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ABSTRACT 

Long Term Voltage Stability Analysis for Small Disturbances. 

(December 2007) 

Kun Men, B.S., Xi’an Jiaotong University; 

M.S., Tsinghua University 

Chair of Advisory Committee: Dr. Garng Huang 

 

This dissertation attempts to establish an analytical and comprehensive framework to deal 

with two critical challenges associated with voltage stability analysis:   

1. To study the new competitive environment appropriately and give more incentive 

for reactive power supports, one has to evaluate the impacts of distributed market 

forces on voltage stability, which complicates the voltage stability analysis. 

2. Accurately estimating voltage stability margin online is always the goal of the 

industry. Industry used to apply static analysis for its computation speed at the 

cost of losing accuracy. On the other hand, dynamic analysis can result in more 

accurate estimation, but generally has a huge computation cost. So a challenge is 

to estimate the voltage stability margin accurately and efficiently at a reasonable 

cost, especially for large system. 

Considering the first challenge, this dissertation applied eigenvalue based bifurcation 

analysis to allocate the contribution of voltage stability. We investigate how parameters of 

the system influence the bifurcations. Three bifurcations (singularity induced bifurcation, 

saddle-node and Hopf bifurcation) and their relationship to several commonly used 

controllers are analyzed.  Their parameters’ impact on these bifurcations have been 

investigated, from which we found a way to allocate the contribution by analyzing the 

relative positions of the bifurcations. 

For the second challenge, a new fast numerical scheme is developed to estimate voltage 

stability margin by intelligently adjusting the load increase ratio.  A criterion, named EMD 

(Equilibrium Manifold Deviation) criterion, is proposed to gauge the accuracy of the 
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estimation. And based on this criterion, a new computation scheme is proposed. The 

validity of our new approach is proven based on the well-known Runge-Kutta-Fehlberg  

method, and can be extended to other explicit single-step methods easily. Numerical tests 

demonstrate that the new approach is very practical and has great potential for industrial 

applications. 

This dissertation extends our new numerical scheme to stiff systems. When a system is 

ill-conditioned, the implicit method would be applied to achieve numerical stability. We 

further demonstrate the validity to combine the intelligent load adjustment technique with 

the implicit method to save the computation cost without loss of accuracy. This dissertation 

also delves into the auto detection of stiffness of the power system, and extends our new 

numerical scheme to general sytems.  
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CHAPTER I  

INTRODUCTION 

1. Background 

1.1 The emerging challenges faced by voltage stability analysis in deregulated power grid 

Electric utility industry around the globe is in the process of deregulation and restructuring. 

Deregulation experiment was initiated by the U.K. and some Latin American countries in 

the 1980s, and rapidly spread to many other countries including the United States [1]. In the 

last two decades, power systems have been operated under much more stressed operating 

conditions than before. This is largely due to the environmental pressures on transmission 

expansions, increased electricity consumptions in some heavy load areas, and new system 

loading patterns for the deregulated electricity market, etc.  Under these stressed conditions, 

a new type of dynamic unstable behaviors appeared in power systems, such as slow voltage 

drops, and even voltage collapse [1, 2].  

Voltage collapse may cause severe system failures; for example, it is believed that the 

massive Tokyo blackout in July 1987 is caused by voltage collapse [3]. In a deregulated 

environment, in which the industry still lacks a market policy on reactive power 

compensation mechanism, electric utilities tend to reduce reactive power support 

equipments to save cost since money are only made in terms of real power transactions [4]. 

Accordingly, voltage stability analysis will become even more critical in the deregulation 

of the modern power systems if the trend continues.  

Over last twenty years, many researchers have intensely studied voltage stability [1~9]. 

Many papers have focused on developing practical analysis techniques for voltage stability 

studies. For example, in paper [10], Dr. Huang and Dr. Tong Zhu have thorougly discussed 

the TCSC’s  enhancement on  transient voltage stability, and in papers [11, 12], an efficient 

 
This dissertation follows the style of IEEE Trans. on Power Systems. 



2 

 

method to find the static stability margin is proposed based on Arnoldi algorithm and curve 

fitting. Though research has been carried out in this area for decades, there are still some 

issues that need to be addressed and resolved. Some of these are as follows: 

 Challenge 1, how to allocate the responsibility/contribution of voltage stability in 

deregulated environment? 

The deregulated power system is based on transactions [13]; each part of the unbundled 

systems (generators, control systems and transmission parts, etc.) has its own contribution 

to voltage stability. It is of great economic and security importance to allocate these 

contributions so that the contributors can be appropriately awarded to encourage the needed 

infrastructure investments. Analyzing the influence of the parameters of the system on 

voltage stability will also help us design and optimize the system.  

 Challenge 2, accurately estimating voltage stability margin online remains as a 

dream for industry.  

So far, due to heavy computation burden, the major thrust in voltage stability analysis, 

especially for large systems, has been based on static power flow analysis. However, recent 

papers [5, 6, 7] have pointed out that the static estimation of voltage stability margin may 

be too optimistic. To accurately evaluate voltage stability margin, dynamic voltage stability 

analysis is required. Many dynamic analysis methods and analytic tools are proposed in 

literature [2, 3]; however, with these dyanamic methods, the accuracy of estimated stability 

margin cannot be rigorously guaranteed and the computation efficiency is far from 

satisfying for online calculation. Thus, we still need to find a more practical and 

comprehensive scheme to estimate the voltage stability margin with enough accuracy and 

computation efficiency. 

This dissertation deals with the first challenge mentioned above in chapter II and III, 

where eigenvalue based bifurcation analysis will be applied. For the second challenge, we 

have developed a new numerical scheme in chapter IV and V to enhance the computation 

efficiency without sacrificing the accuracy. 
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1.2 Concepts of voltage stability 

Before further discussion, we will first address a fundamental question: What is voltage 

stability? 

There are many definitions of voltage stability. For example, IEEE and CIGRE Working 

Groups have given detail classification and definition of power system stability in [1]. In 

this dissertation, we would like to choose the definition given by T. V. Cutsem and C. 

Vournas in their book [2]: 

“Voltage instability stems from the attempt of load dynamics to restore power 

consumption beyond the capability of the combined transmission and generation system. ”  

This definition try to emphasize that load is the main driving force of a voltage collapse, 

and voltage stability is a stuctural stability problem with the load serving as an important 

system paramter to be disturbed. Also, the maximum loadability point is what we are 

interested in. 

In Fig. 2-1 of book [3], C. W. Taylor demonstrated that voltage dynamics can span a 

range in time from a fraction of a second to tens of mintutes, which also implies a 

classification of voltage stability into transient and longer-term time frame. In [2], T. V. 

Cutsem and C. Vournas also gave classification of power system stability based upon two 

criteria: time scale and driving force of instability. A more comprehensive defination and 

classification of general power system stability was given in IEEE report [1]. From these 

definations and classifications, we can see that transient stability analysis does not mean 

angle stability exclusively, and voltage stability could also be involved . In this dissertation, 

we will focus on the long term voltage stability analysis with small disturbances. 

For power systems, two kinds of stability issues are considered in long term time scale: 

frequency problems and voltage problems [2]. Generally frequency problem is due to 

generation-load imbalance irrespective of network aspects within each connected area, 

while voltage problem is due to electrical distance between generation and loads thus 

depends on the network structure [2]. Voltage stability is more like a system structure 

problem, thus a full network representation is required for its analysis [2]. And with the 
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definition given above, voltage instability could be considered as load driven. Actually in 

this dissertation, a key task is to detect the structurally unstable point of power system to 

estimate voltage stability margin analytically or numerically, with slowly increased load 

serving as small disturbances [14, 15]. 

Though it is easy to distinguish frequency problem from voltage problem conceptually, 

these two types of instability are often found entangled with each other in reality. To 

simplify our analysis, throughout the dissertation, we assume that we have ideal governors 

and there are no angle/frequency problems, which means that, the frequency problem is 

decoupled with voltage problems. However, it never means that the new numerical scheme 

developed in Chapter IV~V can only be used for long term voltage stability analysis; 

actually it can be easily extended to other long term dynamic analysis for small 

disturbances. 

One term also widely used in association with voltage stability issues is voltage collapse. 

In this dissertation, the term “collapse” is used to signify a sudden catastrophic transition 

that is usually due to an instability occurring in a faster time-scale than the one considered 

[5]. Later in this dissertation, we will show that voltage instability may, or may not result in 

a sudden voltage collapse, for example, un-damped oscillation may also be the outcome of 

voltage instability. 

As we mentioned before, voltage instability could be considered as load driven [2]. 

Please note that here we use the term ‘load driven’ instead ‘reactive load driven’. It is well 

known that voltage control hinges on reactive power. However, by not using the term 

‘reactive load driven’, we do not want to overemphasize the role of reactive power in 

voltage stability, where both active power and reactive power share the leading role [2]. 

Please note that, only in normal operating conditions, it is approximately valid to decouple 

between active power and phase angles on one hand, and reactive power and voltage 

magnitudes on the other hand; and this decoupling is usually not valid for extreme loading 

conditions that is typical in voltage instability scenarios [16]. 
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2. Topic 1: Eigenvalue based bifurcation analysis to allocate the responsibility / 

contribution of voltage stability 

Dynamic analysis is time-consuming and more difficult than steady-state analysis. For this 

reason, people use steady-state analysis to estimate the stability margin [9], [17]. However, 

the dynamic stability margin is usually equal or smaller than the steady-state stability 

margin; the smaller of them is the valid stability margin, which is the margin that imposes 

practical loading restrictions. Accordingly, it is necessary to apply dynamic analysis to get 

the valid margin. Eigenvalue based bifurcation analysis will be used here for this purpose. 

Though it is time consuming, this analytic tool could give us some insights of the dynamic 

behavior of the system. We start our research from some simple systems. For such simple 

systems, the computation costs associated with bifurcation analysis are acceptable.  

In deregulated power systems,  we would like to know individual contributions to 

voltage stability, where the contribution can come from different parts of the power 

system—generator, control system and transmission part, etc. Here we focused on how to 

allocate the responsibility and contribution by bifurcation analysis. We investigate how 

parameters of the system influence the bifurcation points. Three bifurcations (the 

singularity induced bifurcation, saddle-node and Hopf bifurcation [18], and their 

relationship to several commonly used controllers [19, 20, 21] are analyzed.  Their 

parameters’ impact on the bifurcation points is investigated here, from which we found a 

way to allocate the contribution by analyzing the relative positions of the bifurcations.  

In power system operations, there are many limits on the power system components [22]; 

here we focus on the size of the exciter, which has a significant impact on the voltage 

stability. Analyzing the impacts of exciter size will benefit system design and clarify the 

allocation of the responsibility of the voltage collapse in a deregulated environment. 
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3. Topic 2: Integration of intelligent load adjustment technique with explicit RK methods 

to estimate the stability margin for a large system accurately and efficiently 

As discussed in Topic 1, eigenvalue based bifurcation analysis can be used to calculate 

dynamic voltage stability margin. Although bifurcation analysis is accurate and gives us 

insights about the dynamic behavior of the system, its heavy computation burden makes it 

very difficult to be applied to large systems due to the complexity of eigenvalue 

calculations [23, 24]. Thus, alternative efficient methods will be developed in this 

dissertation.  

Numerical methods are widely used in the power system simulation. It is well known 

that power system dynamics are commonly expressed in a differential algebraic equation 

(DAE) form [25~28]. Numerical methods can be used to solve DAE systems. The 

procedure usually involves alternately solving the algebraic power flow equations 

representing the network and the differential equations representing the machines [26, 28]. 

We can use Gauss-Seidel (or Newton-Raphson) method to solve nonlinear algebraic 

equations (power flow equations) and use Euler’s method (or Runge-Kutta method) to 

solve differential equations [29, 30]. The integration and algebraic solving are alternately 

applied. 

Compared with transient analysis, voltage dynamic stability analysis has heavier 

computation burden since by definition the analysis is around equilibrium states with small 

disturbances [2, 14, 31]; thus, the analysis involves slow load increases to mimic real 

environment that is operated around steady state. To find the stability margin faster, we can 

accelerate the load increase since our interest is on the maximum load that the system can 

tolerate before system collapses and bifurcation occurs; and therefore there is no need to 

mimic the slow load increase as long as the computed state can stay around the steady state 

equilibrium point. Also, there is no need for eigenvalue analysis since bifurcation behaviors 

will be observed through integrated trajectory. Accordingly, how to select the appropriate 

load increase ratio becomes a key issue to speedup the computation. If the load increase 
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ratio is too small, it will take a long time to find the collapse point and thus a huge 

computation burden will be incurred. On the other hand, a too big load increase ratio will 

lead to inaccurate estimation of stability margin since the computed state may deviate far 

from the equilibrium state and results in a wrong estimate. Thus, a proper load increase 

ratio is of great importance for fast and reliable stability margin estimation. 

Accordingly, a desirable stability margin estimation scheme should satisfy both accuracy 

and speed requirements. By definition of dynamic stability analysis, the computed state 

needs to stay around the equilibrium manifold for an accurate estimate of stability margin. 

This requirement implicitly constrain the speed of load increases and the integration step 

size so that it will stay around the equilibrium manfold. These constraints thus slow down 

the computation speed. In this dissertation, we will develop a scheme in which both 

requirements are considered and compromised.   

 We introduce a criterion, Equilibrium manifold deviation (EMD), which can help us 

to gauge the accuracy requirement for estimation of dynamic stability margin [32], 

[33].  

 A method is developed in this dissertation to accelerate the numerical solution 

without sacrificing accuracy. It is an acceleration technique based on EMD criterion 

to enhance the computation efficiency by adjusting the load increase ratio 

intelligently. This technique can be integrated with the step size adjustment method, 

and the integration of these two adjustments induces synergy on the computation 

efficiency. 

The advantages of our new numerical scheme are rigorously proven for a single step 

explicit RK methods. It can be easily extended to all explicit RK methods, and to the whole 

family of RK methods. 
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4. Topic 3: Integration of intelligent load adjustment technique with implicit RK methods 

to estimate the stability margin for ill-conditioned systems 

In Topic 2, the numerical scheme is based on explicit RK methods. However, for power 

system in extreme loading conditions, it may approach its structurally unstable point, such 

as a saddle node bifurcation, which may incur the stiffness problem when we numerically 

integrate the differential equations. It is well known that explicit methods are generally not 

efficient for stiff problems [34] and instead implicit methods should be applied.   

This dissertation further extends our new numerical scheme to resolve stiffness problem 

of power systems. When system is ill-conditioned, implicit method is applied to achieve 

numerical stability. We further demonstrate that combining the intelligent load adjustment 

technique with implicit method can further save the computation cost without loss of 

accuracy.  

Please note that in this Topic, ‘numerical stability’ is an issue, which is a totally different 

concept with ‘structure stability’. Essentially the ‘structure stability’ only depends on the 

physical network structure and the generation systems of the power grids, and it has 

nothing to do with whatever numerical simulation scheme we choose to detect the 

structurally unstable point. On the other hand, ‘numerical stability’ is an intrinsic property 

of adopted numerical methods. Basically, it is caused by accumulation of computation error 

and depends on the computing device and numerical method itself. For example, if we 

apply Euler and implicit Euler method to a stiff system respectively, different system 

structurally unstable point may be detected. But conceptually the structurally unstable point 

should not vary with the chosen numerical method. The difference of the estimation values 

only demonstrates different capability and feasible range of these numerical methods. 

As emphasized, a key task of this dissertation is to detect the structurally unstable point 

of power system accurately and efficiently. It will be demonstrated that the EMD criterion 

proposed in Topic 2 is still valid to gauge the accuracy even with stiff systems. And for ill-

conditioned systems, a big challenge is to enhance the computation efficiency and keep 
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solution numerically stable. Different implicit methods will be discussed in this Topic, and 

we will show that not all the implicit methods are capable to enhance the computation 

efficiency. Only those methods have A-stable [34] and L-stable [34] characters will be 

considered in this dissertation. And we will also attempt to integrate our intelligent load 

adjustment technique with proper implicit methods to further save the computation costs 

without sacrificing the accuracy. 

It is well known that implicit methods generally have better numerical stability than 

explicit methods [29, 30, 34]. However, for a general implicit approach, it needs to solve 

the nonlinear equations iteratively at each single step and will result in extra computation 

costs. Thus, when system is lightly loaded or in normal operating conditions, explicit 

methods are naturally more attractive than implicit approach. On the other hand, when 

dealing with stiff problems, implicit method will be more efficient than explicit methods. 

Accordinly, a key question is that, during numerical simulations, how to detect stiffness 

automatically. If such a detection scheme is successfully developed, we can choose  

suitable methods at different system paramter ranges to enhance the overall computation 

efficiency and accuracy. 

In 1977, Shampine & Hiebert proposed some ideas to deal with this problem [34], and 

there are other approaches in the literature [34], such as detect stiffness by directly 

estimating the dominant eigenvalue of the Jacobian matrix of the problem [30]. This 

dissertation attempts to adapt the ideas of Shampine & Hiebert for voltage stability analysis. 

However, though not a big burden, automatic stiffness detection does introducece extra 

computation costs. Based on our experience of power system, we deveop a simplified 

approach to further enhance the overall computation efficiency.       

