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ABSTRACT 

 

Perchlorate Reduction Using Electrochemically Induced  

Pitting Corrosion of Zero-Valent Titanium. 

(December 2007) 

Chun Woo Lee, B.S., Pukyung National University, Korea; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Bill Batchelor 

 

Perchlorate is a threat to public health through water but also food. However, 

there is no effective chemical treatment process which can destroy perchlorate found in 

groundwater and surface water. Thus, there is growing interest in developing effective 

technologies, especially chemical treatments, to completely destroy trace levels of 

perchlorate present in drinking and groundwater.  

The research on perchlorate reduction by zero-valent titanium (Ti(0)) showed 

that perchlorate was effectively reduced to chloride using electrochemically developed 

pitting corrosion on Ti(0). Perchlorate reduction was believed to be caused by an active 

reductant (dissolved Ti(II)) during the pitting corrosion of Ti(0). The rate of perchlorate 

reduction was independent on the imposed potential as long as the potential was 

maintained above the pitting potential of Ti(0), but it was proportional to the applied 

current. The perchlorate reduction on the pitting developed Ti(0) was inhibited by the 

presence of chloride and bromide. Inhibition mechanism of perchlorate reduction 
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inhibition was believed to be caused either by competitive adsorption of aggressive 

anions on bare Ti(0) surface or Ti(II) consumption by electrochemically produced 

chlorine. Kinetic models were developed based surface coverage of aggressive anions on 

bare Ti(0) and Ti(II) oxidation by chlorine. These kinetic models supported the 

perchlorate concentration change in the solution, but Ti(II) consumption model was not 

able to predict chloride concentration due to insufficient information describing complex 

nature of pitting on Ti(0). 

These results shown in this research demonstrate that pitting corrosion developed 

Ti(0) has the capability to chemically reduce perchlorate present in natural water and 

engineered systems as well as possible problems associated with electric input. This 

research may be a starting point for development of a new treatment process that applies 

titanium or titanium metal ions as a chemical reductant to abate contaminants present in 

natural and engineering systems. Further developments can be achieved by alloying 

titanium metal with other metals such as iron and aluminum, and finding a methodology 

producing stable Ti(II) in ambient conditions. 
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CHAPTER I  

INTRODUCTION 

 

1.1 Statement of Purpose 

Perchlorate that originates from both natural and man-made sources has been 

found in surface and groundwater in many states in the United States. It has been known 

that perchlorate blocks uptake of iodide and inhibits normal production of thyroid 

hormones, which are critical for mature brain and central nervous system development in 

fetuses and infants. Thus, ingestion of perchlorate in food and water could result in 

deficiencies of thyroid hormone production and lead to mental retardation, delayed 

development and possibly thyroid tumors, which are a particular problem for iodine-

deficient mothers.  

In 2005, the U. S. Environmental Protection Agency (USEPA) established its 

official reference dose of perchlorate at 0.0007 mg/kg-day and this translates to a 

Drinking Water Equivalent Level (DWEL) of 24.5 µg/L. However, several states have 

adapted lower guidance or advisory levels of perchlorate than the DWEL of the USEPA. 

Moreover, recently Massachusetts promulgated a Maximum Contamination Level 

(MCL) of 2 µg/L for perchlorate in drinking water and this value is also used as a 

cleanup standard. Therefore, it is expected that the USEPA will establish drinking and 

groundwater clean up standards for perchlorate that are less than 24.5 µg/L. 

 
 
____________ 
This thesis follows the style of Environmental Science and Technology. 
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Perchlorate can be treated with ion exchange or biological processes. Ion 

exchange is very effective in removing perchlorate from water and is listed as Best 

Available Technology (BAT) for perchlorate treatment. However, ion exchangers need 

to be regenerated with brine that contains high concentrations of chloride. After 

regeneration, the brine contains high concentration of perchlorate and requires further 

treatment before disposal or reuse. Biological treatment is another way to effectively 

remove perchlorate from water. However, biological processes require the addition of 

electron donors and nutrients for biomass growth. Moreover, biological processes are 

highly susceptible to the presence of oxygen and other anions such as nitrate and sulfate. 

Besides, it is questionable whether the water industry will accept biological processes for 

treating drinking water. Other treatment technologies including tailored activated carbon, 

and chemical or electrochemical reduction, have been applied to remove perchlorate 

from water. However, these processes suffer from reduced efficiency caused by 

competition by other anions and organic contaminants for sorption sites, and from 

sluggish perchlorate reduction kinetics. Therefore, there is growing interest in 

developing effective technologies, especially chemical treatments, to completely destroy 

perchlorate present in drinking and groundwater. 

Zero-valent metals, especially iron, are a popular reagent for the abatement of 

contaminants in drinking water and groundwater. However, as perchlorate reduction has 

a high activation energy, it is hard to chemically reduce perchlorate with commonly used 

zero-valent metals. However, titanium metal would be an attractive candidate for 

perchlorate treatment. Titanium has high thermodynamic reactivity and oxygen affinity 
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that can stabilize transferred oxygen atom from perchlorate. Moreover, an ion formed by 

its oxidative dissolution (Ti(III)) can reduce perchlorate rapidly, compared to other 

common reductants. Therefore, it is worthy to investigate perchlorate reduction using 

titanium metal. However, titanium is always covered by an oxide film, which protects 

the underlying titanium from oxidants in natural environments. Thus, the surface oxide 

film must be removed to activate titanium metal as a chemical reductant and allow it to 

convert perchlorate to chloride.  

In this study, electrochemically induced pitting corrosion is adapted as a 

methodology to remove the surface oxide film and dissolve titanium. In order to achieve 

the development of new perchlorate treatment technology, this study investigates not 

only the feasibilities of perchlorate reduction by titanium, but also perchlorate reduction 

mechanisms, perchlorate reduction kinetics and environmental and electrochemical 

conditions that can affect perchlorate reduction. 

 

1.2 Research Objectives 

The overall objective of this research is to develop an innovative treatment 

technology for the destruction of perchlorate in contaminated waters using Ti(0). The 

objectives of this study are: 1) to develop a method for using Ti(0) to produce active 

reductants in solution via the electrochemically induced pitting corrosion and determine 

electrochemical and environmental conditions that affect the rate of perchlorate 

reduction; 2) to generate and verify mechanisms that can explain perchlorate reduction at 

the pitting site of Ti(0); 3) to identify the influence of anions including nitrate, sulfate 
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and phosphate on the rate of perchlorate reduction and to determine any mechanisms of 

inhibition; and 4) to develop a kinetic model that can predict perchlorate reduction at the 

pitting site on Ti(0). 

1.2.1 Electrochemical and Environmental Conditions Affecting Perchlorate Reduction  

The objectives of this phase of the study were: 1) to verify the hypothesis that 

electrochemically induced pitting corrosion of Ti(0) is responsible for the reduction of 

perchlorate, and 2) to determine how various factors affect on the rate of perchlorate 

reduction by Ti(0) during pitting corrosion. First, in order to verify the hypothesis, 

potential ranges that develop pitting corrosion on Ti(0) were measured as a function of 

perchlorate concentration. Based on these potential ranges, the hypothesis was verified 

by monitoring perchlorate and chloride concentrations with and without pitting corrosion. 

After verifying the hypothesis, influences of electrochemical and environmental 

parameters that affect on the rate of perchlorate reduction were determined. These 

parameters include current intensity, surface area, and solution pH. Additionally, 

reduction of trace levels of perchlorate using Ti(0) was investigated at different current 

intensities, surface areas, and initial chloride concentrations. Successful completion of 

this phase of the study provided the data needed to understand how effectively titanium 

can reduce perchlorate and how well it can remove trace levels of perchlorate such as 

found in natural environments. 

1.2.2 Mechanism of Perchlorate Reduction During the Pitting Corrosion of Ti(0) 

The objective of this phase of the study was to investigate the mechanism of 

perchlorate reduction at discrete sites on the Ti(0) surface developed by pitting corrosion. 
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Three possible scenarios were proposed based on literature studies and were investigated 

as mechanisms of perchlorate reduction at the pitting site of Ti(0): 1) ejection of metal 

particles, 2) production of high ohmic drops, and 3) formation of transitory titanium ions. 

The mechanism that assumed ejection of bare Ti(0) particle was investigated using 

optical microscopes, scanning electron microscope (SEM), and X-ray Diffraction (XRD) 

to identify the presence of bare Ti(0) particles. The mechanism based on a high ohmic 

potential drop was investigated using Ti(0) electrodes as the cathode to determine if 

perchlorate reduction were possible on surfaces of titanium oxide or hydroxide at the 

pitting site. Finally, the mechanism based on transitory titanium ions was investigated 

with measurements of perchlorate reduction by solutions of the transitory titanium ions, 

calculations of the dissolution valence of Ti(0), and the application of material balances 

to Ti and ClO4
−. Based on these studies, a mechanism for perchlorate reduction at the 

pitting site of Ti(0) was proposed. Successful completion of this objective provided 

insights as to how perchlorate is reduced by Ti(0) during pitting corrosion. 

1.2.3 Influence of Other Anions on Perchlorate Reduction During the Pitting Corrosion 

of Ti(0) 

This phase of the study determined the influence of anions on perchlorate 

reduction during pitting corrosion of Ti(0). In general, perchlorate was present at trace 

levels ranging from several μg/L to hundreds μg/L in natural environments. Common 

anions such as nitrate, sulfate, and phosphate are found at concentrations that are high 

compared to perchlorate. Thus, the influences of these common anions on both high and 

trace levels of perchlorate were investigated by varying the anion concentration and 
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current intensity. Possible reductions of these anions, especially nitrate, were monitored 

and any reduction products were examined. It is expected that nitrate would be reduced 

to nitrite and then to either ammonia or nitrogen gas. Additionally, a possible reduction 

of nitrate to titanium nitride (TiN) was investigated by analyzing solid products using 

XRD and XPS. Successful completion of this phase of the study demonstrated the 

effectiveness of the electrochemical Ti(0) process for the treatment of water 

contaminated with perchlorate. Additionally, it provided evidence for the potential 

applicability of the electrochemical Ti(0) process to other contaminants. 

1.2.4. Kinetic Model Describing Rate of Perchlorate Reduction During the Pitting 

Corrosion of Ti(0) 

The objective of this phase study was to develop kinetic models that can predict 

perchlorate reduction by electrochemically induced pitting corrosion of Ti(0). The 

kinetic models were developed to predict the rate of perchlorate reduction at both high 

and trace levels of perchlorate. Rate constants were determined based on results of 

experiments conducted for other purposes as well as experiments conducted to measure 

the rate of chloride oxidation and influence of initial chloride concentration on rates of 

perchlorate reduction. Successful completion of this phase of the study provided the data 

needed to understand how effectively titanium can reduce perchlorate and to predict 

rates of perchlorate reduction. 
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CHAPTER II  

BACKGROUND  

 

2.1 Perchlorate in Environments 

The perchlorate (ClO4
−) originates from anthropogenic and non-anthropogenic 

sources. Man-made perchlorate was first produced in Germany in 1816 by Stadion (1). 

He mixed potassium chlorate (KClO3) with sulfuric acid (H2SO4) and found that the 

residue produced was a mixture of potassium perchlorate (KClO4) and potassium sulfate 

(K2SO4). Later, many studies reported methodologies to produce perchlorate salts. 

Current perchlorate manufacturers use the electrochemical oxidation of sodium chloride 

(NaCl) for large-scale production of perchlorate salts, which are widely used in a variety 

of industries. Common products using perchlorate salts are electronic tubes, fireworks, 

air bag inflators and flares (2, 3). Beside, potassium perchlorate was once used to treat 

hyperthyroid patents that have Grave’s disease (3-5). However, major consumers of 

perchlorate salts are defense and aerospace industries (6). As perchlorate has a high 

oxygen content and is a good oxidant, its salts, especially NH4ClO4, have been major 

components of solid rocket and missile propellants and are present in varying amounts in 

explosives.  

Natural occurring perchlorate has been fund in the Atacama Dessert of northern 

Chile (7) and the Texas southern high plains (8-10). Several hypothetical mechanisms 

have been suggested to explain the formation of naturally occurring perchlorate in these 

areas. All of the potential mechanisms are linked to complex atmospheric processes 
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involving photochemical and radical reactions. Simmonatis and Heicklen (11) proposed 

that the chlorine radical (Cl•), which is generated by photodissociation of Cl2 (12), 

undergoes an oxidation reaction with ozone (O3) in the presence of O2 to form ClO3•. 

The produced ClO3• further reacts with reactive free radicals such as •OH to form HClO4. 

 Cl• + O3 ⎯→⎯ 2O  ClO3•  (2.1) 

 ClO3• + •OH ⎯→⎯   HClO4  (2.2) 

However, Prasad and Lee (13) discussed the fact that reactions (2.1) and (2.2) are 

kinetically slow due to the non-selective reactivity of •OH and they proposed an 

alternative pathway for the formation of HClO4 via the following reactions.  

 ClO• + O2 ⎯→⎯ M  ClO•O2  (2.3) 

 ClO•O2 + O3 ⎯→⎯   ClO•O3 + O2  (2.4) 

 ClO•O3 + HO2• ⎯→⎯   HClO4 + O2  (2.5) 

where M is an inert molecule that carries off the excessive energy of the reaction. A later 

study (8) expanded the possible atmospheric reactions that lead to formation of chlorine-

oxygen compounds. 

 Cl• + O2 ⎯→⎯ M  ClO2  (2.6) 

 Cl• + O3 ⎯→⎯   ClO2 + O• (2.7) 

 Cl• + O3 ⎯→⎯   ClO• + O2  (2.8) 

 ClO• + O• ⎯→⎯ M  ClO2  (2.9) 

 ClO• + O2 → ClO2 + O•  (2.10) 

 ClO• + O3 ⎯→⎯ M  ClO2 + O2  (2.11) 
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 ClO• + ClO• ⎯→⎯ M  Cl2O2  (2.12) 

 Cl2O2 → Cl• + ClO2  (2.13) 

 ClO• + O2 ⎯→⎯ M  ClO3•  (2.14) 

 Cl2O2 + O3 → ClO3• + ClO2  (2.15)  

The ClO2 and ClO3• generated by atmospheric reactions are converted to HClO4 by 

reaction with •OOH and •OH, respectively. Additionally, this study proved that 

perchlorate is formed under simulated complex atmospheric conditions using sonication, 

electrical energy discharge, UV irradiation and ozone exposure. All experiments showed 

the formation of perchlorate and support a hypothesis of atmospheric origin for naturally 

occurring perchlorate (8, 14, 15). 

It has been known that perchlorate disrupts the ability of the thyroid gland to 

metabolize iodide ions and interferes with the production of thyroid hormones (6, 16). 

Iodide is an essential nutrient for the synthesis of thyroid hormones. However, 

perchlorate prevents iodide uptake by blocking the sodium-iodide symporter, which is 

the mechanism by which both sodium and iodide are simultaneously transported from 

the blood stream to the thyroid. In fetuses and infants, proper production of thyroid 

hormones is critical for mature brain and central nervous system development. A lack of 

these hormones can lead to mental retardation, delayed development and possibly 

thyroid tumors, particularly for iodine-deficient mothers. American Water Works 

Association (AWWA) reported that drinking water sources in 26 states of United State 

and Puerto Rico have been contaminated by perchlorate (17). Moreover, recent studies 

found perchlorate in bottled water, leaf vegetables, and fruits (9, 18, 19). Thus, 
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perchlorate contamination is a nationwide problem and possibly threatens public health 

through ingestion of contaminated water and food. Moreover, recent studies found 

perchlorate in milk and breast milk (15, 20, 21), which indicates that many people, 

especially infants who are vulnerable, can be exposed to perchlorate contamination and 

its potential thyroid related health risks. 

2.2 Perchlorate Regulations 

The history of perchlorate regulation goes back to 1992. The USEPA proposed a 

provisional reference dose for perchlorate of 0.0001 mg/kg-day which is equivalent to a 

concentration of 4 µg/L in drinking water (6, 22). In 1995, USEPA reviewed the 

perchlorate toxicology studies and revised the provisional reference dose to be in a range 

from 0.0001 to 0.0004 mg/kg-day, which is equivalent to 4 to 18 µg/L in drinking water. 

Perchlorate was placed on the drinking water Contaminant Candidate List in 1998 and 

the USEPA proposed a draft reference dose of 0.0009 mg/kg-day in the same year (23). 

In 2002, the USEPA proposed an enhanced draft reference dose of 0.00003 mg/kg-day, 

which is equivalent to 1 µg/L in drinking water. The National Academy of Sciences 

(NAS) reviewed this draft reference dose and recommended a value of 0.0007 mg/kg-

day in 2005 (6). The USEPA has established this value as the official reference dose for 

perchlorate in 2005. It translates to a Drinking Water Equivalent Level (DWEL) of 24.5 

µg/L that represents the appropriate level of perchlorate when an adult body weight 70 

kg consumes 2 L/day of tap water. However, several states have developed more strict 

advisory levels and Maximum Contamination levels (MCL) than the USEPA DWEL (6). 

California has set the notification level for perchlorate in drinking water at 6 µg/L 
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andhas proposed a MCL of 6 µg/L. Maryland and New Mexico have set advisory and 

drinking water screening levels at values less than 1 µg/L. Other states, including 

Arizona, Nevada, New York, and Texas, have health-based goals for perchlorate ranging 

from 5 to 51 µg/L. Massachusetts is the first state in United State to promulgate a MCL 

of 2 µg/L for perchlorate in drinking water and it uses the same value as a cleanup 

standard (24). However, federal regulation of perchlorate in drinking water and during 

remediation at hazardous waste sites is still controversial and more toxicology effects of 

perchlorate are under investigations. 

2.3 Chemistry of Perchlorate 

Perchlorate has the same structure and electronic configuration as phosphate 

(PO4
3−) and sulfate (SO4

2−) (2, 25). The central chlorine atom has the highest oxidation 

state (+7) and it is tetrahedrally surrounded by four oxygen atoms. Perchlorate has 

highly delocalized monovalent anionic charge. This makes it hard to form complexes 

with metal ions and its salts have high solubility (2). Thermodynamically, perchlorate is 

a strong oxidizer and its reduction to chloride is a very favorable processes in both acid 

and alkaline solutions (26) 

Acid solution 

ClO4
− ⎯⎯ →⎯ V 201.1 ClO3

− ⎯⎯ →⎯ V 181.1 HClO2
− ⎯⎯ →⎯ V 701.1 HClO ⎯⎯ →⎯ V 630.1 Cl2 ⎯⎯ →⎯ V 358.1 Cl− (2.16) 

 

Alkaline solution 

ClO4
− ⎯⎯ →⎯ V 374.0 ClO3

− ⎯⎯ →⎯ V 295.0 HClO2
− ⎯⎯ →⎯ V 681.0 HClO ⎯⎯ →⎯ V 421.0 Cl2 ⎯⎯ →⎯ V 358.1 Cl− (2.17) 

 

1.287V 

0.560V 
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However, the reduction of perchlorate is kinetically hindered by high activation energy. 

Most common metal reductants have demonstrated sluggish reduction rates with 

perchlorate and they are virtually impossible to use as the basis for a treatment process 

for water contaminated by perchlorate (27). Some reductants have shown promising 

reduction rates that are high enough to possibly be applied in a treatment process (28-31). 

However, these results were obtained under extreme conditions such as strong acidity, 

high temperature, and high pressure. 

2.4 Methods of Perchlorate Removal 

Perchlorate has two distinctive chemical characteristics: delocalized negative 

charge distributions and high activation energy in reduction to chlorate (2). The 

delocalized negative charge distribution makes perchlorate a weak complexing agent and 

hinders the removal of perchlorate by precipitation and adsorption. The high activation 

energy prevents the application of chemical and electrochemical process to treat water 

contaminated with perchlorate by reducing it to chloride. The current Best Available 

Technology (BAT) for perchlorate is ion exchange (32). Ion exchange uses polymer-

based resins that are charged with function groups. It has been reported that polystyrenic 

resins have a higher affinity for perchlorate than polyvinylpyridine and polyacrylic 

resins and they effectively remove perchlorate from water (33, 34). However, the higher 

affinity for perchlorate resulted in their being more difficult to regenerate than other 

resins. The major disadvantage of the ion exchange process is that regeneration of 

exhausted resin produces a brine that contains high concentrations of perchlorate, which 

requires additional treatment prior to disposal or reuse. Additionally, the presence of 
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humic substances or other anions such as NO3
−, SO4

2−, or HCO3
− greatly reduces bed 

volumes treated to breakthrough (33, 35). In order to overcome these disadvantages, 

perchlorate selective bifunctional resins (33) and disposable resin that are incinerated or 

disposed in landfill site after exhaustion (36) have been developed.  

Other alternative technologies for perchlorate removal are biological and tailored 

activated carbon processes. Biological processes have successfully removed perchlorate 

at both trace levels in groundwater (37-41) and at high concentrations in brine waste (14, 

42). However, it has been reported that biological processes are highly susceptible to 

environmental conditions such as concentrations of dissolved oxygen and other anions 

such as NO3
− and SO4

2− (32, 43) and require appropriate levels of carbon and nutrient 

supplies for growth of microorganisms (32, 38, 43). Besides, no large-scale biological 

drinking water treatment plant exists in the United States (44) and whether the water 

industry accepts biological process for drinking water treatment is still questionable, 

since the primary goal of drinking water treatment is removal of microorganisms that 

cause disease (45). It has been demonstrated that activated carbon can remove 

perchlorate by an ion exchange mechanism, but this process is limited by the low 

adsorption capacity of activated carbon for perchlorate (37, 46). Thus, several studies 

investigated methodologies develop tailored activated carbon by creating more ion 

exchange sites and thereby increasing its adsorption capacity for perchlorate (47-49). 

Tailored activated carbons have been produced by treatment with a quaternary amine or 

surfactants, and they have greatly increased adsorption capacities for perchlorate. 

However, the tailored carbon process is also limited by the presence of other anions and 
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organic contaminants due to competition for ion exchange sites. Thus, it is 

recommended that the tailored activated carbons be combined with other processes such 

as ion exchange or standard activated carbon that can remove the interferences caused by 

anions and organic contaminants (32). Moreover, further treatment is required for the 

spent tailored activated carbon prior to disposal. 

2.5 Titanium Chemistry 

Titanium (Ti) is one of the elements of the first transition series in the periodic 

table and its atomic number is 22. Ti is the ninth most abundant element and the fourth 

most abundant metal on earth. Ti has silvery metallic color and exists in solid form at 

room temperature (26). Ti is not found as a free element, rather it is present as ilmentite 

(FeTiO3) and rutile (TiO2). Ti(0) cannot be produced by direct reduction of TiO2 with C 

as Ti forms very stable titanium carbide (TiC) (25, 50). Thus, the rather expensive Kroll 

process is used on large scales. The Kroll process involves creating TiCl4 by heating 

FeTiO3 or TiO2 with C and Cl2. Then, Ti(0) metal is produced by reducing TiCl4 with 

magnesium (Mg).  

 2TiFeO3 + 7Cl2 + 6C ⎯⎯ →⎯ Co900  2TiCl4 + FeCl3 + 6CO  (2.18) 

 TiCl4 + 2Mg ⎯⎯ →⎯ Co1100 2MgCl2 + Ti  (2.19) 

However, a recent study suggested that Ti(0) can be produced by direct electrochemical 

reduction of TiO2 in molten calcium chloride (CaCl2) (51). Thermodynamically, Ti(0) is 

a very reactive material and the standard reduction potentials for it and other titanium 

species are shown below. (26) 
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Acid solution 

 TiO2+ ⎯⎯ →⎯  V 1.0  Ti3+ ⎯⎯ →⎯ V 37.0- Ti2+ ⎯⎯ →⎯ V -1.63 Ti0 (2.20) 

 TiO2 ⎯⎯ →⎯ V -0.56  Ti2O3 ⎯⎯ →⎯ V -1.23 TiO ⎯⎯ →⎯ V -1.31 Ti0 (2.21) 

Alkaline solution 

 TiO2 ⎯⎯ →⎯ V -1.38 Ti2O3 ⎯⎯ →⎯ V -1.95 TiO ⎯⎯ →⎯ V -2.13 Ti0 (2.22) 

It is known that Ti has three oxidation states: II, III, and IV. Ti(III) and Ti(IV) are 

present in violet and colorless aqueous solutions, respectively (52). The presence of 

Ti(II) has been identified in solids such as TiO, TiS, TiH2, and Ti(X)2, X=F־, Cl־, Br־, I50) ־, 

53) and in nonaqueous media as TiCl4
2− (25). However, reports on the aquatic chemistry 

of Ti(II) are rare because it is easily oxidized. Only a few studies have reported on the 

possible presence of Ti(II) in aqueous solutions. They say that Ti(II) can be produced in 

strongly acidic conditions in the presence of excess F− by disproportionation of Ti(III) to 

produce greenish-yellow or brownish-yellow solutions (52-57). 

 2Ti3+ ⎯⎯⎯ →⎯
-F excess Ti2+ + TiF6

2−  (2.23) 

One important characteristic of Ti(0) is its high affinity toward nitrogen (N) and 

oxygen (O) (25, 50). It is known that Ti(0) is the only metal that burns in N2. Ti(0) reacts 

with N2 and is converted to titanium nitride (TiN) and with O2 to titanium dioxide (TiO2) 

as 

 2Ti(0) + N2(g) ⎯→⎯  TiN(s)  (2.24) 

 Ti(0) + O2(g) ⎯→⎯  TiO2(s) (2.25) 

Another important characteristic of Ti(0) is its high corrosion resistance (26). 

Thermodynamically, Ti(0) is very reactive, thus, reactions (2.24) and (2.25) would be 



 16

favorable reactions under atmospheric conditions. However, an oxide film is rapidly 

formed on the Ti(0) surface and protects the underlying Ti(0) from oxidizing 

environments. This surface oxide film is mainly TiO2, and it firmly adheres to the 

surface of Ti(0) and rapidly recovers from any physical attack. Ti(0) also shows strong 

resistance to other chemicals because its surface oxide coating (TiO2) is inert to most 

acids and solvents (58).  

2.6 Pitting Corrosion 

Corrosion is defined as “the destruction or deterioration of a material under the 

chemical and electrochemical action of the surrounding environment” (59). This broad 

definition includes deterioration of metals and nonmetallic materials such as ceramics, 

plastics, and rubbers. However, the term corrosion generally is applied to metallic 

materials (60). Metal corrosion is a phenomenon that causes the metal to revert to its 

original state of being an ore and it accomplished by chemical and electrochemical 

oxidation (61). The oxidation of a metal is described by the following equation. 

