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ABSTRACT

Long Term Voltage Stability Analysis for Small Disturbances.
(December 2007)
Kun Men, B.S., Xi’an Jiaotong University;
M.S., Tsinghua University
Chair of Advisory Committee: Dr. Garng Huang

This dissertation attempts to establish an analytical and comprehensive framework to deal
with two critical challenges associated with voltage stability analysis:

1. To study the new competitive environment appropriately and give more incentive
for reactive power supports, one has to evaluate the impacts of distributed market
forces on voltage stability, which complicates the voltage stability analysis.

2. Accurately estimating voltage stability margin online is always the goal of the
industry. Industry used to apply static analysis for its computation speed at the
cost of losing accuracy. On the other hand, dynamic analysis can result in more
accurate estimation, but generally has a huge computation cost. So a challenge is
to estimate the voltage stability margin accurately and efficiently at a reasonable
cost, especially for large system.

Considering the first challenge, this dissertation applied eigenvalue based bifurcation
analysis to allocate the contribution of voltage stability. We investigate how parameters of
the system influence the bifurcations. Three bifurcations (singularity induced bifurcation,
saddle-node and Hopf bifurcation) and their relationship to several commonly used
controllers are analyzed. Their parameters’ impact on these bifurcations have been
investigated, from which we found a way to allocate the contribution by analyzing the
relative positions of the bifurcations.

For the second challenge, a new fast numerical scheme is developed to estimate voltage
stability margin by intelligently adjusting the load increase ratio. A criterion, named EMD

(Equilibrium Manifold Deviation) criterion, is proposed to gauge the accuracy of the



estimation. And based on this criterion, a new computation scheme is proposed. The
validity of our new approach is proven based on the well-known Runge-Kutta-Fehlberg
method, and can be extended to other explicit single-step methods easily. Numerical tests
demonstrate that the new approach is very practical and has great potential for industrial
applications.

This dissertation extends our new numerical scheme to stiff systems. When a system is
ill-conditioned, the implicit method would be applied to achieve numerical stability. We
further demonstrate the validity to combine the intelligent load adjustment technique with
the implicit method to save the computation cost without loss of accuracy. This dissertation
also delves into the auto detection of stiffness of the power system, and extends our new

numerical scheme to general sytems.
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CHAPTER I

INTRODUCTION

1. Background

1.1 The emerging challenges faced by voltage stability analysis in deregulated power grid

Electric utility industry around the globe is in the process of deregulation and restructuring.
Deregulation experiment was initiated by the U.K. and some Latin American countries in
the 1980s, and rapidly spread to many other countries including the United States [1]. In the
last two decades, power systems have been operated under much more stressed operating
conditions than before. This is largely due to the environmental pressures on transmission
expansions, increased electricity consumptions in some heavy load areas, and new system
loading patterns for the deregulated electricity market, etc. Under these stressed conditions,
a new type of dynamic unstable behaviors appeared in power systems, such as slow voltage
drops, and even voltage collapse [1, 2].

Voltage collapse may cause severe system failures; for example, it is believed that the
massive Tokyo blackout in July 1987 is caused by voltage collapse [3]. In a deregulated
environment, in which the industry still lacks a market policy on reactive power
compensation mechanism, electric utilities tend to reduce reactive power support
equipments to save cost since money are only made in terms of real power transactions [4].
Accordingly, voltage stability analysis will become even more critical in the deregulation
of the modern power systems if the trend continues.

Over last twenty years, many researchers have intensely studied voltage stability [1~9].
Many papers have focused on developing practical analysis techniques for voltage stability
studies. For example, in paper [10], Dr. Huang and Dr. Tong Zhu have thorougly discussed
the TCSC’s enhancement on transient voltage stability, and in papers [11, 12], an efficient

This dissertation follows the style of IEEE Trans. on Power Systems.



method to find the static stability margin is proposed based on Arnoldi algorithm and curve
fitting. Though research has been carried out in this area for decades, there are still some

issues that need to be addressed and resolved. Some of these are as follows:

» Challenge 1, how to allocate the responsibility/contribution of voltage stability in

deregulated environment?

The deregulated power system is based on transactions [13]; each part of the unbundled
systems (generators, control systems and transmission parts, etc.) has its own contribution
to voltage stability. It is of great economic and security importance to allocate these
contributions so that the contributors can be appropriately awarded to encourage the needed
infrastructure investments. Analyzing the influence of the parameters of the system on

voltage stability will also help us design and optimize the system.

» Challenge 2, accurately estimating voltage stability margin online remains as a

dream for industry.

So far, due to heavy computation burden, the major thrust in voltage stability analysis,
especially for large systems, has been based on static power flow analysis. However, recent
papers [5, 6, 7] have pointed out that the static estimation of voltage stability margin may
be too optimistic. To accurately evaluate voltage stability margin, dynamic voltage stability
analysis is required. Many dynamic analysis methods and analytic tools are proposed in
literature [2, 3]; however, with these dyanamic methods, the accuracy of estimated stability
margin cannot be rigorously guaranteed and the computation efficiency is far from
satisfying for online calculation. Thus, we still need to find a more practical and
comprehensive scheme to estimate the voltage stability margin with enough accuracy and

computation efficiency.

This dissertation deals with the first challenge mentioned above in chapter Il and IlI,
where eigenvalue based bifurcation analysis will be applied. For the second challenge, we
have developed a new numerical scheme in chapter IV and V to enhance the computation

efficiency without sacrificing the accuracy.



1.2 Concepts of voltage stability

Before further discussion, we will first address a fundamental question: What is voltage
stability?

There are many definitions of voltage stability. For example, IEEE and CIGRE Working
Groups have given detail classification and definition of power system stability in [1]. In
this dissertation, we would like to choose the definition given by T. V. Cutsem and C.
Vournas in their book [2]:

“Voltage instability stems from the attempt of load dynamics to restore power
consumption beyond the capability of the combined transmission and generation system. ”
This definition try to emphasize that load is the main driving force of a voltage collapse,
and voltage stability is a stuctural stability problem with the load serving as an important
system paramter to be disturbed. Also, the maximum loadability point is what we are

interested in.

In Fig. 2-1 of book [3], C. W. Taylor demonstrated that voltage dynamics can span a
range in time from a fraction of a second to tens of mintutes, which also implies a
classification of voltage stability into transient and longer-term time frame. In [2], T. V.
Cutsem and C. Vournas also gave classification of power system stability based upon two
criteria: time scale and driving force of instability. A more comprehensive defination and
classification of general power system stability was given in IEEE report [1]. From these
definations and classifications, we can see that transient stability analysis does not mean
angle stability exclusively, and voltage stability could also be involved . In this dissertation,

we will focus on the long term voltage stability analysis with small disturbances.

For power systems, two kinds of stability issues are considered in long term time scale:
frequency problems and voltage problems [2]. Generally frequency problem is due to
generation-load imbalance irrespective of network aspects within each connected area,
while voltage problem is due to electrical distance between generation and loads thus
depends on the network structure [2]. Voltage stability is more like a system structure

problem, thus a full network representation is required for its analysis [2]. And with the



definition given above, voltage instability could be considered as load driven. Actually in
this dissertation, a key task is to detect the structurally unstable point of power system to
estimate voltage stability margin analytically or numerically, with slowly increased load

serving as small disturbances [14, 15].

Though it is easy to distinguish frequency problem from voltage problem conceptually,
these two types of instability are often found entangled with each other in reality. To
simplify our analysis, throughout the dissertation, we assume that we have ideal governors
and there are no angle/frequency problems, which means that, the frequency problem is
decoupled with voltage problems. However, it never means that the new numerical scheme
developed in Chapter IV~V can only be used for long term voltage stability analysis;
actually it can be easily extended to other long term dynamic analysis for small

disturbances.

One term also widely used in association with voltage stability issues is voltage collapse.
In this dissertation, the term “collapse” is used to signify a sudden catastrophic transition
that is usually due to an instability occurring in a faster time-scale than the one considered
[5]. Later in this dissertation, we will show that voltage instability may, or may not result in
a sudden voltage collapse, for example, un-damped oscillation may also be the outcome of

voltage instability.

As we mentioned before, voltage instability could be considered as load driven [2].
Please note that here we use the term “load driven’ instead ‘reactive load driven’. It is well
known that voltage control hinges on reactive power. However, by not using the term
‘reactive load driven’, we do not want to overemphasize the role of reactive power in
voltage stability, where both active power and reactive power share the leading role [2].
Please note that, only in normal operating conditions, it is approximately valid to decouple
between active power and phase angles on one hand, and reactive power and voltage
magnitudes on the other hand; and this decoupling is usually not valid for extreme loading

conditions that is typical in voltage instability scenarios [16].



2. Topic 1: Eigenvalue based bifurcation analysis to allocate the responsibility /

contribution of voltage stability

Dynamic analysis is time-consuming and more difficult than steady-state analysis. For this
reason, people use steady-state analysis to estimate the stability margin [9], [17]. However,
the dynamic stability margin is usually equal or smaller than the steady-state stability
margin; the smaller of them is the valid stability margin, which is the margin that imposes
practical loading restrictions. Accordingly, it is necessary to apply dynamic analysis to get
the valid margin. Eigenvalue based bifurcation analysis will be used here for this purpose.
Though it is time consuming, this analytic tool could give us some insights of the dynamic
behavior of the system. We start our research from some simple systems. For such simple
systems, the computation costs associated with bifurcation analysis are acceptable.

In deregulated power systems, we would like to know individual contributions to
voltage stability, where the contribution can come from different parts of the power
system—generator, control system and transmission part, etc. Here we focused on how to
allocate the responsibility and contribution by bifurcation analysis. We investigate how
parameters of the system influence the bifurcation points. Three bifurcations (the
singularity induced bifurcation, saddle-node and Hopf bifurcation [18], and their
relationship to several commonly used controllers [19, 20, 21] are analyzed. Their
parameters’ impact on the bifurcation points is investigated here, from which we found a

way to allocate the contribution by analyzing the relative positions of the bifurcations.

In power system operations, there are many limits on the power system components [22];
here we focus on the size of the exciter, which has a significant impact on the voltage
stability. Analyzing the impacts of exciter size will benefit system design and clarify the

allocation of the responsibility of the voltage collapse in a deregulated environment.



3. Topic 2: Integration of intelligent load adjustment technique with explicit RK methods

to estimate the stability margin for a large system accurately and efficiently

As discussed in Topic 1, eigenvalue based bifurcation analysis can be used to calculate
dynamic voltage stability margin. Although bifurcation analysis is accurate and gives us
insights about the dynamic behavior of the system, its heavy computation burden makes it
very difficult to be applied to large systems due to the complexity of eigenvalue
calculations [23, 24]. Thus, alternative efficient methods will be developed in this

dissertation.

Numerical methods are widely used in the power system simulation. It is well known
that power system dynamics are commonly expressed in a differential algebraic equation
(DAE) form [25~28]. Numerical methods can be used to solve DAE systems. The
procedure usually involves alternately solving the algebraic power flow equations
representing the network and the differential equations representing the machines [26, 28].
We can use Gauss-Seidel (or Newton-Raphson) method to solve nonlinear algebraic
equations (power flow equations) and use Euler’s method (or Runge-Kutta method) to
solve differential equations [29, 30]. The integration and algebraic solving are alternately
applied.

Compared with transient analysis, voltage dynamic stability analysis has heavier
computation burden since by definition the analysis is around equilibrium states with small
disturbances [2, 14, 31]; thus, the analysis involves slow load increases to mimic real
environment that is operated around steady state. To find the stability margin faster, we can
accelerate the load increase since our interest is on the maximum load that the system can
tolerate before system collapses and bifurcation occurs; and therefore there is no need to
mimic the slow load increase as long as the computed state can stay around the steady state
equilibrium point. Also, there is no need for eigenvalue analysis since bifurcation behaviors
will be observed through integrated trajectory. Accordingly, how to select the appropriate

load increase ratio becomes a key issue to speedup the computation. If the load increase



ratio is too small, it will take a long time to find the collapse point and thus a huge
computation burden will be incurred. On the other hand, a too big load increase ratio will
lead to inaccurate estimation of stability margin since the computed state may deviate far
from the equilibrium state and results in a wrong estimate. Thus, a proper load increase

ratio is of great importance for fast and reliable stability margin estimation.

Accordingly, a desirable stability margin estimation scheme should satisfy both accuracy
and speed requirements. By definition of dynamic stability analysis, the computed state
needs to stay around the equilibrium manifold for an accurate estimate of stability margin.
This requirement implicitly constrain the speed of load increases and the integration step
size so that it will stay around the equilibrium manfold. These constraints thus slow down
the computation speed. In this dissertation, we will develop a scheme in which both

requirements are considered and compromised.

» We introduce a criterion, Equilibrium manifold deviation (EMD), which can help us
to gauge the accuracy requirement for estimation of dynamic stability margin [32],
[33].

» A method is developed in this dissertation to accelerate the numerical solution
without sacrificing accuracy. It is an acceleration technique based on EMD criterion
to enhance the computation efficiency by adjusting the load increase ratio
intelligently. This technique can be integrated with the step size adjustment method,
and the integration of these two adjustments induces synergy on the computation

efficiency.

The advantages of our new numerical scheme are rigorously proven for a single step
explicit RK methods. It can be easily extended to all explicit RK methods, and to the whole

family of RK methods.



4. Topic 3: Integration of intelligent load adjustment technique with implicit RK methods

to estimate the stability margin for ill-conditioned systems

In Topic 2, the numerical scheme is based on explicit RK methods. However, for power
system in extreme loading conditions, it may approach its structurally unstable point, such
as a saddle node bifurcation, which may incur the stiffness problem when we numerically
integrate the differential equations. It is well known that explicit methods are generally not

efficient for stiff problems [34] and instead implicit methods should be applied.

This dissertation further extends our new numerical scheme to resolve stiffness problem
of power systems. When system is ill-conditioned, implicit method is applied to achieve
numerical stability. We further demonstrate that combining the intelligent load adjustment
technique with implicit method can further save the computation cost without loss of

accuracy.

Please note that in this Topic, ‘numerical stability” is an issue, which is a totally different
concept with “structure stability’. Essentially the ‘structure stability’ only depends on the
physical network structure and the generation systems of the power grids, and it has
nothing to do with whatever numerical simulation scheme we choose to detect the
structurally unstable point. On the other hand, ‘numerical stability’ is an intrinsic property
of adopted numerical methods. Basically, it is caused by accumulation of computation error
and depends on the computing device and numerical method itself. For example, if we
apply Euler and implicit Euler method to a stiff system respectively, different system
structurally unstable point may be detected. But conceptually the structurally unstable point
should not vary with the chosen numerical method. The difference of the estimation values
only demonstrates different capability and feasible range of these numerical methods.

As emphasized, a key task of this dissertation is to detect the structurally unstable point
of power system accurately and efficiently. It will be demonstrated that the EMD criterion
proposed in Topic 2 is still valid to gauge the accuracy even with stiff systems. And for ill-

conditioned systems, a big challenge is to enhance the computation efficiency and keep



solution numerically stable. Different implicit methods will be discussed in this Topic, and
we will show that not all the implicit methods are capable to enhance the computation
efficiency. Only those methods have A-stable [34] and L-stable [34] characters will be
considered in this dissertation. And we will also attempt to integrate our intelligent load
adjustment technique with proper implicit methods to further save the computation costs

without sacrificing the accuracy.

It is well known that implicit methods generally have better numerical stability than
explicit methods [29, 30, 34]. However, for a general implicit approach, it needs to solve
the nonlinear equations iteratively at each single step and will result in extra computation
costs. Thus, when system is lightly loaded or in normal operating conditions, explicit
methods are naturally more attractive than implicit approach. On the other hand, when
dealing with stiff problems, implicit method will be more efficient than explicit methods.
Accordinly, a key question is that, during numerical simulations, how to detect stiffness
automatically. If such a detection scheme is successfully developed, we can choose
suitable methods at different system paramter ranges to enhance the overall computation

efficiency and accuracy.

In 1977, Shampine & Hiebert proposed some ideas to deal with this problem [34], and
there are other approaches in the literature [34], such as detect stiffness by directly
estimating the dominant eigenvalue of the Jacobian matrix of the problem [30]. This
dissertation attempts to adapt the ideas of Shampine & Hiebert for voltage stability analysis.
However, though not a big burden, automatic stiffness detection does introducece extra
computation costs. Based on our experience of power system, we deveop a simplified

approach to further enhance the overall computation efficiency.

In this Topic, we also generalize our new numerical scheme evolved in Chapter IV for
more general cases of long term dynamic analysis with small disturbances. A
comprehensive numerical scheme is summarized in this Topic, which integrates the
automatic stiffness detection, our new intelligent load adjustment skill, automatically step

size control technique, EMD criterion, explicit and feasible implicit Runge Kutta methods.
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At last, some MatLAB based codes are developed in this dissertation, which integrates our
new research results and can be used for research and education purposes.

