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ABSTRACT 

 

A Prediction of Meander Migration Based on Large-Scale Flume Tests in Clay. 

(December 2007) 

Namgyu Park, B.S., Sungkyunkwan University, Seoul, Korea; 

M.S., University of Michigan, Ann Arbor 

Co-Chairs of Advisory Committee: Dr. Jean-Louis Briaud 
            Dr. Kuang-An Chang 

 

Meander migration is a complex and dynamic process of the lateral movement of 

a river due to erosion on one bank and deposition on the opposite bank. As a result, the 

channel migrates in a lateral direction, which might be a major concern for the safety of 

bridges during their life span of 75 years. Although there are several existing models for 

predicting meander migration of a river, none of them are based on the physical model 

tests on a specific type of soil. 

A total of eight flume tests are conducted to develop a prediction equation of 

meander migration in clay. The test results of migration rate follow a hyperbolic 

function, and spatial distribution of the maximum migration distance is fitted with the 

Pearson IV function. The proposed equations of the initial migration rate and the 

maximum migration distance, obtained by a multiple regression technique, are validated 

with the laboratory data.     

A new methodology for risk analysis is developed to process a number of 

predicted channel locations based on each future hydrograph generated in such a way 
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that all the hydrographs have the same probability of occurrence. As the output from risk 

analysis, a CDF map is created for a whole river representing a general trend of 

migration movement along with the probability associated with new location of the river. 

In addition, a separate screen is generated with a CDF plot for a given bridge direction 

so that bridge engineers can read a specific migration distance along the bridge 

corresponding to the target risk level (e.g. 1 %). 

The newly developed components through this research are incorporated with the 

other components in the MEANDER program which is a stand-alone program and the 

final outcome of the research team. Verification study of the MEANDER program is 

conducted with full-scale field data at the Brazos River at SH 105, Texas. The prediction 

results matched quite well with the measured field data. However, a more extensive 

verification study for other sites is highly recommended. 
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CHAPTER I 

INTRODUCTION AND RESEARCH OBJECTIVES 

 

1.1 INTRODUCTION 

 Meander migration is a process of the lateral movement of a river due to erosion 

on one bank and deposition on the opposite bank. It is referred to as a measure of lateral 

instability of a river, which is a major concern for the safety of bridges. Based on a 

survey of a number of state highway engineers (Brice and Blodgett 1978), bank erosion 

associated with meander migration is classified as a major stream-related hazard. 

Meander migration will most likely undermine bridge piers and abutments during their 

life span of 75 years, which often results in costly countermeasures or modification of 

the bridge. Since remedies can cost from $100,000 to $3,000,000 per bridge, the ability 

to predict river migration will reduce the cost for protecting the susceptible structures 

against the migration problem (Briaud et al. 2001b). As an example, the SH 105 Bridge 

over the Brazos River near Navasota, TX (Figure1.1) is going to be replaced by the 

Texas Department of Transportation (TxDOT) because it has been endangered by 

excessive bank erosion on the east bound. The new bridge will be located about 228m 

(760ft) south of the old bridge to avoid the potential problem related to the meander 

migration during its life span.  

 
 
 
____________ 
This dissertation follows the style of the Journal of Geotechnical and Geoenvironmental 
Engineering. 
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Figure 1.1 Brazos River at SH 105 (source: Google Earth 2007) 

 

 There are several models available for predicting meander migration of a river. 

The majority of these models are empirical equations (e.g. Keady and Priest 1977; 

Nanson and Hickin 1983; Hooke 1980; Brice 1982) based on a database of observed 

data. These empirical studies attempted to correlate the movements of the bank-line or 

its rate, along with influencing parameters, and then to use regression techniques to 

acquire a best-fit equation. However, these equations are limited by the extent of the 

database and the selection of the parameters for a specific site. The primary parameters, 

such as erodibility of the soil and flow condition needed to erode the soil on the bank, 
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have not been considered. Recently, several numerical models incorporating the flow 

field, sediment transport, and bank erosion models (Nagata et al. 2000; Darby et al. 

2002) have been proposed to solve the meander migration problem. Although these 

approaches provide the extensive information on the meander migration processes, their 

practical use is limited due to extensive calibration work necessary to be a general 

solution for other sites. Since none of the aforementioned approaches are based on the 

physical model tests on a specific type of soils, it is valuable to develop a prediction 

method based on the well-controlled flume tests.  

 This research is initiated to investigate the meander migration process in clay. 

This is done by conducting a series of large-scale flume tests and proposing a prediction 

equation of the meander migration based on the results of those experiments. 

Additionally, a relatively simple methodology to provide a probabilistic solution for 

meander migration is also considered a goal of this study. Since the future flow 

condition, which is a dominant factor for the erosion process, is unknown, it is more 

reasonable to approach the meander migration problem in a probabilistic manner so that 

it can provide a certain confidence level achieved with the prediction result. 

1.2 RESEARCH OBJECTIVES 

The objectives of this research are described as follows: 

 Develop a prediction equation of meander migration distance in clay based 

on large-scale flume tests which will be incorporated into the MEANDER 

program developed by the research team (Briaud et al. 2007). 
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 Develop a risk analysis methodology to provide a probabilistic solution for 

the meander migration problem. 

 Develop a computer program (sub-module) to implement the developed risk 

analysis methodology into the MEANDER Program. 

 Verify the prediction of meander migration with the MEANDER program by 

using the selected full-scale field data from a case history study. 

1.3 GENERAL APPROACHES 

 The general approaches for this research are designed to accomplish the 

aforementioned research objectives in an efficient way. This includes the following 

components: large-scale flume tests in clay, application of a hyperbolic model, add-in 

risk analysis module, implementation of the new components, and verification study. 

1.3.1 Maximum Migration Distance Equation for Clay 

 The prediction equation of maximum migration distance Mmax for clay is 

obtained by conducting a series of large-scale flume tests where the laboratory basin is 

22.0 m (72.6 feet) long, 10.0 m (33 feet) wide, and 0.9 m (3 feet) deep. The approach 

varies each primary parameter obtained from dimensional analysis, while keeping the 

other parameters constant. By doing this, the effect and impact of each individual 

parameter on meander migration can be examined to provide a basis for parametric 

study.  

 During each experiment, both temporal and spatial changes of channel geometry 

are measured to obtain the migration distances with respect to time and location along 

the two bank-lines. Then, the collected measurement data is fitted with the proposed 
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hyperbolic function to acquire the maximum migration distance at each cross-section. 

Finally, an appropriate function is applied by using a multiple regression technique to fit 

the spatial distribution of the maximum migration distance. 

1.3.2 Hyperbolic Model 

 Since meander migration is a long-term and incremental process, time is an 

indispensable component. The hyperbolic model proposed by Briaud et al. (1999, 2001c, 

2003) to model the scour process with respect to time has been verified to work 

reasonably well for various applications such as pier scour, complex pier scour, and 

contraction scour. The same model is employed for this research because both scour and 

meander migration are attributed to the same cause: erosion of soil due to the shear force 

induced by water flow. The hyperbolic model is expressed by the following equations: 

max

1
)(

M
t

M

ttM

i

+
=

•

        (1.1) 

or, 

iM
t

MtM
t

•+=
11

)( max

      (1.2) 

Where, 

    M (t) = channel migration distance, (cm) 
                   t = time, (hr) 
               iM  = the initial migration rate, (cm/hr) 
             Mmax = the maximum migration distance, (cm) 

 In a hyperbolic model, the channel migration rate has its maximum value at the 

beginning, which means that the channel quickly erodes within a short period of time. 

As water continues to erode the channel banks, the migration rate gradually decreases 
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with a maximum value of the migration distance occurring when the channel reaches its 

equilibrium state (i.e. t→ ∞). 

1.3.3 Risk Analysis Module 

 A meandering river migrates at a rate controlled by the shear stress at the 

interface between the water and the channel bank. The hydraulic shear stress imposed by 

the water is controlled by the velocity of the flow, which is dependent on the hydrograph 

of the river. Therefore, a meander migration prediction process must take the hydrograph 

of the river into account. This hydrograph is unknown, however, because it will occur in 

the future during the design life of the bridge or the highway embankment. Because it is 

not realistic to make a deterministic prediction of a future hydrograph, it is more 

desirable to make predictions of many equally possible hydrographs in a probabilistic 

manner. Based on the method developed by Briaud et al. (2003), Wang (2006) 

developed a modified methodology to generate a number of future hydrographs for a 

probabilistic prediction of meander migration. Each hydrograph corresponds to a 

different predicted position of the meandering channel. The collection of these new 

locations becomes the input data for the risk analysis for this research. 

 A new methodology is developed to process the input data in such a way that it 

produces a probability map showing the predicted channel with its risk level associated 

with the new location. The primary concern of meander migration is knowing the bank 

movement at a specific location as well as direction. Thus, a separate output plot is 

produced, which contains detailed risk information with respect to the predicted 

migration distance for the selected location and direction. 
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1.3.4 Implementation into MEANDER Program 

 The program MEANDER is the final outcome of the research project (Briaud et 

al. 2007) to develop a new prediction method of meander migration. All the components 

in the newly developed methodology are implemented into this stand-alone program to 

provide future users an automated prediction tool. MEANDER is composed of six main 

components: 1) The prediction equation for the maximum migration distance based on 

the large-scale flume tests in sand and clay, which is used to calculate the migration 

distance with respect to time, flow velocity, and channel radius of curvature to width 

ratio. 2) The prediction equation for the maximum shear stress based on 3-D numerical 

simulations, which is used to calculate the maximum shear stress at the interface 

between the water and the channel bank. 3) The implemented hyperbolic model to 

accumulate the migration distance. 4) The erodibility-curves of soil from Erosion 

Function Apparatus (EFA) test (Briaud et al. 2003) to calculate the initial migration rate 

with the assistance of the shear stress equation. 5) The algorithm of the geometry study 

to fit a number of best-fit circles, representing the meandering bends along the river. 6) 

The risk analysis module, which is used to evaluate the possibilities of the channel 

movement. 

 Among those components listed above, the prediction equation of the maximum 

migration distance in clay and the risk analysis module are developed by this research, 

and to be incorporated with the other components in the MEANDER program. 
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1.3.5 Field Verification Study 

 As with any new methods developed based on an experimental and numerical 

study, it is necessary to validate the results with a verification study. This allows the 

developer to check whether the new method is applicable to field cases. If not, any 

modification and/or improvement is needed. Generally, the verification can be done 

through case studies with field data and/or other available data resources.  

 In this research, one full-scale case study is conducted to evaluate the 

MEANDER program’s prediction of the historical migration movement. The selected 

site is Brazos River at the SH 105 Bridge. The SH 105 Bridge over the Brazos River is 

located near Navasota, Texas. There is a meandering bend that approaches from the 

northeast at several hundred meters upstream of the bridge crossing. The meander map 

obtained from the 1981 and 1995 aerial photos and the recent Google satellite image 

indicates that the meandering bend migrated towards the highway (SH105) about 100 m 

(300 ft) from 1981 to 2006. Moreover, the channel is expected to move continuously in 

the future. As a result, TxDOT has decided to replace the bridge to avoid potential 

damage due to excessive bank erosion. The new bridge will be located about 228m 

(760ft) south of the old bridge. This implies the chosen site might be an ideal case for 

the verification study. 

 The prediction results using the MEANDER program during the pre-determined 

period (i.e. 1981~2006) are compared with the measured data. The results of the 

verification study are discussed in this dissertation. 
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CHAPTER II 

MEANDER MIGRATION 

 

2.1 FUNDAMENTAL CONCEPT 

 A natural river runs in a sinuous pattern rather than straight. It is nearly 

impossible to see the perfectly straight river in nature. The distance of the relatively 

straight portion of a meandering stream typically does not exceed ten times the river 

width (Wolman and Leopold 1957). The channel pattern of a river can be classified as 

straight, sinuous, meandering, or braided based on its sinuosity and other characteristics 

of the channel (Morisawa 1985), as shown in Figure 2.1(a). The typical characteristic of 

each pattern are summarized in Table 2.1. A meandering channel has a sinuosity larger 

than 1.5, and it can be distinguished by a series of alternating meander bends which is 

the channel reach between two inflection points (Julien 2002). The sinuosity can be 

defined in various ways, but the most common definition might be a ratio of channel 

length to meander belt axis length, and these dimensions are defined in Figure 2.1(b). 

Talweg in Figure 2.1(b) is a line connecting the deepest part of the cross-sections along a 

river, and it swings from the outer bank to the following outer bank towards the 

downstream of the river. 
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(a) Channel Patterns (b) Sinuosity 

Figure 2.1 Channel Patterns and Geometry Parameters (after Morisawa 1985) 
 
 

Table 2.1 Classification of River Patterns (after Morisawa 1985) 

Type Sinuosity Load-Type Erosive 
Behavior 

Depositional 
Behavior 

Straight < 1.05 
Suspension- 

mixed 
or bedload 

Minor channel widening 
& incision 

Skew 
shoals 

Sinuous > 1.05 
< 1.05 Mixed Increased channel 

Widening & incision 
Skew 
shoals 

Meandering > 1.5 Suspension or  
mixed load 

Channel incision, 
meander widening 

Point bar 
formation 

Braided > 1.3 Bedload Channel widening 
Channel aggradation, 

mid channel bar 
formation 
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 Pools, riffles, and asymmetrical cross-sections at bends are the essential 

components comprising a meandering river as shown in Figure 2.2. The sequence of 

these three elements is repetitive to form a whole river (Morisawa 1985). As a result of 

high flow velocity, asymmetrical cross-sections are mostly deeper on the outer (concave) 

banks in which pools appear. The transverse bed slope in this cross-section is correlated 

with the channel curvature (Chang, 1984): as a channel curvature increases, a transverse 

bed slope increases, reaching the maximum value under a maximum channel curvature 

(or minimum radius of curvature). Riffles are relatively symmetrical in cross-section, 

and are transition zones between two consecutive meandering bends in mostly opposite 

directions.  

 

Riffle 

Riffle 

 
Figure 2.2 Cross-sectional Profiles in a Meandering River (after Morisawa 1985) 
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 According to Morisawa (1985), the mechanism of meander migration is 

explained as follows: In a real river, streamlines of flow separate at bends or at 

obstructions (i.e. any irregular boundary), which increases the flow velocity and creates 

turbulence. As a result, the water is prone to erode the channel bed or bank when the 

hydraulic shear stress is high. If the bank is eroded and flow is distorted erratically, the 

meandering pattern will be initiated. Since the flow direction changes due to meandering 

bends, the centrifugal force results in a superelevated water surface along the outer bank 

(Leopold and Langbein 1960). This generates a non-uniform velocity and pressure 

distribution in the cross-section. As a result, downward and transversal flow patterns, as 

shown in Figure 2.3, are created, which is called helical flow. Chang (1984) explained 

the helical motion attributed to the difference of centrifugal forces between the top and 

bottom layer of the flow. The circulatory flow motion (i.e. secondary flow) will erode 

the outer (concave) bank, and then transport the eroded materials toward the inner 

(convex) bank. As this process is continued, the channel will shift its location laterally, 

which is meander migration. 

 

A

A'

CROSS-SECTION A-A'

FLOW

 
Figure 2.3 Secondary Flow Circulations 
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 The direction of meander migration at a meandering bend depends primarily on 

the geometric condition of that bend and the previous upstream bend. It is very useful to 

have an idea for the possible ways in which the meander loop will migrate or create 

(Brice 1982), especially if there is a bridge crossing the meandering bend. He proposed 

several possible modes of meander loop development as shown in Figure 2.4. Mode A 

illustrates the extension type which is a common type of the development of a meander 

loop of low amplitude. Mode B describes the translation type which mostly occurs only 

if meander bends are constrained by valley sides on a narrow flood plain. Mode C is the 

rotation type which is a typical mode for fully developed meanders with fairly unstable 

banks. A highly meandering stream or a stream with a large meander loop usually 

follows Mode D. When the meandering bend becomes too big, secondary meanders are 

created along the existing loop. Mode E is quite similar to Mode D, but cut off is 

expected in this type. A locally braided sinuous or meandering stream would follow 

Mode F or Mode G. 

