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ABSTRACT 

 

Water-soluble BODIPYs: Syntheses, Derivatization and 

Photophysical Studies. 

(December 2007) 

Lingling Li, B.E., University of Science & Technology of China 

Chair of Advisory Committee: Dr. Kevin Burgess 

 

A set of water-soluble 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) derivatives, 

has been prepared and their spectroscopic properties examined.  These dyes can be used 

as either donor or acceptor in synthesis of through-bond energy transfer cassettes. 

Sulfonation conditions were developed for several BODIPY dyes to give the 

mono-sulfonated and di-sulfonated products. Compounds with an aryl iodide could be 

used for organometallic couplings. Similarly, BODIPYs with an aromatic bromide, but 

also two chlorine atoms could be replaced via SNAr reactions. The amine sulfonated 

BODIPY is amenable to couple to biomolecules via acylation reactions. A 

diazotization/azide reaction sequence was used to convert the amines into azides; the 

latter may be functionalized via click reactions. Spectral data for these materials indicates 

they are highly fluorescent probes in aqueous environments. 

 

We have also prepared some lipophilic BODIPY derivatives, which can be used for SNAr 

reactions and make some through-bond, energy transfer cassettes. DichloroBODIPYs can 

also be used for labeling proteins successfully. 
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CHAPTER I 

 

INTRODUCTION 

 
1.1 Cell Imaging 

Cell imaging can be defined as a multidisciplinary discipline that detects and analyzes 

cellular macromolecules with the help of microscopy and computer programming. Over 

the past decades, advances in living cell imaging have dramatically transformed the 

biological sciences. Cell imaging investigates functional and molecular changes in cells 

as well as morphological changes during the development of diseases or during the 

therapy. Cell imaging provides a direct evidence of cell type-specific and subcellular 

information of a certain biomolecule, whereas traditional molecular biology techniques 

cannot due to the homogenization of cells. Beginning with the invention of confocal 

microscopy and more recent advances such as Nipkow dual-disk technology, today's live 

cell imagers offer the resolution required to image living cells without destroying them. 

Developments in fluorescent dyes and proteins have further facilitated the study of 

complex cellular processes using fluorescent staining or labeling of various proteins, ions 

and lipids in living cells. 

 

In fluorescence imaging, the energy from an external source of light is absorbed and 

almost immediately re-emitted at a longer, low-energy wavelength. Irrespective of the 

mode of signal generation, systems suitable for use in vivo are those that employ 

compounds with high quantum yields that emit in the NIR region, because hemoglobin, 

water and lipids have their lowest absorption coefficient in the NIR region of around 

650-900 nm. Imaging in the NIR region also has the added advantage of minimizing 

tissue autofluorescence, which can further improve “target/background ratios”.1 

 

________ 
This thesis follows the style of the Journal of Organic Chemistry. 
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1.2 Fluorescence Resonance Energy Transfer (FRET) 

The excitation transfer process, when applied to fluorescent molecules can be defined as 

exciting a fluorescent molecule which is in proximity to a second fluorophore, results in 

emission occurring from the second fluorophore with minimal or almost no fluorescence 

seen from the excited molecule. This phenomenon is termed as Fluorescence Resonance 

Energy Transfer (FRET), which was first reported by Professor Theodor Förster in 1946.2  

FRET occurs via a dipole-dipole mechanism and does not involve the emission and 

reabsorption of a photon as one might initially assume. The excited fluorophore can be 

termed as a donor and the molecule emitting light can be termed as an acceptor.  The 

energy transfer which takes place between the donor and acceptor which is separated by a 

distance r, is given by: 

( ) λλλελ
πτ

κ
dF

Nnr
Q

rK AD
D

D
T

4

0
456

2

)()(
128

10ln9000
)( �

∞

��

�
��

�= ………………………………………..(i) 

Where DQ  = quantum yield of donor in the absence of the acceptor 2κ = orientation 

factor (range from 0 to 4, usually assumed to be 0.67 for dynamic random averaging). 
2κ  = 4 if the transition dipoles of the donor and acceptor are perfectly parallel and 0 

when they are orthogonal. Dτ = lifetime of donor in the absence of the acceptor. N = 6.02 

x 1023. n = refractive index of the medium (usually assumed to be 1.4 for biomolecules in 

aqueous solution).  The rate of energy transfer is inversely proportional to the sixth 

power of the distance, r, between the donor and the acceptor. The overlap integral 

)(λJ can be given as  

�
∞

=
0

4)()()( λλλελλ dFJ AD ……………………………………………………………...(ii) 

The extent of overlap between the emission spectrum of the donor and the absorption 

spectrum of the acceptor is given by above equation.  )(λDF  is the normalized 

emission spectrum of the donor. )(λε A �is the extinction coefficient of the acceptor at 

wavelength λ . The Förster radius, 0R , is the distance r, at which the rate of energy 

transfer is equal to the rate of decay of the donor (1/ Dτ ) in the absence of the acceptor. 
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0R  is the distance at which FRET is 50 % efficient. At r = 0R , KT = (1/ Dτ ).  Equation 

(i) can be written as  

�
∞

�
�

�
�
�

�
=

0

4
4

5

2
0 )()(

128
)10(ln9000 λλλελ
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0R  is typically in the range of 20 to 60 Ao for organic fluorophores. 

Knowing 0R , one can calculate the ET rate by: 

6
01
�
	



�
�


=
r

R
k

D
T τ

…………………………………………………………………………(iv) 

The efficiency of energy transfer, E is the fractions of photons absorbed by the donor that 

are transferred to the acceptor. E is given by: 

TD

T

k
k

E
+

= −1τ
…………………………………………………………………………….(v) 

which is the ratio of the energy transfer rate to the total decay rate of the donor. E can 

also be expressed as: 

D

DA

D

DA

F
F

rR
R

E −=−=
+

= 1166

6

τ
τ

……………………………………………………….(vi) 

Hence the efficiency of energy transfer can be calculated from the emission intensity of 

the donor in the absence and the presence of the acceptor or from the lifetime of the 

excited donor in the presence and absence of the acceptor.3 

 

1.3 Through-Bond Energy Transfer 

In contrast to through-space energy transfer cassettes, donor and acceptor units connected 

by conjugated linker fragments may transfer energy via through bond, which does not 

require the emission spectrum of the donor to overlap with the lowest energy excited state 

of the acceptor.  There are two mechanisms proposed for the observed energy transfer. 

Dexter4 and superexchange energy transfer.5  As compared to Förster energy transfer, 

Dexter energy transfer is a short range phenomenon and requires the interaction between 

excited donor orbital with the orbital of acceptor in ground state.  Superexchange energy 
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transfer can take place over a longer distance since energy is relayed through bonds 

connecting the donor and the acceptor. 

 

Appropriately designed through-bond energy transfer cassettes could absorb photons via 

a donor part and transfer the energy rapidly through the conjugate linker to the acceptor 

fragment that emits at a longer wavelength.  There is no known constraint on the 

difference between the donor absorption and acceptor emission wavelength in this 

Scheme since no overlap is required for energy transfer to occur.  Thus it is possible to 

design dyes that can absorb strongly at short wavelength and emit brightly at longer 

wavelength.  In summary, through bond energy transfer cassettes have the potential to 

increase the resolution and fluorescence intensities obtained from several probes excited 

by laser source operating at single wavelength. 

 

Requirements for good through-bond energy transfer cassettes are: 

� donor components should have strong absorbance 

� acceptor components that fluoresce strongly 

� functional groups that allow labeling of biomolecules, also to enhance hydrophilicity 

� suitable conjugate linker that can prevent donor and acceptor retrons from becoming 

planar 

 

Our group has been working on such through-bond energy transfer cassettes for years. 