5. Objective and organization of the dissertation

The objective of this dissertation is to address the Challenge 1 and 2 faced by voltage
stability analysis in deregulate environments. The detailed technique issues related to the
two challenges are further discussed as Topic 1, 2 and 3 in Chapter II/Ill, IV and V
respectively as follows:

In Chapter II, eigenvalue based bifurcation analysis will be applied to allocate
contribution / responsibility of voltage stability in deregulated environment. Impacts of

exciter size and different load model on voltage stability are discussed in Chapter IlI.

EMD criterion is proposed in Chapter IV, which can gauge the accuracy of numerical
estimation of stability margin. Based on EMD criterion, a novel intelligent load adjustment
technique is also proposed in this Chapter, which can be integrated with explicit RK

method to enhance the computation efficiency.

Chapter V defines and resolves stiffness problem in voltage stability analysis. Here we
discussed proper implicit methods to be applied for ill-conditioned power systems. We also
extend our EMD criterion and intelligent load adjustment approach to implicit methods.
Numerical tests verify the advantage of our new approach to solve stiffness problems.

In Chapter V, automatically stiffness detection will be discussed, and based on our
numerical experience with power systems, we develop a simplified detection approach.
Also, we try to extend our new numerical scheme evolved in Chapter IV to general long

term dynamic analysis with small disturbances.

Finally, Chapter VI is a summary of the dissertation and reviews the contributions of this
research. It also suggests the further directions of research based on this dissertation.
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CHAPTER II
BIFURCATION ANALYSIS USED IN EVALUATING THE VOLTAGE STABILITY

MARGIN

1. Introduction

1.1 Background and objectives

In deregulated power systems, each part of the unbundled systems (generator, control
system and transmission part, etc.) has its own contribution to voltage stability [5]. It is of
great economic and security importance to allocate these contributions for appropriate
investment awards to encourage needed infrastructure investments. Three bifurcations (the
singularity induced bifurcation, saddle-node and Hopf bifurcation [5, 18], and their
relationship to several commonly used controllers [20, 21, 22] are analyzed. Their
parameters’ impact on the bifurcation points is investigated here, from which we find a way

to allocate the contribution by analyzing the relative positions of the bifurcations.

Our research objective here is to give some insights about how to allocate contribution of
voltage stability, thus to enhance competition and efficiency of energy market. Analyzing
the influence of the system parameters on voltage stability will also help us design and

optimize the system.

1.2 Static stability margin vs. dynamic stability margin

So far, industry used to apply static analysis to estimate voltage stability margin. The
mostly common used methods are Continuous Power Flow (CPF) analysis and Quasi
Steady State analysis (QSS) [2, 9, 35]. Essentially, the unstable point detected by these

static methods is the nose of PV curve.
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PV Curve

Dynamic
Margin

Static
Margin

v

Figure I11-1 Dynamic vs. static stability margin

However, as illustrated in Figure Il-1, eigenvalue analysis shows that, before system
reaches its static margin, there are other kinds of local bifurcation point may appear, such
as Hopf Bifurcation (HB) and Singular Induced Bifurcation (SIB). In general, the static
margin determined by SNB may be too optimistic [5, 7].

Therefore, throughout this dissertation, we will focus on the more meaningful dynamic

margin and develop an efficient and accurate analysis scheme to detect the margin.

We begin this chapter by introducing the eigenvalue based bifurcation analysis.

2. Eigenvalue based bifurcation analysis for voltage stability

Before further discussion, we will first introduce mathematical model of power systems as

follows:
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2.1 Mathematical description of power systems

Parameter dependent DAE of the form (2.1) is widely used to model the dynamics of
physical systems, such as dynamic voltage stability studies of power systems [4, 18]. In the
parameter-state space of x, y and p, x is a vector of n state variables, y is a vector of m

algebraic state variables, and p is a vector of g parameter variables.

x=f(x,y,p), f iR 5 R
0=g(xY,p), g:R"T 5 RT (2.1)
xeXcR, yeYcR", pePc R’

For power systems, the parameter p defines specific system configurations and operation
conditions. x denotes the dynamic state variables and y denotes the instantaneous variables
which satisfies algebraic constraints. The differential equation in (2.1) represents dynamics
of generators, control systems and loads, and the algebraic equation represents the load

flow equation.

2.2 Eigenvalue based bifurcation analysis and three kinds of bifurcation points

For a given value of p, equilibrium is a solution of equation (2.2)

{0 = f(x.y,p) 2.2)

0=g(xY,p)

The stability of equilibrium points can be determined by linearizing (2.1) around the

equilibrium point:

AX AX
[ X } . JM @3

where J is the unreduced Jacobian of the differential-algebraic system:

J—[fx fy} (2.4)
g, 9, '
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According to implicit theory, if g, is nonsingular, we can eliminate Ay from (2.3) as

follows.
Ax=[f, - ,0,'9,1Ax (2.5)
Hence, the reduced Jacobian matrix of the system (2.1) can be written as:
J, =[f,-1,9,70,] (2.6)

As defined in [36], the qualitative behavior of a system is determined by the pattern of
its equilibrium points and periodic orbits, as well as by their stability propertities. If a
system can maintain its qualitative behavior under infinitesimally small perturbations, the
system is said to be structurally stable. In general, bifurcation is a change in the qualitative
behavior as a parameter is varied. The parameter is called a bifurcation parameter, and the

values at which changes occur are called bifurcation points [36].

Through the analysis of the eigenvalue of J,, we can demonstrate the influence of the

control system. We observed that three types of bifurcation usually occurred: Hopf
Bifurcation (HB), Saddle Node Bifurcation (SNB) and Singularity Induced Bifurcation
(SIB), correspondingly we denote these three types of bifurcation as A, B and C in this

chapter. A brief introduction of these three bifurcations are give below [36]:

» HB, where there is an emergence of oscillatory instability. At this point, two

complex conjugate eigenvalues of reduced Jacobian cross the imaginary axis.

» SNB, where two equilibrium (a Saddle and a Node) coalesce and then disappear, at
this point the reduced Jacobian has a zero eigenvalue;

> SIB, at this point, g, is singular, through the equation (2.6), we know that the
inverse of g, will become infinity, which is called “singularity induced infinity”,

where it is not easy to compute and analyze the stability of the system.
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In next section, we will show how different controllers and their parameters impact on
the locations of A, B and C on the PV curve, and try to find some clues to allocate
responsibility / contribution of voltage stability.

3. Allocation of responsibility / contribution of the system

In this section, a simple system, shown in Figure I1-2, is used to demonstrate how to apply
eigenvalue based bifurcation analysis in voltage stability analysis, and thus to allocate
responsibility of voltage collapse.

3.1 Introduction of the test system

X, X,
roor | |
E'o" (V E,0
P
E Load (P, Q)
r = Exciter

Figure 11-2 A simple two bus system

As mentioned before, dynamics of power system can be described as DAE systems shown
as equation (2.1). For the above system, we will first introduce its power flow equations as

follows:
P :E—.Esin o
X | , 2.7)
0- —~E’+EEcoss

X

Here x = X + X, and detail description of this two bus test system can be found in [2].
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Equation (2.7) can be simplified as:
0=E?E?-(X'P)’ - (x'Q+E?)? (2.8)
Here equation (2.4) is the algebraic constraint function g(x,y, p) in equation (2.1).

In this chapter, we will focus on three types of commonly used excitation controllers —
P-controller, Pl-controller and PID-controllers, and correspondingly the differential

equations to describe system dynamics are given as follows:

P-controller:
’ _ ! 2 1
E _ l,'[X+,Xd £ X 'xd (E +,XQ)+Efd]
Ty X X E 2.9)

T

e, =1{—<Em B K| 0P (@ E —Er}}

Here equation (2.5) is the differential equation f(x,y,p) in equation (2.1).

Pl-controller
’ _ ! 2 1
e 1,' —X+.Xd E’+X“ 'xd ‘(E +,XQ)+Efd
Ty X X E
E —l{—(E ~E%)-E, IT, -K F\/(xP)2+(xQ+E2)2—E}} (2.10)
fd _T fd fd PI | p E r !

E,, =é\/(xP)2 +(xQ+E?)? —E,

Here equation (2.9) is the differential equation f(X,y, p) in equation (2.1). Note that in
this regulator, E2, is not constant, and it will be rescheduled to keep E, as constant as load
P changes. So the P-regulator used here is also called as rescheduled P-regulator.

PID-controller

For a PID controller, as decribed in [20, 22]
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1
Ko +—+KgS 2.11
Pty Ko (2.11)

We know that Kgs is not practical [20, 22], so if T, is small enough, we can use

equation (2.12) to replace (2.11):

Kp +i+ Kps
Ts 1+T,s

(2.12)

Then the differential equations is listed as follows:

, oy 2,
e _ 1,_[x+xd £ X =% (E +XQ)+Em]
X' X' E’

(2.13)

. 1 0y _ _ & 1 2 2y2
Efdz?{_(Efd_Efd) EPIITI Ep (Kp+TD )[E\/(XP) +(xQ+E") Ef}}

E, = é\/(xP)z +(xQ+E2)? —E,

. Ky, 1 E
Ep=——2(=+/(XP)* +(xQ+E?®)* —E,)-=2
o =~ (EVOP) + (QET) -E) -
3.2 Eigenvalue Analysis Results

Based on above test system, here we will show that the dynamic stability margin is smaller
than the static margin. Please note that, it could be expected as a general case that the
stability margin will shrink considering the time delay of generator dyanmic response to
load increase, the physical limits of generators, the limit of excitor size and unpredictable

load dynamic behavors, etc.

The regulator used in this example is a P-regulator with constant E2, =1.6, and the
other parameters is set as:

T, =5T=15x,=12,x=0.1%, =0.2,Q=05P,E, =1.0

And throughout this section, we assume that the system load is constant load with a

fixed power factor (P = 2Q), and we have infinite exciter size.
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Birfucation location in the pv curve(x=0.1} belta-0.5 PVv=0,Q%=0

Figure 11-3 Bifurcation locations on PV curve

In figure 11-3, we found Hopf bifurcation point A in the upper part of the PV curve,

which determines dynamic stability margin. We can see that P, is smaller than the static
margin P, (here P, =P, ). Here P,;. denote active power load associated with
bifurcation points A, B and C respectively.

When the system reaches Hopf bifurcation point, the system will no longer hold its

stability in case there is a small disturbance, which will be demonstrated by time domain
simulation with the test system.

Here we will start simulation at equilibrium point P =0.934, and with a small
disturbance of AP =0.002, we have time domain responses of voltages shown in Figure I1-
4.
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Figure 11-4 Voltage responses in time domain

In above figure, we can see that when the system approaches Hopf point, the system has
a severe oscillation and can not keep the stability with small disturbance, thus we know that
the dynamic margin A is more meaningful than the static margin B point, so we need the

bifurcation analysis to find it.

Now we will analyze the impacts of different controllers of the regulator on voltage
stability of the test system. Based on it, we will give a method to allocate the responsibility

of the voltage collapse.

3.2.1 P-regulator
Here we will show how K impact on the locations of bifurcation points:

When K, =2.5,50r10, the locations of the bifucation A, B and C and the eigenvalues

of reduced Jacobian matrix J, are shown in Figure 11-5~I1-7:



Birfucation location in the pv cune(x=0.1)

Figure 11-5 The locations of the bifurcations when K, =2.5,50r10

Upper part:1st eigenvalue of reduced Jacobian matrix(kKp=2.5510)

100 T T T T T I
.=

C

) i
S s T | 4 S50 SR

t A
(K=25510)
S0 femennee- ymmmmmnaes frmmmmmna- brommeeees d
S s ST S & S S
180 i i i i i i
0 0.5 1 15 2 25 3 35

Figure 11-6 The eigenvalue which is slightly influenced by K,

20
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2e Upper part:2nd eigenvalue of reduced Jacobian matrix
. I I ] I I T

eig

(Kp=2.5 5,10)

| | i i | | a
0 0s 1 15 2 25 3 35

Figure 11-7 The eigenvalue which is strongly affected by K,

By our calculation, with constant load and the infinite exciter size, bifurcation point C is
only determined by transmission system, it will not be influenced by the parameters of
controller. However, point B will vary with the change of K,. When K, -, P, > P,

max ?

when K, >5.25, B, > P, ; when K, =1.895, P, = P,; whenK, <1.895, bifurcation point

A will disappear; and when K, -0, P, - 0.735.

In Figure 11-6, note that K, has little influence on one of the eigenvalues (denoted by
EigT), while in Figure 11-7, K, has a substantial impact on the other eigenvalue (denoted

by EigC).

When K, =1.8, Figll-10 shows the location of B and C in PV curve. Note that A

disappeared. From Figures 11-5 to 11-10 we can see that the eigenvalue EigT is strongly
related to the load flow, while the eigenvalue EigC is strongly influenced by the controller.
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Upper part:1st eigenvalue of reduced Jacobian matnx (Kp=1.8)
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Figure 11-8 The eigenvalue EigT (K, =1.8)
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Figure 11-9 The eigenvalue EigC (K, =1.8)
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Location of B, C in PV curve (P-controller, Kp=1.8)

e e S B e s
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N s N TS N N N

0 0s 1 15 2 25 3 35
P

Figure 11-10 The location of B and C when K, =1.8

We can conclude that there are three basic patterns:

% P,<P;<P.. When Pe(P,,P;), both Re(EigC) and Re(EigT) are positive;
when P € (P;,P.), only Re(EigT) is positive.

% P,<P.<P,. When Pe(P,,P.), both Re(EigC) and Re(EigT) are positive;
when P e (P.,PR;), only Re(EigC) is positive.

% Bifurcation point A disappears and P, <P. . Only Re(EigT) is positive when
Pe(R,F).

3.2.2  PI-regulator

Here the parameters of Pl-regulator is given as K, =2.57T =5.00rT, =20 . Using
equations (2.6), (2.8) and (2.10), we can calculate three eigenvalues of the reduced Jacobian
matrix J,. We found that one eigenvalue of J, is always located in left side of imaginary

axis, and the other two eigenvalues will across imaginary axis with load increase. One of
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these two eigenvalues is strongly affected by parameters of Pl-controller, K, and T, ,
especially by T,, so similarly, we denote it as EigC, and the other eigenvalue is almost

independent with controller, so we denote it as EigT. Three bifurcations, type A, B and C,
are also found with Pl-controllers.

Upper part:2nd eigenvalue of reduced J matnx Kp=2.5 xd=1.2

100

! | | : | |
i P A i | :
2l o LR S i
| E : i Tie5 / Ti=20 !
I T B =t
o i i i
® : : ;
B0 feeeeeeees eramnens boeeacees : 1
| i i | i
1 2 25 3 35

-150
0 0.5

L

Figure 11-11 The eigenvalue Eig T(PI-controller)



Upper part:1st eigenvalue of reduced J matrix Kp=2.5 xd=1.2
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Figure 11-12 The eigenvalue EigC (PI-controller)
The bifurcation points in PV curve
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Figure 11-13 The location of A, B and C in PV curve for a PI/PID controller
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From Figure 11-11~11-13, we can conclude that PI controller behaves very similar to the

rescheduled P-controller as K, — . When P € (0,P,), all eigenvalues are negative; when
Pe(P,,P.) , both Re(EigC) and Re(EigT) are positive; when Pe(P.,P;), only
Re(EigC) is positive. Accordingly, it follows the second basic pattern as described in

11.3.2.1.

3.2.3 PID-controllers in a regulator
Parameters of PID-controller are set as K, =2.5,T, =5.0,K, =1.0,T, =0.01or T, =0.005,
it behaves similar to a Pl-controller as shown in Figure 11-13. This also follows the second

basic pattern as discussed in 11.3.2.1.

Through above obeservations, given the constant load and infinite exciter size, we can
conclude that the three basic ordering patterns of bifurcation points A, B and C as discussed

in 11.3.2.1 are generally true for all controllers which can keepE. = E,. Our experience
indicates that no other ordering of A, B and C is possible. Accordingly, we can draw the

conclusion:
% P,<P;<P.. When Pe(P,,P;), both Re(EigC) and Re(EigT) are positive;
when P e (P;, P.), only the Re(EigT) is positive. From the parameter analysis, we

can conclude that the voltage collapse is due to both controller and transmission

when P e (P,,P;) . The voltage collapse is only caused by transmission part when
Pe(P;,P.). In this case, [P,,P.] is the unstable area, and bifurcation point A
determines the dynamic stability boundary.

% P,<P.<P,. When Pe(P,,F.), both Re(EigC) and Re(EigT) are positive;
when P e (P.,P;), only Re(EigC) is positive. From the parameter analysis we can
conclude that the voltage collapse is due to both controller and transmission when

P e (P,,P.). The voltage collapse is caused by controller when P € (P.,P;). In this

case, [P,,P;] is the unstable area, and A determines the dynamic stability boundary.
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% Bifurcation point A disappears and P, <P. . Only Re(EigT) is positive when
Pe(P;,P.) . Thus, the voltage collapse is only due to transmission when
Pe(P;,P.). In this case, [P;,P.] is the unstable area, and bifurcation point B

determines the dynamic stability boundary.
In conclusion, the tuning of the control parameters will influence the locations of
bifurcation points and thus the dynamic stability margin of the system. And our observation

may also benefit the design of power system.

