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ABSTRACT 

 

 

Investigation of the Utility of the Vegetation Condition Index (VCI) as an Indicator of 

Drought. (December 2007) 

Srinivasan Ganesh, B.Tech., Indian Institute of Technology, Bombay 

Chair of Advisory Committee: Dr. Steven Quiring 

 

The relationship between the satellite-based Vegetation Condition Index (VCI) 

and frequently used agricultural drought indices like Palmer Drought Severity Index, 

Palmer’s Z-index, Standard Precipitation Index, percent normal and deciles was 

evaluated using a comparative correlation analysis. These indices were compared at the 

county level for all 254 Texas counties for the growing-season months (March to August) 

using monthly data from 1982-1999. The evaluation revealed that the VCI was most 

strongly correlated with the 6-month SPI and the PDSI. This suggests that the VCI is 

most similar to drought indices that account for antecedent moisture conditions. There 

was also significant spatial variability in the magnitude of the correlations between the 

VCI and the drought indices. The reasons for this variability were explored by utilizing 

additional data such as irrigation, prevalent landuse/landcover, water table depth, soil 

moisture levels and soil hydrologic/hydraulic properties. The results demonstrated that 

mean annual precipitation, soil moisture, landuse/landcover, and depth of the water table 

accounted for a significant amount of the spatial variability (explaining more than 75% of 

the variance) in the relationship between the VCI and traditional drought indices. 
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1. INTRODUCTION 

1.1 Significance of Drought 

Drought is a recurrent phenomenon that has a major impact on ecosystems, 

natural habitats, and agriculture. Drought is acknowledged as United States’ costliest 

natural hazard causing, on average, US$6-8 billion in damages annually (Wilhite 2000).  

The major droughts of the 1930s and 1950s in the Great Plains and southwestern United 

States had severe environmental and social impacts causing great agricultural damage 

and population exodus and leaving behind exhausted soils and depressed local economies 

(Worster 1985). Unlike other natural hazards, like hurricanes, where destruction occurs 

over a short period of time, drought is a phenomenon which develops slowly over a long 

period of time. Drought also can affect vast areas, and it leaves behind lingering effects in 

its aftermath. The ten major droughts/heatwaves in the period 1980-2003 were 

responsible for almost 42% of the weather-related monetary losses which was more than 

the losses from hurricanes and tropical storms (28%) (Ross 2003). The economic and 

social impacts of drought are spread over a long period of time, thus making drought the 

worst of all natural hazards (Ross 2003). 

1.2 Drought Defined 

 The wide variety of social and economic sectors affected by drought, its diverse 

spatial and temporal distribution, as well as different causes for the onset of drought have 

made it difficult to develop a single definition (or scale of measurement) for drought. The 

American Meteorological Society categorizes drought into four broad categories (Heim 

Jr. 2000): meteorological or climatological drought which pertains to the atmospheric 
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conditions leading to the absence or reduction of precipitation over a length of time, 

agricultural drought which is the reduction of crop-yield due to below average 

precipitation, hydrological drought occurs when the decreased precipitation leads to 

reduced streamflow, groundwater supply and lake and reservoir levels, and 

socioeconomic drought caused by demand significantly greater than supply of some 

economic good (e.g., hydroelectric power) affected by the other three drought types 

defined above.  The root cause of drought, for all four types, is a prolonged deficit of 

precipitation (Kogan 1998). In this study we adopt the remote sensing perspective taken 

by Tucker (1987) in which drought is defined as a period of reduced plant growth as 

compared to the historical average, caused by below normal precipitation.  

1.3 Problem Statement 

This study evaluates the ability of the satellite-based Vegetation Condition Index 

(VCI) to monitor and quantify meteorological/agricultural drought in Texas.  It will 

compare the VCI to traditional station-based drought indices in a region routinely 

affected by drought. Additionally the study will investigate how local variables like 

landuse, soil properties and depth-to-water table influence the strength of the correlations 

between the VCI and traditional station-based indices.  The methodology for identifying 

the onset and quantifying the severity of drought using satellite-based vegetation indices 

rests on the assumption that drought causes the photosynthetic capacity of vegetation to 

decrease and that this decrease can be observed and quantified by satellite sensors.  This 

assumption is justified by previous studies that have demonstrated that there is a strong 

relationship between vegetation health (vigor), as measured by AVHRR (Advanced Very 
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High Resolution Radiometer) sensor (or many other optical satellites), and moisture 

conditions (Goward 2002; Nicholson 1994; Wang 2001). 

1.4 Thesis Objectives 

The main objective of this study is to investigate the suitability of the satellite-

based Vegetation Condition Index (VCI) as an effective substitute for traditional station-

based indices like the Palmer Drought Severity Index (PDSI) and the Standard 

Precipitation Index (SPI) for monitoring drought in the state of Texas. Specifically this 

study will: 

1. Compare the performance of the satellite-based VCI with traditional station-based 

indices like the Palmer Drought Severity Index (PDSI) and the Standard Precipitation 

Index (SPI).  In particular, this study will allow us to evaluate the accuracy of the VCI for 

determining the onset and severity of agricultural drought in Texas. Questions that are 

addressed are:  What is the relationship between station-based drought indices and 

satellite-based drought indices? What are the strengths and weaknesses of both 

approaches (satellite versus station)? Where is it inappropriate to use satellite-based 

indices? 

2. To investigate the spatial pattern observed in the correlation between the VCI and the 

ground-based indices by incorporating additional datasets such as soils, irrigated area and 

landuse/landcover data to determine which of these variables significantly influence the 

correlation. 
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1.5 Significance of the Research 

Texas, with 22.5% of land under agriculture, ranks number two in the United 

States in terms of value of agricultural products sold and it ranks first in terms of the 

value of livestock, poultry and other products. Studies have shown that Texas is visited 

by serious drought at least once in a decade (Riggo 1987). The 1998 drought caused a 

monetary loss of $5.8 billion (Chenault 1998) to the state, which is about 39% of the 

annual agriculture revenue of the state.  The damage caused by the major drought of the 

1950s and the droughts of the 1980s and 1990s exposed the need to develop research 

tools to detect the early onset of drought and develop appropriate drought mitigation 

policies.   

This research will evaluate a remote sensing-based approach for assessing, 

monitoring and managing drought at a relatively fine spatial (8 km) resolution. Such a 

remote-sensing-based model would provide the farming community, water managers and 

government agencies a high-resolution tool for assessing, monitoring and managing 

drought. 
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2. REVIEW OF DROUGHT INDICES 

 

2.1 Drought Indices 

 Once the type of drought is defined, the magnitude and duration of the drought 

can be quantitatively expressed using a drought index. A drought index is a composite of 

various hydrological and meteorological parameters like rainfall, temperature and runoff. 

