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ABSTRACT 

 

Stream Aquifer Interactions: Analytical Solution to Estimate Stream Depletions Caused 

by Stream Stage Fluctuations and Pumping Wells near Streams. (December 2007) 

Trin Intaraprasong, B.S., University of California, Santa Cruz 

Chair of Advisory Committee: Dr. Hongbin Zhan 

 

 This dissertation is composed of three parts of contributions. Systems of a fully 

penetrating pumping well in a confined aquifer near a fully penetrating stream with and 

without streambeds are discussed in Chapter II. In Chapter III, stream-aquifer systems 

with a fully penetrating pumping well in a confined aquifer between two parallel fully 

penetrating streams with and without streambeds are discussed. Stream depletion rates in 

Chapter II are solved using Laplace and Fourier transform methods, and stream 

depletion rates in Chapter III are solved using the potential method.     

Chapter II presents analytical solutions in the Laplace domain for general stream 

depletion rates caused by a pumping well and caused by stream stage fluctuations. For 

seasonal case, the stream stage is a function of time.  For an individual flood wave, the 

stream stage is a function of time and distance along the stream. Semi-analytical 

solutions of seasonal stream depletion rates in time domain, using a cosine function to 

simulate stream stage fluctuations, are presented. The stream depletion rate caused by 

pumping is solved analytically, while the stream depletion rate caused by stream stage 

fluctuations is solved numerically. Various parameters affecting stream depletion rates, 
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such as flood period and streambed, are analyzed. For a short-term case, the pumping 

rate is assumed to be constant, and a Gaussian function is used as an example of 

floodwaves.  This part is solved using the same method as used in the seasonal case. 

Early time and late time approximations of the stream depletion rates are also presented. 

This approximation leads to an interesting finding that the stream depletion rate caused 

by seasonal stream stage fluctuations can be neglected if the stream aquifer system has a 

long time to equilibrate. In Chapter III, analytical stream depletion rates caused by a 

pumping well between two parallel streams with and without streambeds are presented.  

In this chapter, stream stage is assumed to be constant.  Capture zone delineations were 

analyzed in the case without streambed.  For the case with streambed, streambed 

conductance, which is an important factor controlling stream depletion, is analyzed. 

All solutions discussed in this dissertation can be used to predict stream depletion 

rates and to estimate parameters controlling stream depletion rates, which is crucial for 

water management. In addition to the stream depletion, the derived semi-analytical 

solutions in the Laplace-Fourier domain can also be used to predict drawdown in the 

aquifer near the stream. The derived solutions may also be used inversely to find the 

streambed and aquifer parameters if the stream stage fluctuation can be well described.          
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NOMENCLATURE 

m  meter 

d  day 

hr  hour 

 

List of symbols used in Chapter II. 

A  amplitude of the flood wave [m] 

A0  a factor related to amplitude of the flood wave [m2] 

B   aquifer thickness [m] 

B′   streambed thickness [m] 

D  a factor related to width of the floodwave [m2/d], 

yf   frequency function [-] 

h   hydraulic head in the aquifer [m] 

oh   initial hydraulic head in the aquifer [m] 

sh   hydraulic head in the stream [m] 

sH   drawdown in the stream [m] 

oJ   Bessel function of the first kind [-] 

k    hydraulic conductivity of streambed [m/d] 

K    hydraulic conductivity of aquifer [m/d] 

 p  Laplace transform parameter [-] 

q   stream depletion per unit river width [m2/d] 
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1q   stream depletion per unit river width caused by stream stage 

fluctuation [m2/d] 

2q   stream depletion per unit river width caused by pumping [m2/d] 

WQ   pumping rate as a function of time[m3/d]. 

oQ   constant pumping rate [m3/d]. 

TQ   total stream depletion [m3/d] 

1Q    stream depletion caused by stream stage fluctuations [m3/d] 

2Q    stream depletion caused by pumping [m3/d] 

 s  drawdown in the aquifer [m] 

 s1  drawdown in the aquifer caused by stream stage fluctuations [m] 

 s2  drawdown in the aquifer caused by pumping [m] 

sS′    specific storage of streambed [m-1] 

Ss  specific storage of aquifer [m-1] 

 t  time [d]. 

 t0  time which a pumping well starts [d] 

 ts  time which a pumping well stop [d] 

v  factor relate to velocity of the floodwave [m/d] 

Wx   distance of a well location away from a stream [m] 

Y  large section of stream used to evaluated total stream depletion [m] 

β   [-] 2
yfp +

δ   Dirac delta function [m-1].  
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ω   frequency of the flood wave 

 

Subscript D denotes dimensionless variable and parameter. 

Overbar denotes variable in Laplace domain. 

Double bar denotes variable in Fourier domain. 

’ denote parameter in the streambed. 

Subscript 1 denotes stream depletion caused by stream stage fluctuations 

Subscript 2 denotes stream depletion caused by pumping 

List of symbols for Chapter III 

)(zζ   complex potential  

φ  potential function 

ψ  stream function 

nα   ( ) ([ ]nnn
n

μμω
ω

2sin22sin
4

1
2
1

−+− )  

1β   K/K1 [-] 

2β   K/K2 [-] 

ωn  spatial frequency term 

μn   phase term 

nH   ( ) ( )DnnDn
nn

ya ωμω
ωα
π

−+ expsin2  

a  location of the pumping well along x-axis [m] 

B  aquifer thickness [m] 
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C1  conductance of Streambed 1 or K1/BB1 [d ] -1

C2  conductance of Streambed 2 or K2/BB2 [d ] -1

h   hydraulic head in the aquifer [m] 

1h   hydraulic head in Stream 1 [m] 

2h   hydraulic head in Stream 2 [m] 

K    hydraulic conductivity of aquifer [m/d] 

L  Distance between two streams or streambeds [m] 

q  regional flow [m/d] 

Q   pumping rate [m3/d] 

1sQ   Total stream depletion of Stream 1 [m3/d] 

2sQ   Total stream depletion of Stream 2 [m3/d] 

z  complex number 

Subscript D denotes dimensionless variable and parameter 

Subscript c denotes critical condition 

Subscript 1 denotes parameter in Streambed 1 or Stream 1 

Subscript 2 denotes parameter in Streambed 2 or Stream 2 
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CHAPTER I 

INTRODUCTION: THE IMPORTANCE OF RESEARCH 

 

Global water balance, which is significant to many applications such as climate 

models and chemical cycles, has many components such as evapotranspiration, 

precipitation, and groundwater. Some of the components can be measured or can be 

estimated in fairly straightforward fashions. For instance, river discharge into the ocean 

can be monitored at all time using stream gage and velocity measurement. However, 

some components are difficult to measure or to estimate, and such components often 

contribute significant errors to the global water balance. Stream aquifer interactions are 

one of these components.  Better understanding stream aquifer interactions could 

significantly reduce the errors in the global water balance. 

This dissertation focuses on stream depletion. Stream depletion is water flux 

flowing out of the stream or flux flowing into the stream, which usually occur at stream 

bank or at the bottom of stream channel. Figure 1.1 is a schematic cross-section of a 

stream-aquifer system without any streambed, and all symbols are described in the 

nomenclature on page vii. In this case, the stream is fully penetrating through the entire 

thickness of the confined aquifer.  The bottom of the system is assumed to be no-flow 

boundary which could be a thick layer of clay or other low permeability materials. In 

this case, stream depletion only occurs at the stream bank. This model is valid in an area 

where water table or potentiometric surface is shallow, such as in the northeast of the  

____________ 
This dissertation follows the style of Journal of Hydrology. 
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Figure 1.1 Schematic cross-section of fully penetrating stream-aquifer system without 
streambed. 
 
 

 

Figure 1.2 Schematic cross-section of partially penetrating stream-aquifer system with 
streambed. 
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United States.   

Theis (1941) presented analytical solution of stream depletion caused by a fully 

penetrating pumping well in a homogeneous confined aquifer without streambed 

assuming that the stream stage is constant (Figure 1.1). Hantush (1965) added streambed 

at the stream bank to Theis’ (1941) model and derived analytical solution of stream 

depletion.  Zlotnik et al. (1999) and Butler et al. (2001) presented analytical solutions of 

stream depletion rate caused by a fully penetrating pumping well in a homogeneous 

unconfined aquifer near a partially penetrating pumping well with streambed at the 

bottom of the channel (Figure 1.2). In this case, stream depletion occurs at the stream 

bank and at the streambed. The black arrows indicated the areas where stream depletion 

occurs. This model is likely to valid in an area where water table is deep, such as the 

southwest of the United States. Hunt (1999) considered stream-aquifer system similar to 

Zlotnik et al. (1999) and Butler et al. (2001), except that the stream is infinitely small.   

 Stream aquifer interaction is complex and composes of fluxes caused by various 

factors such as stream stage fluctuations, evapotranspiration, and precipitation.  Because 

the primary goal of this study is to provide a mean to quickly estimate stream depletion 

rate, analytical method is chosen. Assumptions made to simplify the problem are: first, 

stream depletion caused by stream stage fluctuation and a pumping well. Second, there is 

one layer of confined aquifer. Third, streambed and aquifer are homogeneous. Fourth, 

more assumptions are mentioned in section 2.2 on page 14.  

 In actual field conditions, there are many factors caused water movement 

between the stream and the aquifer such as regional flow and plants along the stream. 
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This study only considers stream depletion caused by stream stage fluctuation and a 

pumping well. If a pumping well is near a stream, the pumping well is often assumed to 

be the dominant cause of stream depletion.  This study verifies this assumption and 

indicates when this assumption is likely to be violated by comparing the stream 

depletion rates caused by a pumping well and stream stage fluctuations. Depending on 

the setting, different factors neglected in this study can be important. For example, 

Loheide et al. (2005) showed that evapotranspiration can reduce up to approximately 

20% of stream flow. If other components are significant, they can be superimposed to 

the solutions of this study. 

 Second, this study considers the stream-aquifer system with a fully penetrating 

well near a fully penetrating stream in Chapter II (Figure 2.1 and 2.2, page 16) and the 

stream-aquifer system with a fully penetrating well between two fully penetrating 

streams in Chapter III (Figure 3.1 and 3.2, page 59 and 62).  In both chapters, the 

confined aquifer has one layer with no flow boundaries at the bottom of the system.  In 

reality, the stream-aquifer system can be complex and can compose of multiple layers.  

If the system has multiple layers of aquifers and the hydraulic conductivities of the 

aquifers vary in different layers, the stream depletion rates in each layer would be 

various depending upon the hydraulic conductivities of the aquifers. However, the total 

stream depletion caused by stream stage fluctuations which is equal to sum of stream 

depletion from each layer, should be approximately equal to the depletion rate of the 

one-layer case. 
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 Third, this study assumes that the streambed is a homogeneous layer of low 

conductivity sediment. However, streambed can be composed of multiple layers of 

sediment with various hydraulic conductivities and thicknesses. Because of the assumed 

geometry of the stream-aquifer system (Figure 2.2, page 16), the flow is always 

perpendicular to the streambed. The total hydraulic conductivity of the streambed is the 

average hydraulic conductivities of each layer. 

 One of the primary goals of this dissertation is to estimate and to compare the 

stream depletion caused by stream stage fluctuations and a pumping well.  However, one 

should keep in mind that the real stream aquifer system is complex and that this study 

has many assumptions.  Hence, one should treat the derived solutions of this study as a 

first approximation to understand the dynamics of the stream-aquifer system, rather than 

providing accurate solutions for realistic field situations.  

This dissertation only considers water exchanges between the stream and the 

aquifer, but the results can be used as an input in other applications such as modeling 

chemical reactions near the stream-aquifer interface. Stream water typically has different 

chemical characteristics such as higher oxygen level than that of groundwater.  When 

stream water migrates into the aquifer, chemical reactions such as oxidation, reduction, 

and precipitation can occur.  Furthermore, groundwater often has anaerobic condition 

while the stream has aerobic condition.  Adding oxygen-rich stream water to ground 

water could enrich oxygen near stream aquifer interface, and this can increase biological 

activity of microorganisms in the aquifer. These chemical and biological activities can 
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alter hydraulic properties of the aquifer. For example, mineral precipitation can clog 

pore space and can reduce hydraulic conductivity of the aquifer.   

Increasing population leads to increasing water demands, and water shortage will 

become more severe and wide spread. The water shortage problem refers to a shortage of 

clean and low cost fresh water. Technology such as desalinization can provide 

abundance of clean fresh water at high cost which is not economically feasible for many 

uses such as aquiculture or industry. Induced stream depletion by a pumping well near a 

stream can obtain large quantities of cleaner water at a relatively low cost.  

Groundwater is typically a cleaner source of water, but it is often a limited 

resource. Groundwater is naturally filtered by an aquifer and sediment; hence, it tends to 

have high quality.  In addition, it is harder for groundwater to be contaminated because it 

is difficult for pollutants to migrate through layers of sediment to reach groundwater.  

Layers of sediments filtering groundwater also slow down its movement resulting in a 

longer replenishing period. The major limitation of groundwater as a water resource is 

its availability. Groundwater withdrawal rate is limited by groundwater recharge rate.  

However, groundwater withdrawals in many areas exceed groundwater recharges which 

could lead to problems such as subsidence and seawater intrusion. Another disadvantage 

of groundwater is its production cost is relatively higher than the cost of surface water, 

especially for areas that have deep aquifers. Higher production cost of groundwater is 

offset by lower treatment cost. Hence groundwater is a desirable source of water.    

Surface water, on the other hand, is more abundant and easy to access, but it 

trends to be contaminated. The availability of surface water typically exceeds the 
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availability of groundwater. Surface water has a lower production cost; however, its 

treatment cost is often higher than the treatment cost of groundwater. Typically, it is 

more expensive to produce drinking water from surface water than from groundwater 

because of high treatment cost. Rain drops can absorb pollution in the atmosphere. Once 

rain drops reach the ground, they could be further contaminated. Surface water can also 

be contaminated in its reservoirs by human processes or natural processes such as algae 

blooms. Despite higher cost, cities are forced to use surface water as sources of water 

supplies.      