In this Topic, we also generalize our new numerical scheme evolved in Chapter IV for 

more general cases of long term dynamic analysis with small disturbances. A 

comprehensive numerical scheme is summarized in this Topic, which integrates the 

automatic stiffness detection, our new intelligent load adjustment skill, automatically step 

size control technique, EMD criterion, explicit and feasible implicit Runge Kutta methods. 
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At last, some MatLAB based codes are developed in this dissertation, which integrates our 

new research results and can be used for research and education purposes.   

5. Objective and organization of the dissertation 

The objective of this dissertation is to address the Challenge 1 and 2 faced by voltage 

stability analysis in deregulate environments. The detailed technique issues related to the 

two challenges are further discussed as Topic 1, 2 and 3 in Chapter II/III, IV and V 

respectively as follows: 

In Chapter II, eigenvalue based bifurcation analysis will be applied to allocate 

contribution / responsibility of voltage stability in deregulated environment. Impacts of 

exciter size and different load model on voltage stability are discussed in Chapter III. 

EMD criterion is proposed in Chapter IV, which can gauge the accuracy of numerical 

estimation of stability margin. Based on EMD criterion, a novel intelligent load adjustment 

technique is also proposed in this Chapter, which can be integrated with explicit RK 

method to enhance the computation efficiency. 

Chapter V defines and resolves stiffness problem in voltage stability analysis. Here we 

discussed proper implicit methods to be applied for ill-conditioned power systems. We also 

extend our EMD criterion and intelligent load adjustment approach to implicit methods. 

Numerical tests verify the advantage of our new approach to solve stiffness problems. 

In Chapter V, automatically stiffness detection will be discussed, and based on our 

numerical experience with power systems, we develop a simplified detection approach. 

Also, we try to extend our new numerical scheme evolved in Chapter IV to general long 

term dynamic analysis with small disturbances. 

Finally, Chapter VI is a summary of the dissertation and reviews the contributions of this 

research. It also suggests the further directions of research based on this dissertation. 
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CHAPTER II  

BIFURCATION ANALYSIS USED IN EVALUATING THE VOLTAGE STABILITY 

MARGIN 

1. Introduction 

1.1 Background and objectives 

In deregulated power systems, each part of the unbundled systems (generator, control 

system and transmission part, etc.) has its own contribution to voltage stability [5]. It is of 

great economic and security importance to allocate these contributions for appropriate 

investment awards to encourage needed infrastructure investments. Three bifurcations (the 

singularity induced bifurcation, saddle-node and Hopf bifurcation [5, 18], and their 

relationship to several commonly used controllers [20, 21, 22] are analyzed.  Their 

parameters’ impact on the bifurcation points is investigated here, from which we find a way 

to allocate the contribution by analyzing the relative positions of the bifurcations.  

Our research objective here is to give some insights about how to allocate contribution of 

voltage stability, thus to enhance competition and efficiency of energy market. Analyzing 

the influence of the system parameters on voltage stability will also help us design and 

optimize the system. 

1.2 Static stability margin vs. dynamic stability margin 

So far, industry used to apply static analysis to estimate voltage stability margin. The 

mostly common used methods are Continuous Power Flow (CPF) analysis and Quasi 

Steady State analysis (QSS) [2, 9, 35]. Essentially, the unstable point detected by these 

static methods is the nose of PV curve.  
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Figure II-1 Dynamic vs. static stability margin 

 

However, as illustrated in Figure II-1, eigenvalue analysis shows that, before system 

reaches its static margin, there are other kinds of local bifurcation point may appear, such 

as Hopf Bifurcation (HB) and Singular Induced Bifurcation (SIB). In general, the static 

margin determined by SNB may be too optimistic [5, 7].   

Therefore, throughout this dissertation, we will focus on the more meaningful dynamic 

margin and develop an efficient and accurate analysis scheme to detect the margin. 

We begin this chapter by introducing the eigenvalue based bifurcation analysis. 

2. Eigenvalue based bifurcation analysis for voltage stability 

Before further discussion, we will first introduce mathematical model of power systems as 

follows:  
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2.1 Mathematical description of power systems 

Parameter dependent DAE of the form (2.1) is widely used to model the dynamics of 

physical systems, such as dynamic voltage stability studies of power systems [4, 18]. In the 

parameter-state space of x, y and p, x is a vector of n state variables, y is a vector of m 

algebraic state variables, and p is a vector of q parameter variables. 

qmn

mqmn

nqmn

PpYyXx

gpyxg
fpyxfx

ℜ⊂∈ℜ⊂∈ℜ⊂∈

⎪⎩

⎪
⎨
⎧

ℜ→ℜ=

ℜ→ℜ=
++

++

,,

:),,,(0
:),,,(&

   (2.1) 

For power systems, the parameter p defines specific system configurations and operation 

conditions. x denotes the dynamic state variables and y denotes the instantaneous variables 

which satisfies algebraic constraints. The differential equation in (2.1) represents dynamics 

of generators, control systems and loads, and the algebraic equation represents the load 

flow equation. 

2.2 Eigenvalue based bifurcation analysis and three kinds of bifurcation points 

For a given value of p , equilibrium is a solution of equation (2.2) 

⎩
⎨
⎧

=
=

),,(0
),,(0

pyxg
pyxf

 (2.2) 

The stability of equilibrium points can be determined by linearizing (2.1) around the 

equilibrium point: 
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where J is the unreduced Jacobian of the differential-algebraic system:  

⎥
⎦

⎤
⎢
⎣
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gg
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J   (2.4) 
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According to implicit theory, if yg is nonsingular, we can eliminate y∆ from (2.3) as 

follows. 

xggffx xyyx ∆−=∆ − ][ 1&  (2.5) 

Hence, the reduced Jacobian matrix of the system (2.1) can be written as: 

][ 1
xyyxr ggffJ −−=  (2.6) 

As defined in [36], the qualitative behavior of a system is determined by the pattern of 

its equilibrium points and periodic orbits, as well as by their stability propertities. If a 

system can maintain its qualitative behavior under infinitesimally small perturbations, the 

system is said to be structurally stable. In general, bifurcation is a change in the qualitative 

behavior as a parameter is varied. The parameter is called a bifurcation parameter, and the 

values at which changes occur are called bifurcation points [36]. 

Through the analysis of the eigenvalue of rJ , we can demonstrate the influence of the 

control system. We observed that three types of bifurcation usually occurred: Hopf 

Bifurcation (HB), Saddle Node Bifurcation (SNB) and Singularity Induced Bifurcation 

(SIB), correspondingly we denote these three types of bifurcation as A, B and C in this 

chapter. A brief introduction of these three bifurcations are give below [36]: 

 HB, where there is an emergence of oscillatory instability. At this point, two 

complex conjugate eigenvalues of reduced Jacobian cross the imaginary axis. 

 SNB, where two equilibrium (a Saddle and a Node) coalesce and then disappear, at 

this point the reduced Jacobian has a zero eigenvalue;    

 SIB, at this point, yg is singular, through the equation (2.6), we know that the 

inverse of yg will become infinity, which is called “singularity induced infinity”, 

where it is not easy to compute and analyze the stability of the system. 
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In next section, we will show how different controllers and their parameters impact on 

the locations of A, B and C on the PV curve, and try to find some clues to allocate 

responsibility / contribution of voltage stability. 

3. Allocation of responsibility / contribution of the system 

In this section, a simple system, shown in Figure II-2, is used to demonstrate how to apply 

eigenvalue based bifurcation analysis in voltage stability analysis, and thus to allocate 

responsibility of voltage collapse.  

3.1 Introduction of the test system 

 
′

dd XX ,  

rE
fdE  

δ ′′,E  δ,E  

Load (P, Q) 
X

Exciter 

 
Figure II-2 A simple two bus system 

 

As mentioned before, dynamics of power system can be described as DAE systems shown 

as equation (2.1). For the above system, we will first introduce its power flow equations as 

follows: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

+−
=

=

'

''2

'
'

'

cos

sin

x
EEEQ

x
EEP

δ

δ
 (2.7) 

Here ''
dXXx += , and detail description of this two bus test system can be found in [2].  
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Equation (2.7) can be simplified as: 

22222 )'()'('0 EQxPxEE +−−=         (2.8) 

Here equation (2.4) is the algebraic constraint function ),,( pyxg  in equation (2.1). 

In this chapter, we will focus on three types of commonly used excitation controllers – 

P-controller, PI-controller and PID-controllers, and correspondingly the differential 

equations to describe system dynamics are given as follows: 

P-controller: 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −++−−−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

′
+

⋅
′−

+′
+

−⋅′=′

rpfdfdfd

fd
ddd

d

EExQxP
E

KEE
T

E

E
E

QxE
x

xxE
x

xx

T
E

2220

2

0

)()(1)(1

)'(
''

1

&

&

    (2.9) 

Here equation (2.5) is the differential equation ),,( pyxf  in equation (2.1). 

PI-controller  
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Here equation (2.9) is the differential equation ),,( pyxf  in equation (2.1). Note that in 

this regulator, 0
fdE  is not constant, and it will be rescheduled to keep GE  as constant as load 

P changes. So the P-regulator used here is also called as rescheduled P-regulator. 

PID-controller 

For a PID controller, as decribed in [20, 22]  
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K D
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We know that sKD  is not practical [20, 22], so if DT is small enough, we can use 

equation (2.12) to replace (2.11): 
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Then the differential equations is listed as follows: 
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3.2 Eigenvalue Analysis Results 

Based on above test system, here we will show that the dynamic stability margin is smaller 

than the static margin. Please note that, it could be expected as a general case that the 

stability margin will shrink considering the time delay of generator dyanmic response to 

load increase, the physical limits of generators, the limit of excitor size and unpredictable 

load dynamic behavors, etc.  

The regulator used in this example is a P-regulator with constant 6.10 =fdE , and the 

other parameters is set as: 

0.1,5.0,2.0,1.0,2.1,5.1,5 ''
0 ======= rddd EPQxxxTT  

And throughout this section, we assume that the system load is constant load with a 

fixed power factor ( QP 2= ), and we have infinite exciter size.  
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Figure II-3 Bifurcation locations on PV curve 
 

In figure II-3, we found Hopf bifurcation point A in the upper part of the PV curve, 

which determines dynamic stability margin. We can see that AP  is smaller than the static 

margin BP  (here maxPPB = ). Here CBAP ,,  denote active power load associated with 

bifurcation points A, B and C respectively.  

When the system reaches Hopf bifurcation point, the system will no longer hold its 

stability in case there is a small disturbance, which will be demonstrated by time domain 

simulation with the test system.  

Here we will start simulation at equilibrium point 934.0=P , and with a small 

disturbance of 002.0=∆P , we have time domain responses of voltages shown in Figure II-

4. 
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Figure II-4 Voltage responses in time domain 

 

In above figure, we can see that when the system approaches Hopf point, the system has 

a severe oscillation and can not keep the stability with small disturbance, thus we know that 

the dynamic margin A is more meaningful than the static margin B point, so we need the 

bifurcation analysis to find it. 

Now we will analyze the impacts of different controllers of the regulator on voltage 

stability of the test system. Based on it, we will give a method to allocate the responsibility 

of the voltage collapse. 

3.2.1 P- regulator 

Here we will show how PK  impact on the locations of bifurcation points: 

When 10or  5 ,5.2=PK , the locations of the bifucation A, B and C and the eigenvalues 

of reduced Jacobian matrix rJ are shown in Figure II-5~II-7: 
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Figure II-5 The locations of the bifurcations when 10or  5 ,5.2=PK  

 

 

Figure II-6 The eigenvalue which is slightly influenced by PK  
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Figure II-7 The eigenvalue which is strongly affected by PK  

 

By our calculation, with constant load and the infinite exciter size, bifurcation point C is 

only determined by transmission system, it will not be influenced by the parameters of 

controller. However, point B will vary with the change of PK .  When ∞→PK , maxPPB → ; 

when 25.5>PK , CB PP > ; when 895.1=PK , AB PP ≈ ; when 895.1<PK , bifurcation point 

A will disappear; and when 0→PK , 735.0→BP .  

In Figure II-6, note that PK  has little influence on one of the eigenvalues (denoted by 

EigT), while in Figure II-7, PK  has a substantial impact on the other eigenvalue (denoted 

by EigC).  

When 8.1=PK , FigII-10 shows the location of B and C in PV curve. Note that A 

disappeared. From Figures II-5 to II-10 we can see that the eigenvalue EigT is strongly 

related to the load flow, while the eigenvalue EigC is strongly influenced by the controller. 
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Figure II-8 The eigenvalue EigT ( 8.1=PK ) 
 

 

 

Figure II-9 The eigenvalue EigC ( 8.1=PK ) 
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Figure II-10 The location of B and C when 8.1=PK  

 

We can conclude that there are three basic patterns: 

 CBA PPP << . When ),( BA PPP∈ , both )Re(EigC  and )Re(EigT  are positive; 

when ),( CB PPP∈ , only )Re(EigT  is positive.  

 BCA PPP << . When ),( CA PPP∈ , both )Re(EigC  and )Re(EigT  are positive; 

when ),( BC PPP∈ , only )Re(EigC  is positive.  

 Bifurcation point A disappears and CB PP < . Only )Re(EigT  is positive when 

),( CB PPP∈ . 

    

3.2.2 PI- regulator 

Here the parameters of PI-regulator is given as 20or  0.5,5.2 === IIP TTK . Using 

equations (2.6), (2.8) and (2.10), we can calculate three eigenvalues of the reduced Jacobian 

matrix rJ . We found that one eigenvalue of rJ  is always located in left side of imaginary 

axis, and the other two eigenvalues will across imaginary axis with load increase. One of 
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these two eigenvalues is strongly affected by parameters of PI-controller, PK  and IT , 

especially by IT , so similarly, we denote it as EigC, and the other eigenvalue is almost 

independent with controller, so we denote it as EigT. Three bifurcations, type A, B and C, 

are also found with PI-controllers. 

 

 

Figure II-11 The eigenvalue Eig T(PI-controller) 
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Figure II-12 The eigenvalue EigC (PI-controller) 

 

 
Figure II-13 The location of A, B and C in PV curve for a PI/PID controller 
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From Figure II-11~II-13, we can conclude that PI controller behaves very similar to the 

rescheduled P-controller as ∞→PK . When ),0( APP∈ , all eigenvalues are negative; when 

),( CA PPP∈ , both )Re(EigC  and )Re(EigT  are positive; when ),( BC PPP∈ , only 

)Re(EigC  is positive. Accordingly, it follows the second basic pattern as described in 

II.3.2.1.  

3.2.3 PID-controllers in a regulator 

Parameters of PID-controller are set as 01.0 1.0,,0.5,5.2 ==== DDIP TKTK or 005.0=DT , 

it behaves similar to a PI-controller as shown in Figure II-13.  This also follows the second 

basic pattern as discussed in II.3.2.1.  

Through above obeservations, given the constant load and infinite exciter size, we can 

conclude that the three basic ordering patterns of bifurcation points A, B and C as discussed 

in II.3.2.1 are generally true for all controllers which can keep rG EE ≡ . Our experience 

indicates that no other ordering of A, B and C is possible. Accordingly, we can draw the 

conclusion: 

 CBA PPP << . When ),( BA PPP∈ , both )Re(EigC  and )Re(EigT  are positive; 

when ),( CB PPP∈ , only the )Re(EigT  is positive. From the parameter analysis, we 

can conclude that the voltage collapse is due to both controller and transmission 

when ),( BA PPP∈ . The voltage collapse is only caused by transmission part when 

),( CB PPP∈ . In this case, ],[ CA PP  is the unstable area, and bifurcation point A 

determines the dynamic stability boundary. 

 BCA PPP << . When ),( CA PPP∈ , both )Re(EigC  and )Re(EigT  are positive; 

when ),( BC PPP∈ , only )Re(EigC  is positive. From the parameter analysis we can 

conclude that the voltage collapse is due to both controller and transmission when 

),( CA PPP∈ . The voltage collapse is caused by controller when ),( BC PPP∈ . In this 

case, ],[ BA PP  is the unstable area, and A determines the dynamic stability boundary. 
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 Bifurcation point A disappears and CB PP < . Only )Re(EigT  is positive when 

),( CB PPP∈ . Thus, the voltage collapse is only due to transmission when 

),( CB PPP∈ . In this case, ],[ CB PP  is the unstable area, and bifurcation point B 

determines the dynamic stability boundary.  

In conclusion, the tuning of the control parameters will influence the locations of 

bifurcation points and thus the dynamic stability margin of the system. And our observation 

may also benefit the design of power system. 

Following the same argument, we can also unbundle the voltage collapse responsibility 

of the system by studying how the parameters of the three parts of the system (generator, 

controller and transmission part) affect the bifurcation patterns: 

3.2.4 Impacts of other system parameters on voltage stability 

The influence of the excitation system: 

As discussed before, impacts of PK  in rescheduled P-controller are summarized as 

follows. PK  does not affect C, but have impacts on B and A. When ∞→PK , maxPB → ; 

and when 0→PK , 735.0→B ; when 895.1=PK , BA PP ≈ ; when 895.1<PK , A 

disappear; when 25.5=PK , BC PP ≈ .  