Following the same argument, we can also unbundle the voltage collapse responsibility
of the system by studying how the parameters of the three parts of the system (generator,
controller and transmission part) affect the bifurcation patterns:

3.2.4 Impacts of other system parameters on voltage stability

The influence of the excitation system:

As discussed before, impacts of K, in rescheduled P-controller are summarized as
follows. K does not affect C, but have impacts on B and A. When K, > », B—>P,_,;
and when K, -0, B—0.735; when K, =189, P,~P;, ; when K, <1895, A
disappear; when K, =5.25, P. = R;,.

For Pl and PID controllers, we did simulation with different parameters of the controller

and the result summarized in table 11-1: (Note: for Pl and PID controller, A determines

dynamic stability margin, and the unstable area is [P,, P;])

From table 11-1.A, we can see that K, only has influence on A, which is different from
P-controller. Here B and C remain the same. (With a constant power factor, it can be easily
approved that B always appears at P, when an I-controller is used in the regulator.)
P,will increase with bigger T, and bigger K. T, has little influence on A, but too large
or too small T, will decrease P,. All parameters of Pl and PID controllers have no impacts

onB and C.
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Table I1-1.A Impacts of other parameters

Xd Kp T Kb Tp A B C
1 P=0.98
2 P=1.167
0 0
4 P=1.273
2.5 P=1.236

0.001 P=1.404
1 0.1 P=1.4105

P=1.415
3 0.01 P=3.09 | P=2.115
1.2 3 P=1.416
2 P=1.1625
3 P=1.2839
P=0.5
0
0 8 P=0.648
15 P=0.685
100 P=0.726

The location of bifurcation point C is independent of the controller as long as the
voltage regulator has enough excitation capacity to keep terminal voltage at rated value.

Now we investigate the influence of the T,, on the stability margin: (In this case the

regulator is rescheduled P-controller, K, = 2.5)

Table 11-2.B Impacts of T,

Pmax P, P, P.

3.09 1.248 1.584 2.116
3.09 1.416 1.584 2.116
3.09 1.534 1.584 2.116

o

\lU‘IQJO-_i-
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From table 11-1.B we can see that T,, will influence the A point, but it have no
influence on B and C. We verified the fact for all three controllers. P, will increase with
bigger T,,, that means the dynamic stability margin will increase with bigger T,, .
However, the size of the exciter will limit the range of E,, and thus the voltage regulation

range [13].

The influence of generator reactance:

Now we investigate the influence of the X, on the stability margin:

With rescheduled P-controller

Table I1-3.A Impacts of x, with P-controller

max

1.2 3.09 1416 | 1.584 | 2.116
0.3 3.09 2016 | 2.719 | 2.116

X4 P P, Ps P

With Pl-controller

Table I11-4.B Impacts of x, with Pl-controller

Xd Pmax PA IDB PC

1.2 3.09 1.297 3.09 2.116
0.3 3.09 2.005 3.09 2.116

With PID-controller

Table 11-5.C Impacts of x, with PID-controller

Xd I:>max I:)A I:)B I:>C

1.2 3.09 1.415 3.09 2.116
0.3 3.09 | 2.0158 | 3.09 2.116
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Through the table 11-2.A, B and C, we can see that x, has influence on A point; and if

we use P-controller, it also influence the B point. It implies that the dynamic stability

margin will increase with smaller x,. However, C is independent of X, .

The parameters of the transmission system:

Now we investigate how x impacts stability margin:

With rescheduled P-controller

Table 11-6.A Impacts of x with P-controller

X Pmax A B C
0.1 3.09 1.416 1.584 2.116
0.12 2.58 1.360 1.509 1.966

With Pl-controller

Table 11-7.B Impacts of x with Pl-controller

X Pmax A B C
0.1 3.09 1.297 3.09 2.116
0.12 2.58 1.2506 2.58 1.966

With PID-controller

Table 11-8.C Impacts of x with PID-controller

X Pmax A B C
0.1 3.09 1.415 3.09 2.116
0.12 2.58 1.3589 2.58 1.966

Through analysis of table 11-3.A, B and C, we see that x has influence on all of the

three bifurcation points. The dynamic stability margin will increase with smaller x .
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4. Conclusion

This chapter attempts to allocate the contribution of voltage stability to generator owners,
transmission owners and excitation control owners, thus, an investment award system can
be built to award investments on the corresponding power infrastructure. We showed that
how the parameters of the three parts of the system (generator, controller and transmission)
affect the bifurcation patterns, which can help us to design and optimize the system.

Please note that, all conclusions drawn in this chapter are based on a primitive system
and several typical regulators. It is hard to rigorously verify these conclusions with large
systems due to huge computation cost associated with eigenvalue analysis for large systems,
and that is why a new comprehesive numerical analysis scheme will be proposed in chapter
IV and V. However, as demonstrated in next chapter, our conlusions based on a typical
two-bus system could be very useful for excitor design, especially when we try to optimize
the excitor size to make the best use of a generator.
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CHAPTER Il

IMPACT ANALYSIS OF EXCITER SIZES ON VOLTAGE STABILITY

1. Introduction

So far, in deregulated environment, transactions are only paid by the real power amount and
no incentive was given to install regular exciter sizes; the industry tends to reduce exciter
size to save cost. In this chapter, we show that limits of the power system components,
induced by the size of the exciter, limits of the stator (armature) current, the field current,
and overheating limits of the stator core, etc., all have a influence on the voltage stability,
especially exciter size. An algorithm to choose proper exciter size is developed in this
chapter. The algorithm aims to maximize the loadability of system to fully utilize the

generator.

2. The influence of physical limits on the voltage stability margin of the system
Various constraints on the system components, which will have a great influence on the
voltage stability margin, will be analyzed here. Similarly as in Chapter I, three widely used

regulators—adaptive P-regulator (E, is rescheduled to keep E. =E,), Pl-regulator and

PID-regulator, will be still considered in this chapter. We also consider a much weaker non-

adaptive P-regulator that has a constant E2, .

2.1 Over excitation limit
When an exciter hits its upper limit, its output, E,,, can no longer responds to the change

of the voltage. E,, will be saturated at E In this case, only two kinds of bifurcations

fd _max *
are observed, SNB and SIB (still denoted by B and C points in PV curve respectively). This

is also the case for the weaker P-regulator without rescheduling. On the other hand, for

normal situations, where E; is within its limit and the voltage regulator is able to maintain

E. =E,, HB (still denoted by A point in PV curve) may also appear. As discussed in
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Chapter I1, in normal case, we may have three kinds of bifurcations (A, B, and C) located in
PV curve.

We use the simple system shown in Figure Il1-1 to demonstrate our analysis. It is the
same test system used in Chapter II, and the regulator used here is the rescheduled P-
regulator. We also tested with other regulators, and found that the results are all included in
the two basic patterns we got from the rescheduled P-regulator. Thus, without loss of
generality, all the analysis in this chapter will be based on results associated with
rescheduled P-regulator.

Es (W | X IlE,(S

Load (P, Q)

Er —»| Exciter

Over excitation limit E  max

Figure I11-1 Test system with over excitation limit

The parameters of above system are listed below. Note that all cases shown in this
chapter will use the same system parameters unless specified otherwise.

TC;O =5T =1.5x=0.], X;j = OZ,Q =0.5P, Er =1.0

To demonstrate our analysis, two PV curves, with different length of nose, are drawn in
Fig 2 and 3. The longer nosed curve represents an ideal case that has a big enough exciter

size, in which the limit will never be reached. The shorter nosed curve denotes the case that

the regulator is saturated, which has a constant input E,, as the exciter hit its limit. The
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system is first following the longer nosed curve since the regulator is working within its
limit. Then when the exciter hits its limit, the system is moving along the shorter nosed

curve. The switching point is D.

In Figure 111-2 and 111-3, we denote the saddle node point and the singularity point as

B1 and C1 in the PV curve with shorter nose of the system that the E, is saturated. Let the

intersection point of the two PV curves be D. Note that C1 always appears at the lower part

of the PV curve, B1 appears at the maximum load point P, and there is no Hopf

ax !

bifurcation point when E,, is saturated.

Please note that when we have big enough exciter size, the longer nose PV curve and
the corresponding bifurcation points A, B and C will not change with the value of the
exciter size since as long as the exciter is operated within its capacity, the system behavior
will remain the same for different exciter sizes. With the same example shown in Figure
I11-2, we change the exciter size from 50 to 25 (both are big enough), and we found that the
PV curve remains the same, and the corresponding A, B and C also remain on the same

locations.

Comparing the PV curves and the locations of the bifurcation points for these two cases,
we found two basic patterns, which are shown in Figure 111-2 and 111-3 respectively.

We describe the two possible patterns, depending on the location of D, as follows:
Pattern 1, D is located at the lower part of the shorter nose PV curve.

In this pattern, there are several possibilities for the dynamic stability margin: (For each

point, say D, P, is used to denote the real power load at point D.)

e P, <P,, then the dynamic stability margin is P, (If A disappears and P,<P,, P; is

the dynamic stability margin)

e P,>P, and P, <PR,, then the dynamic stability margin is P, .

e P,>P, and P,,>=R,, then the dynamic stability margin is F,,.
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E =20, xd=1.2, x=0.1
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Figure 111-2 The general pattern 1

For the steady stability margin, there are also several possibilities:

e P. < P,, then the steady-state margin is P .
e P. > P, and P, < P,, then the steady-state margin is P;.
e P.> P, and R,,>= PR,, then the steady-state margin is P.,.

To our experience, P.,>=P, seldom appears. For our example, it appears with a short

transmission line.
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Figure I11-3 The general pattern 2

Pattern 2, D is located at the upper part of the PV curve with shorter nose.
In this pattern, there are also several possibilities for the dynamic stability margin:

e P, <P,, then the dynamic stability margin is P, (If A does not exist, then B, is the

dynamic stability margin)
e P,> P, , then the dynamic stability margin is Py,
For the steady stability margin:

e P. < P,, then the steady-state margin is P,

e P. > P,, then the steady-state margin is P,
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The main system differences that cause different patterns as shown in Figure 111-2 and

Figure I11-3, are that there is a bigger x, and a bigger E in Figure I11-2. Note that

fd _ max
point D in Figure I11-2 is nearly in the same location as the B1 in Figure 111-2. It illustrates

that a bigger x, needs a larger exciter size to keep the same voltage stability margin for a

given transmission line. We also found that longer transmission line needs larger exciter

size to keep the same voltage stability margin for a given X, .

The regulator used in Figure 111-2 and Figure 111-3 is a P-regulator with a rescheduled
E? . For this type of P-regulator and PI, PID regulators, bifurcation points A, B and C are
all located in the upper part of the PV curve and C point will stay at the same location for a
given x [37]. For rescheduled P regulator, B point will go further down to P,
with K, — o, while A and B will go further up with smaller K, . A will disappear and P,
may less than P, with K, — 0. For PI or PID regulator, P, will always equal to P, and
A will not disappear with K, — 0. The location of A will change slightly with K for a
PID regulator. However, for a PI regulator, A will go further up with smaller K, and P,

may become less than P, [37].

Based on our analysis, we found that in the above two basic patterns, the situations

P, <P, or P, <P, only appear when the regulator is not well tuned (e.g. K, is too small),
or the transmission line is too long. In this case, dynamic analysis is necessary, and P, is
the determining stability margin because that P, is always less than P, [37]. We know that

A is mainly caused by the regulator for a given transmission line [37], and regulator is
responsible for the voltage collapse in this case. We should notice that steady-state analysis
is no longer good enough in this case, because that the real stability margin is determined

by A point.
To our experience, in most cases we find that P,>P,, P.>P, and P.,<P,, and thus

P, is usually the determining stability margin for basic pattern 1, while Py, is the
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determining stability margin for basic pattern 2. Both B1 and D can be found by the steady-
state method, and steady state analysis is good enough here. For examples in Figure 111-2,
P, is the stability margin; in Figure I11-3, B, is the stability margin. For a given
transmission line, P, and P, is determined by the size of the exciter, and thus the exciter

is mainly responsible for the voltage collapse in this case.

2.2 The influence of other limits on the system

Here we focus on the physical limits of the generator shown in Figure I11-4 [22, 26] and the
relationship of the above bifurcation points and these physical limits:

* Section E-F-G of the curve shows limits due to stator (armature) current. This section
is a portion (arc) of a circle that has its center in the origin of — (MW-Mvar) coordinates of

the generator.

* Section D-E of the curve is due to field current limit. This is a portion (arc) of a circle
that has its center on the Y axis (Mvar) and shifted from the origin by a value proportional
with the machine short-circuit ratio (SCR).

* Section H-G of the curve shows limit due to over-heating of the stator core end when
the generator is under-excited in conditions of leading PF, when the generator is absorbing

reactive power.

Accordingly, we observe three basic patterns based on the locations of A, B and C
points relative to the boundary D-E-F-G-H determined by the physical limits:

1) Bifurcation points A, B and C are outside of the boundary D-E-F-G-H, and thus the
boundary determines the real stability margin, and the maximum real power loadability

point is F.

To our experience, when the transmission line is too long (x is very large) or the
regulator is too weak (for example, K, is very small, or we use P-regulator with constant
E?,), the power values associated with bifurcation points A, B and C may become less than

the power at point F. Then A determines the dynamic stability margin (for cases that we do
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not have A point, then B point will determine the dynamic stability margin), and C

determines the steady-state stability margin (for the special case that P-regulator has a

constant E?,, B determines the steady-state stability margin). Thus, we have patterns ii and
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Figure 111-4 The limits of the generator

ii) Bifurcation point A or B appear inside the boundary, but C is outside of the

boundary, thus P- is the steady-stage stability margin. The point A or B (when A

disappears) will determine the dynamic stability margin.

iii) Bifurcation points A, B and C appear inside the boundary, and the point A or B will

determine the dynamic stability margin; similarly, bifurcation point C or B will determine

the steady-state stability margin.



40

Note: In case i), the steady-state analysis is good enough, but in case ii) and iii),
dynamic analysis is needed.

In basic pattern i), the field current limit determines that how much reactive power the

: The limit of stator current determines that how much real

max !

generator can supply--Q

power the generator can supply-- P, ., ; The Over-heating limit of the stator core determines

ax !

that how much reactive power the generator can absorb--Q But for pattern ii) and iii),

s—max *
it becomes much more complex. These maximum values are no longer be determined by
the physical limits of the generator. Instead, they are determined by the regulator type,

exciter size and the length of the transmission line.

Our experience shows that with the three widely used regulators, the basic pattern i)
usually appears under the conditions that the regulator is not too weak, the size of exciter is
not too small and the transmission line is not too long. For these cases, the steady-state and

the dynamic stability margin is PF, and the limit of stator current determines the stability

margin. But for the weak type of P-regulator (with constant E2, ), the basic pattern iii)

usually appears, even when the transmission line is not very long. It also means that this
type of P-regulator is weaker than those other three types of regulators as we discussed

earlier. With this type of regulator, Q.. is no longer determined by the limit of the stator

max
current, but by the regulator; while the maximum value of the reactive power that the
generator can absorb is still usually determined by the over-heating limit of the stator.

3. Analgorithm to choose the optimal exciter size

In this section, the test system in Figure 11-2 is still used to demonstrate how to apply
eigenvalue based bifurcation analysis in voltage stability analysis, and thus to allocate
responsibility of voltage collapse.
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3.1 The objective of the algorithm

The size of the exciter has a great influence on the voltage stability as shown in Figure I11-2

and 111-3, the longer nosed curve represents an ideal case that has a big enough exciter size.

The shorter nosed curve has a constant input (E ) for the exciter as the exciter hit its

fd _size
limit. Our problem is formulated as follows: Given the system shown in Figure I1I-1 and
the generator limits shown in Figure 111-4, how to decide an appropriate exciter size that
can fully utilize the capacity of the generator. This algorithm is developed to solve this

problem.

Notation: In the algorithm, the exciter size is denoted by E We denote the lower

fd _size *

limit of the desired bus voltage as E and we denote the corresponding load at the PV

low_ lim ?

curve assuming the exciter can be unlimited regulated to keep E; =E, as B, Point F

lim *
shown in Figure 111-2 is determined by the limit of the stator current, which denotes the
critical point that the generator can be operated at. Point D shown in Figure 111-2 and 111-3
is the intersection of the two PV curves. At this point, the exciter hits its limit and the
generator bus changes from a PV bus to a PQ bus. For each point, say D, we associate D

with P, (Qp) and E_as the real (reactive) loads and the voltage of the load bus at the point

D.

3.2 Fundamental principle of the algorithm

Our algorithm is based on the principle that we should choose exciter size (Ey, ) t0

make the best use of the generator. We should design in such a way that the generator bus

still functions as a PV bus when the generator operates at the point F. Thus, we choose

E to make P, > P-. At the same time, we should guarantee that the E, should be

fd _size

greater than the lower limit (E,,, ,,), which requires that P, <R Thus we should

ow_lim *

choose E to satisfy P, = min(P-, R,

fd _size ow_lim) '

Accordingly, we decomposed our algorithm to the following two steps:
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1st step: Determine D by x, Fand E

low_lim *

From x, F and E,,, ;,, we will determine the D point (F,,Qyand E). For an ideal

exciter, which can regulate E; = E,, we can calculate the PV curve by equation:
0=E.’E® - (xP)? — (xQ + E?)? (3.1)

Substituting E = E,,, y, into equation (3.1), we can calculate R, . Then we choose

P, =min(P:, R, in), and we can obtain Ej by substituting B, and Q, back to equation

(3.2).