 
Figure 2.4 Mode of Meander Loop Development (Brice 1977) 
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2.2 MEANDER PARAMETERS TO DESCRIBE GEOMETRY 

 A typical river runs in irregular patterns and thus it is quite difficult to describe it 

in terms of a limited number of parameters. In order to reduce the complexity, each 

meandering bend can be simplified to an arc. A relatively straight portion of the river 

which has very low sinuosity or very high radius of curvature can be considered as a 

straight line. Consequently, a river can be represented numerically by constructing it 

with a series of arcs and straight lines. The parameters to describe the geometry of a 

meandering river are shown in Figure 2.5, and the definitions of these parameters are as 

follows: 

  A = meander amplitude 

  M = channel migration distance 

  R = radius of curvature 

  W = channel width 

  φ = bend angle 

  θ = relative angle (0 ≤ θ ≤ φ) within each bend 

  t = time 

 

A

R

R

W

M(t)

θ
φ

φ

 
Figure 2.5 Parameters Defining Meander Geometry 
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2.3 FACTORS AFFECTING MEANDER MIGRATION 

 Meander migration is a complex and dynamic process at the interface between 

soil and water. The rate/amount of erosion of a certain type of soil is attributed to not 

only the soil’s erodibility but the shear stress induced by the water. Consequently, the 

properties of the soil and the conditions of the flow are primary influencing factors for 

meander migration. Since the flow condition in a river is strongly affected by its 

geometric condition, the geometry of a river also needs to be taken into account. In other 

words, the necessary parameters to describe meander migration process are boiled down 

to three fundamental categories: soil, water, and geometry. In addition to the primary 

parameters of these categories, other supplementary factors are helpful to better 

understand the meander migration phenomenon, and those can be found from other 

literature. For example, Briaud et al. (2001b) identified other influential factors with 

respect to meander migration, listed as follows: 

• stream pattern (straight, meandering, braided); 

• free surface slope; 

• channel roughness; 

• sediment load; 

• vegetation; 

• debris problem; 

• channel relocation; 

• human activities on the floodplain of rivers. 
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CHAPTER III 

LITERATURE REVIEW 

 

 A review of the extensive literature provides a remarkable insight into previous 

appreciation of the problem. It often gives great ideas or useful hints for new research 

concerning the same type of problem. The past research works related to the prediction 

of meander migration were studied in order to have a better understanding of the existing 

techniques and an idea of a more reasonable/improved approach to the problem. In 

addition, available literature for the flume tests related to the meander migration was 

carefully reviewed to design an appropriate flume test setup for this research. Finally, the 

existing techniques with regard to risk analysis were investigated for developing a new 

methodology of risk analysis in the prediction of meander migration. The selected 

studies in each category are described in the following sections. 

3.1 MEANDER MIGRATION PREDICTIONS 

 There are a number of different models available for the prediction of meander 

migration, which include empirical equations (Keady and Priest 1977; Nanson and 

Hickin 1983; Hooke 1980; Brice 1982), time-sequence maps and extrapolations 

(Lagasse et al. 2003, 2004a, 2004b; Briaud et al. 2001a), and numerical models (Nagata 

et al. 2000; Darby et al. 2002). Note that time-sequence approach is covered in the risk 

analysis section (3.3) because this model can provide a certain type of risk level 

associated with the predicted migration. 
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3.1.1 Keady and Priest (1977) 

 Keady and Priest collected the published meander migration data up to 1977 to 

develop a prediction equation of meander migration. The collected data from eight 

different river reaches are tabulated in Table. 3.1. They proposed that the rate of 

downstream meander migration is related to the shear stress on the boundary. They 

further assumed that the shear stress is related to the free surface slope of the channel, 

geometric shape of the channel, and acceleration due to gravity. The final form of their 

model in terms of the above factors is expressed as follows; 

)(Sf
gA
V

=      (3.1) 

Where, 

   V = migration rate, (ft/yr) = dM/dt in Figure 2.3 

  A = meander amplitude, (ft) in Figure 2.3 

  g = acceleration of gravity, (ft/sec2) 

  s = free surface slope 

  f = function of s given in Figure 3.1 

 Braiud et al. (2001a) conducted an evaluation study for the existing techniques 

including Keady and Priest’s equation (Eq. 3.1). Additional data points from this study 

are added into the original plot as shown in Figure 3.1. The new points are scattered 

from the proposed trend line in the graph. Comparison between measured and predicted 

migration rate as shown in Figure 3.2 indicates that their method over-estimates the 

meander migration rate in the added cases. This implies that the proposed prediction 

equation is not a general solution for all cases. 
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Table 3.1 Data Used by Keady and Priest (after Keady and Priest 1977) 
Velocity of Meander Identification 

Migration (ft/yr) Amplitude (ft) 
Slope 

Mississippi R (LA) 60 13,000 0.0000436 
Mississippi R (MS) 111 11,000 0.0000588 
Mississippi R (TN) 225 13,200 0.0000777 
Red R (ARK) 350 2,900 0.000132 
Pearl R (LA) 20 1,050 0.000200 
Red Deer R (Canada) 20 1,200 0.000275 
Tombigdee R (MS) 13 800 0.000421 
Buffalo R (MS) 17 1,560 0.000689 

 

 
Figure 3.1 Graph for Determining Rate of Meander Migration (Keady and Priest 

1977; Briaud et al. 2001a) 
 

 
Figure 3.2 Predicted versus Measured Migration Rate using Keady and Priest’s 

Empirical Equation (Briaud et al. 2001a) 
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3.1.2 Hooke (1980) 

 Hooke analyzed the meander migration rate on rivers in Devon, England from 

field measurements taken over 2.5 years. These measured rates were compared with the 

rates obtained from historical maps for the period from 1840 to 1975. He also compared 

the measured rates with published rates of bank erosion in the literature, and found that 

the rate in his study followed the general trend of the worldwide values as shown in 

Figure 3.3. He expected that there is a reasonable correlation between migration rate and 

site conditions, which includes catchment area, fine-grained soil content of bank material, 

presence of gravel layer, width to depth ratio, radius of curvature, slope, and bank height. 

It turned out that the primary influencing factor is catchment area from multiple 

regression analysis, and it has an approximately square-root relationship with migration 

rate. The proposed equation by Hooke is as follows: 

45.02 )(45.2)/( kmAyrmM =            (3.2) 

Where, 

   M = migration rate 

  A = catchment area 

 According to the evaluation study for the existing techniques by Briaud et al. 

(2001a), this equation often produced overly conservative prediction results as shown in 

Figure 3.4. This might be due to the fact that Hooke’s empirical equation does not 

consider site specific conditions such as soil properties, flow history, and geometry of 

the river.   
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Devon streams

Published rates

Rate

Of 

Erosion

(m/yr)

Catchment Area ( km2 )

Devon streams

Published rates

Devon streams

Published rates

Devon streams

Published rates

Rate

Of 

Erosion

(m/yr)

Catchment Area ( km2 )  
Figure 3.3 Relationships between Catchment Area and Erosion Rates 

(after Hooke 1980) 

 

 

Figure 3.4 Predicted versus Measured Migration Rate using Hooke’s Empirical 
Equation (Briaud et al. 2001a) 

 



 21

3.1.3 Brice (1982) 

 Brice believed that meander migration rate should be somehow related to the size 

of the stream. He employed the channel width for his empirical model as a characteristic 

parameter for the stream size, while Hooke (1980) selected the drainage basin area that 

is an indirect measure of stream size. The database for the analysis, as shown in Figure 

3.5, consists of erosion rates in 36 nationwide streams in the US. The proposed formula 

to predict meander migration rate is as follows: 

0.01Y B=       (3.3) 

Where,   Y = mean erosion rate, (m/yr) 

     B = channel width, (m) 

 The additional data points were added to Figure 3.5 by Briaud et al. (2001a), and 

the predicted migration rates for the selected rivers in their evaluation study were 

compared with the measured values in Figure 3.6. It clearly indicates that Brice’s 

empirical equation seriously under-estimates the erosion rates in other rivers. This 

implies that his model is too simple to be applied to the other cases because he correlated 

migration rate with only one parameter, channel width.  
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Figure 3.5 Relationships between Migration Rate and Channel Width (Brice 1982; 

Briaud et al. 2001a) 

 

 

Figure 3.6 Predicted versus Measured Migration Rate using Brice’s Empirical 
Equation (Briaud et al. 2001a) 

 

3.1.4 Nanson and Hickin (1983) 

 Nanson and Hicken presented the lateral migration rate of a river as a function of 

the ratio of radius of curvature of a bend (rc) to channel width (b). This correlation was 
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based on the field data for the Beatton River and other rivers in Canada. Figure 3.7 

shows the relationship between the normalized channel migration rate (Mr/b) and the 

ratio of radius of curvature to channel width (rc/b). The additional data points from a 

previous study (Briaud et al. 2001a) were plotted together. According to the plot, the 

maximum migration rate occurs when the ratio of radius of curvature to channel width 

(rc/b) is about 3. Analysis of river meanders using an energy approach (Leopold and 

Langbein 1966, Chang 1984) supported this idea. A river does the least work in turning a 

curved bend when the ratio of radius of channel curvature to channel width becomes 3. 

In the range of rc/b < 3, as the radius of curvature decreases, migration rate tends to 

decrease drastically. In the range of rc/b > 3, as the radius of curvature increase, 

migration rate tends to decrease, but gradually. The data from Nanson and Hickin (1983) 

fit roughly to the following relations (Odgaard 1987): 

( ) 3)/(/0.2)/(

3)/()/(2.0)/(
1 ≥=

<=
− brforbryearmMr

brforbryearmMr

cc

cc                   (3.4) 

Where,   Mr = mean erosion rate, (m/year) 

     b = channel width, (m) 

     rc = radius of curvature, (m) 

 Although their approach has been very popular to other researchers, the data in 

the figure are widely scattered. It is therefore quite hard to get the best fit line. 

Furthermore, the other important parameters such as flow velocity and soil properties 

were not considered, which can be a serious limitation of their approach. The previous 

evaluation study of the existing technique for prediction of meander migration by Briaud 



 24

et al. (2001a) is an example to show such limitations on the application to other rivers 

where a similar scattering problem between predicted and measured migration rate is 

shown in Figure 3.8. 

 

 
Figure 3.7 Relationships between Migration Rate and Geometry (Nanson and 

Hickin 1983, 1986; Briaud et al. 2001a) 

 

 
Figure 3.8 Predicted versus Measured Migration Rate using Nanson and Hickin’s 

Empirical Equation (Briaud et al. 2001a) 
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3.1.5 Blondeaux and Seminara (1985) 

 Blondeaux and Seminara developed a 2-D model of flow and bed topography in 

a sinuous erodible channel. They examined the mechanism of the meander loop 

development by using the proposed model. Their analysis and comparison with 

experimental data appears to support that alternate-bar formation and bed amplification 

(i.e. meander loop) are dominated by two different mechanisms: instability and 

resonance, respectively. These two mechanisms are not totally independent, however, 

but are somewhat correlated to each other. They reported that a ‘resonance’ mechanism 

can occur when the values of the relevant parameters are within a optimum range to 

strengthen the swinging tendency of the meandering bends. 

3.1.6 Odgaard (1987) 

 Odgaard adopted the bend theory (Ikeda et al. 1981), in which the rate of bank 

erosion is proportional to the difference between the near-bank depth-averaged mean 

velocity and the reach-averaged mean velocity at bank full discharge, and this is 

expressed as follows: 

)(
_

uuev b −=       (3.5) 

Where,   v  = bank erosion rate, (m/year) 

              e  = erosion constant 

           
_

bu  = near-bank depth-averaged mean velocity, (m/s) 

             u  = reach-averaged mean velocity, (m/s) 

 He used his meander flow model (Odgaard 1986) to calculate the near-bank 

depth-averaged mean velocity. Then, he attempted to correlate the erosion rate with 
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various channel characteristics: width, depth, curvature, arc angle of channel centerline, 

channel slope, friction factor, and degree of vegetation on the banks. This analysis was 

based on the collected data for two different rivers in Iowa: East Nishnabotna River and 

Des Moines River. Figure 3.9 shows the comparison results between the measured and 

predicted erosion rate in East Nishnabotna River. Note that the erosion constant e is 

6.4x10-7 for no or light vegetation case (Figure 3.9(a)) and e is 3.2x10-7 for heavy 

vegetation case (Figure 3.9(b)). 

 

(a) No or Light Vegetation (b) Heavy Vegetation 
Figure 3.9 Measured versus Predicted Erosion Rate in East Nishnabotna River 

 (Odgaard 1987) 

 

3.1.7 Biedenharn et al. (1989) 

 Biedenharn et al. investigated the behavior of meandering bends on the Red 

River, particularly the reaches between Shreveport, LA, and Index, AR. A total of 160 

meandering bends, along approximately 150 miles, were examined, and the average 
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annual erosion rate were correlated with the ratio of radius of curvature of a bend (R) to 

channel width (W) as Nanson & Hicken (1983) did for their empirical approach. Figure 

3.10 shows the result of the analysis of collected data, and there is a reasonably good 

agreement with the data from Nanson and Hicken (1986). 

 

 
Figure 3.10 Average Annual Erosion Rate versus R/W (Biedenharn et al. 1989) 

 

3.1.8 Hudson and Kesel (2000) 

 Hudson and Kesel investigated channel migration and morphology of 

meandering bends for the lower Mississippi River for the period from 1877 to 1924. 

They tried to correlate the migration rate with the ratio of radius of curvature of a bend 

(R) to channel width (W). Figure 3.11 shows the results of data analysis, and the shape of 

plotted data looks little different from the previously reported plot by Nanson and Hickin 
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(1983); the maximum migration in the lower Mississippi River occurs where R/W is 

about 1.0. The authors explained this deviation in terms of homogeneity of sediment 

materials. The previous model (Nanson and Hickin 1983) is based on data from 

homogeneous flood-plain deposits which allows the channel to migrate in a more free 

way, while this model is based on data from heterogeneous flood-plain deposits 

including the existence of high erosion resistive clay plugs. This study supports that an 

empirical model for prediction of meander migration merely based on a correlation with 

a single parameter, without considering the other site-specific conditions, is hardly a 

general solution.  

 

 
Figure 3.11 Model of Channel Curvature and Migration in Lower Mississippi River 

(Hudson and Richard 2000) 
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3.1.9 Darby et al. (2002) 

 Darby et al. developed a comprehensive numerical model to simulate bank 

erosion and channel migration in meandering rivers. Their model consists of three sub-

models for flow, sediment transport, and bank erosion. One of unique features in this 

model is that the model can simulate the deposition of collapsed bank material and its 

removal from the toe of the bank by the flow. The model was evaluated by using two 

sets of flume tests data and one set of actual river data. The results are promising, but 

they generally underestimate the bank migration rates, which is undesirable.  

3.1.10 Abad and Garcia (2006) 

 Abad and Garcia (2006) developed the RVR MEANDER program as a handy 

toolbox to assist the prediction of meander migration. This program is based on their 

model for the evolution of meandering rivers (Abad and Garcia 2004). There are two 

sub-modules in this model. One sub-module (statistical module) estimates primary 

parameters of the meandering channel such as sinuosity, migration rate, fattening, and 

skewness automatically by comparing input geometries at three different times (Figure 

3.12). Another sub-module (migration module) simulates a plan form evolution 

(migration) based on the bend theory (Ikeda et al. 1981) where the bank erosion rate is 

proportional to the difference between the near-bank depth-averaged mean velocity and 

the reach-averaged mean velocity (Figure 3.13). 
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Figure 3.12 Statistical Module (Abad and Garcia 2006) 

 

 
Figure 3.13 Migration Module (Abad and Garcia 2006) 



 31

 Two versions of the program were developed: stand-alone Microsoft Windows-

based and geographical information system (GIS)-based versions. The stand-alone 

version was written in Microsoft Visual C++ and Microsoft Foundation Classes (MFC). 

The geometry input can be done by typing manually, utilizing a spreadsheet, or 

importing from an ArcMap-DXF file. 

 The GIS-based version was written in Microsoft Visual C++ and MFC like the 

stand-alone version. In addition, Visual Basic and the ArcObjectsTM Developer Kit 

were used as well. The user can import the river geometry data from existing GIS line 

data within ESRI ArcMap. An example result of the prediction of a meandering river is 

shown in Figure 3.14. 

 

 
Figure 3.14 Output of Plan form Migration (Abad and Garcia 2006) 
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3.2 MEANDER MIGRATION FLUME TESTS 

 There is not much literature available about the experimental study of meander 

migration, especially flume tests in an erodible bed. This is because it commonly 

requires a significant amount of effort to prepare the physical model in a flume, as well 

as an extremely high cost. A few valuable previous works based on the experimental 

study related to meander migration are reviewed and summarized in the following 

sections. Once this research on meander migration in clay, based on a large-scale flume 

tests, are published, very valuable information will be provided to many engineers. 

3.2.1 Friedkin (1945) 

The most remarkable set of flume tests on behavior of self-formed meandering 

rivers in a large-scale flume, 36 m (120 ft) long and 11.4 m (38 ft) wide, was conducted 

by the U.S. Army Corps of Engineers (Friedkin 1945) as shown in Figure 3.15. They 

conducted these flume tests in different conditions to investigate the effect of discharge, 

angle of attack, bed slope, initial cross-section, material types, and not feeding sand at 

the entrance. The studies were not based on a quantitative approach but rather on a 

qualitative approach. 
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(a) Initial Condition (b) After 4 hours 
Figure 3.15 Photos from Sand Flume Test with Feeding Sand at the Entrance 

 (Friedkin 1945) 
 

 The effect of not feeding sand at the entrance to balance the sediment transport 

was not noticeable at the beginning of the test. The lack of sediment supply at the 

entrance of the channel gradually caused the channel to flatten with decreasing velocity, 

slowly progressing downstream as shown in Figure 3.16. 