For PI and PID controllers, we did simulation with different parameters of the controller 

and the result summarized in table II-1: (Note: for PI and PID controller, A determines 

dynamic stability margin, and the unstable area is ],[ BA PP ) 

From table II-1.A, we can see that PK  only has influence on A, which is different from 

P-controller. Here B and C remain the same. (With a constant power factor, it can be easily 

approved that B always appears at maxP when an I-controller is used in the regulator.) 

AP will increase with bigger IT  and bigger DK . DT  has little influence on A, but too large 

or too small DT  will decrease AP . All parameters of PI and PID controllers have no impacts 

on B and C. 
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Table II-1.A Impacts of other parameters 

Xd KP TI KD TD A B C 

1 P=0.98 

2 P=1.167 

4 P=1.273 
0 0 

P=1.236 

0.001 P=1.404 

0.1 P=1.4105 

2.5 

1 

P=1.415 

 3 
0.01 

P=1.416 

2 P=1.1625 

3 P=1.2839 

3 

P=0.5 

8 P=0.648 

15 P=0.685 

   

1.2 

0 

100 

0  

P=0.726 

P=3.09 P=2.115 

 

The location of bifurcation point C is independent of the controller as long as the 

voltage regulator has enough excitation capacity to keep terminal voltage at rated value. 

Now we investigate the influence of the '
0dT  on the stability margin: (In this case the 

regulator is rescheduled P-controller, 5.2=PK ) 

Table II-2.B Impacts of '
0dT  

'
0dT  Pmax AP  BP  CP  

3 3.09 1.248 1.584 2.116 
5 3.09 1.416 1.584 2.116 
7 3.09 1.534 1.584 2.116 
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From table II-1.B we can see that '
0dT  will influence the A point, but it have no 

influence on B and C. We verified the fact for all three controllers. AP  will increase with 

bigger '
0dT , that means the dynamic stability margin will increase with bigger '

0dT . 

However, the size of the exciter will limit the range of fdE  and thus the voltage regulation 

range [13].  

 
The influence of generator reactance: 

Now we investigate the influence of the dx on the stability margin: 

With rescheduled P-controller 

Table II-3.A Impacts of dx with P-controller 

dx  maxP  AP  BP  CP  
1.2 3.09 1.416 1.584 2.116 
0.3 3.09 2.016 2.719 2.116 

 

With PI-controller 

Table II-4.B Impacts of dx with PI-controller 

dx  maxP  AP  BP  CP  
1.2 3.09 1.297 3.09 2.116 
0.3 3.09 2.005 3.09 2.116 

 

With PID-controller 

Table II-5.C Impacts of dx with PID-controller 

dx  maxP  AP  BP  CP  
1.2 3.09 1.415 3.09 2.116 
0.3 3.09 2.0158 3.09 2.116 
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Through the table II-2.A, B and C, we can see that dx  has influence on A point; and if 

we use P-controller, it also influence the B point. It implies that the dynamic stability 

margin will increase with smaller dx .  However, C is independent of dx . 

The parameters of the transmission system: 

 
Now we investigate how x  impacts stability margin: 

With rescheduled P-controller 

Table II-6.A Impacts of x with P-controller 

x Pmax A B C 
0.1 3.09 1.416 1.584 2.116 
0.12 2.58 1.360 1.509 1.966 

 

With PI-controller 

Table II-7.B Impacts of x with PI-controller 

x Pmax A B C 
0.1 3.09 1.297 3.09 2.116 
0.12 2.58 1.2506 2.58 1.966 

 

With PID-controller 

Table II-8.C Impacts of x with PID-controller 
x Pmax A B C 

0.1 3.09 1.415 3.09 2.116 
0.12 2.58 1.3589 2.58 1.966 

 

Through analysis of table II-3.A, B and C, we see that x  has influence on all of the 

three bifurcation points. The dynamic stability margin will increase with smaller x . 
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4. Conclusion 

This chapter attempts to allocate the contribution of voltage stability to generator owners, 

transmission owners and excitation control owners, thus, an investment award system can 

be built to award investments on the corresponding power infrastructure. We showed that 

how the parameters of the three parts of the system (generator, controller and transmission) 

affect the bifurcation patterns, which can help us to design and optimize the system.  

Please note that, all conclusions drawn in this chapter are  based on a primitive system 

and several typical regulators. It is hard to rigorously verify these conclusions with large 

systems due to huge computation cost associated with eigenvalue analysis for large systems, 

and that is why a new comprehesive numerical analysis scheme will be proposed in chapter 

IV and V. However, as demonstrated in next chapter, our conlusions based on a typical 

two-bus system could be very useful for excitor design, especially when we try to optimize 

the excitor size to make the best use of a generator. 
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CHAPTER III  

IMPACT ANALYSIS OF EXCITER SIZES ON VOLTAGE STABILITY 

1. Introduction 

So far, in deregulated environment, transactions are only paid by the real power amount and 

no incentive was given to install regular exciter sizes; the industry tends to reduce exciter 

size to save cost. In this chapter, we show that limits of the power system components, 

induced by the size of the exciter, limits of the stator (armature) current, the field current, 

and overheating limits of the stator core, etc., all have a influence on the voltage stability, 

especially exciter size. An algorithm to choose proper exciter size is developed in this 

chapter. The algorithm aims to maximize the loadability of system to fully utilize the 

generator. 

2. The influence of physical limits on the voltage stability margin of the system 

Various constraints on the system components, which will have a great influence on the 

voltage stability margin, will be analyzed here. Similarly as in Chapter II, three widely used 

regulators—adaptive P-regulator ( 0
fdE is rescheduled to keep rG EE ≡ ), PI-regulator and 

PID-regulator, will be still considered in this chapter. We also consider a much weaker non-

adaptive P-regulator that has a constant 0
fdE .  

2.1 Over excitation limit 

When an exciter hits its upper limit, its output, fdE , can no longer responds to the change 

of the voltage. fdE  will be saturated at max_fdE . In this case, only two kinds of bifurcations 

are observed, SNB and SIB (still denoted by B and C points in PV curve respectively). This 

is also the case for the weaker P-regulator without rescheduling. On the other hand, for 

normal situations, where fdE is within its limit and the voltage regulator is able to maintain 

rG EE ≡ , HB (still denoted by A point in PV curve) may also appear. As discussed in 
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Chapter II, in normal case, we may have three kinds of bifurcations (A, B, and C) located in 

PV curve. 

We use the simple system shown in Figure III-1 to demonstrate our analysis. It is the 

same test system used in Chapter II, and the regulator used here is the rescheduled P-

regulator. We also tested with other regulators, and found that the results are all included in 

the two basic patterns we got from the rescheduled P-regulator. Thus, without loss of 

generality, all the analysis in this chapter will be based on results associated with 

rescheduled P-regulator. 

Over excitation limit max_fdE  

', dd xx  

rE  
fdE   

δ ′′,E  δ,E  

Load (P, Q) 

x  

Exciter

 

Figure III-1 Test system with over excitation limit 

 

The parameters of above system are listed below. Note that all cases shown in this 

chapter will use the same system parameters unless specified otherwise. 

0.1,5.0,2.0,1.0,5.1,5 ''
0 ====== rdd EPQxxTT  

To demonstrate our analysis, two PV curves, with different length of nose, are drawn in 

Fig 2 and 3. The longer nosed curve represents an ideal case that has a big enough exciter 

size, in which the limit will never be reached. The shorter nosed curve denotes the case that 

the regulator is saturated, which has a constant input fdE  as the exciter hit its limit. The 



34 

 

system is first following the longer nosed curve since the regulator is working within its 

limit. Then when the exciter hits its limit, the system is moving along the shorter nosed 

curve. The switching point is D. 

In Figure III-2 and III-3, we denote the saddle node point and the singularity point as 

B1 and C1 in the PV curve with shorter nose of the system that the fdE is saturated. Let the 

intersection point of the two PV curves be D. Note that C1 always appears at the lower part 

of the PV curve, B1 appears at the maximum load point maxP , and there is no Hopf 

bifurcation point when fdE is saturated. 

Please note that when we have big enough exciter size, the longer nose PV curve and 

the corresponding bifurcation points A, B and C will not change with the value of the 

exciter size since as long as the exciter is operated within its capacity, the system behavior 

will remain the same for different exciter sizes. With the same example shown in Figure 

III-2, we change the exciter size from 50 to 25 (both are big enough), and we found that the 

PV curve remains the same, and the corresponding A, B and C also remain on the same 

locations. 

Comparing the PV curves and the locations of the bifurcation points for these two cases, 

we found two basic patterns, which are shown in Figure III-2 and III-3 respectively. 

We describe the two possible patterns, depending on the location of D, as follows:  

Pattern 1, D is located at the lower part of the shorter nose PV curve. 

In this pattern, there are several possibilities for the dynamic stability margin: (For each 

point, say D, DP  is used to denote the real power load at point D.) 

• AP < DP , then the dynamic stability margin is AP  (If A disappears and BP < DP , BP  is 

the dynamic stability margin) 

• AP > DP  and 1CP < DP , then the dynamic stability margin is DP . 

• AP > DP  and 1CP >= DP , then the dynamic stability margin is 1CP . 
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Figure III-2 The general pattern 1 

 

For the steady stability margin, there are also several possibilities: 

•  CP  < DP , then the steady-state margin is CP . 

•  CP  > DP  and 1CP < DP , then the steady-state margin is 1BP . 

•  CP > DP  and 1CP >= DP , then the steady-state margin is 1CP . 

To our experience, 1CP >= DP  seldom appears. For our example, it appears with a short 

transmission line. 
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Figure III-3 The general pattern 2 

 

Pattern 2, D is located at the upper part of the PV curve with shorter nose. 

In this pattern, there are also several possibilities for the dynamic stability margin: 

• AP < DP , then the dynamic stability margin is AP  (If A does not exist, then BP  is the 

dynamic stability margin) 

• AP > DP  , then the dynamic stability margin is 1BP  

For the steady stability margin: 

• CP < DP , then the steady-state margin is CP  

• CP  > DP , then the steady-state margin is 1BP  



37 

 

The main system differences that cause different patterns as shown in Figure III-2 and 

Figure III-3, are that there is a bigger dx  and a bigger max_fdE  in Figure III-2. Note that 

point D in Figure III-2 is nearly in the same location as the B1 in Figure III-2. It illustrates 

that a bigger dx  needs a larger exciter size to keep the same voltage stability margin for a 

given transmission line. We also found that longer transmission line needs larger exciter 

size to keep the same voltage stability margin for a given dx .  

The regulator used in Figure III-2 and Figure III-3 is a P-regulator with a rescheduled 
0
fdE . For this type of P-regulator and PI, PID regulators, bifurcation points A, B and C are 

all located in the upper part of the PV curve and C point will stay at the same location for a 

given x [37].  For rescheduled P regulator, B point will go further down to maxP  

with ∞→PK , while A and B will go further up with smaller PK . A will disappear and BP  

may less than DP  with 0→PK . For PI or PID regulator, BP  will always equal to maxP  and 

A will not disappear with 0→PK . The location of A will change slightly with PK  for a 

PID regulator. However, for a PI regulator, A will go further up with smaller PK  and AP  

may become less than DP  [37]. 

Based on our analysis, we found that in the above two basic patterns, the situations 

AP < DP  or BP < DP  only appear when the regulator is not well tuned (e.g. PK  is too small), 

or the transmission line is too long. In this case, dynamic analysis is necessary, and AP  is 

the determining stability margin because that AP  is always less than CP  [37]. We know that 

A is mainly caused by the regulator for a given transmission line [37], and regulator is 

responsible for the voltage collapse in this case. We should notice that steady-state analysis 

is no longer good enough in this case, because that the real stability margin is determined 

by A point.  

To our experience, in most cases we find that AP > DP , CP > DP  and 1CP < DP , and thus 

DP  is usually the determining stability margin for basic pattern 1, while 1BP  is the 
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determining stability margin for basic pattern 2. Both B1 and D can be found by the steady-

state method, and steady state analysis is good enough here. For examples in Figure III-2, 

DP  is the stability margin; in Figure III-3, 1BP  is the stability margin. For a given 

transmission line, DP  and 1BP  is determined by the size of the exciter, and thus the exciter 

is mainly responsible for the voltage collapse in this case. 

2.2 The influence of other limits on the system 

Here we focus on the physical limits of the generator shown in Figure III-4 [22, 26] and the 

relationship of the above bifurcation points and these physical limits: 

• Section E–F–G of the curve shows limits due to stator (armature) current. This section 

is a portion (arc) of a circle that has its center in the origin of – (MW-Mvar) coordinates of 

the generator. 

• Section D–E of the curve is due to field current limit. This is a portion (arc) of a circle 

that has its center on the Y axis (Mvar) and shifted from the origin by a value proportional 

with the machine short-circuit ratio (SCR). 

• Section H–G of the curve shows limit due to over-heating of the stator core end when 

the generator is under-excited in conditions of leading PF, when the generator is absorbing 

reactive power. 

Accordingly, we observe three basic patterns based on the locations of A, B and C 

points relative to the boundary D-E-F-G-H determined by the physical limits: 

i) Bifurcation points A, B and C are outside of the boundary D-E-F-G-H, and thus the 

boundary determines the real stability margin, and the maximum real power loadability 

point is F. 

To our experience, when the transmission line is too long ( x  is very large) or the 

regulator is too weak (for example, PK  is very small, or we use P-regulator with constant 
0
fdE ), the power values associated with bifurcation points A, B and C may become less than 

the power at point F. Then A determines the dynamic stability margin (for cases that we do 
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not have A point, then B point will determine the dynamic stability margin), and C 

determines the steady-state stability margin (for the special case that P-regulator has a 

constant 0
fdE , B determines the steady-state stability margin). Thus, we have patterns ii and 

iii: 

 

Figure III-4 The limits of the generator 

 

ii) Bifurcation point A or B appear inside the boundary, but C is outside of the 

boundary, thus FP  is the steady-stage stability margin. The point A or B (when A 

disappears) will determine the dynamic stability margin. 

iii) Bifurcation points A, B and C appear inside the boundary, and the point A or B will 

determine the dynamic stability margin; similarly, bifurcation point C or B will determine 

the steady-state stability margin. 
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Note: In case i), the steady-state analysis is good enough, but in case ii) and iii), 

dynamic analysis is needed. 

In basic pattern i), the field current limit determines that how much reactive power the 

generator can supply-- maxQ ; The limit of stator current determines that how much real 

power the generator can supply-- maxP ; The Over-heating limit of the stator core determines 

that how much reactive power the generator can absorb-- max−sQ . But for pattern ii) and iii), 

it becomes much more complex. These maximum values are no longer be determined by 

the physical limits of the generator. Instead, they are determined by the regulator type, 

exciter size and the length of the transmission line. 

Our experience shows that with the three widely used regulators, the basic pattern i) 

usually appears under the conditions that the regulator is not too weak, the size of exciter is 

not too small and the transmission line is not too long. For these cases, the steady-state and 

the dynamic stability margin is PF, and the limit of stator current determines the stability 

margin. But for the weak type of P-regulator (with constant 0
fdE ), the basic pattern iii) 

usually appears, even when the transmission line is not very long. It also means that this 

type of P-regulator is weaker than those other three types of regulators as we discussed 

earlier. With this type of regulator, maxQ is no longer determined by the limit of the stator 

current, but by the regulator; while the maximum value of the reactive power that the 

generator can absorb is still usually determined by the over-heating limit of the stator. 

3.  An algorithm to choose the optimal exciter size 

In this section, the test system in Figure II-2 is still used to demonstrate how to apply 

eigenvalue based bifurcation analysis in voltage stability analysis, and thus to allocate 

responsibility of voltage collapse. 
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3.1 The objective of the algorithm  

The size of the exciter has a great influence on the voltage stability as shown in Figure III-2 

and III-3, the longer nosed curve represents an ideal case that has a big enough exciter size. 

The shorter nosed curve has a constant input ( sizefdE _ ) for the exciter as the exciter hit its 

limit. Our problem is formulated as follows: Given the system shown in Figure III-1 and 

the generator limits shown in Figure III-4, how to decide an appropriate exciter size that 

can fully utilize the capacity of the generator. This algorithm is developed to solve this 

problem. 

Notation: In the algorithm, the exciter size is denoted by sizefdE _ . We denote the lower 

limit of the desired bus voltage as lim_lowE , and we denote the corresponding load at the PV 

curve assuming the exciter can be unlimited regulated to keep rG EE ≡  as lim_lowP .  Point F 

shown in Figure III-2 is determined by the limit of the stator current, which denotes the 

critical point that the generator can be operated at. Point D shown in Figure III-2 and III-3 

is the intersection of the two PV curves. At this point, the exciter hits its limit and the 

generator bus changes from a PV bus to a PQ bus. For each point, say D, we associate D 

with DP  ( DQ ) and DE as the real (reactive) loads and the voltage of the load bus at the point 

D. 

3.2 Fundamental principle of the algorithm  

Our algorithm is based on the principle that we should choose exciter size ( sizefdE _ ) to 

make the best use of the generator. We should design in such a way that the generator bus 

still functions as a PV bus when the generator operates at the point F. Thus, we choose 

sizefdE _  to make FD PP ≥ . At the same time, we should guarantee that the DE  should be 

greater than the lower limit ( lim_lowE ), which requires that lim_lowD PP ≤ .  Thus we should 

choose sizefdE _  to satisfy ),min( lim_lowFD PPP = .  