 M ⎯→⎯  Mn+ + ne−  (2.26) 

The electrons produced by this half-reaction can be consumed by several different 

reduction half-reactions. The most common reduction half-reactions are shown below. 

Hydrogen evolution  

 2H+ + 2e− ⎯→⎯  H2  (2.27) 

Oxygen reduction  

 O2 + 4H+ +4e− ⎯→⎯  2H2O  (2.28) 

 O2 + 2H2O + 4e− ⎯→⎯  4OH−  (2.29) 
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Metal ion reduction and deposition 

 Mn+ + me− ⎯→⎯ Mn-m (2.30) 

Pitting corrosion is a localized corrosion in which a metal undergoes accelerated 

dissolution as the result of a damaged oxide film on the metal surface (62). Many metals 

are covered by thin oxide films that are formed naturally and protect it from oxidizing 

conditions in natural environments. However, this surface oxide film is often damaged 

and the underlying metal is exposed to oxidizing conditions, resulting in localized 

massive metal dissolution. Several hypothetical scenarios have been suggested to explain 

the break down of the surface oxide film (63). The penetration mechanism describes the 

break down of the surface oxide film as being caused by intrusion of aggressive anions 

such as halides and halide-containing ions. The adsorption mechanism describes the 

break down as being caused by a thinning of the film induced by adsorption of 

aggressive anions on the oxide surface. The film break down mechanism is based on the 

assumption that the damaged surface oxide film is in a continual state of breakdown and 

repair, but aggressive anions hinder the recovery of the oxide film. These surface oxide 

film breakdown and pit initiation mechanisms are based on one common requirement, 

which is the presence of aggressive anions. Other factors affecting pit initiation are 

potential, temperature, metal composition, and other presence of other anions (60, 62). 

Many studies have applied pitting corrosion as a methodology to improve 

efficiency of treating contaminated groundwater and drinking water. Applications of 

zero-valent metals are familiar technologies for reducing organic and inorganic 

contaminants in natural water. Physicochemical sorption and chemical reduction are the 
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mechanisms by which zero-valent metal technologies abate contaminants. In the 

chemical reduction mechanism, the contaminant is reduced by the dissolved metal and 

direct contact with metal surface. Several studies have reported that addition of Cl− or 

pretreatment with acid improve the treatment efficiency by stimulating pitting corrosion. 

Moreover, studies have reported that pitting corrosion is involved in reduction of 

perchlorate by zero-valent metals. Prinz and Strehblow (64) reported perchlorate 

reduction by zero-valent iron at pitting sites during the measurement of iron’s pitting 

potential. They measured the increase in the concentration of Cl− over time at the pitting 

site using X-ray Photoelectron Spectroscopy (XPS). Aluminum was reported to reduce 

perchlorate by a mechanism involving an unstable aluminum ion (Al+) that was formed 

during anodic dissolution of Al (references in (62)). Reduction of perchlorate was also 

observed during electropolishing of titanium in acetic acid solution that contained 

perchlorate (65, 66). Chloride, which is the final reduction product of perchlorate, was 

found in the oxide film and its concentration increased closer to the interface between 

titanium metal and the oxide film. The presence of Cl− in the oxide film was explained 

by production during reduction of perchlorate at discreet sites on the metal surface 

formed through pitting corrosion.  

Several studies have investigated pitting corrosion of Ti(0) (58, 67-70). 

Generally, titanium requires a higher potential to develop pitting corrosion than other 

metals. For example, in solutions containing Cl−, Ti(0) requires 9.2 ± 0.3 V (SHE) to 

initiate pitting (67), but Fe (71), Al (72), and Zr (73) require 0.56 V (SHE), – 0.88 V 

(SHE), and – 0.01 V (SHE), respectively. This high pitting potential of Ti(0) is related to 
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its surface oxide film. The surface oxide film of Ti(0) mainly consists of titanium 

dioxide (TiO2), which is chemically inert in natural environments and is physically well 

attached to the Ti(0) surface (67). Moreover, the high affinity of Ti(0) for oxygen makes 

it possible to rapidly reform a damaged oxide film in air and in most aqueous solutions. 
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CHAPTER III 

ELECTROCHEICAL AND ENVIRONMENTAL CONDITIONS AFFECTING 

PERCHLORATE REDUCTION   

 

3.1 Introduction 

Reduction of perchlorate (ClO4
−) has been attempted with transition metal ions 

(74, 75), zero-valent metals (75-77), and several metal electrodes (78-80). However, the 

perchlorate reduction occurs too slowly for use in remediation and water treatment 

processes under ambient conditions. A few studies have reported reduction of 

perchlorate at reasonable rates, but they were conducted under high temperature and 

pressure, or strongly acidic conditions, or both (28-31). It has been reported that the low 

reactivity of perchlorate is related to its high activation energy barrier in redox reactions 

(2). This high activation energy originates from its structure and electronic configuration 

(2, 81, 82). The structure of perchlorate is tetrahedron in which the chlorine atom is 

located at the center with four oxygen atoms surrounding and protecting it from direct 

attack of chemical reductants. Perchlorate has a stable electronic structure as indicated 

by the large energy gap between the highest occupied molecular orbital (HOMO) and the 

lowest unoccupied molecular orbital (LUMO) (81). During a reduction by electron 

transfer, the electron is received by the LUMO. However, perchlorate cannot directly 

receive an additional electron to form ClO4
2− because of the high energy level of its 

LUMO (81). As electron transfer is difficult to perchlorate, it is typically reduced by 

removing one of its oxygen atoms (82). However, this transfer can occur only when the 
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electron-donor orbital of the reducing agent has appropriate symmetry and energy levels 

to effectively dissect oxygen atom from the perchlorate (81) or when the reducing agent 

forms a stable “yl” oxidized product by forming M=On+  (82). Therefore, the successful 

reduction of perchlorate is highly dependent on the ability of the reducing agent to 

effectively dissect the bond between chlorine and oxygen and to stabilize the transferred 

O2−. 

Zero-valent metals are strong chemical reducing agents and have been applied to 

abate contaminants in groundwater and wastewater. Zero-valent metals chemically 

reduce contaminants by direct contact of the contaminants with bare metal generally via 

pitting corrosion, by reaction with partially oxidized dissolved metal ions, and by 

reaction with elemental hydrogen produced by reaction of water with the metal (76), 

(83). Iron (75), (76), aluminum (77), zinc (75), and nickel (74) have been examined as 

reductants for perchlorate, but they showed very slow kinetics.  

Titanium (Ti(0)) is the ninth most abundant element on earth and the fourth most 

abundant metal. It exists in four oxidation states 0, II, III, and IV. Ti(III) can reduce 

perchlorate rapidly compared to common metal reducing agents (81), (27) Moreover, 

titanium has a high oxygen affinity and forms a “yl” oxidized product by forming TiO2+ 

(52). This indicates that titanium compounds can effectively stabilize oxygen atoms 

transferred from perchlorate and promote perchlorate reduction. However, since titanium 

is always protected by a thick (0.5~7.0 nm) oxide film that spontaneously forms in air 

and aqueous solutions, its applications as a chemical reducing agent are rare. The oxide 

film is chemically inert in air and most aqueous solutions and rapidly recovers from 
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chemical and mechanical attack (58, 84-86). One possible way to remove the oxide film 

from part of the Ti(0) surface would be by pitting corrosion.  

Pitting corrosion is a localized breakdown of the oxide film in which holes or pits 

are formed on the metal surface. It is initiated by adsorption of aggressive anions at the 

defective surface oxide film, resulting in the local breakdown of the oxide on the 

surface. Halide ions, including perchlorate, act in this manner. This localized breakdown 

of the surface oxide film eventually exposes the underlying metal (72, 87, 88) and 

induces rapid metal dissolution at the localized pitting site. Recent studies support the 

idea of oxide film removal via pitting corrosion to expose underlying reactive metal. 

Gaspar et al., (89) exposed zero-valent iron (Fe(0)) to water containing carbon 

tetrachloride (CCl4) and examined the surface with Auger electron spectroscopy (AES) 

and time-of-flight secondary ion mass spectroscopy (ToF-SIMS) to map chemical 

distributions on the surface. The chemical maps showed that high densities of elemental 

Cl and Cl− existed at the area associated with pits on the surface of the Fe(0). This 

implies that pitting corrosion can effectively remove the oxide film and promote 

chemical reductions in localized areas. Other studies have shown that pretreatment of 

zero-valent metals with solutions containing acids or chloride, promotes pitting 

corrosion and enhances the reduction rates of contaminants (90) A similar effect is 

observed when the reactions occur in solutions with elevated concentrations of chloride 

(90). However, pitting corrosion, especially for Ti(0), is a very slow process even in the 

presence of high concentrations of chloride and sometimes the oxide film is regenerated 
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and continues to protect the underlying Ti(0). However, application of an anodic 

potential can accelerate and maintain pitting corrosion. 

In this work, Ti(0) was examined to produce active reductants for destroying 

perchlorate in water. Ti(0) was dissolved by eliminating the localized surface oxide film 

using electrochemically induced pitting corrosion. Pitting potentials of Ti(0) were 

determined with varying perchlorate concentrations. Various potentials, currents, surface 

areas of Ti(0), and solution pH were investigated in an effort to identify their influence 

on perchlorate reduction. Furthermore, removal of perchlorate at trace levels was 

examined in the presence of chloride. Experiments were conducted with various 

currents, chloride concentrations, and surface area concentrations of Ti(0) to identify 

possible application of this technology to remove perchlorate at the trace levels found in 

natural environments. 

 

3.2 Materials and Methods 

3.2.1Chemicals  

Sodium perchlorate (NaClO4) (98.0 +%, Aldrich) was used in this study as a 

source of ClO4
−. However, in the experiments to evaluate the effect of pH, HClO4 (60%, 

Alfa Aesar) was used as a ClO4
− source instead NaClO4 and pH was adjusted with 

NaOH (97%, Sigma). This was done to minimize effects of anions that would result 

from needing to use HCl, H2SO4 or HNO3 to reduce pH. Ti(0) sheets (99.97 %) were 

purchased from ESPI Corp Inc and cut to appropriate sizes for the experiments. The 
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Ti(0) sheets were washed with acetone to remove organic impurities and rinsed several 

times with deionized water, then dried at room temperature and stored in a desiccator. 

3.2.2 Pitting Potential and Potentiostatic (constant potential) Experiments 

All experiments were conducted in a 1-L corrosion reactor (Princeton Applied 

Research, TN) with an effective solution volume of 500 mL. The reactor incorporates a 

three-electrode configuration with a saturated calomel reference electrode that is guided 

by a bridge tube. To avoid possible precipitation of KClO4 in the Vycor tip 

(Bioanalytical Systems, Inc) of both the bridge tube and the reference electrode (91), 

both were filled with a saturated sodium chloride solution. The potential of the sodium 

chloride saturated calomel reference electrode is written as NaSCE and its potential is 9 

mV positive of SCE at 30 ˚C (91). Throughout all experiments, the working Ti(0) 

electrode had an effective surface area of 5.0 cm2 and the counter electrode was Pt mesh 

with dimensions of 2 cm× 2 cm. Electrochemical potential was controlled using a 

potentiostat (Solartron Analytical, Model 1287A) and constant current was achieved 

with a DC power supply (Kenwood, Model PW18-1.8AQ). 

Pitting potentials of Ti(0) were measured by the potentiodynamic polarization 

method in which the open-circuit potential (OCP) was swept to 14.5 V (NaSCE) at a 1 

mV/s rate. Pitting potential was determined as the potential at which current began to 

increase rapidly. At lower perchlorate concentrations, oscillations were observed in the 

polarization curve and introduced considerable variability in measured pitting potentials. 

Moreover, at concentrations of perchlorate less than 1 mM, the pitting potential was 

affected by the small amount of chloride that leaked from the bridge tube and resulted in 
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pitting potentials lower than would be observed in a solution that contained only 1 mM 

perchlorate. In order to minimize the influence of chloride, the vycor was replaced after 

each pitting potential measurement. However, a small amount of chloride continued to 

leak in subsequent experiments, resulting in concentration of approximately 0.1 ~ 0.2 

mM.  

3.2.3 Galvanostatic (constant current) Experiments 

Electrochemical experiments were carried out in a lab-scale electrochemical cell 

with two electrodes (anode and cathode) that had an effective volume of 800 mL. Both 

the anode and cathode used were Ti(0) sheets (99.97 %) and constant current was 

supplied by a DC power supply (Kenwood, Model PW18-1.8AQ). The electrochemical 

potential was not monitored during the experiments, but preliminary experiments were 

conducted to ensure that it would be above the pitting potential under all experimental 

conditions. The geometry of the cathode was 0.05 cm × 5.1 cm × 7.25 cm and the 

surface area of the anode varied. The cell was gently mixed (60 rpm) by a magnetic stir 

bar (2.5 cm long x 8 cm diameter, VWR) to prevent the accumulation of solid titanium 

oxide or hydroxide on the anode surface. A 6-mL sample was taken at each time interval 

and filtered by 0.22-µm nylon membrane filters (Magna). The samples were kept in 

refrigerator without any treatment until analysis and most samples were analyzed within 

two weeks. 

3.2.4 Analytical Methods 

ClO4
−, ClO3

−, ClO2
−, and Cl− concentrations were analyzed using a Dionex 500 

ion chromatograph equipped with a 4-mm Dionex AS–16 analytical and guard column. 
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The eluent concentration, gradient operation, and injection sample loop size were the 

same as in a previous study (76), except that NaOH was used instead of KOH. 

Concentrations of perchlorate less than 1 mg/L were analyzed isocratically with a 1.00 

mL min−1 flow of 50 mM NaOH as eluent and a 1000-µL injection sample loop. 

 

3.3 Results and Discussions 

3.3.1 Pitting Potential of Titanium 

Figure 3.1 shows that the pitting potential depends on the concentration of 

perchlorate. The pitting potential for a 100 mM solution of perchlorate is 12.53 ± 0.04 

VNaSCE. Basame and White (67) reported that the pitting potential for 100 mM chloride is 

9.35 ± 0.43 VNaSCE, for 100 mM iodide (I–) is 7.45 ± 0.71 VNaSCE and for 100 mM 

bromide (Br–) is 1.35 ± 0.28 VNaSCE. This higher pitting potential for perchlorate than 

other halide ions is consistent with what has been reported for Al, Fe, and Zr (62, 64, 92) 
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 FIGURE 3.1. Pitting potentials as a function of the concentration of perchlorate. 
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3.3.2 Influence of Potential on Perchlorate Reduction 

Based on results of experiments to determine the pitting potential of Ti(0) in 

perchlorate solutions, experiments were conducted to evaluate perchlorate reduction 

during pitting corrosion. Current and the concentrations of perchlorate and its reduction 

products were monitored over time. Vigorous formation of gas bubbles was observed at 

both the working electrode (Ti(0)) and counter electrode (Pt mesh) as soon as potential 

was applied. Oxygen was expected at the Ti(0) electrode due to oxidation of water and 

hydrogen was expected at the Pt electrode due to water reduction. Gas bubbles slowly 

diminished over time and only small gas bubbles were observed from the Ti(0) electrode 

after pitting corrosion began. However, gas evolution from the Pt mesh counter electrode 

persisted over the course of the experiment. Figure 3.2a illustrates how imposed 

potential affected changes in perchlorate concentration in solutions with 1 mM initial 

concentration of perchlorate. When the potential was imposed at 12.0 VNaSCE, which is 

less than the pitting potential (13.4 VNaSCE, Figure 3.1), the perchlorate concentration 

does not change over time. However when the applied potential is higher than the pitting 

potential, the perchlorate concentration decreases over time. In order to examine the 

possibility that perchlorate was being reduced at the Pt counter electrode, the Ti(0) 

electrode was replaced with a graphite carbon electrode and a potential of 14.5 VNaSCE 

was imposed. The concentration of perchlorate did not change over time. Other 

potentials (14.0, 13.5, and 12.0 VNaSCE) were also examined and showed no changes in 

perchlorate concentration. These results are presented in Appendix A. This indicates that 
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the reduction of perchlorate did not occur at the Pt counter electrode but at the Ti(0) 

electrode.  

Generally, it is expected that higher potentials would produce higher current and 

thereby more pitting corrosion. However, perchlorate reduction rate decreased with 

increasing applied potential (Figure 3.2a). Furthermore, the average current decreased 

(16.3, 11.5, 9.4 mA) as potential increased (13.5, 14.0, and 14.5 VNaSCE, respectively). 

This unusual behavior is caused by the formation of surface oxide films of different 

thicknesses. The increases of the thickness of the film during the pitting corrosion are 

apparently contradictory behavior because the pitting corrosion causes breakdown of 

surface oxide film. However, since the pitting corrosion is localized breakdown of oxide 

film, the imposing anodic potential above pitting potential on metal can cause both the 

growth of surface oxide film on metal where pitting is not developed (reference) and the 

breakdown of surface oxide film on metal where pitting is developed. It is known that 

the thickness of the oxide film formed is directly proportional to the applied potential 

and this thickness can be estimated from the color of the surface oxide film on titanium 

(93, 94). A thin titanium oxide film is transparent. However, as the oxide film grows in 

thickness, the oxide film reflects different wavelengths of light and produces different 

colors (93-96). During the course of the experiments in this study, the color of titanium 

surface changed from a metallic gray to yellow/brass after the potential was applied and 

slowly turned to purple, purple blue, gray blue and finally dark gray, which are 

representative of thicker oxide films. Repeated observations confirmed that higher 

imposed potentials rapidly formed colors that represent thicker surface oxide films. The 
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thicker films could hinder formation of stable pit developments and produce a lower 

number of pits (62), and thereby result in lower currents. The correlation of decreased 

perchlorate reduction rates and decreased current indicate that the rate of reduction is 

mainly governed by the current rather than potential, as long as the potential exceeds the 

pitting potential.  

Figures 3.2b c and d illustrate how concentrations of products of perchlorate 

reduction change. As perchlorate concentration decreased, chloride concentration 

increased. However, the increase in chloride concentration was less than the decrease in 

perchlorate concentration and the chloride concentration began to decrease after a time 

that depended on experimental conditions. Small amounts of chlorate (ClO3
−) (< 4.7 

µM) and chlorite (ClO2
−) (<11.7 µM) were detected, but their concentrations remained 

almost constant and did not vary with changes in concentrations of perchlorate and 

chloride. It has been suggested that the reduction of perchlorate occurs via the sequential 

formation of chlorate, chlorite and chloride (91). However, relatively small amounts of 

chlorate and chlorite accumulated compared to chloride, which indicates that they are 

rapidly converted to chloride. Final mass recoveries of Cl based on measurements of 

ClO4
−, ClO3

−, ClO2
−, and Cl− were 43.5, 59.4, and 59.5 % for experiments at 13.5, 14.0, 

and 14.5 VNaSCE respectively. These low recoveries of Cl could be caused by oxidation 

of chloride to chlorine (Cl2). The pitting potential of Ti(0) is greater than the standard 

oxidation potential for converting chloride to chlorine, so it is possible that this 

conversion occurs on the surface of Ti(0).  
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FIGURE 3.2. Influence of imposed potential on removal of perchlorate and production of products. 

(a) perchlorate (b) chlorate (c) chlorite (d) chloride.  
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3.3.3 Electrochemical Chloride Oxidation 

Oxidation of chloride to chlorine, chlorite, chlorate, and perchlorate were 

examined in experiments conducted with a solution of 1 mM chloride with an imposed 

current of 1 mA. Figure 3.3 shows that the chloride concentration decreases over time, 

but that the rate of chloride removal is different after pitting corrosion begins. Small 

amount of chlorate (< 9.7 µM) and chlorite (<3.8 µM), but no perchlorate were detected. 

The first three data points represent chloride concentrations before pitting developed and 

the last six data points are chloride concentrations after pitting developed. Linear 

regressions on the first three points and the last six points showed slopes that differed by 

over 400 % before and after pitting corrosion developed. This indicates a correlation 

between chloride oxidation and pitting corrosion, but does not confirm the oxidation of 

chloride at the pitting site. However, a previous study observing bromide (Br−) oxidation 

on Ti(0) surface supports the supposition that chloride is oxidized at the pitting site (58). 

Scanning electrochemical microscopy (SECM) showed that bromide is oxidized to 

bromine (Br2) at localized sites on Ti(0) that correspond to pitting sites. Therefore, the 

results in Figure 3.2 and 3.3 indicate that both oxidation and reduction reactions take 

place simultaneously at pitting sites on Ti(0). 
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FIGURE 3.3. Chloride concentrations over time during electrochemical experiments at 

1 mA current. 
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3.3.4 Effect of Current on Perchlorate Reduction  

The influence of current on perchlorate reduction was examined by applying 

constant currents of different values and measuring concentrations of perchlorate over 

time. All experiments were conducted until the power supply could not sustain the 

current at the desired value. As shown in Figure 3.4a, the rate of perchlorate reduction  is 

increased by raising the current. Figure 3.4a also shows that the experiments at high 

currents ended earlier, due to the earlier depletion of perchlorate and chloride 

concentrations that are required to sustain constant current. The amount of chloride 

oxidation is calculated using Cl based material balance and assumptions: 1) perchlorate 

is only reduced to chloride (no accumulation of chlorate and chlorite) and 2) the rate of 

chloride oxidation is the only important rate of chloride removal. The amount of chloride 

oxidized at a given time is as follows 

 [Cl−]t,ox = [ClO4
−]i − [ClO4

−]t + [Cl−]i − [Cl−]t  (3.1) 

where [Cl−]t,ox represents total chloride concentration oxidized at a given time (t), 

[ClO4
−]i and [Cl−]i are initial perchlorate and chloride concentration, and [ClO4

−]t and 

[Cl−]t are perchlorate and chloride concentrations at a given time. Figure 3.4b presents 

the amount of chloride oxidized over time. The amount of chloride oxidized is increased 

by increasing current and solid lines in Figure 3.4b represent linear regression. Figure 

3.4a shows that the perchlorate concentrations gradually decreased over time for all 

currents, but the chloride concentrations increased initially and decreased later. This 

behavior is caused by differences in the rates of production of chloride by reduction of 

perchlorate and the rates of loss of chloride caused by its oxidation to Cl2. Initially, the 
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rate of formation of chloride is higher than chloride oxidation and chloride accumulates. 

However, the rate of perchlorate reduction decreases as perchlorate is depleted and 

chloride accumulates, but the rate of chloride oxidation remains constant over time. 

The effect of current on the rates of perchlorate reduction and chloride oxidation 

can be explained by Faraday’s law. Faraday’s laws states that the amount of material 

undergoing chemical change at an electrode is directly proportional to the amount of 

electrical charge passed through the electrode (97).  

 tQm
nF

=   (3.2) 

where m is the amount of material undergoing reaction (mol), n represents the number of 

electrons transferred per molecule that undergoes conversion, F is faraday’s constant 

(96,485 C mol−1), Qt is total amount of electrical charge (C). If current remains constant 

over time, then the total amount of charge is equal to the product of the current and time.  

 Itm
nF

=   (3.3) 

where I is current (A), and t is overall reaction time (s). Eq 3.3 indicates that higher 

current will cause electrochemical conversions to occur to a greater extent. Thus, it is 

inferred that higher currents increase the rate of pitting corrosion which results in higher 

rates of perchlorate reduction. Higher current could also be associated with faster rates 

of oxidation of chloride to Cl2, if this oxidation occurs on the electrode surface made 

available by removal of the protective film within the pit. Additionally, a slight initial 

delay in removal of perchlorate is observed in the data obtained with current of 37 mA 

and this delay could be related to the induction time for development of pitting 
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corrosion. The induction time is defined as the time required to develop the first pit on a 

metal surface and it is a function of aggressive anion concentration, thickness of surface 

oxide film, potential, and current density (62). Thinner films and higher anion 

concentration, potential, and current density result in shorter induction times. Since the 

current density is defined as a current divided by the surface area, shorter induction 

times are expected at higher currents when surface area is constant. Figure 3.4 shows a 

discernable lag at the lowest current, but no measurable lag at higher current, which 

indicates that pitting began with negligible induction time at the higher currents. 

3.3.5 Influence of Surface Area of Ti(0) and Solution pH on Perchlorate Reduction  

The surface area is an important parameter governing the rate of zero-valent 

metal reactions because it determines the number of surface sites available for reaction. 

However, the experimental results shown in Figure 3.5 indicate that the influence of 

surface area concentration of Ti(0) on the rate of perchlorate reduction is negligible, 

even when it varies by a factor of 8 (11.6 cm2/L to 92.5 cm2/L). The concentrations of 

perchlorate for the experiment conducted with a surface area concentration of 92.5 

cm2/L are higher than others, which might make it appear that the rate of removal is 

slower. However, the fact that the concentrations are higher is the result of a lag in 

beginning removal, rather than slower removal. The negligible influence of 

concentration of electrode surface area on perchlorate removal is explained by the 

mechanism of electrochemically induced pitting corrosion. Perchlorate reduction takes 

place at the pitting site and its rate is increased by imposing higher current. 
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FIGURE 3.4. Effect of current on perchlorate reduction and chloride production. (a) 

perchlorate (filled points) and chloride (emptied points) concentrations and (b) amount 

of chloride oxidized. Surface area concentration was 92.5 cm2/L. 
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Increasing the surface area would probably increase the number of pitting sites, but the 

activity of each pitting site would be decreased unless current was increased 

proportionally, i.e. if current density (current/electrode surface area) were held constant. 

Therefore, increasing the concentration of electrode surface area has a negligible effect 

on the rate of perchlorate reduction.  

Figure 3.6 shows the influence of solution pH on perchlorate reduction. The rate 

of perchlorate reduction is the same at pH 7.2 and 10.0 and is slightly increased at pH 

2.0. It has been reported that rapid dissolution of metals produces strongly acidic 

conditions within a pit as the result of metal hydrolysis (60). Therefore, conditions 

within the pit where reduction occurs may not be strongly affected by pH in solution. 

However, since a lower solution pH would tend to produce more strongly acidic 

conditions inside pits, a lower solution pH may promote perchlorate reduction to some 

extent. 
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FIGURE 3.5. Influence of surface area concentration of titanium electrode on 

perchlorate reduction. Initial perchlorate concentration was 0.98 ± 0.017 mM and current 

was 50 mA. 
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FIGURE 3.6. Influence of solution pH on perchlorate reduction. Initial perchlorate 

concentration was 10.15 ± 0.35 mM, current was 370 mA, and surface area 

concentration of titanium electrode was 92.5 cm2/L. 