 

 
Figure 3.16 Photos from Sand Flume Test without Feeding Sand at the Entrance  

(after Friedkin 1945) 

Initial After 160 hours 
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 The size of the simulated meandering bends in the tests depends on the discharge 

and on the axial slope as shown in Figure 3.17 and Figure 3.18. From the tests, it is seen 

that the higher the discharge or axial slope, the bigger the bends. This trend is reasonable 

since both discharge and slope are function of the energy of a stream. 

 

 
Figure 3.17 Effect of Discharge on the Size of Bend (Friedkin 1945) 

 

 
Figure 3.18 Effect of Valley Slope on the Size of Bend (Friedkin 1945) 
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 The effects of changes in the initiating angle of attack were studied by varying 

angles from 30° to 45°, and then to 60° (see Figure 3.19). All other conditions were the 

same. It is quite obvious that the larger attack angle created the larger meandering bend. 

 

 

Figure 3.19 Effect of Attack Angle on the Size of Bend (Friedkin 1945) 

 

3.2.2 Schumm and Khan (1972) 

 Schumm and Khan examined the behavior of the model channel in a flume with 

respect to slopes and sediment loads. It was found that sediment loads are strongly 

related to slopes and that channel pattern changes dramatically when slope and sediment 

load exceed their threshold values. At a low slope and sediment load, the channel tends 

to keep the original pattern, and at a very high slope and sediment load, the channel 

altered to a braided channel. The meandering channel pattern can be produced only if the 

channel meets the required criteria: slope and sediment load are higher than the threshold 
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values, but lower than the upper bound values in which a braided channel is developed. 

These trends are illustrated in Figure 3.20 by plotting channel sinuosity versus slopes 

from the experimental results, in which sinuosity is defined as the ratio of channel or 

thalweg length to the straight line distance along the flume. 

 

 
Figure 3.20 Relation between Slope and Siuosity (Schumm and Khan 1972) 

 

3.2.3 Nakagawa (1983) 

 Nakagawa investigated the effect of the different boundary conditions at the 

wetted perimeter on the channel meandering by conducting a series of flume tests. He 

proposed that the shear stress distribution in the transverse direction is one of the 

primary parameters affecting channel meandering. Based on the experimental results, it 

was found that there is a prerequisite criterion in terms of a ratio of two shear forces at 

the channel bottom and bank to initiate river meandering. When the ratio of the total 

shear force along the channel bottom to that at the bank is lower than 0.2, the channel 

will meander.  
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 A total of five flume tests as shown in Table 3.2 were performed in a concrete 

flume which was 25 m (83.3 ft) long and 2 m (6.7 ft) wide. The flume was filled with 

sand 30cm (1 ft) deep except for the very beginning of the upstream. After leveling the 

sand surface to a designed slope, an initial channel was carved by a sand scraper. A 

constant-head tank connected to the entrance of the flume provided the desired constant 

flow rate, and a magnetic flow meter was installed to measure the flow rate. The sand 

with a median grain diameter d50 = 0.43 mm was used in the tests, and its specific 

gravity is about 2.65. There seemed to be no sediment supply at the entrance of the 

flume. Figure 3.21 shows a schematic diagram of the experimental setup. 

 

Table 3.2 Hydraulic Parameters in Flume Tests (after Nakagawa 1983) 
 Experiment No. 

Parameter 1 2 3 4 5 
Froude No. 0.50 0.44 0.61 1.21 2.18 1.60 1.45 
Mean flow velocity (cm/s) 20.2 17.0 30.1 31.8 37.4 32.8 36.7 
Mean water depth (cm) 1.7 1.5 2.5 0.7 0.3 0.43 0.65 
Elapsed time (min) 20 43 32 20 20 20 20 
Long. distance (m) 3.7 8.0 4.0 2.0 2.0 2.0 2.0 

 

1. low water tank
2. constant-head water tank
3. pump  
4. magnetic flow meter

5. sand scraper
6. weir
7. sand pool
8. return channel  

9. rail
10. initial channel

1. low water tank
2. constant-head water tank
3. pump  
4. magnetic flow meter

5. sand scraper
6. weir
7. sand pool
8. return channel  

9. rail
10. initial channel

1. low water tank
2. constant-head water tank
3. pump  
4. magnetic flow meter

5. sand scraper
6. weir
7. sand pool
8. return channel  

9. rail
10. initial channel

 
Figure 3.21 Schematic Diagram of the Flume Setup (after Nakagawa 1983) 
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 Figure 3.22 shows the dimensions of the initial trapezoidal cross-section and the 

boundary conditions for each case. As seen in the figure, only the first test was 

conducted in a fully erodible-bed, and the other three tests (Exp. 2, 3, and 4) were done 

in a partially erodible-bed where either the lateral or vertical erosion could occur. The 

photos taken during the first test are shown in Figure 3.23. A propagation phenomenon 

is clearly observed in the later stage at t = 305 min, where the amplitudes of the 

meandering bends are getting bigger progressing from the upstream to the downstream. 

This might be due to the lack of sediment supply as reported by a previous study 

(Friedkin 1945). 

 

 

Figure 3.22 Dimensions of the Cross-sections and Boundary Conditions 
(Nakagawa 1983) 
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(a) After 91 min (b) After 305 min 

Figure 3.23 Photos from Flume Test (Nakagawa 1983) 

 

3.2.4 Smith (1998) 

 A meandering river is common in natural rivers, but it is quite difficult to 

reproduce well defined and highly sinuous meandering channels in physical model tests 

(Smith 1998). Smith used a small-scale flume with a mixture of light, fine grained 

sediment to simulate meandering streams. A total of three experiments were conducted 

with different combinations of rock flour, diatomaceous earth, kaolinite, cornstarch, 

calcined white China clay as shown in Table 3.3. The first case, in which a mixture of 

diatomaceous earth and calcined white China clay was used, turned out to be the most 

successful test. 

 The flume tests were performed in a tilting flume, 3 m (10 feet) long, and 1.2 m 

(4 feet) wide. The water circulation system consisted of a small pump, collection tank at 
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the downstream. The flow rate was determined by measuring the volume of water for a 

specific duration. After mixing the different materials as predetermined, it was 

moistened and leveled. A straight initial channel was carved, and the slope was adjusted. 

A sediment supply at the upstream was fed at approximately 12 hours intervals. Note 

that the sediment was fed not continuously but intermittently, and a noticeable effect of 

sediment supply was not observed during the experiments.  

 

Table 3.3 Experimental Parameters of the Stream Flow (after Smith 1998) 
 DE + 

CWC 
Cornstarch + 

CWC 
Rock flour + 

Kaolinite 
Flow rate (ml/s) 9 35 45 
Slope 0.015 0.020 0.025 
Flow velocity (cm/s) 15 – 20 18 – 22 18 – 25 
Mean water depth (cm) ~ 0.5 ~ 0.5 ~ 0.7 
Froude No. 0.68 – 0.91 0.82 – 1.00 0.69 – 0.95 
Reynolds No. 750 – 1000 900 – 1100 1250 - 1750 
Note: DE = diatomaceous earth, CWC = calcined white China clay 

 

 The photos taken during the first test are shown in Figure 3.24. It was reported 

that channel migration had slowed after 250 hours, and the channel seemed to reach an 

equilibrium status after 500 hours, which means almost no change in the plan form was 

observed after 250 hours. In fact, this conforms to the proposed hyperbolic model in our 

research. Figure 3.25 shows the typical sequence of meander development observed 

during his flume tests. 
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(a) Broad View (flow runs from up to bottom) 

 
(b) Detailed View (flow runs from left to right) 

Figure 3.24 Photos from Flume Test (Smith 1998) 

 

 

Figure 3.25 The Sequence of Meander Development (Smith 1998) 
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3.2.5 Nagata et al. (2000) 

 Nagata et al. developed a numerical model to examine bed deformation and 

bank-line movement in 2D plan form. The 2D continuity and momentum balance 

equations were solved to obtain the unsteady open channel flow, filed in a moving 

boundary-fitted coordinate system. To predict the movement of the bank-line associated 

with erosion, a sediment transport model was developed based on the theory of non-

equilibrium sediment transport reported by Nakagawa and Tsujimoto (1980). An 

intermittent bank erosion model (Hasegawa 1981) was employed to model the bank 

collapse and deposition. 

 Laboratory experiments were conducted to verify the proposed model. They used 

a tilting flume, 10 m (33 feet) long, 1 m (3.3 feet) wide and 0.2 m (0.7 feet) deep, as 

shown in Figure 3.26. The initial meandering channel plan forms were designed to be a 

sine-generated curve with 2 m (6.6 foot) wavelength and a 30° attack angle at the 

entrance of the channel. A trapezoidal cross-section was used for the initial condition 

with 14 cm (5.5 inch) in bottom width, 30 cm (11.8 inch) in top width, and 4 cm (1.6 

inch) in bank height. A total of four wavelengths were prepared, but the measurement 

data from the second wavelength portion from the upstream were used due to the 

disturbances near the entrance and exit. The relatively uniform sand, with d50 of 1.42 

mm, was used, and sediment was fed manually at the entrance of the upstream during the 

experiments. The plan form variations at several different time steps were measured by 

taking photographs. A point gauge and a laser bed profiler were used to measure bed 

profiles. Since the purpose of the flume tests was to validate their numerical model, no 
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specific relationship of meander migration from the experiments was proposed in this 

study. 

 

 
Figure 3.26 Experimental Setup (Nagata et al. 2000) 

 

 The calculated plan forms at the different time steps by the proposed model are 

compared with the experimental results in Figure 3.27; there is a reasonable agreement. 

Figure 3.28 demonstrates the accuracy of the model regarding the temporal profiles of 

the cross-sections by plotting the calculated and observed results together. The simulated 

results follow a similar pattern of the cross-sectional change in the measured data.  
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Figure 3.27 Temporal Changes in Plan Forms (Nagata et al. 2000) 

 

 
Figure 3.28 Temporal Changes in Cross-Sectional Profiles (Nagata et al. 2000) 

 

3.3 RISK ANALYSIS FOR MEANDER MIGRATION 

 Nowadays probabilistic risk analysis is a popular approach in many engineering 

fields to estimate the probability of failure or to evaluate the confidence level associated 
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with any prediction result. The past relevant works by other researchers with regard to 

risk analysis for the soil erosion problem were studied and summarized.  

3.3.1 Briaud et al. (2003) 

 Briaud et al. (2003) developed the SRICOS-EFA method to predict the scour 

depth in clay as a function of time in a probabilistic way. Future hydrographs (daily 

discharge versus time) are a main input parameter to run their model. Since future 

hydrographs are unknown, and it is not realistic to make a deterministic prediction, they 

developed a new technique to generate equally possible future hydrographs in a 

probabilistic manner. The frequency distribution curve for all the floods in a historical 

hydrograph for a given duration are first populated, then the distribution is randomly 

sampled, and finally a future hydrograph for the prediction period is generated. Note that 

this future hydrograph has the same mean and standard deviation as the past hydrograph. 

This process is repeated to generate 10,000 different sets of future hydrographs. A final 

scour depth at the end of the design life is calculated according to each hydrograph. 

These 10,000 final depths of scour are then plotted to create a frequency distribution plot 

with a mean and standard deviation as shown in Figure 3.29. 
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Figure 3.29 Probability Distribution of Scour Depth, d, for Different Lengths  

of the Project Life, Lt (Briaud et al. 2003) 

 

 This analysis can be used to estimate the probability of exceedance R associated 

with the choice of different design values of scour depth and project lives. By definition, 

R is the probability that the design conditions are exceeded during the life of the 

structure. From the probability distribution of d (Figure 3.29) it is possible to determine 

the cumulative distribution function (CDF) of d (Figure 3.30). R is then estimated as the 

probability of exceedance. This analysis provides a statistical framework that can be 

used in a cost-benefit study of bridge foundation design. 
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Figure 3.30 Risk Associated with Different Design Values of the Final Scour Depth, 

d, and Different Lengths of the Project Life, Lt (Briaud et al. 2003) 

 

3.3.2 Lagasse et al. (2003, 2004a, 2004b) 

 Lagasse et al. (2003, 2004a, 2004b) conducted National Cooperative Highway 

Research Program (NCHRP) research Project 24-16. The final outcomes from this 

research were a stand-alone handbook for predicting stream meander migration using 

historical aerial photos, maps, and the computer program, “The Data Logger and 

Channel Migration Predictor”. Their methodology is based on time-sequence maps and 

an extrapolation technique. First, circles that represent a meandering bend at three 

different times are fitted, as shown in Figure 3.31(a). Then, the direction of new 

migration can be determined by extrapolating the previous direction of movement 

(Figure 3.31(b)).  Finally, the new location of the center and the magnitude of the radius 

are linearly extrapolated with respect to time (Figure 3.32). The equations for the 

extrapolation are Eqs. 3.6A to 3.6C. 
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(a) Circles Drawn along Outer Bankline  (b) Migration Direction 

Figure 3.31 Time-Sequence Maps and Extrapolations (Lagasse et al. 2004b) 

 

 
Figure 3.32 Predicted Position and Radius of Curvature of the Circle that Defines 

the Outer Bank of the Hypothetical Channel in Year 4 (Lagasse et al. 2004b) 
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 Briaud et al. (2001a) conducted a case study to evaluate this approach. A total of 

six sites were selected for the evaluation: Brazos River at SH 105 (two cases), Nueces 

River at US 90, Trinity River at FM 787, and Guadalupe River at US 59 (two cases). 

The result of the case study showed that it provided a reasonably satisfactory prediction 

of the radius of the meandering bend, but the direction of migration was predicted in the 

opposite direction to the historical data in some cases. 

 As part of this study, a database of measured bend migration was generated, and 

a statistical analysis was performed to develop guidance in estimating the normalized 

extension and translation migration with respect to the channel width for sites where 

aerial photos are not available. The procedures and guidance are given in the form of 

cumulative percentage plots. Two separate graphs produced from the case study are 

shown in Figures 3.33 and 3.34. There are four different categories of the channel such 

as Brice Class A, B1, B2, and C. For example, for meanders of the type Brice C sites, the 

probability of the normalized extension migration reaching 0.02 channel widths per year 

or less is 79 percent, according to Figure 3.33. For the same probability of 79 percent, 

the normalized translation migration, according to Figure 3.34, is 0.036 channel widths 

per year. 
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Figure 3.33 Cumulative Percentage of Extension Migration (Lagasse et al. 2004b) 

 

 
Figure 3.34 Cumulative Percentage of Translation Migration (Lagasse et al. 2004b) 

 

 Figure 3.35 shows example movements in percentages for a 30-year time period. 

This approach can be meaningful for sites in which historical records are not available. 
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The drawbacks of this method are that it cannot incorporate either a change in soil 

condition or a future hydrograph different from the past hydrograph. The advantages are 

its simplicity and its field-scale soil specifications. 

 

 
Figure 3.35 Example Movement Percentages for a 30-Year Time Period 

(Lagasse et al. 2004b) 
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CHAPTER IV 

FLUME TEST IN CLAY 

 

 This chapter investigates channel meander migration in clay by conducting 

physical modeling in a large-scale flume. The approach is to vary each primary 

parameter obtained from dimensional analysis while keeping the remaining parameters 

constant. The effect and impact of each individual parameter on meander migration can 

then be examined to provide a basis for a parametric study. 

4.1 DIMENSIONAL ANALYSIS 

 According to the physical considerations on meander migration phenomenon, the 

primary factors affecting the channel bank-line migration distance M of any point along 

the channel can be divided into four major categories: geometry, hydraulic condition, 

soil property, and the others not listed above. The parameters of geometry (Figure 4.1) 

consist of the channel width W, the radius of curvature of the channel R, the angle of the 

channel bend φ, and the channel bed slope s. The parameters of hydraulic condition are 

the fluid density ρw, the fluid viscosity μw, the average flow velocity U, and the water 

depth h. The parameter of soil property is the critical shear stress τc at which the bank 

erosion is initiated. The other parameters include external forcing, vegetation condition, 

and obstacles for the flow such as manmade structures, debris, etc. All of the parameters 

in the first three categories, as well as gravitational acceleration g, are considered in this 

research. The relationship between these parameters is formulated as: 

0 ( ,  ,  ,  ,  ,  ,  ,  ,  ,  )w w cM f W R s U h gφ ρ μ τ=    (4.1) 
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Figure 4.1 Channel Configurations 

 

 After the dimensional analysis, to calculate the migration distance M, the 

following relationship is obtained: 

1 2( ,  ,  , ,  ,  ,  )c

w

M R hf Fr s Re
W W W U

τφ
ρ

=    (4.2) 

Where, 

   Re = Reynolds Number = ρwUh/μw  

   Fr = Froude Number = U/(gh)1/2 

The water depth depends on the flow rate and the channel bed slope in an open 

channel. If the flow rate and the cross-section are constant along the channel, a constant 

water depth is obtained by adjusting the channel bed slope. In other words, the channel 

bed slope is a dependent parameter of the flow rate and water depth. It is therefore 

ignored in the experimental study. Since the estimated Reynolds number in the 

experiments is larger than 15,000, the effect of fluid viscosity is minimal, so it can also 

be ignored (Munson et al. 2006). The dimensionless critical shear stress τc/ρwU2 is 

converted into the critical Froude number, Frc at which bank erosion is initiated. 