Accordingly, we decomposed our algorithm to the following two steps:  
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1st step: Determine D by x, F and lim_lowE . 

From x, F and lim_lowE , we will determine the D point ( DP , DQ and DE ). For an ideal 

exciter, which can regulate rG EE ≡ , we can calculate the PV curve by equation: 

22222 )()(0 ExQxPEEG +−−=           (3.1) 

 Substituting lim_lowEE =  into equation (3.1), we can calculate lim_lowP . Then we choose 

),min( lim_lowFD PPP = , and we can obtain DE by substituting DP  and DQ  back to equation 

(3.2).  

 

2nd step: Determine sizefdE _  by ',, dd xxx  and D point. 

Note that we can find max_fdE  by making the PV curve without regulator pass through 

the D point. We can calculate the PV curve by equation (3.3) and (3.4).  
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Substitute DDD EQP  and , into (3.2) 
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Substitute (3.4) and DP , DQ  and DE  into (3.3), we can get:  
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3.3 Verifying this algorithm with large systems 

So far, this algorithm is developed for the simple system shown in Figure III-1. However, 

we can use GP , GQ  instead of DP , DQ and x to estimate the exciter size. Thus the algorithm 

will be possible to be extended to large systems. 

For a large system, we can specify the sum of the active load as ∑
=

N

i
FiP

1
. Here, N  is the 

number of the generators in the system. We calculate the power flow at the most heavily 

loaded situation, and then we know the GP  and GQ  for each generator at the most stressed 

situation. 

Then, we use another simplified power flow equation: 

22'2'22 )()(' GGdGdG EQxPxEE +−−  (3.6) 

and the exciter equation : 
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Knowing GE  and GG jQP + , by (3.6) ~(3.7) we can get: 
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From the equation (3.8) and (3.9), we can estimate the exciter size by GP  and GQ  

instead of DP , DQ  and x. 
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3.4 Demonstrating example 

Based on above analysis, we can decouple a big system and use our algorithm to design the 

exciter size for each generator. Here the load flow result has decoupled one of the 

generators from the remaining system, and the problem becomes: 

Given 1=rE , 2.1=FP , 1.0=x , 2.1=dx , 2.0' =
d

x , and 9.0lim_ =lowE , how to choose 

sizefdE _ ? (The power factor of load is constant, QP 2= ) 

1st step:  

Substitute 9.0lim_ =lowE  into equation (3.1), then we can get 5359.1lim_ =lowP ,  

2.1),min( lim_ == lowFD PPP  and 6.0=DQ . Substituting DD QP ,  into equation (3.1), we can 

obtain DE = 0.9268 

 

2nd step:  

By equation (3.5) and known DDD EQP  and , , we can obtain sizefdE _  = 2.22. From load 

flow analysis, we got GP =1.2, GQ =0.80953. By equation (3.8) we got '
DE = 1.18643, then 

by equation (3.9) we can get sizefdE _  = 2.22. The result is the same as we obtained from 

equation (3.5). This confirms that we can estimate the exciter size by GP , GQ , instead of 

DP , DQ and x. 

Now we use sizefdE _ = 2.22 as the exciter size to simulate the system, the result is shown 

in figure III-5. 

From the Figure III-5, we can see that DP =1.2 and 9.09268.0 >=DE  are exact the 

same as the result we obtained by our algorithm. It shows that our algorithm is an easy and 

credible way to determine the exciter size. 
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Figure III-5 The result of our example 

 

4.  Conclusion 

In this chapter, we analyzed the influence of physical limits and controller types on the 

voltage stability margin of the power system, which will help us to design the system and 

allocate the responsibility of the voltage collapse. Based on these work, we developed an 

algorithm to choose the right exciter size to fully utilize the capacity of the generator. 

A simple two-bus system is used to verify our approach, which shows our analysis is 

reasonable and credible. We also extend the algorithm to large systems. 
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CHAPTER IV  

OPTIMAL LOAD ADJUSTMENT FOR FAST DYNAMIC VOLTAGE STABILITY 

MARGIN ESTIMATION USING EXPLICIT RK METHODS 

1. Introduction 

1.1 Background and objectives 

Traditionally, static methods, Continuous Power Flow (CPF) [9] and the Quasi-Steady-

State (QSS) approximation [2] of long-term dynamics, are used for estimating the 

loadability margin. However, both of them may not be obvious to account for discrete-type 

devices whose final state depends on the system time evolution [2].  Moreover, there are 

some situations where the existence of equilibrium does not guarantee a stable system 

behavior [2]. For example, Chapter II and paper [18] demonstrated an example showing a 

system encounter a Hopf bifurcation point before it reaches a saddle node. 

Dynamic analysis methods, such as eigenvalue based bifurcation analysis and time 

domain simulation, have higher modeling accuracy than static methods. With dynamic 

analysis, it is possible to study other instability mechanism than the loss of equilibrium 

captured by static methods. As demonstrated in Chapter II and III, by solving for 

equilibrium manifold as load changes and calculating corresponding eigenvalues of reduced 

Jacobian matrix, one can accurately locate dynamic voltage stability margin. Although 

eigenvalue based bifurcation analysis is accurate and gives us insights about the dynamic 

behavior of the system, eigenvalue calculation is very complex and time consuming, and 

more importantly, the computation cost will further increase drastically with increase of 

system size. Its heavy computation burden makes it very difficult for large system 

applications. Some industrial grade software, i.e., Eurostag, can perform eigenvalue 

analysis along its numerically simulated trajectories. However, our experience indicates 

that the obtained loadability margin may not be accurate since the simulated trajectories 

cannot be guaranteed to be around the equilibrium manifold and thus the small disturbance 



47 

 

analysis has become meaningless and gives wrong results. For example, with eurostag, if 

we want to find the dynamic voltage stability margin, we need to arbitrarily set a load 

increase speed. Simulation trajectories vary with different load increase speeds, and the 

accuracy of estimated dynamic margin can only be guaranteed by a very inefficient way --  

Run simulation with several different load increase ratio till the trajectories no longer 

exhibit relative big changes with different load increase speeds, then people can claim that 

they have found the structural unstable, which should be independent with the load increase 

speed by defination of long term dynamic analysis with small disturbance [2]. Therefore, 

alternative efficient methods need to be developed.  

As discussed, a desirable stability margin estimation scheme should satisfy both 

accuracy and speed requirements. Finding a numerical approach to satisfy these two 

requirements is our research objective here. In this chapter, a novel numerical approach is 

proposed based on explicit Runge-Kutta (RK) methods. With this new method, the 

computation efficiency and accuracy of stability margin estimate are both significantly 

improved.  

1.2 Introduction of the numerical method used for voltage stability analysis 

Before further discussion, we will first give a brief review of commonly used numerical 

scheme for voltage stability analysis. 

As discussed earlier, power system dynamics can be described in a DAE form as 

follows: 
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where the parameter p defines specific system configurations and operation conditions. 

x  denotes the dynamic state variables and y  denotes the instantaneous variables which 

satisfies algebraic constraints.  
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As defined in [36], the structurally stable region in the parameter space p has the 

property that the system operated at a locally structural stable equilibrium point can tolerate 

slow parametric changes within the region without losing local stability around the 

equilibrium. As system parameters vary in this region, the dynamics of the system changes 

continuously; in other words, topologically the structure remains unchanged under small 

disturbance provided the system is structurally stable at the given parameter value. 

Structurally unstable points then pinpoint the parameter boundary values where the 

structure or the type of the system undergoes changes with small perturbations [2, 14]. 

Accordingly, these local bifurcation points characterize the structural stability region. To 

find the dynamic stability margin of power system, we will locate the first-appeared 

bifurcation point as p changes. Eigenvalue based bifurcation analysis provides a tool to 

study the parameter space phenomena; however, the analysis carries a huge computation 

burden. Thus, numerical algorithm will be developed here to speed up the computation to 

locate the bifurcation point.  

For power system expressed as (4.1), the differential equations are the dynamic 

equations, and the algebraic constraints denote the power flow equations. p denotes loads, 

generation, voltage setting points, etc. In this paper, we will focus on system dynamics with 

changing loads, and p will denote the loads of the system. 

In terms of the structural stability concept one needs to slowly increase the loads p until 

the structurally unstable loading is found, where p starts from an equilibrium point 

{ }000 ,, pyx  along system (4.2): 
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Here 1ℜ∈k , kCc ℜ⊂∈ , ck ×  denotes the load increase speed, where c  is a constant 

vector that denotes the load increase ratio among all loads and is defined by a scheduled 
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system operating strategy. If all loads in the network increase in the same ratio, c will be a 

unit vector (c=[1,1, …, 1]) . Without losing generality, we assume all loads will increase in 

the same ratio to simplify our presentation. 

 

Bifurcation 
behavior occurred?

Start

n=0

Initialize system, 
get x0, y0, p0 

N

Increase Load: 
pn+1= pn+ k∆tn  

1st step: 
Power Flow Calculation 

2nd step: 
Solve Swing Equations 

n=n+1 

Y

Output the estimated 
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margin

End

How to 
identify? 

 

Figure IV-1 A preliminary scheme to estimate stability margin of power systems 



50 

 

Note that in this chapter, the numerical computation carried out by (4.2) aims to find the 

structurally unstable point, which is different from simulating a system in an assumed load 

changes. So the load increase ratio is not necessarily a constant as long as we can locate 

bifurcation point accurately.  

A numerical solution for DAE systems combined with a bifurcation detection criterion 

is developed for stability margin estimation as shown in Figure IV-1. In this scheme, with 

intelligently increasing load, the algebraic solving and integration are alternately applied 

until a bifurcation behavior is detected, where the load value is then the estimated margin. 

A criterion to identify a bifurcation behavior will be addressed later.  

Before further discussion, we first give a quick review on the adopted integration 

method. In the first step of Figure IV-1, we use nx and increasing load 1+np as known 

variables to solve power flow variable 1+ny . While in the second step, 11, ++ nn yp will be taken 

as known variables to obtain 1+nx . Without loss of generality, we assume RKF [38] method 

will be applied in the second step as equation (4.3).  
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And 6,...2,1α are constants independent of integrand f , which are derived by comparing 

the Taylor expansion of iK  terms in (4.3) with Taylor expansion of the exact solution 

)( 1+ntx . In [38],  we can find the value of 6,...2,1α  shown as below: 
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At each step, we will try to adjust the step size t∆ by a two-step process shown as 

follows:  
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Hereξ is a small constant used to control the ‘one-step error’ of numerical calculation 

[29]. 

Secondly, if 1<θ , we will adjust t∆  by (4.5); otherwise t∆  will keep unchanged. 

 1 nn tt ∆=∆ + θ  (4.5)  

It is well known that when system is light-loaded or operating in normal conditions, the 

solution of the DAE system (4.2) is rather smooth, so bigger t∆  can be selected; while 

increasing load makes system more stressed, a smaller t∆ is needed. Thus we can choose a 

big initial value for t∆  [29, 38]. With an increased load, t∆ will be adjusted by (4.4) and 

(4.5). Numerical tests have shown that with automatically adjustment of t∆ , RKF method 

has much higher computation efficiency than typical 4th-order RK method [29, 30]. 
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1.3 Challenges faced by numerical simulation 

For the numerical scheme shown in Figure IV-1, a key question is how to detect bifurcation 

behavior. Till now, there still lacks a sound criterion for it. People used to claim a 

bifurcation behavior is detected as long as numerical simulation results exhibit an 

oscillation or a sudden catastrophic transition as discussed in [2], thus the integration 

trajectory will exhibit a big deviation from the equilibrium manifold (EM). However, given 

the simulation is numerically stable, there are still two possible reasons for a big deviation 

from EM in simulation results. The first possibility is that the system indeed encounters its 

structurally unstable point, and in this case, it is correct to claim the detection of bifurcation 

behavior. The second possibility is that, the load increases too fast, thus the disturbance for 

the system will be too big to be attracted back to stable area. Accrodingly, claim of 

bifurcation behavior of this case is clearly wrong. Thus, the key question arises--how to 

determine if a disturbance is small enough? How to choose proper speed of increasing load? 

Further discussion about this dilemma will be demonstrated later in details. 

Another challenge faced by industry is on line calculation of voltage stability margin. 

Computation efficiency is of great importance for online monitoring of security. The 

automatically step size control technique can be utilized to save computation cost, however, 

online estimation of maximum loadability is still difficult, especially for huge systems, for 

which the computation burden could be a nightmare for online monitoring. Thus, we need 

to find a way to further enhance numerical computation efficiency. 

In short, two requirements should be satisfied by a sound numerical scheme: Accuracy 

and Efficiency. 

2. EMD criterion and load adjustment technique 

As discussed former, we locate the dynamic stability margin by detecting the bifurcation 

behavior. When a system goes near to its bifurcation point, the system behavior will change 

drastically. As shown in [5, 18], the Hopf bifurcation point determines the stability margin 

for power system applications. It is well known that when a system is approaching its Hopf 
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bifurcation point, oscillation will appear. So oscillation in numerical solution can be taken 

as a signal of reaching dynamic voltage stability margin. For the cases that the stability 

margin is determined by other types of bifurcation points, numerical solution will suddenly 

exhibit a big deviation from the equilibrium point. All these bifurcation behaviors make it 

possible to estimate dynamic stability margin by numerical solution. 

However, it is observed that with too fast load increase ratio (k is too big), the 

numerical solution will also exhibit a big deviation from equilibrium manifold since its 

dynamic is unable to settle down to the equilibrium for fast load changes. It can lead to a 

misjudgment as a bifurcation behavior and an inaccurate estimate of stability margin as a 

consequence. Therefore, for accurate estimation of stability margin, k should be selected to 

make the numerical solution stay around the equilibrium manifold until bifurcation occurs. 

Thus, a critical step is to judge whether the numerical solution is able to stay around the 

equilibrium manifold. Accordingly, a criterion, named as EMD criterion, was proposed in 

here to gauge the deviation. 

2.1 The EMD criterion 

The equilibrium manifold is defined by the equilibrium point path as the load increases. 
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By (4.6), staying around equilibrium manifold means that after each step of the 
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nnn

nnn

pyxg
pyxf   (4.7) 

Let ),...,( 21 mneeee +=   
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where 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=

=
=

=

+++++

++++

+++

+++

),,(
:

),,(
),,(

:
),,(

111

11111

111

11111

nnnmnmn

nnnn

nnnnn

nnn

pyxge

pyxge
pyxfe

pyxfe

 (4.8) 

Thus we can define an equilibrium manifold deviation (EMD) error as the Euclidean 

norm of e: 

eErr =  (4.9) 

After each step, Err can be used as an error signal to gauge the deviation. A 

fundamental requirement of k is that, to keep the numerical trajectory stay around the 

equilibrium manifold, we should choose a number k  that is small enough to satisfy 

ε<Err (ε  is a small constant).  

Note that during the numerical computation, k can be varying as long as we can satisfy 

the fundamental requirement. So we can adjust k to maintain Err  in a certain range. 

However, numerical tests show that when a system is approaching its structurally unstable 

point, no matter how we adjust k, Err will no longer be controllable. Accordingly, when no 

adjustments can work, we claim a bifurcation behavior is detected. 

Now we will face several questions: 

 How to adjust k  to control Err ?  

 Can we adjust t∆  to control Err ? 

To answer these questions, we need to know the impacts of k and t∆ on Err , which 

will be discussed below. 

2.2 Impact analysis of k and t∆  on Err  

From (4.8), we know that 

),,( 111 +++= nnnii pyxhe  (4.10) 
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Here gfgfhmni mn  and },,{},,...2,1{ ,...,2,1,...,2,1∈+∈ are shown in (4.6) 

Assume that ),,( nnn pyx is an equilibrium point of system, we define a local truncation 

EMD error shown in figure IV-2, which is similar as a local numerical trunction error has 

been defined in [32, 33]:  

 

),( 11 ++ nn pt  

Equilibrium  
Manifold 

eqeq yx ,  

)(),( 0,0, tytx hh  

)(),( ,, tytx nhnh  

),( 00 yx  

),( 00 pt  

))(),(( tytx

),( nn pt  

Local EMD 
Error 

Global EMD 
Error 

),( nn yx  

 

Figure IV-2 Local truncation EMD error 

 

In figure IV-2, )](),([ 0,0, txtx hh  is the numerical trajectory start from equilibrium point 

),( 00 yx , and )](),([ ,, txtx nhnh  is the numerical trajectory start from equilibrium point 

),( nn yx . The local EMD error is defined as (4.11). Later we will prove that, if we can 

control 
nt

err
∆

 (the local EMD error per unit time), then we can also control the global EMD 

error Err . 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=

∆+∆+∆=

∆+∆+∆+≈
∆+∆+∆+=

= +++

eerr

phyhxh
phyhxhpyxh

ppyyxxh
pyxhe

npinyinxi

npinyinxinnni

nnnnnni

nnnii

ˆ

     
),,(      

),,(      
),,(ˆ

,,,

,,,

111

 (4.11) 
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xih , , yih ,  and pih , denote the partial derivative of ih respect to x, y and p respectively. 

err  is defined as local truncation EMD error since it is an induced error from the single 

step. On the other hand, Err is called as global EMD error, which is an accumulated error 

from all former steps. 