The first generation cassettes 1-4 (Figure 1.1) were made in 2003. Figure 1.2 shows their 

photophysical properties in ethanol. Excitation of the cassettes at 488 nm produces 

fluorescence characteristic of only the acceptor component, that is, 100 % energy transfer 

efficiency between the donor and the acceptor. The comparison of the intensities of 

fluorescence shows the cassettes fluoresce more brightly than the corresponding acceptor 

components 5-8 irradiated at 488 nm.  
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O OHO

OH2N NH2
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-O2C
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acceptor part

to attachement to
biomolecule
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O OHO
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O
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N
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582 nm
3

605 nm

O OHO
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O

O
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N

4
616 nm

ON N

Br

5 6 7 8  
Figure 1.1. The first generation through-bond energy transfer cassettes and acceptor 

synthons. 

 
Figure 1.2. Fluorescence of equimolar EtOH solutions of 1-8 excited at 488 nm. 
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The second generation cassette (Figure 1.3) was water-soluble through-bond energy 

transfer. Cassette 9 was assembled by coupling the fluorescein alkyn and the 

bromorhodamine derivative 10.  

 

ON N

O

CO2H

O OH

CO2H

CO2HCO2

HO2C

9

Br

ON N
CO2H

CO2HCO2

HO2C

10  
Figure 1.3. The second generation through-bond energy transfer cassette 9 and acceptor 

synthon. 

 

Figure 1.4 shows the fluorescence of cassette 9, donor fluorescein and acceptor 10 in pH 

8 phosphate buffer. The energy transfer efficiency was not 100% because some of the 

fluorescence leaks from the fluorescein donor rather than being transferred to the 

acceptor.  
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Figure 1.4. Comparison of the fluorescence peak of cassette 9 in pH 8 phosphate buffer 

with fluorescein and a tetraacid rhodamine derivative 10 under the same conditions. 

 

BODIPYs (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) were chosen in our group to 

work with and displace fluorescein and rhodamines for labeling with proteins.  

 

Some advantages for BODPYs are: they can 

� absorb UV radiation efficiently 

� emit relatively sharp fluorescence peaks 

� have high quantum yields  

� are insensitive to solvent polarity and pH 

�  

A detailed study of these dyes and our effort towards its modification for our specific 

purpose is illustrated in the chapters II-IV. 
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CHAPTER II  

 
LIPOPHILIC BODIPY DERIVATIVES  

 

2.1  SNAr Reactions of BODIPY Substrates 

The most common approach to introduce substituents on 3- and 5-positions of BODIPYs 

is to start with appropriately substituted pyrroles. However an exciting recent 

development reaches the same goal via nucleophilic substitution on the 

3,5-dichloro-BODIPY.6, 7  

 

Scheme 2.1. Mono- and di-substitution of compound 11. 

N N

Ar

Cl Cl
B
F2

Nu-

MeOH or CH3CN
reflux 2-8 h

N N

Ar

Cl Nu
B
F2

12  65-69 %11

N N

Ar

Nu Nu
B
F2

13  64-78 %

Nu-

MeOH or CH3CN

25°C, 15 min - 3 h

Ar =

a MeO-

S-EtO2C CO2EtEtO2C

HO
O-

-

NH
Ph

H
N

Ph
NH2

b

c

d

e

f

g

Nu =

 
 

The nucleophiles used so far include alkoxides, amines, thioalkoxides, and the diethyl 

malonate anion.  These reactions can be stopped at the mono-substitution stage or forced 
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to the disubstitution product, hence they are useful for access to asymmetric 12 and 

symmetric 13, hetero-substituted, BODIPY dyes. 

 

Oxygen-centered nucleophile was tried first; two equivalents of methoxide (in methanol) 

at room temperature gave the mono-substituted product 12a in good yield. Under more 

forcing conditions, four equivalents of methoxide (in methanol) at reflux temperature 

gave the di-substituted derivative 13a. Ethylene glycol with sodium hydride in 

acetonitrile at room temperature reacted with dichloroBODIPY 11 to afford the 

mono-substitued 12b. However reaction with excess ethylene glycol/sodium hydride at 

reflux temperature did not give the di-substituted derivative. 

 

Several nitrogen-centered nucleophiles were tried also. Piperidine gave mono-substitution 

of 11 without additional base at room temperature yielding 12d. Again, heating at reflux 

temperature (in acetonitrile) with excess amine lead to the disubstituted BODIPY 

derivative 13d. The primary amine, aniline was also tried and gave the mono and 

disubstituted compounds successfully without any additional base. 

 

Ethyl 2-thioacetate with triethylamine as base was used to demonstrate the reactivity of 

sulfur-based nucleophiles. Again reaction at room temperature yielded the 

mono-substituted derivative, while di-substitution was possible at reflux temperature (in 

acetonitrile).  

 

Diethyl malonate with sodium hydride as base was used as a carbon nucleophile to afford 

either mono- or di-substituted BODIPY derivatives, 

 

The optical data are given for the SNAr reaction products (Figure 2.1). Compound 11 

absorbs at 508 nm in methanol and fluoresces at 519 nm. The quantum yield is 0.27. The 

mono- and di-substituted BODIPYs with alkoxides and secondary amine gave very low 

quantum yields in methanol and cyclohexane. The product 12g from mono-substitution 

with primary amine also gave low quantum yield in methanol (0.003), but a better one in 
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cyclohexane (0.28). The product 13g from di-substitution gave very good quantum yield 

in both methanol (0.45) and cyclohexane (0.86).  In addition, the mono- and 

di-substituted BODIPYs with thioalkoxides and diethyl malonate anion gave good 

quantum yields (0.24-0.62). It was also found that quantum yields of di-substituted 

compounds are much higher than the mono-substituted.  

 

Ar =

Me

N N

Ar

Cl Cl
B
F2

3,5-dichloroBODIPY
in MeOH; Φ 0.27
λmax abs 508 nm

λmax emiss 519 nm  
 

N N

Ar

Cl OR
B
F2

N N

Ar

MeO OMe
B
F2

in MeOH; Φ 0.062-0.083
λmax abs 500 nm

λmax emiss 515 nm

in MeOH; Φ 0.20
λmax abs 510 nm

λmax emiss 523 nm  

N N

Ar

Cl N
B
F2

N N

Ar

N N
B
F2

in MeOH; Φ 0.002
λmax abs 479 nm

λmax emiss 562 nm

in MeOH; Φ 0.011
λmax abs 572 nm

λmax emiss 612 nm  
Figure 2.1. Spectroscopic data for some BODIPYs formed by SNAr reactions. 
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N N

Ar

Cl HN
B
F2

N N

Ar

NH HN
B
F2

in MeOH; Φ 0.003
λmax abs 498 nm

λmax emiss 566 nm

in MeOH; Φ 0.45
λmax abs 588 nm

λmax emiss 613 nm

Ph Ph Ph

 

N N

Ar

Cl S
B
F2

N N

Ar

S S
B
F2

in MeOH; Φ 0.26
λmax abs 536 nm

λmax emiss 550 nm

in MeOH; Φ 0.50
λmax abs 564 nm

λmax emiss 579 nm

CO2Et CO2EtEtO2C

 
 

N N

Ar

Cl
B
F2

N N

Ar

B
F2

in MeOH; Φ 0.28
λmax abs 508 nm

λmax emiss 522 nm

in MeOH; Φ 0.35
λmax abs 509 nm

λmax emiss 522 nm

CO2Et EtO2C CO2Et
EtO2C CO2Et CO2Et

 
Figure 2.1. Continued. 

 

2.2 Results and Discussion  

New dichloroBODIPYs were synthesized in our group which showed increased reactivity 

toward SNAr reactions. Trifluoromethyl or bromophenyl groups were used for the 

meso-sub in the new BODIPYs.  