Removing the negligible parameters from the above, the equation is simplified to: 

2 ( ,  ,  ,  )M Rf Fr Frc
W W

φ=             (4.3) 
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 To predict the meander migration distance along the channel, it is necessary to 

move the whole channel point by point. In other words, a new parameter that represents 

the arbitrary location of interest within a certain channel bend should be included. The 

additional parameter θ, which varies from 0 to φ, is employed to denote the position 

along the channel. Finally, the equation from dimensional analysis is expressed as: 

3 ( ,  ,  ,  ,  )M Rf Fr Frc
W W

θ φ
φ

=      (4.4) 

4.2 EXPERIMENTAL SETUP 

 The meander experiments in clay were conducted in a large basin located on the 

second floor of the Hydromechanics Laboratory at Texas A&M University (Figure 4.2). 

The experimental setup consisted of these parts: test flume with the water circulation 

system, flow meter calibration, data measurement system, and soil. 

4.2.1 Test Flume Setup 

 The basin in the Hydromechanics Laboratory is 22.0 m (72.6 feet) long, 10.0 m 

(33 feet) wide, and 0.9 m (3 feet) deep. The basin was filled with approximately 200 tons 

of sand left from the previous flume tests (Yeh 2007) in sand. Sand was used in order to 

not only save on clay cost but also to minimize the maintenance effort of keeping 

moisture on the clay. 

 For each case, a guide channel in the sand bed was carved to put the clay banks 

along the predetermined channel and to form the channel geometry. To reduce the scale 

effect, the channel was designed to maximize the scale ratio while containing at least 

three curved bends. A straight channel was connected to each end of the curved channel 

with a transition, which is a curved bend of one-half of the bend angle, φ. The straight 
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section was kept long enough so the flow became fully developed before it entered the 

first curved bend. The initial cross section of the channel is of rectangular shape with a 

width of 60.0 cm (23.6 inches) and a depth of 12.0 cm (4.7 inches) (Figure 4.3 (d)). 

Plywood plates were laid at the bottom of the channel so only the banks would erode. 

 

 

Figure 4.2 Experimental Setup in the Hydromechanics Laboratory 

 

 During the first pre-test with a trapezoidal cross section of the channel (Figure 

4.3 (a)), almost no erosion was observed on the side walls along the channel. Thus, no 

lateral movement of the river occurred, as shown in Figure 4.4. Instead, erosion of the 

bottom of the channel was observed. This is attributed to the relatively low shear stress 

on the walls as compared to the higher shear stress on the bottom of the channel. 
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(a) 

Sand Bed
(Unit: cm)

ClayClay

(b) 

(Unit: cm)

Clay

Sand Bed

Clay

(c) 

Plastic Bottom(Unit: cm)

Clay Clay

Sand Bed

(d) Clay

(Unit: cm)

Clay

Plywood Bottom
Sand Bed

Figure 4.3 Trial Cross Sections: (a) Case 01, (b) Case 02, (c) Case 03, and  
(d) Case 04 (Finally Adapted Cross Section) 

 
 

(a) t = 0 hr (b) t = 20 hr 
Figure 4.4 Photos of Clay Test Case 01 (R/W = 4, φ = 120o, Fr = 0.50) 
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 In the second pre-test, the cross-sectional shape was changed from a trapezoidal 

to a rectangular channel which had vertical walls on both sides. This increased the shear 

stress on the side walls so that the lateral movement of the river could be simulated 

(Figure 4.3 (b)). This test did induce side wall erosion along the channel, but there was 

still excessive bottom erosion as well, as shown in Figure 4.5. A huge amount of bottom 

clay was required to accommodate this bottom erosion. Since the clay cost and 

preparation time for the bottom layer were prohibitive, a non-erodible bottom such as a 

thin plastic sheet was used.  

 

(a) t = 6 hr (b) t = 106 hr 
Figure 4.5 Photos of Clay Test Case 02 (R/W = 4, φ = 120o, Fr = 0.50) 

 

 In the third pre-test, the bottom material was changed to the plastic sheets (Figure 

4.3 (c)) while keeping the vertical walls on both banks. It was found that the roughness 

of the plastic was too low compared to that of the clay. As a result, local flow velocity 

on the bottom increased, causing vibration of the plastic and turbulent flow (Figure 4.6). 

Therefore, the bottom layer was replaced with treated plywood to match the roughness 

of clay and increase the stiffness to avoid excessive vibration (Figure 4.3 (d)). 
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(a) t = 0 hr (b) t = 184 hr 
Figure 4.6 Photos of Clay Test Case 03 (R/W = 6, φ = 65o, Fr = 0.50) 

 

 To investigate the impact of a non-erodible channel bottom with respect to 

magnitude of migration distance, the measurement data from Case 02 (erodible bottom) 

are compared with those from Case 07 (non-erodile). The only difference between these 

two cases is the bottom condition, where the radius-to-width ratio R/W is 4 and the bend 

angle φ  is 120° in both cases. It is found that the channel with non-erodible bottom 

produces somewhat larger migration than the channel with erodible bottom, which 

means the prediction results, based on the non-erodible bottom condition, will be 

conservative. The comparison results of two cases are shown in Figure 4.7. The 

measurement data from Case 02, however, is available only for the early stage during the 

test, and thus this conclusion might be applicable only for the early stage. 
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Figure 4.7 Migration Distance in Erodible versus Non-erodible Bottom 

 

 The channel slope was carefully controlled by adjusting the slope of the sand bed 

to maintain a constant initial water depth of h = 10 cm (3.9 inches) along the channel 

with a maximum discrepancy less than 1.0 cm (0.4 inch) which corresponds to 10 

percent of the design depth in each test case. The water circulation system consisted of a 

pump, a constant-head water tank, a piping system, a sump in the basement, a clay 

channel, and two reservoirs before the entrance of the channel and after the exit of the 

channel. A sluice gate after the downstream reservoir controlled the water depth in the 

channel.  
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 The pump was located on the ground floor, while the basin was on the second 

floor. Water pumped from the sump tank in the basement into the constant-head water 

tank through the piping system which then flowed into the clay channel passing the 

upstream reservoir (Figure 4.8). The function of the upstream reservoir was to minimize 

turbulence before water flow into the clay channel. A 3-inch PVC diverting pipe in the 

constant-head water tank eliminated the excessive pumping capacity. In addition, a 3-

inch PVC overflow pipe, located at about 3/4 of the height of the water tank, kept the 

elevation head constant. The water from the water tank was supplied through two PVC 

pipes (3-inch and 4-inch) to maximize the amount of water supply into the upstream 

reservoir. Since the 3-inch pipe was kept fully open during the experiments, there was no 

need for a flow meter. One flow meter was installed on the 4-inch pipe, however, to be 

able to adjust the amount of water.  

 

 

Figure 4.8 Upstream Reservoir and Water Tank 

Flow Meter 
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4.2.2 Flow Meter Calibration 

 The flow meter is a device to measure the flow rate. The flow meter used in this 

study consisted of two components: a flow sensor and a flow transmitter (Figure 4.9). 

The flow sensor was spliced to the 4-inch PVC pipe. It had an impeller inside the sensor 

so that it could generate a low impedance wave signal which was transmitted with a 

frequency proportional to the flow rate. The transmitter then converted the signal from 

the sensor to a linear analog signal. A digital multi-meter was connected to the 

transmitter to read the output current. A calibration curve showing the relationship 

between the actual flow rate inside the pipe in gallons per minute (GPM) and the output 

current in milliampere (mA) from the transmitter was needed. 

 

 
 

(a) Flow Sensor (b) Flow Transmitter 

Figure 4.9 Flow Meter for 4-inch PVC Pipe (source: www.dataindustrial.com) 

 

 The best way to calibrate the flow meter is to conduct the calibration not for the 

flow meter itself but for the installed water circulation system in the basin instead. This 
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method ensures the most accurate result for the specific setup condition of the water 

supply system. The procedures of the calibration of the flow meter are as follows: 

1. Calibrate the volume of the upstream reservoir by using a bucket that has a 

known volume. 

2. Adjust the flow rate to a certain level and record the output current (mA). 

3. Filled the upstream reservoir with water and record the required time so that the 

flow rate (GPM) can be calculated. 

4. Repeat steps 2 and 3 several times with a different flow rate each time. 

The calibration results are plotted on Figure 4.10; the linear trend line was used to adjust 

the flow rates for the experiments in the basin. Note that the full capacity of the 3-inch 

pipe (150GPM), which was kept fully open during the experiments, should be added to 

the flow rate from this trend line to get the total flow rate. 
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Figure 4.10 Calibration of the Flow Meter – Calibration Curve 
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4.2.3 Measurement of Geometry and Flow Velocity 

 Data acquisition during the test included water depth, geometries of the bank-

lines, water surface elevation profile, and water velocity. Water depth was measured at 

the channel center line using a ruler. For the geometry of two bank-lines, a laser 

coordinate-measurement system was used, as shown in Figure 4.11. Before this laser 

system was selected, digital photogrammetry was considered for the geometry data 

acquisition because it has been frequently used as a surface monitoring tool in fluvial 

research in both flume and natural river channel studies (Lane et al. 2001). There were 

two major issues with employing this technique, however, including a high cost to setup 

the necessary equipment in a large-scale flume and reflection problems due to the water 

surface. As a result, a laser coordinate system was designed instead. In this system, an 

instrument bridge spanning the flume over the test section was used to mount the laser. 

Two coordinate scales were installed: one on the side wall of the flume for the x 

direction, and one on the instrument bridge for the y direction. Once the bridge moved to 

a pre-designated x-coordinate position, the y-coordinate was obtained by sliding the 

carrier on the bridge to the interfaces between the clay banks and water. The 

measurement error in this system is 1.0 cm which is 1.7 % of the initial channel width. 

 The water surface elevations were measured for several designated cross sections 

at certain time intervals. A plumb bob and a digital level measured the changes in water 

surface elevation throughout the tests, as shown in Figure 4.12. An analog multi-meter 

connected to two electrical wires detected current changes between the plumb bob and 

the wires through the ground when the tip of the plumb bob touched the water surface. In 
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addition, a digital level was used to take readings of relative changes in the elevation 

from a scale attached to one of the wires. This system avoided possible extensive 

calibration work since all readings are independent of the measurement locations. The 

measurement error for water surface elevation is 1.0 mm which is 1.0 % of the initial 

water depth. 

 

 
Figure 4.11 Carrier with Laser Sliding on the Bridge for Transverse Coordinate 

(y-direction) Measurement 

 

(a) Attached Scale and Plumb Bob (b) Digital Level 

Figure 4.12 Carrier with Laser Sliding on the Bridge for Transverse Coordinate  
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 Acoustic Doppler velocimetry (ADV) uses the acoustic Doppler Effect to 

measure the water velocity by measuring the velocity of small particles in the water 

(Lane et al. 1998). It has been widely used to measure the velocity of water in every type 

of hydraulic research, and it can also be used to estimate turbulence characteristics 

(Nikora and Goring 1998). In this study, a 2-D ADV measuring the velocity in two 

orthogonal components (longitudinal and transversal direction) was adapted because it 

could allow closer access to a channel bottom than a 3-D one. Its accuracy is 1.0 % of 

measured velocity and the applicable velocity range is from 1.0 mm/s to 2.5 m/s. The 

main use of the ADV was to obtain the average flow velocities by measuring the 

velocity at the center of the selected cross-sections along the channel. At a certain time 

step, more extensive velocity measurements were performed to obtain the 2-D velocity 

maps at the same cross-sections to get a better understanding of the flow patterns. For 

this purpose, the ADV probe was installed on a frame on which a tape measure was 

attached to trace the location of the measurement points within the channel (Figure 4.13). 
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(a) ADV Probe 

 
(b) Installed ADV Probe on a Frame 

 
(c) Data Acquisition Computer Connected to ADV Probe 

Figure 4.13 Water Velocity Measurement Instrument 

 

4.3 Clay Properties 

 The maximum mean velocity from the water supply system was about 55.0 cm/s 

due to the limited height of the water tank (525 gallons). Therefore, a more erodible clay 

type was chosen to initiate the erosion process under the experimental setup. “Grande” 
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clay is the most erodible clay type among the available clays from the clay supplier 

(located in Austin), so it was used for all the flume tests 

4.3.1 Index List 

 Grain size distribution analysis, including a hydrometer test for the Grande clay, 

was carried out according to the ASTM standard D422: Standard Test Method for 

Particle-Size Analysis of Soils. The result is shown in Figure 4.14. 
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Figure 4.14 Grain Size Distribution Curve of Grande Clay 

 

4.3.2 Engineering Properties 

 Geotechnical tests were conducted according to the ASTM standard D4318 

(Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils) to 

obtain the engineering properties of Grande clay. The obtained properties are tabulated 

in Table 4.1. The vane shear test was also conducted to obtain its undrained shear 

strength, and the result is shown in the table. 
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Table 4.1 Geotechnical Properties of Grande Clay 
Liquid Limit 

(LL) 
Plastic Limit 

(PL) 
Plastic Index 

(PI) 
Shear Strength 

(kPa) 
28.4% 14.5% 13.9% 8.2 

 

4.3.3 Erosion Properties 

 Seed et al. (2006) defines erodibility, not as a single number, but rather as a 

relationship between the erosion rate and the hydraulic shear stress. This relationship is 

named the erosion function, and can be obtained by conducting the EFA (Erosion 

Function Apparatus). The EFA was developed to measure the erodibility of a soil sample 

for predicting the scour depth at bridge piers (Briaud et al. 1999). The test results include 

the relationships of the soil erosion rate (mm/hr) with the mean velocity (m/s) and the 

shear stress (Pa). The results of the EFA test for Grande clay are shown in Figures 4.15 

and Figure 4.16. From the figures, the critical Froude number Frc is estimated as 0.38. 

The critical Froude number is the minimum Froude number that initiates the bank-line 

erosion in the tests. 
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Figure 4.15 Erosion Rate versus Velocity from the EFA Test 
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Figure 4.16 Erosion Rate versus Shear Stress from the EFA Test 
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4.4 FLUME TEST MATRIX 

 A total of eight flume tests cases were conducted with the parameters shown in 

Table 4.2. The first three cases are the preliminary tests performed for finding the 

optimal experimental conditions regarding the slope of the channel and the cross-

sectional shape. After the preliminary tests, five cases were conducted to vary the radius-

to-width ratio R/W and the bend angle φ. The geometries of the channel for all cases are 

plotted in Figure 4.17. Note that the parameters in Table 4.2 refer to the initial test 

conditions and do not reflect later changes. A constant Froude number in the tests was 

used for all cases because the critical Froude number is very high and the margin to 

increase the flow rate is minimal due the laboratory conditions. Furthermore, it was 

found from the previous tests in sand that the Froude number effect on the maximum 

meander distance is insignificant (Yeh 2007).  

 

Table 4.2 Test Matrix in Clay Tests 

Case 
No. R/W φ Fr Fr-Frc 

01 4 120˚ 0.50 0.12 
02 4 120˚ 0.50 0.12 
03 6 65˚ 0.50 0.12 
04 4 65˚ 0.50 0.12 
05 6 65˚ 0.50 0.12 
06 2 65˚ 0.50 0.12 
07 4 120˚ 0.50 0.12 
08 4 220˚ 0.50 0.12 
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Figure 4.17 Sketches of Plan Forms of All Test Cases 

 

4.5 FLUME TEST PREPARATION 

 The required channel slope for maintaining a constant water depth along the 

channel varies case by case since it mainly depends on the geometry of the channel. 

Therefore, the first step in test preparation is leveling the sand bed. This step includes 

drawing two reference lines on each flume side wall marking the bed level, flooding the 

entire test area, and leveling the sand bed by draining water gradually. Once the leveling 

work was done, the water inside the sand was drained. To make the sand bed more stable, 

a couple of holes were dug and the water was then pumped out. Subsequently, the 

contour of the guide channel in the sand bed was drawn, and the sand channel was 

carved using a mold and shovels. Figure 4.18 shows the carved guide channel in the sand 

bed.  
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Figure 4.18 Carved Guide Channel in the Sand Bed 

 

 Plywood plates were cut according to the shape of the guide channel and laid on 

the bottom of the channel. This means only the banks were erodible. The Grande clay 

was delivered in blocks of 25 cm (9.8 inches) × 18 cm (7.1 inches) × 18 cm (7.1 inches). 

Each block was in a sealed plastic bag. The clay blocks were laid on both sides of the 

channel using a wooden mold placed on the middle of the channel (Figure 4.19). The 

finished clay banks were covered with soaked cloths to maintain moisture inside the clay. 

