the objective value of the new solution, zexchange. Similar to the step

in move neighborhood search, before calculating zexchange, we need to determine the

DC-supplier pairs that will serve the newly constructed subsets S1 and S2, either via a

search through the potential link set, L, (in link-based improvement heuristic) or via

solving PII-d-MR for each subset and supplier combination (in the PII-d-MR-based

improvement heuristic).

If, with this exchange, we can improve zbest, we modify S to include the new
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updated S1 and S2. We update the value of zbest and start the exchange neighborhood

search again over the new modified S. For this purpose, the exchange neighborhood

searches for the “first-best-exchange.”

We continue in this manner until we can no longer improve zbest. At that point,

we return zbest and the associated S as the new solution.

VI.2.3.4. New Set Construction

In both link-based and PII-d-MR-based improvement, we use a new set construction

module to modify the contents of S. In particular, via new set construction, we

increase the number of subsets in S by one. While generating this new subset, we

utilize the distances among retailers.

First, we initialize smallestSize to the smallest |S| such that S ∈ S. Let S∗

be the new set to be constructed. Let S1 be the first set in S. We first find the

two most distant retailers in S1. We remove one of those retailers, say i, from S1

randomly and add i to the new set S∗. Afterwards, we loop through all the subsets

to determine the retailers closest to retailer i. We include these retailers in the new

subset S∗ and eliminate them from their original subsets until the size of S∗ is at least

as large as smallestSize. Then, we add S∗ to S. Finally, we determine the objective

value znewSet associated with the new S and return znewSet. As in the move and

exchange neighborhood search algorithms, before determining znewSet, we first obtain

DC-supplier pairs for each subset in S according to the type (link-based or PII-d-

MR-based) of the improvement heuristic. Display 10 summarizes this procedure.

VI.2.3.5. Overall Algorithm

In Display 11, we present the overall procedure for the link-based improvement heuris-

tic. The link-based improvement heuristic starts with the initial feasible solution
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DISPLAY 10 The New Set Construction.

0: Set smallestSize = minS∈S{|S|}.Construct S∗.

1: Pick S1 ∈ S Find (i∗, j∗) = arg maxi∈S1,j∈Si
dij.

2: S1 ← S1 \ {i∗}. S∗ ← S∗ ∪ {i∗}.
while |S∗| < smallestSize do

for ∀S ∈ S do

Find j∗ = arg minj∈S{di∗,j}.
S ← S \ {j∗}. S∗ ← S∗ ∪ {j∗}.

end for

end while

Calculate and return znewSet.

that was obtained from the construction heuristic. We initialize the set of subsets

of retailers S and the best objective value (zbest) from the solution of the construc-

tion heuristic. We also initialize the set of potential links L as explained in Section

VI.2.3.1. We set the initial cost z0 to infinity.

At the initialization, if S contains more than one subset of retailers, we can

perform a subset content improvement (move and exchange) neighborhood search.

Otherwise, we can check to see if we can generate new subsets by invoking the new

subset construction function described in Section VI.2.3.4. If generating new subsets

proves beneficial and reduces the overall cost, we update the set of subsets of retailers

with the new set obtained from the new subset construction function.

In either case, the subset’s content can be improved through move and exchange

neighborhood searches that are described in Sections VI.2.3.2 and VI.2.3.3, respec-

tively. With the link-based heuristic, whenever the set content is changed, new DC-

supplier assignments for each subset are determined via a search through the set

of potential links. After move and exchange neighborhood searches, we modify the
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set of potential links to check whether or not there are other DC-supplier links that

return a better cost for the current S. We modify L using the link exchange func-

tion described in Section VI.2.3.1. Next, we check whether the number of subsets

can be increased by invoking the new subset construction module. We continue in

this manner by updating S and L through a series of operations until the cost stops

improving. when that happens, we return the best cost zbest as the solution to the

link-based improvement heuristic.

DISPLAY 11 The Link-based Improvement Heuristic.

0: Obtain S from the initial solution. Set zbest ← zCH , z0 ←∞. Initialize L.

1:

while zbest < z0 do

z0 ← zbest.

Perform Move. If z0 < zbest, set zbest ← zmove, and update S.

Perform Exchange. If z0 < zbest, set zbest ← zexc, and update S.

Perform Link Exchange. If z0 < zbest, set zbest ← zlink, and update S and L.

Perform New Set Construction. If z0 < zbest, set zbest ← znsc, and update S.

end while

Return zbest.

VI.2.4. PII-d-MR-based Improvement Heuristic

As with the link-based improvement heuristic, our PII-d-MR-based improvement

heuristic utilizes the simple neighborhood functions move and exchange neighbor-

hoods as well as the new set construction module. The most important difference

between the link-based and PII-d-MR-based improvement heuristics is the way the

subsets of retailers are assigned to a DC and a supplier. In the next section, we de-

scribe how to make use of the continuous three stage joint location inventory problem
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examined in Chapter IV when determining such assignments. Finally, Section VI.2.4.2

describes the overall procedure for the PII-d-MR-based improvement heuristic.