Here nn tkp ∆=∆ , and ny∆ is obtained by power flow calculation as shown in the first 

step of Figure IV-1. Neglecting high order terms, we have: 

npny

npnynnn

nnn

tkgyg
tkgygpyxg

pyxg

∆+∆=

∆+∆+=
= ++

  
),,(  

),,(0 11

 

And we got 

nnnnn

pyxy

p
n tkpyxtk

g
g

y
nnn

∆Φ=∆−=∆ ),,(
),,(

  (4.12) 

For any explicit single-step method to solve differential problem, we have [29, 38]: 

nnnnn tpyxHx ∆=∆ ),,(  (4.13) 

Here ),,( nnn pyxH is determined by the numerical method applied to solve differential 

equations [32, 33]. For example, if RKF45 method is applied, by equation (4.3), we will 

have:  

∑
=

∆=∆
6

1i
iinn Ktx α  

iα  and iK  can be found in (4.3). 

npny

npnynnn

nnn

tkfyf
pfyfpyxf

pyxfK

∆+∆=

∆+∆+=
= ++

    
),,(    

),,( 111

 (4.14) 

Substituting (4.12) into (4.14), we have 
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nnnn

npnnnny

tkpyxC

tkftkpyxfK

∆=

∆+∆Φ=

),,(    

),,(

11

1   (4.15) 

Here pnnny fpyxfC +Φ= ),,(11 . 

Similarly we have (4.16). The detailed forms of ijC  in (4.16) can be easily calculated 

following similar procedures for 11C , and they are all in terms of derivatives of function f 

and g. 

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

∆+∆+

∆+∆+

∆+∆=

∆+∆=

∆+

∆Φ+∆
∆

=

∆
+=

∆=

++

6
,66

5
,65

4
,64

3
,63

2
,62,616

2
,22,21

11

1112

,111

),(),(       

),(),(       

),(),(
:
:

),(),( 

    

),,(),,(
4

 

),,
4

(

),(

nnnnnnnn

nnnnnnnn

nnnnnnnn

nnnnnnnn

np

nnnnynnnn
n

x

nn
n

n

nnnn

tkpyxCtkpyxC

tkpyxCtkpyxC

tkpyxCtkpyxCK

tkpyxCtkpyxC

tkf

tkpyxftkpyxCtf

pyKtxfK

tkpyxCK

 (4.16) 

By (4.13) - (4.16), we have 

∑
=

∆∆=∆
6

1
),,(

j

j
nnnnjnn tpyxCtkx  (4.17) 

Here 6,...,2,1,
6

== ∑
=

jCC
ji

ijij α  

Substituting nnn pyx ∆∆∆ ,, into (4.11), we have 
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( ) nin

npiyi
j

j
njxi

npinyi
j

j
njnxii

tkCto

tkhhtCh

tkhtkhtCtkhe

∆+∆=

∆⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+Φ+∆=

∆+∆Φ+∆∆≈

∑

∑

=

=

)(      

      

 ˆ

,,

6

1
,

,,

6

1
,

 

Where 

piyii hhC ,, +Φ= . 

So we have: 

( ) nnnnn tkpyxCtoerr ∆+∆= ),,()(  (4.18a) 

Where 

∑
+

=

=
mn

i
innn CpyxC

1

2),,( .  

Note that (4.18a) is expressed in terms of the derivatives of function h. 

This concludes the following lemma: 

Lemma 1: 

Applying explicit single-step method to solve the system equation described as (4.2), 

we have the local EMD error err as shown in (4.18a) with positive scalars k and nt∆  pulled 

out. 

( ) nnnnn tkpyxCtoerr ∆+∆= ),,()(   (4.18) 

For other explicit single-step methods, the proof follows similar steps as with RKF45 

method. 

Our next task is to estimate global EMD error Err by err . Enlightened by the Theorem 

3.4 in Chapter II of [38], we have a similar theorem: 

Theorem 1: 
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Suppose a system described as (4.2) satisfies three conditions: 

i) f and g of (4.1) are continuous and satisfies the Lipschitz condition corresponding to 

x and y respectively. 

ii) The increment function H in (4.3) and the functionΦ in (4.12) are bounded: 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≤
∂
Φ∂

≤
∂
∂

L
y

k

L
x
H

 

Here L is a constant. 

iii) Before the system reach its bifurcation point, f and g  in  (4.2) satisfy 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≤
−
−

=

≤
−
−

=

λ

λ

xyyx

pxxp
y

xyyx

yppy
x

gfgf
gfgf

C

gfgf
gfgf

C

~

~

 

Here λ  is a constant. 

Then we can conclude: 

Before the system reach its bifurcation point, if we can control the local EMD error per 

unit time as: 

ε≤+∆=
∆

),,()( nnnn
n

pyxCtok
t

err  (4.19) 

Then we will have: 

KErr ~ε≤  (4.20) 

where, ( )1),,(~~ )( 01 −= −+ ttLnnn ne
CL

pyxCK λ  
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Detailed forms of ),,(~
nnn pyxC are given in the proof, which are also in terms of 

derivatives of function h. 

The proof of this theorem is inspired by the proof of Theorem 7.3 in Chapter I of [38]. 

Before further discussions, we introduce and prove a Lemma as follows: 

Lemma 2: 

Suppose a system described as (4.2) satisfies the condition i), ii) and iii) of Theorem 1, 

then we have: 

( )1)()( )( 0 −≤− −ttL
heq e

L
ktxtx λ  (4.21) 

( )1)()( )( 0 −≤− −ttL
heq e

L
ktyty λ  (4.22) 

Here [ ])(),( tytx hh denotes the numerical solution of the system start from an equilibrium 

point ),,,( 0000 tpyx , and )](),([ tytx eqeq  denotes the equilibrium manifold of the system. 

 

Proof of Lemma 2: 

Here we will draw a figure to demonstrate our proof, which follows a similar logic as 

the ‘Lady Windermer’s Fan (O.Wilde 1892)’ in chapter I.7 of [38]. In Figure IV-3, 

)](),([ )1()1( tytx hh , )](),([ )2()2( tytx hh … )](),([ )1()1( tytx nhnh −− denote the numerical solution of 

the system start from equilibrium point at 121 ,...,, −= ntttt respectively.  

By condition i) and ii), f  satisfies the Lipschitz condition and L
x
H

≤
∂
∂ , then by 

Lemma 7.2 in chapter I of [38], we will have: 

)()()()( 11)1(
)(

)1(
1 txtxetxtx hh
ttL

hh −≤− −  (4.23) 
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Figure IV-3 Illustration of our proof 
 

for ntTtt =<<1  

From (4.17), we know that  

∑
=

∆∆+=∆+=
6

1
000001)(

j

j
jh tCtkxxxtx  (4.24) 

and by definition of )( 1)1( txh , we know: 

)()( 11)1( txtx eqh =  (4.25) 

Let 

⎪⎩

⎪
⎨
⎧

−=∆

−=∆

010

010

)(~
)(~

ytyy

xtxx

eq

eq   

From 
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⎪⎩
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We have: 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

∆=∆
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−

=∆
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 (4.26) 

Then by (4.24), (4.25) and (4.26), we can get: 

)(~

),,(~

~
)()(

2
00

6

1
00000

00

11)1(

toCtk

tCpyxCtk

xx

txtx

x
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⎞
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⎛
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By condition iii), we know λ≤xC~ , and then we have: 

)()()( 01011)1( ttktktxtx hh −=∆≤− λλ  (4.27) 

Substitute (4.27) into (4.23), we have: 

( ) λkttetxtx ttL
hh 01

)(
)1(

1)()( −≤− −  (4.28) 

Similarly we have: 

( ) λkttetxtx ttL
hh 12

)(
)1()2(

2)()( −≤− −  (4.29) 

for Ttt <<2  
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The entire situation is sketched in Figure IV-3, and we obtain for 1+≤< nn ttt : 

( )
                                   

)()(...)(   

)()(...)()()()(   

)()(

0

1

)(

1
)(

01
)(

)()1()2()1(

∫ −
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−−
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−+−++−≤

−++−+−≤

−

t

t

stL

nnn
ttLttL

nheqhhhh

heq

dsek

ttkttettek

txtxtxtxtxtx

txtx

n

λ

λλ
 (4.30) 

Thus for 1+≤< nn ttt , we have: 

( )1 )()( )()( 0

0

−=≤− −−∫ ttLt

t

stL
heq e

L
kdsektyty λλ   (4.31) 

From (4.30) and (4.31), we can get (4.21) and (4.22), so Lemma 2 is proved. Now we 

are ready for the proof of Theorem 1—If the system satisfy the three conditions listed 

before, then we can conclude that, before the system reach its bifurcation point, if we can 

control the local EMD error per unit time as: 

ε≤+∆=
∆

),,()( nnnn
n

pyxCtok
t

err   

Then we will have: 

KErr ~ε≤   

where, ( )1),,(~~ )( 01 −= −+ ttLnnn ne
CL

pyxCK λ  

 Proof of Theorem 1: 

We know that: 
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By (4.21), (4.22), we will have: 

( ) ( )

( )1),,(~     

1     

)()()()(

)(

)(
,,

11,11,

01

01

−=

−+≤

−+−≤

−

−
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ttL
nnni

ttL
yixi

neqnhyineqnhxii

n

n

e
L

kpyxC

e
L

khh

tytyhtxtxhe

λ

λ  

Where yixii hhC ,,
~

+=  

So we have: 

( )1~ )( 01 −≤= −+ ttL ne
L

kCeErr λ   (4.32) 

Here ∑
+

=

=
mn

i
iCC

1

2~~  

If we have 

[ ] ε≤+∆=
∆

),,()( nnnn
n

pyxCtok
t

err ,  

then we will have: 

),,( nnn pyxC
k ε
≤  (4.33) 

Then by (4.32) and (4.33), we have: 

 ( )1
~

)( 01 −≤ −+ ttL ne
LC

CErr λε  (4.34) 

Thus the Theorem 1 has been proven. 

From (4.32) and (4.19), we can conclude that Err is mainly determined by k , and the 

impact of t∆ is not dominant and usually can be neglected. This conclusion is also verified 

by our numerical tests.  
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Thus, to control Err, we only need to adjust k. 

3. The new numerical scheme 

3.1 With fixed t∆ , computation speed can be accelerated by adjustment of k  

We know that within the feasible operating region of a system, each stable equilibrium 

point has its own attraction area. As shown in Figure IV-4, when the small disturbance is 

remained in the attraction area, the numerical solution will be attracted to equilibrium 

manifold and Err will decrease. On the other hand, when the parametric perturbation is big 

enough to exceed the attraction area, the numerical solution will also deviate from the EM 

and Err will increase. It is well known that for power system, the attraction area of EM will 

shrink as load increase. Thus, bigger k  can be selected when system is lightly loaded; 

while under stressed operating condition, smaller k is needed. We know that the 

computation speed is roughly determined by )/(1 tk∆ . Bigger k and t∆  imply less numerical 

computation time. So enlightened by RKF method, we can set a big initial value of k ; and 

at each step, we can choose the possible biggest k which can guarantee ε≤Err . Therefore, 

the computation burden can be reduced without loss of accuracy. 

After a step, if we find that Err is bigger than expected, we need to adjust k  to control 

Err. By theorem 1, we know that Err can be controlled if we can control 
nt

err
∆

. Thus, k  can 

be adjusted by (4.19): 

),,(
,,(

nnn
nnn pyxC

kpyxCk εε ≤⇔≤  , 

So we can choose new k  as: 

),,(
ˆ

nnn pyxC
k ελ= ,  (4.35) 

here λ̂  is a constant and satisfies 1ˆ0 ≤< λ .  
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Figure IV-4 Impacts of adjustment of k 

 

λ̂ can be selected as 1, however, to compensate the approximation in deriving (4.19), 

we may choose λ̂  as 0.8 or 0.9.   

It is easy to calculate Err by (4.8) and (4.9), however, derivation and calculation of 

),,( nnn pyxC  can also induce some computation burden. From (4.20), we can see that 

bigger k will lead bigger Err, so if ε>Err , we need to choose a smaller k to decrease Err. 

Now the question is how to adjust k in a computation efficient way?  

In practice, a simple and straightforward way could be applied to adjust k: 
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If ε>Err , then we can choose 

kk β=  (4.36) 

where β is a constant and satisfies 10 << β . According to our experience, it can be 

selected as 0.6~ 0.8. We know that when the system encounters the bifurcation point, the 

attraction area will shrink to zero. In such a situation, no matter how we decrease k, Err will 

no longer be controllable. However, how to make reliable judgment is not trivial in 

numerical computation. Again, a straightforward but primitive way is to set a minimum 

value of k to detect the bifurcation behavior. When we find that k hits its lower limit mink  

and Err is still uncontrollable, we can conclude that a bifurcation behavior is detected. This 

primitive adjustment performs very well to enhance computation speed in most cases, 

which can be verified in numerical tests shown later. 

However, with this primitive adjustment approach, there is no guarantee that the 

adjustment will be accepted. So, repeated trials and thus extra computation burden will be 

induced. On the other hand, for cases that need only small adjustment, the proposed 

adjustment by (4.36) may be inappropriately big. Thus, unnecessary computation burden 

will be imposed.  

Another drawback of this primitive approach is that, apparently, the estimate will be 

impacted by mink . However, mink is selected based on experience on the system, and it is 

mathematically difficult to set a reasonable value without trial and error. If mink is 

improperly big, the accuracy of estimated margin will suffer. 

In short, an optimal load adjustment should satisfy two requirements shown as follows: 

 An optimal scheme , after an adjustment of k, should guarantee that 

ToleranceErr < , which means that k will not immediately get rejected again. In 

addition, k should not be over adjusted, which means the biggest allowed k should 

be used to accelerate computation without sacrificing accuracy. 

 The accuracy of an optimal scheme should not depend on selected algorthm 

parameters; and accurate detection of bifurcation point should be guaranteed 
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mathematically. Accordingly, selected minimum value of k should no longer play a 

role on the estimate.  

Bearing these two requirements in mind, we develop a new approach here by 

investigating how k impact on err and Err: 

( ) nnnnn tkpyxCtoerr ∆+∆= ),,()(  (4.37) 

Detail form of ),,( nnn pyxC  has already been discussed before and can also be found in 

[29, 38], which is in form of partial derivatives of gf , respect to pyx ,, .  

Based on theorem 1 introduced former, we know that if we can control the local EMD 

error per unit time as: 

ε≤
∆ nt
err  (4.38) 

Then we can control the global EMD error Err as: 

KErr ~ε≤  (4.39) 

where,  

( )1
),,(

),,(~~ )( 0 −= −ttL

nnn

nnn ne
LpyxC

pyxCK λ  (4.40) 

Here ),,(~
nnn pyxC  is also in a form of partial derivatives of gf , with respects to 

pyx ,, . L and λ are constants as shown in section 2.2 of this chapter. Moreover, before we 

start (n+1)th iteration, nnn pyx ,, are all calculated, so ),,( nnn pyxC and ),,(~
nnn pyxC are 

known at (n+1)th  step. Thus, K~ can also be taken as known. 

Suppose after n+1 step calculation, we found TErrn ≥+1 , here T is the tolerance of 

global EMD error. Then we need select a new k to redo the n+1 step calculation. Neglecting 

the high order term in (4.37) and substituting it into (4.38), we have: 
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ε≤≈
∆

),,( nnn
n

pyxCk
t

err  (4.41) 

As K~ in (4.39) is a constant, we know that if we want to control the global EMD error as 

TErr < , we should decrease 1+nε  as 

1
11

+
++ =

n

old
n

new
n Err

Tεε  (4.42) 

Also, as ),,( nnn pyxC  in (4.41) is known at n+1 step, and there is almost a linear 

relation between 
nt

err
∆

and k, we can adjust the load increase ratio as: 

1+

=
n

oldnew

Err
Tkk  (4.43) 

To be safe, considering those neglected high order term and calculation error, we can 

adjust k by: 

1+

=
n

oldnew

Err
Tkk α  (4.44) 

Here 10 << α  is a constant, and can be selected as 0.9. 

 Due to these linear relations shown in (4.39) and (4.41), we can guarantee that our 

adjustment of k as (4.44) will not be rejected for the step. With this new approach, we no 

longer need to set a minimum value k to detect the bifurcation point. As we have 

demonstrated, after adjustment of k, we can guarantee that Err will be within the tolerance. 

Thus, if we found that after the adjustment, Err is still uncontrollable, we can conclude that 

we have reached the structurally unstable point. To be safe, we can continue to adjust three 

times by (4.44), if we still cannot control Err, then we can claim that the small disturbance 

loadability margin is located. 

Later on, we will use numerical experiments to demonstrate and compare the primitive 

adjustment approach and optimal adjustment approach. We will find that both methods can 
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greatly enhance the computation efficiency, and our optimal approach could perform better 

in guaranteeing accuracy and saving computation costs. 