A drought index provides a standardized method for comparison of the moisture 

conditions between different regions or time periods by business and government 

agencies. Drought indices have been used as an early drought-onset warning system 

(Lohani 1997), to predict crop yield (Kogan 1998; Kumar 1997), to compare droughts in 

different regions (Alley 1985; Dai 2004; Kumar 1997), to determine the distribution of 

relief in drought-affected areas (Wilhite 1986), and in calculating the probability of 

drought termination (Karl 1987). Traditional station-based drought indices like the 

Palmer Drought Severity Index (PDSI and the associated Z-index) (Palmer 1965) and the 

Standard Precipitation Index (SPI) (McKee 1993) are used extensively for drought 

monitoring and forecasting. These indices described in the following section. 

2.1.1 Palmer Drought Severity Index (PDSI) and the Z-index 

The PDSI, introduced by Palmer (1965) is one of the most commonly used 

meteorological drought indices in the US (Heim Jr. 2000).  The PDSI is calculated based 

on daily precipitation, daily temperature and the Available Water Holding Capacity 

(AWHC) of the soil. It is a standardized measure of moisture conditions, with an 

approximate range of -6 (extremely dry) to +6 (extremely wet). The PDSI is calculated 
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using a two-layer, bucket-type soil moisture model. The PDSI assumes that runoff begins 

after both top and bottom layers are saturated. Evapotranspiration is assumed to take 

place at the potential evapotranspiration rate determined by the classic Thornthwaite 

model (Thornthwaite 1948) and reduction in soil moisture occurs when 

evapotranspiration exceeds precipitation. 

 The Z-index is an intermediate term in the PDSI, and it is a measure of the surface 

moisture anomaly for the current month in relation to the normal moisture conditions 

(determined from at least 30 years of data). The Z-index, Zi  is given by the product: 

Zi = diKi        (1)                                                                                                  

where di is the departure from the normal moisture for the current month, and Ki is the 

Climatic Characteristic (i.e., a weighing factor to adjust for the severity of the surplus (or 

deficit of moisture relative to the local climatic conditions). Ki is a function of location 

and time of the year as apparent from its constituent formula: 

'*
67.17

i

i

i K
KD

K
∑

=                                                            (2) 

where iD  is the mean of the absolute values for each month of the year. 

 

The PDSI, for any given month i, denoted by Xi  is given as: 

Xi = (Zi/3) + 0.897*Xi-1                                                                                      (3) 

where the coefficients 1/3 and 0.897 are empirical constants known as Duration Factors 

which determine the duration that a particular spell will last. 

 As apparent from their formulae, both the Z-index and the PDSI utilize the same 

data, PDSI accounts for antecedent moisture conditions while the Z-index only uses 

conditions for the current month.  
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Thus, the Z-index is a better measure of agricultural drought because it responds 

to short-term (e.g., monthly) fluctuations in soil moisture (Karl 1986). PDSI and the Z-

index are calculated using both temperature and precipitation and as much as 30% of 

PDSI’s variation is due to air temperature (Dai 2004). 

2.1.2 Standard Precipitation Index (SPI) 

The SPI was introduced by McKee (1993) to measure the precipitation anomalies 

over different time scales so as to account for the impact of drought on the availability of 

soil moisture, groundwater and reservoir flow. For a given location, the historic 

precipitation record is obtained and fitted to a probability distribution and transformed 

into a Gaussian distribution in order to make the mean SPI at that location zero. For any 

of the time scales, a period is defined as a drought if the SPI is continuously negative and 

falls below -1 (McKee 1993) indicating a moderately dry period. The end of the drought 

is marked by the SPI values becoming positive. Summation of the SPI values within this 

time period yields the intensity of drought. 

A number of studies (Gutman 1999; Kogan 1998; Kumar 1997) have found that 

the Pearson III distribution is the most well-suited for calculating the SPI, and it was 

adopted in this study.  

2.2 Limitations of Traditional Drought Indices for Monitoring Drought 

The spatial resolution of traditional drought indices depends on the density of the 

distribution of meteorological stations. Also, meteorological stations can suffer from 

incomplete data acquisition (missing data) and most meteorological stations do not 

provide data in real time.   
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The data collected by the meteorological stations are location-specific. Thus it 

may not adequately reflect the true spatial variability of the phenomenon being measured 

(in this case, drought). The resultant indices computed using station-based data suffer 

from the above generic limitations. In addition, there are a number of index-specific 

limitations that are discussed in the following sections. 

2.2.1 Limitations of the PDSI 

Though very widely used, the PDSI has a number of limitations that  are 

described below. Potential evapotranspiration (ET) is calculated in the PDSI using 

Thornthwaite’s method (Alley 1984). Jensen (1990) studied various methods of 

estimating ET under a variety of climatic conditions and determined that the 

Thornthwaite equation was the most poorly performing method.  

Palmer (1965) used a two-layer lumped parameter model that assumes a single 

water holding capacity for the top two layers regardless of the size of the area. For 

example, the soils in a climatic division (7000 to 100,000 km2) are represented by a 

single parameter. The PDSI model fails to incorporate variation of soil properties which 

occur at a much smaller scale (Narsimhan 2004). 

Studies have shown that the PDSI is not a good measure of agricultural drought, 

although it does correlate well with soil moisture content during the warm season (Alley 

1985; Dai 2004). Since the PDSI is based on a water balance model, it is more suited to 

be a measure of hydrological drought (Alley 1985; Dai 2004). Also, PDSI does not take 

into account the influence of soil type, landuse and management practices in computing 

runoff. 
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2.2.2 Limitations of the SPI 

The SPI also suffers from a number of limitations. The SPI does not account for 

soil properties, landuse and temperature deviations that are critical in influencing 

agricultural drought (Narsimhan 2004). Also, vegetation utilizes the available soil 

moisture at the root level rather than the entire precipitation. Hence, a soil-moisture-based 

drought index is more appropriate. Bhuiyan (2006)has also shown that external factors 

like aquifer-based water supply can cause areas of disagreement between vegetative 

drought and SPI-classified drought. SPI is calculated only using precipitation and so it 

does not take into account the atmospheric demand (PET) for moisture. 

2.3 Satellite-based Vegetation Indices 

Satellite-based indices offer significant advantages over traditional station-based 

indices because satellite-based indices provide a consistent spatial coverage and higher 

spatial resolution. Satellites provide regional coverage over wide scales and are thus able 

to capture the spatial variability of the phenomenon under observation providing 

information on a real-time basis. The two most widely used satellite-based vegetation 

indices are the NDVI and the VCI and they are described in the following sections. 

2.3.1 Normalized Difference Vegetation Index (NDVI) 

The Advanced Very High Resolution Radiometer (AVHRR) instrument is borne 

on board the NOAA series of Polar-orbiting Operational Environmental Satellites 

(POES). The AVHRR is a five channel passive scanning radiometer that is sensitive to 

light in the visible (channel 1 = 0.58-0.68 µm), near-infrared (channel 2 = 0.75-1.0 µm), 

mid-infrared (channel 3A = 1.58-1.64 µm, channel 3B = 3.55-3.93 µm), and thermal 
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infrared (channel 4 = 10.3-11.3 µm, channel 5 = 11.5-12.5 µm) regions of the spectrum. 