 

2.2.1 Syntheses of CF3-DichloroBODIPY and Its Derivatives 

Pyrrole (1.8 eq) can be condensed with trifluoacetaldehyde methyl hemiacetal (90% 

technology grade) to give the CF3-dipyrromethane 14,8 which was followed by 
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chlorination9 using N-chlorosuccinimide reagent in THF at -78 oC to form CF3-dichloro 

dipyrromethane. Then DDQ was used to oxidize dipyrromethane to CF3-dichloro 

dipyrromethene 15, which was then chelated with BF2 at reflux temperature (in CH2Cl2) 

to give the target CF3-dichloro BODIPY 16. Compound 16 has very high quantum yield 

which is 1.0 in dichloromethane; this may be attributed to removal of a pathway for 

non-radiative decay.10, 11 Absorption maximum of BODIPY 16 is 548 nm, at least 20 nm 

red-shifted compared to BODIPY 11, but the Stoke’s shift is very small, 6nm. 

 

Scheme 2.2. Synthesis of CF3-dichloroBODIPY 16. 

H
N

+ F3C
OH

O NH HN

CF3HCl

THF, reflux, 2 h

14, 48 %  
 

NH HN

CF3

Cl Cl

 NCS
THF, -78 oC, 1.5 h

Then warm to 25 oC, 3 h

DDQ

CH2Cl2, 25 oC, 2 h

 
 

CH2Cl2 ΦΦΦΦ = 1.00
ε = 86861 M-1cm-1 
λ max abs 548 nm

λ max emiss 554 nm

N N

CF3

Cl Cl
B
F2

N HN

CF3

Cl Cl

BF3. OEt2, NEt3

CH2Cl2, reflux, 12 h

15, 45 % for two steps 16, 100 %

 
 

SNAr reactions can be processed easily on compound 16 with really good yields; it may 

be due to the strong electron withdrawing group CF3.  
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Scheme 2.3. Mono-substitution of compound 16. 

N N

CF3

Cl Cl
B
F2

H
N

+
K2CO3

CH3CN, 25 oC, 10 min
N N

CF3

N Cl
B
F2

17, 100 %  
 

The mono-substitution of compound 16 with piperidine was much faster than the 

di-substitution. It took 48 h for the second substitution to be completed. 

 

Scheme 2.4. Di-substitution of compound 16. 

N N

CF3

Cl Cl
B
F2

H
N

+

K2CO3

CH3CN, 25 oC, 48 h
N N

CF3

N N
B
F2

18, 93 %  
 

2.2.2 Syntheses of Br-DichloroBODIPY and Its Derivatives 

SNAr reactions can be easily applied on Br-dichloroBODIPY 21 as well.  It is easy to 

synthesize tens of grams compound 21, since bromo-dipyrromethane can be crystallized 

from the dichloromethane/hexane mixture for the very first step.12 The key step for the 

synthesis is to use excess pyrrole (at least 25 eq) which could be recovered at the end by 

the distillation. The quantum yield of compound 21 is lower than CF3-dichloro BODIPY 

16, but still quite good, which is 0.42 in dichloromethane and 0.15 in methanol by using 

Rhodimine 6G as standard (� = 0.94 in ethanol). 
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Scheme 2.5. Synthesis of dichloroBODIPY 21. 

Br

CHO

H
N

NH HN

Br

+
TFA

25 oC,  2 h

19, 34 %  
 

NH HN

Cl Cl

 NCS
THF, -78 oC, 1.5 h

Then warm to 25 oC, 3 h

DDQ

CH2Cl2, 25 oC, 2 h

Br

 
 

N N

Cl Cl
B
F2

N HN

Cl Cl

BF3. OEt2, NEt3

CH2Cl2, reflux, 12 h

BrBr

20, 53 % 21, 98 %

CH2Cl2 Φ = 0.42
ε=89084  M-1cm-1 
λ max abs 516 nm

λ max emiss 528 nm

MeOH Φ = 0.15
ε=77550  M-1cm-1 
λ max abs 512 nm

λ max emiss 523 nm  
 

SNAr reaction can also happen between Br-dichloro BODIPY 21 and INP (Isonipecotic 

Acid) methyl ester 22. The INP methyl ester salt was very easily made with almost 

quantitive yield.13 When it was treated with ammonia hydroxide to remove HCl, the yield 

was drastically reduced (Scheme 2.6).  
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Scheme 2.6. Synthesis of INP methyl ester. 

H
N

COOH

MeOH

SOCl2, reflux, 12 h

H
N

COOCH3

HCl

 
 

NH3.H2O

CH2Cl2 extraction

H
N

COOCH3

22, 58 %  
 

Displacement of the first of the two chlorines in BODIPY 21 with INP methyl ester 

occurred rapidly. The second chlorine can be displaced using extended reaction times at 

elevated temperature. The di-substituted product 24 can be modified to be a potential 

acceptor, but one consideration is its low quantum yield. 6 

 

Scheme 2.7. a) Mono- and b) di-substitution of compound 21. 

a 

H
N

N N

Cl Cl
B
F2

Br

COOCH3

+
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Scheme 2.7. Continued. 

K2CO3

CH3CN, 25 oC, 10 min N N

Cl N
B
F2

Br

COOCH3

23, 98 %  
b 

H
N

N N

Cl Cl
B
F2

Br

COOCH3

+

 
 

K2CO3

CH3CN, reflux, 48 h N N

N N
B
F2

Br

COOCH3H3COOC

24, 100 %  
 

It is known that fluorine atom can be substituted by alkyl groups,11 so compound 25 can 

be easily formed when Br-dichloroBODIPY 21 was treated with magnesium methyl 

bromide in dry THF. Compound 25 also shows a strong green fluorescence. The 
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mono-substitution of compound 25 with INP methyl ester was not as easy as BODIPY 21. 

Six equivalents of INP methyl ester 22 and much longer reaction time were needed; one 

hypothesis for that could be methyl groups on boron make BODIPY 25 more electron 

rich and unreactive. 

 

Scheme 2.8. Syntheses of compounds 25 and 26. 

N N

Cl Cl
B
F2

Br

N N

Cl Cl
B

Br

25, 57 %

MgMeBr

THF, 25 oC, 5 min

21  
 

+

H
N

COOCH3

CH3CN

25 oC, 6 h N N

Cl N
B

Br

COOCH3

26, 50 %22  
 

Since alkoxides, amines, thioalkoxides and the diethyl malonate anion were tried as the 

nucleophiles for SNAr reactions, cyanide anion should be also easy to attack the electron 

deficient carbons.14-16 Unfortunately, none of those conditions gave me the desired 

product when compound 21 was treated with sodium cyanide in methanol, acetonitrile or 

DMSO. Then the organic cyanide anion source TMSCN was tried instead and gave good 

results.17 Displacement was achieved using Lewis acids to active the reaction. Compound 

27 was obtained with a high yield when the reaction was stirred in dry dichloromethane at 
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room temperature for 2h using tin tetrachloride as catalyst.18, 19 However, when boron 

trifluoride etherate was used as Lewis acid, tetracyanoBODIPY 28 was formed instead of 

dicyanoBODIPY 27. The difference is cyanide anion also substituted the fluorine atoms 

on boron. Evidence for this assignment is 19F NMR showed a quartet for 27, but no peaks 

at all for 28. Other conditions were also tried to see whether mono-substitution of 

chloride with cyanide would happen with milder Lewis acids (MgCl2) or just one 

equivalent of trimethyl silyl cyanide. However, only di-substituted compound was 

formed. That means the second substitution is a lot faster than the first one. 