VI.2.4.1. Using the PII-d-MR

Recall that the PII-d-MR considers an integrated location and inventory problem in

a three stage continuous facility location setting where the transportation costs are

a function of distance. The solution of the PII-d-MR determines the location of the

central DC given the locations of the supplier and the retailers as well as the inventory

policy parameters of the central DC and the retailers.

Given a subset of retailers with known locations, we can determine the best

central DC location and supplier to serve this subset by solving a PII-d-MR problem

for each potential supplier that has enough capacity to serve this subset. In other

words, by solving the PII-d-MR at most |K| times, we obtain a continuous DC location

associated with each candidate supplier as well as the corresponding cost. We pick

the lowest cost solution to determine which DC and supplier to assign to this subset

of retailers. However, since we are restricted to candidate DC locations, rather than

a continuous DC location, we determine the three best candidate DC locations that

are closest to the continuous DC location with the lowest cost. We evaluate each one

of these candidate DC locations and their associated supplier by estimating the cost

of assigning it to the current subset of retailers. In other words, we compare the cost

of three DC-supplier pairs for the current subset of retailers. We assign the subset of

retailers to the one with the lowest total cost. Before we move on to a new subset of

retailers, we update the remaining capacity of the selected supplier. We continue in

this manner until all of the subsets are served by a DC-supplier pair.

We invoke this procedure to determine the DC-supplier assignments whenever

a subset’s content is changed via move or exchange operations or a new subset is
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created.

VI.2.4.2. Overall Algorithm

In this section, we describe the overall procedure for the PII-d-MR-based improvement

heuristic. As we mentioned before, the main difference between the PII-d-MR-based

and the link-based improvement heuristics is the way the subsets of retailers are

assigned to the corresponding DCs and suppliers. However, the overall procedure is

quite similar to the overall procedure of the link-based improvement heuristic.

The overall algorithm is initialized by the solution obtained from the construction

heuristic. Then, if the set of subsets contains more than one subset, we employ

move, exchange, and new set construction routines as long as the objective function

continues to improve. If the set of subsets contains only one subset, then the new set

construction function is invoked to check whether it would be beneficial to generate

new subsets of retailers. If new subsets are created, we again employ move, exchange,

and new set construction routines as long as the objective function keeps improving.

Otherwise, we return the objective value of the construction heuristic.

We present the computational results for the performance of the PII-d-MR-based

heuristic in Section VI.4.

VI.3. Benchmark Model

In this section, we describe a benchmark model for comparing the solution of the

integrated location and inventory model and evaluating the effectiveness of the in-

tegrated model PIV. The benchmark model (BMIV) follows the typical sequential

framework where location decisions precede inventory decisions. Specifically, we first

solve a two-stage PDSD problem without inventory considerations to determine the
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supplier and DC locations, the assignments of the selected suppliers to the open DCs,

and the assignments of the open DCs to the retailers. Then, given these location and

assignment decisions, we determine the inventory policy parameters at each open DC

and their assigned retailers. In the next two subsections, we explain the details of the

PDSD and the inventory components of the benchmark model.

VI.3.1. Modeling BMIV-PDSD

Ignoring the inventory decisions initially, the problem PIV reduces to a two-level

PDSD problem where a number of DCs and capacitated suppliers are to be located

with respect to the retailer locations while minimizing the total cost in the system.

The total cost includes the fixed cost of locating DCs and suppliers as well the trans-

portation costs from the selected suppliers to the open DCs and from the open DCs

to the retailers. These transportation costs are unit-based transportation costs and

ignore the impact of inventory decisions.

Using the notation defined in Section VI.1, we formulate this PDSD as the fol-

lowing integer program:

Min
∑

j∈J

fjXj +
∑

j∈J

gkZk +
∑

i∈I

∑

j∈J

∑

k∈K

uijkDiWijk (BMIV-PDSD).
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subject to
∑

j∈J

Yij = 1, ∀i ∈ I. (6.23)

Yij ≤ Xj, ∀i ∈ I and ∀j ∈ J . (6.24)

Wijk ≤ Zk, ∀i ∈ I, ∀j ∈ J and ∀k ∈ K. (6.25)

Wijk ≤ Xj, ∀i ∈ I, ∀j ∈ J and ∀k ∈ K. (6.26)
∑

k∈K

Wijk = Yij , ∀i ∈ I and ∀j ∈ J . (6.27)

∑

i∈I

∑

j∈J

DiWijk ≤ CkZk, ∀k ∈ K. (6.28)

Xj ∈ {0, 1}, Yij ∈ {0, 1}, ∀i ∈ I and ∀j ∈ J . (6.29)

Zk ∈ {0, 1}, Wijk ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J and ∀k ∈ K. (6.30)

In this formulation, the objective function minimizes the sum of the fixed cost of

locating the DCs, the fixed cost of locating the suppliers, and the total transportation

costs from the selected suppliers to the retailers through open DCs. In the objective

function, uijk denotes the per-unit transportation cost from supplier k to retailer i

through DC j, for all i ∈ I, j ∈ J , k ∈ K. As we noted earlier in Chapters IV and

V, we need to use an estimate for uijk due to lack of better information and we let

uijk = fracrR
ij + rDC

jk 2 ∗ 0.1% for all i ∈ I, j ∈ J , k ∈ K.