The NDVI is based on the difference between maximum absorption in the red spectral 

region and maximum reflectance in the near infrared spectral region and is calculated 

using only channel 1 (visible – red) and channel 2 (near-infrared radiation (NIR)) as 

shown in Equation (4). 

)21(

)21(

CHCH

CHCH
NDVI

+

−
=      (4) 

Green and healthy vegetation show large NDVI values while rock and bare soil 

have nearly similar reflectance in the visible and near-infrared (NIR) ranges and thus 

have an NDVI index close to zero. Clouds, water and snow, however, have greater 

reflectance in the visible than the NIR and hence yield negative NDVI values. Thus 

NDVI has become an important tool for mapping changes in vegetation cover and 

gauging the impact of environmental phenomena such as drought and plant disease (Ichii 

2002; Leprieur 2000).  

Satellite-based vegetation indices (especially NDVI-based indices) have 

frequently been used to study drought (Anyamba 2001; Kogan 1990, 1995, 1998). 

Gutman (1990) successfully compared mid-afternoon surface temperatures and inter-

annual differences in mean monthly NDVI with corresponding differences in the Palmer 

Drought Severity Index (PDSI). Anyamba (2001) used the departure of NDVI from its 

long-term average for a particular month, as an indicator of drought conditions in Africa.  

However, a limitation of the NDVI in drought monitoring is the temporal lag 

between the rainfall event (or deficit) and its manifestation in the vegetation health and 

the consequent change in the NDVI values (Wang 2001). This has been addressed to 

some extent in recent studies. Yingxin (2007) conducted a five-year history investigation 
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of MODIS NDVI and NDWI (Normalized Difference Water Index), an index computed 

using near infrared and short wave infrared which tracks the water content and concluded 

that the NDWI was more sensitive than the NDVI to the onset of drought and drought 

magnitude and also responded more quickly in a homogeneous grassland land cover 

study area.  

2.3.2 Vegetation Condition Index (VCI) 

Description 

The Vegetation Condition Index (VCI), a pixel-wise normalization of NDVI over 

some time period, was developed by Kogan (1990; 1995) to make a relative assessment 

of changes in the NDVI signal by filtering out the contribution of local geographic 

resources to the spatial variability of NDVI. The VCI is computed as: 

)/()(*100 minmaxmin NDVINDVINDVINDVIVCI ii −−=                              (5) 

where NDVIi is the smoothed weekly NDVI, NDVImax, and NDVImin are maximum and 

minimum NDVI, respectively, for that pixel and 10-day period from multiyear smoothed 

NDVI data and i defines the 10-day interval. NOAA-AVHRR derived NDVI and its 

alterations (e.g., Standardized NDVI, NDVI anomaly) have been used in a number of 

studies to monitor areas prone to drought at regional and local scales (Bayarjargal 2006; 

Nicholson 1994). NDVI has also been shown to be an effective indicator of vegetation 

response to drought in the Great Plains of the USA (Ji 2003). However NDVI cannot take 

into account differences due to the productivity of the local ecosystem in order to 

determine vegetation health. For example, low NDVI values are expected in arid regions, 

while tropical rainforests show high NDVI values, even in relatively dry seasons. These 

NDVI differences represent the difference in local ecosystem resources and not the 
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weather.  This defect is addressed by the VCI. The VCI is an indicator of the relative 

healthiness (vigor) of the vegetation in response to weather with respect to the 

ecologically defined minimum and maximum limits. The VCI reduces noise in AVHRR 

data and increases the vegetation-response signal.   

Studies Using the VCI 

A study in Africa involving the use of VCI to model crop yield and detect the 

early onset of drought  demonstrated that the spatial and temporal characteristics of 

drought can be monitored by use of the VCI (Kogan 1998). Gitelson (1998) used VCI-

derived-vegetation density data to quantitatively assess vegetation state and productivity 

over large regions. The VCI was demonstrated to be an accurate assessor of unfavorable 

vegetation conditions particularly related to drought. Dabrowska-Zielinska (2002)  used a 

combination of VCI and thermal indices to predict crop yield and identify critical 

growing periods in the crop cycle in Poland. Bhuiyan (2006) used the VCI to delineate 

vegetative drought zones in the Aravalli region (India) where the traditional SPI failed to 

detect drought due to interference of aquifer-based groundwater. Wan (2004)  used a 

combination of VCI and thermal indices in the southern Great Plains of US to develop a 

near-real time drought-monitoring approach called Vegetation Temperature Condition 

Index (VTCI). This comprehensive approach was successfully validated using in situ 

precipitation data. 

Limitations of the VCI 

Some studies have shown that the VCI alone is not a reliable tool for the 

monitoring of drought. Singh (2004) in a study region in Uttar Pradesh, India found that 

the VCI showed depressed (lower than expected) values in wet months following a 
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drought because the sudden increase in precipitation damaged crops and flooded 

agricultural fields. Thus, even though the ground was very wet, the vegetation was 

stressed. In such a case, the VCI mistakenly indicates that a drought is occurring. 

Bayarjargal (2006) compared satellite-based vegetation indices and traditional station-

based drought indices and found that there was no agreement regarding the spatial extent 

of the drought among the two. The study also points out that it is difficult to identify the 

most reliable drought index because of the low spatial density of ground-based 

meteorological stations. Vicente-Serrano (2007) reported that VCI correlation with 

traditional drought indices like SPI varied with landcover type and the highest 

correlations were found in locations where the primary land-use was non-irrigated 

agriculture. Vicente-Serrano (2007) also reported that correlations between the VCI and 

traditional station-based drought indices decreased during extremely wet periods since 

vegetation cannot use all of the precipitation (i.e. they have an upper limit), while the 

traditional drought indices do not have an upper limit. The study also reports that the type 

of the vegetation affects the correlation. For example, deep-rooted forests can tap into 

groundwater and thereby mitigate the effect of drought conditions.   
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3. METHODOLOGY 

 

3.1 Study Area 

The state of Texas has an area of 678,051 km² and extends from latitude 25° 50' N 

to 36° 30' N and from longitude 93° 31' W to 106° 38' W. Texas has 10 climatic regions, 

14 soil regions, and 11 distinct ecological regions. It is a major industrial and agricultural 

state leading in the production of oil, cattle, sheep and cotton. All 254 counties of the 

state of Texas were used in this study. 

3.2 Data Preparation 

3.2.1 Temperature and Precipitation 

Monthly precipitation and temperature grids for the period 1982 to 1999 were 

obtained from the Oregon State University PRISM group (http://prism.oregonstate.edu). 

These data have a spatial resolution of 2.5-arcmin (4 km) and contain monthly values in 

ASCII format. These data were used as inputs in the calculation of the monthly PDSI, 

SPI, Z-index, percent normal and deciles using a Fortran program. These indices’ values 

were spatially averaged countywise by calculating the bounds of each county and 

averaging the interior pixel values. Figure 1 shows the spatial variation of the mean 

annual precipitation (spatially averaged countywise) over Texas. 
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Figure 1 Spatial variation of mean annual precipitation across Texas 

 

3.2.2 Available Water Holding Capacity (AWHC)  

The Available Water Holding Capacity (AWHC) data for the US were obtained 

from the National Resources Conservation Service (NRCS) vendor’s website 

(http://www.soilinfo.psu.edu/index.cgi?soil_data&conus&data_cov&awc&datasets&lam) 

in a raster format (1 km spatial resolution). Using this, AWHC values were aggregated to 

county level for Texas using a Texas county shapefile as a zone file and computing the 

zonal statistical average for the AWHC on the ArcGIS platform. The latitude of each 

Texas county was calculated by determining the centroid of each county’s polygon. This 
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information is a necessary input to the Fortran program computing the drought indices. 