The cloths were sprayed frequently to retain moisture until the tests started. A series of 

photos for the step by step procedures is shown in Appendix A. 

 

 
Figure 4.19 Laying the Clay Blocks along the Channel 
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4.6 FLUME TEST PROCEDURES AND MEASUREMENTS 

 All the flume tests in clay were conducted according to the following procedure: 

1. Measure the initial geometry of both bank-lines (left and right). 

2. Turn on the pump and adjust the flow rate to the predetermined value. 

3. Adjust the sluice gate to obtain the desired constant water depth of 10 cm (3.9 

inches) in the channel. 

4. Take pictures of the initial running conditions. 

5. Measure the initial water velocity on several predetermined stations. 

6. Measure the water surface elevation along the channel. 

7. At the next time step, take pictures of the running conditions and shut down the 

experiment. 

8. Measure the geometry of both bank-lines. 

9. Take pictures of the drained channel. 

10. Re-start the experiment and measure the water velocity, the water depth, and 

water surface elevation. 

11. Repeat steps 7 to 10 until the experiment is completed. 

12. After the experiment is finished, measure the cross-sectional profiles. 

 For each case, the primary measurements were the geometry of the bank-lines, 

the water velocity, the water depth, and the water surface elevation. Note that the typical 

cross-sectional profile along the eroded channel has a concave bank wall on the outer 

bank as shown in Figure 4.20. In this situation, the right bank-line location was 
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measured at the deepest spot along the concave wall, otherwise there was no erosion 

seen from the measurement at the interface with the water surface. 
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Figure 4.20 Definition of Bank-line in Flume Tests 

 

4.7 TEST RESULTS 

 The photos taken during each flume test and all the test results are shown in 

Appendix B and C, respectively. The test results of case 08 are presented in this chapter 

as an example case. Two photos in Figure 4.21 show the initial and final conditions of 

the test. In the photos, most parts of the outer banks were eroded, while the inner banks 

were mostly intact. This phenomenon can be clearly seen in Figure 4.22 which 

represents the measured initial geometry and final geometry on both bank-lines. 
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(a) Initial Condition at t = 0 hr 

 
(b) Final Condition at t = 336 hr 

Figure 4.21 Photos of Clay Test Case 08 (R/W = 4, φ = 220o, Fr = 0.50) 
 

 

Initial & Final Channel Geometries (Clay Test Case 08_R/W  =4, φ =220, Fr  =0.50)
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Figure 4.22 Channel Geometry at the Initial Stage and Final (336 hr) Stage (Clay 

Test Case 08) 
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 The plan form evolution of the second and third bends at several different time 

steps is shown in Figure 4.23. The figure shows that the channel bank-line expands 

laterally and translates downstream. In other words, the channel migration contains two 

components: cross-valley movement and down-valley movement. The bank-line 

movement begins from the first half of the leading outer bend (0.0 < θ /φ < 0.5) and ends 

on the second half of the following inner bend (1.5 < θ/φ < 2.0). The maximum 

movement occurs behind the apex of the outer bend (θ/φ = 0.5), which indicates a phase 

lag to the channel curvature. Both right and left banks have a similar but alternate 

erosion pattern. 

 

 

Plan Form Evolution (Clay Test Case 08_R/W  =4, φ =220, Fr  =0.50)
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Figure 4.23 Plan Forms Evolution at t = 0, 24, 48, 72, 96, 120, 150, 180, 210, 240,  

and 336 hr (Clay Test Case 08) 
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 Three cross-sectional profiles looking downstream at stations 1, 4, and 6 are 

plotted in Figure 4.24. The locations of these stations are shown in Figure 4.25. Most 

erosion occurred in the outer banks as expected. The coarse particles in the Grande clay 

deposited along the inner banks in the channel, although the amount was relatively small 

in comparison with that in the sand flume tests (Yeh 2007). Note that Grande clay 

contains approximately 30 % fine sand particles as shown in the grain size distribution 

curve. Therefore, some heavy sandy particles deposited at the inner banks where the 

flow velocity is relatively lower, while the finer particles were suspended in the water 

and carried downstream along the channel. 

 

(a) 

Clay Test Case 08 Cross-Sectional Profile at ST1

0
2
4
6
8
10
12

200210220230240250260270280290300
x (cm)

y 
(c

m
)

Outer Bank                   Initial                   Final (336hr)

 

(b) 

Clay Test Case 08 Cross-Sectional Profile at ST4
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(c) 

Clay Test Case 08 Cross-Sectional Profile at ST6
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Figure 4.24 Evolution of Cross-Sectional Profiles at Three Stations 
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Figure 4.25 Locations of the Predetermined Stations 

 

 The mean velocities in different time intervals at the predetermined stations are 

shown in Figures 4.26. In this study, the mean velocity U is obtained in two methods: 1. 

Direct measurement at the center of the cross-section using the ADV; 2. For the given 

flow rate, the cross-sectional area is estimated from the geometry measurement and then 

the mean velocity is calculated as U = Q/Aw, with Aw being the wetted cross-section area. 

The mean velocities from the two methods are often quite different each other. This is 

because the mean velocity by ADV measurement is the local velocity at the middle of 

the cross-section, meaning it can be quite sensitive to the measurement location. 

Therefore, the mean velocity estimated as U = Q/Aw would be more reasonable 

representation of the average flow velocity in the channel.  
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Mean Water Velocity Profile (Clay Test Case 08_R/W  =4,φ  =220, Fr  =0.50)
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(a) Direct Measurement by ADV 
Mean Water Velocity Profile (Clay Test Case 08_R/W  =4,φ  =220, Fr  =0.50)
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(b) Calculated by the Equation of Continuity (U = Q/Aw) 
Figure 4.26 Mean Velocity Profile (Clay Test Case 08) 

 

 The measured water elevations in different time intervals at the predetermined 

stations are shown in Figures 4.27. The water elevation Hw was measured at the middle 

of the cross section along the channel. The water surface elevations decreased as the 

bank-line erosion process continued.  
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Water Surface Elevation Profile (Clay Test Case 08_R/W  =4,φ  =220, Fr =0.50)
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Figure 4.27 Water Surface Elevation Profile (Clay Test Case 08) 

 

 The longitudinal surface velocity profiles measured by using ADV at the 

beginning of the flume test (Case 08) are plotted in Figure 4.28. It successfully shows 

that the maximum longitudinal velocity along the second bend is gradually shifting from 

left to right bank (i.e. inner bank to outer bank). In general, this trend in the measured 

velocities matches well to the simulated free surface velocities by 3-D numerical 

simulation as shown in Figure 4.29. 
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Figure 4.28 Longitudinal Surface Velocity Profiles at T0 (Clay Test Case 08) 

 

 
Figure 4.29 Free Surface Velocity Profiles from Numerical Simulation (after 

Briaud et al. 2007) 



 82

 The longitudinal and transversal velocity profile at the predetermined station, 

ST4, is shown in Figure 4.30. The secondary flow pattern is clearly detected in the 

measurement result (Figure 4.30(b)). The measured velocity profiles for other stations 

and at different time steps are included in Appendix C.  

 

 
(a) Longitudinal Velocities 

 
(b) Transversal Velocities 

Figure 4.30 Initial Velocity Profiles at ST4 (Clay Test Case 08) 
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CHAPTER V  

DATA ANALYSIS OF FLUME TEST RESULTS 

 

 The flume test results are analyzed to propose two equations for maximum 

migration distance and initial migration rate. A hyperbolic model is chosen to model 

meander migration process with respect to time, and the experimental data is fitted with 

this model to get the spatial distributions of two target variables (Mmax and iM ) along the 

channel. Then, the appropriate forms of the distribution functions are proposed to 

describe the spatial distributions. Finally, the multiple regression technique is applied to 

estimate the unknown coefficients in the proposed equations. 

5.1 DATA DEDUCTION FOR MAXIMUM MIGRATION DISTANCE 

 The channel migration distance is defined in the normal direction to the initial 

channel bank-line. During the flume tests, it was observed that the channel migration 

rate had its maximum value at the beginning of each test, which means that the channel 

was eroded quickly within a short period of time. However, as the water continued to 

erode the channel banks, the migration rate decreased gradually, expecting a maximum 

value of the migration distance when the time is infinite (i.e. equilibrium state). The 

measured migration distance at a cross section on the right bank is shown in Figure 5.1 

as an example, and it clearly shows the aforementioned behavior. The experimental data 

points are fitted with a hyperbolic function as follows: 

bta
tM
+

=               (5.1) 

Where, 
  M = channel migration distance, (cm) 
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  t = time, (hr) 

 a = constant in which 1/a is the initial migration rate, iM  (cm/hr) 

 b = constant in which 1/b is the maximum migration distance, Mmax (cm) 
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Figure 5.1 Migration Distance versus Time in Clay Test Case 08 (R/W = 4,  

φ = 220°, Fr = 0.50, θ/φ = 0.69) 

 

 Alternatively, the t/M can be plotted against the measurement time, and then the 

data can be fitted with a linear equation as shown in Figure 5.2. The advantage of this 

method is that the scattering data, particularly at the very beginning stage, can be easily 

identified and thus discarded in the fitting process. The source of these scattered data 

points might be non-homogeneity of the clay condition between the surface and inner 

portion of the clay banks. In other words, the surface of the clay bank was more likely to 

be dried out than the inner part during the preparation of the test setup, although water 

was sprayed regularly all over the clay banks. This drying could decrease the erosion 

rate at the beginning of the test. Consequently, all the experimental data are checked by 
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plotting the t/M versus time graphs, and then those scattering data at the early time steps 

are discarded in analyzing the experimental data. 
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Figure 5.2 T/M versus Time in Clay Test Case 08 (R/W = 4, φ = 220°, Fr = 0.50, 

 θ/φ = 0.69) 

 

 The maximum migration distance Mmax at each cross section along the channel is 

obtained by curve fitting the measured data points using the hyperbolic function as 

described above. After curve fitting at every point along the channel (i.e. obtain Mmax 

value for each point), the spatial distribution of the maximum migration distances are 

obtained. A 3-point moving average technique is applied to smooth out the distribution 

because there are some noisy values of Mmax along the channel. The maximum migration 

distances are then normalized by the initial channel width W, as shown in Figure 5.3 

(Clay Test Case 08). 
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Distribution of Mmax (Clay Test Case 08_R/W =4 φ=220 Fr  =0.50)
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Figure 5.3 Mmax Distributions along the Channel for Clay Test Case 08 

 

 A 3-D numerical simulation result (Briaud et al. 2007) indicates that the 

secondary flow is fully developed from the second bend. In the experiments, 

measurement data are taken from the second bend to the third bend in order to ensure 

that the fully developed secondary flow in the channel is accounted for, and that the 

backwater effect from the channel exit can be negligible. The result shows that Mmax 

along the channel has a peak value behind the channel apex (θ/φ = 0.5), which means 

there is a phase lag to the channel curvature. The typical shape of the Mmax distribution in 

the flume tests turns out to be a skewed bell shape, unlike a Gaussian distribution which 

has a symmetrical bell shape. To accommodate this skewness, the Pearson IV 

distribution function is employed to formulate the Mmax values along the channel: 
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where a is the maximum value of Mmax/W, θ/φ is the normalized angle, b is the location 

(in terms of θ/φ) of the maximum value, c and d are the coefficients controlling the 

bandwidth of the bell-shaped distribution, and e is the coefficient controlling the 

skewness of the distribution. It turns out that the Pearson IV function can represent the 

distribution of Mmax well in all the cases as shown in Figure 5.4. 
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(b) 

Distribution of Mmax (Clay Test Case 05_R/W =6 φ =65 Fr  =0.50)
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Figure 5.4 Experimental Data and Fitted Curve for Mmax 
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(c) 

Distribution of Mmax (Clay Test Case 06_R/W =2 φ =65 Fr  =0.50)
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(d) 

Distribution of Mmax (Clay Test Case 07_R/W =4 φ =120 Fr  =0.50)
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(e) 
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Figure 5.4 Continued 
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5.2 PROPOSED EQUATIONS FOR MAXIMUM MIGRATION DISTANCE 

 There are five undetermined coefficients in the proposed prediction equation for 

Mmax (Eq. 5.2). These coefficients are found by correlating the measurements with the 

three controlling parameters, R/W, φ, and Fr-Frc. Based on physical considerations and 

observations, the near-bank velocity in a cross section has a stronger relationship with 

the channel migration than the mean velocity. Therefore, a correction factor, β that 

represents the magnitude of the near-bank velocity in terms of the mean velocity, is 

employed in the analysis. A 3-D numerical simulation result (Briaud et al. 2007) shows 

that the correction factor β is affected by the channel radius curvature R. In other words, 

if the approaching velocity is the same, the centrifugal force in a small R/W channel 

generates a larger near-bank velocity than that in a large R/W channel. The following 

simple equation, based on the numerical simulation results, is used to estimate the 

correction parameter β with respect to R/W: 

1
/
1

+=
WR

β      (5.3) 

According to Eq. 5.3, the near-bank velocity in the channel, when R/W = 2, is 1.5 times 

larger than the mean velocity. If the channel is less sinusoidal (e.g. R/W = 6), it becomes 

1.2 times larger than the mean velocity. Since the correction factor β is used in the 

analysis, two other controlling parameters, R/W and Fr-Frc, can be incorporated as a 

single parameter (i.e. βFr-Frc), where the effect of R/W is embedded in the correction 

factor β. 

 The correlations between the five coefficients and βFr-Frc are shown in Figure 

5.5. The result shows the maximum peak value of Mmax occurs at βFr-Frc = 0.37 where 
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R/W = 2, and it decreases as βFr-Frc decreases (Figure 5.5 (a)). This means a channel 

has the largest maximum migration distance Mmax when R/W = 2. The similar conclusion 

has been reported by various researchers (Nanson and Hickin1983, 1986; Biedenharn et 

al. 1989; Hudson and Richard 2000), even though their concern is the relationship 

between average migration rate and R/W. The coefficient b increases as βFr-Frc 

increases, meaning that the peak location of Mmax moves downstream as R/W increases 

(Figure 5.5 (b)). This indicates that the following inner bend may have a greater 

migration rate and migration distance as a result of phase lag. The coefficient c has a 

relatively small variation in all the cases shown in Figure 5.5 (c). The coefficient d 

increases as βFr-Frc increases, as shown in Figure 5.5 (d), which implies that meander 

migration in a channel with a large βFr-Frc (or small R/W) occurs over a longer channel 

length along the outer bank-line. The skewness, controlled by the coefficient e in the 

Mmax distribution, reaches maximum value at βFr-Frc = 0.37 (R/W = 2), and it decreases 

as βFr-Frc decreases (Figure 5.5 (e)). Note that the shape of the Mmax distribution 

becomes more symmetric when βFr-Frc = 0.20 where R/W = 6. 
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Figure 5.5 Five Coefficients in the Pearson IV Equation for Mmax vs. (βFr-Frc) 
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(c) 
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Figure 5.5 Continued 

 

 The distribution of Mmax is also affected by the channel bend angle φ, as shown in 

Figure 5.6. As φ increases, the peak value of Mmax decreases, which means a longer flow 

path along the meandering bend with a bigger bend angle reduces the magnitude of 

migration (Figure 5.6 (a)). The coefficient b decreases as φ increases, which means that 

the peak location of Mmax moves upstream as φ increases (Figure 5.6 (b)). The coefficient 

c is somewhat constant for all of three cases as shown in Figure 5.6(c), but the 

coefficient d decreases as φ increases, as shown in Figure 5.6(d). This means that the 

migration in a channel with a large φ occurs over a localized channel length along the 

outer bank-line, while a small φ produces a meander migration over a longer channel 

length. The skewness in the Mmax distribution also shows a similar trend; it reaches 

maximum value at φ = 65° and decreases as φ increases (Figure 5.6 (e)). Note that the 

distribution becomes more symmetric when φ reaches 220°. 
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Figure 5.6 Five Coefficients in the Pearson IV Equation for Mmax vs. φ 

 

 According to Figure 5.5 and Figure 5.6, each of the five coefficients in the Mmax 

equation is a function of βFr-Frc and φ (Eqs. 5.4-5.8), and can be obtained using 

multiple regression analysis with the experimental data.  