Constraints (6.23) ensure that each retailer is served by exactly one DC. Con-

straints (6.24), (6.25), (6.26) are the assignment constraints that ensure only selected

facilities (DCs and suppliers) are utilized in the distribution system design. Con-

straints (6.24) ensure that a retailer can only be assigned to a selected DC. Constraints

(6.25) ensure that a DC can only be assigned to a selected supplier. Constraints (6.26)

ensure that a supplier can only be assigned to a selected candidate DC. Constraints

(6.27) stipulate that if a link between a customer and a DC exists, it can be served
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by only one selected supplier. In other words, these constraints ensure that a selected

DC can be only assigned to only one selected supplier. Constraints (6.28) ensure the

capacity restrictions at the suppliers. Finally, constraints (6.29) and (6.30) are the

standard integrality constraints.

We solve BMIV-PDSD to optimality using CPLEX 9.0 and determine the optimal

values of Xj, Zk, and Wijk for all i ∈ I, j ∈ J , k ∈ K.

VI.3.2. Modeling BMIV-Inv

Once Wijk is determined by solving BMIV-PDSD for all i ∈ I, j ∈ J , k ∈ K, we

use this information to form subsets of retailers that are served by a single DC and a

single supplier. Then, for each such subset S, the inventory decisions of each retailer

in that set and the DC serving that set are addressed by solving the corresponding

SWMR problem using the approach in Roundy (1985).

Let S be the set of subsets of retailers. Then, for S ∈ S, there is a unique

DC-supplier (jS, kS) pair that serves subset S such that jS ∈ J and kS ∈ K. Then,

we formulate the inventory problem as follows:

Min
∑

S∈S

{
∑

i∈S

(pR
i,jS

+ rR
i,jS

dR
i,jS

)

TR
i

+
(pDC

jS ,kS
+ rDC

jS ,kS
dDC

jS ,kS
)

TDC
jS

+
KDC

jS

TDC
jS

+
∑

i∈S

KR
i

TR
i

+
∑

i∈S

1

2
HR

i,jS
DiT

R
i +

∑

i∈S

1

2
HDC

i Di max{TR
i , TDC

jS
}
}

(BMIV-Inv)
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subject to

TDC
jS

= 2νjS Tb and νjS
∈ Z, ∀jS ∈ J , S ∈ S. (6.31)

TR
i = 2υiTb and υi ∈ Z, ∀i ∈ S, S ∈ S. (6.32)

TDC
jS
∈ R+ and TR

i ∈ R+, ∀i ∈ S, ∀jS ∈ J , S ∈ S. (6.33)

This formulation can be decomposed for each subset S ∈ S, and the inventory

decisions for each retailer i ∈ S, and DC jS, jS ∈ J , S ∈ S can be obtained by solving

a corresponding SWMR lot-sizing problem using the approach in Roundy (1985).

After the location, assignment, and inventory decisions are determined through

solutions of the BMIV-PDSD and BMIV-Inv, we evaluate the cost of the benchmark

model using the objective function of the original formulation. We compare this

cost with the cost of the original formulation solved by the heuristic approaches to

determine the value of integrated decision-making. We report our results in the next

section.

VI.4. Numerical Results

In this section, we present numerical results to demonstrate the performance of the

heuristic solution approaches. In Section VI.4.1, we explain the test data. In Section

VI.4.2, we present results detailing the performance of the improvement heuristics. In

Section VI.4.3, we compare the results of the benchmark heuristics with the solution

approaches to determine the value of integrated decision-making.

All of the numerical results are obtained with algorithms implemented using

C++ and run on a Pentium IV 3.2Ghz machine with 1 GB memory.
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VI.4.1. Experiment Data

To test the solution approaches, we generate 8 different data sets where the number

of retailers, number of potential DCs, and the number of potential suppliers have two

alternatives. Each data set consists of either 50 or 100 retailers, 20 or 40 potential

DCs, and 5 or 10 potential suppliers. In each group, we have 50 problem instances,

generated randomly using the uniform distributions given in Table 33, resulting in

a total of 400 problem instances. To generate the supplier capacities, we use the

average demand in the data instance. In particular, we generate the supplier capacity

randomly using the uniform distribution U [Lcap, Ucap] for each supplier k ∈ K where

Lcap = 25 ∗
P

i∈I Di

|I|
∗ |I|

50
= 0.5 ∗∑i∈I Di and Ucap = 50 ∗

P
i∈I Di

|I|
|I|
50

=
∑

i∈I Di. With

this capacity restriction, on average, each supplier is capable of serving a random

number of retailers between 25 and 50 if there are 50 retailers and between 50 and

100 if there are 100 retailers in the system.