 

3.3.6 Trace Levels of Perchlorate Removal.  

Perchlorate concentrations have been detected in groundwater and drinking 

waters generally at trace levels, i.e. at concentrations less than 1,000 µg/L. The literature 

on other metals indicates that it would be possible to develop pitting corrosion with trace 

levels of perchlorate (62). However, pitting was not observed when solutions contained 
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only trace levels of perchlorate and current was observed to rapidly drop due to growth 

of thicker surface oxide film on Ti(0). Most natural water contains chloride that is an 

aggressive anion that promotes development of pitting corrosion. It is a reasonable 

scenario that chloride would be present in water that contained trace levels of 

perchlorate. Thus, the behaviors of trace levels of perchlorate were examined in the 

presence of various concentrations of chloride, current, and surface area concentration of 

Ti(0). 

Figure 3.7 shows removal of trace levels of perchlorate in the presence of various 

concentrations of chloride. These results show increased removal of perchlorate at lower 

chloride concentrations, but that the experiments at lower chloride ended earlier, due to 

inability to maintain the specified current. This is due to the earlier depletion of chloride 

that is needed to maintain pitting corrosion. Chloride concentrations at the final sampling 

points were 97, 82, 82, and 82 µM for 0.20, 0.45, 0.84, and 2.02 mM initial chloride 

concentrations, respectively. These results indicate that the presence of chloride has both 

beneficial and detrimental effects on perchlorate removal. Chloride can induce pitting 

corrosion that results in removal of trace levels of perchlorate, but it also inhibits the rate 

of perchlorate removal. A detailed inhibition mechanism will be presented in Chapter V.  

Figure 3.8 shows the influence of current on the rate of perchlorate removal. The 

rate of removal of trace levels of perchlorate increased with increasing current, which is 

consistent with results shown in Figure 3.4. Effects of surface area concentrations were 

also investigated over the range from 11.6 cm2/L to 92.5 cm2/L as shown in Figure 3.9. 
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Results of these experiments showed that surface area concentration had negligible 

influence on the rates of removal of trace levels of perchlorate. 
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FIGURE 3.7. Influence of chloride concentrations on reduction of trace levels of 

perchlorate. Current intensity was 50 mA and surface area concentration of titanium was 

46.25 cm2/L. 
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FIGURE 3.8. Influence of current on reduction of trace levels of perchlorate. Initial 

chloride concentration was 1.06 ± 0.02 mM and surface area concentration of titanium 

electrode was 46.25 cm2/L. 
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FIGURE 3.9. Influence of surface area concentration of titanium electrode on removal 

of trace levels of perchlorate. Initial perchlorate concentration was 4.82 ± 0.17 µM and 

current was 80 mA. 
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3.4 Conclusions 

A new methodology to reduce perchlorate to chloride has been presented. It is 

based on using titanium metal to produce active reductants in solution via 

electrochemically induced pitting corrosion. Results of experiments have been presented 

to evaluate the effects of imposed potential, current, solution pH, and surface area 

concentration of Ti(0) electrode on rates of perchlorate reduction. Solution pH and 

surface area of Ti(0) electrodes showed negligible effects on perchlorate reduction. 

Reduction of perchlorate was not dependent on the imposed electrochemical potential as 

long as the potential was maintained above the pitting potential of Ti(0). However, the 

rate of perchlorate reduction did depend on the current. Reduction of trace levels of 

perchlorate in the presence of chloride showed that perchlorate reduction rates are easily 

controllable by changing current, and they are fast enough to be applied in a treatment 

system. Furthermore, this technology can achieve concentrations of perchlorate that are 

below the recommended Drinking Water Equivalent Level (DWEL) of 24.5 µg/L. 

However, the requirement of high potentials needed to produce active reductants and the 

inhibition of perchlorate removal by chloride restricts its immediate application in 

treatment systems. Therefore, methodologies are needed to lower the pitting potential of 

Ti(0) and to minimize the effects of chloride before the process can be applied to 

treatment systems. 
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CHAPTER IV 

MECHANISM OF PERCHLORATE REDUCTION  

DURING THE PITTING CORROSION OF TI(0) 

 

4.1 Introduction 

Applications of zero-valent metals are familiar technologies for reducing organic 

and inorganic contaminants in natural water. Physicochemical sorption and chemical 

reduction are the mechanisms by which zero-valent metal technologies abate 

contaminants. In the chemical reduction mechanism, the contaminant is reduced by the 

dissolved metal ions and direct contact with metal surface that is generally promoted via 

pitting corrosion. Several studies have reported that the presence of chloride (Cl−), 

pretreatment with acid, or ultrasound pretreatment of the metal improve the treatment 

efficiency by stimulating pitting corrosion (89, 90, 98-100). Moreover, studies have 

reported that pitting corrosion is involved in reduction of perchlorate by zero-valent 

metals. Prinz and Strehblow (64) reported perchlorate reduction by zero-valent iron at 

pitting sites during the measurement of iron’s pitting potential. They measured the 

increase of the concentration of chloride over time at the pitting site using X-ray 

Photoelectron Spectroscopy (XPS). Aluminum was reported to reduce perchlorate by a 

mechanism involving an unstable aluminum ion (Al+) that was formed during anodic 

dissolution of Al through the pitting corrosion (references in (62)). Reduction of 

perchlorate was also observed at the pitting site during electropolishing of titanium in 

acetic acid solution that contained perchlorate (65, 66). Chloride, which is the final 
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reduction product of perchlorate, was found in the solution and in the oxide film. In the 

oxide film, the chloride concentration increased at locations closer to the interface 

between titanium metal and the oxide film. The presences of chloride in the oxide film 

and solution were explained by production during reduction of perchlorate at discreet 

sites on the metal surface formed through pitting corrosion. 

Chapter III investigated the influence of electrochemical (potential, current, and 

surface area of Ti(0)) and environmental parameters (solution pH) on perchlorate 

reduction at the pitting site on Ti(0). Results showed that rates of perchlorate reduction 

were strongly dependent on the electrochemical parameters, especially current. In this 

Chapter, perchlorate reduction mechanisms are suggested based on hypothetical 

mechanisms from the literature and evaluated using observations made visually and with 

scanning electron microscopy and experimental results including reduction of 

perchlorate using Ti(0) as both anode and cathode of an electrochemical cell, reduction 

of perchlorate with transitory titanium ions, X-ray diffraction (XRD) analysis of Ti(0) 

oxidation products, dissolution valence of Ti(0), and molar ratio of consumed Ti(0) to 

reduced perchlorate. Furthermore, a hypothetical mechanism for perchlorate reduction at 

the pitting site on Ti(0) was proposed in an effort to understand perchlorate reduction at 

the pitting site. 
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4.2 Materials and Methods 

4.2.1 Chemicals  

Sodium perchlorate (98.0 +%, Aldrich) was used in this study as a source of 

perchlorate. Ti(0) sheets (99.97 %) were purchased from ESPI Corp Inc and cut to 

appropriate sizes for the experiments. The Ti(0) sheets were washed with acetone to 

remove organic impurities and rinsed several times with deionized water, then dried in 

room temperature and stored in a desiccator. 

4.2.2 Perchlorate Reduction with Ti(II) and Ti(III) Containing Solutions.  

Ti(III) solutions of 100 and 200 mM were prepared by dissolving TiCl3 (99.9 %, 

Aldrich) in 1 N and 5 N HCl (Fisher). A Ti(II) solution was prepared by a modification 

of the method reported by Kölle and Kölle (53) and is based on the following reaction. 

 2Ti3+ + 6F− → [TiF6]2− + Ti2+ (4.1) 

A solution containing KF (99.0 %, ACS grade, EM) (600 mM) and TiCl3 (200 mM) in 1 

N and 5 N HCl was prepared to generate a solution which would contain 100 mM Ti(II) 

if the reaction in equation 4.1 were to go to completion. Absorption spectrums of Ti(II) 

and Ti(III) were measured using a UV-VIS spectrophotometer (Hewlett Packard 

G1103A). All experiments with Ti(II) and Ti(III) were conducted using an anaerobic 

chamber filled with a mixed gas containing 5 % hydrogen and 95 % nitrogen. The 

deionized water was purged with 99.99 % argon gas for 2 hours and stored in an 

anaerobic chamber until use. All Ti(II) and Ti(III) solutions were prepared fresh and 

discarded after 12 hrs. 
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4.2.3 Determinations of Dissolution Valence and Molar Ratio of ΔTi(0)/ΔClO4
−. 

Experiments to determine the dissolution valence of Ti(0) and the molar ratio of 

ΔTi(0)/ΔClO4
− were conducted with an electrochemical cell having two electrodes 

(anode and cathode) and operated at constant current. The constant current was supplied 

by a DC power supply (Kenwood, Model PW18-1.8AQ). The anode and cathode sizes 

and materials, and reactor and effective reactor volume were the same as described in 

Chapter III for experiments to determine the pitting potential. The weight loss of Ti(0) 

was determined by measuring the weight of Ti(0) before and after experiments. After 

experiments, Ti(0) was washed with tap water, and carefully scrubbed with a plastic 

brush to remove precipitate on the Ti(0) surface. Washing and brushing were repeated 

several times. Ti(0) was rinsed several times with deionized water and dried in room 

temperature and measured weight. 

4.2.4 Analytical Methods 

Concentrations of ClO4
−, ClO3

−, ClO2
−, and Cl− were analyzed using a Dionex 

500 ion chromatograph equipped with a 4-mm Dionex AS–16 analytical and guard 

column. The eluent concentration, gradient operation, and injection sample loop size 

were the same as in a previous study (76), except that NaOH was used instead of KOH. 

Concentrations of perchlorate less than 1 mg/L were analyzed isocratically with a 1.00 

mL min−1 flow of 50 mM NaOH as eluent and a 1000-µL injection sample loop.  

The compositions of the oxidation by-products of Ti(0) were analyzed using X-

ray diffraction (XRD) with a Riga automated diffractometer using Cu Kα radiation. 

Samples were carefully collected after each experiment and washed several times with 
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deionized water (shake for 5-minutes, separate by centrifugation, decant supernatant). 

After washing, the samples were placed in a vacuum drying oven held at 30 ˚C (Thelco 

Inc, Model 19) for one week and stored in caped bottles until analysis. 

 

4.3 Results and Discussions 

4.3.1 Possible Mechanisms for Perchlorate Reduction  

In zero-valent metal systems, it has been shown that pitting corrosion enhances 

the rate of contaminant removal. The localized breakdown of the surface oxide film due 

to pitting corrosion promotes direct reduction by increasing the contact of contaminants 

to the exposed bare metal surface (76, 89, 90, 101). However, the direct reduction by the 

underlying Ti(0) is not an appropriate mechanism to explain perchlorate reduction in this 

study. The standard electrode reduction potential for ClO4
−/Cl− is 1.29 V (26) so 

substantial reduction of perchlorate to form chloride would not occur at the potentials 

needed to induce pitting corrosion of Ti(0) (> 12.5 VNaSCE).  

There are some studies that have reported similar anomalous behavior during 

dissolution of other metals. Systems containing Al(0), Be(0), Ti(0), and Zn(0) showed 

hydrogen evolution when these metals were anodically polarized by imposition of an 

external potential or by contacting them with more noble metals (references in (102), 

references in (103), (85, 86)). The potentials applied to the anode were above the H+/H2 

equilibrium potential, so the behavior appeared to contradict thermodynamics. Several 

mechanisms have been suggested to explain these anomalous behaviors observed during 

electrochemical dissolution of metals. They include ejection of particles of bare metal 
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during disintegration of the electrode surface, a high potential drop caused by increased 

resistance of films, and formation of transitory and unexpected partially oxidized metal 

ions (85, 86, 102, 103). The first and third mechanisms would result in hydrogen 

production away from the electrode surface and the second mechanism would result in 

hydrogen production at the surface of the film on the electrode. 

4.3.2 Bare Titanium Metal Particle Ejection 

Ejection of bare metal particles during metal corrosion by imposition of an 

external potential was observed in the experiments using Be(0), Mg(0), Zn(0), Cd(0), 

and Al(0). The ejected metal particles were either dispersed in solution as particles with 

diameters of the order of 10−1 µm or associated with metal precipitates (references in 

(102, 103)). In order to investigate possible Ti(0) particle ejections, optical microscopic 

observations were conducted to identify Ti(0) particles dispersed in solution and analysis 

by scanning electron microscopy (SEM) and X-ray diffraction (XRD) were conducted to 

identify particles associated with the precipitate. The optical microscopic observations 

found that no Ti(0) particles were dispersed in the solution. The precipitates were 

observed using scanning electron microscope (SEM) and no Ti(0) particles were found 

in the precipitate as shown in Figure 4.1. Instead, dark gray Ti(0) particles were 

observed by eye on the bottom of the reactor after long hours of operation. Some of 

these gray particles were over 1 mm. These particles were probably disintegrated debris 

from Ti(0) edges during pitting corrosion. It is believed that these particles are not 

responsible for the perchlorate reduction due to their larger size and color. Ti(0) is 

always covered by a thin titanium oxide film that is transparent, thus Ti(0) has a metallic 
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gray color. However, as the oxide film on Ti(0) grows in thickness by imposition of 

electrochemical potential or exposing oxidizing chemicals, the oxide film reflects 

different wavelengths of light and produces different colors (93-96). In this study, long 

hours of imposing an electrochemical potential on Ti(0) change its color from a metallic 

gray to dark gray due to growth of the oxide film. This dark gray color was identical to 

that of larger Ti(0) particles found in the precipitate. If micro-scale Ti(0) particles 

without oxide film are ejected from the pitting site, they would be oxidized due to its 

unstable thermodynamic nature of bare Ti(0). However, if these micro-scale Ti(0) 

particles are not completely oxidized, then they would be passivated by the formation of 

surface oxide film and they could be embedded in oxide precipitates which would make 

them undetectable by microscopic observation. Previous studies reported that X-ray 

diffraction (XRD) can detect the presence of metallic Ti(0) even it was covered by 

surface oxide film that was generated by electrochemical anodization and thermal 

oxidation (67, 104-106). Thus, the precipitates produced in 1 mM of perchlorate 

solutions at different currents were collected and analyzed using XRD to investigate the 

possible presence of metallic Ti(0) particles associated with precipitates. Figure 4.2 

shows that the dried precipitates contain mainly synthetic anatase and brookite. No 

metallic Ti(0) was observed in the XRD analysis. However, if ejected bare Ti(0) 

particles are completely oxidized or small amount of metallic Ti(0) remained in the 

precipitate, the XRD analysis could be inconclusive in providing evidence of the 

presence of Ti(0) particles associated with precipitates. Thus, results of XRD analysis 
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cannot be used to completely rule out ejection of Ti(0) particles as a possible mechanism 

to describe perchlorate reduction at the pitting sites. 

 

 

(a) 

 

(b) 
FIGURE 4.1. SEM images of the precipitate produced at 100 mA. (a) × 1000 (b) × 

3000. 
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FIGURE 4.2. XRD analysis of precipitates produced under different current conditions. 

(1) synthetic anatase; (2) brookite. 
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4.3.3 High Ohmic Drop  

During electropolishing of Ti(0) in a mixture of perchloric and acetic acids, it 

was observed that perchlorate was reduced to chloride in spite of imposed potentials that 

apparently would make that reaction thermodynamically infeasible (66). This was 

explained by development of lower potential than standard electrode reduction potential 

for ClO4
−/Cl− at the pitting site by the high ohmic resistance of the salt film. Several 

studies reported that during pitting corrosion the bottom of the pit is covered by a salt 

film consisting of metal salts or metal oxy-anion salts (85, 86, 107-115). This salt film is 

produced by massive dissolution of the metal at the pit, super-saturation of dissolved 

metal cations, and their precipitation at the bottom of the pit. For titanium in halide 

solutions, the composition of the salt film was titanium tetrahalide or oxy-halide (85). 

Beck (86) calculated potential drop by salt film in pit on Ti(0) in HBr solution. The 

result showed that salt film caused a potential drop that was 80 to 125 % of the applied 

potential. However, his calculation was based on an assumption. As hydrogen gas issued 

from the pit during experiments, the author assumed that the potential inside pit was 

negative compared to the H+/H2 equilibrium potential. This assumption was used to 

calculate the potential drop across the salt film by simply subtracting summations of 

open circuit potential, ohmic potential drop outside of the pit, and ohmic potential drop 

inside pit from the applied potential. Thus, the calculated potential drop might not 

represent the actual potential drop caused by the salt film. Moreover, there are other 

studies that contradict this result by reporting that the potential drop by the salt film is 

very small (73, 116-118). For example, the potential drop caused by the salt film near 
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zirconium electrodes was only 0.03 V when the applied potential was 0.2 V (73) and 

potential drop for nickel was 0.5 V when the applied potential was 0.9 V (116). In this 

study, potentials over 12.5 V were imposed to develop pitting corrosion on Ti(0). Thus, 

it is questionable that the salt film could cause the potential drop below the ClO4
−/Cl− 

equilibrium potential at pitting site on Ti(0).  

Other possible causes for a large potential drop in the pit are formation of solid 

corrosion products, accumulation of hydrogen gas, and existence of colloids (73, 119). 

Among them, solid corrosion product would more likely be developed a potential drop 

that results in potential below the ClO4
−/Cl− equilibrium potential and perchlorate 

reduction. During the metal dissolution, the pitting sites are covered with metal oxide or 

hydroxide precipitates. In the course of the experiments in this study, white oxide and 

hydroxide precipitates, believed to be mainly TiO2, were formed and covered the Ti(0) 

surfaces. In order to investigate possible perchlorate reduction on the solid corrosion 

precipitate, experiments were conducted using Ti(0) electrodes that were covered with 

natural oxide film. Cathodic potentials (-1.5, -2.0 and -2.5 V) were imposed but no 

changes in perchlorate concentration were observed as shown in Figure 4.3. This is 

consistent with a study (78) using a titanium electrode coated with TiO2 that showed less 

than 2 % reduction of perchlorate with initial perchlorate concentrations of 0.1 to 50 

mM. Several other studies reported that direct cathodic reduction of perchlorate is a very 

sluggish reaction on other metal electrodes (references in (120)). Therefore, it is believed 

that perchlorate reduction by the high ohmic drop at the pitting sites of Ti(0) is not likely 

to be the mechanism of observed perchlorate reduction. 
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FIGURE 4.3. Direct electrode reduction of perchlorate on Ti(0).  

 

 

4.3.4 Transitory Titanium Metal Ion Dissolutions 

Formation of transitory or uncommon metal ions is the most widely accepted 

hypothesis to describe the anomalous behavior of compounds being reduced at metal 

electrodes during anodic polarization (102, 103). Ti(0) could produce two transitory ions 

(Ti2+ and Ti3+) that would be intermediates before formation of the final product of 

Ti(IV). Ti(III) can exist as solids phases such as titanium halide (Ti(X)3, where X = F, 
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Cl, Br, or I) and titanium oxide (Ti2O3) or in the aqueous phase as Ti3+ (25, 50). Ti(II) is 

not common, but its existence has been shown by the presence of titanium halide 

(Ti(X)2, where X = F, Cl, Br, or I), titanium hydride (TiH2), and titanium oxide (TiO) in 

solid phases (50). However, the presence of Ti(II) in the aqueous phase is not well 

documented. Only a few studies have observed the formation of greenish-brown or 

greenish-yellow solutions believed to contain Ti(II) during dissolution of TiO with 

solutions of non-oxidizing acids or dissolution of Ti(0) with solutions of acids 

containing excess fluoride (F−) (52, 53). 

Visual observations were conducted to identify the presence of transitory 

titanium metal species in solutions during Ti(0) dissolution. However, there was no 

indication of Ti(II) or Ti(III) being present in the solution during experiments, because 

there were no greenish-yellow (Ti(II)) and violet (Ti(III)) colors observed. Microscopic 

observations also failed to show the existence of any solid compounds of Ti(II) and 

Ti(III) that are black and violet colors when they from either hydride or oxide (50). 

However, it is possible that Ti(0) could undergo dissolution to form Ti(II) and Ti(III) 

that exists only near the surface of Ti(0). An especially likely location would be inside 

the pitting sites. 

In order to investigate whether perchlorate is reduced by transitory titanium ions, 

experiments were carried out with solutions of Ti(II) and Ti(III). Figure 4.4 shows 

absorption spectrums of Ti(II) and Ti(III) solutions. The Ti(II) solution showed the same 

green color and the same absorption spectrum with maximums at 430 and 660 nm as has 

been reported (53). The Ti(III) solution shows an absorption band at 505 nm, which is 
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similar to that reported by previous studies (81). The concentration of H+ had a 

negligible effect on the absorption spectrum of Ti(III), but the absorption peak at 430 nm 

for Ti(II) was slightly shifted to longer wavelength at higher concentrations of H+. 

Figure 4.5 shows how concentrations of perchlorate were reduced in solutions of Ti(II) 

and Ti(III). There is a higher rate of perchlorate reduction with Ti(III) than with Ti(II) 

and higher rates with both were observed at higher concentrations of H+.  

 

 

 

λ (nm)

300 350 400 450 500 550 600 650 700 750 800

A
bs

or
ba

nc
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
100 mM Ti(III) in 1 N HCl
100 mM Ti(III) in 5 N HCl
200 mM Ti(III) in 5 N HCl
100 mM Ti(II) in 1 N HCl
100 mM Ti(II) in 5 N HCl

 

FIGURE 4.4. Adsorption spectrums of Ti(II) and Ti(III) solutions. 
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FIGURE 4.5. Perchlorate reduction with Ti(II) and Ti(III). 

 

 

Initial pH of the experiments shown in Figure 3.2 in Chapter III was 6.0 and the 

final pH was 7.5. Within this pH range, it is expected that perchlorate reduction by Ti(II) 

and Ti(III) would be much slower than shown in Figure 4.5. However, pitting corrosion 

produces lower pH conditions inside the pit that could promote the reaction rate. Pitting 

corrosion occurs in a localized area in which substantial amounts of metal can dissolve. 

The dissolved metal ions undergo hydrolysis reactions that develop a high concentration 

of H+ inside of the pit (60, 62). Dissolution of Ti(0) would produce Ti(IV) as the primary 

product, whether it is formed by oxidation of Ti(0) at the electrode or by oxidation of 
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transitory species such as Ti(II) and Ti(III). The hydrolysis of Ti(IV) would produce H+ 

ions as shown by the following. 

 Ti4+ + H2O → TiO2+ + 2H+  (4.2) 

 TiO2+ + H2O → TiO2 + 2H+  (4.3) 

These hydrolysis reactions would maintain the lower pH in the pit during the pitting 

corrosion of Ti(0). Furthermore, there is some evidence in the literature that suggests 

that concentrations of anions such as perchlorate are dramatically increased inside pits 

because of the need to maintain electro-neutrality during production of metal cations 

such as Ti4+ and TiO2+ (60, 62). Measurements of chloride concentrations in pits 

developed on a stainless austenitic steel showed that chloride concentrations 

accumulated in the pits at concentrations up to 20 times higher than in the external 

solution (113). Thus, pitting corrosion of Ti(0) could produce not only lower pH, but 

also higher perchlorate concentrations in the pits which could induce faster perchlorate 

reduction. However, it is hard to determine whether Ti(II) or Ti(III) is responsible for 

perchlorate reduction at the pitting site of Ti(0) based on results presented in Figure 4.5. 

Two other measurements were made in order to further evaluate the role of Ti(II) 

and Ti(III) in perchlorate reduction. One measured the dissolution valence using 

Faraday’s law and the other calculated the molar ratio of Ti(0) consumed to perchlorate 

reduced. Faraday’s law defines that the amount of chemical change at the electrode is 

proportional to the total quantity of electric charge passed. Then, the titanium dissolution 

valence was calculated based on titanium weight loss. 
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where nTi represents the dissolution valence of titanium, ΔMTi is loss of mass of Ti(0) 

(g), MwTi is atomic weight of titanium, and F is Faraday’s constant (= 96,485 C/mole). 

The total quantity of electric charge passed, Qt (C), is defined as 

 ∫= IdtQt  (4.5) 

where I represents current (A), and t is time (s).However, three chemical reactions were 

assumed to be possible at the Ti(0) electrode: titanium dissolution, water oxidation, and 

chloride oxidation, but the charge consumptions by the water and chloride oxidations 

were assumed to be negligible as following reasons. As mentioned in Chapter III, 

vigorous formation of gas bubbles at the Ti(0) anode that were expected oxygen was 

only observed during the initial stage of an experiment. After pitting corrosion began, 

formation of gas bubbles on Ti(0) surface diminished and only small gas bubbles that 

have been identified by others as being hydrogen gas (73, 85), were observed on the 

Ti(0) electrode after the initial period. This indicates that charge consumption by water 

oxidation would be only concentrated before pitting developments and the charge 

consumption by water oxidation would be negligible after pitting development. Since the 

pitting corrosion was observed within minutes during the course of experiments for 

dissolution valence measurements, it was assumed that the charge consumed by the 

water oxidation is neglected. The amounts of electrical charge consumed by chloride 

oxidation were calculated using the amounts of Cl lost from solution.  
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where QCl represents electrical charge consumption by Chloride oxidation, ΔMCl loss of 

mass of Cl (g), MwCl is atomic weight of chlorine, and nCl is the number of electrons 

transferred per chlorine molecule that undergoes oxidation (= 1). The chlorine loss (mol) 

(ΔMCl / MwCl) was calculated  

 Rff4ii4
Cl

Cl V)][Cl][ClO]Cl[]ClO([
Mw

M
×−−+=

Δ −−−−  (4.7) 

where [ClO4
−]i and [Cl−]i represent the initial molar concentrations of perchlorate and 

chloride, [ClO4
−]f and [Cl−]f are the molar concentrations of perchlorate and chloride 

measured at the final sampling time, and VR is effective solution volume. Table 4.1 

shows relative electric charge consumption by chloride oxidation to total electric charge 

applied under various experimental conditions. The electric charge consumptions by 

chloride oxidation were less than 4 % of total electric charge applied, even in higher 

chloride concentration solutions. Thus, the electric charge consumption by chloride 

oxidation was assumed to be negligible compared to titanium dissolution, so the titanium 

dissolution valence was calculated only considering titanium weight loss.  

 

 

 

 

 

 



 64

 

TABLE 4.1. Electric charge consumptions by chloride oxidation under different 

concentrations of ClO4
– and Cl–. 