3.2 A new scheme to accelerate numerical computation speed by adjusting k  and t∆  

simultaneously 

As discussed before, automatically adjustment of k or t∆  has its own contribution to 

improvement of computation efficiency. We would like to explore the synergy of 

simultaneous adjustments of these two variables.  

Keeping the requirement of accuracy in mind, we propose a scheme to integrate both 

techniques as shown in Figure IV-5. 

In this scheme, we will first check the accuracy after each step. If ε>Err  ( ε  is the 

tolerance of global EMD error), we will adjust k and repeat the nth step calculation with 

adjusted k.  

If ε<Err  and 1<θ  (θ  is defined as in equation 4.45), we will adjust t∆  and repeat the 

nth step calculation with adjusted t∆ . If ε<Err  and 1>θ , we will continue the n+1th step 

calculation.  

Now we will investigate the interaction between these two adjustments. Without losing 

generality, here we assume that we will adjust t∆ by RKF method. 

3.2.1 The influence of adjustment of k on the adjustment of t∆  

In RKF method, we adjust t∆ as following [29, 38]: 

 84.0
4/1

*
1+

∆
=

n

n

d
tξθ  (4.45) 

if 1<θ , we will adjust step size as nn tt ∆=∆ + θ1 , otherwise nn tt ∆=∆ +1  [29, 38]. 
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Figure IV-5 Combination of the two techniques 

 

Here *
1+nd can be calculated by (4.4). Substituting equation (4.16) into (4.5), similarly as 

the derivation of (4.17), we have: 

∑
=

+ ∆∆=
6

1

*
1 ),,(~

i

i
nnnninn tpyxCtkd  (4.46) 

Substituting (4.46) into (4.4), we have: 
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4/1

6

1
),,(~

84.0
∑
=

∆
=

i

i
nnnni tpyxCk

ξθ  (4.47) 

After adjusting k to a smaller value, by (4.39), we can see that such an adjustment of k 

will increase θ , therefore the chances to adjust t∆  will be reduced. 

3.2.2 The influence of adjustment of t∆  on the adjustment of k 

Procedures of (4.4) and (4.5) will lead to a smaller t∆ . Equation (4.19) indicates that the 

local EMD error per unit time depends only on )( to ∆ . Accordingly, we can neglect t∆ ’s 

impact on the adjustment of k. 

From above discussion, we can see that the integration of these two techniques induces 

synergy on the computation efficiency. 

4. Numerical tests 

In this section, we demonstrate the validity of our new approach by a few numerical tests. 

In subsection 4.1 and 4.2, we will demonstrate that our new approach can guarantee the 

accuracy and enhance the computation efficiency. Here a 2-bus system will be used to 

demonstrate how our approach works. In subsection 4.3, we will compare the primitive 

load adjustment approach with the optimal approach. In subsection 4.4, the IEEE 162-bus 

system will be used to demonstrate that the applicability of our approach to big systems.  

4.1 Our EMD criterion accurately estimates the stability margins 

The simple 2-bus system is also the test system used in Chaper II, which is shown as Figure 

IV-6: 
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Figure IV-6 Simple two bus system 

 

Here we assume the load is constant power load with a fixed power factor ( QP 2= ). 

Also, we assume the regulator is the non-rescheduled P-regulator. All the parameters are 

the same as used in [18]. 

Eigenvalue based bifurcation analysis shows that a Hopf bifurcation point will appear at 

9344.0=P , which will be benchmarked against other approaches. 

Here we compare four cases to demonstrate how our EMD criterion worked: 

1) RKF method, with supk /..10 1−=  

2) RKF method, with supk /..10 3−=  

3) RKF method, with supk /..10 4−=  

4) RKF method, with adjustment of k . Here k is adjusted by (4.36), and 8.0=β . Initial 

value of k is sup /..102 3−×  , and 4
min 105.0 −×=k  .  

Numerical solutions are demonstrated in Figure IV-7. In this figure, we can observe that 

bigger deviation of numerical solutions from the equilibrium manifold for bigger k . 

When 110−=k , the solution deviate from its equilibrium manifold and no bifurcation 

oscillation is observed. Note that when k is too big, the load perturbation is no longer small 

and a transient will occur. Thus, the obtained PV curve is questionable and invalid for 
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dynamic voltage stability analysis. On the other hand, when 410−=k  or intelligently 

adjusted, the numerical solution stays around the equilibrium manifold and an bifurcation 

behavior, oscillation, is observed accurately.  
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Figure IV-7 Comparison of numerical solutions 
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Figure IV-8 Comparison of global EMD error 
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Figure IV-9 Adjustment of k 

 

Comparing the results for case 3) and 4) in Figure IV-7, we can see that the trajectories 

are similar when k is small enough or intelligently adjusted.  The difference of Err of four 

cases is shown in Figure IV-8. In the enlarged part of this figure, we can see that when 

system is approaching its Hopf bifurcation point, Err will increase drastically and no 

longer be controllable. Figure IV-8 and IV-9 demonstrate that our new scheme 

automatically adjusts k to control Err ( 62 10−<Err ). Figure IV-9 indicates that k  will be 

adjusted more frequently under stressed situation than in lightly loaded situation.  

For case 4), when 0.9385=P , k hits its lower limit and Err is no longer 

controllable. 0.9385=P  is the estimated stability margin, which is close enough to the result 

obtained from eigenvalue analysis. For case 3), we found that when 0.9394=P , we no 

longer have 62 10−<Err ; we can see 0.9394=P  is also a good enough estimated margin. 
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However, for case 1) and 2), we have 62 10−>Err when 503.0=P  and 739.0=P  

respectively, which apparently are wrong estimates as confirmed by eigenvalue analysis. 

With these numerical tests, we can see that without our new EMD error criterion it is 

difficult to guarantee the estimation accuracy unless k is chosen extremely small. And our 

EMD reliably pinpoints the bifurcation point. 

4.2 Our approach enhances computation efficiency 

Here we compare the computation cost of several methods used to estimate the stability 

margin. All numerical solutions start from an equilibrium point at P=0.5, and will end at 

P=0.945.  

1) Typical RK method —k and t∆ are both fixed:  

01.0=∆t , supk /..10 4−=   

2) Typical RK method with adjustment of k by (4.36)—only k will be adjusted:  

 01.0=∆t , initial value of supk /..10 3−= , supk /..105.0 4
min

−×= , 310−=ε and 

8.0=β . 

3) Typical RKF method—only t∆ will be adjusted:  

supk /..10 4−= , initial value of 5.0=∆t , 4
min 10−=∆t and 710−=ξ  

4) Our new approach using RKF method with adjustment of k by (4.36) —k and t∆ are 

both adjusted: 

 Initial value of 001.0=k , supk /..105.0 4
min

−×=  and 310−=ε ; initial value 

of 5.0=∆t , 4
min 10−=∆t , 710−=ξ and 8.0=β . 

The estimated margins and computation costs by these four methods are listed in table 

IV-1. 

Note that the typical 4th order RK method is a 4-stage method, and the RKF45 method 

used here is a 6-stage method [29, 30]. The computation cost in table IV-1 is calculated as: 

( ) method of StageRSKRSTVS     ×++  
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For example, the computation cost of 4) is calculated as: 

( ) 631216144372670 ×=×++  

 

Table IV-1 Comparison of computation cost with similar estimated margin 

Metho
ds 

Estimate
d 
 Margin 

Valid 
Steps 
(VS) 

Rejected 
Steps of

t∆  
(RST) 

Rejected 
Steps of
k 
(RSK) 

Computation 
Cost 

1) 0.9379 444990 0 0 444990× 4 
(100%) 

2) 0.9369 93132 0 14 93146 × 4 
(20.932%) 

3) 0.9394 9254 1697 0 10951× 6 
(3.691%) 

4) 0.9385 2670 437 14 3121× 6 
(1.052%) 

 

Table IV-1 indicates that all these four methods give almost the same estimation of the 

dynamic stability margin. However, computation costs among these methods are very 

different.  Comparing solutions of 1) and 2), which have constant time steps, we can see 

that the computation can be accelerated by automatically adjusting k; while by comparing 

solutions of 3) and 4), we can see the synergy of our new scheme that automatically adjusts 

t∆ and k altogether. It is clear that our new method is the most efficient one. The estimated 

reduction of computation cost confirms with our actual computing time reduction running 

on PCs. Moreover, comparing to eigenvalue analysis, the speedup will be more drastic. In 

this case, the computing time with eigenvalue analysis is about 700 times more as with our 

new method. 

4.3 Comparison of primitive and optimal load adjustment approach 

4.3.1 The optimal approach can guarantee the accuracy of estimate more strictly 
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Here we compare four cases to demonstrate the advantage of our new load adjustment 

technique: 

1) RKF method, primitive approach, with supk /..10 3
min

−= , primitive 

2) RKF method, primitive approach, with supk /..10 4
min

−=  

3) RKF method, primitive approach ,with supk /..10 5
min

−=  

4) RKF method, optimal approach, with adjustment of k by (4.44). 

For case 1) ~ 3), 8.0=β . And for all these four cases, the initial value of t∆ is selected 

as 0.5, 4
min 10−=∆t and 710−=ξ . 

Numerical solutions are demonstrated in Figure IV-10. From the enlarged part of this 

figure, we observe that bigger deviation of numerical solutions from the equilibrium 

manifold for bigger mink . When 3
min 10−=k , the solution deviate from its equilibrium 

manifold far early before the bifurcation point is approached. Note that when mink  is too big, 

the load perturbation is no longer small and a transient will occur. Thus, the obtained PV 

curve is questionable and invalid for small disturbance voltage stability analysis. On the 

other hand, when 4
min 10−≤k  or with k adjusted by our new approach, the numerical 

solution stays around the equilibrium manifold. 

Table IV-2 listed the estimated loadability margin for each case. Comparing with 

eigenvalue analysis result, we can see that the result for case 1) is a wrong estimate. On the 

contrary, the results for the last three cases are pretty accurate, especially for the last two 

cases.  

Table IV-2 Comparison of accuracy 

Method Estimated 
Margin 

Relative Error 

1) 0.8780 6.04% 
2) 0.9287 0.61% 
3) 0.9381 0.40% 
4) 0.9382 0.41% 
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Figure IV-10 Comparison of numerical solutions 
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However, suppose that we have no eigenvalue analysis result, which is the general case 

for large systems due to the computation complexity of eigenvalue analysis, we have a 

question on how to judge the accuracy of our estimate. As shown before, we can 

mathematically guarantee it with our new approach. But if we detect loadability margin by 

a pre-selected selected mink , we may need extra work to verify our results. It is 

mathematically difficult to decide the reasonable value of mink . Thus, we may need to try a 

few smaller mink and estimate the margin till we found that our estimates converge to a 

fixed-point value. For example, in case 2), we got an estimate as 9287.0=P , but we 

cannot tell it is accurate or not, so we decrease mink as 5
min 10−=k , then by comparing the 

results of case 2) and 3), we can claim we found the margin because the results for these 

two cases are very close. 

4.3.2 The optimal approach can further enhance the computation efficiency 

Here we compare 2 cases to demonstrate the computation efficiency of our new load 

adjustment technique: 

1) RKF method, primitive approach, with supk /..10 5
min

−=  

2) RKF method, optimal approach, with adjustment of k by (4.44) 

For these two cases, we selected the initial value of k as sup /..1.0 , and other 

parameters the same as former test. The computation cost for these two cases are listed in 

table IV-3. Please note that, from 4.3.1, the estimations of stability margin  are very close 

for these two cases. At the same accuracy level, now we will compare the computation 

costs of these two approaches. 

From table IV-3, we can see that, with our new approach, we significantly improve the 

computation efficiency while maintaining the accuracy. We know that when system goes 

near to its bifurcation point, smaller k is needed to control Err, and the computation speed 

will slow down with smaller k.  From Figure IV-11, we can see that as p increase to 

bifurcation point, method 1) tends to over adjust k, on the contrary, our new approach will 

select allowed biggest k at each adjustment. We know that the computation cost is roughly 
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determined by )/(1 tk∆ , so bigger k implies faster computation. As shown in Figure IV-4, k 

should be small in heavily loaded area to control Err, so the computation cost mainly 

comes from the calculation in this area. Figure IV-11 shows the adjustment of k in heavily 

loaded area. We can see that the optimal method needs slightly more adjustment, but have 

bigger k. Since the impact of k on computation cost is dominant, the optimal method has an 

advantage in computation efficiency. 

Table IV-3 The advantage in computation efficiency of the optimal approach  

Metho
ds 

Estimate
d 
 Margin 

Valid 
Steps 
(VS) 

Rejected 
Steps of

t∆  
(RST) 

Rejected 
Steps of
k 
(RSK) 

Computati
on Cost 

1) 0.9391 5996 101 42 6139× 6 
(100%) 

2) 0.9386 2404 1096 3 3503× 6 
(57.06%) 

 

We also found that, with this big initial value of k, method 1) take nine adjustments to 

control Err at the first step, which means that eight adjustments are rejected at first iteration. 

On the other hand, with our new approach, only one adjustment is necessary. Further 

investigation showed that, except when encountered by the bifurcation point, our 

adjustments by method 2) were all accepted. Accordingly, this advantage will further save 

the computation cost. 

With these two numerical tests, we have demonstrated the advantage of the optimal 

approach. Numerical tests with other systems also verified it.  

4.4 Our approach can be applied to big systems 

Here the IEEE 162-bus 17-generator system will be used to demonstrate that our new 

approach is applicable to large systems.  
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Here we assume that all the loads in this system are constant power type load with a 

fixed power factor ( QP 2= ). All numerical solutions begin with an equilibrium point 

determined by the initial value. At t=0s, all the loads in this system will change with the 

same ratio. When a bifurcation behavior is detected, the numerical solution will be stopped. 

In this example, two methods will be applied and compared: 

 

Figure IV-11 Comparison of adjustments of k 

 

1) Typical RKF method—only t∆ will be adjusted:  

supk /..10 4−= , initial value of 5.0=∆t , 4
min 10−=∆t and 710−=ξ  

2) Our new approach using RKF method with optimal adjustment of k by (4.44) —k 

and t∆ are both adjusted: 

 Initial value of 001.0=k , and 310−=ε ; initial value of 5.0=∆t , 4
min 10−=∆t and  

710−=ξ . 



84 

 

The estimated margins and computation costs by these two methods are listed in table 

IV-4.  For methods 1), we found that when the load at bus 3 is increased to 174.21% of the 

original load at bus 3, a bifurcation behavior can be detected. So in table 4, we use 174.21% 

to denote the dynamic stability margin.  While for method 2), the estimated margin is 

denoted by 173.88%. 

 

Table IV-4 Comparison of computation cost 

Metho
ds 

Estimate
d 
 Margin 

Valid 
Steps 
(VS) 

Rejected 
Steps of

t∆  
(RST) 

Rejected 
Steps of
k 
(RSK) 

Computati
on Cost 

1) 174.21
% 

17782 2971 0 20753× 6 
(100%) 

2) 173.88
% 

4809 922 3 5734× 6 
(27.63%) 

 
 

Table IV-2 indicates both methods get almost the same estimate of the dynamic 

stability margin. However, our new scheme greatly enhances the computation efficiency. 

Similar results are expected and confirmed for many other big systems such as the IEEE 

118 bus system since the computation cost is roughly determined by )/(1 tk∆ ; and 

enhancement of computation efficiency comes from the adjustment of k. In each step of our 

new method, we use the allowed biggest k to enhance computation speed without loss of 

accuracy. Accordingly, our new method always enhances the computation speed despite the 

size of the system.  

Compared to the RKF method without intelligent load adjustments, the speedup ratio of 

our method remains great for our two-bus system and 162 bus systems; and based on our 

experience with many other cases, similar speedup are expected for larger systems. 

Compared to the eigenvalue based approach, our approach has even better speedups. Our 

method avoids solving for equilibrium point and calculating the corresponding reduced 

Jacobean matrix ( rJ ) for each step, which is a time-consuming task for big systems. In 
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addition, our method replaces the complex and time consuming eigenvalue computation of 

rJ by a simple Err checking. Even for ideal cases, where Jr is very sparse and symmetric, 

computation cost of eigenvalue calculation will still increase as a polynomial function of 

system size. For example, when we apply QR [23, 24] method, a rather fast method for 

ideal cases, the computation cost is still at the level of )( 2no , here n denotes the dimension 

of rJ . By contrast, the computation cost of our method is roughly a linear function of 

system size. Thus the bigger the system, the higher the speedup our method will be when 

compared to the eigenvalue based bifurcation analysis. 

5. Conclusion 

In this chapter, based on explicit Runge-Kutta methods, we prove rigorously that our new 

technique introduces synergy of simultaneously adjustment of time steps and load 

increasing ratios intelligently. The numerical tests show that our novel method not only has 

a great advantage in computation efficiency, but also has accuracy close to eigenvalue 

based bifurcation analysis for dynamic stability margin estimation. Moreover, unlike 

eigenvalue based bifurcation analysis, the computation cost of our method is only in linear 

relation with system size. Thus, the proposed technique has great potential for dynamic 

stability margin estimation for large systems. 
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CHAPTER V  

FAST DYNAMIC VOLTAGE STABILITY MARGIN ESTIMATION USING IMPLICIT 

RK METHODS  

1. Introduction 

Our scheme investgated in Chapter IV is based on explicit RK methods. However, we 

know that when power system is in extreme loading conditions, it may approach its 

structurally unstable point, say, saddle node bifurcation, thus stiffness problem may appear. 