In order to test the performance of the solution algorithms, we generate an

extreme case where the fixed costs of facilities are 10% of the value that is suggested

by the original data while the rest of the data is kept the same. In the original

data set, the location costs for both DCs and suppliers are higher than the other

operational costs. In the second data set, the operating costs dominate over location

costs. We report results for both data sets in the following sections.

VI.4.2. Performance of Improvement Heuristics

In this section, we report computational results illustrating the performance and

duration of the improvement heuristics. We define the performance of an improvement

heuristic as “improvement over the construction heuristic”, and we measure it as

Improvement Over Construction (% ) =
Z(C)− Z(H.)

Z(C)
× 100,
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TABLE 33. Parameter Values for Numerical Experiments.

Parameters Range

Di U[350, 1400]
fj U[100000,150000]
gk U[200000,300000]
Ck U[0.5

∑
i∈I Di,

∑
i∈I Di]

KR
i U[75, 300]

KDC
j U[400,1600]

hR
i U[5, 10]

hDC
j U[1, 4]

pR
ij U[100, 400]

pDC
ij U[425, 1700]

rR
ij U[0.75, 3]

rDC
jk U[1, 4]

P
R
i U[0,150]× U[0,150]

P
DC
j U[0,150]× U[0,150]

P
S
k U[0,150]× U[0,150]

where Z(C) is the objective value of the construction heuristic, and Z(H.) is the

objective value of the appropriate improvement heuristic.

In Table 34, we present the minimum, average, and maximum percentage im-

provement over construction heuristic (C1) for both link-based (H1) and PII-d-MR-

based (H2) improvement heuristics for eight data sets containing 400 instances. We

also present the minimum average and maximum durations for construction, link-

based improvement and PII-d-MR-based improvement heuristics.

According to the results in Table 35, with the link-based improvement heuristic,

the average improvement gap ranges from 3.75% (data set 1) to 5.37% (data set 7).

Not surprisingly, the link-based improvement heuristic performs better as |J | × |K|

increases since the size of the potential link set gets larger. A similar effect is observed

for the maximum improvement gap. The maximum improvement gap ranges from

17.31% (data set 3) to 29.55% (data set 4).

Although the link-based improvement heuristic performs quite well, the PII-d-
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TABLE 34. Comparison of Improvement Heuristics.

DATA Improvement Over Construction DURATIONS (in sec.)
H1 H2 C1 H1 H2

|I| 50 Min 0.00% 0.00% 0.00 0.00 0.28
DataSet1 |J | 20 Ave 3.75% 23.19% 0.00 1.69 44.50

|K| 5 Max 18.48% 52.04% 0.02 3.98 88.11

|I| 50 Min 0.00% 0.00% 0.00 0.02 0.86
DataSet2 |J | 20 Ave 4.60% 22.73% 0.00 2.66 94.60

|K| 10 Max 23.47% 50.93% 0.02 9.36 151.53

|I| 50 Min 0.00% 2.82% 0.00 0.73 23.08
DataSet3 |J | 40 Ave 3.96% 25.92% 0.01 4.61 47.58

|K| 5 Max 17.31% 46.62% 0.02 14.13 84.47

|I| 50 Min 0.00% 0.00% 0.00 0.02 0.59
DataSet4 |J | 40 Ave 5.36% 22.96% 0.01 6.20 92.29

|K| 10 Max 29.55% 50.47% 0.02 23.67 229.92

|I| 100 Min 0.00% 0.00% 0.00 0.02 0.92
DataSet5 |J | 20 Ave 3.82% 17.95% 0.01 9.05 223.00

|K| 5 Max 21.51% 37.98% 0.02 44.02 517.08

|I| 100 Min 0.00% 0.00% 0.00 1.92 2.11
DataSet6 |J | 20 Ave 4.14% 16.20% 0.01 20.54 242.13

|K| 10 Max 21.33% 38.79% 0.02 107.13 494.33

|I| 100 Min 0.00% 0.00% 0.00 0.02 0.94
DataSet7 |J | 40 Ave 5.37% 16.56% 0.01 25.69 203.80

|K| 5 Max 22.88% 33.48% 0.02 150.95 487.25

|I| 100 Min 0.00% 0.00% 0.00 0.03 1.63
DataSet8 |J | 40 Ave 4.68% 17.77% 0.01 44.08 374.57

|K| 10 Max 26.48% 36.71% 0.02 238.84 637.61

MR-based improvement heuristic performs much better. With the PII-d-MR-based

improvement heuristic, instead of searching through a limited set of DC-supplier

links, we approximate the location of the DC and determine the best DC-supplier

link through the use of PII-d-MR. This simple component change has a great impact

on the improvements. With the PII-d-MR-based improvement heuristic, the average

improvement ranges from 16.20% (data set 6) to 25.92% (data set 3) which is al-

most equivalent to the maximum improvement gap with the link-based improvement

heuristic. Furthermore, the maximum improvement gap with the PII-d-MR-based
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improvement heuristic ranges from 33.48% (data set 7) to 52.04% (data set 1).