ClO4
−

i (mM) ClO4
−

f (mM) Cl−i (mM) Cl−f (mM) Qt (C) QCl,r (%)* 

0.98 0.09 6.6 × 10−3 0.32 2112 1.3** 

0.98 0.27 6.6 × 10−3 0.31 1218 1.6** 

0.48 0.04 0.29 0.12 2160 2.2*** 

0.47 0.29 1.94 1.37 2160 2.7*** 

9.8 × 10−3 4.0 × 10−4 2.02 0.08 4140 3.6*** 

1.0 × 10−3 5.0 × 10−5 1.89 0.07 4200 3.3*** 

*QCl,r = QCl/Qt × 100; ** VR = 500 mL; *** VR = 800 mL 
 

 

Table 4.2 shows the dissolution valence of titanium calculated in experiments at 

various concentrations of perchlorate and chloride. Experiments at each condition were 

replicated at least three times. As the concentration of perchlorate increases from 1 mM 

to 500 mM, the dissolution valence decreases from 3.77 ± 0.09 to 2.67 ± 0.01. However, 

when only chloride is present, the dissolution valence is maintained around +4, and is 

independent of the concentration of chloride. These results show that the valence of 

Ti(0) dissolution depends on whether the solution contains perchlorate or chloride, and 

concentration of perchlorate. Additionally, Table 4.2 strongly implies that ejection of 

bare Ti(0) particles does not occur at the pitting site. If bare Ti(0) particle were ejected at 

the pitting site, ΔMTi would be increased and dissolution valence should less than +4 in 
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chloride solutions. However, the constant dissolution valence at different chloride 

concentrations and different amounts of charge passed indicate that no bare Ti(0) 

particles were ejected at the pitting site. Furthermore, previous results including optical 

microscopic observations, precipitates observation using scanning electron microscope 

(SEM) (Figure 4.1), and XRD analysis of precipitates (Figure 4.2) support no bare Ti(0) 

particle ejection from the pitting site. Therefore, perchlorate reduction is not caused by 

bare Ti(0) metal particles ejected from the Ti(0) electrode. 

Figure 4.6 shows the molar ratio of Ti(0) consumed to perchlorate reduced 

(ΔTi(0)/ΔClO4
−) as a function of the amount of charge passed through the electrode for 

two different initial concentration of perchlorate. Values of ΔTi(0)/ΔClO4
− for both 

initial concentrations gradually increase with increasing electric charge passed. In order 

to completely reduce one mole of perchlorate to chloride, four moles of Ti2+ and eight 

moles of Ti3+ are required and most of the data in Figure 4.6 lies the range between these 

two values. However, data early in the experiments show ratios below 4. This could be 

caused by the precipitates on electrodes, which primarily consist of TiO2. Small amounts 

of these precipitates remained on the electrodes, because they were hard to remove 

completely, even with repeated cleanup with a plastic brush. The mass of these 

precipitates on the electrodes would be measured as mass of Ti(0) and cause the 

measured changes in Ti(0) to be too low, resulting in ratios that are too low. However, as 

more charge is passed, the weight loss by dissolution would increase to values much 

larger than the weight of the precipitate remaining on the electrodes after cleaning.  
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Therefore, errors caused by the remaining precipitate would decrease as increasing the 

charge passed. 

 

TABLE 4.2. Observed dissolution valence for pitting corrosion of titanium under 

different concentrations of ClO4
– and Cl–. 

Types of 

anion 

Concentration 
(mM) 

Total Charge 

(C) 

Average Weight 

Loss (mg) 

Valence 

1 1000 131.6 3.77 ± 0.09 

10 1000 156.8 3.17 ± 0.01 

1000 167.3 2.97 ± 0.01 
50 

2000 335.9 2.95 ± 0.01 

100 1000 173.1 2.87 ± 0.02 

250 1000 178.60 2.78 ±0.04 

ClO4
– 

500 1000 186.2 2.67 ± 0.01 

10 1000 120.4 4.12 ± 0.03 

1000 121.3 4.09 ± 0.01 Cl− 
100 

2000 240.06 4.13 ± 0.09 
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FIGURE 4.6. Molar ratio of titanium consumed to perchlorate removed. 
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Results in Table 4.1 and Figure 4.6 are inconclusive concerning whether Ti(II) or 

Ti(III) is the primary products of dissolution of Ti(0) and therefore the most likely 

reductant for perchlorate. However, there is a hypothesis in the literature that describes 

formation of uncommon metal ions during electrochemical dissolution of metals (102, 

103). This hypothesis applied to the results in Figure 4.6 and Table 4.1 strongly suggests 

that Ti(II) is the primary product of the dissolution of Ti(0) that could be responsible for 

reduction of perchlorate. The hypothesis is that metals pass through stepwise oxidations 

during electrochemical metal dissolution. Suppose that metal has two oxidation states 

(+I and +II). The first step in electrochemically dissolving the metal would produce 

M(I). Further oxidation of M(I) to M(II) could be caused by two pathways. One is a 

chemical oxidation by an oxidizing agent that is present in solution. The other pathway 

is further electrochemical oxidation at the anode (metal surface) and depends on M(I) 

being strongly adsorbed to the anode metal surface (103). The relative importance of 

chemical or electrochemical oxidation of M(I) to M(II) is determined by the presence of 

oxidizing agents and their concentrations. If there are no oxidizing agents or they are 

present at low concentrations, electrochemical oxidation is predominant and the 

dissolution valence of the metal would be +2. However, if there are oxidizing agents 

present and they exist at high concentrations, chemical oxidation is predominant and the 

dissolution valence of the metal would be less than +2. Higher concentrations of the 

oxidizing agent would result in more chemical oxidation of M(I) and lower dissolution 

valences that would approach +1.  
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If this mechanism is applied to Ti(0) dissolution, the first step would produce 

Ti(II), because the lowest oxidation state of titanium metal ion is +2. Further oxidation 

of Ti(II) would be caused by reaction at the electrode surface or with dissolved oxidizing 

agents. The oxidizing agent used in this study is perchlorate, so the chemical oxidation 

of Ti(II) could be described as follows. 

 4Ti2+ + ClO4
− → 4TiO2+ + Cl− (4.8) 

However, it is also possible that electrochemically produced chlorine would oxidize the 

produced Ti(II). 

 Ti2+ + Cl2 → Ti4+ + 2Cl− (4.9) 

The electrochemical oxidation of Ti(II) to Ti(IV) on the surface of an anodically 

polarized Ti(0) electrode can be described as follows. 

 Ti2+ → Ti3+ + e−  (4.10) 

 Ti3+ → Ti4+ + e− (4.11) 

Table 4.2 shows that the dissolution valence of Ti(0) gradually decreases from 3.77 to 

2.67 when perchlorate concentrations increase from 1 mM to 500 mM. Increasing 

perchlorate concentrations would increase the extent of the reaction described by 

reaction 4.8 and would result in lowering the dissolution valence. However, when 

chloride is the only anion present, the reactions shown in reactions 4.10 and 4.11 would 

be predominant and dissolved Ti(II) would tend to be electrochemically oxidized to 

Ti(III) and Ti(IV), if dissolved Ti(II) is strongly adsorbed on the Ti(0) surface. This 

would result in a dissolution valence of +4 in chloride solution. The other explanation is 

also possible based on chlorine formation. If one mole of Ti(0) is oxidized to Ti(II), it 
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will transfer 2 modes of electrons to the electrode. If the Ti(II) is oxidized by chlorine to 

Ti(IV), then there needs to be one mole of chlorine which would be produced by 

oxidation of 2 moles of chloride by transferring two moles of electrons to the electrode. 

The net electron transfer for loss of one mole of Ti(0) is 4 moles (2 moles form 

production of Ti(II) and 2 moles from production of chlorine) and dissolution valence 

results in +4. This would also result in a dissolution valence of +4 in chloride solution. 

Figure 4.6 shows that values of ΔTi(0)/ΔClO4
− gradually increase with increasing 

electric charge passed. This is related to perchlorate and chloride concentrations. 

Decreasing concentrations of perchlorate and increasing concentrations of chloride occur 

by increasing the amounts of electric charge passed, because there has been more time 

for the reduction reaction to occur. The lowering concentration of perchlorate would 

cause the extent of the reaction shown by reaction 4.8 to decrease, while the increasing 

concentration of chloride would cause the extent of reactions shown by reaction 4.9 or 

reactions 4.10 and 4.11 to increase. Therefore, as the amount of charge passed increases, 

more amount of dissolved Ti(II) are electrochemically or chemically oxidized by 

increasing chloride concentration and this results in values of ΔTi(0)/ΔClO4
− increase. 

These results indicate that mechanism for perchlorate reduction that is based on 

formation of transient metal ions fairly well describes experimental results for 

dissolution of Ti(0). However, there is a critical problem. The standard electrode 

potential of TiO2+/Ti2+ is -0.14 V (26). Thus, it is possible that Ti(II) could be chemically 

oxidized by reaction with water. This chemical oxidation of Ti(II) would also result in a 

dissolution valence less than +4. However, the dissolution valences of Ti(0) in chloride 
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solutions were about +4, which suggests that there was no substantial reaction of Ti(II) 

with water.  

There is some evidence observed during experiments that suggests that there was 

no substantial Ti(II) oxidation by water during pitting corrosion. Two video clips were 

made during experiments and they are presented in the Appendix D. Video Clip 1 shows 

gas bubble evolutions from electrodes during experiments with solutions of 25 mM 

perchlorate and Video Clip 2 shows it for solutions of 25 mM chloride. Similar gas 

bubbles have been identified by others as being hydrogen gas (73, 85, 86). Gas evolution 

is vigorous during the stage of pit nucleation in both chloride and perchlorate solutions. 

After the stage of pit nucleation, pitting sites are covered by the precipitates and the gas 

bubble evolution is weakened. Suppose that a small patch of bare Ti(0) is generated by 

electrochemically induced pitting corrosion on the surface of Ti(0). Two of the reactions 

that could occur include anodic dissolution of Ti(II) and subsequent oxidation of Ti(II) 

by water. 

 Ti(0) → Ti2+ + 2e− (4.12) 

 Ti2+ + H2O → TiO2+ + H2  (4.13) 

Additionally, perchlorate could be reduced by Ti(II) (reaction 4.8). Vigorous gas bubbles 

during pit nucleation indicate the importance of reaction that forms hydrogen gas 

(reaction 4.13). The reduction in the rate of gas formation results from formation of 

precipitate on the pitting site (reactions 4.2 and 4.3). For solutions that contain 

perchlorate, the lower rate of gas bubble evolution after pit nucleation that is shown in 

Video Clip 1 can be explained as being due to perchlorate consuming Ti(II) (reaction 
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4.8) rather than water (reaction 4.13) . When chloride is present rather than perchlorate, 

the lower rate of gas bubble evolution after pit nucleation shown in Video Clip 2 can be 

explained as being due to chlorine (reaction 4.9) or electrochemical oxidation (reactions 

4.10 and 4.11) consuming Ti(II). Thus, the decrease in gas evolution after pit nucleation 

indicates that there is less chemical oxidation of Ti(II) by water.  

4.3.5 Proposal of Ti(II) Dissolution Mechanism 

Pitting corrosion on metal surface develops unique environments inside the 

pitting such as higher concentrations of aggressive anions and metal ions than those of 

external solution. These unique environments inside of the pitting sites might be 

responsible for uncommon Ti(II) dissolution and perchlorate reduction during the pitting 

corrosion of Ti(0). In general, metal dissolution is described by a hydroxo−ligand 

mechanism (121). 

 M + H2O → MOHads + H+ + e−  (4.14) 

 MOHads → MOH+
aq + e−  (4.15) 

 MOH+ + H+ → M2+ + H2O  (4.16) 

However, several studies reported that aggressive anions are involved in metal 

dissolution during the pitting corrosion and electrochemical metal dissolution (122-134). 

These studies proposed that aggressive anions are adsorbed on the bare metal surface 

during pitting corrosion and stimulate metal dissolution. Two types of models were 

proposed to describe how anions are involved in metal dissolution: 1) indirect and 2) 

direct participation models. For the indirect participation model, the aggressive anions 

stimulate metal dissolution after localized breakdown of the surface oxide film, but the 
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metal is dissolved as a hydroxo-metal complex (122-126). If Ti(0) is dissolved with 

indirect participation of anions in the dissolution process during the pitting corrosion, 

Ti(0) would be dissolved based on previous work (122). 

 Ti + X− ↔ TiX−
ads  (4.16) 

 TiX−
ads + H2O → TiOH−

ads + H+ + X−  (4.17) 

 TiOH−
ads ↔ Ti2+ + OH− + 2e−  (4.18) 

where X− is an aggressive anion that induces pitting corrosion. The direct participation 

model proposed that the anions not only prompt metal dissolution, but also leave the 

metal surface by forming complexes with dissolved metal ions (127-133). If Ti(0) would 

be dissolved with direct participation of anions in the dissolution process during the 

pitting corrosion, Ti(0) is dissolved through three possible Ti(0) dissolution pathways 

and they are presented below based on previous work (131). 

OH− stimulated dissolution 

 Ti + H2O ↔ TiOHads + H+ + e−  (4.19) 

 TiOHads → TiOH+ + e−  (4.20) 

 TiOH+ + H+ ↔ Ti2+ + H2O  (4.21) 

X− stimulated dissolution 

 Ti + H2O + X− ↔ TiXOH−
ads + H+ + e−  (4.22) 

 TiXOH−
ads → TiXOH + e−  (4.23) 

 TiXOH + H+ ↔ Ti2+ + H2O + X− (4.24) 

H+−X− stimulated dissolution  

 Ti + H2O + X− ↔ TiXads + H2O + e−  (4.25) 
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 TiXads + H+ → TiXH+
ads  (4.26) 

 TiXH+
ads + X− ↔ TiX2 + H+ + e−  (4.27) 

 TiX2 ↔ Ti2+ + 2X−  (4.28) 

The relative importance of OH−, X− and H+−X− stimulated dissolutions is determined by 

the presence of aggressive anions and solution pH. In general, reactions 4.19 to 4.21 

might be predominant if Ti(0) undergoes dissolution. However, when solution contains 

higher concentrations of aggressive anions, the Ti(0) undergoes dissolution by reactions 

4.22 to 4.24. However, if the solution contains higher concentrations of aggressive 

anions at lower solution pH, Ti(0) dissolution occurs by reactions 4.25 to 4.28. 

During pitting corrosion of Ti(0), considerable enrichments of dissolved metal 

ions and anions in the pit cause a salt film to be developed at the bottom of the pit. The 

salt film works as a barrier and limits transportation of anions and dissolved metal ions 

to solution by separating bare metal surface to solution.(85, 86, 111, 113). It has been 

reported that the titanium salt film forms within 10−5 to 10−3 s following pit nucleation 

and its thickness ranges from 2 to 10 nm during pitting corrosion (107). However, the 

salt film has a very short life that lasts several seconds after interruption of current (116). 

Thus, it is hard to detect physical properties of a salt film. Beck (85, 86) assumed that 

salt film in pits of corroding Ti(0) is a compact film. However, for other metals, several 

studies postulated that the salt film is either porous (110, 116, 118, 135) or mixed that 

has both porous and compact film layers(111, 136). In this study, the physical property 

of salt film is assumed based on the experimental observations. Video Clips 1 and 2 

showed gas issuing from the pitting site. The hydrogen gas evolution might disturb the 
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formation of a compact salt film which has been suggested by others (85, 86) and might 

result in a more porous layer. The salt film interfaces with the bare Ti(0) and the pit 

solution. On the solution side, the dissolution of the salt film occurs and following 

hydrolysis reactions produce high concentrations of solid corrosion products such as 

TiO2 and TiO(OH)2, H+ by the hydrolysis reactions of Ti(IV) (reactions 4.2 and 4.3), and 

anions. However, several studies presumed that the pH at the interface between the bare 

metal surface and the salt film is more basic than the external solution due to electrolytic 

migration of H+ away from the bare metal surface (116, 135).  

When Ti(0) undergoes dissolution to Ti(II), aggressive anion is transported from 

solution to the bare Ti(0) surface through salt film in order to balance the positive charge 

and concentrated at the at the interface between the bare Ti(0) and salt film (114). The 

dissolution of Ti(0) would be accelerated by the adsorption of the aggressive anion on 

bare Ti(0). If Ti(0) is dissolved with indirect participation of anions in the dissolution 

process by reactions 4.16 to 4.18, dissolved Ti2+ would reduce perchlorate at the 

interface between the bare Ti(0) and salt film. However, if Ti(0) is dissolved with direct 

participation of anions, Ti(0) would be dissolved by forming Ti(II) and anion complexes. 

Since the pH is higher than solution pH due to electrolytic migration of H+ away from 

the bare metal surface (116, 135), the formation of titanium anion complex might be 

developed by reactions 4.22 to 4.24, rather than by reactions 4.25 to 4.28. Then, bare 

Ti(0) would be dissolved as Ti(ClO4)OH for solutions that contain perchlorate. This 

dissolved complex of Ti(II) and perchlorate provides the opportunity for an 

oxidation/reduction reaction to occur that would reduce perchlorate and oxidize Ti2+ to 
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TiO2+. However, for solutions that contain chloride without perchlorate, TiClOH would 

be formed and would dissociate to Ti2+ and Cl− without a redox reaction occurring. As 

the salt film works as a barrier that limits transport of dissolved metal ions to the 

solution, a high concentration of Ti2+ produced by dissociation of TiClOH (direct 

participation model) or dissolution of Ti(0) to Ti2+ (indirect participation model) would 

accumulate at the interface between the salt film and bare Ti(0). The majority of Ti2+ 

would be either electrochemically or chemically oxidized to Ti(IV). The electrochemical 

oxidation of Ti2+ could occur on the bare Ti(0) surface or on surface of the salt film, 

which is plausible because of a low potential drop across the salt film. The chemical 

oxidation of Ti2+ could be developed by oxidizing agent present in solution such as 

water or chlorine that is produced by electrochemical oxidation of chloride. The Ti(IV) 

produced by this oxidation would be regenerate the salt film and keep the bare Ti(0) 

separate from the bulk solution in the pit.  

 

4.4 Conclusions 

This chapter has investigated how perchlorate is reduced at Ti(0) that is polarized 

at high anodic potential. Three possible mechanisms (ejection of bare Ti(0) particles, 

high ohmic potential drop, and transitory titanium metal ions) were examined and a 

mechanism involving Ti(II) as a transitory ion is proposed as the one that best describes 

experimental observations. Pitting corrosion develops a unique condition in the pit in 

which high concentrations of dissolved metal ions, anions and H+ exist This condition 

develops a salt film at the bottom of pit where anions stimulate metal dissolution. The 
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aggressive anions are adsorbed on the metal surface, form surface complexes with the 

metal, and then dissolve to partially oxidized metal ion or form soluble complexes with 

aggressive anions. Thus, it is proposed that during pitting corrosion of Ti(0), the 

aggressive anion is adsorbed on the bare Ti(0) surface and Ti(0) dissolves two possible 

pathways: 1) Ti(0) dissolves to Ti(II) by indirect participation of aggressive anions, and 

2) the aggressive anion forms a surface complex with partially oxidized Ti and dissolves 

to form a soluble complex with Ti(II), such as Ti(ClO4)OH and TiClOH by direct 

participation of aggressive anions. Furthermore, the salt film limits the transport of Ti(II) 

to the bulk solution. This promotes either electrochemical oxidation of Ti(II) on the 

Ti(0) surface or possibly in the salt film, or chemical oxidation of Ti(II) by 

electrochemically produced chlorine. 
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CHAPTER V 

INTERFERENCE OF ANIONS ON PERCHLORATE REDUCTION 

DURING THE PITTING CORROSION OF TI(0) 

 

5.1 Introduction 

Several anions including nitrate (NO3
−), sulfate (SO4

2−), and phosphate (PO4
3−) 

are present in groundwater and surface water. Even though the concentrations of these 

anions vary depending on the geological and environmental characteristics of the water, 

they are present in relatively higher concentrations than perchlorate. In general, nitrate, 

sulfate, and phosphate have been classified as non-aggressive anions because they are 

not very effective in promoting corrosion. In fact, they often act as corrosion inhibitors 

by tending to prevent the initiation of corrosion and depressing its progression by 

competitive adsorption (59, 60, 62). These anions have a higher or similar affinity for the 

surface oxide film on Ti(0) than perchlorate (62, 67, 137, 138). Thus, the presence of 

these anions in a water contaminated with perchlorate would affect the perchlorate 

reduction by inhibiting the development of pitting corrosion on Ti(0). Moreover, as 

nitrate is an oxidizing agent, nitrate could consume Ti(II) or other reductants produced at 

the pitting site of Ti(0).  

This chapter describes results of experiments that determined the influence of 

nitrate, sulfate, and phosphate on the rate of perchlorate reduction during pitting 

corrosion of Ti(0). Also, chemical conversions of these anions were investigated with an 

emphasis on conversion of nitrate. Additionally, possible mechanisms for inhibition of 
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perchlorate reduction were explored by comparing the effects of these anions to the 

effects of more aggressive anions, such as fluoride (F−), chloride (Cl−), bromide (Br−) 

and iodide (I−), which induce and promote metal corrosion. 

 

5.2 Material and Methods 

5.2.1 Chemicals  

Sodium perchlorate (98.0 +%, Aldrich) was used in this study as a source of 

perchlorate. Anion sources are sodium phosphate (ACS certified, Fisher), sodium nitrate 

(ACS certified, Fisher), sodium sulfate (99.0 %, EM), potassium fluoride (99.0 %, EM), 

sodium chloride (99.0 %, EM), potassium bromide (ACS certified, Fisher) and 

potassium iodide (99.0 %, EM). Ti(0) sheets (99.97 %, ESPI) were purchased from ESPI 

Corp Inc and cut to appropriate sizes for the experiments. The Ti(0) sheets were washed 

with acetone to remove organic impurities and rinsed several times with deionized water, 

then dried in room temperature and stored in an air tight desiccator until the experiment. 

5.2.2 Batch Experiments  

Electrochemical experiments were carried out in a lab-scale, two-electrode 

(anode and cathode) electrochemical cell, whose effective volume was 800 mL. Both the 

anode and cathode were Ti(0) sheets (99.97 %) and a constant current was supplied by a 

DC power supply (Kenwood, Model PW18-1.8AQ). The cell was gently mixed at 60 

RPM with a stirring bar (2.5 cm length, 8 cm diameter) in order to reduce the 

accumulation of precipitates of titanium oxide or hydroxide on the anode surface. The 

dimensions of the anode were 0.05 cm × 2.5 cm × 7.25 cm and the dimensions of the 
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cathode were 0.05 cm × 5.0 cm × 7.25 cm for all experiments except those that measured 

pitting potential. An 8-mL sample was taken at each time interval and filtered by a 0.22-

µm nylon membrane filter (Magna). The filtered sample was kept in a refrigerator 

without any further treatment until analysis, which usually occurred within two days. 

The pitting potential measurements were conducted in a 1-L corrosion reactor 

(Princeton Applied Research, TN) that had an effective solution volume of 500 mL. This 

reactor incorporates a three-electrode configuration with a saturated calomel reference 

electrode that was guided in a bridge tube. The working Ti(0) electrode had an effective 

surface area of 5.0 cm2 and the counter electrode was Pt mesh with dimensions of 2 cm× 

2 cm. Electrochemical potential was controlled using a potentiostat (Solartron Analytical, 

Model 1287A) and the potentiodynamic polarization method was used in which the 

open-circuit potential (OCP) was swept to 14.5 V (NaSCE) at a 1 mV/s rate. 

5.2.3 Analytical Methods  

Concentrations of ClO4
−, ClO3

−, ClO2
− and Cl− were analyzed using a Dionex 

500 ion chromatograph equipped with a 4-mm Dionex AS–16 analytical and guard 

column. Other anions (NO3
−, NO2

−, SO4
2−, and PO4

3−) were analyzed using a Dionex 

DX-80 ion chromatograph equipped with a 4-mm Dionex AS-14 analytical and guard 

column, and DS-5 detection stabilizer. Concentrations of other anions (F−, Br−, and I−) 

were not measured in this study, but were calculated based on known additions. 

Concentration of NH4
+ was determined by the Phenate method using UV-VIS 

spectrophotometer (Hewlett Packard G1103A) at 640 nm with a light path of 1 cm (139).  
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Precipitates of Ti(0) were analyzed using X-ray diffraction (XRD) with a Riga 

automated diffractometer using Cu Kα radiation and X-ray photoelectron spectrometer 

(XPS) equipped with Mg Kα/Al Kα anode. The precipitate was carefully collected and 

washed several times with deionized water by repeated centrifugation, decanting 

supernatant, washing with deionized water and shaking for 5 minutes. After washing, the 

precipitate was placed in a 30 ˚C vacuum oven (Thelco Inc, Model 19) for one week and 

stored in caped bottles until analysis. Analyses of the XRD results were conducted using 

MDI Jade 6.5 software (Materials Data Inc., USA). 

 

5.3 Results and Discussion 

5.3.1 Influence of Nitrate on Perchlorate Reduction 

The influence of nitrate (0.4 to 2.2 mM) on perchlorate reduction during pitting 

of Ti(0) was investigated using a 1.0 mM solution of perchlorate and applying a 80 mA 

current to the electrodes. As nitrate is also an oxidant, its concentration and its reduction 

by-products (nitrite and ammonium ions) were measured. Figure 5.1 shows that 

perchlorate removal seems to be only slightly affected by concentrations of nitrate as 

high as 1.1 mM. When the nitrate concentration is increased to 2.2 mM, the rate of 

perchlorate reduction is much slower during early stages of the reaction. However, one 

thing that is particularly noticeable about the results with 2.2 mM nitrate is that there is 

an initial delay in perchlorate reduction. This initial delay is caused by the induction time 

of pitting corrosion (62), which is the time required to develop stable pitting corrosion. 

As nitrate is a corrosion inhibitor, increasing its concentration would delay development 
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of stable pitting. Thus, a slower rate of perchlorate reduction was observed until full 

development of pitting corrosion occurred. This was well supported by visual 

observations of the pitting development during experiments. Without nitrate, visible 

pitting sites and precipitates were identified within minutes. However, as the nitrate 

concentration increased, it took more time before visible pitting sites and precipitates 

were observed. Thus, if the effect of the induction time is considered, nitrate only 

slightly inhibits the rate of perchlorate reduction. Figure 5.2 shows this by plotting the 

concentrations of nitrate shifted in time by the estimated induction time (60 min. for 1.1 

mM, 360 min. for 2.2 mM). Data points that were taken at times below the estimated 

induction times are not plotted. 
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FIGURE 5.1 Influence of nitrate concentrations on perchlorate reduction. Perchlorate 

concentration was 1.03 ± 0.01 mM and current intensity was 80 mA.  
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FIGURE 5.2 Effect of nitrate on perchlorate reduction with some data shifted in time.  

Perchlorate concentration was 1.03 ± 0.01 mM and current intensity was 80 mA. Data 

for 1.1 mM nitrate were shifted 60 min and data at lower times were eliminated. Data for 

2.2 mM nitrate were shifted 360 min and data at lower times were eliminated.   