It is well known that explicit methods applied to stiff problems are generally not efficient 

[34]. Instead, when encountering stiffness, implicit methods should be applied for 

efficiency.   

In this chapter, we further develop our new numerical scheme to deal with the  stiffness 

problem and its associated ill-condtion issues for power system applications. When system 

is ill-conditioned, implicit method would be applied to achieve numerical stability. We 

further demonstrate the validity of our approach that combines the intelligent load 

adjustment technique with implicit method to save the computation cost without loss of 

accuracy.  

Please note that in this chapter, ‘numerical stability’ will be one of the concerns, which 

is a totally different concept from ‘structure stability’. Essentially the ‘structure stability’ 

only depends on the physical network structure, load types and the generation systems of 

the power grids, and it has nothing to do with the chosen numerical simulation schemes to 

detect the structurally unstable point. On the other hand, ‘numerical stability’ depends 

heavily on of the chosen numerical methods. Basically, it is kind of accumulation of 

computation error and depends on the computing device and numerical method itself. For 

example, if we apply Euler and implicit Euler method to a stiff system respectively, 

different system structurally unstable point will be detected. But we should keep in mind 

that the system structurally unstable point is determined and should not vary with the 
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chosen numerical methods. The differences of the estimates only demonstrate different 

capability and suitable domains of these numerical methods. 

As emphasized before, a key task of this dissertation is to detect the structurally 

unstable point of power system accurately and efficiently. It will be demonstrated that the 

EMD criterion proposed in Chapter IV is still valid to gauge the accuracy with stiff systems. 

And for ill-conditioned systems, a big challenge is to enhance the computation efficiency 

and keep solution numerically stable. Different implicit methods will be discussed in this 

Topic, and we will show that not all the implicit methods are capable to enhance the 

computation efficiency. Only those methods have A-stable [34] and L-stable [34] 

characters will be considered in this dissertation. And we will also attempt to integrate our 

intelligent load adjustment technique with proper implicit methods to further save 

computation costs without sacrificing accuracy. 

2. Integrate load adjustment technique to implicit methods 

In this section, we will first use a simple example to demonstrate the suitability of implicit 

methods for ill-conditioned system. Then several implicit methods will be introduced here. 

At last, the EMD criterion and the new load adjustment technique will be extended to 

implicit RK methods.  

2.1 Implicit RK method is efficient for ill-conditioned system 

A simple system, firstly introduced in [34], will be used here to demonstrate advantage of 

implicit methods in dealing with stiff problems. 

)cos(50 txx −−=&  (5.1) 

Equation (5.1) is a simple one-dimensional system. Apparently, the equilibrium 

manifold of this system is tx cos= . Suppose that at 0=t , the system is in state (0, 0) due 

to a disturbance,  we investigate the time response of this system after the disturbance. Here, 

two numerical methods are compared as follows: 

 Explicit Euler method 
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 Implicit Euler method 

The numerical simulation results are shown in Figure V-1 and V-2. Figure V-1 shows 

numerical simulation results with explicit Euler method. In this figure, we found that with 

step size 50/2<h , the simulation results are numerically stable, which is shown in case a) 

in Figure V-1. However, with 50/2≥h , we found that the simulation results are 

numerically unstable, which is shown in case b). It is demonstrated that, with bigger h , 

there will be bigger oscillation. If 50/2<h , the oscillation is damped out, and the 

integration trajectory finally converges to equilibrium manifold. With 50/2=h , the 

oscillation can never be damped out and remains there with same amplitude. With 

50/2>h , we have found that things could be even worse—the amplitude of the oscillation 

can increase and the integration trajectory can deviate further from equilibrium manifold. 

. 
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Figure V-1 Numerical simulation results with explicit Euler method 
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On the other hand, if we apply implicit Euler (IEuler) method, things are totally 

different. In Figure V-2, we have found that, even with a big step size 5.0=h , the 

simulation result exhibits numerical stability. In this figure, the integration trajectory 

converges to equilibrium manifold in just a few steps. However, for case a) in Figure V-1, a 

lot of integration steps are needed before the integration trajectories finally converge to 

equilibrium manifold, which means that a lot of computation efforts are wasted to damp out 

the transients caused by stiffness. 

Moreover, in case b) of Figure V-1, the simulation results exhibit un-damped 

oscillations, which may lead to wrong conclusion that the system cannot survive from a 

disturbance 1−=∆x , thus a numerically unstable case may be mistaken as a structurally 

unstable case.  
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Figure V-2 Numerical simulation results with IEuler method 

 

Now by numerical stability function [29], we will explain the difference between Figure 

V-1 and V-2. If we apply explicit Euler method ),(1 nnnn xthfxx +=+  to Dahluit’s equation 

xx λ=& , we can get [34]: 

nnn xhxzRx )1()(1 λ+==+           
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Here λhz = .  )(zR  is the so called numerical stability function, and we should have 

1)( ≤zR  to get numerically stable solution [34]. Thus, the stable domain for explicit Euler 

method is { }1)1(; ≤−−∈= zCzS . For system (5.1), where 50−=λ , we should have 

50/20 ≤≤ h  to satisfy  1)( ≤zR . This explains that, in case a) of Figure V-1, when 

50/2<h , the simulation results finally converge, and when 50/2≥h , the integration 

trajectories exhibit numerically unstable behavior. 

For implicit Euler method ),( 111 +++ += nnnn xthfxx , its numerical stability function is 

z
zR

−
=

1
1)( , and the numerical stability domain covers the entire negative half-plane and a 

large part of the positive half-plane as well [34], which means that implicit Euler method is 

very stable. It mathematically explains that, even with a rather big step 5.0=h , the 

integration trajectory can easily converge to equilibrium manifold  as demonstrated in 

Figure V-2. 

2.2 Introduction of implicit methods 

Generally, to solve equation ),( xtfx =& , the s-stage RK methods can be expressed as [30, 

34]: 
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And for autonomous system )(xfx =& , equation (5.2) can be simplified as: 
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In (5.2), when 0=ija  for ji ≥ , (5.2) will be an explicit Runge Kutta (ERK) method. If 

0=ija  for ji >  and at least one 0≠ija , we have a diagonal implicit RK (DIRK) method. 

If in addition all diagonal elements are identical γ=ija  for si ,...,1= , (5.2) will be called as 

a singly diagonal implicit (SDIRK) method. In all other cases, we call (5.2) as implicit RK 

(IRK) method [30, 34]. 

With the paper of Butcher (1964) it became customary to symbolize method (5.2) by 

the tableau (5.4) [34]. From now on, we will use (5.4) to express all the RK methods 

discussed in this dissertation. 
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 (5.4) 

The numerical stability function of (5.2) is given as [34]: 

EzAIzbzR T 1)(1)( −−+=  (5.5) 

Here 

),...,( 1 s
T bbb = ,  ( )s

jiijaA
1, =

= ,  TE )1,...,1(=  

Method (5.2) is called A-stable if its stability domain satisfies [34] 

{ }0Re   ; ≤=⊃ − zzCS  

A-stable means that, as long as the Jacobian matrix of ),( xtfx =&  has no eigenvalue 

located in imaginary axis or in right half-plane, integration trajectory got with (5.2) will 

finally converge. Please note that not all implicit methods are A-stable [34]. However, an 

implicit method is A-stable may not guarantee efficiency in some cases. For example, the 

implicit midpoint method and trapezoidal rule method are A-stable implicit methods, and 
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both have stable function as 
2/1
2/1

z
zz

−
+

= , thus, the stable domain of these two methods 

coincides exactly  with the negative half-plane, and these two methods have a property as 

1|)(|lim|)(|lim|)(|lim
,

===
→∞=→∞−∞→

zRzRzR
yiyzzz

 

This means that, for z  close to the real axis with a very large negative real part, |)(| aR  

is, although 1< , very close to 1. As a result, the transients are damped out only very slowly 

[34]. For example, if we change the parameter of system (5.1) as )cos(5000 txx −−=&  and 

do the same simulation with implicit midpoint and trapezoidal rule method [34], we found 

that it will take a long time for oscillations to be damped out with increased stiffness of the 

system. It means that, A-stable cannot guarantee computation efficiency for severe stiff 

problems. Thus, in this chapter, we will focus on L-stable IRK methods. 

 Method (5.2) is called L-stable if it is A-stable and if in addition 0|)(|lim =
−∞→

zR
z

. 

Apparently, implicit Euler method is L-stable [34]. Beside implicit Euler method, several 

other L-stable methods, such as the three order SDIRK method with 2/)22( ±=γ  

(SDIRK3), 5 order Radau IIA method (RADAU5), etc., will also be discussed in this 

chapter [34]. 

Detail forms of SDIRK3 and RADAU5 could be found in [30, 34]. And their numerical 

stability function are given as equation (5.6) and (5.7) respectively [34]. 

2

22

)1(
)22/1()21(1)(

z
zzzR
γ

γγγ
−

+−+−+
= ,  2/)22( ±=γ  (5.6) 

60/20/35/31
20/5/21)( 32

2

zzz
zzzR

−+−
++

=     (5.7) 

With (5.6) and (5.7), we can draw the numerically stable domain of these two methods, 

and it is easy to verify that these two methods are L-stable.  

Among these three L-stable IRK methods mentioned above, RADAU5 has highest 

order and is the most complex one, and IEuler method is the simplest but with lowest order. 
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So later, we will mainly compare these two methods in numerical tests. Actually later we 

will show that, though more complex compared with IEuler, RADAU5 is more efficient 

with same requirement of accuracy. 

With IRK methods, we need to solve nonlinear equation iteratively at each step. Here, 

as the results in nth step could be used as initial values for the n+1th step, simplified Newton 

method is recommended to solve nonlinear equation efficiently [34].   

2.3 Extend EMD criterion and load adjustment technique to L-stable IRK methods 

EMD criterion is introduced in Chapter IV. The basic idea behind the EMD criterion is that, 

before a system approaches its bifurcation point, by definition the system should remain 

around equilibrium manifold after a small disturbance.  Based on the definition of small 

disturbance voltage stability analysis, EMD criterion, which is used to guarantee the 

accuracy of estimate of structurally unstable point, has nothing to do with chosen numerical 

method to solve differential equations. Thus, it can be extended to all small disturbance 

analysis by its essential definition. 

Similarly, we can still define a global EMD error and a local truncation EMD error as 

we did in Chapter IV. Now with IRK methods are considered, there are several questions 

need to be answered before we can integrate the automatic load adjustment technique with 

IRK methods. 

In section 2.2 of Chapter IV, we have a rigorous impact analysis of k and t∆  on Err . 

With ERK methods, we proved that, Err  will be controlled if local EMD error per unit 

time 
nt

err
∆

is controlled. And as proved, 
nt

err
∆

 is mainly determined by k, thus that Err  is also 

mainly determined by k.  The automatic load adjustment technique is proposed based on 

these conclusions. Therefore, a key question is that, will these conclusions still hold for 

IRK methods? 

By review of Chapter IV, we know that if the Theorem 1 proposed in Chapter IV still 

hold for IRK methods, then all these conclusions could be extended to IRK methods. As 
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demonstrated, the proof of Theorem 1 is based on the proof of Lemma 1 and Lemma 2.  

Thus, if Lemma 1 and 2 could be proved with IRK methods, then Theorem 1 can be easily 

extended to IRK methods. Now let us check the validity of these two Lemmas with IRK 

methods. 

First, with IEuler method, we will show that Lemma 1 can be extended to IRK methods, 

and a similar Lemma, denoted by Lemma 1’, is introduced and can be proved with IRK 

methods. 

Lemma 1’: 

Applying single-step IRK methods to solve the system equation described as (4.2), we 

have the local EMD error err as shown in (5.8) with positive scalars k and nt∆  pulled out. 

( ) nnnnn tkpyxCtoerr ∆+∆= ),,()(  (5.8) 

Proof: 

From (4.11), we know that  

⎪⎩

⎪
⎨
⎧

=

∆+∆+∆≈

eerr

phyhxhe npinyinxii

ˆ

 ˆ ,,,
 (5.9) 

Here nn tkp ∆=∆ , and ny∆ is obtained by power flow calculation, so we still have 

nnnnn tkpyxy ∆Φ=∆ ),,(  as given in equation (4.12). 

Without loss of generality, suppose that IEuler method is applied to solve swing 

equation, we have 

),,(      
),,(      111

1

nnnnnnn

nnnn

nnn

ppyyxxft
pyxft

xxx

∆+∆+∆+∆=
∆=

−=∆

+++

+

 (5.10) 

By Taylor’s expansion, (5.10) can be written as 
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Substituting nn tkp ∆=∆  and nnnnn tkpyxy ∆Φ=∆ ),,(  into (5.11), we have 

xn

npnyn
n ft

tftftk
x

∆−
∆+∆Φ∆

=∆
1

)(
 (5.12) 

Substituting np∆ , ny∆   and (5.12) into (5.9), we have 

( ) nin

pinnnyi
xn

npyxi
n

npinyinxii

tkCto

hpyxh
ft

tffh
tk

phyhxhe

∆+∆=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+Φ+

∆−
∆+Φ

∆=

∆+∆+∆≈
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1

)(

 ˆ

,,
,

,,,

 (5.13) 

Where 

piyii hhC ,, +Φ= . 

So we have: 

( ) nnnnn tkpyxCtoerr ∆+∆= ),,()(  (5.14) 

Where 

∑
+

=

=
mn

i
innn CpyxC

1

2),,( . 

Thus, Lemma 1’ is proved. 

Second, we will show that Lemma 2 can be extended to IRK methods, and a similar 

Lemma, denoted by Lemma 2’, is introduced and can be proved with IRK methods. 

Lemma 2’: 

Suppose a system described as (4.2) satisfies the condition i), ii) and iii) of Theorem 1, 

then we have: 
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( )1)(~)( )( 0 −≤− −ttL
heq e

L
ktxtx λ  (5.15) 

( )1)(~)( )( 0 −≤− −ttL
heq e

L
ktyty λ  (5.16) 

Here [ ])(~),(~ tytx hh denotes the numerical solution of the system starts from an 

equilibrium point ),,,( 0000 tpyx , and )](),([ tytx eqeq  denotes the equilibrium manifold of the 

system, and L-stable IRK methods are applied here. 

To prove Lemma 2’, one choice we have is to follow similar logic as shown in the proof 

of Lemma 2. Here, we will demonstrate another simpler way to prove it. 

When we apply IRK methods to solve swing equations, there should be an internal 

iteration to solve nonlinear equations. For example, when IEuler method is applied, at each 

step, we should solve a nonlinear equation as 

),,( 1111 ++++ ∆=− nnnnnn pyxftxx  (5.17)  

Here Newton-Raphson or simplified Newton method [34] will be applied to solve (5.17) 

iteratively till 1+nx  converges.  

On the other hand, when ERK is applied, as shown in Figure IV-1, we only take one 

step to solve swing equations. Thus, with same k and nt∆ , single step calculation by ERK 

methods should have worse convergence compared with multi-step iteration by IRK 

methods. This implies that, after calculation of swing equations at each iteration, the 

simulation trajectory calculated by IRK method will stay closer to Equilibrium Manifold 

than the one got with ERK method. As shown in Chapter IV, the trajectory calculated by 

ERK is denoted as [ ])(),( tytx hh , then we have 

 
)()()(~)(

)()()(~)(

tytytyty

txtxtxtx

heqheq

heqheq

−≤−

−≤−
 (5.18)  

And by Lemma 2, we already have 
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By (5.18) and (5.19), Lemma 2’ is proved. 

Similarly, we know that Theorem 1 is still valid with IRK methods. Thus, based on 

former discussion, we know that the automatic load adjustment technique, no matter the 

primitive one or the optimal one discussed in Chapter IV, could be integrated with IRK 

methods.  

As shown in Figure V-3, when load adjustment technique is integrated with L-stable 

IRK methods, adjustment of t∆  is no longer considered. The reason is that, as L-stable IRK 

methods are applied, numerical stability can be guaranteed, thus we can choose big t∆  and 

no longer need to worry about the adjustment of t∆ . However, within the internal iteration 

to solve swing equation, step-size control technique could be still helpful. Further research 

on this could be one part of future work. 

Adjust k

Repeat the nth 
step calculation 
with adjusted k  

Err < ε ?

N Y

n=n+1

 

Figure V-3 Integration load adjustment with IRK methods 
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2.4 The new comprehensive numerical approach for long term dynamic small disturbance 

analysis 

Before further discussion, we will demonstrate that, with load increase, the system may 

become stiff while approaching its bifurcation point. For example, with the same simple 

system used in Chapter IV, we found that, when 85.0>P , the condition number of the 

Jacobian matrix will begin to increase drastically, which is shown in Figure V-4. 