Figure 2 depicts the spatial variation of mean AWHC across Texas.   

 

Figure 2 Spatial variation of mean AWHC across Texas 

 

3.2.3 VCI 

NDVI imagery at 8-km spatial resolution and 10 day temporal resolution was 

obtained from archives at the Goddard Earth Sciences, Distributed Active Archive Center 

(GES-DAAC) (http://daac.gsfc.nasa.gov). These images have already been 

atmospherically corrected for Rayleigh scattering and ozone absorption. After 

determining the maximum and minimum values of the NDVI over our temporal period of 

study (1982-1999), 10-day VCI values were computed for each of the months using 
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Equation (5) applying the Band Math tool in the ENVI software platform. These values 

were re-scaled to monthly VCI data by averaging the associated 10 day composites. 

Finally, traditional drought indices (namely the Z-index, PDSI, 1-, 2-, 3-, 6-, 9-, 

12-, 24-month SPI, percentile normal and deciles) and the VCI were extracted and 

compared during the months representing the period of maximum vegetation growth, that 

is, from March to August. This was done because the VCI, being an indicator of 

vegetation vigor, is only useful for monitoring drought conditions during the growing 

season (Vicente-Serrano 2007). Correlations between the VCI and each of the traditional 

drought indices were calculated using a linear regression model (Quiring 2003). The VCI 

validation statistics for each county against each of the traditional drought indices were 

then evaluated using the coefficient of determination (R2). The overall model 

performance statistic was computed by taking the average R2 of all the counties. 

 In order to investigate the spatial pattern in preliminary results, a number of 

additional variables were analyzed, including percentage area under irrigation, average 

soil moisture, water table depth, soil permeability rate, soil hydrologic group, soil 

drainage and landuse/landcover characteristics. They will be described in the following 

sections. 

3.2.4 Percentage Under Irrigation 

Data on estimated amounts of groundwater used for irrigation and area (in acres) 

of irrigation on a county-by-county, basin-wise basis since 1984 were obtained. These 

were compiled from the Texas Water Development Board (TWDB) Water Use Survey 

database which was obtained from the Groundwater Availability Modeling (GAM) 

resources website under the TWDB site 
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(http://www.twdb.state.tx.us/gam/resources/resources.htm). These data were originally 

collected from National Resources Conservation Service (NRCS formerly SCS) and 

modified by TWDB staff. These data were summarized at the county level and 

aggregated temporally and normalized by county area to obtain the percentage of the 

county that is irrigated. Figure 3 represents the spatial variation of percentage irrigated 

area across Texas. 

 

Figure 3 Spatial variation of counties’ percentage irrigated area across Texas 

 

3.2.5 Average Soil Moisture 

 A modified version of the climatic water budget (CWB) model (Mather 1978; 

Thornthwaite 1948, 1955) was used as the basis for a soil moisture computational 
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program in Fortran language developed by Hawkins (2006). This model required monthly 

temperature and monthly precipitation data (obtained from the PRISM group used earlier 

in this study) and AWHC values (in units of mm/m) were obtained from The 

Pennsylvania State University (PSU) Soil Information for Environmental Modeling 

Ecosystem Management site (http://www.soilinfo.psu.edu/indeg.cgi). These data were 

created from the STATSGO database. Soil moisture rasters (in units of mm per 1.6 m) 

were created for all of continental United States for each month of the years 1982-1999. 

Using a shapefile of counties of Texas, zonal statistics of each raster within the growing 

season (March to August) were calculated and temporally averaged to obtain the average 

soil moisture for each county over period under study (1982-1999). The spatial variation 

of the mean soil moisture across Texas is shown in Figure 4. 

 

Figure 4 Spatial variation of mean soil moisture across Texas 
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3.2.6 Soil Properties 

 The STATSGO soil database at The Pennsylvania State University (PSU) Soil 

Information for Environmental Modeling Ecosystem Management  

(http://www.soilinfo.psu.edu/etc/statsgolist.cgi?statename=Texas) contains a database of 

shapefiles delineating the state of Texas into Map units which are comprised of multiple 

components (unknown spatial distribution) which are further divided into vertically 

stacked map layers. This database was used to extract the soil properties variables: 

permeability rate, water table depth, hydrologic groups and soil drainage. 

Permeability Rate 

  For the component with maximum component percentage, the topmost layer was 

extracted and the average of minimum and maximum value of the range for the soil layer 

or horizon, expressed as inches/hour was assumed to be the permeability rate for that map 

unit. The shape file was rasterized and county-wise mean zonal statistics were obtained to 

get the averaged permeability rate for each county. Figure 5 depicts the spatial variation 

of the permeability rate across Texas. 
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Figure 5 Spatial variation of mean permeability across Texas 

 

Water Table Depth (m) 

  The average of the seasonal maximum and minimum values of water table depth 

for each majority component were assumed to be the water table depth for that map unit. 

The shape file was rasterized and county wise mean zonal statistics were obtained to get 

the averaged water table depth for each county. Figure 6 shows the variation of the mean 

water table depth across Texas. 
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Figure 6 Spatial variation of mean water table depth across Texas 

 

Hydrologic Groups 

 The hydrologic group of the dominant component was assumed to be the 

representative hydrologic group of the map unit. The shape file was rasterized and county 

wise majority zonal statistics were obtained to get the dominant hydrologic soil group for 

each county. The values were recoded to a nominal scale: existing categories of A = 

sandy, free draining soil, B and C = intermediate soil groups and D = clayey, poorly 

drained soils, were recoded to 1, 2, 3 and 4 respectively. Figure 7 shows the spatial 

variation of dominant hydrologic soil group across Texas. 
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Figure 7 Spatial variation of dominant hydrologic soil group across Texas 

 

Soil Drainage 

 The alphabetic codes in the drainage field of the database identify the natural 

drainage condition of the soil and refer to the frequency and duration of periods when the 

soil is free of saturation. The seven groups Well Drained (W); Excessive (E); Moderately 

Well (MW); Poorly (P); Somewhat Excessively (SE); Somewhat Poorly (SP) were 

recoded into the nominal scale groups of 1, 7,  3, 4, 6 and 5 respectively and the drainage 

group of the dominant component was assumed to be the group of the map unit. The 

shape file was rasterized and county wise majority zonal statistics were obtained to get 
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the dominant drainage group for each county. Figure 8 shows the spatial variation of 

dominant soil drainage class across Texas. 