2nd step: Determine E by X, X,,X, and D point.

fd _ size

Note that we can find E;, ., by making the PV curve without regulator pass through

the D point. We can calculate the PV curve by equation (3.3) and (3.4).

0=E?E*~(XP)’ - (X'Q+E?)? (3.2)

— ’ 2 !
0= 1 XX, XKy (E +,XQ)+Efd we | (B3
Tao X X : _

Substitute P,,Q, and E_ into (3.2)

e KR H00Qp + Ey)

(3.4)

Substitute (3.4) and P, Q, and E into (3.3), we can get:

e xR+ (Q+ERf % oxy (B3 +xQu)Eg

feex Ep X' \/(x P) + (x'QD + E,i)2

Note that x'= X+ X'

(3.5)
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3.3 Verifying this algorithm with large systems

So far, this algorithm is developed for the simple system shown in Figure I11-1. However,

we can use P;, Q; instead of P,, Qyand x to estimate the exciter size. Thus the algorithm

will be possible to be extended to large systems.

N
For a large system, we can specify the sum of the active load as z P.. . Here, N is the
i=1

number of the generators in the system. We calculate the power flow at the most heavily

loaded situation, and then we know the P; and Q; for each generator at the most stressed

situation.

Then, we use another simplified power flow equation:
E*ES —(%Ps)” — (%,Qs + Eg)* (3.6)
and the exciter equation :

Ozi' _X_fiE'_l_Xd _Xd (Eé+)$;jQG)+E

, 3.7
Tdo Xd Xd E fd _ size ( )
Knowing E; and P; + JQ, by (3.6) ~(3.7) we can get:
£ - JOGPS)? + (x,Qg + E2)? 38)
EG
And
— ' 2 I
Efd size =X_dED - Xd ' Xd (EG - ?(dQG) (39)
- Xq Xy E,

From the equation (3.8) and (3.9), we can estimate the exciter size by P, and Qg

instead of P,, Q, and x.
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3.4 Demonstrating example

Based on above analysis, we can decouple a big system and use our algorithm to design the
exciter size for each generator. Here the load flow result has decoupled one of the

generators from the remaining system, and the problem becomes:

Given E, =1, P. =1.2, x=0.1, x, =12, x =0.2, and E =0.9, how to choose

low_lim

E ? (The power factor of load is constant, P =2Q)

fd _size
1st step:

Substitute E =0.9 into equation (3.1), then we can get R =1.5359 ,

low_lim ow _lim

P, =min(P:,R )=1.2 and Q, =0.6. Substituting P,,Q, into equation (3.1), we can

ow _lim

obtain E, = 0.9268

2nd step:

By equation (3.5) and known P,,Q, and E,, we can obtain E = 2.22. From load

fd _size
flow analysis, we got P, =1.2, Q,=0.80953. By equation (3.8) we got E_= 1.18643, then

by equation (3.9) we can get E = 2.22. The result is the same as we obtained from

fd _size
equation (3.5). This confirms that we can estimate the exciter size by P, , Q,, instead of

P,, Qpand x.

Now we use E = 2.22 as the exciter size to simulate the system, the result is shown

fd _size

in figure 111-5.

From the Figure I11-5, we can see that P,=1.2 and E; =0.9268 > 0.9 are exact the

same as the result we obtained by our algorithm. It shows that our algorithm is an easy and
credible way to determine the exciter size.



45

The steady-state PV curve Efd input=2.222 xd=1.2
25 T T T T T T

— Upper part of PV curve

[T : | Lower part of PV cumve
5| withopt regulator 1 e —— _
P i i ' f
' : | : :
> o s s s
1 _""‘;\;J:;:;;i___; """" beomnenee Jommenenes el boeneeoe- -
= N D T
! ; D-iﬁ:te:sectioni point ; i\
0.5 fFenemnes i aseenee (PI=20=T D Ed=0.9288) preee 7
with regu1a'tnr : ;
1] | | | | | |
o 05 1 1.5 2 25 3 35
FI

Figure I11-5 The result of our example

4. Conclusion

In this chapter, we analyzed the influence of physical limits and controller types on the
voltage stability margin of the power system, which will help us to design the system and
allocate the responsibility of the voltage collapse. Based on these work, we developed an

algorithm to choose the right exciter size to fully utilize the capacity of the generator.

A simple two-bus system is used to verify our approach, which shows our analysis is
reasonable and credible. We also extend the algorithm to large systems.
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CHAPTER IV
OPTIMAL LOAD ADJUSTMENT FOR FAST DYNAMIC VOLTAGE STABILITY

MARGIN ESTIMATION USING EXPLICIT RK METHODS

1. Introduction

1.1 Background and objectives

Traditionally, static methods, Continuous Power Flow (CPF) [9] and the Quasi-Steady-
State (QSS) approximation [2] of long-term dynamics, are used for estimating the
loadability margin. However, both of them may not be obvious to account for discrete-type
devices whose final state depends on the system time evolution [2]. Moreover, there are
some situations where the existence of equilibrium does not guarantee a stable system
behavior [2]. For example, Chapter Il and paper [18] demonstrated an example showing a

system encounter a Hopf bifurcation point before it reaches a saddle node.

Dynamic analysis methods, such as eigenvalue based bifurcation analysis and time
domain simulation, have higher modeling accuracy than static methods. With dynamic
analysis, it is possible to study other instability mechanism than the loss of equilibrium
captured by static methods. As demonstrated in Chapter Il and I, by solving for
equilibrium manifold as load changes and calculating corresponding eigenvalues of reduced
Jacobian matrix, one can accurately locate dynamic voltage stability margin. Although
eigenvalue based bifurcation analysis is accurate and gives us insights about the dynamic
behavior of the system, eigenvalue calculation is very complex and time consuming, and
more importantly, the computation cost will further increase drastically with increase of
system size. Its heavy computation burden makes it very difficult for large system
applications. Some industrial grade software, i.e., Eurostag, can perform eigenvalue
analysis along its numerically simulated trajectories. However, our experience indicates
that the obtained loadability margin may not be accurate since the simulated trajectories
cannot be guaranteed to be around the equilibrium manifold and thus the small disturbance
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analysis has become meaningless and gives wrong results. For example, with eurostag, if
we want to find the dynamic voltage stability margin, we need to arbitrarily set a load
increase speed. Simulation trajectories vary with different load increase speeds, and the
accuracy of estimated dynamic margin can only be guaranteed by a very inefficient way --
Run simulation with several different load increase ratio till the trajectories no longer
exhibit relative big changes with different load increase speeds, then people can claim that
they have found the structural unstable, which should be independent with the load increase
speed by defination of long term dynamic analysis with small disturbance [2]. Therefore,
alternative efficient methods need to be developed.

As discussed, a desirable stability margin estimation scheme should satisfy both
accuracy and speed requirements. Finding a numerical approach to satisfy these two
requirements is our research objective here. In this chapter, a novel numerical approach is
proposed based on explicit Runge-Kutta (RK) methods. With this new method, the
computation efficiency and accuracy of stability margin estimate are both significantly

improved.

1.2 Introduction of the numerical method used for voltage stability analysis

Before further discussion, we will first give a brief review of commonly used numerical

scheme for voltage stability analysis.

As discussed earlier, power system dynamics can be described in a DAE form as

follows:

x=f(x,,p), f R 5 RO
{O =g(x, Y, p), g:RT™I 5 R" 4.1)
XeXcR", yeY cR", pePc R
where the parameter p defines specific system configurations and operation conditions.
x denotes the dynamic state variables and y denotes the instantaneous variables which

satisfies algebraic constraints.
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As defined in [36], the structurally stable region in the parameter space p has the

property that the system operated at a locally structural stable equilibrium point can tolerate
slow parametric changes within the region without losing local stability around the
equilibrium. As system parameters vary in this region, the dynamics of the system changes
continuously; in other words, topologically the structure remains unchanged under small
disturbance provided the system is structurally stable at the given parameter value.
Structurally unstable points then pinpoint the parameter boundary values where the
structure or the type of the system undergoes changes with small perturbations [2, 14].
Accordingly, these local bifurcation points characterize the structural stability region. To
find the dynamic stability margin of power system, we will locate the first-appeared

bifurcation point as p changes. Eigenvalue based bifurcation analysis provides a tool to

study the parameter space phenomena; however, the analysis carries a huge computation
burden. Thus, numerical algorithm will be developed here to speed up the computation to

locate the bifurcation point.
For power system expressed as (4.1), the differential equations are the dynamic
equations, and the algebraic constraints denote the power flow equations. p denotes loads,

generation, voltage setting points, etc. In this paper, we will focus on system dynamics with

changing loads, and p will denote the loads of the system.

In terms of the structural stability concept one needs to slowly increase the loads p until

the structurally unstable loading is found, where p starts from an equilibrium point

{X» Yo, Py } along system (4.2):

x=f(x,y,p)
0=9g(x,y,p)
p=kxc (4.2)

X(to) =X, y(to) = Yo: p(to) =P

Herek € R',c € C = R*, kxc denotes the load increase speed, where c is a constant

vector that denotes the load increase ratio among all loads and is defined by a scheduled
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system operating strategy. If all loads in the network increase in the same ratio, ¢ will be a
unit vector (c=[1,1, ..., 1]) . Without losing generality, we assume all loads will increase in
the same ratio to simplify our presentation.

Initialize system,
get Xg, Yo, Po

v

n=(

How to
identify?

Bifurcation
behavior occurred?

n=n+1 Increase Load:
Pn1™ pn+ kAtn
1 7
1% step:

Power Flow Calculation

\

2" step:
Solve Swing Equations

v

Output the estimated
dynamic stability
margin

End

Figure IV-1 A preliminary scheme to estimate stability margin of power systems
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Note that in this chapter, the numerical computation carried out by (4.2) aims to find the
structurally unstable point, which is different from simulating a system in an assumed load
changes. So the load increase ratio is not necessarily a constant as long as we can locate

bifurcation point accurately.

A numerical solution for DAE systems combined with a bifurcation detection criterion
is developed for stability margin estimation as shown in Figure 1VV-1. In this scheme, with
intelligently increasing load, the algebraic solving and integration are alternately applied
until a bifurcation behavior is detected, where the load value is then the estimated margin.
A criterion to identify a bifurcation behavior will be addressed later.

Before further discussion, we first give a quick review on the adopted integration

method. In the first step of Figure 1V-1, we use X, and increasing load p,.,as known
variables to solve power flow variable y, ., . While in the second step, p,.,,Y,., Will be taken

as known variables to obtain x ., . Without loss of generality, we assume RKF [38] method

n+1 "

will be applied in the second step as equation (4.3).

Xpy = X, + At H

6 4.3)
H=> aK
i=1
where
k.= f(t,,y,)
1 1
k,=f(t +=At ,y. +=k
2 (n 4 n yn 4 1)
3 3 9
ky=f(t,+=At,y, +—=k +—=k
3 (n 8 n yn 32 1 32 2)
K, = (t +EAtn,yn N 1932 K, — 7200 K, + 7296 k)
13 2197 2197 2197
439 3680 845
k. = f(t +At, ——k, -8k k,— k
5 (n+ n yn+216 1 2+ 513 3 4140 4)
1 8 3544 1859 11
k.=f(t +=At ,y. —k +2k, — Kk, + k, ——k
o= T g St Yo T T e T e e T a0 405)
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16 6656 28561 9 2
o =——0,=00,=——,0,=—F, 0 =——,05 =—
135 12825 56430 50 55

At each step, we will try to adjust the step size Atby a two-step process shown as

follows:

Firstly, we will Calculate 8 by

At 1/4
0=0.84 o 0
n+l
1 <. 128 K 2197 K, (4.4)
4 —ap|360 " 42757 75240
n+l — n
+i K5+£ Ks
50 55

Here £is a small constant used to control the ‘one-step error’ of numerical calculation

[29].
Secondly, if <1, we will adjust At by (4.5); otherwise At will keep unchanged.

At =OAt, (4.5)

It is well known that when system is light-loaded or operating in normal conditions, the
solution of the DAE system (4.2) is rather smooth, so bigger At can be selected; while
increasing load makes system more stressed, a smaller At is needed. Thus we can choose a
big initial value for At [29, 38]. With an increased load, Atwill be adjusted by (4.4) and
(4.5). Numerical tests have shown that with automatically adjustment of At, RKF method

has much higher computation efficiency than typical 4th-order RK method [29, 30].
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1.3 Challenges faced by numerical simulation

For the numerical scheme shown in Figure 1V-1, a key question is how to detect bifurcation
behavior. Till now, there still lacks a sound criterion for it. People used to claim a
bifurcation behavior is detected as long as numerical simulation results exhibit an
oscillation or a sudden catastrophic transition as discussed in [2], thus the integration
trajectory will exhibit a big deviation from the equilibrium manifold (EM). However, given
the simulation is numerically stable, there are still two possible reasons for a big deviation
from EM in simulation results. The first possibility is that the system indeed encounters its
structurally unstable point, and in this case, it is correct to claim the detection of bifurcation
behavior. The second possibility is that, the load increases too fast, thus the disturbance for
the system will be too big to be attracted back to stable area. Accrodingly, claim of
bifurcation behavior of this case is clearly wrong. Thus, the key question arises--how to
determine if a disturbance is small enough? How to choose proper speed of increasing load?

Further discussion about this dilemma will be demonstrated later in details.

Another challenge faced by industry is on line calculation of voltage stability margin.
Computation efficiency is of great importance for online monitoring of security. The
automatically step size control technique can be utilized to save computation cost, however,
online estimation of maximum loadability is still difficult, especially for huge systems, for
which the computation burden could be a nightmare for online monitoring. Thus, we need

to find a way to further enhance numerical computation efficiency.

In short, two requirements should be satisfied by a sound numerical scheme: Accuracy

and Efficiency.

2. EMD criterion and load adjustment technique

As discussed former, we locate the dynamic stability margin by detecting the bifurcation
behavior. When a system goes near to its bifurcation point, the system behavior will change
drastically. As shown in [5, 18], the Hopf bifurcation point determines the stability margin

for power system applications. It is well known that when a system is approaching its Hopf
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bifurcation point, oscillation will appear. So oscillation in numerical solution can be taken
as a signal of reaching dynamic voltage stability margin. For the cases that the stability
margin is determined by other types of bifurcation points, numerical solution will suddenly
exhibit a big deviation from the equilibrium point. All these bifurcation behaviors make it

possible to estimate dynamic stability margin by numerical solution.

However, it is observed that with too fast load increase ratio (k is too big), the
numerical solution will also exhibit a big deviation from equilibrium manifold since its
dynamic is unable to settle down to the equilibrium for fast load changes. It can lead to a
misjudgment as a bifurcation behavior and an inaccurate estimate of stability margin as a
consequence. Therefore, for accurate estimation of stability margin, k should be selected to
make the numerical solution stay around the equilibrium manifold until bifurcation occurs.
Thus, a critical step is to judge whether the numerical solution is able to stay around the
equilibrium manifold. Accordingly, a criterion, named as EMD criterion, was proposed in

here to gauge the deviation.

2.1 The EMD criterion

The equilibrium manifold is defined by the equilibrium point path as the load increases.

{0= f(xy,p)

4.6
0=g(x,y,p) (49)

By (4.6), staying around equilibrium manifold means that after each step of the
numerical computation, we should have:

{0 ~ f (Xn+1a Ynsas pn+1) (47)
0 ~ g(Xn+11 Yn+1’ pn+1)

Lete=(e,e,,..8

: n+m)
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€ = fl(Xn+11 Yni1r pn+l)

en = fn(xn+1’ yn+l’ pn+l)
en+1 = gl(xn+l’ yn+l’ pn+1)

where (4.8)

en+m = gn+m (Xn+l’ yn+l’ pn+l)

Thus we can define an equilibrium manifold deviation (EMD) error as the Euclidean

norm of e:

Err =|e| (4.9)

After each step, Err can be used as an error signal to gauge the deviation. A
fundamental requirement of k is that, to keep the numerical trajectory stay around the
equilibrium manifold, we should choose a number k that is small enough to satisfy

Err < & (¢ is asmall constant).

Note that during the numerical computation, k can be varying as long as we can satisfy
the fundamental requirement. So we can adjust k to maintain Err in a certain range.
However, numerical tests show that when a system is approaching its structurally unstable
point, no matter how we adjust k, Err will no longer be controllable. Accordingly, when no

adjustments can work, we claim a bifurcation behavior is detected.
Now we will face several questions:

% How to adjust k to control Err?
+« Can we adjust At to control Err ?
To answer these questions, we need to know the impacts of k and Aton Err, which

will be discussed below.