( )( ) ( )( ) aa BA
a gFrcFrgKa φβ −=     (5.4) 

( )( ) ( )( ) bb BA
b gFrcFrgKb φβ −=     (5.5) 

( )( ) ( )( ) cc BA
c gFrcFrgKc φβ −=     (5.6) 

( )( ) ( )( ) dd BA
d gFrcFrgKd φβ −=     (5.7) 
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( )( ) ( )( ) ee BA
e gFrcFrgKe φβ −=     (5.8) 

Where, 
 etoaiandunknownareBandAK iii =,,,  

The final form of the prediction equation with these five coefficients in the Pearson IV 

distribution function is as follows: 
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    (5.9) 

Where, 

( ) 210.0970.0539.2)(267.2456.2 −+−−= φβ FrcFra   (for R/W < 2.0) 

( ) 210.0970.0688.0)(735.2456.2 −+−= φβ FrcFra  (for R/W ≧ 2.0) 

449.0685.0)(671.20 −−= φβ FrcFrb      

( ) ]00696.0325.3exp[214.0 φβ −−= FrcFrc  

( ) ]00403.0420.3exp[457.0 φβ −−= FrcFrd  

( )[ ] ( )[ ] 913.0827.0 0763.2380.00338.3868.1000.2 +−+−= φβ LnFrcFrLne  

Note: 1
/
1

+=
WR

β ,  b = 1.5 (for R/W<2.0), and e = 0 (for R/W >6 or φ >220°) 

5.3 DATA DEDUCTION FOR INITIAL MIGRATION RATE 

 The initial migration rate iM  at each cross section along the channel is obtained 

by the same curve fitting for the maximum migration distance Mmax as described above. 

In fact, the initial migration rate is 1/a in Eq. 5.1, which is the initial slope of the fitted 
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hyperbolic curve in Figure 5.1 or the reciprocal of the y-intercept in Figure 5.2. Like the 

spatial distribution of the maximum migration distance shown in Figure 5.3, a similar 

spatial distribution of the initial migration rate is obtained. The initial migration rates, 

normalized by the mean velocity U, are shown in Figure 5.7 (Clay Test Case 08). 

 

Distribution of Mi (Clay Test Case 08_R/W =4 φ =220 Fr  =0.50)
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Figure 5.7 iM  Distributions along the Channel for Clay Test Case 08 

 

 The result shows that iM  along the channel has its peak value behind the channel 

apex (θ/φ = 0.5), which means there is also a phase lag to the channel curvature as it 

exists in the Mmax distribution. The typical shape of the obtained iM  distribution seems 

to be similar to that of Mmax distribution, and thus the same type of function, Pearson IV 

(Eq. 5.2), is employed to formulate the iM  along the channel. Figure 5.8 shows the 

regression results of spatial iM  distributions for every case. 
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(a) 

Distribution of Mi (Clay Test Case 04_R/W =4 φ =65 Fr  =0.50)

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0 1.5 2.0
θ / φ

Mi/U*E4

Experimental Data

Pearson IV Distribution Fitting

(b) 
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(c) 
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Figure 5.8 Experimental Data and Fitted Curve for iM  



 96

(d) 

Distribution of Mi (Clay Test Case 07_R/W =4 φ =120 Fr  =0.50)
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(e) 
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Figure 5.8 Continued 

 

5.4 PROPOSED EQUATIONS FOR INITIAL MIGRATION RATE 

 There are five undetermined coefficients in the proposed prediction equation for 

iM  (Eq. 5.2). These coefficients are found by correlating the measurements with the 

three controlling parameters, R/W, φ, and Fr-Frc. In fact, as described above, the effect 

of R/W is embedded in the correction factor β, and thus those coefficients are correlated 

with two dominant parameters: βFr-Frc and the bend angle φ. 



 97

 The correlations between the five coefficients and βFr-Frc are shown in Figure 

5.9. The result shows the maximum peak value of iM  occurs at βFr-Frc = 0.37, where 

R/W = 2 and it decreases as βFr-Frc decreases, following the same trend of Mmax (Figure 

5.9 (a)). The coefficient b increases as βFr-Frc increases, which mean that the peak 

location of iM  moves downstream as R/W increases, like in Mmax (Figure 5.9 (b)). This 

indicates that the following inner bend may have a greater initial migration rate as a 

result of phase lag. The coefficient c has a relatively small variation in all the cases 

shown in Figure 5.9 (c). The coefficient d increases as βFr-Frc increases, as shown in 

Figure 5.7 (d), which indicates that meander migration in a channel with a large βFr-Frc 

(or small R/W) occurs over a longer channel length along the outer bank-line. The 

skewness, controlled by the coefficient e in the iM  distribution, has a relatively small 

variation in all the cases, as shown in Figure 5.9 (e).  
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Figure 5.9 Five Coefficients in the Pearson IV Equation for iM  vs. (βFr-Frc) 
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(e) 

e vs. βFr-Frc
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Figure 5.9 Continued 

 

 The distribution of iM  is also influenced by the channel bend angle φ, as shown 

in Figure 5.10. The coefficient a is somewhat constant for all of three cases, as shown in 

Figure 5.10(a). The coefficient b decreases as φ increases until the bend angle becomes 

120°, which means that the peak location of iM  moves downstream as φ increases 

(Figure 5.10(b)). However, it shows a relatively constant value beyond the bend angle of 

120°. The coefficients c and d are approximately proportional to the bend angle φ, as 

shown in Figures 5.10(c) and 5.10(d). However, the coefficient d increases more rapidly 

than the coefficient c, which means that the migration in a channel with a small φ occurs 

over a localized channel length along the outer bank-line, while a large φ  produces 

meander migration over a longer channel length. The skewness in the iM  distribution 

shows a nearly constant trend; the effect of bend angle φ seems to be minimal, unlike the 

Mmax distribution.  
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Figure 5.10 Five Coefficients in the Pearson IV Equation for iM  vs. φ 

 

 Based on the analysis results in Figure 5.9 and Figure 5.10, each coefficient in 

the iM  equation is a function of βFr-Frc and φ, and the types for their own functions 

can be obtained using regression analysis with the experimental data. The final form of 

the prediction equation with these five coefficients in the Pearson IV distribution 

function can be expressed as follows: 
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   (5.10) 

Where, 

( ) 215.1583.1)(413.1110.1 +−−= FrcFra β   (for R/W < 2.0) 

( ) 215.1232.2)(121.1110.1 +−= FrcFrLna β   (for R/W ≧ 2.0) 

[ ] ( )[ ] 964.0209.1 184.100226.0740.1)(445.0881.0 +−+−= φβ FrcFrLnb  

( )[ ] ( )[ ] 884.0923.0 906.0260.0078.0507.00459.4 −+−= φβ LnFrcFrc  

( )[ ] ( )[ ] 028.10944.1 143.000308.0775.0311.0251.3 ++−= φβ FrcFrLnd  

( ) ( ) ( )[ ] 748.02432.2 417.000614.00000229.0286.8 +−−= φφβ FrcFre  

Note: 1
/
1

+=
WR

β ,  b = 1.5 (for R/W≦1.0), and e = 0 (for R/W >6) 

5.5 VERIFICATION OF THE PROPOSED EQUATIONS 

 Once any prediction equation is developed based on the regression of the 

experimental data, it needs to be validated first with the same laboratory data, and then 

with full scale field data if available. If it does not produce a satisfactory precision for 

the same laboratory data used to generate the equation, there is no need to consider a 

full-scale verification study with filed data. Therefore, as the first step in the verification 

process, the proposed two equations for Mmax (Eq. 5.9) and iM  (Eq. 5.10) were 

evaluated by predicting the flume test results.  
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 By using Eq. 5.1, the meander migration along the channel in the flume tests was 

predicted, where a and b coefficients in the hyperbolic function are calculated by Eq. 5.9 

and Eq. 5.10, respectively. For example, the prediction results for T5 (after 120 hrs) in 

case 06 are shown in Figure 5.11.  

 

M at T5 (120hrs) R/W2 F65 (Test No. 6)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

0.0 0.5 1.0 1.5 2.0θ/ φ

M
(c

m
)

M_T5 Predicted T5

 

Figure 5.11 Predicted versus Measured Migration Distances in Clay Test Case 06 

 

 Root-mean-square errors between the measured and predicted migration 

distances are calculated and shown in Figure 5.12. The errors are normalized by the 

initial channel width W. Figure 5.12(a) shows the errors at the first measurement (T1) in 

each case, typically 24 hours after the tests started. This might be an alternative test for 

the predicted initial migration rates, and the averaged error along the channel is 0.049 (or 

4.9 % of the initial channel width). Figure 5.12(b) shows the errors at the last 

measurement in each case, ranging from 180 to 240 hours after the tests started. This 

would be an alternative test for the predicted maximum migration distances, and the 
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averaged error along the channel is 0.046 (or 4.6 % of the initial channel width). This 

level of precision is quite satisfactory, considering that these tests are large-scale 

experimental data. Finally, Figure 5.12(c) shows the overall errors which include all the 

errors in every time step. The errors have an average value of 0.028 (or 2.8 % of the 

initial channel width), which is the best precision we can expect. In addition to the 

verification of the proposed equations against the laboratory data, a full-scale 

verification was done for the Brazos River at SH 105, which will be covered in a 

following chapter. 

 

(a) 

RMS Error (First Measurement)

0.00

0.02

0.04

0.06

0.08

0.10

4 5 6 7 8 Case No.

M_error / W

Error for Each Case

Average Error

 

(b) 

RMS Error (Last Measurement)

0.00

0.02

0.04

0.06

0.08

0.10

4 5 6 7 8 Case No.

M_error / W

Error for Each Case

Average Error

 

(c) 

RMS Error (Overall Measurement)

0.00

0.02

0.04

0.06

0.08

0.10

4 5 6 7 8 Case No.

M_error / W

Error for Each Case

Average Error

 
Figure 5.12 Estimated Root-mean-square Error of the Proposed Equations 
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CHAPTER VI  

RISK ANALYSIS 

 

6.1 INTRODUCTION 

 A meandering river migrates at a rate controlled by the shear stress at the 

interface between the water and the channel bank. The hydraulic shear stress imposed by 

the water is controlled by the velocity of the flow, which is dependent on the hydrograph 

of the river. Therefore, a meander migration prediction process must take the hydrograph 

of the river into account. This hydrograph is unknown, however, because it will occur in 

the future during the design life of the bridge or the highway embankment. Because it is 

not realistic to make a deterministic prediction of a future hydrograph, it is more 

desirable to make predictions of many equally-possible hydrographs in a probabilistic 

manner. Each hydrograph corresponds to a different predicted position of the 

meandering river, and a probabilistic post-process provides a probability that the river 

will move to a given location at a given time. 

6.2 FUTURE HYDROGRAPH 

 A new methodology to generate a future hydrograph was developed (Wang 

2006), and it is based on the statistical properties of the past hydrograph data: the past 

hydrograph (Figure 6.1) is assumed to be log-normally distributed, as shown in Figure 

6.2., and it fits the original distribution of the hydrograph reasonably well. Then, the 

required statistical parameters (such as the mean and standard deviation of the given 

hydrograph) are retrieved from the fitted distribution, and the equally-possible future 
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hydrograph is then generated by using a random number generation technique. Detailed 

information can be found in Wang’s dissertation (2006). 
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Figure 6.1 Hydrograph of Guadalupe River Gauge Station 08176500 (Wang 2006) 

 

 

 

Figure 6.2 PDF of Original Data and Fitted Distribution for the Guadalupe River 
(Wang 2006) 
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6.3 CUMULATIVE DENSITY FUNCTION MAP 

 A large number of equally-possible future hydrographs are generated by the 

random number generating scheme, as described in the previous section. For each 

hydrograph, the MEANDER program predicts the migrated location of the river at the 

end of the project life. In other words, if 1,000 future hydrographs are generated, 1,000 

rivers are simulated at the different locations according to each hydrograph, as shown in 

Figure 6.3. In the figure, the dotted line represents the initial geometry of the river and 

the solid lines are the predicted locations of the rivers after a given project life. 

 

 
Figure 6.3 Generated Rivers According to the Future Hydrographs 
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 Once a number of different river geometries are generated as shown above, a 

statistical post-processing scheme generates the probabilistic information of the 

prediction results: firstly, the cumulative density function map, which is a contour map, 

to delineate the probability associated with the predicted locations of the river. Secondly, 

cumulative density function graph is developed for a given bridge direction, which 

provides more detailed information about the migration distance along that direction.  

 An independent program module for this process using a relatively simple but 

quite reasonable approach was developed by using Matlab, and then incorporated into 

the MEANDER program. The new methodology of risk analysis in this study can be 

described by the following steps.  

 First, a number of reference lines are generated normal to the initial river 

geometry at every node point along the digitized channel, and then a number of small 

grids along each reference line are created as shown in Figure 6.4 and Figure 6.5. These 

reference lines and grids on the lines can be used as a domain for calculating the 

probabilities associated with the predicted locations of the river. The size of each grid is 

0.1W and the length of the reference line is 4W in total, indicating that it is extended to 

2W in both directions (i.e., right and left) from the initial river. 
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Figure 6.4 Generated Reference Lines along the Initial River 

 

 
Figure 6.5 Detailed View of the Reference Lines  

50 m 
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 Second, the generated rivers from the previous step are superimposed on the 

simulated domain as shown in Figure 6.6. The numbers of crossings of the predicted 

rivers in each grid are counted and saved as a density value for that grid from the 

upstream direction to the downstream. This becomes the probability density function 

(PDF) for each reference line along the channel. 

 

 
Figure 6.6 Superimposed Rivers on the Simulated Domain 
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 Next, the cumulative distribution function (CDF) for each reference line can be 

calculated from the PDF obtained in the previous step, and a conceptual CDF is shown 

in Figure 6.7. All the points that have the same level of probability value (e.g., 1, 10, 30, 

and 50 percent) on every reference line along the river are then connected as shown in 

Figure 6.8. Each connected line represents a certain probability that the initial river will 

move to the location of that line or further at the end of project life (e.g., 75 years). A 

series of these lines with the initial geometry of the river can show the general trend of 

the meander migration of the river with the associated likelihood levels. This is called 

the CDF map, which is similar to a conventional contour map. 

 

 
Figure 6.7 Conceptual CDF for a Reference Line on the Simulated Domain 
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Figure 6.8 Cumulative Density Function Map 

 

6.4 CUMULATIVE DENSITY FUNCTION FOR A GIVEN DIRECTION 

 As mentioned in the previous chapter, meander migration can undermine bridge 

piers, abutments, foundations of parallel highways, and cause loss of useful land. The 

common concern of these problems might be to know the bank movement at a specific 

location as well as direction (e.g. bridge direction) during a certain period of time. 

Although the CDF map provides the global picture of the predicted bank movement over 

the choosen period, it is often insufficient information regarding a specific location and 

direction. Therefore, a separate CDF graph for a given location and direction is 
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necessary to be a helpful tool from a practical standpoint. This CDF graph can be 

obtained by interpolating the saved density values on the CDF map: the x and y-

coordinates of two end points of interest are specified as input data for the bridge 

location (Figure 6.8), and then the new CDF is calculated by interpolating the values of 

two adjacent points on each contour line associated with the different probability level 

(e.g. 50 % contour line). After repeating the interpolation for the other contour lines, a 

completed CDF graph for a given direction is obtained. This graph is plotted with a log 

scale on the y axis in a new screen so that the engineers can easily read the migration 

distance associated with a target risk level (e.g. 1 %) on the plot as shown in Figure 6.9. 

For example, the highlighted point in red can be interpreted as follows: there is a 1 

percent probability that the river will move 82.5 m or further in the given direction over 

the design life of the bridge (e.g. 75 years). 
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Figure 6.9 CDF Plot for a Given Bridge Direction 
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CHAPTER VII 

FIELD VERIFICATION STUDY 

 

7.1 INTRODUCTION 

 The program MEANDER is a final outcome of the research project (Briaud et al. 

2007) to develop a new prediction method of meander migration based on the large-scale 

flume tests to establish the maximum migration distance equation, and numerical 

simulations to establish the maximum shear stress equation. All the components in the 

newly-developed methodology were implemented into this stand-alone program to 

provide the future users an automated prediction process. The obtained maximum 

migration distance equation from the experimental study in clay and the proposed risk 

analysis methodology were also implemented in the program. As a new method is 

developed based on the experimental study, it is inevitable to validate it by a verification 

study. This can be done through case studies with the field data and/or other available 

data resources. A verification study is extremely important for developing a new 

methodology because it helps to check whether the new method is applicable to the field 

cases with a certain level of accuracy. Since there is no applicable data on the 

experimental study of meander migration available, the field data obtained from a 

carefully chosen site, Brazos River at the SH 105 in Texas, is used for the field 

verification study. 
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7.2 BRAZOS RIVER AT SH 105 

 The SH 105 Bridge over the Brazos River near Navasota, Texas, is located about 

half a mile west of the intersection between SH 105 and FM 159 (Figure 7.1). The 

Brazos River joins with the Navasota River about one mile downstream from the bridge 

location. There is a meandering bend that approaches from the northeast several hundred 

meters upstream of the bridge crossing. 