 

Figure 8 Spatial variation of dominant soil drainage class across Texas 

3.2.7 Landuse and Landcover (LULC) 

 Preclassified landuse and landcover shapefile data from the USGS 

(http://landcover.usgs.gov/show_data.php?code=setx&state=Texas_se) were obtained 

and nine broad categories of landuse were identified in accordance with U.S. Geological 

Survey Land Use and Land Cover Classification System for Use with Remote Sensor 

Data: Urban land, Agricultural land, Rangeland, Forest Land, Water, Wetland, Barren 

Land, Tundra and Perennial Snow/Ice. These were recoded into a nominal scale from 1 to 

9 respectively, rasterized and zonal majority statistics were obtained to get the dominant 
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landuse category for each county. Additionally, minority zonal statistics were computed 

to get the minority landuse category for each county as an extra variable for analysis. 

Figure 9 shows the spatial variation of dominant landuse/landcover type across Texas. 

 

Figure 9 Spatial variation of dominant landuse/landcover type across Texas 
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4. RESULTS 

 

The coefficient of determination (R2) describes the fraction of the total variation 

in the observed data that is explained by the model. It ranges from 0 to 1 with higher 

values indicating more variance explained. However, studies summarized in Legates 

(1999) show that this statistic has a number of limitations such as assumption of a linear 

relationship between the variables and extreme sensitivity to outliers and these limitations 

are kept in regard in our final assessment of the model performance. 

The overall model performance statistics for all the counties are summarized in 

Table 1. The 6-month SPI bears the strongest correlation with the VCI with an R2 = 

0.287. The PDSI follows next with an R2 = 0.256 and the 9-month SPI is a close third. 

The 3-month, 12-month, 2-month and 24-month SPI are ranked next. The Z-index, 

percent normal and deciles are only weakly correlated with the VCI. 

Table 1 Mean relationship between VCI and meteorological drought indices (n = 254) 

Drought Index R
2
 

6-month SPI 0.287 

PDSI 0.256 

9-month SPI 0.255 

3-month SPI 0.202 

12-month SPI 0.200 

2-month SPI 0.150 

24-month SPI 0.124 

Z-index 0.110 

Deciles 0.048 

1-month SPI 0.042 

Percent Normal 0.033 
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4.1 Spatial Variability of the Model Performance 

Figure 10 shows that there is a strong spatial variation in the degree of correlation 

(R2) between the VCI and the 6-month SPI which results in an increasing gradient map 

from east/south-east to west/north-west. Brazoria, Montgomery and Harding counties in 

east Texas have a coefficient of determination that is near zero, while Maverick, Borden 

and McMullen counties in central and western Texas have an R2 > 0.6. 

 

 

Figure 10 Spatial variation of R
2
 (VCI and 6-month SPI ) over Texas 
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Figure 11 shows a east to west gradient in the R2 between VCI and PDSI. 

Brazoria county has the lowest R2 and Upton, Reeves and Pecos counties in west Texas 

have the highest R2 values. 

 

 

Figure 11 Spatial variation of R
2
 (VCI and PDSI ) over Texas 

 

Figure 12 shows a similar spatial signal to Figure 11. There is a definite gradient 

in the correlation coefficient from east to west. Harding county has minimum R2 while 

Upton, Reagan and Pecos in west Texas have maximum R2. 
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Figure 12 Spatial variation of R
2
 (VCI and 9-month SPI) over Texas 

 

4.2 Temporal Variability of Model Performance 

The variation of VCI and the other drought indices over the entire growing season 

time period was plotted for Pecos County (this county in west Texas consistently showed 

high R2  correlations for all indices). 

As observed from Figures 13-16, the 3- and 12-month SPI have a high degree of 

scatter as compared to the 6- and 9-month SPI vs VCI plots and consequently lower R2. 
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Figure 13 Temporal variation of VCI and the 3-month SPI in Pecos County 
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Figure 14 Temporal variation of VCI and the 6-month SPI in Pecos County 
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Figure 15 Temporal variation of VCI and the 9-month SPI in Pecos County 
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Figure 16 Temporal variation of VCI and the 12-month SPI in Pecos County 

 

As seen in Figure 17, there is more scatter and consequently a lower R2 in the 

VCI-Z-index model.   
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Figure 17 Temporal variation of VCI and the Z-index in Pecos County 

 

The VCI-PDSI signal (Figure 18) is a recursive relation, accounting for 

antecedent moisture conditions. Vegetation also responds gradually to any changes in 

climate. This could explain the high degree of correlation obtained between the two. 

Figures 15, 16 and 17 show a similar amount of scatter as they account for antecedent 

moisture conditions. 
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Figure 18 Temporal variation of VCI and the PDSI in Pecos County 

 

4.3 Discussion of Stage 1 Results 

The VCI shows the strongest correlation with the 6-month SPI and the PDSI. The 

SPI is a probability-based index taking into account the entire historical range of the 

precipitation. The VCI, similarly, is the normalization of the current vegetation health by 

its complete historical range. The PDSI, being heavily weighed by antecedent conditions 

of moisture, also shows a close correlation with the VCI. The VCI is unable to track the 

short-term varying Z-index (which is dependent only on the current month precipitation 

statistics) and also the 1- and 2-month SPI. This suggests that VCI has a similar response 

to only those traditional drought indices which account for antecedent precipitation 

conditions for the last 6 to 9 months. This is understandable because only locations with 

sustained precipitation can support dense photosynthetic vegetation. 
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5. INVESTIGATION OF SPATIAL PATTERNS 

 

The strong spatial coherence of the VCI-drought index correlations suggests that 

factors other than the moisture conditions may be important. Investigation into soils, area 

under irrigation and landuse/landcover data for Texas, among other factors, may yield 

insight into this pattern. A multivariate regression model incorporating the above data at a 

monthly temporal resolution is designed. One must also note that our reporting is at the 

county level which is a political delineation and not a physical or ecological boundary 

and loss of information due to this spatial averaging may be significant. Recent studies 

(Vicente-Serrano 2007) in the region north-east to the Iberian Peninsula (France) have 

shown that the effect of drought on vegetation cover varies significantly spatially and 

temporally, the magnitude of the drought being influenced by the local landcover types 

and seasonal variations. Vicente-Serrano (2007) reported that aridity and vegetation 

characteristics account partially for the varying spatial influence of drought on vegetation 

health. As such, additional variables are investigated in our study to explain the spatial 

pattern observed in the correlation between the VCI and traditional drought indices.  

5.1 Multivariate Model Evaluation and Performance 

The additional ten variables (precipitation, AWHC, percentage area under 

irrigation, average soil moisture, water table depth, soil permeability rate, soil hydrologic 

group, soil drainage and majority/minority landuse/landcover characteristics) were 

entered as independents into a forwardstep multivariate regression model on the SAS-

JMP Enterprise Miner statistical analysis software platform. The independent variable 

was the R2 for VCI vs PDSI because this drought index had strong mean correlation with 
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the VCI. The categorical variables as nominal variables (e.g., the soil drainage groups 

were given numbers from 1 to 7 where the numbers do not represent any hierarchy of 

draining ability) rather than ordinal variables. Additionally, to study any possible 

correlation among the independent variables, a correlation matrix was also generated 

from the ten variables (summarized in Table 7) to identify collinearity issues.    