 Induced stream depletions by a pumping well near a stream can utilize the high 

availability of surface water and lower treatment cost of groundwater. At the beginning, 

extracted water from a pumping well near a stream or a lake comes from aquifer storage.  

As pumping continues, a cone of depression expands and reaches the stream. Then the 

majority or all of extracted water originates from the stream. Extracted water typically 

has higher quality than stream water because sediment between the well and the stream 

filtered turbidity and contaminants. This lowers the treatment cost which often exceeds 

the cost of pumping. Hence, induced stream depletions by a pumping well near a stream 

can become a significant water supply at a competitive price.  

Induced stream depletions by a pumping well reduce stream flow rates, which 

can have significant impacts on hydrological and ecological systems. Induced stream 

depletion can impact the dynamic of gaining and losing streams which could lead to 

terrain alterations such as a change from a wetland to a grass field. A lower flow rate 

also impacts species in a habitat which can lead to extinction if those species cannot 
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adjust to the altered environment. To sustain the dynamic of the system, it is important to 

determine a pumping rate that yields minimum impacts on hydrological and ecological 

systems. The long-term goal of this study is to use these solutions combined with real 

time stream stage and other hydrological data to calculate maximum pumping rate, 

which allows sustainable stream flow rate to maintain ecological systems.   

This dissertation presents two systems with a fully penetrating pumping well in a 

confined aquifer near a fully penetrating stream: one with streambed and one without, as 

is discussed in Chapter II. Two functions are used to represent stream stage fluctuations. 

For the seasonal case, stream stage is a function of time, and cosine of time is used as an 

example of seasonal stream stage fluctuation. For the short-term case, stream stage is a 

function of time and distance along a stream, and a Gaussian function is used as example 

of stream stage of a flood wave. Stream depletion rates in Chapter II are solved using the 

Laplace and Fourier methods. In Chapter III, stream-aquifer systems with a fully 

penetrating pumping well in a confined aquifer between two parallel fully penetrating 

streams with and without streambeds are discussed. For these cases, we assume that the 

stream stage is constant. Stream depletion rates in Chapter III are solved using the 

potential method. Capture zone analysis are also conducted for these cases.  
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CHAPTER II 

ANALYTICAL AND SEMI-ANALYTICAL SEASONAL STREAM DEPLETION 

RATES CAUSED BY A PUMPING WELL NEAR A STREAM AND STREAM 

STAGE FLUCTUATIONS  

 

Stream depletions caused by a pumping well near a stream are influenced by 

components which are the pumping rate and stream stage fluctuations. Previous studies 

often focus on each component separately. This study examines and compares two 

components together for various hydraulic settings and pumping schemes. This study 

presents generalized solutions for stream depletions in Laplace domain caused by a 

pumping well and caused by stream stage fluctuations with and without streambeds. It 

focuses on seasonal stream depletion rates with a time-dependent stream stage. The 

stream stage as a cosine function of time is chosen as a model for all scenarios. Three 

pumping schedules are 1) pumping for two months during a dry season with a maximum 

rate; 2) pumping for four months of the dry season with half of the maximum pumping 

rate; and 3) constant pumping through out a year with one sixth of the maximum rate. 

The maximum pumping rates of 1,000m3/d is chosen to simulate an irrigation well or a 

municipal well. The primary characteristic of the hydrograph affecting stream depletion 

is its period. For the maximum pumping rate of 1,000 m3/d and the period of one year, 

percentages of the maximum stream depletion rates caused by stream stage fluctuations 

to the maximum total stream depletion rate range from 7.6% to 31% for a stream reach 

of 1,000 m. Reducing the flood period to 30 days, the percentages then range from 29% 
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to 61%, increasing by approximately two or three times. The amplitude of the flood 

wave does not contribute significantly to depletion rates. Adding streambeds of 0.2m to 

1m thick with its hydraulic conductivity of 1/1000 of the aquifer hydraulic conductivity, 

the percentages are approximately 3% to 16% smaller than ones without streambed. The 

late time approximation of the stream depletion rate caused by stream stage fluctuations 

is inversely proportional to the square root of time for a stream stage following the 

cosine fluctuation function; therefore, stream depletion caused by stream stage 

fluctuations after a sufficiently long time can be neglected.  

 

2.1 Introduction 

Hydrologists have been fascinated with the stream-aquifer interaction research 

for many decades for a number of reasons. Stream-aquifer interface is a critical zone 

where surface water and groundwater exchange mass, energy, and chemicals. For 

instance, base flow from an aquifer to the adjacent stream plays an important role for 

maintaining sustainable stream flow, particularly during the dry seasons. Discharge of 

groundwater with rather small temperature fluctuations to a stream is vital for 

maintaining sensitive ecological zones in the stream for fish reproduction and other 

biological processes. For many decades, groundwater withdrawal wells have been placed 

near streams to obtain high quality and plentiful water, a process that will result in 

stream depletion.  Climate change caused by global warming will change the intensity 

and duration of precipitation, which affects the stream flow and eventually affect stream-

aquifer interaction. Understanding the dynamics of stream-aquifer interaction is one of 
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the most important research topics for hydrologists. At present, studies of stream-aquifer 

interaction can be generally summarized into two types as type-A and type-B. The type-

A studies focus on investigating the stream depletion caused by pumping wells, 

assuming that the stream stage does not change. The type-B studies focus on 

investigating the aquifer response to stream stage fluctuation without involving any 

pumping wells. 

The type-A studies are briefly reviewed first. Theis (1941) and Jenkins (1968, 

1970) presented analytical solutions of stream depletion for fully penetrating streams 

without streambeds into isotropic and homogeneous aquifers caused by nearby pumping 

wells with constant pumping rates.  The highly simplified model of Theis (1941) and 

Jenkins (1968, 1970) were later improved by many investigators including Rorabaugh  

(1963), Hantush (1965), Wallace et al. (1990), Hunt (1999), Chen and Yin (2001), 

Zlotnik and Huang (1999), Butler et al. (2001), Kirk and Herbert (2002), and Sun and 

Zhan (2007). Among these investigations, Hantush’s (1965) work was notable for its 

inclusion of semi-permeable streambeds adjacent to the stream, but it only considered a 

fully penetrating stream. Hunt (1999) tried to improve Hantush’s (1965) model and 

provided analytical solutions of stream depletion by considering a narrow and shallow 

stream. However, as pointed out by Sun and Zhan (2007), Hunt’s (1999) model was 

mathematically identical to that of Hantush (1965), provided that the Dupuit assumption 

was invoked. To address the issue of partial penetration of the stream, one has to 

consider vertical flow near the stream and cannot adopt the Dupuit assumption (Sun and 

Zhan, 2007).  Several other investigators also studied the steady-state capture zones near 



 12

one or two streams when regional flow was presented (Newsom and Wilson, 1988; 

Intaraprasong and Zhan, 2007).  Horizontal wells have also been proposed as alternative 

ways for withdrawing groundwater from aquifers near streams or underneath streams 

(Zhan and Park, 2003; Sun and Zhan, 2006). One of the advantages of using horizontal 

wells versus vertical wells is the theoretically unlimited screen lengths that can be used 

in horizontal wells to increase the interceptive volumes with groundwater. 

Numerical simulations have also been carried out for the type-A studies. For 

example, Spalding and Khaleel (1991) compared Theis (1941) and Hantush’s (1965) 

solutions against numerical models, and assessed the possible errors resulted from using 

simplified assumptions in the analytical solutions such as neglect of partial penetration, 

neglect of clogging layer resistance, and neglect of storage in areas beyond the stream.  

Sophocleous et al. (1995) compared stream depletion caused by a fully penetrating well 

near a fully penetrating stream with no streambed using the analytical solution of Theis 

(1941) and a numerical solution involving the STREAM module of MODFLOW 

(Prudic, 1989), and concluded that the differences between the analytical and numerical 

solutions ranged from 2% to 8%.  Sophocleous et al. (1995) also compared Hantush’s 

(1965) analytical solution to the numerical solution of stream depletion caused by a fully 

penetrating pumping well near a fully penetrating well with a clogging streambed, and 

reported significant discrepancies ranging from 58 to 71%. 

There are also numerous type-B studies that concern aquifer response to stream 

stage changes.  For example, Moench and Barlow (2000) and Barlow and Moench (1998) 

developed solutions for several cases of transient hydraulic interaction between a fully 
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penetrating stream and a confined, leaky, or water table aquifer to calculate aquifer 

heads, bank infiltration rates, and bank storage that occur in response to stream-stage 

fluctuations and basin-wide recharge or evapotranspiration. Hantush (2005) investigated 

channel flow and stream-aquifer interaction in response to impulse and step response 

functions of the streams, and associated flow volumes to hydrologic processes and 

regulatory and management control measures. Other examples of the recent type-B 

studies include Akylas and Koussis (2007), Kim et al. (2007), Sun and Zhan (2007), 

Singh (2004), and Chen and Chen (2003a). 

In reality, groundwater withdrawal and stream stage fluctuation represent two 

different stimuli of the hydrological system and is likely to occur simultaneously.  These 

two stimuli have rather different physical natures. For instance, a pumping well can be 

characterized as second-kind (Neumann) boundary condition, whereas the stream stage 

fluctuation belongs to a first-kind (Dirichlet) boundary condition. Therefore, it is not 

always clear how the hydrological system will response when both stimuli are 

functioning at the same time. For instance, the primary question that needs to be 

answered is: which stimuli, under what condition will dominate the stream depletion?  

By comparing groundwater withdrawal and stream stage fluctuation on stream depletion 

and other phenomena, one can understand the dynamics of stream-aquifer interaction in 

a better way which can help optimize groundwater withdrawal near a stream without 

causing detrimental effects. For example, by observing the trend of stream stage 

fluctuation, one can select the location of pumping wells and the adequate pumping rates 

and durations to better manage the stream-aquifer system. The goal of this study is to 
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investigate the stream-aquifer system considering both groundwater withdrawal and 

stream stage fluctuations. Although the solutions provided in this dissertation can be 

used for understanding a broad range of problems associated with stream-aquifer 

interaction, our focus is primarily on the stream depletion issue.  

 

2.2 Model Descriptions 

There are four basic conceptual models of a stream and aquifer system: 1) Theis 

(1941) model of a fully penetrating stream with a perfect hydraulic connection to an 

aquifer 2) Hantush’s (1965) model of a fully penetrating stream with streambeds in an 

aquifer 3) Hunt’s (1999) model of a partially penetrating and infinitesimal width stream 

with streambeds. 4) Zlotnik and Huang (1999) and Butler et al.’s (2001) model of a 

partially penetrating stream with a finite width and clogging streambeds. All models 

assume Dupuit approximation and that the aquifer is homogeneous and isotropic. As 

discussed in Sun and Zhan (2006), Hunt’s (1999) solution is identical to that of Hantush 

(1965) for a fully penetrating stream. This is because one cannot distinguish the 

geometric difference of a partially penetrating stream from a fully penetrating stream 

under the Dupuit assumption. Such a geometric difference can only be exhibited under a 

three-dimensional view of flow. In addition, the models of partially penetrating streams 

with finite widths developed by Zlotnik and Huang (1999) and Butler et al. (2001) were 

found to be close to the mathematically simpler model of Hunt’s solution (1999) under 

many practical circumstances. Given above consideration, we choose to examine stream 
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depletion caused by a fully penetrating well near a fully penetrating stream with and 

without clogging streambeds. 

 Figures 2.1 and 2.2 show the schematic cross-sectional diagrams of fully 

penetrating wells in homogeneous and confined aquifers near fully penetrating streams 

with and without clogging streambeds. The hydraulic conductivities of the streambeds 

are expected to be a few orders of magnitude smaller than those of the aquifers. One 

should be aware that realistic geological conditions of the stream-aquifer system could 

be much more complicated than what has been shown in Figures 2.1 and 2.2. For 

instance, the streambed could be a highly complex, heterogeneous, and often poorly 

defined zone that is difficult, if not impossible to be described using a single set of 

hydraulic parameters (Kollet and Zlotnik, 2003). The stream channel could meander 

around certain curves. Such complexities will be simplified in order to make the 

analytical study amendable. There is no question that such simplifications will introduce 

errors when one tries to apply the derived solutions for more complex, realistic situations. 

In this regard, one should treat the derived solutions of this study as a first 

approximation to understand the dynamics of the stream-aquifer system, rather than 

providing accurate solutions for realistic field situations. The derived solutions are 

probably more useful for gaining physical insights on the stream-aquifer system by 

varying several involved physical parameters and for testing numerical solutions. 

Nevertheless, the following assumptions are adopted. 

  First, the aquifer has a constant thickness and extended to infinity horizontally. 

Second, the streambed, if considered, is homogeneous with a constant thickness. Third,  
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Figure 2.1 Schematic cross-section of stream-aquifer system without streambed. 
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Figure 2.2 Schematic cross-section of stream-aquifer system with streambed. 
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the stream stage is always above or equal to the top elevation of the aquifer to ensure the 

confined condition of the aquifer. Fourth, regional flow (base flow) towards the stream is  

not considered, but can be directly superimposed on the solutions of this study. Fifth, the 

stream is assumed to be straight at the domain of interested. The x-axis is perpendicular 

to the stream and passes through the pumping well. The stream is along the y-axis. The 

origin is at the aquifer-stream boundary if streambed does not exist or at the streambed-

aquifer boundary is streambed exists. 