 

Scheme 2.9. a) Synthesis of compound 27; b) synthesis of compound 28. 

a 

N N

Cl Cl
B
F2

Br

+  TMSCN
SnCl4

CH2Cl2, 25 oC, 2 h
N N

NC CN
B
F2

Br

27, 100 %21  
 

b 

N N

Cl Cl
B
F2

Br

+  TMSCN
BF3 OEt2

CH2Cl2, 25 oC, 2 h
N N

NC CN
B

Br

NC CN

28, 71 %21  
 

Cyanide anion displacement reactions were also tried on compound 23 to see if the only 

chlorine atom remaining would be displaced, but when the same condition that was used 



                                                                       

 

 

19 

for compound 27 was employed, only fluorine atoms were substituted by the cyanide 

anion. Thus compound 29 was formed; nothing happened on the carbon bonding with 

chlorine, even when a stronger Lewis acid, boron trifluoride etherate was used to catalyze 

the reaction. 19F NMR showed no fluorine existed.  

 

Scheme 2.10. Synthesis of compound 29. 

N N

Cl N
B
F2

Br

+  TMSCN
SnCl4

CH2Cl2, 25 oC, 10 min

COOCH3

23  
 

N N

N Cl
B

Br

NC CN

H3COOC

29, 93 %  
 

BODIPY 24 that was substituted with INP methyl ester, was treated with trimethyl silyl 

cyanide and tin tetrachloride. The same result as compound 29 was achieved; compound 

30 was formed as evidenced by fluorine atoms disappearing on 19F NMR. 
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Scheme 2.11. Synthesis of compound 30. 

N N

N N
B
F2

Br

+  TMSCN
SnCl4

CH2Cl2, 25 oC, 3 h

COOCH3H3COOC

24  
 

N N

N
B

Br

NC CN

H3COOC

30, 65 %

N

COOCH3

 
 

The water-soluble dichloroBODIPY 53 (synthesis described in Chapter IV) was also 

reacted with INP to test if the sulfonated group can accelerate SNAr reactions. Deuterated 

water was used as the solvent to facilitate NMR monitoring. One equivalent of INP 

without any protecting groups and three equivalents of sodium bicarbonate were added to 

the solution. The mono-substitution was extremely fast. The reaction was almost 

instantaneous and gave one product by TLC and 1H NMR. When one more equivalent of 

INP and three more equivalents of sodium bicarbonate were added, the second 

displacement was complete in 24 h at room temperature and gave the di-substituted 

product 60.  In summary, the sulfonated-dichloroBODIPY processed the SNAr reaction 

much faster. 
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Scheme 2.12. Syntheses of water-soluble mono- and di-substituted compounds 59 and 

60. 

H
N Na2CO3

H2O, 25 oC, 10 min

N N

Cl Cl
B
F2

Br

COOH

+

SO3NaNaO3S

1 eq53  
 

N N

N Cl
B
F2

Br

SO3NaNaO3S

H
N

COOH

+

1 eq

59, 100 % conversion

NaOOC

 
 

N N

N N
B
F2

Br

SO3NaNaO3S

NaOOC

Na2CO3

H2O, 25 oC, 24 h

60, 100 % conversion

COONa
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2.2.3 Spectroscopic Studies  

Figure 2.2. a and b show sharp peaks for the absorption and fluorescence of BODIPYs 21, 

25, 27 and 28 (in methanol) and 16 (in dichloromethane). The absorption and emission 

maximam of CF3-BODIPY 16 were about 30 nm red-shifted. On the other hand, the 

absorption maximum of the dimethylated BODIPY 25 is only 503 nm, about 10 nm 

blue-shifted compared with the other three BODIPYs in methanol.  

 

Surprisingly, Figure c shows blue-shifted and broadened peaks for the absorption of 

mono-substituted compounds 17, 23, 26 and 29 compared with the non-substituted 

BODIPYs. It can be seen from Figure d all the mono-substituted compounds have very 

similar maximum wavelengths of emission (about 560 nm in MeOH), and fwhms are 

broad, in the range of 75-85 nm. 

 

Figure e and f show several differences to di-substituted compounds 18, 24, 30. 

Compound 18 is at least 30 nm red-shifted for both of the absorption and emission. The 

most interesting thing is the boron dicyanide BODIPY 30 absorbs only at 517nm, at least 

50 nm blue shifted compared with the other two di-substituted BODIPYs. Fwhms for the 

di-substituted BODIPYs are not as broad as mono-derivatives; they are in the range of 

48-61 nm. 

 

Quantum yields (Table 2.1) for the non-substituted BODIPYs are very good, from 0.13 to 

1.0. Compound 21 and 25 have the relatively low quantum yields, 0.15 and 0.13 

respectively. Compounds 27 and 28 have really good quantum yields even though they 

both have the phenyl ring, which can rotate and is supposed to reduce the quantum yield. 

Mono-substituted BODIPYs have bad quantum yields, from 0.001 to 0.006, worse than 

di-substituted derivatives (0.008~0.03).  
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Table 2.1. Spectral characteristics of dyes in MeOH. 

dye λabs 

(nm) 

ε 

(M-1cm-1) 

λemi. 

(nm) 

fwhm 

(nm) 

Φ 

      

16 a 548 86860 554 22 1.00 ± 0.1 b 

17 492 58640 560 85 � 0.001 c 

18 614 32100 643 48 � 0.03 d 

21 512 77550 523 27 0.15 ± 0.01 e 

23 482 68440 562 78 � 0.003 c 

24 573 39860 614 52 � 0.01 d 

25 503 134310 516 30 0.13 ± 0.01 c 

26 483 61770 564 84 � 0.002 c 

27 514 127350 526 25 0.66 ± 0.07 e 

28 510 36500 523 25 0.80 ± 0.08 e 

29 485 33660 560 75 � 0.006 c 

30 517 26050 613 61 � 0.008 e 

 
a In CH2Cl2. b Rhodamine B was used as a standard (Φ = 0.73 in EtOH). c Fluorescein 

was used as a standard (Φ = 0.92  in 0.1 M NaOHaq). d Rhodamine 101 was used as a 

standard (Φ = 1.00 in EtOH). e Rhodamine 6G was used as a standard (Φ = 0.94 in EtOH). 

For each compound, it was excited at the same wavelength as standard. 
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Figure 2.2. a) UV absorption, and b) fluorescence: spectra for non-substitued BODIPYs. 
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Figure 2.2. Continued. c) UV absorption, and d) fluorescence: spectra for 

mono-substitued BODIPYs.  
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Figure 2.2. Continued. e) UV absorption, and f) fluorescence: spectra for di-substitued 

BODIPYs. 
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2.3 Coupling with Protein 

2.3.1 Synthesis of 16-Avidin 

As mentioned above, the SNAr reaction works well on CF3-dichloroBODIPY 16 with 

piperidine as a nucleophile, thus we wondered if the protein could be used also to 

displace chlorine atoms, since it has lysines or cystines, which can be considered as 

nitrogen and sulfur centered nucleophiles (Figure 2.3). Compound 31 was also made as a 

target to react with protein. The advantage for 31 is increasing the water solubility.  

 

N
B
F2

N

S Cl

CF3

NaO3S

Avidin substitution

or

Avidin substitutionincreasing water solubility

N
B
F2

N

Cl Cl

CF3

16 31

 
Figure 2.3. Proposed dyes which can be used to label proteins. 

 

Scheme 2.13 shows that avidin (4mg/ml 0.1 M sodium bicarbonate buffer, pH 8.3) 

reacted with compound 16 (10 eq in 10�l THF) after 1 h stirring at room temperature to 

give 16-avidin. After the PD10 desalting column, only one fraction was obtained and it 

was assumed that all 10 eq of BODIPY 16 reacted. Extinction coefficients were also 

needed to calculate the dye/protein ratio and prove this assumption. 

 

Scheme 2.13. Synthesis of compound 16-avidin. 