In terms of duration, all of the heuristics run quite rapidly. The duration of the

construction heuristic is almost insignificant. Even for the instances with maximum

duration, the run time is under 0.2 seconds. The link-based improvement heuristic

runs quite fast as well. The average runtime of the link-based improvement heuristic

is less than ten seconds for smaller networks and up to 45 seconds for larger ones.

The maximum runtime of the link-based improvement heuristic does not exceed four

minutes. Even though the PII-d-MR-based improvement heuristic is the most time-

intensive heuristic, it still runs, on average, under five minutes with the runtime going

up to ten minutes in the largest instances.

In Table 35, we present the comparative performances of the solution approaches

for data with lower fixed location costs. For this data, the performance of the link-

based improvement heuristic and the PII-d-MR-based heuristic are almost equivalent

in terms of improvement over the construction heuristic. With the link-based improve-

ment heuristic, the average improvement gap ranges from 1.10% to 1.79%, whereas

the PII-d-MR-based heuristic performs slightly better with the average improvement

ranging from 1.43% to 2.18%. Both improvement heuristics improve over the con-

struction heuristic by as much as 21% which is quite significant. In terms of the

runtime of the heuristics, the PII-d-MR-based heuristic is the most time intensive

heuristic with the average duration ranging from 45 seconds to six minutes.

VI.4.3. Value of Integrated Decision-Making

In this section, we present computational results to demonstrate the value of in-

tegrated decision-making over sequential decision-making in terms of location and
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TABLE 35. Comparison of Improvement Heuristics for Data with Low Fixed Location

Costs.

DATA Improvement Over Construction DURATIONS (in sec.)
H1 H2 C1 H1 H2

|I| 50 Min 0.00% 0.00% 0.00 0.00 0.50
DataSet1 |J | 20 Ave 1.10% 1.64% 0.00 1.94 43.26

|K| 5 Max 5.80% 6.45% 0.02 6.44 80.61

|I| 50 Min 0.00% 0.23% 0.00 0.02 37.89
DataSet2 |J | 20 Ave 1.76% 2.13% 0.00 5.05 88.57

|K| 10 Max 10.53% 11.82% 0.02 44.41 147.25

|I| 50 Min 0.17% 0.00% 0.00 0.72 25.70
DataSet3 |J | 40 Ave 1.43% 2.18% 0.01 5.14 42.20

|K| 5 Max 11.18% 11.87% 0.02 14.20 64.89

|I| 50 Min 0.00% 0.00% 0.00 0.02 0.55
DataSet4 |J | 40 Ave 1.67% 2.10% 0.01 11.67 87.41

|K| 10 Max 11.90% 13.49% 0.02 37.80 159.16

|I| 100 Min 0.00% 0.00% 0.00 0.00 0.83
DataSet5 |J | 20 Ave 1.16% 1.45% 0.01 10.19 205.42

|K| 5 Max 21.03% 21.06% 0.02 35.20 378.30

|I| 100 Min 0.04% 0.15% 0.00 3.11 1.69
DataSet6 |J | 20 Ave 1.79% 1.84% 0.01 23.67 214.05

|K| 10 Max 20.94% 21.33% 0.02 89.19 376.73

|I| 100 Min 0.08% 0.18% 0.02 4.58 80.79
DataSet7 |J | 40 Ave 1.34% 1.43% 0.02 35.55 189.50

|K| 5 Max 8.43% 10.84% 0.03 118.47 373.17

|I| 100 Min 0.20% 0.00% 0.02 6.38 177.82
DataSet8 |J | 40 Ave 1.69% 1.77% 0.02 59.72 376.56

|K| 10 Max 13.87% 13.90% 0.03 271.52 693.92

inventory decisions. We measure the value of integrated decision-making as

Percentage gain over benchmark(% ) =
Z(BIV )− Z(H.)

Z(BMIV )
× 100,

where Z(BMIV ) is the objective value of PIV evaluated with the decision variables

obtained through the solution of BMIV, and Z(H.) is the objective value of the

appropriate solution approach for PIV.

In Table 36, we report the minimum, average, and maximum runtimes for BMIV
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TABLE 36. Comparison of Benchmark Model with Solution Approaches.