 
2.3 Mathematical Derivation without Low-permeability Streambed Sediment 

2.3.1 Seasonal drawdown in the aquifer  

 The governing equation of groundwater flow in an aquifer described in Figure 2.1, 

together with the initial and boundary conditions at the stream are given as following   

)()()(
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2

2

2

yxx
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tQ
y
hK

x
hK

t
hS W

W
yxs δδ −+
∂
∂

+
∂
∂

=
∂
∂ ,                       (2.1) 

0)0,,( htyxh == ,                                                                       (2.2) 

0),,( htyxh =∞= ,                                                                       (2.3) 

)(),,0( thtyxh S== ,                                                                   (2.4) 

where h is hydraulic head in the aquifer [L]; h0 is initial hydraulic head in the aquifer and 

is a constant [L]; hs is hydraulic head in the stream and is time-dependent [L];  Kx and  

Ky are the hydraulic conductivities of the aquifer along the x and y directions, 

respectively [L/T]; t is time [T]; QW is pumping rate of the well [L3/T]; Ss is specific 

storage [L-1]; B is aquifer thickness [L]; ()δ is the Dirac delta function [L-1].  (xW, 0) is 
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the location of the pumping well. Defining drawdown in the aquifer, s, and drawdown in 

the stream, HS, as: ),,(),,( 0 tyxhhtyxs −= , and )()( 0 thhtH SS −= . Defining Laplace 

transform and inverse Laplace transform as: 

dtses pt∫
∞

∞−

−= ,         dpes
i

s
ic

ic

pt∫
∞+

∞−

=
π2
1 , 

where the overbar denotes variable in Laplace domain, p is Laplace transform parameter, 

i = 1− is the complex sign, and c is a real number so that all the singularity points 

of s are on the right side of the integration path. 

Defining Fourier transform and inverse Fourier transform along the y-axis as: 

dyess yif y∫
∞

∞−

= ,         y
yif dfess y∫

∞

∞−

−=
π2
1 , 

where s is the Fourier transform of s , and  is the Fourier transform variable (spatial 

frequency). The associated dimensionless variables are defined in Table 2.1. 

yf

 After converting Eqs. (2.1)-(2.4) to dimensionless forms and applying the 

Laplace-Fourier transforms, one will obtain the following solutions of drawdown.  
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Table 2.1 Dimensionless parameters and variables used in Chapter II. 
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where )()(2ˆ
ySDSD fpHH δπ= and , and x2

yfp +=β WD is defined in the same way as xD. 

Detailed derivations of Ds  are shown in Appendix A (page 97), and nomenclature 

describes symbols used in Chapter II of this dissertation (page vii). 

 Eqs. (2.5) and (2.6) describe drawdown in the aquifer in the Laplace-Fourier 

domain. To obtain drawdown in the spatial-time domain, one must carry out the inverse 

Laplace-Fourier transform of Eqs. (2.5)  and (2.6). Notice that the first term on the right 

hand side of Eq. (2.5) or Eq.(2.6) only contains variables describing stream stage 

fluctuations. The second term on the right hand side of Eq. (2.5) or Eq. (2.6) only 

contains variables describing influence of the pumping well. This finding is important 

because it implies that in the Laplace-Fourier domain, the influences of the stream stage 

and the pumping well upon drawdown can be superimposed, although the stream stage is 

a first-kind (Dirichlet) boundary and the pumping well is a second-kind (Neumann) 

boundary. Theoretically speaking, one can carry any kind of computation and analysis 

on the basis of Eqs. (2.5) and (2.6), but in the following we will focus on the stream 

depletion discussion. 

 

2.3.2 Seasonal stream depletion  

 Stream depletion per unit stream reach, q [L2/T], can be described with the 

following equation:  
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where qD is the dimensionless form of q. Conducting Laplace transform and Fourier 

transform of Eq. (2.8), the result is   

WD

D

x
WDSD
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D
D eQH

x
sq βπβ −

=

+−=
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= 4ˆ
0

.               (2.8) 

 Conducting inverse Fourier transform of Eq. (2.8), the result is  

( )WDx
WDSDDDD eQFHpqqq βπ −−+−=+= 1

21 4ˆ , (2.9) 

where Dq1 and Dq2 represent the first and second terms of Eq. (2.9), respectively, and F-1 

stands for the inverse Fourier transform. The first term on the right hand side of Eq. (2.9) 

describes stream depletion per unit stream reach caused by stream stage fluctuations, and 

the second term describes stream depletion caused by the pumping well. 

 Total depletion along the entire stream, QT [L3/T], is a sum of q over the entire 

stream reach. In addition, QT is a sum of two components: one part from the stream 

fluctuations, , and the other from pumping well, . Because one of the assumptions is 

that the stream extends to infinity, Q

1Q 2Q

1 would be infinity. In order to compare Q1 with Q2, 

we choose to evaluate q1 over a large section of a stream, Y, which should be greater 

than a capture zone of the pumping well.  First, we derive the dimensionless stream 

depletion caused by stream stage fluctuations over a stream reach Y, Q1D. 
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−−====
ππ

,                   (2.10) 

where YD is dimensionless Y, defined in the same fashion as yD (Table 2.1, page 19) and 

L-1 stands for the inverse Laplace transform. The inverse Laplace transform of Eq. (2.10) 

is 
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 Second, we derive the dimensionless stream depletion caused by pumping well, 

Q2D. 
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where s2D is the second term on the right hand side of Eq. (2.5). Conducting Laplace 

transforms of Eqs. (2.11) and (2.12) and 

substituting )sinh(4)0(22 D
xp

WDyDDD xpeQ
p

fsdys WD−
∞
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===∫
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stream depletion along the entire stream caused by pumping well is 

WDWD xp
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4
4
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2 .                            (2.13) 

 Hence, the total dimensionless stream depletion in Laplace domain can be 

expressed as 

WDxp
WDDSDTD eQYHpQ −+−=

π4
1 .   (2.14) 

Eqs. (2.5), (2.6) and (2.14) show that drawdown and stream depletion rate can be 

written in two separated terms and can be solved independently. If one would like to add 

additional component, it can be done by superposition another term in the existing result. 
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2.3.3 Short-term drawdown in the aquifer 

The difference between the seasonal case and an individual flood case is that the 

seasonal flood wave function is a function of time while the individual flood wave is a 

function of time and distance along a stream. For a short time scale, stream stage varies 

along the stream. For a long time scale, stream stage is assumed to be constant along the 

stream. In this section, SH is not equal to SH because depend upon y. SH SDĤ in Section 

2.3.1 is replaced by SDH for the derivations of drawdown of individual flood case. The 

rest follows the same step as the derivation of drawdown for seasonal case.    

)sinh(4
D

x
WD

x
SDD xeQeHs WDD β

β
π ββ −− += , for WDD xx ≤≤0 .        (2.15) 

DD x
WDWD

x
SDD exQeHs ββ β

β
π −− += )sinh(4

, for DWD xx < .            (2.16) 

 Although the Eqs. (2.15) and (2.16) are similar to Eqs. (2.5) and (2.6), solving 

Eqs. (2.15) and (2.16) are more difficult because one must take inverse Fourier 

transform of SDH . 

2.3.4 Short-term stream depletion  

For the same reason as in Section 2.3.3, SDH  is replaced by SDH  for the 

derivation of stream depletion rates. 

WDxp
WDSDTD eQHpQ −+−=

π4
1 .   (2.17) 
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2.4 Mathematical Derivation with Low-permeability Streambed Sediment 
 

2.4.1. Seasonal drawdown in the aquifer  

 If a streambed exists, there are several different ways to deal with it. Hantush 

(1965) has used a simplified method to handle the streambed by neglecting the 

storativity of the streambed. Such a treatment will be a good approximation if the 

streambed is relatively thin and one’s primary interest is the long-term quasi-steady state 

behavior. The problem investigated here, however has a different focus. It involves 

transient variation of the stream stages, and the transient drawdown and stream 

depletions. For such transient hydrologic processes, it is unclear if the storativity of the 

streambed can be neglected or not. Therefore, we prefer to keep the streambed storativity 

in the analysis. Such a treatment is in line with several other recent investigation of 

stream-aquifer interaction studies such as Sun and Zhan (2006, 2007). 

   In addition to the governing equation in the aquifer as described in section 2.3.1, 

the governing equation of flow in the streambed, together with the initial and boundary 

conditions are given as follows   
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where h , ′ K ′ , , sS′ B′denote the hydraulic head, hydraulic conductivity, specific storage, 

and thickness of the streambed, respectively. The streambed and the aquifer have the 

same initial head. Eq. (2.21) indicates that head and flux perpendicular to the streambed-

aquifer interface are continuous. Drawdown in the streambed is defined as hhs ′−= 0
~ . A 

few new dimensionless terms associated with the streambed are defined as follows: 
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where and sx SKC /1 = sSKC ′′= /2 are the hydraulic diffusivity of the aquifer and 

streambed, respectively. 

  After converting the governing equations as well as the initial and boundary 

conditions of the aquifer and streambed into dimensionless forms and applying the 

Laplace-Fourier transforms, one will obtain the following solutions of drawdown. 

Expressions for the dimensionless drawdown in the streambed in Laplace-Fourier 

domain is and expressions for the dimensionless drawdown in an aquifer in the Laplace-

Fourier domain are   
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for . Detailed derivations of DWD xx < Ds and Ds ′  are shown in Appendix B (page 99).   

2.4.2 Seasonal stream depletion  

  Taking the same approach as the case without streambed, stream depletion per 

unit stream width, q [L2/T], can be described with the following equation.  
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  Conducting the Laplace-Fourier transform of Eq. (2.26), the result is   
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 Conducting the inverse Fourier transform of Eq. (2.27) leads to 
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where Dq1 and Dq2 represent the first and second terms of Eq. (2.28), respectively and F-1 

stands for the inverse Fourier transform. Identical to that of section 2.3.2, the first term 

on the right hand side of Eq. (2.28) describes stream depletion per unit stream reach 

caused by stream stage fluctuations, and the second term describes stream depletion 

caused by the pumping well. Using the same argument and steps as the case without 

streambed, one obtains the dimensionless stream depletion caused by stream stage 

fluctuation over a stream reach Y, Q1D as 
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 The dimensionless stream depletion caused by the pumping well, , is defined 

as: 
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where  is the second term on the right hand side of Eq. (Ds2′ 2.23). The Laplace transform 

of is  DQ2
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where Ds2′ is the Laplace transform of Ds2′ . From Eq. (2.23), one gets 
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 Substituting Eq. (2.32) in to Eq. (2.31), one has an expression for the 

dimensionless stream depletion caused by a pumping well. 
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 The dimensionless total stream depletion in Laplace domain expresses as 

following:  
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2.4.3 Short-term drawdown in the aquifer 

            This section deals with a floodwave that is a function of time and distance along 

the stream, denoted as short-term stream flood. Similar to section 2.3.2, SDĤ in Section 
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2.4.1 is replaced by SDH for the derivations of drawdown of an individual flood case. 

The rest follows the same step as the derivation of drawdown for the seasonal case.    
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for , and  (2.36) WDD xx ≤≤0
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2.4.4 Short-term stream depletion 

For the same reason as in Section 2.3.3, SDH  is replaced by SDH  for the 

derivation of stream depletion rates. 
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2.5 Results and Discussion  

2.5.1 Seasonal stream depletion without streambed  

 To obtain results, functions describing stream stages and pumping rates must be 

specified.  As an example, we consider a hypothetic case in which a farm requires water 

during four months of the dry season and the owner of the farm decides to withdraw 

groundwater near a stream to meet the need. There are several different scenarios to 

design the annual pumping schedule, given the total amount of water the owner is 

permitted to pump. For the first scenario, the well is pumped at a constant rate of Q0 

during 2 months of the dry season per year. For the second scenario, the well is pumped 

at a rate of Q0/2 for four months of the dry season per year. For the third scenario, the 

well is pumped at a rate of Q0 /6 through out the entire year. This scenario intends to 

simulate a small municipal well or a small well that provide the farmer water for daily 

uses.    

 For the first scenario, assuming the pump is turned on at time t0 with a rate of Q0 

until to ts when it is shut down. Now one has to select the adequate stream stage 

fluctuation function. Most stream stage fluctuation could be complicated enough to be 

described by any mathematical functions. Rutschmann and Hager (1996) have discussed 

in details about various flood waves for different stream cross-sectional shape. One 
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possible way to handle the stream stage fluctuation is to numerically discritize the time 

domain into many small time intervals with piecewise step functions. The Laplace 

transform of such piecewise step functions can then be carried out numerically. This 

study, however, will not carry such a numerical calculation. Instead, we will pursue a 

simplified stream stage fluctuation function. Considering the fact that a seasonal 

variation trend is often observed from the hydrographs of many streams, therefore, it is 

possible to capture those seasonal changes via mathematical functions that are simple 

enough to be handled analytically. The following is a proposed stream stage function:   

( )cos(1)( tAthS )ω−= , (2.39) 

where A is the amplitude of the average hydrograph, and ω  is frequency of the 

hydrograph.  Eq. (2.39) is a simple enough function that has captured the seasonal 

variation of the hydrograph. It can be regarded as the first term of the Fourier series of 

the realistic hydrograph in time domain. Because of its simplicity, this equation has been 

used by many investigators such as Cooper and Rorabaugh (1963) and Singh (2004). 

))cos(1(0 tAhhH sS ω−−=−= , where 00 =h , and the dimensionless HS is   

)cos(1()cos(1(
4

0
DDDD

yx
SD tCt

Q
KKAB

H ωω
π

−−=−−= , (2.40) 

where 
0

4
Q

KKAB
C yxπ
=  and 

x

s
D K

SB2

ωω = . Figure 2.3 shows the dimensionless stream 

stage, HSD, and the dimensionless pumping rate, QWD, for all three scenarios with the 

parameters listed in Table 2.2. The chosen Q0 of 1,000m3/d is commonly seen for 

irrigation wells or water supply wells for small communities, and ω of 2π/360 d-1 is  
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Figure 2.3 Dimensionless stream stage, hSD, and dimensionless pumping rate, QWD, 
for all three scenarios with Q0 of 1,000m3/d withω of 2π /360 d-1

 

 
Table 2.2 Hydraulic parameters used in Chapter II. 
 