N
B
F2

N

Cl Cl

CF3

+ Avidin
pH = 8.3 buffer

25 oC, 1 h N
B
F2

N

Cl Avidin

CF3

16 16-avidin  
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2.3.2 Calculation of Dye-Protein Ratio 

Compound 32 was made as a model to estimate the extinction coefficient for the dye on 

protein; this amine was chosen because the nucleophile for the substitution would be 

likely the lysine. The quantum yield for this model BODIPY 32 was measured as 0.74 in 

the 0.1 M lithium phosphate buffer (pH 7.4) by using fluorescein as standard. Extinction 

coefficient of the model 32 was measured as 17066 M-1cm-1 (in the same buffer). 

Equation 1 was used to calculate the dye protein ratio.20 pε  is 101640 M-1cm-1. pA  

represents the absorbance of avidin at 280 nm, which equals dACFA ×−280 . 280A  is the 

absorbance of 16-avidin at 280 nm.CF means the ration of absorbances for the model 

dye 32 at 280 and 469 nm. dA  means the absorbance of compound 16-avidin at 469 

nm. 

d

p

p

d

p

d

A
A

C
C

ε
ε

×= …………………………………………………………………………..(1) 

Finally, dC / pC  was calculated to be approximately 10:1.  

 

Scheme 2.14. Synthesis of Model BODIPY 32 for measuring extinction coefficient. 

N
B
F2

N

Cl Cl

CF3

16

H2N COOH+

 

THF/H2O = 1:1

25 oC, 12 h
N

B
F2

N

Cl NH

CF3

COOH

32
pH = 7.4 buffer
Φ = 0.74 ± 0.01

ε = 17066 M-1cm-1 
λ max abs 469 nm

λ max emiss 542 nm  
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Figure 2.4 a and b show the absorption and emission peaks for the model BODIPY 32 

and compound 16-avidin. There is only 13 nm difference in absorption maximum 

wavelength between these two (469 for 32, and 481 for 16-avidin).  
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Figure 2.4. a) UV Absorption and b) fluorescence: spectra for model study 32 and 

16-avidin. 
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2.3.3 Synthesis of 31-Avidin 

Sodium 2-mercaptoethanesulfonate can be used as a sulfur nucleophile to displace one 

chlorine of BODIPY 16 and yield water-soluble BODIPY 31 which absorbs at 569 nm 

and emits at 584 nm in the buffer (0.1 M lithium phosphate, pH 7.4). 

 

Scheme 2.15. Synthesis of water soluble BODIPY 31. 

N
B
F2

N

Cl Cl

CF3

+ HS
SO3Na

 

THF/H2O = 1:1

NaHCO3, 25 oC, 2 h
N

B
F2

N

S Cl

CF3

NaO3S
31  58%

pH = 7.4 buffer
Φ = 0.95 ± 0.02
λ max abs 569 nm

λ max emiss 584 nm  
 

Avidin can be considered as the second nucleophile to react with BODIPY 31 and then 

compound 31-avidin was formed after the reaction was shaken in the dark for one hour at 

room temperature in the buffer (0.1 M sodium bicarbonate, pH = 8.3).  

 

Scheme 2.16. Synthesis of compound 31-avidin. 

N
B
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N

S Cl

CF3

NaO3S
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Scheme 2.16. Continued. 

pH = 8.3 buffer

25 oC, 1 h N
B
F2

N

S Avidin

CF3

NaO3S

31-avidin  
 

2.3.4 Calculation of Dye-Protein Ratio 

In order to calculate the dye protein ratio, the model 33 was synthesized. It took 2 days to 

achieve the second substitution. Purification of compound 33 was really hard because of 

its high polarity. Only 1/5 of the desired pure product could be separated from the silica 

gel column. The quantum yield for this model BODIPY was measured as 0.70 in the 

lithium phosphate buffer (pH 7.4) by using fluorescein as standard. Extinction coefficient 

for the model BODIPY 33 was measured as 41810 M-1cm-1 in the same buffer. The 

equation 1 was again used to calculate the dye/protein ratio. Finally, dC / pC  was 

calculated to be approximately 3:1.  

 

Scheme 2.17. Synthesis of Model BODIPY 33. 
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B
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S Cl
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Scheme 2.17. Continued. 

pH = 7.4 buffer
Φ = 0.70 ± 0.01

ε = 41810 M-1cm-1
 λabs 477 nm 

λ emiss 584 nm

H2O

25 oC, 48 h N
B
F2

N

S NH

CF3

COOH

33

NaO3S

 
 

Figure 2.5 a and b show the absorption and emission peaks for the model BODIPY 33 

and compound 31-avidin. There is a little difference in maximum wavelength between 

these two. Compound 32 absorbs at 477 nm and emits at 584 nm, whereas 31-avidin 

absorbs at 492 nm and fluoresces at 592 nm. 
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Figure 2.5. a) UV absorption and b) fluorescence: spectra for model study 33 and 

31-avidin. 
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Figure 2.5. Continued. 

 

2.4 Conclusion 

The easily obtained 3,5-dichloroBODIPYs can be substituted with a wide range of 

oxygen, nitrogen, sulfur and carbon centered nucleophiles and the reaction conditions can 

be adjusted to have either mono- or di-substitution. These nucleophilic 

addition-elimination substitution reactions of the 3,5-dichloroBODIPY core happen to be 

a very successful approach for preparing a variety of symmetric and asymmetric 

BODIPY compounds. The new more reactive dichloroBODIPYs 16 and 21 were 

synthesized. They have relatively red shifted absorption and emission compared with 

1,3,5,7-tetramethyl BODIPY. Cyanide anion can not only substitute chlorine atoms, but 

also fluorine atoms. The interesting thing is compound 25 can also process the SNAr 

reaction, but much more unreactive, so the longer reaction time was needed.  

 

BODIPY 16 and 31 were used to label protein successfully based on SNAr reaction. 

Model 32 was synthesized to prove the mono-substitution with avidin. Extinction 

coefficients for models were measured to calculate the dye/protein ratio. Both of model 
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BODIPYs gave very good quantum yields in the 0.1 M lithium phosphate buffer (pH 

7.4).  
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CHAPTER III 

 

THROUGH-BOND ENERGY TRANSFER CASSETTES 

 

3.1 Introduction 

Two fluorescent entities can be joined in the same molecule to give a ‘cassette’. One of 

them, the donor can collect radiation at the excitation wavelength and transfer energy to 

the second fluorescent moiety that emits at a longer wavelength. Donor and acceptor 

units connected by conjugated linker fragments may transfer energy via through bonds. 

There are two mechanisms proposed for this energy transfer: Dexter4 and 

superexchange.5 As compared to Förster energy transfer, Dexter energy transfer is a short 

range phenomenon and requires interaction between excited donor orbital with the orbital 

of the acceptor in ground state. Superexchange energy transfer can take place over a 

longer distance since energy is relayed through bonds connecting the donor and the 

acceptor. 

 

3.2 Results and Discussion (Syntheses and Spectroscopic Studies) 

Lipophilic BODIPY derivatives which emit around 520 nm potentially can be used as 

donors for cassettes. Those BODIPYs emitting at longer wavelength can be used as 

acceptors. This chapter describes two new lipophilic through-bond energy transfer 

cassettes.  

 

3.2.1 Cassette 38 with Nile Red Acceptor, BODIPY Donor 

The NO2-tetramethyl BODIPY 34 was made via the procedure in the literature in an 

overall yield of 30%.21 The whole synthesis is performed in one-pot without any 

purification of intermediates. The quantum yield of this nitroBODIPY is very low due to 

d-PeT (photoinduced electron transfer). D-PeT dictates that the energy states are such that 
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the exited state of the fluorescent group can donate eletrons to the substituent LUMO 

then oxidative-PeT, d-PeT, occurs (“d” for donor). 