Duration Gain (%)
(s.) C1 H1 CH2

Min 1.50 24.09% 24.11% 31.84%
DataSet1 Ave 13.91 42.09% 44.35% 55.87%

Max 22.95 64.97% 64.97% 73.65%

Min 0.63 19.23% 21.46% 34.33%
DataSet2 Ave 5.79 41.72% 44.57% 55.14%

Max 13.59 67.40% 67.40% 73.15%

Min 18.95 24.56% 26.87% 36.80%
DataSet3 Ave 53.14 40.66% 43.04% 56.22%

Max 90.27 57.80% 58.26% 72.10%

Min 3.11 20.07% 20.07% 36.16%
DataSet4 Ave 23.06 41.28% 44.52% 55.26%

Max 63.30 71.03% 71.03% 72.12%

Min 0.80 36.86% 37.11% 47.72%
DataSet5 Ave 2.21 51.03% 52.96% 60.01%

Max 5.50 67.50% 67.50% 71.23%

Min 4.38 39.69% 46.08% 46.49%
DataSet6 Ave 12.87 53.64% 55.60% 61.18%

Max 53.83 61.99% 67.78% 73.56%

Min 1.86 37.68% 41.88% 45.31%
DataSet7 Ave 10.78 51.33% 54.02% 59.57%

Max 27.06 71.30% 71.30% 72.60%

Min 6.27 42.27% 46.45% 52.49%
DataSet8 Ave 56.11 54.77% 56.98% 62.99%

Max 160.55 75.74% 75.74% 75.74%

and the value of integrated decision-making using the construction, the link-based im-

provement, and the PII-d-MR improvement heuristics. All of the solution procedures,

when compared to the BMIV, perform extremely well with average gains ranging from

40.66% to 54.77% for the construction heuristic, from 43.04% to 56.08% for the link-

based improvement heuristic, and from 55.14% to 62.99% for the PII-d-MR-based

improvement heuristic. Recall that, with the original data, the improvement over

construction heuristics is quite significant for both the link-based and the PII-d-MR-

based improvement heuristics, with the PII-d-MR-based improvement heuristic being
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slightly better.

TABLE 37. Comparison of Benchmark Model with Solution Approaches for Data with

Low Fixed Location Costs.

Duration Gain (%)
(s.) C1 H1 CH2

Min 0.58 17.19% 17.81% 18.09%
DataSet1 Ave 0.60 20.23% 21.11% 21.54%

Max 1.00 23.98% 24.99% 25.78%

Min 0.56 9.43% 10.16% 10.28%
DataSet2 Ave 0.64 24.50% 25.83% 26.11%

Max 1.22 33.09% 38.24% 39.12%

Min 1.72 19.20% 20.18% 20.55%
DataSet3 Ave 1.82 24.26% 25.34% 25.91%

Max 2.13 27.45% 32.56% 33.08%

Min 1.27 18.87% 20.68% 21.12%
DataSet4 Ave 1.29 28.52% 29.73% 30.04%

Max 1.56 37.29% 37.52% 38.65%

Min 0.72 4.28% 4.63% 4.65%
DataSet5 Ave 0.77 13.62% 14.63% 14.88%

Max 1.05 26.61% 30.77% 30.80%

Min 1.58 9.52% 10.33% 10.31%
DataSet6 Ave 1.62 16.48% 17.98% 18.02%

Max 1.95 25.50% 35.49% 35.81%

Min 1.77 11.48% 12.95% 12.57%
DataSet7 Ave 1.82 17.86% 18.96% 19.03%

Max 2.06 26.69% 27.39% 28.77%

Min 3.59 10.32% 11.64% 11.56%
DataSet8 Ave 3.71 20.74% 22.09% 22.14%

Max 4.05 27.83% 29.61% 29.78%

In Table 37, we report the results for the BMIV and the value of integrated

decision-making using the data with lower fixed facility location costs. The average

gain over the benchmark model is almost the same for all of the solution approaches,

ranging from 13.62% to 30.04%. In this case, the savings from all of the solution

approaches are less than the savings obtained with the original data. However, these

gains are still significant, considering their monetary value. One important observa-
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tion is that the runtime of the benchmark model BMIV is significantly faster using

the data with lower fixed facility location costs because it is easier to solve the BMIV-

PDSD problem in this situation.

VI.5. Summary and Conclusions

In this chapter, we analyze a three-stage PDSD problem with inventory considerations

where the first stage consists of retailers and the second and third stages consist of

candidate locations of DCs and capacitated suppliers, respectively. Furthermore, we

consider inventory decisions at the retailer and the DC levels. Each retailer replenishes

its inventory from a specific established DC at the second stage via direct shipments,

and each selected DC replenishes its inventory from a specific capacitated supplier

located at the third stage via direct shipments. This problem is a generalization of

the problems considered in the other chapters. In particular,

• it generalizes the three-stage continuous location problems (discussed in Chapter

IV) to a discrete setting with multiple DCs and multiple suppliers;

• it generalizes the two-stage discrete location problems (discussed in Chapter

V) due to the consideration of multiple capacitated suppliers and additional

inventory decisions at the DC level.