A = 2 m, A0 = 1.5x105 m2 B = 20 m B′  = 0.20 m and 1 m 

D = 4x105 m2/d Kx = 8.63 m/d Ky = 8.63 m/d 

K ′  = 0.0086 m/d QW = 1,000 m3/d   sS′  = 0.0005 m-1

Ss = 0.00005 m-1 t0= 300 d ts = 360 d and 420 d  

v = 8x102 m/d  Wx = 50 m ω = 2π /30 d-1 , 2π /360 d-1
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simulating annual hydrograph cycle. For pumping period of 2 and 4 months, pumping 

starts after 300 day, t0, which is approaching the trough of the hydrograph.  This signifies 

the day when the farmer plants seeds at the beginning of the summer, and crops requires 

irrigation until the day when the farmer stops pumping, ts is at 420 d, which signifies the 

harvest or the beginning of rainy season when irrigation is no longer required. All results 

in section 2.5 only show one period of the hydrograph, excluding the beginning. Other 

hydrologic properties chosen to simulate a typical sandy aquifer are listed in Table 2.1 

(page 19).  

Applying the Laplace transform to Eq. (2.40) and substituting them into Eq. 

(2.14), the total dimensionless stream depletion for the case without streambed is  

( )
WDsDD xpptpt

D

DD
TD eee

pp
CYQ −−− −+⎟

⎟
⎠
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⎜
⎜
⎝

⎛

+
= )(

4
0

22

2

ω
ω

π
.   (2.41) 

 The first term on the right side of Eq. (2.41) represents the stream depletion 

caused by stream stage fluctuation in the Laplace domain. This term is the same as 

Cooper and Rorabaugh’s (1963) solution in Laplace domain multiplied by YD after minor 

parameter conversion. This term in the real time domain can be numerically solved using 

the inverse Laplace transform of de Hoog et al. (1982), which was subsequently put into 

a Matlab program by Hollenbeck (1998). Theis (1941) solution for stream depletion 

caused by a pumping well with a constant pumping rate is ⎟
⎠
⎞

⎜
⎝
⎛=
τ2
1/ 0 erfcQq , where 

( ) sxW StKx //1=τ . The Theis’ (1941) solution is for continuous groundwater 

withdrawal thus can be directly used for the third scenario. Superposition of Theis’ 
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(1941) solution is used to obtain stream depletion caused by a pumping well for the first 

and the second scenarios. Since the pumping rate sharply changes at t0 and ts (Figure 

2.3), analytical solutions provides more accurate results near these points than numerical 

solutions. 

Figure 2.4 shows Q1D and Q2Dj, where the subscript j refers to number of months 

of pumping for a river reach, Y, of 1,000m. The chosen value of Y is 20 times the 

distance between the pumping well and the closest stream (xW), and the rest of 

parameters have the same values as those used in Figure 2.3. The shape of Q1D mimics 

the shape of the stream stage. Q1D is small comparing to Q2D in two, four, and twelve 

month extraction period cases. The maximum value of dimensionless stream depletion 

caused by stream stage fluctuations, , is 0.074 when stream stage is near its peak. 

The dimensionless total stream depletion is denoted as where j is the months of 

pumping per year. The maximum value of for j=2 ( ) is 0.965, for j=4 

( ) is 0.522, and for j=12 ( ) is 0.239.  Defining percentages of to 

as , then the percentages of to for pumping 

periods of 2, 4 and 12 months are 7.64, 14.1, and 30.8% respectively. This comparison 

indicates that stream depletion is dominated by the pumping well for this case because of 

the relatively large pumping rate used here. Figure 2.5 shows the dimensionless total 

stream depletion rates, Q

max1DQ

TDjQ

TDjQ max2TDQ

max4TDQ max12TDQ max1DQ

maxTDjQ maxmax1 /100 TDjD QQ max1DQ maxTDjQ

TDj. For two and four months of groundwater extraction, QTD is 

almost identical to Q2D because Q1D is small comparing to Q2D for the relatively large 

pumping rate. For all scenarios, QTDj are noticeably different from Q2D.  QTD12 has the 
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Figure 2.4 Dimensionless stream depletion rate caused by stream stage fluctuations,  
Q1D, and caused by pumping well, Q2Dj, where subscript j refers to number of months of 
pumping for Q0 of 1,000m3/d andω of 2π /360 d-1. 

 

Figure 2.5 Dimensionless total stream depletion rate, QTDj, with Q0 of 1,000m3/d 
andω of 2π /360 d-1. 
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same shape as Q1D, but QTD2 and QTD4 have slightly decrease during pumping period 

comparing to its Q2D.  
The primary advantage of using dimensionless form is that the same result can be 

used to analyze many scenarios. For example in Chapter III, 
BLq
QQD π2

= , where Q is 

the pumping or injection rate (positive for pumping and negative for injecting), B is the 

aquifer thickness, L is distance between two streams, and q is regional flow rate. A 

system with Q of 1000 m3/d, B of 20 m, L of 50 m, and q of 1 m/d and another system 

with Q of 1000 m3/d, B of 10 m, L of 100 m, and q of 1 m/d would both yield the same 

value  of DQ π2/1 . In Chapter II, stream depletion rate is normalized by Q0 (Table 2.1 

on page 19), this allows easy comparison between stream depletion caused by the 

pumping well and stream fluctuations. Using total volume of extracted water may be 

more useful in water management application, but the total volumes of extracted water 

are different for different maximum pumping rates, which makes it difficult to compare 

with other cases. The next paragraph will show the result of the same case discussed in 

the previous paragraph, but in total volume of extracted water as an example to calculate 

extracted volumes.  

The total volume of extracted water from the well, VT, is a sum of the pumping 

rate during the pumping period. The volume of extracted water caused by stream 

fluctuations, V1, is sum of during its pumping period.  Similarly, the volume of 

extracted water caused by the pumping well, V

1Q

2, is during its pumping period. V2Q T 

from three different pumping scenarios has the same value of 60000 m3. V1 are 
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approximately -2400, -2300, and 4600 m3 for scenario 1, 2, and 3 respectively. The 

negative value indicates flow from aquifer into stream. V2 are approximately 59000, 

59300, and 59400 m3 for scenario 1, 2, and 3 respectively. Sum of V1 and V2 are 

approximately 56700, 56900, and 64500 m3 for scenario 1, 2, and 3 respectively. From a 

water management point of view, presenting these results in volume may be useful. 

However, it is difficult to compare the volume of extracted water from different 

scenarios. For example, the sum of V1 and V2 for pumping period of 2 months is 

different from that for pumping period of 12 months. The volumes of stream depletion 

caused by pumping are approximately equal for scenario 1 and 3, but the volumes of 

stream depletion caused by stream fluctuations of scenario 1 and 3 are different. For 

scenario 1, pumping begins and ends during dry season when groundwater flow into 

stream; therefore, V1 of scenario 1 has negative value. V1 of scenario 2 has a positive 

value because of the initial conditions. Comparing a ratio of V1 or V2 to the sum of V1 

and V2 could be misleading because the sums of V1 and V2 have different values for 

different scenarios. Hence, the dimensionless stream depletion rate will be reported in 

the rest of Chapter II for easy comparison among different settings.      

Three primary factors affecting Q1D are QWD, Dω , and YD. A higher pumping rate 

results in a higher Q2 and a relatively lower Q1D caused by scaling. Another primary 

factor affecting Q1D is frequency of the hydrograph. Even though a difference between 

the crest of the stream stage and its trough is 4 m, slow changing of stream stage allowed 

the aquifer to response to the stream stage fluctuation. It takes approximately 180 days 

for stream stage to change from its peak to its trough. Hence a gradient between stream 
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stage and the aquifer is relatively small comparing to the gradient caused by the 

pumping well. To verify this hypothesis, we calculate these maximum values for ω = 

2π/30 d-1 and pumping periods of 5, 10, and 30 d.  Figure 2.6 shows hSD, and QWD for 

three pumping scenarios of 5, 10 and 30 d with the following values of parameters:ω of 

2π/30  d-1, and the rest of the parameters are the same as ones used in Figure 2.3 (page 

32). Figure 2.7 shows Q1D, and Q2Dj, where the subscript j refers to the number of days 

of pumping schemes. The general shape of this figure is the same as that shown in 

Figure 2.4 (page 34); however, one can notice a larger amplitude of Q1D comparing to 

Q1D in Figure 2.4. is 0.255, is 0.877, is 0.578, and is 

0.419. Percentages of to for pumping periods of 5, 10 and 30 d are 29.1, 

44.2, and 61%, respectively. Increasing the pumping frequency by a factor of six, 

percentages of to for pumping periods of 5, 10 and 30 d increase by 

factors of 3.8, 3.1, and 2 comparing to percentages of to for pumping 

periods of 2, 4 and 12 months respectively. These greater values show that a shorter 

wave period will lead to increased Q

max1DQ max2TDQ max4TDQ max12TDQ

max1DQ maxTDjQ

max1DQ maxTDjQ

max1DQ maxTDjQ

1D. Figure 2.8 shows QTDj, where the subscript j 

refers to number of days of pumping withω of 2π/30 d-1. 

The amplitude of the hydrograph does not contribute significantly to Q1.  Using 

the amplitudes of 2m, 4m, and 6 m with the maximum pumping rate of 1,000 m3/d, the 

Q1 shows the nearly identical values for three amplitudes for the flood period of one 

year.  
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Figure 2.6 hSD and QWD, for three pumping scenarios of 5, 10 and 30 d with Q0  
of 1,000m3/d and ω of 2π /30 d-1. 

 

Figure 2.7 Q1D and Q2Dj where subscript j refers to number of days of pumping  
with Q0 of 1,000m3/d and ω of 2π /30 d-1. 
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Figure 2.8 QTDj, with Q0 of 1,000m3/d and ω of 2π /30 d-1. 

 

2.5.2 Seasonal stream depletion with streambed  

 Applying Laplace transform Eq. (2.40) and substituting into Eq.(2.34), the total 

stream depletion of a case with a streambed is 

.
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Similar to the case without streambed, the stream depletion caused by stream 

stage fluctuation is numerically calculated using the de Hoog method for inverse Laplace 

transform. Hantush’s (1965) solution for stream depletion caused by a pumping well 
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with a constant pumping rate is ⎟
⎠
⎞

⎜
⎝
⎛ +⎟
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0 erfcerfcQq  

where ( ) sxw StKx //1=τ and 
BK x

w

′
Kx ′

=
2

η .   

Using the same pumping schemes and the same stream stage fluctuation function 

as in the cases without the streambed (Figure 2.3, page 32), the dimensionless stream 

stage and the dimensionless pumping rate are the same as shown in Figure 2.3 as well. 

Streambeds are 0.2m thick with a hydraulic conductivity of 0.008 m/d and a specific 

storage of 0.0005 m-1, and the rest of parameters have the same values as for the case 

without the streambed (Table 2.2, page 32). Pumping rate, frequency of the flood, and 

stream length that were used to evaluate Q1D would affect results as in the case without 

the streambed. The shapes of Q1D and QTDj should be similar to those for the case 

without the streambed, but have smaller amplitudes. For Q0 = 1,000m3/d, is 0.071, 

is 0.965, is 0.519, and is 0.236.  Percentages of to 

for pumping periods of 2, 4 and 12 months are 7.3, 13.6, and 30% respectively. 

and percentages of to with streambeds are approximately 3% 

smaller than the ones without the streambed, given the same pumping rate.  Changing 

the streambed thickness to 1 m, and percentages of to with the 

streambed are both approximately 16% smaller than the ones without the streambed. The 

influence of streambed on stream depletion depends on its thickness and hydraulic 

properties.  

max1DQ

max2TDQ max4TDQ max12TDQ max1DQ

maxTDjQ

max1DQ max1DQ maxTDjQ

max1DQ max1DQ maxTDjQ
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2.5.3 Short-term stream depletion without streambed 

 To study stream-aquifer interaction for a short-term floodwave, one first has to 

find adequate functions describing stream stages.  The following function is a proposed 

example of a stream stage function:   

Dt
vty

S e
Dt

Atyh 4
)(

0

2

2
),(

−
−

=
π

. (2.43) 

where A0 is a factor related to amplitude of the floodwave [L2], D is a factor 

related to the diffusion of the floodwave [L2/T], v is a factor relate to velocity of the 

floodwave along the stream channel[L/T]. This function is used to represent stream stage 

because of  its simplicity and its similar characteristic to hydrograph. Chanson (2004, Eq. 

8.11) has investigated the diffusion equation for the open channel flow, and has used a 

similar form as Eq. (2.43). This equation is identical to the one used to describe the 

diffusion of a pulse source contaminant transport in groundwater. Figure 2.9 shows an 

example of the dimensionless stream stage, hSD, as a function of yD  at 1, 5, 10 , and 24 

hrs after the floodwave arrived with the following values of parameters: A0 of 

1.5x105m2, D of 4x105m2/d, v of 8x102 m/d.  The other parameters are listed in Table 2.2 

(page 32). These values are chosen so that the stream stage is approximately 2 m at yD of 

0 after 1 hr.  These values are not unique. Other sets of values can produce the same 

result. Figure2.10 shows hSD as a function of dimensionless time at various distances 

along a stream (0, 500 m, and 1,000 m) with the same parameters as those used in Figure 

2.9. One can replace this stream stage function by any desired functions. If a different 

stream stage function, which cannot be solved analytically is used, one can always  
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Figure 2.9 Dimensionless stream stages, hSD, as a function of dimensionless distance 
along the stream at various times. 