Note that although monthly precipitation is used to calculate the PDSI, here we 

are using mean annual precipitation to represent the climate of the county. Also 

fundamentally, precipitation influences the water table depth and possibly the percentage 

of irrigation in each county. Hence two separate models were run, one with precipitation, 

and one without precipitation, in order to eliminate any problems with collinearity. In 

addition to the R2, Mallows Cp is also calculated to assess over-fitting and obtain a model 

with the least correlated independent variables. Mallow’s Cp is defined as: 

pnsyyCp p 2/)( 22
+−−=∑                               (6) 

where yp is the predicted value of y from the p regressors, s2 is the residual mean square 

after regression on the complete set of k and n is the sample size. 

If Cp is plotted against p, Mallows (1973) recommends choosing the reduced 

model where Cp first approaches p. Table 4, which summarizes the regression model 

with mean annual precipitation included, shows that Cp approaches the value 9 (the 

number of regressors) at the addition of the first 5 variables. Table 9 also shows that the 

mean AWHC variable is highly correlated (correlation coefficient = 0.91) with the 

average soil moisture. Hence the mean AWHC variable should be excluded from all three 

of our models. Hence model 1 with only the first 5 variables would be the most reduced 

model. Similiarly from Table 6, model 2 would be the most reduced with the inclusion of 
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the first 4 variables and a reduced model 3 (Table 8) would have 4 variables. However 

the number of regressors to include in the model was decided on the basis of their 

probability significance level to accommodate all the investigative variables.  

 Table 2 shows the results obtained by fitting a multiple regression model to 

explain the spatial variations in the relationship between PDSI and the VCI (Model 1). A 

second model was fit excluding precipitation (Model 2). Model 1 has 9 variables namely 

mean precipitation, percentage area under irrigation, average soil moisture, water table 

depth, soil permeability rate, AWHC, majority landuse/landcover characteristics and two 

soil drainage group combinations. The F Ratio in Table 3 shows the significance of the 9 

variables (some split into subgroups) in Model 1.    

Model 2 has 8 variables namely percentage area under irrigation, average soil 

moisture, water table depth, soil permeability rate, AWHC, soil drainage, majority LULC 

and minority LULC groups. The F Ratio in Table 5 shows the significance of the 8 

variables (some split into subgroups) in Model 2.   

An additional model with variables representing the percentage abundance of 

each of the seven LULC classes in each county instead of the majority LULC variable 

was also run (Model 3).  The F Ratio in Table 7 shows the significance of the variables in 

Model 3.  The results of the model are summarized in Table 8.    

 

Table 2 Summary of multiple regression models 

Model 

 

MSE 

 

R
2
 

 

R
2 
Adjusted 

1. All 9 variables 0.007 0.7356 0.7258 

2. Only 8 variables 0.008 0.6916 0.6762 

3. LULC modified 0.010 0.6143 0.6001 
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Table 3 Forward stepwise regression of R
2
 (VCI-PDSI) against all variables (Model 1) 

  Parameter Estimate "F 

Ratio" 

Intercept 0.480 0 

Percentage County Irrigated -0.008 26.881 

MAJ_hydgrp[4&2-1&3] 0 0.015 

MAJ_hydgrp[4-2] 0 0.091 

MAJ_hydgrp[1-3] 0 0.155 

MAJORITY_LULC[6&4&2-

3&5] 

-0.030 17.639 

MAJORITY_LULC[6&4-2] 0 0.048 

MAJORITY_LULC[6-4] 0 0.381 

MAJORITY_LULC[3-5] 0 0.036 

MINORITY_LULC[3&7&5-

6&1&4&2] 

0 0.629 

MINORITY_LULC[3&7-5] 0 0.502 

MINORITY_LULC[3-7] 0 1.206 

MINORITY_LULC[6&1&4-2] 0 0.928 

MINORITY_LULC[6-1&4] 0 0.754 

MINORITY_LULC[1-4] 0 0.753 

MAJdrainage[4&5&3-6&1] -0.037 3.154 

MAJdrainage[4-5&3] 0 0.032 

MAJdrainage[5-3] 0 0.556 

MAJdrainage[6-1] 0.041 1.560 

Mean Permeability -0.021 36.874 

MAJORITYhydr[2&4&1-3] 0 0.048 

MAJORITYhydr[2-4&1] 0 0.174 

MAJORITYhydr[4-1] 0 0.230 

Water Table Depth 0.024 7.499 

Mean AWHC 0.004 3.218 

Mean Annual Precipitation -0.003 51.482 

Mean Soil Moisture -0.001 5.083 
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Table 4 Model 1 step history 

Step Parameter R
2
 Cp 

1 Mean Annual Precipitation 0.5297 173.560 

2 Percentage County Irrigated 0.6236 90.968 

3 Mean Permeability 0.6795 42.626 

4 MAJORITY_LULC[6&4&2-3&5] 0.7102 17.041 

5 Water Table Depth 0.7241 6.470 

6 MAJdrainage[4&5&3-6&1] 0.7289 4.168 

7 Mean Soil Moisture 0.731 4.295 

8 Mean AWHC 0.7339 3.701 

9 MAJdrainage[6-1] 0.7356 4.179 
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Table 5 Forward stepwise regression of R
2
 (VCI-PDSI) against all variables excluding precipitation 

(Model 2) 

Parameter Estimate "F Ratio" 

Intercept 0.176 0 

Percentage County Irrigated -0.003 4.747 

MAJ_hydgrp[4&2-1&3] 0 0.544 

MAJ_hydgrp[4-2] 
0 0.362 

MAJ_hydgrp[1-3] 0 0.934 

MAJORITY_LULC[6&4&2-3&5] 
-0.052 21.286 

MAJORITY_LULC[6&4-2] -0.020 4.311 

MAJORITY_LULC[6-4] 0 0.244 

MAJORITY_LULC[3-5] 0 0.001 

MINORITY_LULC[3&7&5-6&1&4&2] 0.006 1.535 

MINORITY_LULC[3&7-5] -0.002 2.162 

MINORITY_LULC[3-7] 0.025 3.935 

MINORITY_LULC[6&1&4-2] 0 0.06 

MINORITY_LULC[6-1&4] 0 0.037 

MINORITY_LULC[1-4] 0 0.032 

MAJdrainage[4&5&3-6&1] -0.059 5.994 

MAJdrainage[4-5&3] 0 0.009 

MAJdrainage[5-3] 0 0.074 

MAJdrainage[6-1] 0.066 3.472 

Mean Permeability -0.015 16.230 

MAJORITYhydr[2&4&1-3] 0 0.613 

MAJORITYhydr[2-4&1] 0 0.446 

MAJORITYhydr[4-1] 0 0.296 

Water Table Depth 0.041 16.738 

Mean AWHC 0.008 9.234 

Mean Soil Moisture -0.001 33.948 
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Table 6 Model 2 step history 