 

Scheme 3.1. Synthesis of tetramethyl NO2-BODIPY 34. 

NO2

CHO

H
N

+
CH2Cl2

25 oC,  2 h

 
 

NH HN

NO2

DDQ

toluene, 25 oC, 20 min

N HN

NO2

 
 

BF3. OEt2, NEt3

toluene, reflux, 12 h

N N
B
F2

NO2

34, 30 % overall  
 

Since the NO2 group can’t be used to couple with any acceptor, it was modified to an 

NH2 group in compound 35, which can be transformed to N3-tetramethyl BODIPY and 

then used for “click” chemistry. When Pd/C and H2 was used to reduce the nitro 

compounds 34.22, 23 Formation of by-product 36 could not be avoided24 and found in quite 

significant yield if reaction time was extended. Hydrazine monohydrate was therefore 

tried. After 30 min heating at reflux in THF/EtOH, this gave a very clean reaction and 

much higher yield.21 The only drawback for this method is that NH2NH2 H2O is very 
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explosive, so the reaction should be carried on very carefully. The NH2 group of 35 didn’t 

significantly quench the fluorescence, and its quantum yield was determined to be much 

higher than the NO2- BODIPY. 

 

Scheme 3.2. Reduction with H2 and Pd/C. 

N N
B
F2

NO2

H2, Pd/C

CH2Cl2/EtOH, 25 oC, 18 h

34  
 

N N
B
F2

NH2

N N
B
F2

NHEt

+

35 36  
 

Compound 35 can be treated with 2 M HCl and NaNO2 in the mixture of DMF and H2O 

to form the corresponding diazo-compound. BODIPYs are not stable with strong acid or 

base, so HCl should be relatively diluted. Then sodium azide solution was added slowly 

to the mixture. Gas (presumably N2) was evolved and a precipitate was generated during 

the reaction. Purification of this precipitate gave green strongly fluorescent 

N3-tetramethyl BODIPY 37. This azide fluoresced with a high quantum yield, 0.48 in 

dichloromethane (fluorescein as standard, � = 0.92 in ethanol).  
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Scheme 3.3. Synthesis of amino- and azido-BODIPYs 35 and 37. 

NH2NH2 H2O, Pd/C

THF/EtOH, reflux, 30 min
N N

B
F2

NO2

N N
B
F2

NH2

35, 96 %34  
 

CH2Cl2 Φ = 0.48
ε=98591  M-1cm-1 
λ max abs 503 nm

λ max emiss 513 nm

(i) HCl, NaNO2
DMF/H2O

(ii) NaN3
N N

B
F2

N3

37, 77 %

 
 

Copper mediated azide-alkyne cycloaddition of N3-tetramethyl BODIPY 37 with suitable 

alkynes were envisaged to gave through-bond energy transfer cassettes. Scheme 3.4 

shows N3-BODIPY 37 coupled with Nile Red to form the lipophilic cassette 38.25, 26 The 

reaction was carried out in 4:1 THF/H2O and stirred at room temperature for 24 h to gave 

an 82% yield of the product. 
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Scheme 3.4. Synthesis of Nile Red containing cassette 38. 

O

N

ON

+

N N
B
F2

N3

37  
 

Cu, CuSO4 5H2O

THF/H2O, 25 oC, 24 h

N N
B
F2

N

N
N

N

O

O

N

38, 82 %  
 

Figure 3.1 shows the absorption of cassette 38 in dichloromethane. This spectrum shows 

two peaks: one from the donor N3-BODIPY 37 at 504 nm and the other from the acceptor, 

Nile Red at 549 nm. The peak from the acceptor Nile Red is broader and has the lower 

intensity, because of the smaller extinction coefficient than the donor 37. 

 

When cassette 38 was excited at 504 nm (the absorption maximum of N3-BODIPY 37), 

two emission peaks were observed: one from the donor N3-BODIPY 37 at 514 nm and 

another one from the acceptor Nile red at 606 nm. The emission peak from the donor is 

much smaller than the one from the acceptor. The energy transfer for this cassette is 

above 90% in dichloromethane as calculated by the peak area. 
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Figure 3.1. a) UV absorption and b) fluorescence�spectra for cassette 38 (10-5 M in 

dicloromethane). 
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3.2.2 Cassette 41 with BODIPYs Acceptor and Donor 

BODIPY 24 is a potential acceptor if its bromophenyl group can be converted to ethynyl 

phenyl. Thus the Sonogashira reaction was performed to give TMS-ethynyl BODIPY 39 

in 76% yield following a literature procedure for a similar compound.27 Deprotection of 

TMS was achieved using potassium carbonate in methanol. The reaction time was long, 

but a clean product was formed. Surprisingly, the ethynyl compound 40 was stable; it was 

stored for several months at room temperature without significant decomposition. 

However BODIPY 40 has a very low quantum yield,6 only 0.02 in ethanol, so it is not an 

ideal acceptor. It can be seen that absorption and emission don’t change much when 

compared with 24. 

 

Scheme 3.5. Synthesis of ethynyl-BODIPY 40. 

N N

N N
B
F2

Br

H3COOC COOCH3

TMS
+

PdCl2(CH3)2, CuI, NEt3

DMF, 80oC, 12 h

24  
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Scheme 3.5. Continued. 

K2CO3

MeOH, 25 oC, 48 h

39, 76 %

N N

N N
B
F2

H3COOC COOCH3

TMS

 
 

CH2Cl2 
λ max abs 582 nm

λ max emiss 627 nm
Φ = 0.15 (MeOH)

40, 94 %

N N

N N
B
F2

H3COOC COOCH3

 
 

Scheme 3.6 shows the N3-BODIPY 37 coupled with ethynyl BODIPY 40 to give another 

lipophilic through-bond energy transfer cassette 41. Same conditions used for cassette 38 

were employed for cassette 41. Cassette 41 might have highly desirable characteristics if 

only hydrolysis of the ester group could be achieved cleanly. However, cassette 41 was 

not as stable as cassette 38. It was easily decomposed to a non-fluorescent compound 
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even when it was stored in the freezer over a period of one day. Some hydrolysis of 

BODIPY 40 was observed when it was treated with potassium hydroxide (1 M), but the 

corresponding carboxylic acid was even less stable.  

 

Scheme 3.6. Synthesis of cassette 41 with BODIPY. 

N
B
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N

N3

34

+ N N

N N
B
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H3COOC COOCH3

40  
 

Cu, CuSO4 5H2O

THF/H2O, 25 oC, 24 h

N N
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The absorption spectrum of cassette 41 in dichloromethane corresponded to N3-BODIPY 

at 504 nm and ethynyl BODIPY 40 at 581 nm. The peak from the acceptor is broader and 

has the lower intensity than the peak from the donor (Figure 3.2). 

 

When the cassette 41 was excited at the absorption maximum of the donor N3-BODIPY 

37, 504 nm, two emission peaks were observed: one from the donor at 516 nm and 

another one from the acceptor at 622 nm. Although the excitation peak is combined with 

the emission peak of the donor part, it shows that the energy transfer for cassette 41 is not 

very good, about 70%.  
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Figure 3.2. a) UV absorption and b) fluorescence: spectra for cassette 41 (10-5 M in 

dichloromethane) 

 

 

 

 



                                                                       

 

 

45 

b 

0

0.2

0.4

0.6

0.8

1

500 550 600 650 700 750 800

Wavelength (nm)

N
or

m
al

iz
ed

 R
el

at
iv

e 
In

te
ns

ity

 
Figure 3.2. Continued. 