 

 

Figure 5.3 presents the concentrations of nitrate, nitrite, ammonium and total 

nitrogen (N) measured in the same experiments presented in Figure 5.1. The 

concentrations of nitrate decrease and the products of its reduction (nitrite and 
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ammonium) gradually increase over time. As perchlorate is reduced at the pitting site, 

nitrate is probably being reduced by the same reductant, which is believed to be 

dissolved Ti(II).  
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FIGURE 5.3. Conversion of nitrogen species during electrochemical reduction of 1.03 ± 0.01 mM 

perchlorate at various initial concentrations of NO3
−. (a) 0.4 mM NO3

−, (b) 0.6 mM NO3
−, (c) 1.1 

mM NO3
−, (d) 2.2 mM NO3

−. Current was 80 mA. 
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However, alternative explanations are possible. Nitrate could be reduced by dissolved 

Ti(III), which has been reported as an effective reductant for nitrate. (140-147). Nitrate 

could also be reduced by direct reduction at the Ti(0) cathode, which has been reported 

(148). The possibility of direct reduction at the Ti(0) cathode was evaluated in an 

experiment conducted by replacing the Ti(0) anode with a graphite anode and using a 2-

mM nitrate solution and 80-mA current. The nitrate concentration did not change over a 

12 hr. period. Thus, it can be concluded that nitrate is only reduced at pitting sites on the 

Ti(0) anode.  

The total concentration of nitrogen (nitrate + nitrite + ammonium) decreased over 

time and showed total nitrogen losses of 70, 71, 70, and 59 % from solutions of 0.4, 0.6, 

1.0, and 2.2 mM nitrate, respectively at the final sampling point. There are two possible 

hypotheses that support nitrogen loss during the pitting corrosion of Ti(0): 1) 

dissociation of ammonium to ammonia and following release of ammonia to ammonia 

gas, and 2) formation of N-containing titanium compounds. The initial pH values of the 

solutions were between 7.2 and 7.6, and gradually increased over time, reaching values 

over 10.0 for all four experiments. The acid dissociation constant for ammonium is 

10−9.26 at 25 ˚C (149), which indicates that ammonia becomes the predominant species at 

pH greater than 9.26. In general, gas compounds dissolved in solution follow the 

principle that the solubility of a gas in the solution is directly proportional to the partial 

pressure of the gas above the solution at the equilibrium. Typical partial pressures of 

ammonia gas in the atmosphere range from 0.1 × 10−9 to 5 × 10−9 atm and its Henry’s 

law constant is 101.76 M·atm−1 (149). Concentration of dissolved ammonia possibly 
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present in the solution is from 5.7 × 10−6 to 2.9 × 10−4 mM. Moreover, the 

electrochemical reaction produces hydrogen gas (H2) at the cathode through water 

reduction. Therefore, since the final pH values were over 10.0 for all four experiments 

shown in Figure 5.3, it is possible that the losses of N could be caused by the 

dissociation of ammonium to ammonia and release of ammonia to the atmosphere as 

ammonia gas. Several studies using Ti(III) to reduce nitrate support this mechanism of 

nitrogen loss (140, 143, 147). In a strongly alkaline solution, nitrate is reduced to 

ammonia within minutes by Ti(III) and 100 ± 1 % of nitrate was converted to ammonia 

and released as ammonia gas (140). However, under strongly acidic conditions, nitrate is 

reduced by Ti(III) to either nitric oxide (NO) or nitrous oxide (N2O) (142, 144, 146).  

In order to investigate the loss of nitrogen by release to a gas, experiments were 

conducted at three different initial pH conditions, 2.2, 7.3 and 11.2 and show in Figure 

5.4. The acidic pH condition was achieved by using a mixture of 1.0 mM HCl and 2.0 

mM HNO3. The pH values were increased by adding NaOH to a mixture of 1.0 mM HCl 

and 2.0 mM HNO3. Figure 5.4 shows that the total nitrogen losses at 360 min are 41, 37, 

and 39 % for initial conditions of pH 2.2, pH 7.3, and pH 11.2, respectively. The rates of 

nitrate reduction are similar for initial pH values of 2.2 and 7.3, but the rate for initial pH 

of 11.2 is higher. Initial/final values of pH were 2.2/2.6, 7.3/10.0, and 11.2/10.5. Higher 

nitrite concentrations are observed at initial pH of 11.2. Ammonium concentrations are 

not much different at the different pH conditions. Even though there is a difference in 

the rate of nitrate reduction, total nitrogen losses are similar regardless of pH conditions. 
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Since the total nitrogen losses are not affected by the solution pH, stripping of ammonia 

to the atmosphere would not be the reason for the loss of nitrogen.  
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FIGURE 5.4 Influence of solution pH on N balance. Current was 125 mA, and 

initial/final pH values were 2.2/2.6, 7.3/10.0, and 11.2/10.5. Nitrate concentration was 

1.95 ± 0.01 mM. 

 

It has been reported that titanium has high affinities for oxygen and nitrogen. It 

forms titanium dioxide (TiO2) and titanium nitride (TiN) when it burns with oxygen and 

nitrogen gases (25, 50). Thus, formation of N-containing titanium compounds during 

nitrate reduction is a possible explanation for the loss of nitrogen from solution. 

Chemical and electrochemical dissolution studies on titanium in nitrate solutions have 
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reported that nitrate and nitrite were detected inside the oxide film (150, 151). Moreover, 

it was observed in this study that light yellow or beige particles formed along with white 

precipitates on the titanium electrode. These particles are similar in color to the yellow 

or brown colored particles of titanium nitride (25, 50). In order to examine the possible 

presence of N-containing titanium compounds in these precipitates, the precipitate 

formed with 250 mA of current in a mixture of 10 mM perchlorate and 5 mM nitrate was 

collected and analyzed using X-ray diffraction. The results are shown in Figure 5.5. An 

analysis of the diffractogram using MDI Jade 6.5 software shows that the precipitate 

primarily contains titanium dioxide solids such as anatase and brookite and titanium 

oxide nitride. However, peaks for titanium oxide nitride (TiO0.34N0.74) are 

indistinguishable from those for titanium oxide peaks, so it is possible that both solids 

are present. In order to confirm the presence of titanium oxide nitride, another precipitate 

was produced using a mixture with more nitrate (10 mM) and less perchlorate (1 mM) 

than the mixture used to produce the precipitates used to produce the results shown in 

Figure 5.5. Figure 5.6 shows the result of XRD analysis for the high-nitrate sample. 

Analysis of the results with MDI Jade 6.5 software indicates the possible presence of the 

same compounds (anatase, brookite, and TiO0.34N0.74), but the peak spectrum is different 

than shown in Figure 5.5. One broad peak is observed around 2θ values between 18˚ and 

40˚. Several peaks between 40˚ and 70˚ are identical to those of anatase and brookite. 

The broad peak formed between 18˚ and 40˚ is similar to that of a poorly crystalline 

TiOxNy (152, 153). However, it is also possible that poor crystalline development of 

anatase could cause the broad peak formed between 18˚ and 40˚ (154). In order to 
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further evaluate the possible presence of N-containing titanium compounds, the 

precipitate was analyzed with XPS. Figure 5.7 shows that the precipitate consists of Ti 

and O and no nitrogen atoms were detected. Therefore, even though XRD diffractogram 

analyses indicated the possible presence of a N-containing titanium compound, XPS 

analysis confirms that there is no N-containing titanium compound produced during 

pitting corrosion of Ti(0) in solutions of nitrate within detection limit of XPS. However, 

it is not clear why the light yellow or beige particles are formed at the pitting site of 

Ti(0). It has been shown that loss of N-balance is not caused by the release of ammonia 

to the atmosphere and it is not caused by the formation of N-containing titanium oxide 

compounds. Therefore, loss of N-balance is probably caused by the formation of gaseous 

compounds such as NO, N2O, or N2. 

 
FIGURE 5.5 XRD analysis result of the precipitate produced from a mixture of 10 

mM perchlorate and 5 mM nitrate with current of 250 mA. (1) Synthetic anatase, (2) 

brookite, and (3) Titanium oxide nitride (TiO0.34N0.74). 
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FIGURE 5.6 XRD analysis result of the precipitate produced from the mixture of 1 

mM perchlorate and 10 mM nitrate with current of 250 mA. (1) Synthetic anatase, (2) 

brookite, and (3) Titanium oxide nitride (TiO0.34N0.74). 
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FIGURE 5.7. XPS analysis of the precipitate produced from the mixture of 1 mM 

perchlorate and 10 mM nitrate with current of 250 mA. 

 

 

5.3.2 Influence of Sulfate and Phosphate on Perchlorate Reduction 

The influences of sulfate and phosphate (0.2 to 0.6 mM) on perchlorate reduction 

during pitting corrosion of Ti(0) were examined. Experiments were conducted with a 1-

mM solution of perchlorate and imposed currents of 100 mA and 60 mA. Experiments 

were carried out with concentrations of sulfate and phosphate greater than 1 mM, but 

Ti(0) was rapidly passivated and no pitting was observed. Furthermore, a constant 

current could not be maintained but dropped rapidly. One noticeable difference in these 

experiments was that solutions that contained sulfate and phosphate showed different 

pitting behaviors than those with only perchlorate. In the solutions with only perchlorate, 
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solid precipitates were released from the pitting site and deposited at the bottom of the 

reactor. However, in the solutions with sulfate, a white plume was released from the 

pitting site and dissipated in the solution causing it to turn into a milky color after 

several hours. In the phosphate solution, amorphous precipitates were released from the 

pitting site. These precipitates aggregated and formed shapes like fluffy cotton balls. 

These aggregates of precipitates covered the Ti(0) surface, especially at the pitting site, 

and they grew in size over time. As presented in Figure 5.8a, the removal of perchlorate 

is only slightly affected by increasing sulfate concentrations. There is a slightly greater 

lag time in perchlorate removal at higher sulfate concentrations, which indicates that the 

induction time for stable pitting development is slightly increased at higher sulfate 

concentrations. Figure 5.8b shows that the sulfate concentrations also decrease over time. 

However, if data only from the period after the induction time (about 60 min for 0.38 

and 0.57 mM SO4
2−) is considered, sulfate does not inhibit the rate of perchlorate 

removal and this figure is presented in Appendix A. For phosphate, the rates of 

perchlorate removal are not affected by increasing phosphate concentration and the 

phosphate concentrations decrease over time, as shown in Figure 5.9.  

The decrease of the sulfate and phosphate concentrations could not be caused by 

chemical reduction of sulfate and phosphate. Theoretically, it is thermodynamically 

possible for sulfate and phosphate to be chemically reduced to compounds with lower 

oxidation states. However, in practice, it is hard to chemically reduce sulfate and 

phosphate in aqueous solutions under ambient conditions (52). It has been reported that 

sulfate and phosphate are incorporated into surface oxide films and that they can 
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penetrate inside of them (93, 155, 156) in a way that is like nitrate. In order to examine 

the behavior of sulfate and phosphate with titanium compounds, precipitates were 

generated in experiments conducted by imposing 250 mA current onto solutions of 10 

mM perchlorate and 5 mM sulfate or phosphate. The dried precipitates showed different 

colors. The precipitate produced in solutions that contained phosphate were white, but 

the precipitate produced in solutions that contained sulfate were gray. However, XRD 

analysis of both precipitates detected only titanium dioxide (anatase and brookite) and 

not any S- and P-containing titanium compounds, as presented in Figure 5.10. However, 

if S- and P-containing titanium compounds are present in amorphous or poorly 

crystalline structures, it would be hard to detect them using XRD analysis. Thus, further 

analyses using XPS were conducted to identify the presence of S and P-containing 

titanium compounds in the precipitate. Figure 5.11 shows that 1.3 % of atomic 

concentration of sulfur and 2.3 % of phosphorous are found in the precipitate. Therefore, 

concentration decreases of sulfate and phosphate during the pitting corrosion of Ti(0) 

would be caused by the S and P-containing titanium compounds in the precipitate or 

adsorption of these anions on the precipitate. 
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(b) 
FIGURE 5.8 (a) Influence of sulfate ion on perchlorate reduction and (b) sulfate 

concentration changes. Current was 100 mA. Perchlorate concentration was 1.02 ± 0.01 

mM. 
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(b) 
FIGURE 5.9 (a) Influence of phosphate ion on perchlorate reduction and (b) phosphate 

concentration changes. Current was 60 mA. Perchlorate concentration was 1.02 ± 0.00 

mM. 
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(a) 

 

(b) 

FIGURE 5.10. XRD results of the precipitate produced from the mixture of 10 mM of 

perchlorate and 5 mM sulfate or 5 mM phosphate solution with current of 250 mA: (a) 

sulfate, (b) phosphate ((1) synthetic anatase, (2) brookite)). 
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(b) 

FIGURE 5.11. XPS results of the precipitate produced from the mixture of 10 mM of 

perchlorate and 5 mM sulfate or 5 mM phosphate solution with current of 250 mA: (a) 

sulfate, (b) phosphate. 
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5.3.3 Influence of Anions on the Trace Levels of Perchlorate Reduction 

Figure 5.12a presents the influence of nitrate, sulfate and phosphate on the 

removal of trace levels of perchlorate. Initial concentrations of perchlorate were 10 µM; 

chloride concentration was 1 mM; and anion concentrations were 0.5 mM. Perchlorate 

removal shows similar behavior to that observed at higher concentrations. However, if 

only data taken after the induction time (60 min for ClO4
− only and with SO4

2−) is 

considered, sulfate and phosphate only slightly inhibit the rate of perchlorate reduction. 

This effect is less than that of nitrate as shown in Figure 5.12b.  

5.3.4 Mechanism of Perchlorate Reduction Inhibition 

The presence of nitrate, sulfate or phosphate slightly inhibits or does not inhibit 

the rate of perchlorate reduction. However, the presence of chloride slowed the rate of 

perchlorate reduction as shown in Figure 3.7 in Chapter III. In general, nitrate, sulfate 

and phosphate inhibit metal corrosion, which is the reason they have been used as 

corrosion inhibitors (59, 60, 62). However, chloride is an aggressive anion that promotes 

corrosion of metals. Thus, it is possible that the ability of nitrate, sulfate and phosphate 

to inhibit corrosion could explain their weak effects on the rate of perchlorate reduction. 

In order to investigate this possibility, the influences of halide ions, including fluoride, 

chloride, bromide, and iodide on perchlorate reduction of were examined. However, 

there is one thing needed to be mentioned. Generally, the aggressive anion is halide 

anions such as fluoride, chloride, bromide, and iodide and halid containing anions such 

as perchlorate, which promote metal corrosion (62). However, Ti(0) shows a different 

behavior with other metals. 
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(b) 

FIGURE 5.12 (a) Influence of non-aggressive anions on reduction of trace levels of 

perchlorate and (b) some data shifted in time (Data for perchlorate only and with sulfate 

shifted 60 min and data at lower times eliminated). Initial chloride concentration was 

1.00 ± 0.02 mM, initial perchlorate concentration was 10 ± 0.01 µM, and current was 90 

mA.  
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For Ti(0), fluoride is not an aggressive anion that promotes pitting corrosion. Pitting 

potentials or surface oxide film breakdown potentials that have been measured 

previously or in this study are presented in Table 5.1. The pitting or oxide film 

breakdown potentials of sulfate, phosphate, and fluoride are much higher and nitrate is 

slight higher than perchlorate, and in the order: SO4
2− > F− > PO4

3− > NO3
− ≥ ClO4

−. 

However, chloride, bromide, and iodide have lower or similar pitting potentials than 

does perchlorate and in the order: ClO4
− > Cl− > I− > Br−. Based on these potential values, 

sulfate, phosphate, fluoride, and nitrate inhibit pitting corrosion, and chloride, bromide, 

and iodide promote pitting corrosion, if pitting corrosion is induced by perchlorate on 

Ti(0). Figure 5.13 shows that iodide and fluoride have negligible effects on the rate of 

perchlorate reduction, but chloride and bromide greatly inhibit it. One consistent 

behavior is found that anions (sulfate, phosphate, nitrate and fluoride) that possibly 

inhibit the pitting corrosion of Ti(0) do not inhibit perchlorate reduction. Therefore, it is 

possible that inhibition of perchlorate reduction is caused by whether the anion inhibits 

or promotes pitting corrosion of Ti(0) induced by perchlorate. However, it is needed to 

explain a reason why iodide that promotes pitting corrosion of Ti(0) less inhibit 

perchlorate reduction than those of chloride and bromide. 
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FIGURE 5.13 Influence of halide ions on perchlorate reduction. Initial perchlorate 

concentration was 1.00 ± 0.01 mM and current was 90 mA.  
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TABLE 5.1 Pitting or oxide film breakdown potentials for titanium in different 

solutions. 

 

 
Concentration 

(M) 

Potential 

(V (NaSCE)) 
Reference 

F− 1 90.9(1) (70) 

SO4
2− 1 92.8(1) (70) 

PO4
3− unknown 55.0(1)(2) (155) 

NO3
− 0.1 13.55 This study 

ClO4
− 0.1 12.53 This study 

1 12.89 (70) 

1 9.35 (67)  

0.1 11.79 (70) 
Cl− 

0.1 9.44 (67) 

1 1.01 (70) 
Br− 

0.1 1.44 (67) 

1 2.52 (70) 
I− 

0.1 7.54 (67) 
(1) represents surface oxide film breakdown potential 
(2) is voltage across the anode and cathode, and others are the potential of the anode with 
respect to NaSCE. 
 
 

 

 

Perchlorate is believed to be reduced by dissolved Ti(II) near the pitting site on 

the Ti(0) surface. In Chapter IV, it was proposed that dissolved Ti(II) is produced by 

stimulation of adsorption of aggressive anions on bare Ti(0) and Ti(0) is dissolved to 
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Ti(II) by two possible pathways: 1) Ti(0) is dissolved to Ti(II) by indirect participation 

of aggressive anions without forming complex with aggressive anion and 2) Ti(0) is 

dissolved to Ti(II) by direct participation of aggressive anions forming Ti(II) and anion 

complex such as such as Ti(ClO4)OH and TiClOH. Based on these proposed dissolution 

mechanisms of Ti(0) to Ti(II), two possible inhibition mechanisms of perchlorate 

reduction can be developed with either the consumption of Ti(II) or inhibition of the 

production of Ti(II). The inhibition of perchlorate reduction by consumption of 

dissolved Ti(II) is developed based on Ti(0) dissolution to Ti(II) model without 

formation of anion complexes. Chloride and bromide greatly inhibit the rate of 

perchlorate reduction. In Chapter III, experiments were described that showed that 

chloride was oxidized to chlorine during pitting corrosion. Also, oxidation of bromide to 

bromine during pitting site has been reported (58). It is thermodynamically possible for 

chlorine and bromine to oxidize Ti(II) to Ti(IV). In Chapter IV, it was reported that the 

dissolution valence of Ti(0) in chloride solution was observed to be +4. It was 

hypothesized that Ti(0) undergoes dissolution to Ti(II) and subsequent electrochemical 

oxidation of Ti(II) to Ti(IV) on Ti(0) surface or possibly on salt film, and these 

oxidations result in dissolution valence +4 in chloride solution. However, the other 

explanation was also proposed based on possible chlorine formation. If one mole of 

Ti(0) is oxidized to Ti(II) it will transfer 2 modes of electrons to the electrode. If the 

Ti(II) is oxidized by chlorine to Ti(IV), then there needs to be one mole of chlorine 

which would be produced by oxidation of 2 moles of chloride by transferring two moles 

of electrons to the electrode. The net electron transfer for loss of one mole of Ti(0) is 4 
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moles (2 moles form production of Ti(II) and 2 moles from production of chlorine) and 

dissolution valence results in +4. This supports possible oxidation of Ti(II) by chlorine 

or bromine. However, there is also a study that reported electrochemical oxidation of 

iodide to iodine (I2) on Ti(0) during the pitting corrosion (85, 86). Thus, it is possible for 

iodine produced by electrochemical oxidation to oxidize Ti(II) to Ti(IV). However, 

Figure 5.13 shows that iodide did not inhibit perchlorate reduction, which indicates that 

consumption of Ti(II) by oxidized halide products (chlorine and bromide) might not be a 

right explanation for describing inhibition of perchlorate reduction by chloride and 

bromide. However, thermodynamically, iodide is less reactive than chlorine and bromine. 

Therefore, it is possible that higher reactivity of chlorine and bromine oxidize Ti(II) and 

cause inhibition of perchlorate reduction, but less reactive iodide oxidizes less Ti(II) and 

produces less inhibition of perchlorate reduction than those of chlorine and bromine. 

The other possible inhibition mechanism is inhibition of the production of Ti(II) 

and perchlorate complex. This is developed based on Ti(0) dissolution to Ti(II) model by 

direct participation of aggressive anion forming complex Ti(II) with anion. It was 

proposed that Ti(0) dissolution is stimulated by adsorption of aggressive anions on bare 

Ti(0) surface after pitting initiation and Ti(0) is dissolved to Ti(II) by forming a complex 

with adsorbed aggressive anions. For example, the adsorption of perchlorate on bare 

Ti(0) accelerates Ti(0) dissolution to Ti(II) and the adsorbed perchlorate on Ti(0) is 

desorbed by forming complex with Ti(II) during dissolution of Ti(0) to Ti(II). 

Furthermore, perchlorate that stimulates Ti(0) dissolution to Ti(II) and forming complex 

is believed to be only involved reaction with Ti(II) and reduced to chloride. Other 
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aggressive anions such as chloride and bromide, also promote Ti(0) dissolution to Ti(II) 

by forming complex as TiClOH and TiBrOH. However, these Ti(II) would not involve 

in perchlorate reduction and would be electrochemically oxidized to Ti(IV). Therefore, it 

is possible that inhibition of perchlorate reduction might be caused by competitive 

adsorption of the aggressive anions that stimulates Ti(0) dissolution to Ti(II) and 

desorbed by forming complex with Ti(II) on bare Ti(0) with the aggressive anions.  

The affinities of anions to adsorb on bare Ti(0) were investigated using data in 

the literature. No studies of anion adsorptions to bare Ti(0) have been reported; however, 

there are reports in the literature on adsorption of anions to the surface oxide film 

covered Ti(0). Radiotracer studies of anion adsorption to the surface oxide film of Ti(0) 

showed that adsorption binding strength increased in the order PO4
3− > SO4

2− > Cl− > 

ClO4
− (138). Basame and White (67) investigated the influence of anion concentration 

on pitting potential of titanium and estimated the adsorption binding strength on the 

surface oxide film in the order Br− > Cl− >> I−. Another study showed that adsorption 

tendency increased in the order: F− >> Cl− > I− (62). No study compared the tendencies 

of nitrate and perchlorate to adsorb onto the oxide film covering the surface of Ti(0). 

However, one study reported that the adsorption binding strengths for nitrate on rutile 

are in the order: Cl− ≈ ClO4
− ≈ NO3

− > I− (137). Adsorption tendencies compared to 

perchlorate are compared and summaries are presented in Table 5.2. Table 5,2 shows 

that chloride and bromide have higher adsorption tendency. However, iodide that 

promotes pitting corrosion of Ti(0) has lower adsorption tendency or possibly much less 

(67) than those of chloride and bromide. Therefore, it would be possible that inhibition 
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of perchlorate reduction is caused by both whether anion inhibit or promote pitting 

corrosion of Ti(0) and adsorption tendencies of aggressive anions that promotes pitting 

corrosion of Ti(0). 

 

TABLE 5.2 Summaries adsorption tendencies of anions compared to those of 

perchlorate.  

Higher adsorption than perchlorate or 

similar to perchlorate 
Lower adsorption than perchlorate 

SO4
2−, F−, PO4

3-, NO3
−, Br−, Cl− I− 

 

 

5.4 Conclusions 

This Chapter examines the effects of non-aggressive anions (nitrate, sulfate, and 

phosphate) and aggressive anions (chloride, bromide, iodide, fluoride) on the rate of 

perchlorate reduction during pitting corrosion of Ti(0). These anions are commonly 

found in groundwater and surface water. It has been shown that the rate of perchlorate 

reduction was not substantially affected by the presence of nitrate, sulfate, and phosphate. 

These anions interacted with pitting corrosion and their concentrations decreased over 

time. Nitrate was chemically reduced to nitrite and ammonium and possibly to gaseous 

compounds such as nitrogen, nitric oxide and nitrous oxide. Both sulfate and phosphate 

concentrations decreased during pitting. However, their concentration decreases were 

not related to chemical reduction nor to formation of titanium compounds that contained 
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sulfur or phosphorous, but they were caused by adsorption onto precipitates formed 

during the reaction. The mechanism by which some anions inhibit perchlorate reduction 

was investigated based on the proposed dissolution mechanisms of Ti(0) to Ti(II). The 

dissolution mechanism of Ti(0) to Ti(II) without forming complex with aggressive anion 

suggested that inhibition mechanism of perchlorate reduction would be caused by 

oxidation of dissolved Ti(II) by electrochemically generated chlorine and bromine. 

However, the dissolution mechanism of Ti(0) to Ti(II) with forming complex with 

aggressive anions proposed that inhibition of perchlorate reduction would be caused by 

both whether anion inhibit or promote pitting corrosion of Ti(0) developed by 

perchlorate and adsorption tendencies of aggressive anions that promotes pitting 

corrosion of Ti(0). 
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CHAPTER VI 

KINETIC MODELS DESCRIBING RATE OF PERCHLORATE REDUCTION 

DURING PITTING CORROSION OF TI(0) 

 

6.1 Introduction 

Perchlorate (ClO4
−) is a thermodynamically strong oxidizing agent (26) 

 ClO4
− + 8H+ + 8e− = Cl− + 4H2O           Eh

0 = 1.278 V (SHE) (6.1) 

Thus, its salts have been widely used in rocket propellants, pyrotechnics and munitions 

(2). However, once perchlorate is dissolved in the aqueous phase, it is kinetically inert. 

Kinetic studies using transition metal ions and other chemical reductants have reported 

that several to over thousands of days are required to complete one-half of the reactions 

at 1 mM of reductant concentrations (27). Perchlorate is also poorly reduced by direct 

electrochemical reduction at noble electrodes (78-80). These poor reactivities of 

perchlorate in chemical and electrochemical reactions are caused by its high activation 

energy and by competition with other anions for active sites on the electrode surface. 

However, there have been a few studies that have reported reduction of perchlorate at 

reasonable rates. Perchlorate reduction with Methylrhenium dioxide (CH3ReO2) showed 

that one mole of Methylrhenium dioxide reduces one mole of perchlorate to chlorate 

with a second-order rate constant of 7.3 L mol−1 s−1 at pH 0 and 25 ˚C (28). This rate 

constant corresponds to a half-life of only 2.3 min at a 1 mM initial concentration of 

Methylrhenium dioxide. The Methylrhenium dioxide showed the capability to abstract 

an oxygen atom from perchlorate and stabilize the transferred oxygen atom by 

transforming itself into Methylrhenium trioxide (CH3ReO3). This agrees with the 
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requirements suggested by Taube for chemical reductants to effectively reduce 

perchlorate (82).  