Step Parameter R
2
 Cp 

1 Mean Soil Moisture 0.4673 150.860 

2 MAJORITY_LULC[6&4-2] 0.6071 49.619 

3 Water Table Depth 0.6395 27.298 

4 Mean Permeability 0.6562 16.709 

5 Mean AWHC 0.6661 11.287 

6 MAJdrainage[6-1] 0.6801 4.758 

7 Percentage County Irrigated 0.6857 2.540 

8 MINORITY_LULC[3-7] 0.6916 4.104 
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Table 7 Forward stepwise regression of R
2
 (VCI-PDSI) against variables with modified LULC 

variable (Model 3) 

Parameter Estimate "F Ratio" 

Intercept 0.535 0.000 

Percentage County Irrigated 0.000 0.732 

MAJ_hydgrp[4&2-1&3] 0.000 0.707 

MAJ_hydgrp[4-2] 0.000 0.662 

MAJ_hydgrp[1-3] 0.000 0.716 

MAJdrainage[4&5&3-6&1] -0.068 9.960 

MAJdrainage[4-5&3] -0.047 2.573 

MAJdrainage[5-3] -0.020 1.508 

MAJdrainage[6-1] 0.000 0.257 

Mean Permeability -0.020 24.394 

Mean Soil Moisture -0.001 107.724 

Perc Urban Land -0.003 3.143 

Perc Agricultural Land -0.001 1.521 

Perc Rangeland 0.002 0.002 

Perc Forest Land -0.002 3.781 

Perc Water 0.000 0.001 

Perc Wetland 0.000 0.036 

Perc Barren Land 0.000 0.128 

 

 

Table 8 Model 3 step history 

Step Parameter R
2
 Cp 

1 Mean Soil Moisture 0.4673 81.679 

2 Perc Forest Land 0.5200 50.894 

3 MAJdrainage[4&5&3-6&1] 0.5549 31.155 

4 Mean Permeability 0.5825 15.974 

5 Perc Rangeland 0.6009 6.496 

6 MAJdrainage[5-3] 0.6091 5.358 

7 Perc Urban Land 0.6119 5.656 

8 Perc Agricultural Land 0.6143 6.159 
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5.2 Discussion of Results 

As seen from Table 2, Model 1 accounts for 73.56% of the variance in the 

relationship between VCI and PDSI. The forward stepwise regression accepts only 

regressor terms at a probability significance level of 0.25 ensuring that only the most 

significant variables are retained in the model and the relevance of these is discussed in 

their order of importance. 

 The most significant variable is mean annual precipitation. It appears that VCI is 

most strongly correlated with traditional drought indices (e.g., PDSI) in counties that 

have a semi-arid climate.  This may be a function of the type of vegetation that grows in 

these counties or it may be a result of the vegetation in these semi-arid regions being 

particularly sensitive to moisture stress (since PET typically exceeds P in these regions 

during the growing season). Percentage irrigation is the next most significant contributor 

to this model. The negative sign of the estimate (indicative of a negative correlation) 

shows that the VCI is most strongly correlated with drought indices in counties that have 

a low percentage of irrigation. There is a disconnect between the VCI and the PDSI in 

counties with high amounts of irrigation because the vegetation (crops) are irrigated and 

so VCI may be high even in years that receive small amounts of precipitation (e.g., 

classified as dry according to PDSI). The mean permeability in the soil is found to be 

negatively correlated.  

The landuse/landcover is the next most significant variable and since this a non-

binary nominal variable in a multivariate regression, SAS analyzes it a unique way. The 

levels of the nominal variable are considered in some order and a split is made to make 

the two groups of levels that most separate the means of the response. Then each 
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subgroup is further divided into its most separated subgroups, and so on, until all the 

levels are distinguished into (k-1) terms for k levels. In processing the 

MAJORITY_LULC variable, SAS splits it into all possible binary groups and extracts 

the grouping that produces the most distinct change in the response. Then for each of the 

two groups identified, further subgroups are structured which give the most change in the 

response. This means that the clubbed binary group consisting of 

forest&agricultural&wetland - rangeland&water (represented by 

MAJORITY_LULC[6&4&2-3&5] in Table 4), is the most significant combination. This 

is expected, since rangeland is sparsely vegetated and waterbodies are completely devoid 

of vegetation, their surface spectral signature is unresponsive (relative to the group of 

forest&agricultural&wetland) to any drought conditions although the water bodies’ size 

may change. Within the first group however, wetlands and agricultural lands are most 

distinct in their contribution towards the correlation between the indices. This is 

understandable as wetland vegetation is supported by presence of waterbodies while 

agricultural crops generally have shallow roots which makes them more susceptible to 

drought conditions. This type of binary splitting of nominal variables by the SAS 

program produces results that are difficult to interpret and hence a variable on the 

percentage abundance of LULC variable is used instead in Model 3. The mean water 

table depth shows strong positive correlation indicating that in counties where the water 

table is far below the surface, the vegetation is more susceptible to drought influence 

(e.g., vegetation may be unable to tap into a deep water table and therefore unable to 

buffer itself against a lack of precipitation). The soil-drainage group consisting of Poorly 

& Somewhat Poorly & ModeratelyWell - Somewhat Excessive & Well Drained 
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(represented by MAJdrainage[4&5&3-6&1] in Table 4) is the most significant 

combination with the soil groups clearly arranged in a hierarchical order of drainage even 

though the variables were entered as nominal without any order of ranking. Since SAS 

analyses nominal variables at a binary level, this order of splitting the drainage variables 

produces the greatest variation in the response variable. The average soil moisture shows 

a negative correlation indicating that soils with low soil moisture cannot protect the 

vegetation from drought. The mean AWHC shows a strong positive correlation. The soil-

drainage variable group of Somewhat Excessively and Well Drained appears again as the 

last variable (MAJdrainage[6-1] in Table 4) but this can be discarded as the group 

MAJdrainage[4&5&3-6&1] is more significant. However it must be noted that 

interpreting the strength of any variables beyond the top five is not reliable due to their 

significance level.         