Correspondingly, if we apply RKF45 method to do simulation, just as case 3) in section 4.2 

of Chapter IV, we can see that t∆  will be adjusted frequently to remain integration 

trajectory numerically stable when system becomes stiff, which is shown in Figure V-5. 
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Figure V-4 Change of condition number with increased load 
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Figure V-5 Adjustment of t∆  

 

2.4.1 Automatic stiffness detection 

It is well known that implicit methods generally have better numerical stability than explicit 

methods [34]. However, for a general implicit approach, it needs to solve the nonlinear 

equations iteratively at each step and will incur extra computation burden. Thus, when 

system is lightly loaded or in normal operating conditions, explicit methods are naturally 

more attractive than implicit approach. On the other hand, when dealing with stiff problems, 

implicit method will be more efficient than explicit methods. So a burning question is that, 

during numerical simulations, how to detect stiffness automatically with cheap computation 

costs. With such a detection scheme, we can switch to a more suitable method to enhance 

the computation efficiency. 

In 1977, Shampine & Hiebert proposed some ideas to deal with this problem [34], and 

there are other approaches in the literature [30], such as detecting stiffness by directly 

estimating the dominant eigenvalue of the Jacobian matrix of the problem [30]. This 

dissertation will apply the ideas of Shampine & hiebert to voltage stability analysis. Now 

we will give a brief introduction of this idea based on Dormand & Prince method of order 5 

(DOPRI54). 
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DOPRI54 is a 7 stage and 5th order explicit embedded Runga-Kutta method [34]. 

Similarly as we can use (5.4) to express (5.2), DOPRI54 method can be described as in 

Table V-1. 

Table V-1 Tableau of DOPRI54 method 
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5
1  
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40
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40
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5
4  

55
44  
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−  
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1ŷ  
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187  
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Similarly as embedded explicit RKF4(5) method, DOPRI method automatically adjust 

step size by equation (5.20) and (5.21). 
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⎪
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DOPRI54 is not a stiff solver, and may become unstable if the solution changes rapidly 

over one time step. However, adapting the idea of Shampine & Hiebert to DOPRI54, we 

can have a simple stiffness detection scheme. 

As shown in [34], we can construct an another local numerical truncation error 

estimation as 

( )654321
*

1 1.0144.013.024.02.2134.2~ KKKKKKtd nn −++−+−∆=+  

During simulation, if *
1

*
1

~
++ < nn dd  occurs several times in succession (say 15 times), 

then switching to a L-stable IRK method will be more efficient. 

Comparing DOPRI54 with RKF45 that mainly used in Chapter IV, we know that 

DOPRI54 is a 7-stage method and RKF45 is a 6-stage method, and both are 5th order 

methods. Though DOPRI54 has one more stage and thus incur more computation cost, it 

does have bigger stable domain than RKF45, which is demonstrated in Fig. 2.8 of [34]. 

Also, with DOPRI54, it will be easier for automatically stiffness detection. That could also 

explain why DOPRI54 has been adopted as one of the main solvers of function ‘ODE45’ in 

MATLAB.  

Due to our experience with power systems, we found that, when system is lightly 

loaded, generally it may have less chance to be stiff, which is the case shown in Figure V-4. 

So in normal conditions, as we have less worry about numerical stability, we can use 

RKF45 method without trying to detect stiffness. And when system is getting stressed, say 

one of the bus voltage drops below 0.9 or 0.85pu, we can switch to DOPRI54 method and 

try automatically stiffness detection. And if stiffness is detected, we can further switch to L-

stable IRK methods, such as IEuler method and RADAU5 method. And with L-stable IRK 

method, numerical stability can be guaranteed, so big step size could be selected to enhance 

computation efficiency. 
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No matter ERK or IRK method we choose, EMD criterion always works, and we can 

apply automatically load adjustment technique to further enhance computation efficiency. 

Thus, a new comprehensive numerical simulation scheme is proposed in next sub-section.   

2.4.2 The new general numerical simulation scheme  

Figure V-6 shows a new comprehensive numerical scheme for long term small disturbance 

analysis. In this scheme, EMD criterion is still used to detect bifurcation behavior, and 

automatically load adjustment technique is integrated with ERK and IRK methods. Also, 

this new numerical scheme contains a logic to automatically detect stiffness. Thus, applying 

this comprehensive scheme, we can deal with all kinds of long term small disturbance 

analysis. Actually, as all our proof and deduction in this dissertation are based on a general 

DAE system shown as (5.22), the scheme shown in Figure V-6 can serve as a universal 

approach to detect structurally unstable point for a general DAE system. And with this 

scheme, no matter the system is stiff or not, the computation efficiency will be greatly 

enhanced without sacrificing accuracy.  

kmn
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nqmn
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gpyxg
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⎪⎩

⎪
⎨
⎧
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ℜ→ℜ=
++

++

,,

:),,,(0
:),,,(&

 (5.22) 

One thing we should emphasize is that, when we switch to IRK methods, there should 

be an internal iteration to solve nonlinear equations by simplified Newton method in 2nd 

step shown in Figure V-6 [34]. On the other hand, when ERK is applied, there is no internal 

iteration in 2nd step of above approach [32, 33]. 
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Figure V-6 The new comprehensive numerical scheme for long term small disturbance 

analysis 
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2.5 Numerical tests 

2.5.1 Combining automatic load adjustment technique with L-stable IRK methods 
With the same simple system used in Chapter IV, we demonstrate that our automatic load 

adjustment technique can be integrated with L-stable IRK methods to enhance computation 

efficiency. Here, four cases will be compared. 

1) Implicit Euler method, with fixed supk /..10 4−= , 2.0=∆t  

2) Implicit Euler method, with k adjusted by equation (4.44), 2.0=∆t  

3) SDIRK3 method, with k adjusted by equation (4.44), 4.0=∆t  

4) RADAU5 method, with k adjusted by equation (4.44), 5.0=∆t  

For all these four cases, t∆  will not be adjusted. And for case 2), 3) and 4), the initial 

value of k is selected as supk /..10 2−= . Now let us take a look at simulation results. 

Table V-2 Estimated margin 

Method Estimated 
Margin 

Relative Error 

1) 0.9401 0.847% 
2) 0.9382 0.643% 
3) 0.9381 0.633% 
4) 0.9312 0.1072% 

 

Table V-2 shows that, the estimated margin for these four cases are very close to the 

real margin calculated by eigenvalue based bifurcation analysis. However, with the same 

level of accuracy, we found that there are big differences among computation costs of these 

cases, which is shown in Table V-3. 

From Table V-3, we found that case 1) is the most time consuming one, and compare 

case 1) and 2), we can see that the computation cost is greatly enhanced with integration of 

automatic load adjustment. 
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With same level of accuracy, we also found that RADAU5 has higher computation 

efficiency than the other two L-stable methods. Though it has highest stages, but it need 

fewest internal iterations due to its high order of accuracy. 

Table V-3 Computation costs 

Method Valid 
steps (VS) 

Adjusted 
Steps of k 

(ASK) 

Stage of 
Method

Average Internal 
iterations 

Computation Cost 

1) 22251 0 1 4.01172980989618 (22251+0) × 1× 4.01172980989618 
(100%) 

2) 8926 24 1 4.07003654080390 (8926+24) × 1× 4.07003654080390 
(40.81%) 

3) 3708 32 3 2.73751611516975 (3708+32) × 3× 2.73751611516975 
(34.41%) 

4) 2367 35 6 2.11915473755965 (2367+35) × 6× 2.11915473755965 
(34.21%) 
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Figure V-7 Automatic adjustment of k 
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Figure V-7 shows that, in case 2), how load increase ratio is adjusted automatically. 

This explains that why the computation cost of case 1) is almost 2.5 times as the one of 

case 2). 

2.5.2 The comprehensive scheme can further enhance computation efficiency 

Now we will apply our new comprehensive scheme to the same system used with above 

examples. Here we will compare two cases. 

1) RADAU5 method, with k adjusted by equation (4.44), 5.0=∆t  

2) By our new comprehensive scheme, first explicit RKF45 method will be apply, then 

when bus voltage drops to 0.85p.u., it will automatically switches to DOPRI54 method with 

detection of stiffness. And if stiffness is detected, RADAU5 will be applied. 

For these two cases, the initial value of k is selected as supk /..10 2−= . And for case 2), 

the initial value of t∆  is set as 0.5. t∆  will be automatically adjusted by RKF45 and 

DOPRI54 respectively in different simulation time. When it switches from DOPRI54 to 

RADAU5, t∆  will be set back to 0.5 and keep fixed. 

Please note that here the case 1) is exactly the case 4) in 2.5.1, so its estimated margin 

and computation cost are already known. For case 2), its simulation results is given in 

figure V-8.  

Table V-4 Computation cost of case 2 

Different 
Simulation 

Period 

Method Valid 
Steps 
(VS) 

Adjusted
Steps of 

t∆  
(AST) 

Adjusted 
Steps of k

(ASK) 

Stage of 
Method

Average 
Internal 
iteration

s 

Computation Cost 

P<=0.866 RKF45 2299 1 17 6 1 (2299+1+17) × 6× 1 
 

0.866<P<0
.89 

DOPRI54 94 19 2 7 1 (94+19+2) × 7× 1 
 

P>=0.89 RADAU5 252 0 7 6 2.23751
611516

975 

(252+0+7) 
× 6× 2.23751611516975 
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By case 2), the estimated margin is 0.9331, and the relative error of estimation is 0.14%. 

Compared with case 1), it is also a very good estimate and has the same level of accuracy. 

For case 2), its computation cost is demonstrated in Table V-4. Compared with case 1), we 

found that the computation cost of case 2) is 59.54% of case 1). 
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Figure V-8 Simulation results of case 2 

 

2.5.3 The comprehensive scheme works with a large system 
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Here the IEEE 162-bus 17-generator system will be used to demonstrate that our new 

approach is applicable to large systems. It is the same system we used in section 4.4 of 

Chapter IV. 

Here we still assume that all the loads in this system are constant power type load with 

a fixed power factor ( QP 2= ). All numerical solutions begin with an equilibrium point 

determined by the initial value. At t=0s, all the loads in this system will change with the 

same ratio. When a bifurcation behavior is detected, the numerical solution will be stopped. 

In this example, two methods will be applied and compared: 

1) Our new comprehensive scheme, as shown in Figure V-6:  

First explicit RKF45 method will be apply, then when any bus voltage drops to 

0.85p.u., it will automatically switches to DOPRI54 method with detection of 

stiffness. And if stiffness is detected, RADAU5 will be applied. 

2) RKF method with optimal adjustment of k —k and t∆ are both adjusted: 

This is the same case as case 2) in section 4.4 of Chapter IV. 

 

Table V-5 Computation cost of case 1 

Different 
Simulation 

Period 

Method Valid 
Steps 
(VS) 

Adjusted 
Steps of 

t∆  
(AST) 

Adjusted 
Steps of k

(ASK) 

Stage of 
Method

Average 
Internal 
iteration

s 

Computation Cost 

|V|>=0.85 RKF45 3527 571 14 6 1 (3527+571+14) × 6× 1 
 

|V|<0.85 DOPRI5
4 

161 151 4 7 1 (161+151+4) × 7× 1 
 

Stiffness 
detected 

RADAU
5 

277 0 22 6 2.21375
161162

45 

(277+0+22) 
× 6× 2.2137516116245 

 

From Chapter IV, we already found that when the load at bus 3 is increased to 173.88% 

of the original load at bus 3, a bifurcation behavior can be detected for case 2). Similarly as 

in Chapter IV, here we use 173.88% to denote the dynamic stability margin.  While for case 
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1), the estimated margin is denoted by 174.71%. The computation cost of case 2) is already 

given in section 4.4 of Chapter IV. Now let’s take a look at the computation cost of case 1). 

Table V-5 shows the computation cost of case 1) in different simulation stage. 

Compared with Case 2), its computation cost is nearly 89.96% of case 2). For these two 

cases, we get almost the same estimate of the dynamic stability margin. However, our new 

scheme could enhance the computation efficiency. Similar results are expected and 

confirmed for many other big systems.  

3. Conclusion 

In this chapter, we demonstrate the advantage of L-stable IRK methods in dealing with stiff 

problems. It is proved that, the EMD criterion and automatic load adjustment technique can 

be integrated with L-stable IRK to estimate stability margin for ill-conditioned systems. 

With this integration, computation efficiency is greatly enhanced, and the numerical 

stability and the accuracy of estimate can still be guaranteed.  

This chapter also discussed automatic stiffness detection based on DOPRI54 method 

and the idea of Shampine & Hiebert. Moreover, with our experience on power systems, a 

simple but practical approach is proposed here to further enhance computation efficiency.  

At last, a comprehensive numerical scheme is proposed in this Topic, which integrates 

the automatic stiffness detection, the intelligent load adjustment skill, the EMD criterion to 

detect bifurcation behavior, ERK and L-stable IRK methods. Essentially, this 

comprehensive scheme can be taken as a universal approach to detect structurally unstable 

point for a general DAE system. 
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CHAPTER VI  

CONCLUSIONS 

1. A summary of the research contributions 

With growing concerns on voltage stability, this dissertation focuses on long term small 

disturbance analysis of power system in an increasingly competitive environment. 

First of all, to enhance competition and efficiency of energy market, eigenvalue based 

bifurcation analysis is applied to give some insights about how to allocate contribution of 

voltage stability. We investigate how parameters of the system influence the bifurcation 

points. Three bifurcations (the singularity induced bifurcation, saddle-node and Hopf 

bifurcation, and their relationship to several commonly used controllers are analyzed.  

Based on these analyses, we found a way to allocate the contribution by analyzing the 

relative positions of the bifurcations. Analyzing the influence of the system parameters on 

voltage stability also benefits us in designing and optimizing the system.  

Second, based on some basic scenario summarized in eigenvalue based analysis, an 

algorithm to choose proper exciter size is developed in, which aims to maximize the 

loadability of system to fully utilize the generator. 

Third, due to complexity of eigenvalue calculation, numerical approach was applied to 

estimate dynamic stability margin for large systems. As we know, accurately estimating 

voltage stability margin for big systems online is a big challenge for engineers. To gauge 

the accuracy of numerical estimate, a reasonable and easy-for-calculation criterion, called 

EMD criterion, is proposed in this dissertation. Then based on EMD criterion, an automatic 

load adjustment technique is proposed. We integrated this technique with step size control 

technique, and based on single step ERK methods, we proposed a new numerical scheme to 

detect dynamic stability margin. We prove rigorously that our new approach introduces 

synergy of simultaneously adjustment of time steps and load increasing ratios intelligently. 

The numerical tests show that our novel method not only has a great advantage in 

computation efficiency, but also has accuracy close to eigenvalue based bifurcation analysis 
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for dynamic stability margin estimation. Moreover, unlike eigenvalue based bifurcation 

analysis, the computation cost of our method is only in linear relation with system size. 

Thus, the proposed technique has great potential for dynamic stability margin estimation 

for large systems. 

Fourth, we have successfully extended our new numerical scheme to stiffness problem 

of power systems. It is proved that, the EMD criterion and automatic load adjustment 

technique can be integrated with L-stable IRK to estimate stability margin for ill-

conditioned systems. With this integration, computation efficiency is greatly enhanced, and 

the numerical stability and the accuracy of estimates can still be guaranteed. Moreover, a 

comprehensive numerical scheme is proposed in this dissertation, which integrates the 

automatic stiffness detection, the intelligent load adjustment skill, EMD criterion to detect 

bifurcation behavior, ERK and L-stable IRK methods.  Essentially, this comprehensive 

scheme can be taken as a universal approach to detect structurally unstable point for a 

general DAE system. 

2. Suggestions for future research 

We think the work reported in this dissertation can be an important basis for future research 

activities related to voltage stability analysis. In general, future research directions based on 

this dissertation are summarized below. 

2.1 Contribution/responsibility allocation for voltage stability of large systems 

In chapter II, eigenvalue based bifurcation analysis is applied to give some hints on how to 

allocate contribution/responsibility for voltage stability. Though it is very enlighten, it is 

hard to be extended to large system due the complexity of eigenvalue analysis. 

In Chapter V, a new comprehensive numerical approach is proposed, which is very 

efficient and promising for large system analysis. Thus, it is naturally to probe the 

possibility to adapt some idea into numerical scheme. For example, try to find some typical 
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scenario of numerical simulation results in corresponding to the basic scenario we 

summarized in Chapter II.  

2.2 Multi-step Runge Kutta Methods 

Till now, only single step Runge Kutta methods are discussed in this dissertation. Different 

with multi-step RK methods, the single step RK methods do not utilize previous numerical 

results of integration, thus, its computation efficiency may be impaired [34].  

The idea of integrating our optimal load adjustment technique with Multi-step RK 

methods sounds pretty attempting. Also, to further enhance the computation efficiency, 

parallel computation technique could also be integrated to our numerical scheme to make it 

more efficient and comprehensive.  

2.3 With implicit method, step size control for internal iteration 

When load adjustment technique is integrated with L-stable IRK methods, adjustment of 

t∆  is no longer considered. The reason is that, as L-stable IRK methods are applied, 

numerical stability can be guaranteed, thus we can choose big t∆  and no longer need to 

worry about the adjustment of t∆ . However, within the internal iteration to solve swing 

equation, step-size control technique could be still helpful. We also found that, adjustment 

of k may have some impacts of the convergence of internal iteration. Therefore, further 

research on this could be one part of future work. 
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