2.2 Impact analysis of k and At onErr
From (4.8), we know that

ei = hi (Xn+l’ yn+l’ pn+1) (410)
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Assume that (x,,Y,, p,) is an equilibrium point of system, we define a local truncation

EMD error shown in figure 1\VV-2, which is similar as a local numerical trunction error has

been defined in [32, 33]:

Local EMD
Error
A(x(t). y() Xpn (1), Yin (1) E
Equilibrium \\ e e —
Manifold \ ; ¥
Xeq\\qu (Xn , MY
%o Yo) \ - ; Global EMD
Y : : Erfor
Xh,o (t): yh,o (t)
(to, po) (tn! pn) (tn+1’ pn+1) -

Figure IV-2 Local truncation EMD error

In figure 1V-2, [X,,(t), X, ,(t)] is the numerical trajectory start from equilibrium point
(X1 Yo) » and [x,,(t),x,,(t)] is the numerical trajectory start from equilibrium point

(x,,Y,). The local EMD error is defined as (4.11). Later we will prove that, if we can

control £ (the local EMD error per unit time), then we can also control the global EMD

n

error Err.

éi = hi (Xn+11 Y pn+l)
=h (X, +AX,, Y, +Ay,, p, +Ap,)
~ 0 (X, Yoo Do)+ 1, AX, + 0y AY, +hy A, (4.11)

=h, AX, + hi'yAyn + hi’pApn

err = [¢]
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h.,.h, and h;  denote the partial derivative of h respect to x, y and p respectively.

i,x 'y
err is defined as local truncation EMD error since it is an induced error from the single
step. On the other hand, Err is called as global EMD error, which is an accumulated error

from all former steps.
Here Ap, = kAt,, and Ay, is obtained by power flow calculation as shown in the first

step of Figure 1VV-1. Neglecting high order terms, we have:

0: g(Xn’yn+l’ pn+l)
=g (%ys Yo Py) + 9,4y, +9g kAL,

= 9,4y, +0g,kAt,
And we got

Ay, =221 KA, = (X, Y, KA, (4.12)
9y (X0 YnsPn)
For any explicit single-step method to solve differential problem, we have [29, 38]:

AX, = H(X,, Y, P,)AL, (4.13)

Here H(x,,Y,, p,)is determined by the numerical method applied to solve differential

equations [32, 33]. For example, if RKF45 method is applied, by equation (4.3), we will

have:

a; and K. can be found in (4.3).

K1 = f (Xn’ yn+1’ pn+l)
= (X, Yo P) + FLAY, + f Ap,
= fyAyn + fpkAtn

(4.14)

Substituting (4.12) into (4.14), we have
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K, = f,®(X,, Yy, P, )KAL, + f KAL,

_ (4.15)
= Cll(xn’ Yo pn)kAtn

Here C,, = f,®(x,, Y, p,)+ f,.

Similarly we have (4.16). The detailed forms of (:j in (4.16) can be easily calculated

following similar procedures forC,,, and they are all in terms of derivatives of function f

and g.

Kl = (_:ll(xn,yn' pn)kAtn

At
K2 = f (Xn +Tn Kl! Yo pn+1)

X%C_:ll(xn! yn’ pn)kAtn + fch(Xn’ yn’ pn)kAtn

+ f kAt,
= Cyu (X, Ya» Pa)KAL, +Cop (X, Yo, P )KAL (4.16)

= f

K6 = 661(Xn,yn’ pn)kAtn +662 (Xn,yn’ pn)kAt:
+CTG3(Xn,yn’ pn)kAtr? +664(Xn,yn’ pn)kAt;1
+C_:65(Xn,yn’ pn)kAtr? +666 (Xn,yn' pn)kAtr(I5

By (4.13) - (4.16), we have

6 .
AX, =kAt, > C; (X, Yo, P, )AL (4.17)

j=1
—_— 6 _—
Here C; = > a,Cy, j=12....6
i=]

Substituting Ax,,Ay,,Ap, into (4.11), we have
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6 — .
~ h KAt > C At +h DKAL, +h KAt
j=1

= (hiyxiéjmg +h, @+ hi’pjkAtn
i1
= (o(Atn)+Ci )kAtn
Where
Ci=h,®+h .
So we have:

err =[(o(at,) + C(x,, y,. p,) KAL,

Where

n+m

C(Xn!ynlpn): ZCiZ '
i=1
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(4.18a)

Note that (4.18a) is expressed in terms of the derivatives of function h.

This concludes the following lemma:

Lemma 1:

Applying explicit single-step method to solve the system equation described as (4.2),

err = [(o(At,) + C(x,, Y, P,) KA,

we have the local EMD error err as shown in (4.18a) with positive scalars k and At, pulled

(4.18)

For other explicit single-step methods, the proof follows similar steps as with RKF45

method.

Our next task is to estimate global EMD error Err byerr . Enlightened by the Theorem

3.4 in Chapter Il of [38], we have a similar theorem:

Theorem 1:
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Suppose a system described as (4.2) satisfies three conditions:
i) fand gof (4.1) are continuous and satisfies the Lipschitz condition corresponding to

xand vy respectively.

ii) The increment function H in (4.3) and the function® in (4.12) are bounded:

oH
OX

Joo
oy

<L

<L

Here Lis a constant.

iii) Before the system reach its bifurcation point, f and g in (4.2) satisfy

Cll= f,9, — T,9, <2
R PR N

~ fog, —f

- io

Here A is a constant.
Then we can conclude:

Before the system reach its bifurcation point, if we can control the local EMD error per

unit time as:
Z—Zr = Ko(At,) +C (X, ¥o P < & (4.19)

n

Then we will have:
Err < &K (4.20)

Where, K = W(eutmrto) _1)
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Detailed forms of 5(xn,yn, p,) are given in the proof, which are also in terms of

derivatives of function h.

The proof of this theorem is inspired by the proof of Theorem 7.3 in Chapter | of [38].

Before further discussions, we introduce and prove a Lemma as follows:
Lemma 2:

Suppose a system described as (4.2) satisfies the condition i), ii) and iii) of Theorem 1,

then we have:

Xeg ()= %, (1) < kT’l(e““o) ~1) (4.21)

Yea () = Y ()] < kT’l(eL“‘“) -1) (4.22)

Here [xh ®), v, (t)]denotes the numerical solution of the system start from an equilibrium

point(X,, Yo, Py, ty) » and [X, (1), Y, (1)] denotes the equilibrium manifold of the system.

Proof of Lemma 2:

Here we will draw a figure to demonstrate our proof, which follows a similar logic as
the ‘Lady Windermer’s Fan (O.Wilde 1892)’ in chapter 1.7 of [38]. In Figure 1V-3,

[Xoy (0 Yoy O 3 [Xoz) () Yoy O -+ Xy (1), Yigoy (D] denote the numerical solution of
the system start from equilibrium point at t =t,t,,...,t, _, respectively.

By condition i) and ii), f satisfies the Lipschitz condition and oH

—| <L, then b
OX y

Lemma 7.2 in chapter | of [38], we will have:

Xy (©) = %, (D) < €%

Xoay () = X () (4.23)



T (x(@®, y(©)

Equilibrium

Xh(n—l) (t)! yh(n—l) (t)

Manifold ~ < _ /
Xeq+ Yeq e

(X0 Yo) ___—>|/7:’->
\ o o X (e, ()

(tos Po) (tl: p) (tzlv P,)  (t; ps)

Figure IV-3 Illustration of our proof

fort, <t<T =t,

From (4.17), we know that

6 — .
Xq (t) = Xo + A%y = X, + kAt > C,At] (4.24)

i1
and by definition of x,,(t,) , we know:

Xn (1) = Xeq (1) (4.25)
Let

Ai0 = Xeq (tl) —Xo
Ayo = yeq (tl) — Yo

From
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0=f (Xeq (tl)’ Yeq (tl)’ p(tl)) = f (Xo + A)-Zov Yot AVO’ Po + kAto)
0= 90y (6), Veg (1), P(L)) = 9%, + AR, Yy + ATy, Py + KAL)

we can get

£ 1, {Aio}z_ f, "
g, 9, | AV, 9, | °

We have:

T _ fygp — fpgy

AX, = kAt = C KAt
0 fxgy_fygx 0 xRy

(X0:Y0:Po) (426)
kAt, = C KAt

(X0:Y0.Po)

. fg -f
A = pgx xgp
fxgy_ fygx

Then by (4.24), (4.25) and (4.26), we can get:

Xh(l) (tl) =X (tl)

= AX, — AX,

= kAto [Cx (Xo: Yos po) - ZCjAton
i=1

= kAt,C, +0(At?)

5X < A1, and then we have:

By condition iii), we know

Xy (1) = %, ()] < KAt A = KA(t —t,) (4.27)
Substitute (4.27) into (4.23), we have:

Xy (©) = %, (0] < " (t, —t, JkA (4.28)
Similarly we have:

X2y (1) = X (B < €52 (8, —t, JkA (4.29)

fort, <t<T

62
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The entire situation is sketched in Figure V-3, and we obtain for t, <t <t_,:

n+l "

Xeq (6) = X, (1)

S ‘Xh(l) (t)—x, (t)‘ + ‘Xh(Z) (t) = Xy (t)‘ ot

Xeq (£) = X0y O)

4.30
< KA (t, —tg) +...+€" W (K, —t, ) )+ KA(t-t,) (4.30)
t
<kAl e""ds
t
Thus for t, <t <t ., we have:
Vg0~ y, (1) < kA [ e Vs = k%(e““o’ 1) (4.31)

From (4.30) and (4.31), we can get (4.21) and (4.22), so Lemma 2 is proved. Now we
are ready for the proof of Theorem 1—If the system satisfy the three conditions listed
before, then we can conclude that, before the system reach its bifurcation point, if we can

control the local EMD error per unit time as:

o =Klo(at) +C(x,, vy, b < ¢

n

Then we will have:

ErrSgK

Whel’e, |Z — AC(XnC;IYn’ pn) (el—(tml_to) _1)

Proof of Theorem 1:

We know that:

& = hi (X1 Youar Poa)
= (%, (t,0)s Yo (ta)) Poa)
~h (Xeq (tha)s Yeq (thn)s Pr) + hi,x (Xq (th0) — Xeq (t,1)
+ hi,y (yh (tn+1) - yeq (tn+1))
= hi,x (X, (t,0) = Xeq (t.2))+ hi,y (Y (t,0) — Yeq (t.1))
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By (4.21), (4.22), we will have:

&) < By X (b)) = Xeq (1) +‘hiyy”yh (ts) = Veq (tha)

< thvx +‘hi’y‘)k%(el-(tn+1—to) _1)

= C, (%1 Yo, pn)k%(e“‘”ﬂ‘“’) -1)
Where C; =|h; |+[n |
So we have:
Err = [¢] <G54 e -1 “32)
Here C = /ninéf

i=1

If we have
ST —Klo(at)+C(x,, ¥y, Pl <,

n

then we will have:

<& (4.33)
C(an yn’ pn)
Then by (4.32) and (4.33), we have:
AC (Lt
Err<e—le"m -1 4.34
“Lc | ) (4.34)

Thus the Theorem 1 has been proven.

From (4.32) and (4.19), we can conclude that Err is mainly determined by k, and the
impact of Atis not dominant and usually can be neglected. This conclusion is also verified

by our numerical tests.
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Thus, to control Err, we only need to adjust k.
3. The new numerical scheme

3.1 With fixed At, computation speed can be accelerated by adjustment of k

We know that within the feasible operating region of a system, each stable equilibrium
point has its own attraction area. As shown in Figure 1V-4, when the small disturbance is
remained in the attraction area, the numerical solution will be attracted to equilibrium
manifold and Err will decrease. On the other hand, when the parametric perturbation is big
enough to exceed the attraction area, the numerical solution will also deviate from the EM
and Err will increase. It is well known that for power system, the attraction area of EM will
shrink as load increase. Thus, bigger k can be selected when system is lightly loaded,;
while under stressed operating condition, smaller k is needed. We know that the

computation speed is roughly determined by 1/(kAt) . Bigger k and At imply less numerical

computation time. So enlightened by RKF method, we can set a big initial value of k ; and
at each step, we can choose the possible biggest k which can guarantee Err < & . Therefore,

the computation burden can be reduced without loss of accuracy.

After a step, if we find that Err is bigger than expected, we need to adjust k to control

Err. By theorem 1, we know that Err can be controlled if we can control %. Thus, k can

n

be adjusted by (4.19):

KIc(x, v, pl<e ks — 5 |
[C0 o Pl £ 2 @ k< gee

So we can choose new k as:

- &

[ P —
IC (X, Yo PO

(4.35)

here 1 is a constant and satisfies 0< 4 <1.
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A
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% ........ |
X OF O | ; T
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Load is increased along the time

Figure 1V-4 Impacts of adjustment of k

A can be selected as 1, however, to compensate the approximation in deriving (4.19),
we may choose A as 0.8 0r0.9.

It is easy to calculate Err by (4.8) and (4.9), however, derivation and calculation of
IC(X,. ¥a. P,)| can also induce some computation burden. From (4.20), we can see that

bigger k will lead bigger Err, so if Err > ¢, we need to choose a smaller k to decrease Err.

Now the question is how to adjust k in a computation efficient way?

In practice, a simple and straightforward way could be applied to adjust k:
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If Err > ¢, then we can choose
k = pk (4.36)

where fis a constant and satisfies 0 < # <1. According to our experience, it can be
selected as 0.6~ 0.8. We know that when the system encounters the bifurcation point, the
attraction area will shrink to zero. In such a situation, no matter how we decrease k, Err will
no longer be controllable. However, how to make reliable judgment is not trivial in
numerical computation. Again, a straightforward but primitive way is to set a minimum

value of k to detect the bifurcation behavior. When we find that k hits its lower limit k_;,

and Err is still uncontrollable, we can conclude that a bifurcation behavior is detected. This
primitive adjustment performs very well to enhance computation speed in most cases,

which can be verified in numerical tests shown later.

However, with this primitive adjustment approach, there is no guarantee that the
adjustment will be accepted. So, repeated trials and thus extra computation burden will be
induced. On the other hand, for cases that need only small adjustment, the proposed
adjustment by (4.36) may be inappropriately big. Thus, unnecessary computation burden

will be imposed.

Another drawback of this primitive approach is that, apparently, the estimate will be

impacted by k.. However, k_, is selected based on experience on the system, and it is
mathematically difficult to set a reasonable value without trial and error. If k. is

improperly big, the accuracy of estimated margin will suffer.
In short, an optimal load adjustment should satisfy two requirements shown as follows:

« An optimal scheme , after an adjustment of k, should guarantee that
Err <Tolerance, which means that k will not immediately get rejected again. In
addition, k should not be over adjusted, which means the biggest allowed k should
be used to accelerate computation without sacrificing accuracy.

s The accuracy of an optimal scheme should not depend on selected algorthm
parameters; and accurate detection of bifurcation point should be guaranteed
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mathematically. Accordingly, selected minimum value of k should no longer play a
role on the estimate.
Bearing these two requirements in mind, we develop a new approach here by

investigating how k impact on err and Err:

err =|(o(At,)+C(X,, Yy, P,)JKAL, (4.37)

Detail form of C(x,,Y,, p,) has already been discussed before and can also be found in
[29, 38], which is in form of partial derivatives of f, g respectto x,y,p.

Based on theorem 1 introduced former, we know that if we can control the local EMD

error per unit time as:

err <g

< 4.38
A (4.38)
Then we can control the global EMD error Err as:

Err < &K (4.39)
where,

|Z _ AC (Xn’ Yns pn) (eL(tn—to) _1) (440)

C(Xy» Yo P)L
Here é(xn,yn, p,) is also in a form of partial derivatives of f,g with respects to
X,¥, p. Land Aare constants as shown in section 2.2 of this chapter. Moreover, before we
start (n+1)™ iteration, X., Y, p, are all calculated, so C(x,,Yy,,p,) and é(xn,yn, p,) are
known at (n+1)th step. Thus, K can also be taken as known.

Suppose after n+1 step calculation, we found Err,, >T , here T is the tolerance of

global EMD error. Then we need select a new k to redo the n+1 step calculation. Neglecting

the high order term in (4.37) and substituting it into (4.38), we have:
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% ~K[C(x,, yo py)| < & (4.41)

n

AsK in (4.39) is a constant, we know that if we want to control the global EMD error as

Err <T, we should decrease ¢, as

n+l

MW = gold T (4.42)

n+l ~ “n+l
Err

Also, as C(X,,Y,,p,) in (4.41) is known at n+1 step, and there is almost a linear

relation between Z—ir and k, we can adjust the load increase ratio as:

n

koo s T (4.43)
Err

n+l

To be safe, considering those neglected high order term and calculation error, we can

adjust k by:

ke — gkt L (4.44)
Err,

n+l
Here 0 < o <1 is a constant, and can be selected as 0.9.

Due to these linear relations shown in (4.39) and (4.41), we can guarantee that our
adjustment of k as (4.44) will not be rejected for the step. With this new approach, we no
longer need to set a minimum value k to detect the bifurcation point. As we have
demonstrated, after adjustment of k, we can guarantee that Err will be within the tolerance.
Thus, if we found that after the adjustment, Err is still uncontrollable, we can conclude that
we have reached the structurally unstable point. To be safe, we can continue to adjust three
times by (4.44), if we still cannot control Err, then we can claim that the small disturbance

loadability margin is located.