Other successful studies on perchlorate reduction used an iron salt or zero-valent 

iron under extreme conditions. Perchlorate in mixtures of ferric chloride and 

hydrochloric acid produced by regeneration of selective ion exchange resins loaded with 

perchlorate was reduced with ferrous ion under high temperature and pressure (30). The 

rate of perchlorate reduction by ferrous ion was dependent on temperature, with the half-

live being approximately 8.0 min at 195 ˚C, However, when the temperature dropped to 

110 ˚C, the half-live was extended to 139 hrs. Perchlorate reduction using zero-valent 

iron was very slow (29, 76) under ambient temperature (29). The half-life of perchlorate 

with acid-washed zero-valent iron was 325 days using a surface area concentration of 50 

m2/L at room temperature, but it increased to 15 hrs at 200 ˚C.  

Previous chapters demonstrated the effects of several environmental and 

electrochemical factors on perchlorate reduction during pitting corrosion of Ti(0).  

Factors considered included solution pH, chloride presence, surface area of Ti(0), 

potential and current. Also, based on these experimental observations, mechanisms were 

proposed to describe perchlorate reduction during pitting corrosion of Ti(0) that could 

explain the influences of other anions on the process. In Chapter V, two possible 

inhibition mechanisms were suggested: 1) competitive adsorption of aggressive anions 

on bare Ti(0) surface and 2) Ti(II) consumption by produced chlorine. Thus, two 

different kinetic models are proposed to predict the rate of perchlorate reduction and 

how it is affected by environmental and electrochemical factors. 
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6.2 Materials and Methods 

6.2.1 Chemicals 

Sodium perchlorate (98.0 +%, Aldrich) and sodium chloride (99.0 %, EM) were 

used in this study as a source of perchlorate and chloride. Ti(0) sheets (99.97 %, ESPI) 

were purchased from ESPI Corp Inc and cut to appropriate sizes for the experiments. 

The Ti(0) sheets were washed with acetone to remove organic impurities and rinsed 

several times with deionized water, then dried at room temperature and stored in an air-

tight desiccator until the experiment. 

6.2.2 Batch Experiments  

Electrochemical experiments were carried out in a lab-scale electrochemical cell 

that had an effective volume of 800 mL and contained two electrodes (anode and 

cathode). Both the anode and cathode were prepared from Ti(0) sheets (99.97 %) and 

constant current was supplied by a DC power supply (Kenwood, Model PW18-1.8AQ). 

The electrochemical potential was not monitored during the experiments, but 

preliminary experiments were conducted to ensure that it would be above the pitting 

potential under all experimental conditions. The dimensions of the anode were 0.05 cm × 

2.5 cm × 7.25 cm and the dimensions of the cathode were 0.05 cm × 5.0 cm × 7.25 cm. 

The cell was gently mixed (60 rpm) by a magnetic stir bar (2.5 cm long x 8 cm diameter, 

VWR) to reduce the accumulation of solid titanium oxide or hydroxide on the anode 

surface. A 6-mL sample was taken at each time interval and filtered by 0.22-µm nylon 

membrane filters (Magna). The samples were kept in a 0 ˚C refrigerator without any 

treatment until analysis and most samples were analyzed within two weeks. 
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6.2.3 Analytical Methods 

Concentration of perchlorate was analyzed using a Dionex 500 ion 

chromatograph equipped with a 4-mm Dionex AS–16 analytical and guard column. 

Chloride was analyzed using a Dionex DX-80 ion chromatograph equipped with a 4-mm 

Dionex AS-14 analytical and guard column, and DS-5 detection stabilizer. 

6.2.3 Computational Methods 

All computations, including linear and nonlinear regressions and solving 

ordinary differential equations, were conducted with Matlab 7.0 (Math Works Inc.). 

Linear and nonlinear regression results with Matlab 7.0 were compared to the results 

from SigmaPlot 8.0 (SPSS Inc) using regression tools to check their validity. Matlab 

coded computer programs are listed in Appendix B. 

 

6.3 Results and Discussion 

6.3.1 General Descriptions 

Figure 6.1 shows a schematic diagram of perchlorate reduction at the site of 

pitting corrosion of Ti(0). The Ti(0) surface usually is coved by an oxide film (mainly 

TiO2) that protects the underlying bare Ti(0) from being oxidized. However, pitting 

corrosion induces a localized breakdown of the surface oxide film and promotes 

oxidative dissolution of Ti(0). The location where this occurs will be called the pit. 

Perchlorate is transported from solution to the pit where it is believed to be reduced by 

dissolved Ti(II) that was produced electrochemically. Thus, kinetics of perchlorate 

reduction during pitting corrosion of Ti(0) in a batch system is described by the 

interactions between two domains (pit and solution). The following assumptions are 
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made regarding those interactions: 1) there is no generation of perchlorate anywhere in 

the system, 2) perchlorate reduction occurs only in the pit, and 3) pit volume is much 

less than solution volume and remains constant over time.  

 

 

FIGURE 6.1 Schematic diagram of perchlorate reduction during pitting corrosion of 

Ti(0). 

 

 

6.3.2 Ti(II) Consumption Kinetic Model 

A kinetic model is developed based on the assumption that inhibition of 

perchlorate reduction is caused by the consumption of dissolved Ti(II) by 

electrochemically produced chlorine. Figure 6.2 describes reactions that would be 

developed in the pit when Ti(II) is consumed by electrochemically produced chlorine. 
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Perchlorate reduction is believed to be caused by dissolved Ti(II) in the pit. However, 

electrochemical oxidation of chloride to chlorine would also occur in the pit as presented 

in Chapter III. Chlorine produced in the pit would consume dissolved Ti(II) and be 

reduced to chloride, which can continue to cycle through the same reactions.  

 

 

 

FIGURE 6.2. Mechanisms of Ti(II) consumption by chlorine in the pit. 

 

Several studies reported that Ti(II) reduces oxidized compound obeying a 

second-order rate law (54, 57, 157). In this study, perchlorate is believed to be reduced 

by dissolved Ti(II), which is produced by pitting corrosion of Ti(0). Thus, the rate of 

perchlorate reduction within the pit is described with second-order kinetics as: 

 p4ploss p, ][ClO[Ti(II)] −= kγ  (6.2) 

where k represents the second-order rate constant and [Ti(II)]p is Ti(II) concentration 

within the pit. A material balance on perchlorate in the pit is:  
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 loss p,pprod p,pClO4s,pClO4p,s
p4

p VVMM
t

][ClO
V γγ −+−= →→

−

d
d

 (6.3) 

where Ms→p,ClO4 is the perchlorate mass flux from solution to the pit, Mp→s,ClO4 is the 

perchlorate mass flux from the pit to solution, Vp is volume of the pit, and γp,prod and 

γp,loss are rates of perchlorate production and loss. Since perchlorate is not produced in 

the pit (γp,prod = 0), and eq 6.3 is rewritten to 

 loss p,pClO4s,pClO4p,s
p4

p VMM
t

][ClO
V γ−−= →→

−

d
d

 (6.4) 

Perchlorate concentration changes in the pit can be described by substituting eq 6.2 into 

eq 6.4. 

 p4ppClO4s,pClO4p,s
p4

p ]ClO[Ti(II)][VMM
t

][ClO
V −

→→

−

−−= k
d

d
 (6.5) 

The material balance on perchlorate in the solution is: 

 loss s,sprod s,sClO4p,sClO4s,p
s4

s VVMM
t

][ClOV γγ −+−= →→

−

d
d  (6.6) 

where Vs is solution volume (0.8 L), and γs, prod and γs, loss are rates of perchlorate 

production and loss. Since there is no perchlorate production (γs, prod = 0) or loss (γs, loss = 

0) in the solution, eq 6.6 is simplified to:  

 ClO4p,sClO4s,p
s4

s MM
t

][ClOV →→

−

−=
d

d  (6.7) 

Summation of eqs 6.4 and 6.7 yields a material balance of perchlorate for overall system. 

 loss p,p
p4

p
s4

s V
t

][ClO
V

t
][ClOV γ−=+

−−

d
d

d
d  (6.8) 



 115

Eq 6.8 is further simplified by applying the assumption that solution volume is much 

larger than pore volume (Vs >> Vp). 

 loss p,
s

ps4

V
V

t
][ClO γ−=

−

d
d  (6.9) 

Perchlorate concentration changes in the solution can be described by substituting eq 6.2 

into eq 6.9. 

 p4p
s

ps4 ]ClO[Ti(II)][
V
V

t
][ClO −

−

−= k
d

d  (6.10) 

How Ti(II) concentration changes with time in the pit is given by the material balance on 

Ti(II). 

 Ti(II) loss, p,Ti(II) prod, p,
p

t
[Ti(II)]

γγ −=
d

d
 (6.11) 

where γp,prod,Ti(II) represents the rate of Ti(II) production in the pit and γp,loss,Ti(II) is the rate 

of Ti(II) loss in the pit. Ti(II) is produced by electrochemical dissolution of Ti(0) and the 

rate of Ti(II) production under conditions of constant current is defined as follows.  

 Ti(II) prod,Ti(II) prod, p, k=γ  (6.12) 

Ti(II) loss can occur by either chemical or electrochemical oxidations, as discussed in 

previous chapters. Thus, the rate of Ti(II) loss is given by 

 pelec,Ox ppOx Ti(II) loss, p, Ox][Ti(II)][ kk += ∑γ  (6.13) 

where kOx represents the rate constant of Ti(II) oxidation by an oxidizing agent, [Ox]p is 

individual oxidizing agent concentration, ∑OxkOx[Ti(II)]p[Ox]p is sum of the rate of Ti(II) 

oxidation by individual oxidizing agents, and kelec,p is the rate of electrochemical 
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oxidation of Ti(II) in the pit. For simplification, it is assumed that Ti(II) is only 

consumed by perchlorate and chlorine.  

 p2pCl2p4pTi(II)prod,
p ]Cl[Ti(II)][]ClO[Ti(II)][4

t
[Ti(II)]

kkk
d

d
−−= −  (6.14) 

where kCl2 is the second-order rate constant for Ti(II) oxidation by Cl2 in the pit. 

A material balance on chloride is developed with the same procedure used for 

perchlorate. 

 )(
V
V

t
][Cl

Clprod,p,Clloss, p,
s

ps γγ +−=
−

d
d  (6.15) 

where γp,loss,Cl is the rate of Cl− loss and γp,prod,Cl represents the rate of Cl− production in 

the pit. The Cl− is electrochemically oxidized in the pit and it is assumed that the rate of 

chloride oxidation follows a first-order rate equation. 

 pClClloss,p, ]Cl[ −= kγ  (6.16) 

where kCl is the first-order rate constant for chloride oxidation. The net rate of chloride 

production depends on reactions of Ti(II) with chlorine and perchlorate. Molar units are 

assumed and stoichiometry of 2 moles Cl/mole Ti(II) is applied to relate the rate of 

chloride production to the rate of Ti(II) reaction with perchlorate. 

 p2pCl2p4pClprod,p, ]Cl[Ti(II)][2]ClO[[Ti(II)] kk += −γ  (6.17) 

Then, the material balance for chloride in the pit and solution become:  

 pClp4pp2pCl2Cls,pClp,s
p ]Cl[]ClO[Ti(II)][]Cl[Ti(II)][2MM

t
][Cl −−

→→

−

−++−= kkk
d

d
(6.18) 

 )]Cl[]ClO[Ti(II)][]Cl[Ti(II)][2(
V
V

t
][Cl

pClp4pp2pCl2
s

ps −−
−

−+−= kkk
d

d  (6.19) 
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where Ms→p,Cl is the chloride mass flux from solution to the pit, Mp→s,Cl is the chloride 

mass flux from the pit to solution. The material balance equation for chlorine in the pit 

becomes:  

 p2Cl2trans,p2pCl2Cl
p2 ]Cl[]Cl[Ti(II)][]Cl[

t
][Cl

kkk
d

d
−−= −  (6.20) 

where ktrans,Cl2 is the mass transfer coefficient for Cl2 from the pit to solution, and it is 

assumed that the concentration of chlorine in solution is zero ([Cl2]s = 0).  

The set of equations (eqs 6.5, 6.10, 6.14, 6.18, 6.19 and 6.20) contain several 

unknown parameters. Thus, the following assumptions were made to simplify the 

equations: 1) mass transport of chloride and perchlorate between pit and solution was 

caused by concentration gradients and the transport coefficients were the same for both 

compounds.  

 Ms→p,ClO4 − Mp→s,ClO4 = ktrans ([ClO4
−]s−[ ClO4

−]p) (6.21) 

 Ms→p,Cl − Mp→s,Cl = ktrans ([Cl−]s−[ Cl−]p) (6.22) 

Thus, eqs 6.5 and 6.18 are rewritten to  

 p4pp4s4trans
p4 ]ClO[Ti(II)][)]ClO[][ClO(

t
][ClO −−−

−

−−= kk
d

d
 (6.23) 

]Cl[]ClO[Ti(II)][]Cl[Ti(II)][2)]Cl[]Cl([
t

][Cl
Clp4pp2pCl2pstrans

p −−−−
−

−++−= kkkk
d

d
 (6.24) 

2) single pit is assumed and the pit has a hemispherical shape and with a volume of 10-4 

L that remains constant; and 3) chlorine exists only in the pit ([Cl2]s = 0) and its 

diffusion coefficient is 8.64 × 10−5 cm2 min−1. Thus, chlorine mass transport coefficient 

(ktrans,Cl2) is 4.24 × 10−4 min−1 and estimated from 



 118

 
p

p

p

Cl2
Cl2trans, V

A
r

D
=k  (6.25) 

where DCl2 is diffusion coefficient of chlorine, Ap is surface area of pit, rp is pit radius, 

and Vp is pit volume.  

Parameters were estimated by nonlinear regression on perchlorate concentration 

using the Matlab function ‘nlinfit’ combined with the Matlab function ‘ode23s’. It is 

believed that concentrations in the pit change much faster than those in solution, which 

results in slow execution when using ‘ode45’. Therefore, the set of equations (eqs 6.10, 

6.14, 6.19, 6.20, 6.23 and 6.24) was solved using the Matlab function ‘ode23s’, which is 

designed to be more efficient with stiff sets of differential equations such as found here. 

Since pitting is developed electrochemically, experimental data sets obtained with 

different constant currents at 1.0 mM of perchlorate were used. These data sets were the 

same ones used to calibrate the competitive adsorption model. Table 6.1 shows nonlinear 

regression results that were obtained by assuming different values of the mass transfer 

coefficient. Rate of Ti(II) production (kprod,Ti(II)) is not affected by changing the mass 

transfer coefficient. However, the rate constants for perchlorate reduction (k) and 

chloride oxidation (kCl) increased and rate constant for Ti(II) oxidation by chloride (kCl2) 

decreased with decreasing values of the mass transfer coefficient. More importantly, 

decreasing the value of the mass transfer coefficient increased uncertainties in calculated 

values of rate constants. Thus, nonlinear regressions and later model simulations were 

conducted at high mass transfer coefficient (ktrans = 5 × 104 min−1). High mass transfer 

coefficient of chloride and perchlorate might be attributed by electroneutrality that 
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maintains an electrically neutral charge and electromigration that causes ionic migration. 

Moreover, the electroneutrality was reported as an extremely powerful force that can 

adjust solution concentration instantaneously. Therefore, higher mass transfer of chloride 

and perchlorate would be a reasonable assumption. However, transport of chlorine is not 

affected by electroneutrality because chlorine is neutrally charged specie. Thus, chlorine 

mass transport coefficient (ktrans,Cl2) is not changed to higher mass transfer coefficient. 

Figure 6.3 shows influence of current at unit volume on the rate constants for 

chloride oxidation and Ti(II) production. Chloride is electrochemically oxidized to 

chloride and Ti(II) is produced by electrochemical dissolution of Ti(0). Thus, their rates 

are expected to increase with increasing current. The rate constant for Ti(II) production 

increases with increasing current per unit volume (Iv). The rate constant for chloride 

oxidation seems to increase with current, but high uncertainties occur when Iv is above 

150 mA L−1, which prevents making conclusion with confidence. However, chloride is 

electrochemically oxidized to chlorine and Faraday’s law defines that rates of 

electrochemical reactions are directly proportional to the current they produce. If the 

current produced by any reactions remains a constant fraction of the total current, then 

measured rates would be proportional to current. Thus, linear regressions were 

conducted to determine relationships between rate constants and current per unit volume. 

Other rate constants were not affected by current and their values are summarized in 

Table 6.2. Generally, chlorine was reported as a strong oxidizing compound and 

perchlorate was a inert compound in aqueous phase toward chemical reudctant. However, 
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rate constant of perchlorate reduction is 1.0 ± 0.5 × 105 mM−1·min−1. Rate constant of 

Ti(II) oxidation by chlorine is 3000 times less than that of perchlorate reduction by Ti(II).  

 

 

TABLE 6.1. Influence of mass transfer rate on uncertainties of estimated rate constants 

at current =75 mA. 

ktrans 
(min−1) 

kCl 
(min−1) 

kCl2 
(mM−1 min−1) 

k 
(mM−1 min−1) 

kprod,Ti(II) 
(mM min−1) 

1 × 105 18.5 
(± 64.2 %) 

20.4 
(± 91.6 %) 

8.0 × 104 

(± 29.6 %) 
17.4 

(± 10.2 %) 

1 × 104 19.4 
(± 98.7 %) 

21.5 
(± 83.1 %) 

8.5 × 104 

(± 76.6%) 
17.5 

(± 5.4%) 

1 × 103 21.17 
(± 79.9 %) 

18.6 
(± 93.2 %) 

8.8 × 104 

(± 66.3 %) 
17.44 

(± 9.8 %) 

1 × 102 25.0 
(± 3819.5 %) 

16.3 
(± 9899.4 %) 

1.5 × 105 
(± 7267.9%) 

17.6 
(± 14.9 %) 

5 × 10 13.3 
(± 556.9 %) 

12.2 
(± 5750.8%) 

1.5 × 105 
(± 5687.5 %) 

17.5 
(± 14.5 %) 

 

 

 

TABLE 6.2. Estimated rate constants for Ti(II) consumption kinetic model. 

k΄Cl
* 

(min−1 L mA−1) 
k΄prod,Ti(II)

** 
(mM L mA−1 min−1)

k 
(mM−1·min−1) 

kCl2 
(mM−1 min−1) 

0.16·± 0.04 0.19 ± 0.02 1.0 ± 0.5 × 105 33.3 ± 14.4 

* kCl (min−1) = k΄Cl × Iv; ** kprod,Ti(II) (mM min−1) = k΄prod,Ti(II) × Iv 
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(b) 
FIGURE 6.3. Estimated rate constants for Ti(II) production (kprod) and rate constants for 

electrochemical chloride oxidation (kcl). ktrans = 5× 104 min−1. 
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6.3.3 Competitive Adsorption Kinetic Model 

Another kinetic model is developed based on competitive adsorption of 

perchlorate and chloride to describe kinetics of perchlorate removal during oxidative 

dissolution of Ti(0). In Chapter IV, it was suggested that Ti(0) dissolution is 

predominately caused by the adsorption of aggressive anions such as chloride and 

perchlorate on the surface of bare Ti(0). Adsorption of perchlorate on bare Ti(0) 

accelerates the oxidative dissolution of Ti(0) to form a dissolved complex of perchlorate 

and Ti(II). The perchlorate that stimulates Ti(0) dissolution to Ti(II) and formation of a 

dissolved complex is believed to be involved in reactions only with Ti(II) and these 

reaction steps are presented in Figure 6.4. Other aggressive anions, especially chloride 

and bromide, are believed also to adsorb on bare Ti(0) sites and to compete with 

perchlorate for those sites. 

 

 

FIGURE 6.4 Perchlorate reduction pathways in the pit. 
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In order to describe perchlorate reduction by competitive adsorption, it is assumed that  

1) the rate limiting step of perchlorate reduction is the oxidative dissolution of Ti(0) that 

forms the complex between Ti(II) and perchlorate (Ti(II)·ClO4
−

(aq)); 2) oxidative 

dissolution of Ti(0) (≡Ti(0)dis) and chloride oxidation (≡Ti(0)ox) sites are different; 3) 

[≡Ti(0)]p (= [≡Ti(0)dis]p +[≡Ti(0)ox]p) is much less than [ClO4
−]p and [Cl−]p and sites are 

fully occupied by ClO4
− and Cl−; 4) the rates of adsorption and desorption reactions of 

perchlorate and chloride on ≡Ti(0) are rapid enough to reach equilibrium; and 5) the 

reduction products of perchlorate (i.e. chlorate (ClO3
−), chlorite (ClO2

−) and 

hypochlorite (ClO−)) are also adsorobed and stimulate oxidative dissolution that form 

complexes with Ti(II) and their rate of reduction are much faster than that of perchlorate. 

These assumptions lead to the simplified sequential step reaction models for perchlorate 

reduction and chloride oxidation in the pit as shown in Figure 6.5. 

Net material balance on perchlorate in the pit is defined as a 

 
t

][ClO
t
][ClO

t
][ClO p4Ti(0)p,4netp,4

d
d

d
d

d
d −

≡
−−

+=  (6.26) 

where d[ClO4
−]p,≡Ti(0)/dt is material balance on perchlorate on ≡Ti(0) and d[ClO4

−]p/dt is 

material balance on perchlorate in pit solution. A material balance of perchlorate on 

≡Ti(0) is:  

 oxClO4,Ti(0)loss,disClO4,Ti(0)loss,oxClO4,Ti(0)prod,disClO4,Ti(0)prod,
Ti(0)p,4

t
][ClO

⋅≡⋅≡⋅≡⋅≡
≡

−

−−+= γγγγ
d

d
(6.27) 

where γprod,≡Ti(0)·ClO4,dis and γprod,≡Ti(0)·ClO4,ox represent rates of ≡Ti(0)dis·ClO4
− and 

≡Ti(0)ox·ClO4
− production, and γloss,≡Ti(0)·ClO4,dis and γloss,≡Ti(0)·ClO4,ox are rates of 
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≡Ti(0)dis·ClO4
− and ≡Ti(0)ox·ClO4

− loss. The γprod,≡Ti(0)·ClO4,dis and γprod,≡Ti(0)·ClO4,ox are 

occurred by adsorption of perchlorate on ≡Ti(0)dis and ≡Ti(0)ox. 

 

 

(a) 

 
 
 

(b) 
 
 

FIGURE 6.5 a) Simplified perchlorate reduction pathways in the pit and b) Chloride 

oxidation pathways in the pit. 
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 p4p
dis

1disClO4,Ti(0)prod, ]ClO[]Ti(0)[ −
⋅≡ ≡= kγ  (6.28) 

 p4p
ox

3oxClO4,Ti(0)prod, ]ClO[]Ti(0)[ −
⋅≡ ≡= kγ  (6.29) 

The γloss,≡Ti(0)·ClO4,dis is occurred by desorption and oxidative dissolution from 

≡Ti(0)dis·ClO4
− and γloss,≡Ti(0)·ClO4,ox is from desorption of ≡Ti(0)ox·ClO4

−. 

 p4
dis

ClO4ad,p4
dis

1disClO4,Ti(0)loss, ]ClOTi(0)[]ClOTi(0)[ −−
−⋅≡ ⋅≡+⋅≡= kkγ  (6.30) 

 p4
ox

3oxClO4,Ti(0)loss, ]ClOTi(0)[ −
−⋅≡ ⋅≡= kγ  (6.31) 

Substitutions of eqs 6.28, 6.29, 6.30 and 6.31 to 6.27 gives 

 

p4
dis

ClO4ad,

p4
ox

3p4
dis

1

p4p
ox

3p4p
dis

1
Ti(0)p,4

]ClOTi(0)[                                                 

]ClOTi(0)[]ClOTi(0)[                                     

]ClO[]Ti(0)[]ClO[]Ti(0)[
t
]ClO[

−

−
−

−
−

−−≡
−

⋅≡

−⋅≡−⋅≡

−≡+≡=

k

kk

kk
d

d

 (6.32) 

A material balance on perchlorate in the pit solution is  

 pClO4,loss,pClO4,prod,
p4

t
]ClO[

γγ −=
−

d
d

 (6.33) 

where γprod,ClO4,p represents the rate of perchlorate production and γloss,ClO4,p is the rate of 

perchlorate loss in the pit solution. Since there is no generation of perchlorate anywhere 

in the system, the γprod,ClO4,p is only caused by desoprtion of perchlorate from 

≡Ti(0)dis·ClO4
− and ≡Ti(0)ox·ClO4

−. 

 p4
ox

3p4
dis

1pClO4,prod, ]ClOTi(0)[]ClOTi(0)[ −
−

−
− ⋅≡+⋅≡= kkγ   (6.34) 

The γloss,ClO4,p is occurred by adsorption of perchlorate on ≡Ti(0)dis and ≡Ti(0)ox. 

 p4p
ox

3p4p
dis

1pClO4,loss, ]ClO[]Ti(0)[]ClO[]Ti(0)[ −− ≡+≡= kkγ  (6.35) 
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Then, material balance of perchlorate in the pit solution is rewritten by substitution of 

eqs 6.34 and 6.35 to eq 6.33 

p4p
ox

3p4p
dis

1

p4
ox

3p4
dis

1
p4

]ClO[]Ti(0)[]ClO[]Ti(0)[                                                           

]ClOTi(0)[]ClOTi(0)[
t

]ClO[

−−

−
−

−
−

−

≡−≡

−⋅≡+⋅≡=

kk

kk
d

d
(6.36) 

From assumption, [≡Ti(0)]p is much less than [ClO4
−]p. Thus, d[ClO4

−]p,≡Ti(0)/dt is much 

less than d[ClO4
−]p/dt. Then, d[ClO4

−]p,net/dt ≈ d[ClO4
−]p/dt and summation of eqs 6.32 

and 6.36 produces 

 pClO4,
p4

t
]ClO[

γ−=
−

d
d

 (6.37) 

where γClO4,p = kad,ClO4[≡Ti(0)·ClO4
−]p. By introducing surface coverage (θt

dis), the γClO4,p 

becomes 

 dis
ClO4p

dis
ClO4ad,pClO4, ]Ti(0)[ θγ ≡= k  (6.38) 

where θt
dis represents total surface coverage of ≡Ti(0)dis and this is defined as a  

 1dis
Cl

dis
ClO4

dis
t =+= θθθ   (6.39) 

Since ≡Ti(0) reaches rapid equilibrium with ClO4
− and Cl−, surface coverage of 

perchlorate and chloride can be described with adsorption and desorption rate constant 

and their concentrations in the pit as 

 dis
ClO4p

dis
1p4p

dis
1 ]Ti(0)[]ClO[]Ti(0)[ θ≡=≡ −

− kk   (6.40) 

 dis
Clp

dis
2pp

dis
2 ]Ti(0)[]Cl[]Ti(0)[ θ≡=≡ −

− kk   (6.41) 

Calculating the ratio of eq 6.40 to 6.41 and manipulating the result gives: 
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p4ClO4

pCldis
ClO4

dis
Cl ]ClO[

]Cl[
−

−

=
K

K
θθ  (6.42) 

where KClO4 = k1/k-1 and KCl = k2/k-2. Substitution of eq 6.42 back to eq 6.39 gives: 

 
pIp4

p4dis
ClO4 ]Cl[]ClO[

]ClO[
−−

−

+
=

K
θ  (6.43) 

where KI = KCl/KClO4. Substitution of eq 6.43 to eq 6.38 gives: 

 
pIp4

p4p
dis

ClO4ad,
pClO4, ]Cl[]ClO[

]ClO[]Ti(0)[
−−

−

+

≡
=

K
k

γ  (6.44) 

≡Ti(0)dis is generated by electrochemically induced pitting corrosion and keep 

regenerated by electrochemical dissolution of Ti(0) to form Ti(II). Thus, as long as the 

current remains constant, ≡Ti(0)dis remains a constant. Since the volume of pit is 

assumed a constant over time, [≡Ti(0)dis]p also becomes a constant. Then eq 6.44 can be 

simplified to 

 
pIp4

p4
'

ClO4ad,
pClO4, ]Cl[]ClO[

]ClO[
−−

−

+
=

K
k

γ  (6.45) 

where k΄ad,ClO4 (=kad,ClO4[≡Ti(0)dis]p). 