 

 
Figure 7.1 Brazos River Map (source: Google Earth 2007) 

 

7.2.1 Site Description 

 The meander map (Figure 7.2) that was obtained from the 1981 and 1995 aerial 

photos and the Google satellite image (Google Earth 2007) shows the channel bank-line 
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movement of the Brazos River from 1981 to 2006. Note that the river geometry data 

from the satellite image was conservatively assumed as of 2006, because information 

about the date of the image is not available. During this period, the meandering bend at 

the upstream section of the bridge crossing moved approximately 98 m along the 

reference line which is the arrow in Figure 7.2. Moreover, the channel bank-line is 

expected to move continuously in the future. As a result, TxDOT has decided to replace 

the bridge to avoid a potential damage due to excessive bank erosion, and the new bridge 

is to be located about 228 m (760 ft) south of the old bridge.  
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Figure 7.2 Brazos Meander Map 
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 The channel profile of the Brazos River at the cross-section A-A’ (Figure 7.3) 

has been measured periodically by the Bryan District (TxDOT). Figure 7.4 shows the 

channel profiles in 1951 and 2006 based on their measurement data. During this period, 

there was about 98 m of movements on both side banks due to erosion on the outer bank 

(west) and deposition on the inner bank (east). The cross-sectional profile data at the 

cross-section B-B’, where much more serious movement occurred, is not available, and 

thus it needs to be assumed based on the information from the field visit and the channel 

profile at the bridge crossing. The best estimated channel profiles at this location are 

shown in Figure 7.5. As can be seen in Figure 7.5 (b), the outer channel bank-line (east) 

has moved towards the highway about 220 m during the same period.     
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Figure 7.3 Two Locations for Cross-sectional Profiles (source: Google Earth 2007) 
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Figure 7.4 Cross-sectional Profiles at A-A’: (a) To Scale, and (b) Not to Scale   
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Figure 7.5 Cross-sectional Profiles at B–B’: (a) To Scale, and (b) Not to Scale  
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 The possible reason for two different levels of bank erosion on the meandering 

bend upstream and at the bridge crossing can be explained by looking at the site photos 

taken during the field visit in January 2007. As can be seen in Figure 7.6, there is heavy 

vegetation along the outer bank-line (left bank on the photo), and thus it can provide 

good protection against the erosion. Therefore, the total bank-line movement on this side 

could be less than that of the upstream bend, even if its geometric condition (sharp bend) 

is more susceptible to the meander migration. On the other hand, the upstream 

meandering bend has very little vegetation and its bank slope is quite steep, which 

indicates a higher potential for a mass failure initiated by undercutting due to the erosion. 

These unfavorable site conditions are clearly shown in Figure 7.7, and more photos are 

included in Appendix D.   

 

 

Figure 7.6 Site Photo Taken on the SH 105 Bridge 

Upstream Meandering Bend 
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Figure 7.7 Photo of the Upstream Meandering Bend 

 

7.2.2 Digitization of River Geometry 

 The geometry data for the Brazos River in 1981, 1995, and 2006 are prepared by 

digitizing the aerial photos and satellite image (Google Earth) with WinDIG (free 

software available at http://www.unige.ch/sciences/chifi/cpb/windig.html), as shown in 

Figure 7.8. If only a paper map or photo is available for the geometry data of the river, it 

needs to be converted to an electronic version before the digitization with the program. 

This can be done using a scanner if the map is not too big. There are two options to 

calculate migration in the MEANDER program: Bank Method and Centerline Method. 

The Bank Method uses two bank-lines (i.e. left and right) to describe the river, while the 

Centerline Method uses its centerline. In this study, the Centerline Method is used, and 

the digitized centerlines of the river in 1981, 1995, and 2006 are shown in Figure 7.9.     

Undercutting 

Deposition 

Sloughing 
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Figure 7.8 Digitized River Bank-lines with WinDIG 
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Figure 7.9 Hydrograph of Guadalupe River Gauge Station 08176500 
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7.2.3 Soil Sampling 

 A total of three sampling locations are selected based on the field visit and the 

history of meander migration in the past, and the exact boring locations are shown in 

Figure 7.3. Two locations are assigned along the upstream meandering bend because 

they experienced significant channel movement from 1981 to the present: B-1 on the 

apex of the bend and B-2 near the inflection point between the upstream bend and the 

bend at the bridge crossing. The last sampling location is the west bank of the river right 

under the SH 105 Bridge. The soil samples are taken every 10 feet (3 m) down to 50 feet 

(15 m) deep from the ground surface by using standard penetration tests (SPT) and 

Shelby tube samplers with a 3 inch (76.2 mm) outside diameter (Figure 7.10), which is 

required for EFA tests. The engineering soil properties are obtained in accordance with 

the standard of the American Society for Testing and Materials (ASTM) in the 

laboratory. The stratigraphies and the laboratory test results of B-1, B-2, and B-3 are 

shown in Figures 7.11, 7.12, and 7.13, respectively. The field boring logs are attached in 

Appendix E. 

 

(a) Sampling Equipment (b) Samples 
Figure 7.10 Photos of Sampling at the Site 
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7.2.4 Erodibility from EFA Tests 

 The input data for the soil in the MEANDER program is the erosion function, 

which is the relationship between the erosion rate and the hydraulic shear stress applied 

by the water on the soil-water interface. This erosion function is obtained by performing 

an EFA Test on the selected Shelby tube samples from the site (Briaud et al. 2007). The 

EFA test results of these samples are shown in Figure 7.14, which are erosion rate versus 

shear stress curves. The test result designations are based on the boring number at the 

site and the depth interval over which the sample was taken. The red line in the figure is 

chosen as a representative erodibility input curve for the entire river reach, since the 

MEANDER program can only accommodate one erodibility input curve for the soil 

property. The reason for this selection is as follows. An in depth study of the meander 

erosion process at the site indicates that the bottom of the river bank of the upstream 

meandering bend is made of highly erodible sand, while the top of the river bank is made 

of less erodible fine grained soils. The sand is eroded; this creates undercutting of the 

overlying clay which sloughs in the river and is carried away. The erosion function 

which is selected is the one corresponding to the sand layer. Another type of the 

erodibility curve can be obtained from EFA tests: the erosion rate versus flow velocity 

curve, as shown in Figure 7.15. 
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Figure 7.14 Erodibility Curves: Erosion Rate vs. Shear Stress    
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Figure 7.15 Erodibility Curves: Erosion Rate vs. Velocity   
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 An erosion chart was developed to give a global interpretation of the EFA test 

results (Seed et al. 2006). This chart shows the erodibility curves in a way that 

categorizes the soils according to each erosion category: Category I is most erodible and 

Category V is most erosion resistant. The erosion chart for this study are populated with 

all EFA results, and it is shown in Figure 7.16. 
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Figure 7.16 Erosion Chart with All EFA Test Results   

 

7.2.5 Hydrograph 

 The nearest gauge station is found to be ST# 08110200 that used to be on the SH 

105 Bridge (Figure 7.17). However, the available data from this station only covers for 

the period from 1965 to 1987. It seems to be closed in 1987. Therefore, the data from 
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other gauge stations on the upstream of the river needed to be used for the period from 

1988 to 2006. The two other nearest gage stations on the upstream are found at 

approximately 80 km (50 miles) upstream in the channel lengthwise from the site, which 

are numbered as ST# 08108700 and ST# 08109000.  
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Figure 7.17 Locations of Gauge Stations along the Brazos River 
(http://pubs.usgs.gov) 

 

 Since the discharge hydrograph from the upstream can not be directly used for 

the downstream site, a calibration process is required to obtain a reasonable discharge 

hydrograph for the SH 105 Bridge site. The calibration is performed in the following 

way: 
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1. Populate a Qdownstream/Qupstream versus Q plot by using the discharge data of both 

downstream and upstream for the same period (Figure 7.18). 

2. Estimate a boundary value between low and high discharge flow (600 m3/s used 

in this study). 

3. Select two correction factors in the two regions in a way that Qdownstream is 

Qupstream multiplied by the correction factor. 

4. Plot the corrected Qupstream with Qdownstream to check whether these values 

reasonably match each other, especially for those peak values (Figure 7.19). 

5. Repeat from step 2 to 4 if the match is not satisfactory. 

 The calibrated discharge hydrograph for the SH 105 Bridge site for the period 

from 1981 to 2006 is prepared as described above, and the results are shown in Figure 

7.20. The maximum discharge during this period is 5243 m3/s, which occurred in 1991. 
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Figure 7.18 Comparison of Discharge between Upstream and Downstream  
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Figure 7.19 Calibration of the Upstream and Downstream Hydrographs 
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Figure 7.20 Discharge Hydrograph for the SH 105 Bridge Site 

 

 The site-specific curves of the relationships between the discharge versus 

velocity and the discharge versus water depth are obtained by the regression of the 
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measured data from the USGS website, and these are shown in Figure 7.21 and Figure 

7.22, respectively. The discharge hydrograph can be converted to the velocity 

hydrograph and the water depth hydrograph by using these rating curves.  
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Figure 7.21 Relationship between Discharge and Velocity at the SH 105 Bridge 

 
 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

0 500 1000 1500 2000 2500 3000 3500 4000
Q (m3/s)

De
pt

h 
(m

)

Field Measurement

Fitted Curve

833.0
408.0

2

382.0

=

=

R
QH

 
Figure 7.22 Relationship between Discharge and Water Depth at the SH 105 Bridge 
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7.3 DETERMINISTIC PREDICTION OF MEANDER MIGRATION 

 Prediction of meander migration on the Brazos River at the SH 105 was 

performed based on the input data described in the previous sections. The predicted 

locations of the Brazos River during the period from 1981 to 1995 and from 1981 to 

2006 are shown in Figure 7.23 and Figure 7.24, respectively.   

 

 

Figure 7.23 Predicted Location of the Brazos River (1981 ~ 1995) 
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Figure 7.24 Predicted Location of the Brazos River (1981 ~ 2006) 
 

 The prediction results turned out to be reasonably accurate, especially for the 

channel movement on the upstream meandering bend. However, the channel movement 

towards the west bank at the SH 105 bridge crossing was somewhat over-estimated. 

There are three possible reasons for this: first, the prediction method can not consider the 

heavy vegetation along the outer bank-line. Second, a group of artificial rocks are found 

to be exposed above the ground surface, as shown in Figure 7.25, which was believed to 

be dumped as a countermeasure in the past. In fact, these natural and artificial 

countermeasures would provide significant protection against the erosion. Third, the 

input data for the soil properties in the prediction are based in the sand layer on the 
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upstream meandering bend, which is much more erodible than the actual soil at this 

location (i.e. clay). 

 

a) Looking Upstream b) Looking Downstream 
Figure 7.25 Heavy Vegetation and Dumped Artificial Rocks on the West Bank 

 

 The measured movements of the channel along the reference line, shown in 

Figure 7.9, are compared with the predicted movements in Figure 7.26(b). Figure 7.9(a) 

is the flow velocity hydrograph for the SH 105 Bridge site, which is converted from the 

discharge hydrograph (Figure 7.20) by using the rating curve, shown in Figure 7.21. The 

error between measured and predicted migration distance at 1995 is about 1 m, which is 

quite good. The predicted migration distance at 2006 is about 89 m, which is slightly 

lower than the measured value (i.e. 98 m). The error is equal to 7.5 % of the channel 

width which is approximately 120 m. This level of accuracy in the prediction of meander 

migration is the best precision we can expect. 
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Figure 7.26 Measured vs. Predicted Migration Distance 

 

7.4 PROBABILISTIC PREDICTION OF MEANDER MIGRATION 

 In addition to the deterministic prediction of meander migration on the Brazos 

River at the SH 105 in the previous section, a different type of prediction was conducted, 

which is a probabilistic prediction with the risk analysis option in the MEANDER 

Program. The prediction was done for the period from 1981 to 2006. A total of 1,000 

equally-possible hydrographs were generated for the risk analysis. The prediction results 
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are shown in Figure 7.27, which contains 1,000 different predicted locations of the 

Brazos River. 

 

 
Figure 7.27 Predicted Locations of the Brazos River with the Risk Analysis 

(1981 ~ 2006) 

 

 Figure 7.28 shows the CDF map for those 1,000 locations of the predicted river. 

A series of contour lines with the initial geometry of the river shows the general trend of 

the meander migration of the river with the associated likelihood levels. However, it is 

hard to see the detailed information of the specific site, and thus a CDF plot was 
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generated for a given direction (i.e. reference line in Figure 7.9) in Figure 7.29 so that a 

corresponding migration distance to a certain risk level can be read from it. For example, 

if the target risk level is 1 %, the channel will move 108.5 m. In other words, the channel 

will migrate 108.5 m or further with 1 % probability of occurrence. The measured 

migration distance during this period is about 98 m shown in Figure 7.26(b), and this 

movement corresponds approximately to 70 % of risk level, which means there is 70% 

probability for the river will migrate 98 m. 

 

 

Figure 7.28 CDF Map for the Predicted Brazos River (1981 ~ 2006) 
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Figure 7.29 CDF Plot for the Given Direction (1981 ~ 2006) 
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CHAPTER VIII  

CONCLUSIONS AND RECOMMENDATIONS 

 

8.1 CONCLUSIONS 

8.1.1 General 

 The purpose of this study is to improve the current approaches to predict 

meander migration, which currently have moderate or significant limitations regarding to 

their practical applications, as mentioned in the previous chapters. A more 

comprehensive approach has been developed by the research team at Texas A&M 

University, in which all of essential factors (i.e. soil, water, and geometry) affecting 

meander migration are taken into account. The particular objectives of this study are to 

develop a prediction equation of maximum migration distance based on the physical 

model tests, to develop a new methodology of risk analysis, and to conduct a verification 

study to evaluate the new prediction method in natural scale. 

8.1.2 Meander Migration 

 Based on its sinuosity, the channel pattern of a river can be classified as straight, 

sinuous, meandering, or braided. A meandering river has its sinuosity larger than 1.5, 

and it can be characterized by a succession of alternating meander bends (Julien 2002). 

A transversal secondary circulation induced by a helical flow motion along a curved 

channel erodes the outer bank materials and transports them towards the inner bank. This 

causes a lateral shift of a meander bend. Since meander migration is a dynamic process 

at the interface between soil and water, the erosion (migration) rate depends on the flow 
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condition as well as erodibility of soil. Since the flow condition in a river is dependent 

on its geometric shape, the most essential influencing parameters are: soil, water, and 

geometry. 

8.1.3 Literature Review 

 For a prediction method, three types of approaches are available: empirical 

equations, numerical models, and time-sequence maps and extrapolation, which is 

basically a modified empirical approach. Most empirical equations turn out to be too 

simple since meander migration is correlated with a hydraulic parameter. The time-

sequence technique seems to be a quite reasonable approach, but its significant 

shortcoming is that the future flow condition needs to be assumed to be the same as the 

historical condition. Although numerical models can provide the extensive solution on 

the meander migration processes, their practical usage might be limited due to extensive 

calibration work.  

 From the literature review of flume experiments, it is found that Friedkin (1945) 

has conducted a comprehensive set of flume tests to simulate a self-formed meandering 

river. His qualitative study provides a tremendous insight into the experimental study in 

this research.  

 The risk analysis methodology developed by Briaud et al. (2003) provides a 

fundamental framework for the current research. However, a completely different 

scheme for the statistical post-processing of the predicted results is required because the 

concern in Briaud et al.’s study is the scour depth (i.e. 1-D problem), while meander 
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migration is a 2-D problem, which is a much more complicated target. As a result, a new 

scheme for this purpose is developed through this study to accommodate the 2-D aspect.  

8.1.4 Flume Test in Clay 

 A total of eight flume tests have been conducted in a large basin located on the 

second floor of the Hydromechanics Laboratory at Texas A&M University, which 

includes the first three pre-tests. Based on the author’s knowledge, these flume tests are 

the largest-scale tests for meander migration in clay in the world. However, a minimal 

number of test cases could be conducted in this study because the clay cost, preparation 

time, and required man power were prohibitive. 

 During the first pre-test with a trapezoidal cross section of the channel, we failed 

to simulate lateral movement due to the excessive bottom erosion. This was attributed to 

the relatively low shear stress on the walls compared to the higher shear stress on the 

bottom of the channel. In the second pre-test, the cross-sectional shape was changed 

from a trapezoidal to a rectangular channel to increase the shear stress on the side walls. 

This remedy did induce side wall erosion along the channel, but there was still excessive 

bottom erosion. To save a substantial expense in providing clay along the bottom of the 

channel, a non-erodible plastic sheet was used for the bottom in the third pre-test. After 

starting the test, we found that the roughness of the plastic was too low compared to that 

of the clay, which caused vibration of the plastic and turbulent flow as well. Finally, we 

settled on using treated plywood on the channel bottom to match the roughness of clay. 

 During each test, the following data were measured routinely: water depth, 

geometries of the bank-lines, water surface elevation profile, and water velocity. As 
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erosion continued, water depth decreased, the outer (concave) bank moved, the water 

surface elevation went down gradually, and the water velocity slowed down, anticipating 

that it will reach an equilibrium state when time is infinite. 

8.1.5 Data Analysis of Flume Test Results 

 The test results of migration rate at each cross-section follow a hyperbolic 

function, and thus a hyperbolic model is adopted to model the migration process. The 

spatial distributions of the maximum migration distance and the initial migration rate 

turn out to follow the Pearson IV function, which can handle skewness of the bell-

shaped distribution. The prediction equations of the initial migration rate and the 

maximum migration distance are obtained by using a multiple regression technique, and 

these are validated with the laboratory data. The averaged overall RMS error is 

estimated as 0.028 (or 2.8 % of the initial channel width), which is the best precision we 

can expect from a laboratory test. 