After presenting two different formulations for PIV, we developed efficient heuris-

tic solution approaches using advanced neighborhood search algorithms, i.e., the link-

based improvement heuristic and the PII-d-MR-based improvement heuristic. The

link-based heuristic utilizes an efficient search among potential DC-supplier pairs

(links) to determine which subset of retailers is served by which link. On the other

hand, the PII-d-MR-based improvement heuristic utilizes the algorithm developed for

PII-d-MR to determine the DC-supplier assignments for each retailer set. Based on
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our computational results, the PII-d-MR-based improvement heuristic finds better

quality solutions (i.e., with lower cost) at the expense of duration. Nevertheless, both

the link-based and the PII-d-MR-based improvement heuristics provide significant

cost savings over the benchmark model.

As we have noted earlier, our focus in this chapter is on the development of effi-

cient heuristic approaches. As a future research, these heuristics can be modified in

several different ways. One way to modify these heuristics is to consider complete lo-

cal search in move and exchange neighborhoods instead of “first-best-improvements.”

Another modification is due to consideration of a parallel neighborhood search, i.e.,

considering move and exchange neighborhood search simultaneously instead of con-

sidering them sequentially. Finally, another noteworthy extension of this research

would be the development of exact optimization algorithms for PIV.
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CHAPTER VII

CONTRIBUTIONS AND CONCLUSIONS

Inbound and outbound distribution system design and redesign has become a ma-

jor challenge for companies as they simultaneously try to reduce logistics costs and

improve customer service in today’s increasingly competitive business environment.

Recent SCM initiatives, including third party logistics (3PL) and vendor managed

inventory (VMI), are aimed at reducing total logistics costs by forcing geographically

dispersed suppliers, manufacturers (plants), DCs, and retailers to unite as cross-

functional teams. Hence, the systems approach is key for successful cost effectiveness

across an entire supply chain network. With this motivation, the models and algo-

rithms in this dissertation are aimed to provide efficient solutions to allow managers

to benefit from these recent SCM trends by utilizing integrated decision-making.

This dissertation contributes to the SCM literature by investigating the impact

of joint optimization of facility location and inventory decisions. In particular, this re-

search makes an attempt to fill this gap in the literature by addressing the integration

of facility location and inventory decisions for two-stage and three-stage distribution

systems in continuous and discrete facility location models and by providing insights

into

• the impact of explicit transportation costs on integrated decisions,

• the impact of different transportation cost functions on integrated decisions in

the context of continuous facility location problems of interest,

• the value of integrated decision-making in different supply chain settings, and

• the performance of solution methods that jointly optimize facility location and

inventory decisions.
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Chapters III and IV considered continuous facility location problems in two-

stage and three-stage distribution systems, respectively. In Chapter III, we analyzed

the integration of facility location and inventory decisions in a continuous facility

location problem setting for a two-stage supply chain. We showed that the underlying

location problem in this model is similar to the classical Weber problem and the

underlying inventory problem is a multi-retailer EOQ problem. In this chapter, we

discussed three main transportation cost structures that arise in the context of real-life

applications. Considering these different transportation cost structures, we developed

and analyzed three different integrated location and inventory models, namely, the

PI-Q, PI-Qd, and PI-d in a continuous facility location problem setting for a two-stage

supply chain.

The analysis of the PI-Q and the PI-Qd are trivial primarily due to the sim-

plifications in the average annual cost function in these models. However, analysis

of the PI-d is not trivial. We analyzed this problem under two different distance

norms, namely Squared Euclidean and Euclidean distances. For the PI-d-SE, which

is a convex nonlinear optimization problem, we devised an iterative algorithm that

converges to the optimal central DC location and the parameters of the inventory

policies of the retailers. The PI-d-E is also a nonlinear optimization problem. How-

ever, the objective function of the PI-d-E problem is neither convex nor concave in

location and inventory decisions. For the PI-d-E, we proved that the existing retail

locations are local minima for the central DC location, and we propose an effective

search algorithm.

In Chapter IV, we analyzed the integration of facility location and inventory

decisions in a continuous facility location problem setting for a three-stage supply

chain. In this problem, in addition to the complexities in Chapter III, the central

DC is an inventory holding location and its inventory replenishment must be coordi-
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nated with the retailers’ replenishments. Hence, this problem has similarities to the

classical Weber problem and the single-warehouse, multi-retailer (SWMR) lot-sizing

problem. We analyzed this problem under three main transportation cost structures

that were introduced in Chapter III, namely, the PII-Q, PII-Qd, and PII-d. Similar

to the analysis in Chapter III, for the PII-Q and PII-Qd, the location and inventory

problems can be decomposed, but the PII-d requires joint optimization of location

and inventory decisions since the objective function is not separable with respect to

the corresponding decision variables.