Table 9 shows the degree of correlation among the independents. This is done to 

address the issue of possible collinearity. It can be seen that the soil moisture variable 

shows high correlation with mean AWHC and mean precipitation as well as the other soil 

specific parameters. Precipitation also shows high correlation with mean AWHC. As 

discussed earlier, precipitation is also a fundamental input to the computation of the 

drought indices and therefore the forward stepwise regression model was rerun without 

precipitation as an input with the results summarized in Table 5 and Table 6. This model 

explains 69.16% of the variance in the relationship between the VCI and PDSI. After 

elimination of the highly collinear precipitation variable, the average soil moisture 

emerges as the most significant variable while the percentage irrigation and mean 

permeability decrease in significance.  
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Table 9 Multivariate correlation model among the dependents 

 

  Perce

ntageI

rrigat

ed 

MAJ_

hydgrp 

MAJO

RITY_

LULC 

MINO

RITY_

LULC 

MAJdr

ainage 

MEAN

perm 

MAJO

RITYh

ydr 

MEAN

_watert

ab 

MEAN

AWHC 

meanp

recip 

avgsoil

moistr 

Percentag

eIrrigated 
1.000 -0.110 -0.284 -0.012 -0.187 -0.046 -0.088 0.119 0.193 -0.244 0.241 

MAJ_hyd

grp 
-0.110 1.000 -0.236 -0.042 0.276 -0.508 0.938 -0.121 -0.033 0.168 -0.022 

MAJORI

TY_LUL

C 

-0.284 -0.236 1.000 -0.029 -0.084 0.312 -0.281 -0.120 -0.231 0.106 -0.164 

MINORI

TY_LUL

C 

-0.012 -0.042 -0.029 1.000 0.109 0.046 -0.054 -0.195 0.113 0.092 0.091 

MAJdrai

nage 
-0.187 0.276 -0.084 0.109 1.000 -0.068 0.246 -0.690 0.430 0.512 0.397 

MEANpe

rm 
-0.046 -0.508 0.312 0.046 -0.068 1.000 -0.512 -0.064 -0.114 -0.084 -0.048 

MAJORI

TYhydr 
-0.088 0.938 -0.281 -0.054 0.246 -0.512 1.000 -0.080 -0.044 0.143 -0.036 

MEAN_w

atertab 
0.119 -0.121 -0.120 -0.195 -0.690 -0.064 -0.080 1.000 -0.643 -0.720 -0.634 

MEANA

WHC 
0.193 -0.033 -0.231 0.113 0.430 -0.114 -0.044 -0.643 1.000 0.585 0.910 

meanprec

ip 
-0.244 0.168 0.106 0.092 0.512 -0.084 0.143 -0.720 0.585 1.000 0.667 

avgsoilmo

istr 
0.241 -0.022 -0.164 0.091 0.397 -0.048 -0.036 -0.634 0.910 0.667 1.000 
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Model 3 with the modified LULC variable was found to explain 61.43% of the 

variance in the relationship between VCI and the PDSI (Table 2). The variable 

representing percent of the county that is forest land was found to be negatively 

correlated (Table 7). Vegetation with deep roots is able to tap into groundwater thus 

mitigating the influence of drought in counties with high percentage of forestland. The 

variable representing percent of the county that is rangeland was found to be positively 

correlated (Table 7). This is understandable as rangeland is not supported by any 

irrigation and is completely dependent on precipitation for nourishment. The variable 

representing percent of the county that is urban land was found to be negatively 

correlated (Table 7). This is understandable as vegetation in urban areas is watered 

regularly and protected from drought effects. The variable representing percent of the 

county that is agricultural land was found to be negatively correlated (Table 7). 

Agricultural vegetation is also supported by irrigation and groundwater and hence the 

effect of drought is mitigated. However these two percentage LULC variables have very 

low statistical significance in the model and can be neglected. 

These results show that the effect of drought on vegetation is greatly dependent 

on the spatial distribution of land-covertypes as shown in the (Vicente-Serrano 2007) 

studies. Table 9 shows that next to precipitation the soil moisture variable is highly 

correlated with all other variables and also is the most significant variable obtained in 

Model 2.  
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6. CONCLUSIONS 

6.1 Summary 

The analysis of the model performance statistics for the various drought indices 

suggests that the VCI is most similar to the 6-month SPI and the PDSI. Both of these 

drought indices account for antecedent moisture conditions (at least the last 6 months of 

precipitation). The Z-index, although it is a good measure of agricultural drought, is not 

strongly correlated with VCI because it does not incorporate antecedent weather 

conditions.  

It was also demonstrated that the relationship between the VCI and the drought 

indices varies spatially over Texas.  Investigation into the variables affecting this spatial 

variability reveal that soil moisture, landuse category, depth of the water table and soil 

properties like permeability, AWHC and drainage are useful for explaining much of the 

spatial variability in the relationship between the VCI and traditional drought indices. 

Influence of pests and plant diseases are assumed to be absent. In seeking to replace 

traditional station-based indices with the VCI for monitoring drought, data on these 

additional variables should be incorporated. Additionally, since this study is from a 

remote sensing definition of drought, the degree of correlation among the traditional 

drought indices and the VCI is limited to the degree of coincidence between remote 

sensing drought and the other kinds of drought (hydrological/meteorological and 

agricultural drought respectively) that they each measure. 
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6.2 Further Study 

 Studying the temporal signals at a higher temporal resolution will reveal a more 

exact value of the vegetation response lag. Influence of pests and plant diseases also need 

to be incorporated. In incorporating the soil properties’ variables in this study, 

approximations were made assuming the dominant soil group in the county was 

representative of the entire county. Also, the spatial distribution of many of the soil sub-

components was unknown. Incorporating a more comprehensive soil database in our 

model will make this study more precise. In investigating the spatial pattern observed in 

stage 1 of our results, we incorporated variables like percentage irrigation, mean soil 

moisture and mean annual precipitation which were temporally lumped. A regression 

model that can incorporate both the temporal and spatial signal of the variables would 

make a good task for further study. In order to address the issue of the vegetation 

response lag, the NDVI may be substituted with the NDWI. In order to rule out the 

influence of pests and plant diseases as well as crop damage due to excessive rainfall, 

cross referencing of the VCI with thermal indices also may be necessary. 
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APPENDIX 

Table 10 Description of variables in multivariate correlation model 

 

Variable Name Description 

Category 

Code Category description 

PercentageIrrigated Percentage of the 
county under 
irrigation     

1 Sandy, free draining soils 

2 
Intermediate drainage 
capacity 

3 
Intermediate drainage 
capacity 

MAJ_hydgrp Hydrologic group of 
the majority soil in 
the county. These 
codes are an ordinal 
ranking of the soils' 
drainage capacity. 4 Clayey, free draining soils 

1 Urban Land 

2 Agricultural Land 

3 Rangeland 

4 Forest Land 

5 Water 

6 Wetland 

7 Barren Land 

8 Tundra 

MAJORITY_LULC The dominant 
Landuse/landcover 
type in the county 

9 Perennial Snow/Ice 

1 Urban Land 

2 Agricultural Land 

3 Rangeland 

4 Forest Land 

5 Water 

6 Wetland 

MINORITY_LULC The minority 
Landuse/landcover 
type in the county 

7 Barren Land 

1 Well Drained 

2 N/A 

3 Moderately Well drained 

4 Poorly Drained 

5 Somewhat Poorly Drained 

6 
Somewhat Excessively 
Drained 

MAJdrainage Drainage type of the 
majority soil in the 
county. These codes 
identify the natural 
drainage condition of 
the soil and refer to 
the frequency and 
duration of periods 
when the soil is free 
of saturation. 7 Excessively Drained 

MEANperm Average permeability 
rate (mm/hr) of the 
dominant soil     
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component in the 
county. 

MEAN_watertab Average depth of the 
water table in the 
county     

MEANAWHC Average Available 
Water Holding 
Capacity of the soil 
in the county.     

meanprecip Average precipitation 
in the county.     

Avgsoilmoistr Average soil 
moisture level in the 
county.     
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