Later on, we will use numerical experiments to demonstrate and compare the primitive

adjustment approach and optimal adjustment approach. We will find that both methods can
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greatly enhance the computation efficiency, and our optimal approach could perform better

in guaranteeing accuracy and saving computation costs.

3.2 A new scheme to accelerate numerical computation speed by adjusting k and At

simultaneously

As discussed before, automatically adjustment of k or At has its own contribution to
improvement of computation efficiency. We would like to explore the synergy of

simultaneous adjustments of these two variables.

Keeping the requirement of accuracy in mind, we propose a scheme to integrate both
techniques as shown in Figure 1V-5.

In this scheme, we will first check the accuracy after each step. If Err > ¢ ( ¢ is the
tolerance of global EMD error), we will adjust k and repeat the n™ step calculation with
adjusted k.

IfErr <& and 6 <1 (@ is defined as in equation 4.45), we will adjust At and repeat the
n™ step calculation with adjusted At. If Err <& and& >1, we will continue the n+1" step

calculation.

Now we will investigate the interaction between these two adjustments. Without losing

generality, here we assume that we will adjust At by RKF method.

3.2.1 The influence of adjustment of k on the adjustment of At
In RKF method, we adjust At as following [29, 38]:

1/4
cAt,

*

6=0.84

(4.45)

n+l

if 6<1, we will adjust step size as At,,, = 6At,, otherwise At ,, = At, [29, 38].
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Adjust At

A 4 A 4

Repeat the n™ n=n+1

step calculation

with adjusted &
or At

Figure 1V-5 Combination of the two techniques

Here d’

n+1

can be calculated by (4.4). Substituting equation (4.16) into (4.5), similarly as

the derivation of (4.17), we have:

6 -~ .
d:+l = kAthC| (Xn’ yn’ pn)Atrl1 (446)

i=1

Substituting (4.46) into (4.4), we have:
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1/4

9:0.84‘ — s
‘kzci(xn' ynl pn)Atrl1

i=1

(4.47)

After adjusting k to a smaller value, by (4.39), we can see that such an adjustment of k

will increase @, therefore the chances to adjust At will be reduced.

3.2.2 The influence of adjustment of At on the adjustment of k
Procedures of (4.4) and (4.5) will lead to a smaller At. Equation (4.19) indicates that the

local EMD error per unit time depends only on o(At) . Accordingly, we can neglectAt’s

impact on the adjustment of k.

From above discussion, we can see that the integration of these two techniques induces

synergy on the computation efficiency.

4. Numerical tests

In this section, we demonstrate the validity of our new approach by a few numerical tests.
In subsection 4.1 and 4.2, we will demonstrate that our new approach can guarantee the
accuracy and enhance the computation efficiency. Here a 2-bus system will be used to
demonstrate how our approach works. In subsection 4.3, we will compare the primitive
load adjustment approach with the optimal approach. In subsection 4.4, the IEEE 162-bus

system will be used to demonstrate that the applicability of our approach to big systems.

4.1 Our EMD criterion accurately estimates the stability margins

The simple 2-bus system is also the test system used in Chaper Il, which is shown as Figure
1\V-6:
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X, X,
' oo | |
Eo" (V E,0
P g
E Load (P, Q)
r =P Exciter

Figure 1V-6 Simple two bus system

Here we assume the load is constant power load with a fixed power factor (P =2Q).
Also, we assume the regulator is the non-rescheduled P-regulator. All the parameters are

the same as used in [18].

Eigenvalue based bifurcation analysis shows that a Hopf bifurcation point will appear at
P =0.9344 , which will be benchmarked against other approaches.

Here we compare four cases to demonstrate how our EMD criterion worked:

1) RKF method, with k =10 p.u./s
2) RKF method, with k =107 p.u./s

3) RKF method, with k =10 p.u./s
4) RKF method, with adjustment of k . Here k is adjusted by (4.36), and #=0.8. Initial

value of k is 2x10°p.u./s , andk . =0.5x10"* .
Numerical solutions are demonstrated in Figure 1\VV-7. In this figure, we can observe that
bigger deviation of numerical solutions from the equilibrium manifold for bigger k .
When k =107", the solution deviate from its equilibrium manifold and no bifurcation

oscillation is observed. Note that when k is too big, the load perturbation is no longer small
and a transient will occur. Thus, the obtained PV curve is questionable and invalid for
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dynamic voltage stability analysis. On the other hand, when k=10 or intelligently
adjusted, the numerical solution stays around the equilibrium manifold and an bifurcation

behavior, oscillation, is observed accurately.

Simulation results with different load increase ratio

. 0.8 ]
061 PhE
! ! ! ! ! ! ! ! \
05 055 06 065 07 075 08 08 09/ 095 1
P Enlarge
l ".(\. .
in kis adjusfed_,4
i kmin =0.5x10
0.8 L i3 ]
k=10"p.u/s ! p.u./s
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0.7+ i
>
o
0.65 - » k=10 p.ufs
o8 | ;]
¥

0.55 ! w \ ‘ ‘ ‘ k=10 "p.u/s

093 0932 0934 0936  0.938 0.94 0942  0.944  0.946

P

Figure 1V-7 Comparison of numerical solutions
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w107 Adjustment of load increase ratio
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Figure 1V-9 Adjustment of k

Comparing the results for case 3) and 4) in Figure 1V-7, we can see that the trajectories
are similar when k is small enough or intelligently adjusted. The difference of Err of four
cases is shown in Figure IV-8. In the enlarged part of this figure, we can see that when
system is approaching its Hopf bifurcation point, Err will increase drastically and no
longer be controllable. Figure 1V-8 and I1V-9 demonstrate that our new scheme
automatically adjusts k to control Err (Err? <10°°). Figure 1V-9 indicates that k will be

adjusted more frequently under stressed situation than in lightly loaded situation.

For case 4), when P=0.9385, k hits its lower limit and Err is no longer

controllable. P =0.9385 js the estimated stability margin, which is close enough to the result

obtained from eigenvalue analysis. For case 3), we found that when P =0.9394, we no

longer have Err? <10™°; we can see P =0.9394 is also a good enough estimated margin.
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However, for case 1) and 2), we have Err?>10"° when P=0.503 and P =0.739

respectively, which apparently are wrong estimates as confirmed by eigenvalue analysis.

With these numerical tests, we can see that without our new EMD error criterion it is
difficult to guarantee the estimation accuracy unless k is chosen extremely small. And our

EMD reliably pinpoints the bifurcation point.

4.2 Our approach enhances computation efficiency

Here we compare the computation cost of several methods used to estimate the stability
margin. All numerical solutions start from an equilibrium point at P=0.5, and will end at
P=0.945.

1) Typical RK method —k and At are both fixed:
At=0.01,k =107 p.u./s

2) Typical RK method with adjustment of k by (4.36)—only k will be adjusted:
At=0.01, initial value of k=10"pu./s, k., =05x10"pu./s , £=10" and
B=08.

3) Typical RKF method—only At will be adjusted:
k=10"* p.u./s, initial value of At =0.5, At =10"*and £=10"

4) Our new approach using RKF method with adjustment of k by (4.36) —k and Atare
both adjusted:
Initial value of k=0.001, k, =0.5x10"pu./s and £=10"; initial value
of At=0.5, At =10, £=10"and #=0.8.

The estimated margins and computation costs by these four methods are listed in table

IV-1.

Note that the typical 4" order RK method is a 4-stage method, and the RKF45 method
used here is a 6-stage method [29, 30]. The computation cost in table IV-1 is calculated as:

(VS + RST + RSK )x Stage of method
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For example, the computation cost of 4) is calculated as:

(2670 + 437 +14)x 6 = 3121x 6

Table 1V-1 Comparison of computation cost with similar estimated margin

Metho Estimate Valid Rejected Rejected Computation

ds d Steps Steps  of Steps oi1Cost
Margin (VS) At k
(RST) (RSK)
1) 0.9379 144990 0 0 444990x 4
(100%)
2) 0.9369 13132 0 14 93146 x4
(20.932%)
3) 0.9394 254 1697 0 10951 % 6
(3.691%)
4) 0.9385 670 437 14 3121x6
(1.052%)

Table IV-1 indicates that all these four methods give almost the same estimation of the
dynamic stability margin. However, computation costs among these methods are very
different. Comparing solutions of 1) and 2), which have constant time steps, we can see
that the computation can be accelerated by automatically adjusting k; while by comparing
solutions of 3) and 4), we can see the synergy of our new scheme that automatically adjusts
At and k altogether. It is clear that our new method is the most efficient one. The estimated
reduction of computation cost confirms with our actual computing time reduction running
on PCs. Moreover, comparing to eigenvalue analysis, the speedup will be more drastic. In
this case, the computing time with eigenvalue analysis is about 700 times more as with our

new method.

4.3 Comparison of primitive and optimal load adjustment approach

4.3.1 The optimal approach can guarantee the accuracy of estimate more strictly
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Here we compare four cases to demonstrate the advantage of our new load adjustment
technique:

1) RKF method, primitive approach, with k . =107 p.u./s, primitive
2) RKF method, primitive approach, with k . =107 p.u./s

3) RKF method, primitive approach ,with k_. =107 p.u./s
4) RKF method, optimal approach, with adjustment of k by (4.44).

For case 1) ~ 3), #=0.8. And for all these four cases, the initial value of Atis selected

as 0.5, At =10"and £=10"".

Numerical solutions are demonstrated in Figure 1VV-10. From the enlarged part of this

figure, we observe that bigger deviation of numerical solutions from the equilibrium
manifold for bigger k . . Whenk_. =107, the solution deviate from its equilibrium

manifold far early before the bifurcation point is approached. Note that when k_,, is too big,

n

the load perturbation is no longer small and a transient will occur. Thus, the obtained PV
curve is questionable and invalid for small disturbance voltage stability analysis. On the

<10~ or with k adjusted by our new approach, the numerical

min —

other hand, when k
solution stays around the equilibrium manifold.

Table V-2 listed the estimated loadability margin for each case. Comparing with
eigenvalue analysis result, we can see that the result for case 1) is a wrong estimate. On the

contrary, the results for the last three cases are pretty accurate, especially for the last two

cases.

Table I\VV-2 Comparison of accuracy

Method Estimated Relative Error
Margin

1) 0.8780 6.04%

2) 0.9287 0.61%

3) 0.9381 0.40%

4) 0.9382 0.41%
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Numerical Soluction Results

Method 1), k . =10
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Figure 1V-10 Comparison of numerical solutions
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However, suppose that we have no eigenvalue analysis result, which is the general case
for large systems due to the computation complexity of eigenvalue analysis, we have a
question on how to judge the accuracy of our estimate. As shown before, we can
mathematically guarantee it with our new approach. But if we detect loadability margin by

a pre-selected selected k we may need extra work to verify our results. It is

min !
mathematically difficult to decide the reasonable value of k., . Thus, we may need to try a
few smaller k.. and estimate the margin till we found that our estimates converge to a
fixed-point value. For example, in case 2), we got an estimate as P =0.9287, but we
cannot tell it is accurate or not, so we decrease k. as k. =10, then by comparing the

results of case 2) and 3), we can claim we found the margin because the results for these

two cases are very close.

4.3.2 The optimal approach can further enhance the computation efficiency
Here we compare 2 cases to demonstrate the computation efficiency of our new load

adjustment technique:

1) RKF method, primitive approach, with k . =107 p.u./s
2) RKF method, optimal approach, with adjustment of k by (4.44)

For these two cases, we selected the initial value of k as 0.1p.u./s, and other

parameters the same as former test. The computation cost for these two cases are listed in
table IVV-3. Please note that, from 4.3.1, the estimations of stability margin are very close
for these two cases. At the same accuracy level, now we will compare the computation

costs of these two approaches.

From table V-3, we can see that, with our new approach, we significantly improve the
computation efficiency while maintaining the accuracy. We know that when system goes
near to its bifurcation point, smaller k is needed to control Err, and the computation speed
will slow down with smaller k. From Figure 1V-11, we can see that as p increase to
bifurcation point, method 1) tends to over adjust k, on the contrary, our new approach will

select allowed biggest k at each adjustment. We know that the computation cost is roughly
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determined by 1/(kAt), so bigger k implies faster computation. As shown in Figure 1V-4, k
should be small in heavily loaded area to control Err, so the computation cost mainly
comes from the calculation in this area. Figure IV-11 shows the adjustment of k in heavily
loaded area. We can see that the optimal method needs slightly more adjustment, but have
bigger k. Since the impact of k on computation cost is dominant, the optimal method has an

advantage in computation efficiency.

Table IVV-3 The advantage in computation efficiency of the optimal approach

Metho [Estimate Malid |Rejected |Rejected |Computati
ds d Steps |Steps  ofSteps olon Cost
Margin (VS) |At k
(RST) (RSK)
1) 0.9391 1996 |101 42 6139x6
(100%)
2) 0.9386 404 |1096 3 3503x 6
(57.06%)

We also found that, with this big initial value of k, method 1) take nine adjustments to
control Err at the first step, which means that eight adjustments are rejected at first iteration.
On the other hand, with our new approach, only one adjustment is necessary. Further
investigation showed that, except when encountered by the bifurcation point, our
adjustments by method 2) were all accepted. Accordingly, this advantage will further save
the computation cost.

With these two numerical tests, we have demonstrated the advantage of the optimal

approach. Numerical tests with other systems also verified it.

4.4 Our approach can be applied to big systems

Here the IEEE 162-bus 17-generator system will be used to demonstrate that our new

approach is applicable to large systems.
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Here we assume that all the loads in this system are constant power type load with a
fixed power factor (P =2Q ). All numerical solutions begin with an equilibrium point
determined by the initial value. At t=0s, all the loads in this system will change with the
same ratio. When a bifurcation behavior is detected, the numerical solution will be stopped.

In this example, two methods will be applied and compared:

<107 Adjustment of load increase ratio

T T T T T T T T T T

] — iethod 2, k is adjusied

t_____..-—-' by our new approach

3 Method 1), k__=10"° S | ; ]

1

08 o086 087 08 089 09 09 092 093 094
P

Figure 1V-11 Comparison of adjustments of k

1) Typical RKF method—only At will be adjusted:
k=10 p.u./s, initial value of At =0.5, At =10"and £=10""

2) Our new approach using RKF method with optimal adjustment of k by (4.44) —k
and At are both adjusted:
Initial value of k =0.001, and & =107 ; initial value of At=0.5, At . =10"and

£=107.
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The estimated margins and computation costs by these two methods are listed in table
IV-4. For methods 1), we found that when the load at bus 3 is increased to 174.21% of the
original load at bus 3, a bifurcation behavior can be detected. So in table 4, we use 174.21%
to denote the dynamic stability margin. While for method 2), the estimated margin is
denoted by 173.88%.

Table 1V-4 Comparison of computation cost

Metho Estimate Valid Rejected Rejected Computati

ds d Steps Steps  of Steps olon Cost
Margin (VS) At k
(RST) (RSK)
1) 17421 7782 2971 0 20753x 6
% (100%)
2) 173.88 1809 922 3 5734x 6
% (27.63%)

Table V-2 indicates both methods get almost the same estimate of the dynamic
stability margin. However, our new scheme greatly enhances the computation efficiency.
Similar results are expected and confirmed for many other big systems such as the IEEE

118 bus system since the computation cost is roughly determined by 1/(kAt) ; and

enhancement of computation efficiency comes from the adjustment of k. In each step of our
new method, we use the allowed biggest k to enhance computation speed without loss of
accuracy. Accordingly, our new method always enhances the computation speed despite the

size of the system.

Compared to the RKF method without intelligent load adjustments, the speedup ratio of
our method remains great for our two-bus system and 162 bus systems; and based on our
experience with many other cases, similar speedup are expected for larger systems.
Compared to the eigenvalue based approach, our approach has even better speedups. Our
method avoids solving for equilibrium point and calculating the corresponding reduced

Jacobean matrix (J,) for each step, which is a time-consuming task for big systems. In
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addition, our method replaces the complex and time consuming eigenvalue computation of
J, by a simple Err checking. Even for ideal cases, where Jr is very sparse and symmetric,

computation cost of eigenvalue calculation will still increase as a polynomial function of

system size. For example, when we apply QR [23, 24] method, a rather fast method for

ideal cases, the computation cost is still at the level of o(n?), here n denotes the dimension
of J,. By contrast, the computation cost of our method is roughly a linear function of

system size. Thus the bigger the system, the higher the speedup our method will be when

compared to the eigenvalue based bifurcation analysis.

5. Conclusion

In this chapter, based on explicit Runge-Kutta methods, we prove rigorously that our new
technique introduces synergy of simultaneously adjustment of time steps and load
increasing ratios intelligently. The numerical tests show that our novel method not only has
a great advantage in computation efficiency, but also has accuracy close to eigenvalue
based bifurcation analysis for dynamic stability margin estimation. Moreover, unlike
eigenvalue based bifurcation analysis, the computation cost of our method is only in linear
relation with system size. Thus, the proposed technique has great potential for dynamic

stability margin estimation for large systems.
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CHAPTER V
FAST DYNAMIC VOLTAGE STABILITY MARGIN ESTIMATION USING IMPLICIT

RK METHODS

1. Introduction

Our scheme investgated in Chapter IV is based on explicit RK methods. However, we
know that when power system is in extreme loading conditions, it may approach its
structurally unstable point, say, saddle node bifurcation, thus stiffness problem may appear.
It is well known that explicit methods applied to stiff problems are generally not efficient
[34]. Instead, when encountering stiffness, implicit methods should be applied for

efficiency.