 

Figure 2.10 hSD as a function of dimensionless time at various distances along the 
stream. 
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divide the entire duration of time into many small time intervals and numerically solve 

the Laplace and inverse Laplace transforms by modifying the Matlab code of the 

seasonal case. The code solves the stream depletion caused by stream stage fluctuations 

numerically using the de Hoog inverse Laplace transform method (de Hoog et al., 1982, 

Hollenbeck, 1998). A constant rate of Q0 equaling 1,000m3/d is used to simulate an 

irrigation or a municipal well, as in section 2.5.1.   

More realistic floodwave functions are based on unsteady open-channel flow 

models, which are often complex and require numerical methods to handle. If a stream 

has a lateral extension that is much smaller than the longitudinal extension, a one-

dimensional unsteady open-channel flow equation can be used, and the most common 

model is proposed by Saint-Venant (Chow, 1959, Akan, 2006). The difficulty of this 

approach is that additional parameters need to be specified. If the Froude number, a ratio 

of square root of the inertial force over the weight of the fluid, is sufficiently low, then 

the diffusion flood model can be used. The primary advantage of the diffusion model is 

that effect of the cross-sectional shape of the channel has secondary effect on the 

floodwave pattern (Rutschmann and Harger, 1996).  Rutschmann and Hager (1996) have 

also discussed in detail about various floodwaves for different stream cross-sectional 

shapes.   

 Converting the head in the stream to drawdown, one obtains 
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where v
K
K
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 Conducting the Laplace transform of by using the following property: SDH
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 Carrying out the Fourier transform of Eq. (2.45), ( ) 22
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Lorentzian function, the result is  
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Substituting Eq. (2.47) into Eq. (2.16) and setting 0=yf , one got  
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 Conducting the inverse Laplace transform of Eq. (2.48) leads to the following 

analytical solution:  
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where ( ) sxw StKx //1=τ . 

 Figure 2.11 shows Q1D and Q2D after 10 hrs using the same parameters as in 

Figure 2.9. Because the stream stage at y of zero increases rapidly toward infinity as time 

approaches zero (Figure 2.10, page 43), early stream depletion rates have unrealistically 

large values. Hence, Figure 2.11 only shows late time results after 10 hrs or tD of 180.  

At tD of 180, Q1D is 0.033 and Q2D is 0.895for Q0 of 1,000m3/d. Q1D accounts for 3.6% 

of the total stream depletion.  

 As a minor point, we have noticed that changing one or more parameters of the 

floodwave function can greatly alter the shape of the floodwave. We have tried different 

possible floodwave functions and found out that using fractional forms, such as 

( )
Dt
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S e
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2
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π

, one could achieve more realistic shapes of floodwave. Such 

fractional forms of the floodwave are the empirical formulae which still need to be 

explained from an open-channel flow model. Functions with fractional terms are 

generally more difficult to solve.     
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Figure 2.11 Q1D and Q2D with Q0 of 1,000m3/d for an individual floodwave. 

 

        

2.5.4 Short-term stream depletion with streambed 

Substituting Eq. (2.47) into Eq. (2.17) and setting 0=yf , one has   
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Q1D is numerically solved using the de Hoog inverse Laplace transform method. 

Q2D is the same as the Hantush’s (1965) analytical solution which 
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 The thickness of the streambed is 0.2 m with its conductivity of 8.64x10-3m/d 

and storage of 0.01. The shape of Q1D and Q2D with the streambed is the same as in the 

case without the streambed. At tD of 180, Q1D is 0.029 and Q2D is 0.895 using the same 

hydraulic parameters as in the case without the streambed. The actual value of Q1D is 

12% lower than that in the case without the streambed. Q1D accounts for 3.2% of the 

total stream depletion comparing to 3.6% of the case without the streambed. The values 

of Q2D are the same as those without the streambed because the streambed only has 

significant effects at the early time and its influence to stream depletion gradually 

disappear when pumping sufficiently long time.   

2.5.6 Early and late time approximations of Q1D 

 The early time approximation of Q1D can be calculated by letting p in Eq. (11) 

approaches , and the late time approximation of Q∞ 1D can be calculated by letting p in 

Eq. (11) approaches zero. The early time approximation is used when the pumping well 

is initially turned on and the late time approximation is used after the pumping well was 

on for a long period of time. To obtain results, one must specify the stream stage 

function. Using the stream stage function described in Eq. (2.39), when ∞→p , Eq. 

(2.41) becomes (neglecting the second term on the right hand by shutting down the 

pumping well): 
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 The inverse Laplace transform of Eq. (2.50) will lead to the analytical solution in 

the real time domain as  

2
32

1 3 D
DD

D tCYQ
ππ
ω

= .   (2.52) 

When , Eq. (0→p 2.41) becomes (setting the pumping rate to zero) 

2
1

1 4
−

= pCYQ D
D π

.   (2.53) 

The inverse Laplace transform of Eq. (2.52) will lead to the analytical in the real 

time domain as 

D

D
D t

CYQ
ππ41 = .   (2.54) 

 Eq. (2.54) shows that the late time approximation of is decaying with time in 

a fashion that is inversely proportional to the square root of time. This leads to an 

important conclusion that can be neglected for a stream aquifer system that has years 

to equilibrate.  

DQ1

DQ1

2.6. Summary and Conclusions          

Chapter II considers drawdown and stream depletion caused by a fully 

penetrating pumping well near a fully penetrating stream with and without the 

streambed. General solutions of drawdown in the aquifer in the Laplace-Fourier domain 

with and without streambeds for any pumping schedules and any stream stage functions 



 50

were presented.  We consider two general stream stage functions. For the seasonal 

fluctuation case, the stream stage is a function of time only.  For the short-term 

fluctuation case, the stream stage depends on time and distance along the stream. The 

following function: ( )cos(1)( tAthS )ω−= is used to describe the seasonal stream stage 

variation. We present semi-analytical stream depletion rates (in time domain) using a 

numerical method to solve for stream depletion caused by stream stage fluctuations and 

using an analytical method to solve for stream depletion caused by a pumping well for 

both with and without streambed sediments.      

Three primary factors affecting the stream depletion caused by stream 

fluctuations are the pumping rate, the frequency of the flood, and the stream length that 

is used to evaluate the stream depletion. The period of stream fluctuation plays a crucial 

role in affecting the stream depletion. A shorter period yields a grater rate of stream 

depletion caused by stream stage fluctuation.  

If a streambed exists, it can greatly reduce stream depletion caused by stream 

stage fluctuations; however, if pumping time is long enough, the stream depletion rate 

caused by the extraction well is insensitive to the streambed parameters. 

For the short-term floodwave fluctuation, general solutions of drawdown in the 

aquifer in the Laplace-Fourier domain with and without streambed for any pumping 

schedules and any stream stage functions are presented. The following function: 

Dt
vty

S e
Dt

Atyh 4
)(

0

2

2
),(

−
−

=
π

is used to describe the short-term stream stage fluctuations. An 

analytical stream stage depletion rate in real time domain is presented for the case 
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without the streambed. The stream depletion rate for the case with the streambed is 

solved in the same manner as the seasonal fluctuation case.   

We have derived the analytical solutions of the stream depletion rates at early 

and late times caused by stream fluctuation following a cosine function. It is interesting 

to point out that the late time stream depletion decays with time as a fashion that is 

inversely proportional to the square root of time. This implies that the stream depletion 

caused by stream stage fluctuation can be neglected for a stream aquifer system that has 

years to equilibrate. At late times, the pumping well becomes the dominating factor for 

influencing the stream depletion. At early time, however, the contributions from both the 

stream stage fluctuation and the pumping well have to be considered. 

This dissertation showed that the drawdown and stream depletion rate can be 

written in two separated terms and can be solved independently. If one would like to add 

additional component, it can be done by superposition another term in the existing result.  
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CHAPTER III 

CAPTURE ZONE BETWEEN TWO STREAMS* 

 

We have investigated stream-aquifer interaction with a single pumping well in an 

aquifer bounded by two parallel nearby streams.  This study presents steady-state semi-

analytical solutions to calculate the fraction of water withdrawal from two streams.  

Potential theory is used to describe the capture zone between two streams when low-

permeability streambeds are not present.  Steady-state flow equations in the aquifer and 

two streambeds are solved following rigorous mass balance requirements if low-

permeability streambeds are present. When the low-permeability streambeds are not 

present and the regional flow exists between two streams, this study finds that the 

maximal capture size without extracting water from the down-gradient stream decreases 

with the normalized well location in an approximately linear fashion. Furthermore, the 

normalized flux from the up-gradient stream decreases with the normalized well location 

faster than the linear fashion. When the low-permeability streambeds exist and the 

regional flow is neglected, the normalized flux across either streambed varies with the 

normalized well location in a linear function. Furthermore, the magnitude of the slope of 

that function is nearly unity when the hydraulic conductance ratio of the two streambeds 

is one and is less than unity when the hydraulic conductance ratio of the two streambeds 

is either greater or smaller than one.  When the normalized well location with equal  

____________ 
* Reprinted with permission from “Capture Zone between two Streams” by Trin 
Intaraprasong and Hongbin Zhan, 2007, Journal of Hydrology, 338, p. 297-307, 
Copyright 2007 by Elsevier Science B.V. 
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fluxes from two streams versus the hydraulic conductance ratio of the two streambeds 

are plotted semi-logarithmically, we observed a segmented curve including a steep 

segment at the beginning, followed by a flat segment, and a final steep segment. 

 
3.1 Introduction 

A capture zone refers to an aquifer volume in which water can be extracted by 

one or multiple pumping wells penetrating the aquifer under steady-state flow condition. 

Studies of capture zones have continued for several decades because of their practical 

importance. For example, wellhead protection plans must rely on good understanding of 

the capture zones of the pumping wells. Groundwater remediation designs using the 

pump-and-treat method often need information about the capture zones of the extraction 

wells.  

The study of capture zones can be dated back to the original work of Muskat 

(1946) with the use of the potential theory. Since then, many scientists have made 

important contributions in this field (Polubarinova-Kochina, 1962; Bear, 1972; 1979).  A 

significant amount of work has been carried out using analytical approaches to describe 

capture zones of vertical pumping wells without considering the lateral boundaries of the 

aquifer (Javandel and Tsang, 1986; Shafer, 1987; Lerner, 1992; Grubb, 1993; 

Faybishenko et al., 1995; Schafer, 1996; Shan, 1999; Zhan, 1999a; Christ and Goltz, 

2002; Cunningham et al., 2004; Luo and Kitanidis, 2004). Numerical simulations can 

take into account complex boundary conditions as well as heterogeneity, 

recharge/discharge, etc., thus are also broadly used for studying vertical well capture 

zones (Ahlfeld and Sawyer, 1990; Bair and Roadcap, 1992; Tiedeman and Gorelick, 
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1993). In recent years, there are several studies related to the capture zone of a horizontal 

well (Schafer, 1996; Steward, 1999; Zhan, 1999b; Zhan and Cao, 2000; Kompani-Zare 

et al., 2005).  Scientists have used stochastic methods to study capture zones in 

heterogeneous aquifers (Zhang and Lu, 2004). 

The capture zone of single or multiple groundwater extraction wells near a 

stream is also of interest to hydrologists. The capture zone of a pumping well near a 

stream might be obtained in a straightforward manner by using an image well under 

rather strict constrains such as perfect connection between the stream and the aquifer and 

full stream penetration (Newsom and Wilson, 1988). 

The strong interest of studying capture zone near a stream comes from several 

needs. For instance, the pumping induced stream depletion can significantly alter the 

water budget of the surface water, thus is important in terms of water resources 

management (Granato and Barlow, 2004). Groundwater extraction from an aquifer near 

a stream can also impact the ecologic environments of the riparian zones and the river-

bank wetlands, thus is of great concern to the ecologists as well as many others (Winter 

et al., 1998; Wurster et al., 2003). 

Under certain field conditions, a pumping well may be located between two 

parallel streams. This situation can occur when two channels or two tributaries are 

closely spaced. It can also occur in some engineered structures such as two parallel water 

canals. As shown in Chen and Chen (2003a, 2003b), in certain areas of the High Plains 

of the United States, two streams can be parallel and the distance between them could be 

as close as 270m. If a pumping well is located between two parallel streams, the shape of 
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the capture zone will depend on stream depletions from both streams, which is an 

important issue in water rights adjudication. Kollet (2005) has pointed out that 

inadequate application of a single stream model to deal with a two-stream system might 

lead to an error of stream depletion. 

Wilson (1993) has studied induced infiltration in aquifers with ambient flow. In 

that study, he has also discussed well pumping from an aquifer bounded by a stream and 

a barrier, and well pumping from an aquifer bounded by two parallel streams. The 

vertical recharge is considered, but the semi-pervious streambeds are not considered in 

that study. Wilson (1993) has adopted the Schwartz-Christoffel Conformal mapping 

method to deal with the two streams which are regarded as constant-head boundaries. 

Zlotnik (2004) has also dealt with well pumping between two streams and has proposed 

the concept of maximum stream depletion rate (MSDR) to account for the leakage from 

the underlying aquitard. 

To our knowledge, there are still no studies that concern capture zone between 

two parallel streams considering the low-permeability streambeds. The purpose of this 

study is to analytically study capture zone between two parallel streams. Two different 

kinds of stream-aquifer interfaces will be considered: one has perfect hydraulic 

connection between the stream and the aquifer, and the other has low-permeable 

sediments clogging the streambeds.  The perfectly connected stream-aquifer scenario 

might be found in Northwest States of the United States such as Montana where 

streambeds are often composed of coarse sediments (Woessner, 2000). The clogged 

streambed scenario frequently appears in the alluvial or glacial aquifers (Larkin and 
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Sharp, 1992; Conrad and Beljin, 1996).  We are interested to see how the two streams 

control the shape of the capture zone, and how the low permeable streambeds might 

affect stream depletion from both streams. This study is limited to the steady-state flow 

condition whereas the transient flow problem will be addressed by Sun and Zhan (2007). 