 

3.3 Conclusion 

Two new lipophilic through-bond energy transfer cassettes were synthesized via “click” 

chemistry. The cassette 38 was somewhat stable at room temperature and gave a very 

good energy transfer in the organic solvent. However, the cassette 41 was less stable, 

even at reduced temperature and did not give a good energy transfer in dichloromethane.  

 

The cassette 38 is a starting place to develop similar water soluble through-bond energy 

transfer cassettes.  
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CHAPTER IV 
 

WATER-SOLUBLE BODIPY DERIVATIVES AND CONCLUSION 
 

4.1 Introduction 

The core of BODIPY dyes is hydrophobic, and does not contain any functionality to 

attach the probes to proteins.  Both these obstacles can be overcome via synthetic 

modifications.  For instance, there are many BODIPY dyes with carboxylic acid 

functional groups28-31 that can be activated then linked to amino groups on proteins or 

DNA-derivatives.  Further, such carboxylic acids can be activated using sulfonated 

succinimide reagents;32 this makes the hydrophobic dyes more water-soluble enabling 

them to be dissolved in aqueous media for coupling to various water-soluble 

biomolecules. Once hydrophobic BOIDPY dyes are conjugated to biomolecules then they 

tend to embed into hydrophobic pockets, or even create micellular-like environments via 

aggregation effects. This is not always disadvantageous; indeed, variations of BODIPY 

fluorescence with the polarity of their immediate environment can be useful.33-36 

However, in other cases it is definitely advantageous to have water-soluble BODIPY dyes 

that can be conjugated easily, and that will tend to exist in the aqueous environment that 

surrounds a biomolecule without perturbing it. 

 

Despite the obvious practical value of water-soluble BODIPY dyes, very few have been 

reported in the open literature. Indeed, the sum total of synthetic procedures to obtain 

BODIPY dyes includes only the four sulfonated derivatives A–D37, 38and several closely 

related oligoethylene-glycol-containing systems, of which E39 is illustrative (Figure 

4.1a). 

 

A handful of sulfonated BODIPY dyes A-D were obtained from tetra-, or 

penta-substituted BODIPYs via treatment with chlorosulfonic acid, then neutralization 

with a base (NaHCO3). Monosulfonated systems can be obtained when only one 

equivalent chlorosulfonic acid is used. All of these BODIPYs have high quantum yields 
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in polar solvents (H2O, MeOH or EtOH). The UV-Vis and fluorescence spectra are 

virtually superimposable on those of regular simple BODIPYs in organic solvents, 

indicating that sulfonato group does not disturb the electronic properties of the BODIPY 

system.  

 

This chapter describes several procedures for the preparation of several sulfonated, 

water-soluble BODIPY systems (Figure 4.1b). Mono- and di-substituted 

tetramethyl-BODIPYs 49 and 50 have a 4-iodo-benzene substituent at the meso-position 

to enable further functionalization via organometallic cross coupling reactions.  The 

bromo compounds 52 and 53 can be similarly derivatized, but they are also potentially 

reactive towards nucleophiles in SNAr reactions.6, 40 Compounds 43 and 46 are valuable 

since they can be coupled to active carbonyl groups, the azides 44 and 47 are amenable to 

copper-mediated cycloadditions to alkynes,41, 42and the di-sulfonate 48 can be activated 

and coupled to amino groups on biomolecules. Thus the end-products of this work have 

potential uses in many different scenerios for labeling biological molecules. 
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N
NaO3S SO3Na

N
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N
SO3Na

H2O
λ max abs 495 nm

λ max emiss 515 nm
Φ 0.85

H2O
λ max abs 491 nm

λ max emiss 510 nm
Φ 0.85

A B

 
Figure 4.1. a) Previously known water-soluble BODIPY systems; and, b) compounds 

prepared in this work. 
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R1 = H, 49; R1 = SO3Na,50 R1 = H, 52; R1 = SO3Na, 53  
Figure 4.1. Continued. 

 



                                                                       

 

 

49 

N
B
F2

N

NH2

SO3NaR1
N

B
F2

N

N3

SO3NaR1

for coupling 
to acids

for Cu-mediated
cycloadditions

R1 = H, 43; R1 = SO3Na, 46 R1 = H, 44; R1 = SO3Na, 47  
 

N
B
F2

N

N

SO3NaNaO3S

N
N

HOOC

48

for coupling 
to amines

 
Figure 4.1. Continued. 

 

4.2 Results and Discussion (Syntheses and Spectral Studies) 

The following sections describe the preparation of the unusual BOIDPY starting 

materials, the pivotal sulfonation reactions, and reactions of the sulfonated products to 

further transform them into useful probes.  Finally, the spectral properties of the target 

molecules are discussed. 

 

4.2.1 Syntheses 

Scheme 4.1 shows the mono-sulfonation on tetramethyl nitroBODIPY 34 with 1.2 

equivalent chlorosulfonic acid at -40oC to afford 42 with 63 % yield. Flash 

chromatography on silica was needed to purify the product. Nitro group can be 
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functionalized to a useful functional group. When treated with hydrazine hydroxide, 

compound 42 can be reduced to 43 with a really high yield. Both of compounds 42 and 

43 have low quantum yields in water, because nitro and amino groups quench 

fluorescence a lot, but when 43 is treated with the acid, the LUMO of meso substituent 

becomes higher, d-PeT is decreased and strong green fluorescence shows back. However, 

the strong fluorescence disappeared again when diazonium salt was formed after sodium 

nitrite was added to the acid form of 43, which can generate compound 44 when treated 

with sodium azide.  

 

Scheme 4.1. Syntheses of mono-sulfonated BODIPYs 42-44 from tetramethyl 

NO2-BODIPY. 

N
B
F2

N

NO2

(i) 1.2 eq ClSO3H
CH2Cl2

-40 oC - 20 oC

(ii) 1.2 eq NaHCO3
N

B
F2

N

NO2

SO3Na

42  63 %  
 

N
B
F2

N

NH2

SO3Na

NH2NH2•H2O
10 % Pd/C

EtOH, reflux, 30 min

43  92 %  
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Scheme 4.1. Continued. 

(i) HCl, NaNO2
0 oC, 30 min

(ii) NaN3
25 oC, 1 h

N
B
F2

N

N3

SO3Na

44  75 %  
The di-sulfonated BODIPY 45 can also be obtained when 2 equivalent chlorosulfonic 

acid was used. Separation in this case is relatively easy because the di-sulfonic acids 

precipitate from the dichloromethane solution after 20 min at room temperature. The 

products were collected by filtration, dissolved in a small amount of aqueous NaHCO3, 

evaporated to dryness, then reprecipitated from brine to give essentially pure products. 

No chromatography is involved, so the procedure is convenient and amenable to scale up. 

The BODIPY 45 can also be functionalized to amino BODIPY 46, and then azido 

BODIPY 47.  

 

Scheme 4.2. Syntheses of di-sulfonated BODIPYs 45-47 from tetramethyl 

NO2-BODIPY. 

N
B
F2

N

NO2

(i) 2 eq ClSO3H
CH2Cl2

-40 oC - 20 oC

(ii) 2 eq NaHCO3
N

B
F2

N

NO2

SO3NaNaO3S

45  100 %  
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Scheme 4.2. Continued. 
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N

NH2

SO3Na

NH2NH2•H2O
10 % Pd/C

EtOH, reflux, 30 min

46  70 %

NaO3S

 
 

(i) HCl, NaNO2
0 oC, 30 min

(ii) NaN3
25 oC, 1 h

N
B
F2

N

N3

SO3Na

47  77 %

NaO3S

 
 

Scheme 4.3 shows one ‘click’ reaction between azidoBODIPY 47 and hexynoic acid. 

This reaction can be completed in 12 hours at room temperature and yield compound 48; 

the ligand tris-(benzyltriazolylmethyl)amine (TBTA)43 was needed for this reaction. 