In this chapter, we further develop our new numerical scheme to deal with the stiffness
problem and its associated ill-condtion issues for power system applications. When system
is ill-conditioned, implicit method would be applied to achieve numerical stability. We
further demonstrate the validity of our approach that combines the intelligent load
adjustment technique with implicit method to save the computation cost without loss of

accuracy.

Please note that in this chapter, “‘numerical stability’ will be one of the concerns, which
is a totally different concept from ‘structure stability’. Essentially the ‘structure stability’
only depends on the physical network structure, load types and the generation systems of
the power grids, and it has nothing to do with the chosen numerical simulation schemes to
detect the structurally unstable point. On the other hand, ‘numerical stability’ depends
heavily on of the chosen numerical methods. Basically, it is kind of accumulation of
computation error and depends on the computing device and numerical method itself. For
example, if we apply Euler and implicit Euler method to a stiff system respectively,
different system structurally unstable point will be detected. But we should keep in mind
that the system structurally unstable point is determined and should not vary with the
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chosen numerical methods. The differences of the estimates only demonstrate different

capability and suitable domains of these numerical methods.

As emphasized before, a key task of this dissertation is to detect the structurally
unstable point of power system accurately and efficiently. It will be demonstrated that the
EMD criterion proposed in Chapter IV is still valid to gauge the accuracy with stiff systems.
And for ill-conditioned systems, a big challenge is to enhance the computation efficiency
and keep solution numerically stable. Different implicit methods will be discussed in this
Topic, and we will show that not all the implicit methods are capable to enhance the
computation efficiency. Only those methods have A-stable [34] and L-stable [34]
characters will be considered in this dissertation. And we will also attempt to integrate our
intelligent load adjustment technique with proper implicit methods to further save

computation costs without sacrificing accuracy.

2. Integrate load adjustment technique to implicit methods

In this section, we will first use a simple example to demonstrate the suitability of implicit
methods for ill-conditioned system. Then several implicit methods will be introduced here.
At last, the EMD criterion and the new load adjustment technique will be extended to

implicit RK methods.

2.1 Implicit RK method is efficient for ill-conditioned system

A simple system, firstly introduced in [34], will be used here to demonstrate advantage of

implicit methods in dealing with stiff problems.

X = —-50(x —cost) (5.1)

Equation (5.1) is a simple one-dimensional system. Apparently, the equilibrium
manifold of this system is x =cost. Suppose that at t =0, the system is in state (0, 0) due

to a disturbance, we investigate the time response of this system after the disturbance. Here,

two numerical methods are compared as follows:

«» Explicit Euler method
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% Implicit Euler method

The numerical simulation results are shown in Figure V-1 and V-2. Figure V-1 shows
numerical simulation results with explicit Euler method. In this figure, we found that with
step size h < 2/50, the simulation results are numerically stable, which is shown in case a)
in Figure V-1. However, with h>2/50, we found that the simulation results are
numerically unstable, which is shown in case b). It is demonstrated that, with bigger h,
there will be bigger oscillation. If h<2/50, the oscillation is damped out, and the
integration trajectory finally converges to equilibrium manifold. With h=2/50, the
oscillation can never be damped out and remains there with same amplitude. With
h > 2/50, we have found that things could be even worse—the amplitude of the oscillation

can increase and the integration trajectory can deviate further from equilibrium manifold.

a). Numerical Stable Cases
2 M1 T T

h = 1.974/50 B
—+— h = 1.875/50
Equilibrium Manifold

X(t)
o
(6}

b). Numerical Unsable Cases

4 T T

AR LA T | ,

2r —~—h=2/50 b
h = 2.02/50

4 Equilibrium Manifold B

x(t)

6 ! ! ! |
0 0.5 1 15 2 2.5

Figure V-1 Numerical simulation results with explicit Euler method
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On the other hand, if we apply implicit Euler (IEuler) method, things are totally
different. In Figure V-2, we have found that, even with a big step size h=0.5, the
simulation result exhibits numerical stability. In this figure, the integration trajectory
converges to equilibrium manifold in just a few steps. However, for case a) in Figure V-1, a
lot of integration steps are needed before the integration trajectories finally converge to
equilibrium manifold, which means that a lot of computation efforts are wasted to damp out

the transients caused by stiffness.

Moreover, in case b) of Figure V-1, the simulation results exhibit un-damped
oscillations, which may lead to wrong conclusion that the system cannot survive from a
disturbance Ax =-1, thus a numerically unstable case may be mistaken as a structurally

unstable case.

Simulation Results by Implicit Euler Method

T T T
Implicit Method, h = 0.5
Equilibrium Manifold

0.5+

X(t)
=)

-0.5+

0 0.5 1 15 2 2.5

Figure V-2 Numerical simulation results with 1Euler method

Now by numerical stability function [29], we will explain the difference between Figure

V-1 and V-2. If we apply explicit Euler method x,, = x, +hf (t,,x,) to Dahluit’s equation

X = AX, we can get [34]:

X = R(2)X, = L+hA)X,
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Here z=hA. R(2z) is the so called numerical stability function, and we should have

|R(z)| <1 to get numerically stable solution [34]. Thus, the stable domain for explicit Euler
method is S :{ZEC;|Z—(—1)S1|}. For system (5.1), where A =-50, we should have

0<h<2/50 to satisfy |R(z)|<1. This explains that, in case a) of Figure V-1, when

h<2/50, the simulation results finally converge, and when h>2/50, the integration

trajectories exhibit numerically unstable behavior.

For implicit Euler method x,,, = x, +hf (t..,;,X,,;) , its numerical stability function is

R(z) = % and the numerical stability domain covers the entire negative half-plane and a

large part of the positive half-plane as well [34], which means that implicit Euler method is
very stable. It mathematically explains that, even with a rather big step h=0.5, the
integration trajectory can easily converge to equilibrium manifold as demonstrated in
Figure V-2.

2.2 Introduction of implicit methods

Generally, to solve equation x = f(t,x), the s-stage RK methods can be expressed as [30,

34]:

K, =% +h> a;f(t,+c;h,K;) i=1..,s

(5.2)
X, =% +hY b f(t,+c;hK))

=

And for autonomous system x = f (x), equation (5.2) can be simplified as:
K, =x,+h> a; f(K)) i=1..5

. (5.3)
X =% +h> b f(K))
j=1
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In (5.2), when a; =0 for i > j, (5.2) will be an explicit Runge Kutta (ERK) method. If
a; =0 for i>j and at least one a; =0, we have a diagonal implicit RK (DIRK) method.
If in addition all diagonal elements are identical a; =y for i =1,...,;s, (5.2) will be called as

a singly diagonal implicit (SDIRK) method. In all other cases, we call (5.2) as implicit RK
(IRK) method [30, 34].

With the paper of Butcher (1964) it became customary to symbolize method (5.2) by
the tableau (5.4) [34]. From now on, we will use (5.4) to express all the RK methods

discussed in this dissertation.

0 la;, a, ... a. a
CZ aZl a22 tt aZ,S—l aZ,S
C3 a3l a32 tte a3,sfl aS,S (5 4)
Cs asl asz ce as,s—l as,s
b, b, ... b, b

The numerical stability function of (5.2) is given as [34]:
R(z)=1+zb" (1 -zA)'E (5.5)
Here

b = (by,....b,), A=(aij)j'j:1, E=(L..0)

Method (5.2) is called A-stable if its stability domain satisfies [34]
S>C ={z; Rez<0}

A-stable means that, as long as the Jacobian matrix of x = f (t,x) has no eigenvalue

located in imaginary axis or in right half-plane, integration trajectory got with (5.2) will
finally converge. Please note that not all implicit methods are A-stable [34]. However, an
implicit method is A-stable may not guarantee efficiency in some cases. For example, the

implicit midpoint method and trapezoidal rule method are A-stable implicit methods, and
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1+2/2
1-z/2

both have stable function as z = , thus, the stable domain of these two methods

coincides exactly with the negative half-plane, and these two methods have a property as

lim |[R(2) [z lim|[R(2) |= lim |R(2)|=1
- 0 z=iy,y—0

This means that, for z close to the real axis with a very large negative real part, | R(a) |
is, although <1, very close to 1. As a result, the transients are damped out only very slowly
[34]. For example, if we change the parameter of system (5.1) as x = -5000(x —cost) and

do the same simulation with implicit midpoint and trapezoidal rule method [34], we found
that it will take a long time for oscillations to be damped out with increased stiffness of the
system. It means that, A-stable cannot guarantee computation efficiency for severe stiff

problems. Thus, in this chapter, we will focus on L-stable IRK methods.
Method (5.2) is called L-stable if it is A-stable and if in addition Iirp |R(z)|=0.

Apparently, implicit Euler method is L-stable [34]. Beside implicit Euler method, several
other L-stable methods, such as the three order SDIRK method with 7=(2i\/§)/2
(SDIRK3), 5 order Radau IIA method (RADAUS), etc., will also be discussed in this
chapter [34].

Detail forms of SDIRK3 and RADAUS5 could be found in [30, 34]. And their numerical
stability function are given as equation (5.6) and (5.7) respectively [34].

1+z2(0-2p)+2°(112-2y + %)

oy y=02++2)/2 (5.6)

R(z) =

1+2z/5+2%/20

= 5.7
1-3z/5+32%/20-2°160 St

R(2)

With (5.6) and (5.7), we can draw the numerically stable domain of these two methods,

and it is easy to verify that these two methods are L-stable.

Among these three L-stable IRK methods mentioned above, RADAUS5 has highest
order and is the most complex one, and IEuler method is the simplest but with lowest order.
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So later, we will mainly compare these two methods in numerical tests. Actually later we
will show that, though more complex compared with IEuler, RADAUS is more efficient

with same requirement of accuracy.

With IRK methods, we need to solve nonlinear equation iteratively at each step. Here,
as the results in n™ step could be used as initial values for the n+1" step, simplified Newton

method is recommended to solve nonlinear equation efficiently [34].

2.3 Extend EMD criterion and load adjustment technique to L-stable IRK methods

EMD criterion is introduced in Chapter IV. The basic idea behind the EMD criterion is that,
before a system approaches its bifurcation point, by definition the system should remain
around equilibrium manifold after a small disturbance. Based on the definition of small
disturbance voltage stability analysis, EMD criterion, which is used to guarantee the
accuracy of estimate of structurally unstable point, has nothing to do with chosen numerical
method to solve differential equations. Thus, it can be extended to all small disturbance

analysis by its essential definition.

Similarly, we can still define a global EMD error and a local truncation EMD error as
we did in Chapter 1VV. Now with IRK methods are considered, there are several questions
need to be answered before we can integrate the automatic load adjustment technique with
IRK methods.

In section 2.2 of Chapter IV, we have a rigorous impact analysis of k and At on Err.

With ERK methods, we proved that, Err will be controlled if local EMD error per unit

time % is controlled. And as proved, Z—ir is mainly determined by k, thus that Err is also

n n
mainly determined by k. The automatic load adjustment technique is proposed based on
these conclusions. Therefore, a key question is that, will these conclusions still hold for
IRK methods?

By review of Chapter IV, we know that if the Theorem 1 proposed in Chapter 1V still

hold for IRK methods, then all these conclusions could be extended to IRK methods. As
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demonstrated, the proof of Theorem 1 is based on the proof of Lemma 1 and Lemma 2.
Thus, if Lemma 1 and 2 could be proved with IRK methods, then Theorem 1 can be easily
extended to IRK methods. Now let us check the validity of these two Lemmas with IRK

methods.

First, with IEuler method, we will show that Lemma 1 can be extended to IRK methods,
and a similar Lemma, denoted by Lemma 1’, is introduced and can be proved with IRK

methods.
Lemmal’:

Applying single-step IRK methods to solve the system equation described as (4.2), we

have the local EMD error err as shown in (5.8) with positive scalars k and At pulled out.
err =[(o(At,) + C(x,,,, P) JKAL, (5:8)

Proof:

From (4.11), we know that

& ~h AX, + h Ay, +h Ap,
(5.9)

err = [f]

Here Ap, =kAt,, and Ay, is obtained by power flow calculation, so we still have

n

Ay, =®(X,,Y,, p,)KAt, as given in equation (4.12).

Without loss of generality, suppose that IEuler method is applied to solve swing

equation, we have

AXn = Xo — X,
= Atn f (Xn+1’ yn+1’ pn+1) (510)
= At f (X, +AX,, Y, +AY,, p, +Ap,)

By Taylor’s expansion, (5.10) can be written as
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AX, = Atn[f (Xas Yoo P) + FAX + LAY, + pran
. AL [f Ay, + f,Ap,] (5.11)
" 1At f

Substituting Ap, = kAt, and Ay, = d(x,,Y,, p,)KAt, into (5.11), we have

L _ KA (@f At + f,At,)

5.12
" 1-At f, (5-12)

Substituting Ap,,, Ay, and (5.12) into (5.9), we have

& ~h, A%, +h Ay, +h Ap,
h (Of, + T )AL,

:kAtn(#tn{—"—h,yq)(xn’yn’ pn)+h,p (513)

=(o(at,)+C Jat,

Where

Ci=h,®+h .

So we have:

err =[(o(At,) +C(x,. ¥, P) KAL, (5.14)

Where

C(Xn’ yn’ pn) = Zciz '
i=1
Thus, Lemma 1’ is proved.

Second, we will show that Lemma 2 can be extended to IRK methods, and a similar

Lemma, denoted by Lemma 2’, is introduced and can be proved with IRK methods.
Lemma 2’:

Suppose a system described as (4.2) satisfies the condition i), ii) and iii) of Theorem 1,

then we have:
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Xy (1)~ %, (1) < k%(e“”‘)) ~1) (5.15)

Ve (1) = ¥ (0)] < k%(e“t‘“) ~1) (5.16)

Here [ih(t),yh(t)] denotes the numerical solution of the system starts from an
equilibrium point (X;, Yo, Posty) , and [, (), Ye, (t)] denotes the equilibrium manifold of the

system, and L-stable IRK methods are applied here.

To prove Lemma 2°, one choice we have is to follow similar logic as shown in the proof

of Lemma 2. Here, we will demonstrate another simpler way to prove it.

When we apply IRK methods to solve swing equations, there should be an internal
iteration to solve nonlinear equations. For example, when IEuler method is applied, at each

step, we should solve a nonlinear equation as
Xn+1 - Xn = Atn f (Xn+l' yn+17 pn+1) (517)

Here Newton-Raphson or simplified Newton method [34] will be applied to solve (5.17)

iteratively till x_, converges.

n+1l

On the other hand, when ERK is applied, as shown in Figure 1V-1, we only take one

step to solve swing equations. Thus, with same k and At , single step calculation by ERK

methods should have worse convergence compared with multi-step iteration by IRK
methods. This implies that, after calculation of swing equations at each iteration, the
simulation trajectory calculated by IRK method will stay closer to Equilibrium Manifold
than the one got with ERK method. As shown in Chapter 1V, the trajectory calculated by
ERK is denoted as [x, (t), y, (t)], then we have

X (1) =%, (1)
Ve (1) = ¥ (1)

X () = %, (1)) <

5.18
Yoo () = 9, (0] < 19

And by Lemma 2, we already have
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Xeg (1) = %, (1) < k%(e““"’ ~1)

(5.19)
Yoo~y 0] < 60 1)

By (5.18) and (5.19), Lemma 2’ is proved.

Similarly, we know that Theorem 1 is still valid with IRK methods. Thus, based on
former discussion, we know that the automatic load adjustment technique, no matter the
primitive one or the optimal one discussed in Chapter 1V, could be integrated with IRK

methods.

As shown in Figure V-3, when load adjustment technique is integrated with L-stable
IRK methods, adjustment of At is no longer considered. The reason is that, as L-stable IRK
methods are applied, numerical stability can be guaranteed, thus we can choose big At and
no longer need to worry about the adjustment of At. However, within the internal iteration
to solve swing equation, step-size control technique could be still helpful. Further research

on this could be one part of future work.

<l

N Y

Repeat the n™ n=n+1
step calculation
with adjusted k&

1

Figure V-3 Integration load adjustment with IRK methods
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2.4 The new comprehensive numerical approach for long term dynamic small disturbance

analysis

Before further discussion, we will demonstrate that, with load increase, the system may
become stiff while approaching its bifurcation point. For example, with the same simple
system used in Chapter 1V, we found that, when P >0.85, the condition number of the
Jacobian matrix will begin to increase drastically, which is shown in Figure V-4.
Correspondingly, if we apply RKF45 method to do simulation, just as case 3) in section 4.2
of Chapter IV, we can see that At will be adjusted frequently to remain integration

trajectory numerically stable when system becomes stiff, which is shown in Figure V-5.