A material balance on chloride in the pit is: 

 
t

][Cl
t
][Cl

t
][Cl pTi(0)p,netp,

d
d

d
d

d
d −

≡
−−

+=  (6.46) 

where d[Cl−]p,≡Ti(0)/dt is material balance on chloride on ≡Ti(0) and d[Cl−]p/dt is material 

balance on chloride in pit solution. Then, a material balance for chloride on ≡Ti(0) is: 

 oxCl,Ti(0)loss,disCl,Ti(0)loss,oxCl,Ti(0)prod,disCl,Ti(0)prod,
Ti(0)p,

t
]Cl[

⋅≡⋅≡⋅≡⋅≡
≡

−

−−+= γγγγ
d

d
 (6.47) 
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where γprod,≡Ti(0)·Cl,dis and γprod,,≡Ti(0)·Cl,ox represent rates of ≡Ti(0)dis·Cl− and ≡Ti(0)ox·Cl− 

production, and γloss,≡Ti(0)·Cl,dis and γloss,≡Ti(0)·C,ox are rates of ≡Ti(0)dis·Cl− and ≡Ti(0)ox·Cl− 

loss. The γprod,≡Ti(0)·Cl,dis and γprod,,≡Ti(0)·Cl,ox are occurred by adsorption of perchlorate on 

≡Ti(0)dis and ≡Ti(0)ox. 

 pp
dis

2disCl,Ti(0)prod, ]Cl[]Ti(0)[ −
⋅≡ ≡= kγ  (6.48) 

 pp
ox

4oxCl,Ti(0)prod, ]Cl[]Ti(0)[ −
⋅≡ ≡= kγ  (6.49) 

The γloss,≡Ti(0)·Cl,dis is caused by desorption and oxidative dissolution from ≡Ti(0)dis·Cl− 

and γloss,≡Ti(0)·Cl,ox is by desorption and chloride oxidation from ≡Ti(0)ox·Cl−. 

 p
dis

Clad,p
dis

2disCl,Ti(0)loss, ]ClTi(0)[]ClTi(0)[ −−
−⋅≡ ⋅≡+⋅≡= kkγ  (6.50) 

 p
ox

oxCl,p
ox

4oxCl,Ti(0)loss, ]ClTi(0)[]ClTi(0)[ −−
−⋅≡ ⋅≡+⋅≡= kkγ  (6.51) 

Substitution of eqs 6.48, 6.49, 6.50, and 6.51 to 6.47 gives 

p
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kkk

kkk
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(6.52) 

A material balance on chloride in the pit solution is  

 pCl,loss,pCl,prod,
p

t
][Cl

γγ −=
−

d
d

 (6.53) 

where γprod,Cl,p represents the rate of chloride production and γloss,Cl,p is the rate of 

chloride loss in the pit solution. There is a generation of chloride by perchlorate 

reduction. Thus, the γprod,Cl,p is occurred by chloride desoprtion from ≡Ti(0)dis·Cl− and 

≡Ti(0)ox·Cl−, oxidative dissolution from ≡Ti(0)dis·Cl−, and perchlorate reduction. 

pClO4,p
dis

Clad,p
ox

4p
dis

2pCl,prod, ]ClTi(0)[]ClTi(0)[]ClTi(0)[ γγ +⋅≡+⋅≡+⋅≡= −−
−

−
− kkk  (6.54) 
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The γloss,Cl,p is caused by formations of ≡Ti(0)dis·Cl− and ≡Ti(0)ox·Cl−. 

 pp
ox

4pp
dis

2pCl,loss, ]Cl[]Ti(0)[]Cl[]Ti(0)[ −− ≡+≡= kkγ  (6.55) 

Substitution of eqs 6.54 and 6.55 to 6.53 gives 
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 (6.56) 

Since [≡Ti(0)]p is much less than [Cl−]p, d[Cl−]p,≡Ti(0)/dt becomes much less than 

d[Cl−]p/dt. Then, d[Cl−]p,net/dt ≈ d[Cl−]p/dt and summation of eqs 6.52 and 6.56 produces 

 pCl,pClO4,
p

t
][Cl

γγ −=
−

d
d

 (6.57) 

where γCl,p = kCl,ox[≡Ti(0)ox·Cl−]. Following the same assumptions and procedures used 

in the derivation of perchlorate reduction in the pit, the rate of chloride oxidation in the 

pit can be described as: 
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where KI,ox = k3k-4/k-3k4. Simplification of eq 6.58 by assuming constant [≡Ti(0)ox]p gives 
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where k΄Cl,ox (=kCl,ox[≡Ti(0)ox]p). 

Perchlorate and chloride would accumulate in the pit to a great extent, because of 

the need to maintain electro-neutrality during production of metal cations such as Ti4+ 

and TiO2+ (60, 62). Several studies derived a simplified equation to predict anion 

concentrations in the pit relative to concentrations in solution (158-163). The simplified 



 130

equation is derived from mass transport of equation of chemical species in the 

electrolytic solution neglecting convection during the electrochemical process (158-163). 
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where Ji represents flux of i chemical specie, Di is diffusion coefficient, µ is electric 

potential, x is distance, j is current density and vi is stoichiometric factor of i specie (i.e. 

if electrode reaction H2.= 2H+ + 2e−, vi = +2). If electrical charge is consumed only by 

metal dissolution, electrode reaction at the anode is M → M+ + e−. Then, the 

stoichiometric factor for metal specie becomes +1 and electrochemically inactive anions 

that do not consume electric charge become zero. For electrochemically inactive anions, 

eq 6.60 become: 
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Then, integration of eq 6.61 with respect to distance (x) from bare metal surface to 

interface of pit and solution gives eq 6.62. 
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where Cp,i represents anion concentration in the pit, Cs,i is anion concentration in the 

solution, zi is valence of anion, F is faraday’s constant, R is gas constant, T is 

temperature, and Δµ is the potential drop in the pit that is estimated from (160) 
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where jp represents current density in the pit, r is radius of pit, a is geometric shape factor, 

and κ is conductivity of solution in the pit. Perchlorate is an electrochemically inactive 

anion, but chloride is believed to be electrochemically oxidized to chlorine in the pit, 

which consumes electrical current. However, amount of electrical current consumed by 

chloride oxidation is much less than the electrical current consumed for Ti(0) dissolution. 

The discussion in Chapter IV showed that chloride oxidation consumed less than 4 % of 

total electrical charge. This discussion was based on the assumption that inhibition of 

perchlorate reduction is caused by competitive adsorption of chloride. Thus, both 

perchlorate and chloride are assumed to be electrochemically inactive anions and their 

concentrations in the pit are estimated from their solution concentrations. 

 s4p4 ][ClO]ClO[ −− = α   (6.64) 

 sp ][Cl]Cl[ −− = α   (6.65) 

where α represents exp(ΔµF/RT). Then, the rate of perchlorate decrease in solution can 

be expressed using eqs 6.64 and 6.65 by assuming: 1) current density in the pit is a 

constant as long as a constant current is applied to Ti(0); 2) pit volume and geometric 

shape factor remain constant; 3) accumulation of anions and metal ions maintain 

constant conductivity in the pit and thereby potential drop (Δµ) within is relatively small 

compared to potential drop in the solution. Thus, Δµ within pit is assumed a constant; 

and 4) transport between pit and solution is sufficiently rapid and reaches equilibrium. 

Then, the rates of perchlorate and chloride concentration changes in the solution are 

proportional to their concentration changes in the pit. 
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Using eqs from 6.64 to 6.67, the rate of perchlorate removal (γClO4,p) and chloride 

oxidation (γCl,p) are rewritten to the rates of perchlorate removal (γClO4,s)and chloride 

removal (γCl,s) in the solution. 
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Where kobs,ClO4 = k΄ad,ClO4/α and kobs,Cl = k΄Cl,ox/α. Then, material balance of perchlorate 

and chloride in the solution are 
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Then, material balances of perchlorate and chloride in the solution described with 

solution concentrations of perchlorate and chloride are. 
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Values of parameters used in the competitive adsorption model were obtained 

from regressions using experimental data. The value of kobs,Cl was obtained by linear 

regression using Matlab function ‘regress’. Values of kobs,ClO4, KI and KI,ox were obtained 

by nonlinear regressions using Matlab function ‘nlinfit’ combined with Matlab function 

‘ode45’. The ‘ode45’ function solved eqs 6.72 and 6.73, and the ‘nlinfit’ function 

estimated parameters by least squares regression. Confidence intervals of parameters 

were calculated with the ‘nlparci’ function. Eq 6.72 indicates that if there is only 

perchlorate present in the solution, the reaction becomes zeroth-order, and the rate 

constant (kobs,ClO4) can be obtained by linear regression on concentrations over time. 

However, since the final reduction product of perchlorate is chloride, the inhibition of 

perchlorate reduction by chloride is inevitable unless the value of KI is small. However, 

chloride oxidation does not produce an inhibiting product when chloride is only present 

in the solution. Thus, if only chloride is present during the pitting corrosion of Ti(0), eq 

6.73 becomes zeroth-order. 

 Clobs,
s

t
]Cl[ k

d
d

−=
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 (6.74) 

Then, kobs,Cl can be obtained by linear regression of chloride concentrations over time 

using experimental data that were obtained from experiments only with chloride and 

various currents. Figure 6.6 shows that the rate constant for chloride removal from 

solution (kobs,Cl) is directly proportional to applied current per unit liquid volume (Iv (mA 

L−1)) and experimental data used are presented in Appendix C. Linear regression was 

conducted and it determined that the slope was (2.18 ± 0.10) × 10-5 mM L mA−1 min−1. 
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Then, the observed rate constant for chloride removal from solution could be calculated 

from: kobs,Cl = (2.18 × 10-5)·Iv (mM min−1).  
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FIGURE 6.6. Rate constant for chloride oxidation as function of current. Initial chloride 

concentration was 1.05 ± 0.02 mM. 
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Values of kobs,ClO4, KI and KI,ox were obtained by conducting a nonlinear regression using 

experimental data that were obtained from experiments with initial concentration of 1.00 

mM perchlorate and with various currents. The experimental data set contained 

perchlorate and chloride concentrations over time and they are presented in Appendix C. 

Nonlinear regressions of kobs,ClO4, KI, and KI,ox require that two ordinary differential 

equations (eqs 6.72 and 6.73) be solved. However, perchlorate concentration was 

observed to linearly decrease over time for most of the experiment, with only slight non-

linear behavior at the end of the experiments. Thus, it is hard to accurately estimate 

values of kobs,ClO4, KI and KI,ox using only perchlorate concentrations. Chloride 

concentrations in experimental data set were used to estimate the rate of chloride 

removal in the solution (γCl,s) in eq 6.71. The rate of chloride removal in the solution is 

estimated by calculating amount of chloride loss during the experiments at each time.  

 [Cl−]t,loss = [ClO4
−]i − [ClO4

−]t + [Cl−]i − [Cl−]t  (6.75) 

where [Cl−]t,loss represents concentration of chloride loss at a given time (t), [ClO4
−]i and 

[Cl−]i are initial perchlorate and chloride concentrations, and [ClO4
−]t and [Cl−]t are 

perchlorate and chloride concentrations at a given time. Figure 6.7 shows the amount of 

chloride loss over time and [Cl−]t,loss was observed to linearly increase over time. Thus, 

the rate of chloride removal in the solution (γCl,s) in eq 6.71 is approximated with the 

slope obtained from linear regression of [Cl−]t,loss over time. 
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FIGURE 6.7. Amount of chloride loss in solution with various current during 1.01 ± 

0.02 mM of perchlorate reduction. 

 

Two nonlinear regressions were conducted on each experimental data set to 

determine kobs,ClO4, KI and KI,ox by solving two ordinary differential equations eq 6.72 

and eq 6.73. First nonlinear regression on perchlorate concentrations was conducted by 

solving two ordinary differential equations eq 6.72 and eq 6.73 to determine kobs,ClO4 and 

KI, but γCl,s in eq 6.73 was replaced with the slope obtained from linear regression of 

[Cl−]t,loss over time from experimental data. After determination of kobs,ClO4 and KI, 
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another nonlinear regression on chloride concentrations was conducted to determine the 

value of KI,ox by solving eqs 6.72 and 6.73 (γCl,s was not replaced with the slope this 

time) using values of kobs,ClO4, KI and kobs,Cl that were previously determined. The value 

for kobs,ClO4 were obtained from experiments conducted at different current and were 

found to linearly increase with current per unit volume of solution as shown in Figure 

6.8. A linear regression found that the value of the slope was (2.61 ± 0.27) × 10-5 (mM L 

mA−1 min−1). Then, values for the rate constant could be calculated from: kobs,ClO4 = 

(2.61 × 10-5)·Iv (mM min−1). The values calculated for KI did not show any dependence 

on current and their average value is 1.25 ± 0.62. KI,ox also was not dependent on current 

and its average value is 0.16 ± 0.09. These rate constants and inhibition coefficients are 

summarized on Table 6.3. If the oxidative dissolution of Ti(0) and chloride oxidation 

occur at the same site, KI should be equal to 1/KI,ox. However, 1/KI,ox is much greater 

than KI. Therefore, the oxidative dissolution of Ti(0) and chloride oxidation would be 

developed at different site. Additionally, since KI (= KCl/KClO4) is greater than 1, 

adsorption affinity of chloride is slightly greater than that of perchlorate at oxidative 

dissolution site (≡Ti(0)dis). However, 1/KI,ox is 6.25 and this indicates that adsorption 

affinity of chloride is much greater than that of perchlorate at the chloride oxidation site 

(≡Ti(0)ox). Thus, perchlorate reduction is greatly inhibited by chloride, but chloride 

oxidation is only slightly inhibited by presence of chloride. According to Faraday’s law, 

theoretical amount of Ti(II) that would be produced at Iv = 1 mA L−1 would be 3.11× 

10−4 mM min−1, if the only redox reaction occurring at the electrode was the oxidative 

dissolution of Ti(0) to produce Ti(II). In order to completely reduce one mole of 
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perchlorate, four moles of Ti(II) are required. Based on kobs,ClO4, the actual amount of 

Ti(II) consumed for perchlorate reduction in the absence of chloride would be 1.04 × 

10−4 mM min−1 at Iv = 1 mA Then, the efficiency of perchlorate reduction during pitting 

corrosion of Ti(0) in the absence of chloride is 34 %. This value is expected to decrease 

as chloride concentration increases. 

 

 

 

 

TABLE 6.3. Estimated rate constants and inhibition coefficients for competitive 

adsorption kinetic model. 

Rate constant Inhibition coefficient 

k΄obs,ClO4
* 

(mM L mA−1 min−1) 
k΄obs,Cl

** 
(mM L mA−1 min−1) KI KI,ox 

2.61 ± 0.27 × 10-5 2.18 ± 0.10 × 10-5 1.25 ± 0.62 0.16 ± 0.09 

* kobs,ClO4 (mM min−1) = k΄obs,ClO4 × Iv; ** kobs,Cl (mM min−1) = k΄obs,Cl × Iv 
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FIGURE 6.8. Rate constant for perchlorate removal as a function of current. Initial 

perchlorate concentration was 1.00 ± 0.03 mM. 

 

6.3.4 Comparisons of Kinetic Models 

Figure 6.9 shows a comparison of predictions made by the two kinetic models 

and experimental data that was not used to calibrate the models. Experimental data were 

obtained at different initial perchlorate concentrations, but at the same current. Both 

models well predict the behavior of perchlorate concentration in the experiments. Figure 

6.10 compares predictions of the two kinetic models with another set of experimental 
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data for concentrations of perchlorate and chloride obtained at a constant current. Both 

models well predict perchlorate concentration changes in the solution. However, the 

Ti(II) consumption model over predicts chloride concentration in the solution. 

Overprediction of chloride concentration is probably the result of under predicting the 

net conversion of chloride to chlorine. The net conversion is the difference between the 

chloride converted to chlorine and the chlorine converted to chloride by reaction with 

Ti(II). This would be strongly affected by the transport of chlorine from the pit to the 

solution, where it will not react with Ti(II). If transport to the solution is slow, most of 

the chlorine that is produced would be converted back to chloride, resulting in higher 

chloride concentrations in solution than observed. It was assumed that the transport of 

chlorine is developed by diffusion and no chlorine in solution is present. Using the pit 

volume and its radius, the transport coefficient was calculated and its value was 4.24 × 

10−4 min−1. However, transport coefficient of chloride was 5 × 104 min−1 which was 108 

times greater than transport coefficient of chlorine. Higher transport coefficient of 

chloride might be a reasonable assumption. Because, high concentration of metal ions in 

the pit would produces higher rate of chloride ion transport to pit to maintain 

electroneutrality and electric current develops electromigration of chloride in the pit. 

Then, it might be possible that transport coefficient of chlorine to solution might be 

underestimated in this study. Thus, this might cause that most of chlorine is converted 

back to chloride in the solution. In order to solve overprediction of chloride 

concentration, it would be required additional investigations regarding chlorine begavior 

in the pit. Furthermore, it would be beneficial to develop a Ti(II) consumption kinetic 
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model to support additional studies on chloride oxidation in the pit, especially the 

interaction of chloride with Ti(0). Therefore, it is very hard to judge whether the 

assumptions used to develop the two kinetic models are correct. However, it is clear that 

the competitive adsorption kinetic model did fairly well in predicting both perchlorate 

and chloride concentration changes during the pitting corrosion of Ti(0).  
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FIGURE 6.9. Comparisons of kinetic models with experimental data with different 

initial perchlorate concentrations at a constant current (80 mA). Model 1: Competitive 

adsorption model and Model 2: Ti(II) consumption model (ktrans = 5× 104 min−1). 
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FIGURE 6.10. Comparison of kinetic models with perchlorate and chloride 

concentrations at constant current (75 mA); Model 1: Competitive adsorption model and 

Model 2: Ti(II) consumption model (ktrans = 5× 104 min−1). 

 

Figures 6.11 and 6.12 show additional comparisons of model predictions with 

experimental data that were not used to calibrate the models. Figure 6.10 shows the 

influence of chloride concentration on perchlorate reduction and predictions of it by the 

competitive adsorption model when the initial perchlorate concentration is about 0.48 

mM. The rate of perchlorate removal decreases with increasing chloride concentration 

and the competitive adsorption model predicts this behavior well. Figure 6.11 presents 

experimental data and predictions of the competitive adsorption model at different 

chloride concentrations, but at a lower initial perchlorate concentration (0.99 µM). Again, 
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experimental data shows that the rate of perchlorate removal decreases with increasing 

chloride concentration. The competitive adsorption model predicts concentrations of 

perchlorate that are slightly higher than experimental observations. However, this 

discrepancy between model prediction and experimental observation is caused by an 

initial delay in perchlorate removal that is caused by the induction time of pitting 

corrosion (62). The induction time is the time required to develop stable pitting 

corrosion.  
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FIGURE 6.11. Influence of chloride concentration on rate of perchlorate reduction at 

constant current (50 mA) using predictions of competitive adsorption model. Initial 

perchlorate concentration was 0.48 ± 0.01 mM. 
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FIGURE 6.12. Influence of chloride concentration on rate of trace levels of perchlorate 

removal at constant current (50 mA); initial perchlorate concentration was 0.99 ± 0.05 

µM and predictions by competitive adsorption model. 

 

For removal of trace levels of perchlorate in presence of much higher 

concentrations of chloride, the competitive adsorption model has an analytical solution. 

Since the chloride concentration is greater than perchlorate concentration, KI[Cl−]s and 

[Cl−]s are much greater than [ClO4
−]s and KI,ox[ClO4

−]s. Then, eqs 6.72 and 6.73 are 

simplified to 
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Integration of eq 6.77 with initial values of [Cl−]s,i and t = 0 produces  
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  tk ⋅−= −−
oxCl,is,s ][Cl][Cl   (6.78) 

Substitution of eq 6.78 to 6.76 and integration with initial values of [ClO4
−]s,i and t = 0 

produces  
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Since kad,ClO4,s = 2.61 × 10−5·Iv mM min−1, kCl,ox = 2.18 × 10−5·Iv mM min−1, and KI = 

1.25 (dimensionless), kad,ClO4,s/(kCl,ox· KI) = 0.95. Then, perchlorate concentration at a 

given time is:  
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6.4. Conclusions 

This chapter developed two kinetic models to describe perchlorate concentration 

changes during the pitting corrosion of Ti(0). The kinetic models were developed based 

on two different assumptions about the mechanism of chloride inhibition of perchlorate 

reduction. The competitive adsorption model assumed that the primary mechanism was 

competitive adsorption of perchlorate and chloride on the surface of bare Ti(0). The 

Ti(II) consumption model assumed that the primary mechanism was consumption of 

Ti(II) by electrochemically generated chlorine. The competitive adsorption model 

showed that chloride has slight higher adsorption affinity to oxidative dissolution site of 

Ti(0) than that of perchlorate. However, the chloride showed much higher adsorption 
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affinity to chloride oxidation site. Rate constants of perchlorate reduction and chloride 

oxidation were directly proportional to current. For Ti(II) consumption model, rate 

constant of Ti(II) production was directly proportional to current. Rate of chloride 

oxidation also seemed to proportional to current, but uncertainty prevents making 

conclusion with confidence regarding dependence of rate constant to current. Both 

kinetic models described changes in perchlorate concentration well. However, the Ti(II) 

consumption model was limited in its ability to predict chloride concentration. This 

might indicate that inhibition of perchlorate reduction was caused by competitive 

adsorption of perchlorate and chloride on bare Ti(0) surface. However, it cannot be ruled 

out that other factors caused the limitation of the Ti(II) consumption model.  These 

factors could include computational limitations caused by a lack of available information 

on things like electrochemical oxidation of chloride on bare Ti(0), Ti(II) oxidation by 

chlorine, and over estimated transport coefficient of chloride or under estimated 

transport of coefficient of chlorine. This lack of information could result in calculation 

of inaccurate values of rate constants. Therefore, further studies required to evaluate 

kinetic models. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

 

The results shown in this research demonstrate that pitting corrosion developed 

Ti(0) has the capability to chemically reduce perchlorate and thereby the application of 

Ti(0) may be possible by promoting pitting corrosion developments to abate 

contaminants in natural and engineered system. On the other hand, the results of this 

research imply that the application of pitting developed Ti(0) may not be immediately 

applicable by several factors including material and electricity costs and possible 

chloride oxidation. These results provide basic knowledge about Ti(0) process, 

especially electrochemical and environmental factors affecting perchlorate reduction, 

perchlorate reduction mechanism, influence of other aggressive and non-aggressive 

anion presences, and kinetic models that describe the rate of perchlorate reduction on 

pitting induced Ti(0). Furthermore, this knowledge could be used for further 

development of a new technology that can treat perchlorate present in natural and 

engineered system. The specific conclusions obtained from the research are as follows: 

1) Perchlorate is a stable compound that is too slowly reduced by common 

chemical reductants and direct electrochemical reductions under ambient conditions. 

However, Ti(0) showed capability to reduce the perchlorate to chloride even in ambient 

natural conditions and the rate of perchlorate reduction was fast enough to be applied in 

treatment system. This faster perchlorate reduction by Ti(0) was observed only when 

pitting corrosion was developed on Ti(0). Pitting potential of Ti(0) was dependent on 
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perchlorate concentration and was 12.53 ± 0.04 VNaSCE for a 100 mM solution of 

perchlorate. Main product of perchlorate reduction was chloride and relatively small 

amount of other products such as chlorate and chlorite were accumulated. The chloride 

concentration was increased by perchlorate reduction, but it was less than the decrease in 

perchlorate concentration. Besides, the chloride concentration began to decrease after a 

time that depended on experimental conditions. This chloride concentration changes 

were believed to be related to chloride oxidation on Ti(0) and its decrease was 

accelerated with pitting development. 

2) Several electrochemical and environmental factors were examined to 

determine their effects on perchlorate reduction by pitting developed Ti(0). The rate of 

perchlorate reduction was not affected by imposed electrochemical potential as long as 

the potential was maintained above the pitting potential of Ti(0). However, the rate of 

perchlorate reduction was strongly dependent on the applied current. Other factors such 

as solution pH and surface area of Ti(0) electrodes showed negligible effects on 

perchlorate reduction. For trace levels of perchlorate reduction, the presence of chloride 

had both beneficial and adverse effects on perchlorate reduction. Since there was no 

pitting development only with trace levels of perchlorate in solution, the addition of 

chloride produced the pitting corrosion on Ti(0) and promoted perchlorate reduction. 