3.2 Model Descriptions 

A realistic capture zone between two streams could be very complicated because 

of many issues such as meandering of stream channels, variation of water level in the 

streams, heterogeneity of streambeds and aquifer, partially penetrating streams, etc. Such 

complex setting requires numerical simulations. Analytical models can be used as the 

first screening tool for the problem and can offer better insights into the problem. To 

make the analytical models amendable, some assumptions are inevitable.  These include: 

(1) the stream stages are approximately stable; (2) the aquifer has no leakage through 

upper or lower layers; (3) the well fully penetrates the aquifer and is pumped at a 

constant rate; (4) the aquifer is homogeneous and horizontally isotropic; and (5) the 

Dupuit assumption is valid. These assumptions can be relaxed under certain 

circumstances. For instance, the horizontally isotropic assumption can be relaxed to 

include the horizontally anisotropic media. Bear (1972, 1979) have provided details on 

how to deal with an anisotropic aquifer. 

Another important issue that must be addressed is the treatment of the stream 

penetration. Many studies using image wells to deal with streams treat the streams as 

fully penetrating constant-head boundaries (Theis, 1941; Glover and Balmer, 1954; 

Jenkins, 1968; Bear, 1972, 1979; Newsom and Wilson, 1988). Hantush (1965) has 
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included semi-permeable streambeds in studying a fully penetrating stream.  In reality, it 

is better to characterize streams as partially penetrating with finite widths.  Hunt (1999) 

has proposed a model that considered a very shallow stream with an infinitesimal width. 

Zlotnik et al. (1999) and Butler et al. (2001) have investigated a partially penetrating 

stream with a finite width.  The advantage of the partially penetrating stream models of 

Hunt (1999), Zlotnik et al. (1999), and Butler et al. (2001) is that these models can 

provide solutions beyond the streams, whereas the fully penetrating models of Theis 

(1941), Glover and Balmer (1954), Jenkins (1968), and Hantush (1965) cannot. Indeed, 

from a three-dimensional view of groundwater movement in a stream-aquifer system, 

the scenario of flow from a partially penetrating stream is different from that from a fully 

penetrating stream. However, many present models of stream-aquifer interaction, 

including Hunt (1999), Zlotnik et al. (1999), and Butler et al. (2001) have adopted the 

Dupuit assumption, meaning that the vertical flow is neglected. Such an assumption has 

substantially simplified the problem. 

First, the models of partially penetrating streams with finite widths developed by 

Zlotnik et al. (1999) and Butler et al. (2001) were found to be close to the 

mathematically simpler model of Hunt (1999) for zero-depth penetrating and zero width 

streams under many practical circumstances. Second, if one adopts the Dupuit 

assumption, the Hunt’s solution (1999) is identical to that of Hantush (1965) for a fully 

penetrating stream. This is because one cannot distinguish the geometric difference of a 

partially penetrating stream from a fully penetrating stream under the Dupuit 

assumption. The geometric difference can only be addressed in the case of a three-
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dimensional flow field (Sun and Zhan, 2007). In fact, several scientists including Hunt 

himself have noticed the identity of the Hunt’s solution (1999) and that of Hantush 

(1965) after a simple parameter transformation. Such an identity indicates that the fully 

penetrating stream model, despite its disadvantage of not representing a partially 

penetration stream, can yield the same solution as the partially penetrating stream model 

at the region bounded by the streams, provided that the Dupuit assumption is employed. 

This implies that the study presented here can be used for both fully penetrating and 

partially penetrating streams as long as the Dupuit assumption is adopted (Sun and Zhan, 

2007). Two different cases without and with low-permeability streambeds will be 

addressed.  

Figure 3.1 is a schematic diagram of a vertical pumping well in a confined 

aquifer with a perfectly connected stream-aquifer system. We denote the left stream and 

right stream as stream 1 and stream 2, respectively.  The x- and y-axes are perpendicular 

and parallel to the streams, respectively. The origin of the coordinate is at the stream1 

and the x-axis passes through the center of the pumping well. The aquifer is of infinite 

extend along the y-axis. The two streams might have different stages. We arbitrarily 

allow stream1 to have a higher stage (h1) than that of stream 2 (h2), thus a regional flow, 

q, from left to right exists.  The streams 1 and 2 are therefore named the up-gradient and 

down-gradient streams, respectively. The pumping well is located at distance “a” from 

the origin and the two streams are apart by a distance L. 

 After activating the pumping well with a pumping rate Q for some time, the 

cone of depression will expand and eventually will reach the stream(s). At the steady-
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state, all the pumped water comes from the two streams.   Since the well could extract 

water from both streams, it is necessary to know the percentage of water extracted from 

each stream. The setting in Figure 3.1 requires an infinite number of image wells to 

simulate two parallel streams. If low-permeability streambeds exist, it would be difficult 

to use image wells to study the capture zone. Instead, we will proceed by directly solving 

the boundary value problem considering two semi-pervious streambeds of finite 

thickness at the stream-aquifer interfaces. 
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Figure 3.1 Schematic diagram of pumping between two streams without low-
permeability streambeds. A uniform regional flow is from left to right.  Streams 1 and 2 
are named up-gradient and down-gradient streams. 
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3.3 Mathematical Formulation without Low-permeability Streambed Sediment 

3.3.1 Potentials and streamlines of the capture zone 

An envelope of capture zone is defined as the boundary that separates the regions 

flowing to and bypassing the well and it defines the shape and the size of the capture 

zone (e.g. Shan, 1999; Kompani-Zare et al., 2005). As done in many previous studies, 

we devise an appropriate complex potential, )(zζ , for the flow field to find the capture 

zone (Bear, 1972, 1979). )(zζ =φ+iψ , and φ and ψ are the real and imaginary parts 

describing potential and stream functions respectively, and 1−=i  is the sign of 

complex. The potential is associated with the hydraulic head, h, as φ=Kh, where K is the 

hydraulic conductivity. The stream function defines the flow pathways. We first need to 

find the stagnation point which has a zero flow velocity. The stagnation point can be 

found by letting the first derivative of the complex potential with respect to the complex 

variable, z, to be zero (e.g. Shan, 1999; Kompani-Zare et al., 2005). The streamlines 

passing through the stagnation point describe the envelope of the capture zone.  

Furthermore, the amount of water flow into the well is equal to the difference of the 

values of the two streamlines describing the envelope of the capture zone (Bear, 1972).  

  Assuming steady-state uniform regional flow in a homogeneous, isotropic, and 

laterally infinite confined aquifer of uniform thickness, we can use complex potential 

theory to describe flow to a pumping well with a constant rate located at the origin of the 

coordinate system as (Bear, 1972): 

qzzmz −= )ln()(ζ ,         (3.1) 
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where z = x+ iy is the complex argument, m= Q/2πB, Q is the pumping or injection rate 

(positive for pumping and negative for injecting), and B is the aquifer thickness.  We are 

going to define the following normalized (dimensionless) terms and from now on to 

precede the calculation in normalized forms. 

L
xxD = ,

L
yyD = ,

L
zzD = , 

L
aaD = ,

BLq
QQD π2

= ,
qLD
ζζ = ,

qLD
φφ = ,

qLD
ψψ = , (3.2) 

where the subscript “D” denotes the normalized term in Eq. (3.2).  

 Eqs. (3.1) and (3.2) can be reformulated for an unconfined aquifer when flow is 

primarily horizontal. For that case, the saturated thickness varies and a new potential 

φ=Kh2/2 is defined, where K is the hydraulic conductivity and h is the hydraulic head 

(Bear, 1972, 1979; Wilson, 1993). For the unconfined aquifer, the product of Bq has to 

be replaced by the discharge per unit width, qa [L2/T] (Wilson, 1993). The 

dimensionless , DQ Dζ , Dφ , and Dψ have to be redefined as )2/( aD LqQQ π= , 

aD q/ζζ = , aD q/φφ = , and aD q/ψψ = . The above Eq. (3.1) is replaced by 

zqzQz a−= )ln()2/()( πζ . As pointed out by Wilson (1993), the solution, in 

particularly the stream depletion is indifferent to the definition of φ and to whether the 

aquifer is assumed to have a constant transmissivity or one that varies with saturated 

thickness. Therefore, we will only focus on the discussion of a confined aquifer for the 

rest of the paper. 

On the basis of Eqs. (3.1) and (3.2), we can use an infinite number of image 

wells to simulate the parallel streams which are assumed as constant head boundaries 

(Bear, 1972). The image well configuration is shown in Figure 3.2 and the result is  
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Figure 3.2 Schematic diagram showing a real pumping well and an infinite series  
of image pumping and injecting wells to represent the two stream boundaries 
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where n are integers. Using the same method as Zhan (1999b) to calculate the 

summation term in Eq. (3.3), one obtains  
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Separating the real part from the imaginary part, the results are 
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where φD is the velocity potential, and ψD is the stream function, all in normalized forms.  

Bruggeman (1999, p.312, solution 356.12) has provided the solutions of pumping 
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between two streams in slightly different formulations without considering the regional 

flow. It is easy to prove that Bruggeman’s (1999) complex potential function is identical 

to ours after simple change of notation and neglect of the regional flow. Bruggeman 

(1999) expressed the drawdown as an infinite series of terms whereas we use above Eq. 

(3.5) for the potential. 

3.3.2 Stagnation point and critical pumping rate 

 To find the stagnation point, we take the first derivative of the complex potential 

(Eq. (3.4)) with respect to zD and set it to zero. The result is 

)sin()cos()cos( 0 DDDD aQaz ππππ −= ,      (3.7) 

where z0D is the complex variable at the stagnation point. Eq. (3.7) reflects some 

interesting features of the stagnation point and the capture zone between two streams. 

The absolute value of )cos( 0Dzπ in Eq. (3.7) could be less than, or greater than, or equal 

to unity, corresponding to three possible cases that will be discussed as follows.  

For the first case, the condition 1)cos(1 0 <<− Dzπ  is satisfied and the complex 

variable z0D reduces to a real variable, x0D, indicating that the stagnation point is located 

at the x-axis between two streams.  Notice that QD >0 for a pumping well and 0<aD<1, 

thus π QDsin(πaD) > 0, which leads to cos(πx0D)<cos(πaD)<1 from Eq. (3.7). Therefore, 

the condition cos(πx0D)<1 is always satisfied. Furthermore, if recalling the properties of 

the cosine function, the inequality cos(πx0D)<cos(πaD) indicates that > aDx0 D. This 

implies that there is a single stagnation point located at the x-axis somewhere between 

the pumping well and stream 2, and the extracted water comes entirely from stream 1. 
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The coordinate of that stagnation point is                 

[ )sin()cos(cos1 1
00 DDDDD aQaxz πππ

π
−== − ].     (3.8) 

To satisfy the condition of cos(πx0D) >-1 in Eq. (3.7) for the first case, one has  

)2/cot(1
)sin(

)cos(11
D

D

D
cDD a

a
aQQ π

ππ
π

π
=

+
=< ,     (3.9) 

where ππ /)2/cot( DcD aQ = is the dimensionless critical pumping rate.  

 It is interesting to point out that Wilson (1993) has also reported the calculation 

of the critical pumping rate. It is easy to prove that our solution of Eq. (3.9) is identical 

to Wilson’s solution when one recognizes different definitions of symbols. In Wilson’s 

work (1993, eq. (20b)), the stream on the right is the up-gradient stream, thus regional 

flow is from right to left. In our study, the up-gradient stream is on the left, thus regional 

flow is from left to right. Therefore our “a” is the “L-d” in Wilson’s work. When 

recognizing this, the right hand side of Eq. (3.9) is 

( )δ
π

δπ
π

π
π

tan1
2

cot1)2/cot(1
=⎟

⎠
⎞

⎜
⎝
⎛ −=Da , where Ld 2/πδ = is used by Wilson (1993). 

Our dimensionless pumping rate cccD BLqQQ αππ )/1()2/( == , where Qc is the critical 

pumping rate, and cα is a parameter used by Wilson (1993, eq. (20b)). Therefore, our 

Eq. (3.9) becomes )tan(δα =c , identical to Eq. (20b) of Wilson (1993). 

 For the second case, 1)cos( 0 =Dzπ , thus 10 =Dz , which indicates that the 

stagnation point is located exactly at (xD =1, yD =0), and the pumping rate is at the 
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critical rate . This condition corresponds to the maximal possible pumping rate 

without extracting water from stream 2.  

cDD QQ =

For the third case, 1)cos( 0 >Dzπ . This case is associated with a normalized 

pumping rate that is greater than ππ /)2/cot( Da  and the pumping well extracts water 

from both streams. Notice that the right hand side of Eq. (3.7) is a real value, 

thus , where yDD iyz 00 1±= 0D is a real variable. This indicates that the stagnation points 

are now at the line of xD=1. The coordinates of the two stagnation points are: 

[ )sin()cos(cosh1 1
0 DDDD aQaiz πππ

π
−±= − ].     (3.10) 

It is also easy to prove that our solution Eq. (3.10) is identical to Eq. (21) of 

Wilson (1993) for the stagnation points. Substituting the coordinates of the stagnation 

point into Eq. (3.6), one can find the values of the streamlines passing through the 

stagnation point. Note that the streamlines connecting at a stagnation point can have 

different values (Bear, 1972).  

 
3.4 Mathematical Formulation with Low-permeability Streambed Sediment 

 
3.4.1 Problem description 

To obtain the drawdown in the aquifer with low-permeability streambeds 

separating the streams from the aquifer, continuity of head and flux at the aquifer-

streambed boundary is used. The streambeds separating the first and the second streams 

from the aquifer are named streambed 1 and streambed 2, respectively. Figure 3.3 shows 
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the schematic diagram of this case. Notice that the y-axis now is at the interface of the 

aquifer with streambed 1, and “L” now represents the distance between two streambeds.  
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Figure 3.3 Schematic diagram of pumping between two streams with low-permeability 
streambeds. 