 Five coefficients in the Mmax equation (Eq. 5.9) are determined by the regression 

analysis with a total of five valid flume tests results. They might be not enough data to 

obtain a more comprehensive set of the prediction equation of meander migration in clay, 

but the proposed equation in this study is still quite valuable, considering the scale of the 

experiments. 

8.1.6 Risk Analysis 

 A new methodology to generate a future hydrograph is developed based on the 

statistical properties of the past hydrograph data (Wang 2006). A large number of future 

hydrographs are generated by random number generation, and these hydrographs have 
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the same probability of occurrence. For each hydrograph, the MEANDER program 

predicts the location of the river, and this will populate a distribution map of the 

predicted locations of the river. Then, a newly-developed algorithm written in Matlab 

calculates the cumulative density functions at every node point along the river from 

upstream to downstream. By connecting all the points along the river which have the 

same probability value, a contour map can be constructed to provide a general trend of 

meander migration with corresponding risk levels. Once a target direction, as well as 

location of a bridge, is specified, the specific prediction result for that particular location 

can be shown as a separate output. 

8.1.7 Field Verification Study 

 A full-scale verification study has been performed to evaluate the applicability of 

the MEANDER program to the real field. The selected site for this study is the Brazos 

River at the SH 105 Bridge near Navasota, Texas. The predictions of the Brazos River 

are done for the periods from 1981 to 1995 and from 1981 to 2006. Comparison between 

predicted and measured movement show a reasonably good agreement. 

 The current version of the MEANDER program has some limitations on its 

applications. First, it can only accommodate a single erodibility input for the soil 

property, which means it can not consider the wide variation of non-homogeneous soil 

properties along a real river. Second, it is not able to simulate a self-formed meandering 

river (Friedkin 1945) that has an initially straight channel with a attack angle at the 

beginning of the channel.  
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8.2 RECOMMENDATIONS 

 A major part of the current research has been conducting large-scale flume tests 

and analyzing the experimental data to establish the prediction equation of meander 

migration. Although the scale of flume tests was large, several limitations could not be 

avoided, which include simplified test conditions, a small number of test cases, the use 

of a non-erodible channel bottom, the use of one discharge rate, and the use of one type 

of soil. Besides these limitations, the lack of more comprehensive full-scale verification 

studies might constrain the application of the new method to other sites. The followings 

are recommended for future research: 

 Conduct more flume tests with a wider range of values of the controlling 

parameters, so that more data points are available for regression analysis to 

improve the current prediction equation of meander migration.   

 Conduct flume test with a deep enough erodible clay bottom to accommodate 

excessive bottom erosion, in order to simulate a more realistic meandering 

channel. The data from these tests need to be compared with the data from the 

current research. 

 Conduct flume tests with different types of clay or a mixture of sand and clay. 

 The prediction method needs to be evaluated by a more comprehensive field 

verification study.  
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APPENDIX A  

PHOTOGRAPHS OF THE PREPARATION 

 
Figure A.1 Retrieving Clay from the Previous Test 

 
Figure A.2 Filling the Sand Channel 
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Figure A.3 Leveling the Sand Bed 

 

 

 
Figure A.4 Completion of Leveling Work 



 153

 
Figure A.5 Drawing the Contour of the Sand Channel 

 

 

 
Figure A.6 Digging the Sand Channel 
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Figure A.7 Placing the Clay Banks and Covering with Wet Cloth 

 

 

 
Figure A.8 Sprinkling the Clay Banks 
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Figure A.9 Completion of the Clay Channel 
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APPENDIX B  

GALLERY OF FLUME TESTS 

 

(a) Initial  (b) Final (t = 20 hr) 
Figure B.1 Clay Test Case 01 (R/W = 4, φ = 120˚, Fr = 0.50) 
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Figure B.2 Initial Condition of Clay Test Case 02 (R/W = 4, φ = 120˚, Fr = 0.50) 
 
 
 

 
Figure B.3 Final Condition of Clay Test Case 02 (t = 106.5 hr) 
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Figure B.4 Initial Condition of Clay Test Case 03 (R/W = 6, φ = 65˚, Fr = 0.50) 
 
 
 

 
Figure B.5 Final Condition of Clay Test Case 03 (t = 163.5 hr) 
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Figure B.6 Initial Condition of Clay Test Case 04 (R/W = 4, φ = 65˚, Fr = 0.50) 
 
 
 

 
Figure B.7 Final Condition of Clay Test Case 04 (t = 268 hr) 
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Figure B.8 Initial Condition of Clay Test Case 05 (R/W = 6, φ = 65˚, Fr = 0.50) 
 
 
 

 
Figure B.9 Final Condition of Clay Test Case 05 (t = 184 hr) 
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Figure B.10 Initial Condition of Clay Test Case 06 (R/W = 2, φ = 65˚, Fr = 0.50) 
 
 
 

 
Figure B.11 Final Condition of Clay Test Case 06 (t = 180 hr) 



 162

 

Figure B.12 Initial Condition of Clay Test Case 07 (R/W = 4, φ = 120˚, Fr = 0.50) 
 
 
 

 
Figure B.13 Final Condition of Clay Test Case 07 (t = 192 hr) 
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Figure B.14 Initial Condition of Clay Test Case 08 (R/W = 4, φ = 220˚, Fr = 0.50) 
 
 
 

 
Figure B.15 Final Condition of Clay Test Case 08 (t = 336 hr) 
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APPENDIX C  

FLUME TEST RESULTS 

 

Initial & Final Channel Geometries (Clay Test Case 04_R/W  =4,φ =65, Fr  =0.50)
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Figure C.1 Channel Geometry at the Initial and Final (268 hr) Stages  

 (Clay Test Case 04) 

 

Plan Forms Evolution (Clay Test Case 04_R/W  =4,φ =65, Fr  =0.50)
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Figure C.2 Plan Forms Evolution at t = 0, 48, 96, 126, 156, 186, 220, and 268 hr  

(Clay Test Case 04) 
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(a) Locations of the Predetermined Stations 

 
Clay Test Case 04 Cross-Sectional Profile at ST2
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(b) Evolution of cross-sectional profile at station No. 2 
 

Clay Test Case 04 Cross-Sectional Profile at ST3
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(c) Evolution of cross-sectional profile at station No. 3 
 

Clay Test Case 04 Cross-Sectional Profile at ST4
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(d) Evolution of cross-sectional profile at station No. 4 
 

Figure C.3 Cross-Sectional Measurement Results (Clay Test Case 04) 
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Mean Water Velocity Profile (Clay Test Case 04_R/W  =4,φ =65, Fr =0.50)
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(a) Direct Measurement by ADV 
 

Mean Water Velocity Profile (Clay Test Case 04_R/W  =4,φ =65, Fr =0.50)
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(b) Calculated by the Equation of Continuity (U = Q/Aw) 
 

Figure C.4 Mean Velocity Profile (Clay Test Case 04) 
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Water Surface Elevation Profile (Clay Test Case 04_R/W  =4,φ =65, Fr  =0.50)
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Figure C.5 Water Surface Elevation Profile (Clay Test Case 04) 
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Figure C.6 Longitudinal Surface Velocity Profiles at T0 (Clay Test Case 04) 
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(a) Longitudinal Velocities 

(b) Transversal Velocities 
Figure C.7 Initial Velocity Profiles at ST2 (Clay Test Case 04) 
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(a) Longitudinal Velocities 

(b) Transversal Velocities 
Figure C.8 Inital Velocity Profiles at ST3 (Clay Test Case 04) 



 170

 
(a) Longitudinal Velocities 

(b) Transversal Velocities 
Figure C.9 Inital Velocity Profiles at ST4 (Clay Test Case 04) 
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(a) Longitudinal Velocities 

(b) Transversal Velocities 
Figure C.10 Velocity Profiles at ST2 after 268 Hours (Clay Test Case 04) 
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(a) Longitudinal Velocities 

(b) Transversal Velocities 
Figure C.11 Velocity Profiles at ST3 after 268 Hours (Clay Test Case 04) 
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(a) Longitudinal Velocities 

(b) Transversal Velocities 
Figure C.12 Velocity Profiles at ST4 after 268 Hours (Clay Test Case 04) 
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Initial & Final Channel Geometries (Clay Test Case 05_R/W  =6,φ =65, Fr  =0.50)
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Figure C.13 Channel Geometry at the Initial and Final (260 hr) Stages  

 (Clay Test Case 05) 
 
 
 

Plan Forms Evolution (Clay Test Case 05_R/W  =6,φ =65, Fr =0.50)
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Figure C.14 Plan Forms Evolution at t = 0, 36, 60, 90, 120, 150, 184, 220, and 260 hr  

(Clay Test Case 05) 
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(a) Locations of the Predetermined Stations 

 
Clay Test Case 05 Cross-Sectional Profile at ST2
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(b) Evolution of cross-sectional profile at station No. 2 
 

Clay Test Case 05 Cross-Sectional Profile at ST3
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(c) Evolution of cross-sectional profile at station No. 3 
 

Clay Test Case 05 Cross-Sectional Profile at ST4
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(d) Evolution of cross-sectional profile at station No. 4 
 

Figure C.15 Cross-Sectional Measurement Results (Clay Test Case 05) 
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Mean Water Velocity Profile (Clay Test Case 05_R/W  =6,φ =65, Fr =0.50)
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(a) Direct Measurement by ADV 
 

Mean Water Velocity Profile (Clay Test Case 05_R/W  =6,φ =65, Fr =0.50)
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(b) Calculated by the Equation of Continuity (U = Q/Aw) 
 

Figure C.16 Mean Velocity Profile (Clay Test Case 05) 
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Water Surface Elevation Profile (Clay Test Case 05_R/W  =6,φ =65, Fr =0.50)
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Figure C.17 Water Surface Elevation Profile (Clay Test Case 05) 
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Initial & Final Channel Geometries (Clay Test Case 06_R/W  =2,φ =65, Fr  =0.50)
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Figure C.18 Channel Geometry at the Initial and Final (192 hr) Stages  

 (Clay Test Case 06) 
 
 
 

Plan Forms Evolution (Clay Test Case 06_R/W  =2, φ =65, Fr =0.50)
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Figure C.19 Plan Forms Evolution at t = 0, 24, 48, 72, 96, 120, 144, and 180 hr  
(Clay Test Case 06) 
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Clay Test Case 06 Cross-Sectional Profile at ST3
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(b) Evolution of cross-sectional profile at station No. 3 
 

Clay Test Case 06 Cross-Sectional Profile at ST4
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(c) Evolution of cross-sectional profile at station No. 4 
 

Clay Test Case 06 Cross-Sectional Profile at ST5
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(d) Evolution of cross-sectional profile at station No. 5 
 

Figure C.20 Cross-Sectional Measurement Results (Clay Test Case 06) 
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Mean Water Velocity Profile (Clay Test Case 06_R/W  =2,φ =65, Fr  =0.50)
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(a) Direct Measurement by ADV 
 

Mean Water Velocity Profile (Clay Test Case 06_R/W  =2,φ =65, Fr  =0.50)
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(b) Calculated by the Equation of Continuity (U = Q/Aw) 
 

Figure C.21 Mean Velocity Profile (Clay Test Case 06) 
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Water Surface Elevation Profile (Clay Test Case 06_R/W  =2,φ =65, Fr  =0.50)
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Figure C.22 Water Surface Elevation Profile (Clay Test Case 06) 
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Initial & Final Channel Geometries (Clay Test Case 07_R/W  =4, φ =120, Fr =0.50)
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Figure C.23 Channel Geometry at the Initial and Final (192 hr) Stages  

 (Clay Test Case 07) 
 
 
 

Plan Form Evolution (Clay Test Case 07_R/W  =4, φ =120, Fr  =0.50)
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Figure C.24 Plan Forms Evolution at t = 0, 24, 48, 72, 96, 120, 144, 168, and 192 hr  
(Clay Test Case 07) 
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(b) Evolution of cross-sectional profile at station No. 2 
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(c) Evolution of cross-sectional profile at station No. 3 
 

Clay Test Case 07 Cross-Sectional Profile at ST5
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(d) Evolution of cross-sectional profile at station No. 5 
 

Figure C.25 Cross-Sectional Measurement Results (Clay Test Case 07) 
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Mean Water Velocity Profile (Clay Test Case 07_R/W  =4,φ =120, Fr =0.50)
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(a) Direct Measurement by ADV 
 

Mean Water Velocity Profile (Clay Test Case 07_R/W  =4,φ =120, Fr =0.50)
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(b) Calculated by the Equation of Continuity (U = Q/Aw) 
 

Figure C.26 Mean Velocity Profile (Clay Test Case 07) 
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Water Surface Elevation Profile (Clay Test Case 07_R/W  =4,φ =120, Fr  =0.50)
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Figure C.27 Water Surface Elevation Profile (Clay Test Case 07) 
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Figure C.28 Longitudinal Surface Velocity Profiles at T0 (Clay Test Case 07) 
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(a) Longitudinal Velocities 

(b) Transversal Velocities 
Figure C.29 Initial Velocity Profiles at ST5 (Clay Test Case 07) 
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(a) Longitudinal Velocities 

(b) Transversal Velocities 
Figure C.30 Velocity Profiles at ST5 after 72 Hours (Clay Test Case 07) 
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(a) Longitudinal Velocities 

(b) Transversal Velocities 
Figure C.31 Velocity Profiles at ST5 after 144 Hours (Clay Test Case 07) 
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(a) Longitudinal Velocities 

(b) Transversal Velocities 
Figure C.32 Velocity Profiles at ST5 after 192 Hours (Clay Test Case 07) 
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Initial & Final Channel Geometries (Clay Test Case 08_R/W  =4, φ =220, Fr  =0.50)
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Figure C.33 Channel Geometry at the Initial and Final (336 hr) Stages  

 (Clay Test Case 08) 
 
 

Plan Form Evolution (Clay Test Case 08_R/W  =4, φ =220, Fr  =0.50)
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Figure C.34 Plan Forms Evolution at t = 0, 24, 48, 72, 96, 120, 150, 180, 210, 240 

and 336 hr (Clay Test Case 08) 
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(a) Locations of the Predetermined Stations 
Clay Test Case 08 Cross-Sectional Profile at ST1
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(b) Evolution of cross-sectional profile at station No. 1 
Clay Test Case 08 Cross-Sectional Profile at ST4
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(c) Evolution of cross-sectional profile at station No. 4 
Clay Test Case 08 Cross-Sectional Profile at ST6
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(d) Evolution of cross-sectional profile at station No. 6 
Figure C.35 Cross-Sectional Measurement Results (Clay Test Case 08) 
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Mean Water Velocity Profile (Clay Test Case 08_R/W  =4,φ  =220, Fr  =0.50)
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(a) Direct Measurement by ADV 
 

Mean Water Velocity Profile (Clay Test Case 08_R/W  =4,φ  =220, Fr  =0.50)
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(b) Calculated by the Equation of Continuity (U = Q/Aw) 
 

Figure C.36 Mean Velocity Profile (Clay Test Case 08) 
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Water Surface Elevation Profile (Clay Test Case 08_R/W  =4,φ  =220, Fr =0.50)
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Figure C.37 Water Surface Elevation Profile (Clay Test Case 08) 
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Figure C.38 Longitudinal Surface Velocity Profiles at T0 (Clay Test Case 08) 
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(a) Longitudinal Velocities 

(b) Transversal Velocities 
Figure C.39 Initial Velocity Profiles at ST4 (Clay Test Case 08) 
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(a) Longitudinal Velocities 

(b) Transversal Velocities 
Figure C.40 Initial Velocity Profiles at ST5 (Clay Test Case 08) 
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(a) Longitudinal Velocities 

(b) Transversal Velocities 
Figure C.41 Initial Velocity Profiles at ST6 (Clay Test Case 08) 
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(a) Longitudinal Velocities 

(b) Transversal Velocities 
Figure C.42 Velocity Profiles at ST4 after 240 Hours (Clay Test Case 08) 
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(a) Longitudinal Velocities 

(b) Transversal Velocities 
Figure C.43 Velocity Profiles at ST5 after 240 Hours (Clay Test Case 08) 
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(a) Longitudinal Velocities 

(b) Transversal Velocities 
Figure C.44 Velocity Profiles at ST6 after 240 Hours (Clay Test Case 08) 
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APPENDIX D  

PHOTOGRAPHS OF THE BRAZOS RIVER AT SH 105 
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APPENDIX E  

BORING LOGS OF THE BRAZOS RIVER AT SH 105 
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Houston, TX 77076 DATE : 1-9-07 LONGITUDE : W 96°8' 57.48"
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Van and Sons Drilling Service, INC. JOB NO. :  510102 LOCATION :
319 John Alber Road PROJECT :  Brazos river at SH105 LATITUDE : N 30°21' 40.92"
Houston, TX 77076 DATE : 1-9-07 LONGITUDE : W 96°9' 23.34"
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