However, chloride inhibited the rate of perchlorate reduction and thereby the rate of 

perchlorate reduction was decreased by increasing chloride concentration. The rate of 

trace levels of perchlorate removal was also dependent on the applied current, but it was 

not dependent on surface area of Ti(0). 
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3) Several possible mechanisms were suggested based on literatures and 

evaluated based on experimental observations to explain perchlorate reduction during 

pitting corrosion of Ti(0). Direct reduction of perchlorate on bare Ti(0) was not 

appropriate mechanism. The direct reduction of perchlorate on bare Ti(0) was against 

thermodynamics due to higher anodic potential on Ti(0) that standard electrode 

reduction potential for ClO4
−/Cl−. Bare Ti(0) metal particles and direct reduction by high 

ohmic potential drop were also not supported by experimental results including optical 

microscopic observations, scanning electron microscope (SEM) and X-ray diffraction 

analyses of the precipitate, dissolution valence measurements and direct reduction of 

perchlorate on oxide film covered Ti(0) surface. Perchlorate reduction using Ti(II) and 

Ti(III) containing solution indicated that perchlorate reduction on pitting induced Ti(0) 

might be caused by dissolved titanium metals. The rate of perchlorate reduction was 

increased with higher dissolved titanium metal and H+ concentrations. 

4) A hypothetical mechanism that describes formation of uncommon metal ions 

during electrochemical dissolution of metals suggested that perchlorate reduction on 

pitting developed Ti(0) would be more likely caused by dissolved Ti(II) and dissolution 

valence measurements and molar ratio of Ti(0) consumed to perchlorate reduced 

(ΔTi(0)/ΔClO4
−) supported the hypothetical mechanism. The hypothetical mechanism 

proposed that Ti(0) undergoes dissolution to Ti(II). Further oxidation of Ti(II) would be 

caused by reaction at the electrode surface or with dissolved oxidizing agents. Two 

hypothetical pathways of Ti(0) dissolution were proposed based on participation of 

aggressive anion on metal dissolutions. When Ti(0) undergoes dissolution to Ti(II), 
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aggressive anion is transported from solution to the bare Ti(0) surface through salt film 

in order to balance the positive charge and concentrated at the at the interface between 

the bare Ti(0) and salt film. The dissolution of Ti(0) would be accelerated by the 

adsorption of the aggressive anion on bare Ti(0) and Ti(0) undergoes dissolution with 

indirect and direct participation of aggressive anion on its dissolution process. Indirect 

participation pathway proposed that aggressive anion only stimulates oxidative 

dissolution of Ti(0). However, direct participation pathway suggested that aggressive 

anion promotes not only oxidative dissolution of Ti(0), but also aggressive anion forms 

dissolved complex with Ti(II). The salt film works as a barrier and accumulates 

dissolved Ti(II) at the interface between the salt film and bare Ti(0). The accumulated 

Ti(II) is oxidized by either oxidant or electrochemically on the surface of bare Ti(0) and 

possibly on salt film due to a lower potential drop across the salt film. 

5) The rate of perchlorate reduction was not or slightly affected by the presence 

of nitrate, sulfate, and phosphate. These anions interacted with pitting corrosion and their 

concentrations decreased over time. Nitrate was chemically reduced to nitrite and 

ammonium and some of it may have formed gaseous compounds such as nitrogen, nitric 

oxide and nitrous oxide. Both sulfate and phosphate concentrations decreased during 

pitting. However, their concentration decreases were not related to chemical reduction 

nor to formation of titanium compounds that contained sulfur or phosphorous, but they 

were caused by adsorption onto precipitates formed during the reaction. Perchlorate 

reduction was inhibited by the presences of chloride and bromide, but other aggressive 

anions such as iodide and fluoride did not inhibit the perchlorate reduction. The 
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mechanism by which some anions inhibit perchlorate reduction was investigated based 

on the proposed dissolution mechanisms of Ti(0) to Ti(II). The dissolution mechanism of 

Ti(0) to Ti(II) with indirect participation of aggressive anion suggested that inhibition 

mechanism of perchlorate reduction would be caused by oxidation of dissolved Ti(II) by 

electrochemically generated chlorine and bromine. However, the dissolution mechanism 

of Ti(0) to Ti(II) with direct participation of aggressive anions proposed that inhibition 

of perchlorate reduction would be caused by b adsorption tendencies of aggressive 

anions that promotes pitting corrosion of Ti(0). 

6) Perchlorate reduction kinetic by pitting induced Ti(0) was described by 

interactions of two domains (pit and solution). Two kinetic models were developed 

based on two possible inhibition mechanisms. Competitive adsorption model was 

developed based on surface coverage of perchlorate and chloride on bare Ti(0) surface 

and Ti(II) consumption model was developed based on Ti(II) oxidation by 

electrochemically developed chlorine. Both models well predicted perchlorate 

concentration changes in the solution. Competitive adsorption model showed that 

chloride has higher adsorption affinity on both oxidative dissolution of Ti(0) and 

chloride oxidation sites. Also, rate of perchlorate removal and chloride oxidation were 

directly proportional to current applied. For Ti(II) consumption model, the rate constant 

of Ti(II) production was dependent on current. The rate of chloride oxidation is also 

believed to be proportional to current. However, uncertainty prevents making conclusion 

with confidence regarding dependence of rate constant to current. Both kinetic models 

described changes in perchlorate concentration well. However, the Ti(II) consumption 
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model was limited in its ability to predict chloride concentration. This limitation was 

probably caused by a lack of available information on things like electrochemical 

oxidation of chloride on bare Ti(0), Ti(II) oxidation by chlorine, and over estimated 

transport coefficient of chloride or under estimated transport of coefficient of chlorine. 

Further investigations are required to develop Ti(II) consumption based model. 
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CHAPTER VIII 

RECOMMENDATION FOR FUTURE WORKS 

 

It has been shown that perchlorate is rapidly reduced to chloride during pitting 

corrosion of titanium and it is believed to be caused by reaction with by dissolved Ti(II). 

The rate of perchlorate reduction is sufficiently rapid for application as a treatment 

process. However, there are several limitations which restrict its immediate application 

to treatment systems. These limitations are: 1) high energy costs, 2) chloride oxidation, 

and 3) unwanted titanium dissolution during treatment of trace levels of perchlorate. 

These limitations seem to be caused by different problems. However, these restrictions 

are associated with the high potential required to develop the pitting corrosion on 

titanium, which is over 12.0 V. Thus, this high pitting potential causes the high energy 

cost and promotes oxidation of chloride to chlorine. Moreover, high electrical energy 

input dissolves more titanium than needed to reduce perchlorate. Therefore, lowering the 

pitting potential of titanium is a key to overcoming the high cost of the electrochemical 

titanium process and makes it feasible for field application. Furthermore, it would be 

advantageous for field applications if the titanium were to undergo dissolution without 

any electrical energy input. 

Several modifications could possibly affect the pitting potential of a metal and 

they can be classified as being environmental or internal factors (62). Environmental 

factors important in developing a water treatment process include solution composition, 

solution temperature, and solution flow. Changing the solution composition by adding 



 154

aggressive anions, especially Br−, could greatly decrease the pitting potential (62, 67). 

However, this study has shown that Br− decreases the rate of perchlorate reduction, 

possibly by competing with perchlorate for sites on Ti(0) or Ti(II) consumption by 

electrochemically produced Br2. Moreover, the presence of Br− can produce secondary 

contamination by the oxidation of Br− to BrO3
− by reaction with O3 (164, 165). 

Increasing the solution temperature also decrease the pitting potential of titanium (62, 

166-168), but this will greatly increase the energy costs. Slowing the solution flow (62, 

169, 170) has only a minor effect on lowering the pitting potential of titanium. 

A promising methodology for lowering the pitting potential of titanium would be 

the alloying titanium with other metals and this is the primary internal modification 

method. It has been known that adding alloys to a metal can have beneficial effects on 

increasing corrosion resistance, while it can also have detrimental effects such as 

increasing susceptibility to corrosion. For titanium, the additions of niobium and 

zirconium increased corrosion resistance (171). However, the additions of aluminum 

(172, 173) and iron (172) greatly decreased the corrosion resistance. For example, pure 

titanium required a potential of approximately 10.0 VSCE in 0.5 N NaCl solutions to 

begin pitting corrosion. However, additions of aluminum to titanium greatly lowered the 

pitting potential and the extent of the decrease depended on the amount of aluminum 

added. Aluminum has a pitting potential of −0.70 VSCE in 0.5 N of NaCl solutions. The 

pitting potentials of different mixtures of titanium and aluminum in 0.5 N NaCl have 

been reported: 1.5 to 1.8 VSCE for Ti3Al, −0.02 VSCE for TiAl, and −0.46 VSCE for TiAl3. 

(173). Iron also showed similar behavior. Increasing iron contents up to 25 % of total 
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weight dropped the pitting potential 0.72 VSCE in Hank’s solution (172). Thus, the 

adding iron or aluminum to titanium is a promising solution to the problem of high 

pitting potentials for titanium.  

Recent environmental forensic studies reported that perchlorate often coexists 

with organic contaminants such as trichloroethene (TCE), tetrachloroethene (PCE), and 

vinyl chloride (VC) (174) as well as with nitrate, which is a common inorganic 

contaminant in groundwater (9, 175). Several studies have suggested that zero-valent 

iron and aluminum can abate chlorinated organic compounds and inorganic 

contaminants (176-181) by chemical reductions through direct contact at metal surface, 

as well as by reaction with dissolved metal ions and elemental hydrogen produced by the 

zero-valent metals (83, 182). Therefore, the alloying titanium with iron or aluminum 

could possibly achieve not only the removal of perchlorate, but also removal of co-

contaminants such as TCE, PCE, VC and NO3
−.  

For electrochemically controlled system such as using DC power supply and 

potentiostat, alloyed titanium with iron and aluminum would be dissolved non-

selectively. However, there is a possible problem associated with the alloying titanium 

with iron or aluminum during its dissolution without electrochemical control. Titanium 

has a more electropositive potential than iron and aluminum, so it is possible that less 

noble metals, such as iron and aluminum, would preferentially dissolve. This selective 

leaching is called demetalification and is an example of micro-scale bimetallic corrosion. 

When two metals having different electrode potentials are alloyed, current would flow 

from the metal whose potential is more electronegative to the metal whose potential is 
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more electropositive (59, 60). Thus, it is possible that the iron and aluminum could work 

as anodic metals with titanium as a cathodic metal, which means that only iron and 

aluminum would undergo dissolutions. However, the selective leaching can be 

minimized by mixing (not alloying) or contacting a more noble metal such as graphite 

when alloys undergo chemical dissolution (60), and controlling electrochemical 

potentials when alloys undergo electrochemical dissolution (183, 184).  

Future research to extend this dissertation study should focus on the application 

of the alloying iron and aluminum with titanium in order to overcome the disadvantages 

of electrochemical titanium process such as high energy cost, chloride oxidation and 

inefficiency in removing trace levels of perchlorate. Furthermore, it will be worthwhile 

to investigate how well organic and inorganic co-contaminants are removed by the 

modified treatment process. 
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APPENDIX A 

ADDITIONAL FIGURES 
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APPENDIX A.1 Examinations of possible perchlorate reduction at Pt cathode. Anode 
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APPENDIX B 

MATLAB PROGRAM 

B.1 COMPUTER PROGRAM (MATLAB®) TO PREDICT RATE CONSTANT 

AND INHIBITION CONSTANTS FOR COMPETITIVE ADSORPTION BASED 

MODEL 

 
global I ClO_0 Cl_0 K beta1 KII  
 
load File name.txt % load data file 
matrix= File name;%assign loaded data as matrix  
I=50; % current 
t_data=matrix(:,1);%assign the time  
ClO_data=(matrix(:,2)); % assign perchlorate data 
Cl_data=(matrix(:,3)); % assign chloride data 
 
ClO_0=ClO_data(1); % initial concentration of perchlorate 
Cl_0=Cl_data(1); % initial concentration of chloride 
 
Cl_removed=(ClO_0-ClO_data+Cl_0-Cl_data); % removed chloride concentration 
[b,bint]=regress(Cl_removed,t_data); % conduct linear regression 
Cl_removed_model=b*t_data; % obtain model data 
K=b; % assign slope to K 
 
KI_guess=[2.71e-5/0.8*I 2.8734e-001]; % initial guess 
 
[beta,r,j]=nlinfit(t_data,ClO_data,@Kobs_cal_1,KI_guess);  
% nonlinear regression with nlinfit function to obtain kobs,ClO4 & KI 
ci=nlparci(beta,r,j); % 95% confidential interval 
beta1=beta; 
 
[beta_1,r_1,j_1]=nlinfit(t_data,Cl_data,@Kobs1_cal_1,[0.15]); 
% nonlinear regression with nlinfit function to obtain KI,ClO4 
ci_1=nlparci(beta_1,r_1,j_1); 
KII=beta_1; 
ci_1; 
 
[t_out,C_out]=ode45(@Kobs_cal_3, [0:0.5:t_data(end)], [ClO_0,Cl_0],[],[I]);  
% solve ode and obtain model values 
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plot(t_data,ClO_data,'o',t_out,C_out(:,1),'-',t_data,Cl_data,'*',t_out,C_out(:,2),'--') 
% compare model values with experimental data 
 
…………………………………………………………………………………………… 
function  clo_out=Kobs_cal_1(beta,t) 
 
global ClO_0 Cl_0 
tspan=t ; 
[tout,cout]= ode45(@Kobs_cal_2, tspan, [ClO_0,Cl_0],[],beta); % solve ode with nlinfit 
clo_out=cout(:,1); 
 
 
 
 
function  dcdt=Kobs_cal_2(t,c,beta) 
 
global I K 
 
Kobs=beta(1); %kobs,ClO4 
KI=beta(2); % KI 
 
ClO=c(1); 
Cl=c(2); 
 
r=Kobs*ClO/(ClO+KI*Cl); % calculate perchlorate with ode function 
 
dcdt(1)=-r; % calculate perchlorate concentration 
dcdt(2)=r-K; % calculate chloride concentration 
dcdt=dcdt'; 
 
…………………………………………………………………………………………… 
 
function  dcdt=Kobs_cal_3(t,c,beta) 
 
global I K beta1 KII 
 
I=beta; 
 
ClO=c(1); 
Cl=c(2); 
Kobs=beta1(1); 
KI=beta1(2); 
kcl=2.18e-5/0.8;  
% rate of chloride concentration decrease in solution (0.8=solution volume) 
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r=Kobs*I*ClO/(ClO+KI*Cl);% perchlorate concentration 
 
dcdt(1)=-r; 
dcdt(2)=r-kcl*I*Cl/(Cl+KII*ClO);% chloride concentration 
dcdt=dcdt'; 
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B.2 COMPUTER PROGRAM (MATLAB®) TO PREDICT RATE CONSTANTS 

FOR TI(II) COMSUMPTION BY CHLORINE  BASED MODEL 

 
load File Name.txt % load data file 
matrix=File Name;%assign loaded data as matrix  
a=50; % current 
t_data=matrix(:,1);%assign the time  
ClO_data=(matrix(:,2)); % assign perchlorate data 
Cl_data=matrix(:,3); % assign chloride data 
 
ClO_0=ClO_data(1); % initial perchlorate concentration in the solution 
Cl_0=Cl_data(1); % initial chloride concentration in the solution  
 
 
K_guess=[16.487  , 42.881,  1.49e+005 ,1.35e+001 ]; % initial guesses 
[beta,r,j]=nlinfit(t_data,ClO_data,@K1_cal_1,K_guess); 
% nonlinear regression with nlinfit function 
ci=nlparci(beta,r,j);% 95% confidential level 
 
kcl=beta(1); %rate constant chloride oxidation in the pit 
kcl2=beta(2); % rate constant of Ti(II) odixation by hlorine 
K=beta(2); % rate constant of perchlorate reduction 
kprod=beta(3); % rate constant of Ti(II) production 
 
[t_out,C_out]=ode23s(@K1_cal_3,[0 t_data(end)],[ClO_0, ClO_0,Cl_0, 
Cl_0,0,0],[],beta); 
plot(t_data,ClO_data,'o',t_out,C_out(:,1),'-',t_data,Cl_data,'*',t_out,C_out(:,3),'--') 
 
…………………………………………………………………………………………… 
function  ca=K1_cal_1(beta,t) 
 
global ClO_0 Cl_0 
tspan=t; 
[tout,cout]= ode23s(@K1_cal_2, tspan, [ClO_0, ClO_0, Cl_0,Cl_0, 0, 0],[],beta); 
cout 
ca=cout(:,1); 
 
……………………………………………………………………………………………. 
 
function  dcdt=K1_cal_2(t,c,beta) 
 
global ClO_0 Cl_0 Vp a  
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kcl=beta(1); %rate constant chloride oxidation in the pit 
kcl2=beta(2); % rate constant of Ti(II) odixation by hlorine 
K=beta(2); % rate constant of perchlorate reduction 
kprod=beta(3); % rate constant of Ti(II) production 
 
ClO=c(1); % perchlorate in solution 
ClOp=c(2); % perchlorate in the pit 
Cl=c(3); % chloride in solution 
Clp=c(4); % chloride in the pit 
Cl2=c(5); % chlorine in the pit 
Ti=c(6); Ti(II) concentration 
 
Vp=0.0001; %pit volume 
Vs=0.8; % solution volume 
Vp1=Vp*1000; % %pit volume in cm3 scale 
radius=(Vp1*3/2*pi)^(1/3); % radius of pit 
kcltrans=50000;% mass transfer rate of perchlorate and chloride 
 
r=K*Ti*ClOp; 
 
dcdt(1)=-Vp/Vs*r; %d[ClO4-]/dt perchlorate concentration in solution 
dcdt(2)=kcltrans*(ClO-ClOp)-r; % d[ClO4-]p/dt perchlorate concentration in the pit 
dcdt(3)=Vp/Vs*(-kcl*Clp+r+B*2*kcl2*Ti*Cl2);  
% d[Cl-]s/dt chloride concentration in the solution 
dcdt(4)=kcltrans*(Cl-Clp)-kcl*Clp+r+B*2*kcl2*Ti*Cl2;  
% d[Cl]p/dt chloride concentration in the pit 
dcdt(5)=kcl*Clp-B*kcl2*Ti*Cl2-T*3*8.4e-4/(radius^2)*Cl2; 
% d[Cl2]/dt chlorine concentration in the pit 
dcdt(6)=kprod-r-B*kcl2*Ti*Cl2; 
%d[Ti]/dt Ti(II) concentration in the pit 
 
dcdt=dcdt'; 
 
……………………………………………………………………………………………. 
function  dcdt=K1_cal_3(t,c,beta) 
 
global ClO_0 Cl_0 Vp a  
 
kcl=beta(1); %rate constant chloride oxidation in the pit 
kcl2=beta(2); % rate constant of Ti(II) odixation by hlorine 
K=beta(2); % rate constant of perchlorate reduction 
kprod=beta(3); % rate constant of Ti(II) production 
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ClO=c(1); % perchlorate in solution 
ClOp=c(2); % perchlorate in the pit 
Cl=c(3); % chloride in solution 
Clp=c(4); % chloride in the pit 
Cl2=c(5); % chlorine in the pit 
Ti=c(6); Ti(II) concentration 
 
Vp=0.0001; %pit volume 
Vs=0.8; % solution volume 
Vp1=Vp*1000; % %pit volume in cm3 scale 
radius=(Vp1*3/2*pi)^(1/3); % radius of pit 
kcltrans=50000;% mass transfer rate of perchlorate and chloride 
 
r=K*Ti*ClOp; 
 
dcdt(1)=-Vp/Vs*r; %d[ClO4-]/dt perchlorate concentration in solution 
dcdt(2)=kcltrans*(ClO-ClOp)-r; % d[ClO4-]p/dt perchlorate concentration in the pit 
dcdt(3)=Vp/Vs*(-kcl*Clp+r+B*2*kcl2*Ti*Cl2);  
% d[Cl-]s/dt chloride concentration in the solution 
dcdt(4)=kcltrans*(Cl-Clp)-kcl*Clp+r+B*2*kcl2*Ti*Cl2;  
% d[Cl]p/dt chloride concentration in the pit 
dcdt(5)=kcl*Clp-B*kcl2*Ti*Cl2-T*3*8.4e-4/(radius^2)*Cl2; 
% d[Cl2]/dt chlorine concentration in the pit 
dcdt(6)=kprod-r-B*kcl2*Ti*Cl2; 
%d[Ti]/dt Ti(II) concentration in the pit 
 
dcdt=dcdt'; 
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APPENDIX C 

TABULATED DATA USED FOR KINETIC MODEL CALIBRATIONS 

 

Table C.1 Chloride oxidation with different current 
 

Current = 25 mA  Current = 50 mA 
Time 
(min) 

Cl− 
(mg/L) 

Cl−  
(mM)  

Time 
(min) 

Cl− 
(mg/L) 

Cl−  
(mM) 

0 38.1 1.08  0 38.0 1.07 
60 37.6 1.06  30 36.8 1.04 
120 36.6 1.03  60 35.4 1.00 
195 35.0 0.99  120 31.7 0.89 
240 33.6 0.95  180 28.5 0.80 
300 30.9 0.87  240 25.2 0.71 
420 28.1 0.79  307 21.2 0.60 
540 23.9 0.67  420 15.1 0.43 
720 18.5 0.52  540 8.0 0.22 
900 14.4 0.41  645 3.1 0.088 
1080 8.8 0.25     
1360 1.70 0.05     

 
 
 
 
 

Current = 75 mA  Current = 100 mA 
Time 
(min) 

Cl− 
(mg/L) 

Cl−  
(mM)  

Time 
(min) 

Cl− 
(mg/L) 

Cl−  
(mM) 

0 37.1 1.05  0 37.2 1.05 
30 34.9 0.98  35 34.0 0.96 
60 33.0 0.93  64 29.1 0.82 

120 27.8 0.79  120 23.6 0.66 
180 23.8 0.67  180 19.9 0.56 
245 17.7 0.50  245 13.2 0.37 
310 14.7 0.42  300 8.5 0.24 
360 11.7 0.33  320 6.3 0.18 
420 7.1 0.20     
446 4.5 0.13     
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Table C.1 Continued 
 

Current = 125 mA  Current = 150 mA 
Time 
(min) 

Cl− 

(mg/L) 
Cl−  

(mM)  
Time 
(min) 

Cl− 
(mg/L) 

Cl−  
(mM) 

0 36.5 1.03  0 37.9 1.07 
30 33.4 0.94  30 36.2 1.02 
60 29.2 0.82  60 30.0 0.85 
90 25.5 0.72  90 25.3 0.71 

120 19.7 0.56  150 16.7 0.47 
190 15.2 0.43  180 13.0 0.37 
240 8.9 0.25  210 9.0 0.25 
265 5.8 0.16  220 6.4 0.18 
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Table C.2 Perchlorate reduction with different current 
 

Current = 37 mA  Current = 50 mA 
Time 
(min) 

ClO4
− 

(mM) 
Cl−  

(mM)  
Time 
(min) 

ClO4
− 

(mM) 
Cl−  

(mM) 
0 1.01 0.006  0 1.00 0.01 
30 0.99 0.013  30 0.94 0.02 
60 0.98 0.012  60 0.89 0.03 

120 0.94 0.023  120 0.80 0.06 
180 0.90 0.037  180 0.71 0.09 
300 0.77 0.075  294 0.54 0.14 
420 0.63 0.109  420 0.38 0.17 
547 0.48 0.137  540 0.26 0.18 
720 0.31 0.146  720 0.14 0.17 

 
 

Current = 50 mA  Current = 74 mA 
Time 
(min) 

ClO4
− 

(mM) 
Cl−  

(mM)  
Time 
(min) 

ClO4
− 

(mM) 
Cl−  

(mM) 
0 1.00 0.000  0 0.99 0.005 
60 0.96 0.037  30 0.91 0.022 

120 0.85 0.072  60 0.85 0.029 
180 0.76 0.108  120 0.76 0.044 
240 0.70 0.139  180 0.69 0.066 
300 0.42 0.219  300 0.54 0.101 
460 0.37 0.225  420 0.40 0.124 
510 0.23 0.218  540 0.27 0.128 
780 0.15 0.222  720 0.10 0.078 
960 0.06 0.160     

 
Current = 75 mA  Current = 80 mA 

Time 
(min) 

ClO4
− 

(mM) 
Cl−  

(mM)  
Time 
(min) 

ClO4
− 

(mM) 
Cl−  

(mM) 
0 1.01 0.000  0 0.94 0.007 
80 0.86 0.107  30 0.89 0.022 

120 0.76 0.112  60 0.84 0.037 
255 0.50 0.192  120 0.70 0.076 
300 0.42 0.204  180 0.59 0.115 
360 0.35 0.225  300 0.38 0.160 
420 0.28 0.248  420 0.22 0.172 
480 0.20 0.229  540 0.10 0.128 
540 0.15 0.205  660 0.02 0.053 
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Table C.2 Continued 
 
 

Current = 100 mA  Current = 100 mA 
Time 
(min) 

ClO4
− 

(mM) 
Cl−  

(mM)  
Time 
(min) 

ClO4
− 

(mM) 
Cl−  

(mM) 
0 0.99 0.000  0 1.03 0.005 
60 0.77 0.073  30 0.88 0.035 

120 0.62 0.126  60 0.79 0.054 
180 0.48 0.158  120 0.60 0.126 
240 0.37 0.186  180 0.44 0.164 
360 0.18 0.198  240 0.31 0.182 

    300 0.21 0.195 
    360 0.13 0.159 

 
 

Current = 111 mA  Current = 125 mA 
Time 
(min) 

ClO4
− 

(mM) 
Cl−  

(mM)  
Time 
(min) 

ClO4
− 

(mM) 
Cl−  

(mM) 
0 0.99 0.008  0 1.02 0.000 
30 0.90 0.029  60 0.77 0.089 
60 0.81 0.050  120 0.65 0.170 

120 0.63 0.095  180 0.50 0.227 
180 0.46 0.133  240 0.33 0.257 
300 0.20 0.146  300 0.21 0.241 
420 0.04 0.061     

 
 
 

Current = 150 mA  Current = 200 mA 
Time 
(min) 

ClO4
− 

(mM) 
Cl−  

(mM)  
Time 
(min) 

ClO4
− 

(mM) 
Cl−  

(mM) 
0 1.04 0.000  0 0.99 0.004 
60 0.84 0.107  30 0.79 0.045 

120 0.59 0.178  60 0.63 0.086 
180 0.42 0.250  90 0.51 0.104 
240 0.24 0.248  120 0.35 0.144 
270 0.21 0.297  180 0.17 0.138 
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APPENDIX D 

MOVIE FILES  

 

Video Clip D.1 Observation of hydrogen gas evolution from pitting site (25 mM 

perchlorate) 

 

Video Clip D.2 Observation of hydrogen gas evolution from pitting site (25 mM 

chloride) 

 

Video Clip D.3 Observation of initial pitting development in perchlorate solution 

 

Video Clip D.4 Observation of initial pitting development in chloride solution 
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