 

 

BB1 and B2B  in Figure 3.3 are the thickness of the streambeds 1 and 2, respectively. The 

values of the hydraulic conductivity of both streambeds are assumed to be at least two 

orders of magnitude smaller than that of the aquifer, thus flows in the streambeds are 

perpendicular to the aquifer-streambed boundaries. The governing equation and the 

boundary conditions of steady-state flow to a pumping well in the aquifer are as follows 

(in normalized forms): 
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where the associated normalized terms are define as: 
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where s, s1, and s2 are the drawdowns of the aquifer, the streambeds 1 and 2, 

respectively; K1 and K2 are the hydraulic conductivities of the streambeds 1 and 2, 

respectively; δ( ) is the Dirac delta function; and 1β and 2β refer to the hydraulic 

conductivity ratios of the aquifer over the streambeds 1 and 2, respectively. Eq. (3.12) 

implies that the drawdowns at the points far from the pumping well are zero. Eqs. (3.13) 

and (3.14) describe the continuity of flow at the aquifer-streambed interfaces and Eqs. 

(3.15) and (3.16) refer to the continuity of drawdown at the aquifer-streambed interfaces. 

The streams are at constant stage, thus, 0)( 11 =−= DDD Bxs and .  0)1( 22 =+= DDD Bxs
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3.4.2 Proposed solutions 

 Considering the finite width of the aquifer in the x-axis, we propose the 

following solution for sD based on the finite Fourier transform in the x direction. 

( ) ( )nDn
n

DnD xyHs μω += ∑
∞

=

sin
0

0>n, ω ,      (3.18) 

where ωn and μn are the spatial frequency and the phase term respectively that will be 

determined using the boundary conditions, and Hn is a function of yD.  Similar solutions 

have been used in previous studies of Zhan et al. (2001), Zhan and Zlotnik (2002), and 

Zlotnik and Zhan (2005) for transient flow problems. If there are no streambeds, μn=0; 

otherwise 0≠nμ . To determine Hn, one can first substitute Eq. (3.18) into Eq. (3.11),  

then multiply Eq. (3.11) by ( )mDm x μω +sin , and integrate both sides of Eq. (3.11) from 0 

to 1 for xD. If applying the following identity 
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Eq. (3.11) will become 

( ) ( ) ( ) DnDn
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Dn yayH
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where nα is  

( ) ([ nnn
n

n μμω
ω

α 2sin22sin
4

1
2
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−+−= )].      (3.21) 
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The boundary condition for Hn is obtained by substituting Eq. (3.18) into Eq. 

(3.12): 

0)( =±∞=Dn yH .         (3.22) 

Eq. (3.20) is the modified one-dimensional Helmholtz equation (Arfken and 

Weber, 1995, p. 516). Considering the boundary condition Eq. (3.22), the solution of Eq. 

(3.20) is 

( ) ( ) ( DnnDn
nn

Dn yayH ωμω
ωα

)π
−+= expsin2 .      (3.23) 

 Now the remaining question is to find ωn and μn which are solved in Appendix C 

on page 103. The final solution becomes  
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 The stream depletion can be computed using the drawdown of Eq. (3.24). The 

stream depletion per unit width along stream 1 can be defined as
0

1
=∂

∂
=

x
s x

sKBq . The 

total stream depletion from stream 1 is ∫
∞+

∞−
=∂

∂
= dy

x
sKBQ

x
s

0
1 . Using dimensionless 

terms, one has: 
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 The stream depletion from stream 2 is simply
Q

Q
Q

Q ss 12 1−= . 
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4.4.3 Numerical computation 

First, we need to determine ωn and nμ . To obtain ωn, we solve Eq. (C13) in 

Appendix C (page 103) using the Newton-Raphson method (Press et al., 1989).  The 

primary reason for choosing this method is its simplicity and fast convergence. It is 

necessary to choose an initial guess that are reasonably close to the actual solution 

because of the oscillation nature of the tangent function in Eq. (C13).  For instance, 

Figure 3.4 plots the left and right hand sides of Eq. (C13) for the case 

of ,01.021 == ββ 001.021 == DD BB . The intercept points there are the solutions of ωn. 

As can be seen from this figure, there is a single solution within each 

domain ]2/,2/[ ππππ +− nn , where n=1, 2,… It is crucial to choose close enough 

initial guesses when is close to unity because is the 

singular point of the right hand side of Eq. (C13). After finding ω

2
2211 nDD BB ωββ 12

2211 =nDD BB ωββ

n, nμ can be found 

from . Substituting ω)(tan 22
1

nDn B ωβμ −= n and nμ into Eq. (3.24) will lead to the solution. 

Our numerical exercises show that using thirty terms in Eq. (3.24) can achieve an 

accurate enough solution with a numerical error of about 2%. A Matlab program named 

SAS is written to facilitate the numerical computation and is available from the authors 

upon request, where SAS stands for a Stream-Aquifer-Stream system. 
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Figure 3.4 The diagram showing the solution of Eq. (C13). The solid and dashed lines 
represent the left and right hand sides of Eq. (C13) as functions of ωn. 

 

 

3.5 Results and Discussion 

In this section, we will use some examples to illustrate the characteristics of 

capture zone between two streams for cases with and without the low-permeability 

streambeds. In the following discussion, the aquifer thickness is 30 m, the two parallel 

streams are 2000 m apart, and the regional flow is q=0.01m/d. 

 
3.5.1 Capture zone between two streams without low-permeability streambeds 

3.5.1.1 Capture zone at the critical pumping rate 

 As discussed in section 3.3.1, at the critical pumping rate, the stagnation point, S, 

is right at xD=1 and yD=0 (Figure 3.1, page 59). This is the circumstance that the capture 
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zone reaches its maximal size without extracting water from stream 2. Figure 3.5 shows 

the maximal capture zone at the critical pumping rate when the well is located at 

a=1500m or aD=0.75, where line AB is the section of stream 1 intercepted by the 

envelope of the capture zone. The normalized critical pumping rate for this case is 

calculated to be 0.132 according to Eq. (3.9), which corresponds to a dimensional 

pumping rate of 497m3/d. The value of the streamline AS is cD
s
D Qπψ = . Therefore, the 

yD coordinate of the upper intercept point between the envelope of the capture zone and 

stream 1 can be determined by substituting the critical pumping rate into Eq. (3.6) and 

setting xD=0 and cD
s
D Qπψ =  
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Figure 3.5 Flow net and envelope of the capture zone for the critical pumping case in 
which a single stagnation point is located at the intercept of the x-axis and stream 2. aD is 
the normalized well location, and QcD is the corresponding normalized critical pumping 
rate. Low-permeability streambeds are not present. 
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An explicit solution for yD is often unlikely, and we use a numerical root 

searching method such as the bisection or Newton-Raphson method to calculate yD 

(Press et al., 1989). The point A can also be found graphically by plotting the 

streamlines using the Matlab program SAS. 

It is also interesting to see how the maximal capture size from stream 1 varies 

with the location of the pumping well. Figure 3.6 shows the normalized maximal capture 

size which is the distance of AB in Figure 3.5 divided by L, as a function of the 

normalized well location aD varying over a range of 0.5 to 0.9. The corresponding 

normalized critical pumping rate varies from 0.318 to 0.050. It is interesting to see that 

the maximal capture size decreases with aD in an approximately linear fashion. Such a 

relationship is of great importance in terms of water management because one can 

estimate the maximal size of the capture zone for any given well location at the critical 

pumping rate. 

The well only captures water from stream 1 when the pumping rate is less than 

the critical rate; whereas the well captures water from both streams when the pumping 

rate is greater than the critical rate. The latter case is of more interest to us from a water 

management perspective because one can compare the percentages of water extracted 

from two streams. Thus we will focus on this case in the following discussion. 
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Figure 3.6 The normalized maximal capture zone without extracting water from the 
down-gradient stream versus the normalized well location, where the normalized 
maximal capture zone is defined by the ratio of the length of AB over the distance 
between two streams. Low-permeability streambeds are not present. 
 

 

3.5.1.2 Capture zone when the pumping rate is greater than the critical rate 

For this case, there are two stagnation points located at the xD=1 and the 

coordinates of those stagnation points are obtained from Eq. (3.10). Figure 3.7 shows the 

flow net and the capture zone of this case for aD=0.9 and QD=0.05. In this figure, AB 

and CD are the intercepted reaches of stream 1 and stream 2 respectively, where C and D 

are the two stagnation points; and W is the well location.  The streamline values of AC 

and CW are s
D1ψ and s

D2ψ , respectively. The streamline values of BD and DW are -

s
D1ψ and - s

D2ψ because of the symmetry of the capture zone. The s
D1ψ can be found from 
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Figure 3.7 Flow net and the envelope of the capture zone when the pumping rate is 
greater than the critical pumping rate. Two stagnation points located at stream 2 are 
found. Low-permeability streambeds are not present. 
 

 

Eq. (3.6) by letting xD=1 and , where means approaching the 

stagnation point from the side of (curve AC). Similarly, 

+→ DD yy 0
+→ Dyy 0

Dyy 0> s
D2ψ  can be found from 

Eq. (3.6) by letting xD=1 and , where means approaching the 

stagnation point from the side of

−→ DD yy 0
−→ Dyy 0

Dyy 0< (curve CW). The pumping induced depletions 

from stream 1 and stream 2 are proportional to 2 s
D1ψ and 2 s

D2ψ , respectively. Therefore, 

the ratio of pumping induced depletions from stream 1 and stream 2 becomes 

s
D

s
DDD QQ 2121 // ψψ= .         (3.27) 
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 Since , one has DDD QQQ =+ 21

)/( 2111
s
D

s
D

s
DDD QQ ψψψ += , .    (3.28) )/( 2122

s
D

s
D

s
DDD QQ ψψψ +=

Figure 3.8 shows the normalized flux from stream 1, , as a function of the 

normalized well location for three various normalized pumping rates of 0.133, 0.265, 

and 1.326. The other normalized flux, , can be easily derived from this figure 

based on Eq. (3.28). A number of points can be observed from Figure 3.8. First, this 

figure shows that the normalized flux decreases with  faster than the linear fashion, 

meaning that the magnitude of the slope of the curve increases with .  Second, a larger 

Q

DD QQ /1

DD QQ /2

Da

Da

D will lead to a smaller normalized flux from stream 1 at a given well location . 

Third, when Q

Da

D is larger, the pumping well will start to extract water from stream 2 at a 

much smaller , reflected by the early departure of the curve from the upper horizontal 

axis in Figure 3.8. Since the aquifer thickness and the distance between the streams are 

fixed in this calculation, is directly related to , and a larger implies that the 

pumping rate is relatively greater than the regional flow and vice versa.      

Da

DQ qQ / DQ
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Figure 3.8 The normalized flux across stream 1 versus the normalized well location for 
three normalized pumping rates. Low-permeability streambeds are not present. 
 

 

3.5.2 Capture zone between two streams with low-permeability streambeds 

For this case, we use the same default values as in the case without streambeds, 

i.e., a 30m thick aquifer bounded by two parallel streambeds at a distance of 2000m, 

except that q is assumed to be zero here.  Two primary factors governing flux across a 

streambed are the hydraulic conductivity and the thickness of the streambed.  These two 

properties are lumped into a hydraulic conductance defined as C1=K1/BB1 and C2= K2/B2B  

for streambed 1 and streambed 2, respectively. The hydraulic conductance of the aquifer 

is defined as C=K/L here.  Notice that the thickness of the streambed is often at the sub-
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meter scale and the hydraulic conductivity values of the streambeds are at least two 

orders of magnitude smaller than that of the aquifer, thus the hydraulic conductance of 

the streambed might be smaller, equal, or greater than that of the aquifer, depending on 

the field situations (Cardenas and Zlotnik, 2003; Chen and Chen, 2003a, 2003b). 

Figure 3.9 shows the normalized fluxes across streambed 1 as functions of the 

normalized well location for C1/C2 of 0.1, 1, and 10, respectively. C2/C is fixed to be 1 

and Q is 500m3/d in Figure 3.9.   A number of interesting points have been observed 

from this figure. First, all three cases in Figure 3.9 show nearly linear decrease of flux 

across streambed 1 over aD. This is somewhat different from Figure 3.8 when the 

regional flow is present. It appears that existence of the regional flow will result in 

curved streamlines in the aquifer to the pumping well, leading to that the flux from 

streambed 1 decreases over aD slower than the linear rate. When the regional flow does 

not exist, streamlines in the aquifer are straight to the pumping well, leading to a linear 

decrease of flux from streambed 1 over aD. Second, when C1/C2 equals one, the 

magnitude of the slope of the flux versus aD is nearly unity. Third, for the cases of C1/C2 

equaling 0.1 and 10, the magnitudes of slopes of the flux versus aD are nearly identical, 

and are less than unity. For example, the magnitudes of slopes for the cases of C1/C2 

equaling 0.1 and 10 are approximately 0.6 in Figure 3.9. This indicates that the slope of 

the curve is governed by the ratio of C1/C2.  Similar conclusions can be drawn for fluxes 

from streambed 2. A greater ratio of C1/C2 indicates easier withdrawal of water from 

stream 1 for a given aD. For example, when aD = 0.1, 38.8%, 12.5%, and 9.3% of  
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Figure 3.9 The normalized flux across streambed 1 versus the normalized well location 
for C1/C2 equaling 0.1, 1, and 10, respectively. C1 and C2 are the hydraulic conductances 
of the streambeds 1 and 2, respectively.    
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Figure 3.10 The normalized well location versus C1/C2 under the condition that fluxes 
across streambeds 1 and 2 are equal. C1 and C2 are the hydraulic conductances of the 
streambeds 1 and 2, respectively. 
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extracted water come from stream 1 for the cases of C1/C2 equaling 10, 1, and 0.1, 

respectively.    