Condition number of Jacobian Matrix
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Figure V-4 Change of condition number with increased load
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Figure V-5 Adjustment of At

2.4.1 Automatic stiffness detection

It is well known that implicit methods generally have better numerical stability than explicit
methods [34]. However, for a general implicit approach, it needs to solve the nonlinear
equations iteratively at each step and will incur extra computation burden. Thus, when
system is lightly loaded or in normal operating conditions, explicit methods are naturally
more attractive than implicit approach. On the other hand, when dealing with stiff problems,
implicit method will be more efficient than explicit methods. So a burning question is that,
during numerical simulations, how to detect stiffness automatically with cheap computation
costs. With such a detection scheme, we can switch to a more suitable method to enhance

the computation efficiency.

In 1977, Shampine & Hiebert proposed some ideas to deal with this problem [34], and
there are other approaches in the literature [30], such as detecting stiffness by directly
estimating the dominant eigenvalue of the Jacobian matrix of the problem [30]. This
dissertation will apply the ideas of Shampine & hiebert to voltage stability analysis. Now
we will give a brief introduction of this idea based on Dormand & Prince method of order 5
(DOPRI54).
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DOPRI54 is a 7 stage and 5th order explicit embedded Runga-Kutta method [34].

Similarly as we can use (5.4) to express (5.2), DOPRI54 method can be described as in
Table V-1.

Table V-1 Tableau of DOPRI54 method

0

11

5 |5

313 9

10 | 40 40

414 _%6 132

5 | 55 15 9

8 | 19372 25360 | 64448 | 212

9 | 6561 2187 | 6561 729

1 | 9017 355 | 46732 | 49 ~ 5130
3168 33 5247 | 176 18656

1 |35 0 500 | 125 2187 |11
384 1113 | 192 6784 | 84

v, | 35 0 500 | 125 2187 |11 0
384 1113 | 192 6784 | 84

g, | 5197 0 7571 | 393 92007 | 187 | 1
57600 16695 | 640 339200 | 2100 | 40

Similarly as embedded explicit RKF4(5) method, DOPRI method automatically adjust
step size by equation (5.20) and (5.21).

1/5

4
d r):+l

0 oarf TE g TE g Ly 1728, 22 1
57600 ' 16695 ° 1920 ‘ 339200 ° 525 ° 40

6=0.9

(5.20)
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At = OAt Ifo<1
{ n+l n (521)

At = At If9>1

DOPRI54 is not a stiff solver, and may become unstable if the solution changes rapidly
over one time step. However, adapting the idea of Shampine & Hiebert to DOPRI54, we

can have a simple stiffness detection scheme.

As shown in [34], we can construct an another local numerical truncation error

estimation as

a'*

n+l

= At (- 2.134K, +2.2K, —0.24K, +0.13K,, +0.144K, —0.1K, )

~
*

During simulation, if [d",|<|d. | occurs several times in succession (say 15 times),

n+l

then switching to a L-stable IRK method will be more efficient.

Comparing DOPRI54 with RKF45 that mainly used in Chapter IV, we know that
DOPRI54 is a 7-stage method and RKF45 is a 6-stage method, and both are 5" order
methods. Though DOPRI54 has one more stage and thus incur more computation cost, it
does have bigger stable domain than RKF45, which is demonstrated in Fig. 2.8 of [34].
Also, with DOPRI54, it will be easier for automatically stiffness detection. That could also
explain why DOPRI54 has been adopted as one of the main solvers of function ‘ODE45’ in
MATLAB.

Due to our experience with power systems, we found that, when system is lightly
loaded, generally it may have less chance to be stiff, which is the case shown in Figure V-4.
So in normal conditions, as we have less worry about numerical stability, we can use
RKF45 method without trying to detect stiffness. And when system is getting stressed, say
one of the bus voltage drops below 0.9 or 0.85pu, we can switch to DOPRI54 method and
try automatically stiffness detection. And if stiffness is detected, we can further switch to L-
stable IRK methods, such as IEuler method and RADAUS method. And with L-stable IRK
method, numerical stability can be guaranteed, so big step size could be selected to enhance

computation efficiency.
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No matter ERK or IRK method we choose, EMD criterion always works, and we can
apply automatically load adjustment technique to further enhance computation efficiency.

Thus, a new comprehensive numerical simulation scheme is proposed in next sub-section.

2.4.2 The new general numerical simulation scheme

Figure V-6 shows a new comprehensive numerical scheme for long term small disturbance
analysis. In this scheme, EMD criterion is still used to detect bifurcation behavior, and
automatically load adjustment technique is integrated with ERK and IRK methods. Also,
this new numerical scheme contains a logic to automatically detect stiffness. Thus, applying
this comprehensive scheme, we can deal with all kinds of long term small disturbance
analysis. Actually, as all our proof and deduction in this dissertation are based on a general
DAE system shown as (5.22), the scheme shown in Figure V-6 can serve as a universal
approach to detect structurally unstable point for a general DAE system. And with this
scheme, no matter the system is stiff or not, the computation efficiency will be greatly
enhanced without sacrificing accuracy.

x=f(x,y,p) f iR 5 RO
0=9g(x,y,p), g:R"™I > R" (5.22)
XeX cR", yeY cR", pePc R

One thing we should emphasize is that, when we switch to IRK methods, there should
be an internal iteration to solve nonlinear equations by simplified Newton method in 2™
step shown in Figure V-6 [34]. On the other hand, when ERK is applied, there is no internal
iteration in 2" step of above approach [32, 33].
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Figure V-6 The new comprehensive numerical scheme for long term small disturbance

analysis
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2.5 Numerical tests

2.5.1 Combining automatic load adjustment technique with L-stable IRK methods
With the same simple system used in Chapter IV, we demonstrate that our automatic load
adjustment technique can be integrated with L-stable IRK methods to enhance computation

efficiency. Here, four cases will be compared.
1) Implicit Euler method, with fixed k =107* p.u./s, At =0.2
2) Implicit Euler method, with k adjusted by equation (4.44), At =0.2
3) SDIRK3 method, with k adjusted by equation (4.44), At=0.4
4) RADAUS method, with k adjusted by equation (4.44), At =0.5

For all these four cases, At will not be adjusted. And for case 2), 3) and 4), the initial

value of k is selected as k =107* p.u./s. Now let us take a look at simulation results.

Table V-2 Estimated margin

Method Estimated Relative Error
Margin

1) 0.9401 0.847%

2) 0.9382 0.643%

3) 0.9381 0.633%

4) 0.9312 0.1072%

Table V-2 shows that, the estimated margin for these four cases are very close to the
real margin calculated by eigenvalue based bifurcation analysis. However, with the same
level of accuracy, we found that there are big differences among computation costs of these

cases, which is shown in Table V-3.

From Table V-3, we found that case 1) is the most time consuming one, and compare

case 1) and 2), we can see that the computation cost is greatly enhanced with integration of

automatic load adjustment.
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With same level of accuracy, we also found that RADAUS has higher computation

efficiency than the other two L-stable methods. Though it has highest stages, but it need

fewest internal iterations due to its high order of accuracy.

Table V-3 Computation costs

Method| Valid | Adjusted | Stage of| Average Internal Computation Cost
steps (VS)| Steps of k | Method iterations
(ASK)
1) 22251 0 1 4.01172980989618 | (22251+0) x 1x4.01172980989618
(100%)
2) 8926 24 1 4.07003654080390 | (8926+24) x 1x4.07003654080390
(40.81%)
3) 3708 32 3 2.73751611516975 | (3708+32) x 3% 2.73751611516975
(34.41%)
4) 2367 35 6 2.11915473755965 | (2367+35) x6x2.11915473755965
(34.21%)
Automatic adjustment of k
0.01 \ \ \ \ \ \ \ \ )
R S S R R
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Figure V-7 Automatic adjustment of k
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Figure V-7 shows that, in case 2), how load increase ratio is adjusted automatically.
This explains that why the computation cost of case 1) is almost 2.5 times as the one of
case 2).

2.5.2 The comprehensive scheme can further enhance computation efficiency
Now we will apply our new comprehensive scheme to the same system used with above

examples. Here we will compare two cases.
1) RADAUS method, with k adjusted by equation (4.44), At =0.5

2) By our new comprehensive scheme, first explicit RKF45 method will be apply, then
when bus voltage drops to 0.85p.u., it will automatically switches to DOPRI54 method with
detection of stiffness. And if stiffness is detected, RADAUS will be applied.

For these two cases, the initial value of k is selected as k =107 p.u./s . And for case 2),

the initial value of At is set as 0.5. At will be automatically adjusted by RKF45 and
DOPRI54 respectively in different simulation time. When it switches from DOPRI54 to
RADAUS, At will be set back to 0.5 and keep fixed.

Please note that here the case 1) is exactly the case 4) in 2.5.1, so its estimated margin
and computation cost are already known. For case 2), its simulation results is given in
figure V-8.

Table V-4 Computation cost of case 2

Different | Method | Valid |Adjusted Adjusted| Stage ofifAverage Computation Cost
Simulation Steps | Steps of|Steps of k Method| Internal
Period (VS) At (ASK) iteration
(AST) S
P<=0.866| RKF45 | 2299 1 17 6 1 (2299+1+17) x6x 1
0.866<P<0| DOPRI54| 94 19 2 7 1 (94+19+2) x7x 1
.89
P>=0.89 | RADAU5 252 0 7 6 [2.23751 (252+0+7)
611516 | x6x2.23751611516975
975
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By case 2), the estimated margin is 0.9331, and the relative error of estimation is 0.14%.
Compared with case 1), it is also a very good estimate and has the same level of accuracy.
For case 2), its computation cost is demonstrated in Table V-4. Compared with case 1), we

found that the computation cost of case 2) is 59.54% of case 1).

Figure V-8 Simulation results of case 2

2.5.3 The comprehensive scheme works with a large system
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Here the IEEE 162-bus 17-generator system will be used to demonstrate that our new

approach is applicable to large systems. It is the same system we used in section 4.4 of

Chapter IV.

Here we still assume that all the loads in this system are constant power type load with

a fixed power factor (P =2Q). All numerical solutions begin with an equilibrium point

determined by the initial value. At t=0s, all the loads in this system will change with the

same ratio. When a bifurcation behavior is detected, the numerical solution will be stopped.

In this example, two methods will be applied and compared:

1) Our new comprehensive scheme, as shown in Figure V-6:

First explicit RKF45 method will be apply, then when any bus voltage drops to

0.85p.u., it will automatically switches to DOPRI54 method with detection of
stiffness. And if stiffness is detected, RADAUS will be applied.
2) RKF method with optimal adjustment of k —k and At are both adjusted:

This is the same case as case 2) in section 4.4 of Chapter V.

Table V-5 Computation cost of case 1

Different
Simulation
Period

[V|>=0.85
[V|<0.85

Stiffness
detected

Method

RKF45

DOPRI5
4
RADAU
5

Valid
Steps
(VS)

3527

161

277

Adjusted
Steps of
At
(AST)

571

151

0

Adjusted
Steps of k
(ASK)
14
4

22

Stage off
Method

Average
Internal
iteration
S
1

1
2.21375

161162
45

Computation Cost

(3527+571+14) x6x 1
(161+151+4) x7x 1

(277+0+22)
x6x2.2137516116245

From Chapter 1V, we already found that when the load at bus 3 is increased to 173.88%

of the original load at bus 3, a bifurcation behavior can be detected for case 2). Similarly as

in Chapter IV, here we use 173.88% to denote the dynamic stability margin. While for case
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1), the estimated margin is denoted by 174.71%. The computation cost of case 2) is already
given in section 4.4 of Chapter IV. Now let’s take a look at the computation cost of case 1).

Table V-5 shows the computation cost of case 1) in different simulation stage.
Compared with Case 2), its computation cost is nearly 89.96% of case 2). For these two
cases, we get almost the same estimate of the dynamic stability margin. However, our new
scheme could enhance the computation efficiency. Similar results are expected and

confirmed for many other big systems.

3. Conclusion

In this chapter, we demonstrate the advantage of L-stable IRK methods in dealing with stiff
problems. It is proved that, the EMD criterion and automatic load adjustment technique can
be integrated with L-stable IRK to estimate stability margin for ill-conditioned systems.
With this integration, computation efficiency is greatly enhanced, and the numerical

stability and the accuracy of estimate can still be guaranteed.

This chapter also discussed automatic stiffness detection based on DOPRI54 method
and the idea of Shampine & Hiebert. Moreover, with our experience on power systems, a

simple but practical approach is proposed here to further enhance computation efficiency.

At last, a comprehensive numerical scheme is proposed in this Topic, which integrates
the automatic stiffness detection, the intelligent load adjustment skill, the EMD criterion to
detect bifurcation behavior, ERK and L-stable IRK methods. Essentially, this
comprehensive scheme can be taken as a universal approach to detect structurally unstable

point for a general DAE system.
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CHAPTER VI

CONCLUSIONS

1. A summary of the research contributions

With growing concerns on voltage stability, this dissertation focuses on long term small
disturbance analysis of power system in an increasingly competitive environment.

First of all, to enhance competition and efficiency of energy market, eigenvalue based
bifurcation analysis is applied to give some insights about how to allocate contribution of
voltage stability. We investigate how parameters of the system influence the bifurcation
points. Three bifurcations (the singularity induced bifurcation, saddle-node and Hopf
bifurcation, and their relationship to several commonly used controllers are analyzed.
Based on these analyses, we found a way to allocate the contribution by analyzing the
relative positions of the bifurcations. Analyzing the influence of the system parameters on

voltage stability also benefits us in designing and optimizing the system.

Second, based on some basic scenario summarized in eigenvalue based analysis, an
algorithm to choose proper exciter size is developed in, which aims to maximize the

loadability of system to fully utilize the generator.

Third, due to complexity of eigenvalue calculation, numerical approach was applied to
estimate dynamic stability margin for large systems. As we know, accurately estimating
voltage stability margin for big systems online is a big challenge for engineers. To gauge
the accuracy of numerical estimate, a reasonable and easy-for-calculation criterion, called
EMD criterion, is proposed in this dissertation. Then based on EMD criterion, an automatic
load adjustment technique is proposed. We integrated this technique with step size control
technique, and based on single step ERK methods, we proposed a new numerical scheme to
detect dynamic stability margin. We prove rigorously that our new approach introduces
synergy of simultaneously adjustment of time steps and load increasing ratios intelligently.
The numerical tests show that our novel method not only has a great advantage in
computation efficiency, but also has accuracy close to eigenvalue based bifurcation analysis
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for dynamic stability margin estimation. Moreover, unlike eigenvalue based bifurcation
analysis, the computation cost of our method is only in linear relation with system size.
Thus, the proposed technique has great potential for dynamic stability margin estimation
for large systems.

Fourth, we have successfully extended our new numerical scheme to stiffness problem
of power systems. It is proved that, the EMD criterion and automatic load adjustment
technique can be integrated with L-stable IRK to estimate stability margin for ill-
conditioned systems. With this integration, computation efficiency is greatly enhanced, and
the numerical stability and the accuracy of estimates can still be guaranteed. Moreover, a
comprehensive numerical scheme is proposed in this dissertation, which integrates the
automatic stiffness detection, the intelligent load adjustment skill, EMD criterion to detect
bifurcation behavior, ERK and L-stable IRK methods. Essentially, this comprehensive
scheme can be taken as a universal approach to detect structurally unstable point for a
general DAE system.

2. Suggestions for future research

We think the work reported in this dissertation can be an important basis for future research
activities related to voltage stability analysis. In general, future research directions based on

this dissertation are summarized below.

2.1 Contribution/responsibility allocation for voltage stability of large systems

In chapter 11, eigenvalue based bifurcation analysis is applied to give some hints on how to
allocate contribution/responsibility for voltage stability. Though it is very enlighten, it is

hard to be extended to large system due the complexity of eigenvalue analysis.

In Chapter V, a new comprehensive numerical approach is proposed, which is very
efficient and promising for large system analysis. Thus, it is naturally to probe the

possibility to adapt some idea into numerical scheme. For example, try to find some typical
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scenario of numerical simulation results in corresponding to the basic scenario we

summarized in Chapter I1.

2.2 Multi-step Runge Kutta Methods

Till now, only single step Runge Kutta methods are discussed in this dissertation. Different
with multi-step RK methods, the single step RK methods do not utilize previous numerical
results of integration, thus, its computation efficiency may be impaired [34].

The idea of integrating our optimal load adjustment technique with Multi-step RK
methods sounds pretty attempting. Also, to further enhance the computation efficiency,
parallel computation technique could also be integrated to our numerical scheme to make it

more efficient and comprehensive.

2.3 With implicit method, step size control for internal iteration

When load adjustment technique is integrated with L-stable IRK methods, adjustment of
At is no longer considered. The reason is that, as L-stable IRK methods are applied,
numerical stability can be guaranteed, thus we can choose big At and no longer need to
worry about the adjustment of At. However, within the internal iteration to solve swing
equation, step-size control technique could be still helpful. We also found that, adjustment
of k may have some impacts of the convergence of internal iteration. Therefore, further
research on this could be one part of future work.
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