We analyzed the PII-d with single and multiple retailers, the PII-d-SR and PII-

d-MR, respectively. For the PII-d-SR, we presented a closed form solution for the

location and inventory decision variables. Furthermore, we showed that the PII-d-

MR is an extension of the SWMR problem that explicitly considers the DC location

decision and the DC-location-dependent replenishment costs. We also discussed the

fact that the PII-d-MR is a practical generalization of the Weber problem that explic-

itly considers inventory decisions and costs. We examined important characteristics

of the PII-d-MR that relate to the SWMR and Weber problems, and we built on

these characteristics for developing solution algorithms that do not assume any spe-

cific form of the distance function. We provided numerical results that demonstrate

the efficient and effective performance of our algorithms and investigate the practical

value of the PII-d-MR. We concluded that substantial cost savings can be realized by

the integration of location and inventory decisions in the continuous facility location

setting and that one should give serious consideration to this approach for logistical

coordination.

Chapters V and VI considered discrete facility location problems in two-stage

and three-stage distribution systems, respectively. In Chapter V, we analyzed the

integration of facility location and inventory decisions in a discrete facility location
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problem setting for a two-stage supply chain. In particular, this model generalized the

classical FCFLP problem in two-stages to consider inventory decisions at the retailers

where it is modeled as a multi-retailer EOQ problem. We classified this problem with

respect to capacity restriction. When the potential DCs do not have a capacity

restriction, the problem PIII is a generalization of the uncapacitated FCFLP. For the

PIII, we showed that the problem can be converted to an equivalent uncapacitated

FCFLP, and, hence, can be solved via the techniques developed for the FCFLP.

For the capacity restricted PIII, we first expanded on the definition of capacity

in distribution systems. We considered four different types of capacity restrictions:

throughput capacity restrictions, storage capacity restrictions, dispatch capacity re-

strictions at the DCs, and the truck/cargo capacity restrictions on the transportation

links. Under these different capacity restrictions, we revised the model PIII, to the

PIII-PC with throughput capacity, the PIII-SC with storage capacity, the PIII-DC

with dispatch capacity, and the PIII-TC with truck capacity. For the PIII-PC and

PIII-TC, we showed that the models can be converted to the classical capacitated

FCFLP and, hence, can be solved via the techniques developed for the capacitated

FCFLP. The PIII-SC and the PIII-DC include the order quantities of retailers in

defining the capacity restrictions, which makes these problems more challenging. For

these problems, we developed generalized Benders decomposition based algorithms

by exploiting the structure of the problem. Compared to the generic MINLP solver,

the algorithms provide good quality solutions in short durations.

In Chapter V, for problems PIII and PIII-PC, we identified the conditions where

integrated decision-making is beneficial and quantified the benefits from integrated

decision-making by comparing the solutions of PIII and PIII-PC with respective

benchmark models.

Finally, in Chapter VI, we analyzed the integration of facility location and inven-
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tory decisions in a discrete facility location problem setting for a three-stage supply

chain. This chapter includes the most comprehensive model by generalizing the pro-

duction distribution system design problems with inventory decisions. The problem

PIV in this chapter generalizes the problem settings in three-stage continuous facil-

ity location models in Chapter IV and two-stage discrete facility location models in

Chapter V, since multiple capacitated suppliers and the assignment of DCs to the

suppliers are considered. For the PIV, we provided two formulations including a non-

linear integer programming formulation and set-partitioning problem. We developed

highly efficient solution methodologies that involve a greedy construction heuristic,

a combined neighborhood of single-moves and single-exchanges in a local search im-

provement procedure. The algorithms perform extremely well, both in terms of so-

lution duration and gap over the benchmark model that solves PIV in a sequential

manner.

The models presented in Chapters III through VI are state-of-the-art models

aimed at investigating the integration of location and inventory decisions. The mod-

els and analysis, apart from the practical contributions, make significant theoretical

contributions in modeling and algorithmic development. The computational results

also shed light on the importance of integrating location and inventory decisions in

different supply chain settings. We established that substantial cost savings can be

achieved in certain contexts and with certain parameters. Hence, this research will ad-

vance the practical knowledge on supply chain design at a time when such knowledge

is crucial in the real world for optimizing supply chain performance.

Building on these models and analysis, research in this dissertation can be ex-

tended in several directions in the future. To mention a few, one may consider

• stochastic demand at the retailers,
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• vehicle routing instead of direct shipments from the DC to the retailers,

• multi-period decision-making where the demand and cost parameters may change

periodically with respect to changes in economy, and

• supply chain coordination and contracting in decentralized systems

in joint inventory-location models.
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Çetinkaya, S., F. Mutlu, C.-Y. Lee. 2006. A comparison of outbound dispatch policies

for vendor-managed inventory systems. European Journal of Operational Research

171 1094–1112.

Ceria, S., P. Nobili, A. Sassano. 1997. Set covering problem. M. Dell’Amico, F. Maf-

fioli, S. Martello, eds., Annotated Bibliographies in Combinatorial Optimization. J.

Wiley and Sons, New York, 415–428.
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