Figure 3.10 shows the normalized well location with equal fluxes from stream 1 

and stream 2 versus various ratio of C1/C2 for a fixed Q of 500m3/d in a semi-log plot. 

When C1/C2 is less than unity, aD must be closer to stream 1 to obtain equal fluxes from 

both streams because it is harder for water to flow across streambed 1.  It is interesting to 

observe that the increase of aD versus C1/C2 follows a three-segment development 

including a steep segment at the beginning, followed by a flat segment and a final steep 

segment.  

The three-segment curve shown in Figure 3.10 implies a few features of 

streambed influence on stream depletion. When the values of hydraulic conductance of 

the two streambeds are off by more than an order of magnitude, the stream depletion is 

quite sensitive to the well location which has to be sufficiently close to the streambed 

with the lower hydraulic conductivity for extracting equal flows from both streams. This 

corresponds to the first and the third steep segments of Figure 3.10. On the other hand, if 

the values of hydraulic conductance of the two streambeds are more or less the same, or 

off by less than an order of magnitude, the stream depletion becomes less sensitive to the 

dimensionless well location which is around 0.5 for extracting equal flows from both 

streams. This corresponds to the middle flat segment of Figure 3.10. 

3.6 Summary and Conclusions 

We have developed semi-analytical method to calculate the stream depletion in 

an aquifer bounded by two parallel streams with and without any streambeds.  In the 
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case without any streambeds, we have performed capture zone analysis and presented 

the normalized maximal capture size from the up-gradient stream without extracting 

water from the down-gradient stream as a function of the normalized well location 

(Figure 3.6). This diagram can be used to determine maximum capture zone size.  We 

have also presented the normalized flux entering the aquifer as a function of the 

normalized well location for three different normalized pumping rates in the case 

without any streambeds (Figure 3.8).  For the aquifer with streambeds, we have 

presented the normalized flux as a function of the normalized well location for three 

different combinations of hydraulic conductances (Figure 3.9). Furthermore, the 

normalized well location for a well that receives equal fluxes from two streams as a 

function of different streambed hydraulic conductance ratios is also provided (Figure 

3.10). We can draw the following conclusions from this study. 

The hydraulic conductances of the low-permeability streambeds are probably the 

most important parameters affecting the capture zones. 

When the low-permeability streambeds are not present, the maximal capture size 

without extracting water from the down-gradient stream decreases with the normalized 

well location (aD) in an approximately linear fashion. The normalized flux from the up-

gradient stream decreases with the normalized well location faster than the linear 

fashion, meaning that the magnitude of the slope of the curve increases with .  Da

When the streambeds exist and the regional flow is neglected, the normalized 

flux across the up-gradient streambed varies with the normalized well location in a linear 

fashion. The magnitude of the slope of the normalized flux across the up-gradient 
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streambed versus the normalized well location is nearly unity when the hydraulic 

conductance ratio of the two streambeds is one; and the magnitude of such a slope is less 

than unity when the hydraulic conductance ratio of the two streambeds is either greater 

or smaller than one. If the normalized well location for a well receiving equal fluxes 

from two streams versus the hydraulic conductance ratio of the two streambeds is plotted 

semi-logarithmically, one will observe a three-segment trend including a steep segment 

at the beginning, followed by a flat segment and a final steep segment.  
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CHAPTER IV 

SUMMARY AND FUTURE WORKS 

4.1 Summary 

In this dissertation, we have investigated stream aquifer interaction focusing on 

stream depletion rates of various settings. We have also studied hydraulic parameters 

affecting the stream depletion rates. Solutions for drawdown in the aquifers for each case 

are presented. Capture zone analysis is performed for a pumping well in the aquifer 

between two streams.    

Chapter II considers drawdown and stream depletion caused by a fully 

penetrating pumping well near a fully penetrating stream with and without the 

streambed. General solutions of drawdown in the aquifer in the Laplace-Fourier domain 

with and without streambeds for any pumping schedules and any stream stage functions 

are presented.  We consider two general stream stage functions. For the seasonal 

fluctuation case, the stream stage is a function of time only.  For the short-term 

fluctuation case, the stream stage depends on time and distance along the stream. The 

following function: ( )cos(1)( tAthS )ω−= is used to describe the seasonal stream stage 

variation. We present semi-analytical stream depletion rates (in time domain) using a 

numerical method to solve for stream depletion caused by stream stage fluctuations and 

using an analytical method to solve for stream depletion caused by a pumping well for 

both with and without streambed sediments.      

Three primary factors affecting the stream depletion caused by stream 

fluctuations are the pumping rate, the frequency of the flood, and the stream length that 



 84

is used to evaluate the stream depletion. The period of stream fluctuation plays a crucial 

role in affecting the stream depletion. A shorter period yields a grater rate of stream 

depletion caused by stream stage fluctuation.  

If a streambed exist, it can greatly reduce stream depletion caused by stream 

stage fluctuations; however, when pumping time is long enough, the stream depletion 

rate caused by the extraction well is insensitive to the streambed parameters. 

For the short-term floodwave fluctuation, general solutions of drawdown in the 

aquifer in the Laplace-Fourier domain with and without streambed for any pumping 

schedules and any stream stage functions are presented. The following function: 

Dt
vty

S e
Dt

Atyh 4
)(

0

2

2
),(

−
−

=
π

is used to describe the short-term stream stage fluctuations. An 

analytical stream stage depletion rate in real time domain is presented for the case 

without the streambed. The stream depletion rate for the case with the streambed is 

solved in the same manner as the seasonal fluctuation case.   

We have derived the analytical solutions of the stream depletion rates at early 

and late times caused by stream fluctuation following a cosine function. It is interesting 

to point out that the late time stream depletion decays with time as a fashion that is 

inversely proportional to the square root of time. This implies that the stream depletion 

caused by stream stage fluctuation can be neglected for a stream aquifer system that has 

years to equilibrate. At late times, the pumping well becomes the dominating factor for 

influencing the stream depletion. At early time, however, the contributions from both the 

stream stage fluctuation and the pumping well have to be considered. 
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The drawdown and stream depletion rate can be written in two separated terms 

and can be solved independently. If one would like to add additional component, it can 

be done by superposition another term in the existing result.  

In Chapter III, we have developed semi-analytical method to calculate the stream 

depletion in an aquifer bounded by two parallel streams with and without any 

streambeds.  In the case without any streambeds, we have performed capture zone 

analysis and presented the normalized maximal capture size from the up-gradient stream 

without extracting water from the down-gradient stream as a function of the normalized 

well location (Figure 3.6). This diagram can be used to determine maximum capture 

zone size.  We have also presented the normalized flux entering the aquifer as a function 

of the normalized well location for three different normalized pumping rates in the case 

without any streambeds (Figure 3.8).  For the aquifer with streambeds, we have 

presented the normalized flux as a function of the normalized well location for three 

different combinations of hydraulic conductances (Figure 3.9). Furthermore, the 

normalized well location for a well that receives equal fluxes from two streams as a 

function of different streambed hydraulic conductance ratios is also provided (Figure 

3.10). We can draw the following conclusions from this study. 

The hydraulic conductances of the low-permeability streambeds are probably the 

most important parameters affecting the capture zones. 

When the low-permeability streambeds are not present, the maximal capture size 

without extracting water from the down-gradient stream decreases with the normalized 

well location (aD) in an approximately linear fashion. The normalized flux from the up-
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gradient stream decreases with the normalized well location faster than the linear 

fashion, meaning that the magnitude of the slope of the curve increases with .  Da

When the streambeds exist and the regional flow is neglected, the normalized 

flux across the up-gradient streambed varies with the normalized well location in a linear 

fashion. The magnitude of the slope of the normalized flux across the up-gradient 

streambed versus the normalized well location is nearly unity when the hydraulic 

conductance ratio of the two streambeds is one; and the magnitude of such a slope is less 

than unity when the hydraulic conductance ratio of the two streambeds is either greater 

or smaller than one. If the normalized well location for a well receiving equal fluxes 

from two streams versus the hydraulic conductance ratio of the two streambeds is plotted 

semi-logarithmically, one will observe a three-segment trend including a steep segment 

at the beginning, followed by a flat segment and a final steep segment.  

4.2 Future Works 

A long term goal of this study is to implement these solutions to a GIS based 

model which includes other hydrological data to do real time calculation for suitable 

pumping rates to sustain the hydrological and ecological system. 

 In Chapter II, a section of stream used to evaluate the total seasonal stream 

depletion is a constant with an arbitrary value. Substituting this value with capture zone 

size of the pumping well would yield more accurate results.  For a short-term case, 

finding a better function to simulate flood wave or solving the dynamic floodwave 

model is the next step.     
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In Chapter III, we assume stream stages are constant.  Allowing the stream stage 

to fluctuate would represent a more realistic case. Comparing issues such as partial 

penetration or size of stream of stream-aquifer-stream system to a steam aquifer system 

would be interesting. 
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APPENDIX A 

 

Appendix A show detailed derivation of Ds of the system without any streambed.  

Converting heads to drawdown, converting variables to dimensionless variables, and 

apply Laplace transform to Eqs. (2.1) to (2.4), one obtains 
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Conducting Fourier transform along y-axis to Eq. (A1),  
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General solutions of Eq. (A4) are  

]sinh[]cosh[ 21 DDD xcxcs ββ += , for WDD xx ≤≤0                       (A5) 

Dx
D ecs β−= 3 , for                                                              (A6)  DWD xx <

where .  2
yfp +=β

Conducting Fourier transform to Eq. (A3), the result is   

SDySDDDDD HfpHtyxs ˆ2)()(),,0( === πδ                        (A7) 

From evaluation Eq. (A5) at 0=Dx and set it equal to Eq. (A7), one obtains  
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1 =                                                                               (A8) 
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Drawdown should be continuous at the well, WDD xx = , evaluate Eqs.(A5) and (A6) at 

the well and set them equal to each other, 

WDx
WDWD ecxcxc βββ −=+ 321 )sinh()cosh(                     (A9) 

The first divertive of drawdown is discontinuous at WDD xx = .  Taking integration of Eq. 

(A4) from  to , where dx is an infinitely small interval, the result is dxxWD − dxxWD +   
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Substitute Eqs. (A5) and (A6) into Eq. (A10),  
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x Qxcxcec WD πβββββ β          (A11) 

Solving Eqs. (A9) and (A11) for c2 and c3, the results are  
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Substituting c1, c2, and c3 into Eqs. (A5) and (A6), the drawdown in the aquifer is show 

in Eqs. (2.5) and (2.6). 
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APPENDIX B 

 

Appendix B shows detailed derivation of Ds of the system with streambeds.   

Converting heads to drawdown, converting variables to dimensionless variables, and 

Laplace transforming Eqs. (2.16), (2.17), (2.18), (2.19), and (2.21), one obtains 
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Solution of Eq. (B1) is  

( ) ( ))(sinh)(cosh 21 DDDDD BxpcBxpcs ′++′+=′ μμ  (B6) 

Fourier transform to Eqs. (B3) to (B5) 
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Let , the solutions of Eq. (2
yfp +=β B7) are  

]sinh[]cosh[ 43 DDD xcxcs ββ += , for WDD xx ≤≤0  (B10) 

Dx
D ecs β−= 5 , for  (B11) DWD xx <

Substituting c1 and c2 into Eq. (B6), one obtains expressions for drawdown in the 

streambed in Fourier domain.  Detailed derivation of c1, c2, c3, c4, and c5 is shown below. 

Fourier transform Eq. (B10), 

( ) ( ))(sinh)(cosh 21 DDDDD BxpcBxpcs ′++′+=′ μμ  (B12) 

Fourier transform Eq. (B2), 
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Substitute   in Eq. (DD Bx ′−= B12) and set it equal to Eq. (B13), then 
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Evaluate Eqs. (B10) and (B11) with condition of Eq. (B8), 
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Now use continuity of drawdown at the well )()( DWDDDDWDDD dxxxsdxxxs +==−=

( ) ( ) WD
WDWD ecxcxc ββ =+ 543 sinhcosh xβ−  (B17) 

Now use the discontinuity of the first derivative at the well 
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We have five unknowns and five Eqs. (B14) to (B17) and (B20), so we can solve for c1, 

c2, c3, c4, and c5. 
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Substituting 1c , 2c , 3c , 4c and 5c into Eqs. (B10), (B11), and (B12), the results are shown in 

Eqs. (2.22), (2.23), and (2.24). 
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APPENDIX C 

 
Appendix C show determination of ωn and nμ . 
 

The one-dimensional steady-state flow equation in streambed 2 is 
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Considering the boundary condition of 0)1( 22 =+= DDD Bxs , one has 
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where 2λ  is a constant. From the boundary condition Eq. (3.3.) at xD=1, one has 
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Substituting Eq. (C2) into Eq. (3.3.) and applying (C3), one obtains  
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 Considering the orthogonality of the sine function in (C4), one has 
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or 
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The one-dimensional steady-state flow equation in the streambed 1 is 
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The general solution to this equation by taking into account the boundary 

condition is  0)( 11 =−= DDD Bxs

)( 111 DDD xBs += λ .         (C8) 

From Eq. (3.3.) at xD=0, one has 
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Substituting Eq. (C8) into Eq. (3.3.) and applying Eq. (C9), one gets 
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Similarly, using the orthogonality of the sine function in (C10) results in 

( ) ( )nnn
DB

μωβμ cossin1
1

1

= ,        (C11) 

or 
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 Expanding )tan( nn μω +  in Eq. (C6) to terms of )tan( nω and )tan( nμ , and 

considering Eq. (C12) will result in 

( ) n
nDD

DD
n BB

BB ω
ωββ
ββω

)1(
)(tan 2

2211

2211

−
+

=        (C13) 

nω  is then be computed numerically by solving Eq. (C13). After that, nμ is 

obtained from (C12) as . )(tan 22
1

nDn B ωβμ −=
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