Compound 48 is freely water-soluble and contains an easily accessible carboxylic acid 

for activation and conjugation to biomolecules. 

 

Scheme 4.3. Synthesis of water-soluble BODIPY 48 with carboxylic aicd. 

N
B
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Scheme 4.3. Continued. 
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N
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SO3NaNaO3S

N
N

HOOC

48  42 %

1 eq Cu, 0.1 eq CuSO4 5H2O
0.1 eq TBTA

H2O/THF, 25oC, 12 h

 

N

N
N

N

3

TBTA  
 

Scheme 4.4 shows mono- and di-sulfonation reactions on tetramethyl iodoBODIPY under 

the same conditions that were used in Scheme 4.1 to give desired products 49 and 50 with 

good yields. These compounds can be applied on the Sonogashira reaction. 

 

Scheme 4.4. a) Mono-sulfonation; and b) di-sulfonation on tetramethyl iodoBODIPY. 
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(i) 1.2 eq ClSO3H
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N

B
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I

SO3Na

49  60 %  



                                                                       

 

 

54 

Scheme 4.4. Continued. 

b 

N
B
F2

N

I

(i) 2 eq ClSO3H
CH2Cl2

- 40 oC - 20 oC

(ii) 2 eq NaHCO3
N

B
F2

N

I

SO3NaNaO3S

50  88 %  
 

Modified conditions for the sulfonation were not suitable for the alkyne-functionalized 

BODIPY.44, 45 When two equivalents of chlorosulfonic acid was added to the tetramethyl 

ethynylBODIPY, some orange precipitate 51 was formed just like the other di-sulfonates 

45 and 50. The di-sulfonic acid 51 is not very stable in water because the ethynyl group 

can be easily hydrolyzed to a ketone. For that reason, compound 51 is not a particularly 

useful building block. 

 

Scheme 4.5. Synthesis of di-sulfonic acid 51. 

N
B
F2

N

 2 eq ClSO3H
CH2Cl2

- 40 oC - 20 oC

N
B
F2

N
SO3HHO3S

51  64 %  
 

Sulfonation can also be applied on the DichloroBODIPYs under the same conditions. 

Scheme 4.6 shows that mono- and di-sulfonated compounds 52 and 53 were formed with 

good yields. 
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Scheme 4.6. a) Mono-sulfonation; and b) di-sulfonation on dichloroBODIPY 21. 
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Cl Cl

Br

(i) 1.2 eq ClSO3H
CH2Cl2

-40 oC - 20 oC

(ii) 1.2 eq NaHCO3
N

B
F2

N

Cl Cl

Br

SO3Na

52  92 %21  
 

b 

N
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N

Cl Cl

Br

(i) 2 eq ClSO3H
CH2Cl2

-40 oC - 20 oC

(ii) 2 eq NaHCO3
N

B
F2

N

Cl Cl

Br

SO3NaNaO3S

53  85 %21  
 

The dichloroBODIPYs can be used not only for the SNAr reaction, but also for the 

Sonagashira, Suzuki, Stille and Heck reactions.40 Compounds 52 and 53 have the bromo 

functional group besides the chlorines. Too many active groups will raise regioselective 

isomers, so compounds 57-59 were considered to be made, and the nitro group could be 

transformed to amino and azido groups later. 

 

The Scheme 4.7 shows the synthetic route to nitro-dichloroBODIPY 56, which is similar 

to compound 21. The synthesis can be scaled up to tens of grams in an overall yield of 

24%.21  
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Scheme 4.7. Syntheis of NO2-dichloroBODIPY 56. 

NO2

CHO

H
N

NH HN

NO2
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25 oC, 1 h

+

54  84 %  
 

NH HN

Cl Cl

NO2

NCS

THF, - 78 oC, 1.5 h
then 25oC, 3 h

DDQ

CH2Cl2, 25 oC, 1 h

 
 

N HN

Cl Cl

NO2

N
B
F2

N

Cl Cl

NO2

56  71 %55  42 %

BF3OEt2, NEt3

CH2Cl2, 25 oC, 24 h

 
 

Scheme 4.8. shows a sulfonation of the relatively electron-poor BODIPY system 56 with 

varying equivalents of chlorosulfonic acid. A mixture of mono- 57 and di-sulfonation 58 

products formed if less than 3.5 equivalents of the sulfonating agents were used, and 

neither of these materials precipitated from the solution; it was, however, possible to 

obtain the yields indicated via flash chromatography. Clean di-sulfonation was obtained 

when 3.5 equivalents of chlorosulfonic acid were used and, under those conditions, the 

product 57 precipitated in a relatively pure form and the sample could be further purified 

by re-precipitation from brine. 
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Scheme 4.8. Sulfonation on dichloroBODIPY 56 with various equivalent chlorosulfonic 

acid. 
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(i) ClSO3H
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(ii) NaHCO3

56  
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Cl Cl
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SO3NaNaO3S
N
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N

Cl Cl

NO2

SO3Na +

5857  
 

amount of ClSO3H           yield of 57         yield of 58
            (eq)                           (%)                    (%)
           
             1.2                            90                       0
             2.0                            68                      21
             3.0                            22                      74
             3.5                             0                       97  

 

4.2.2 Spectroscopic Studies 

Absorption and emission spectra for all the BODIPYs were recorded in deionized water. 

All the compounds shown in Table 4.1 have absorption maxima in the range 492 – 518 

nm, and their extinction coefficients are high (5.7 – 14.9 x 104 M-1cm-1), as is 

characteristic of BODIPY dyes in general. All the mono-sulfonated compounds are not as  

soluble in water as the di-sulfonated BODIPYs, especially 57 has the worst solubility.                   

Throughout, there are insignificant differences between the emission maxima of the 
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mono- and di-sulfonated forms; in fact, these differences are all less than 4 nm. 

DichloroBODIPYs 52, 53 and 57, 58 are more interesting because they are red-shifted for 

both of the absorption and emission compared with the other sulfonated tetramethyl 

BODIPYs. Further more, the more electronic withdrawing group in the phenyl ring 

makes the dichloroBODIPY shift to the longer wavelength. The absorption of 52 and 53 

is 2-6 nm blue shifted compared with 57 and 58.  

 

The sulfonated BODIPYs have the sharp emission peaks also just like the unsulfonated 

regular BODIPYs. The full width at half maximum height (fwhm) of compound 43 is the 

biggest one, which is 58 nm. Compounds 42, 46, 48, 49, 50, 52 and 53 are favorable with 

fwhm, which are about 25-28 nm; to calibrate, a series of water-soluble Nile Red 

derivatives were recently reported to have fwhm values for their fluorescence emission of 

between 56 – 70 nm.46 

 

Quantum yields for the target compounds 44, 47, 48, 49, 50, 52 and 53 were all 

acceptably high for fluorescent probes (0.15 – 0.49). Compounds 43 and 46 have a 

4-aminobenzene meso-substituent; this electron rich aromatic ring probably quenches the 

fluorescence of the BODIPY core via photoinduced electron transfer (PeT) in which the 

excited state of the BODIPY is reduced via contribution of electron density form the 

relatively high-lying HOMO of the meso-substituent. The low quantum yield observed is 

not a concern if the amine group is transformed into an amide in the bioconjugation 

process, because that will adjust the oxidation potential of the meso-substituent, bringing 

down its HOMO level, and restoring the fluorescence. 
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Figure 4.2. a) UV absorption, and b) fluorescence: spectra for the mono-sulfonated 

BODIPYs.  All these spectra were recorded in deionized water at concentrations of 

approximately 10-6 M for the UV spectra 10-7 to 10 -6 M for the fluorescence, then 

normalized. 



                                                                       

 

 

60 

c 

0

0.2

0.4

0.6

0.8

1

400 450 500 550 600

Wavelength (nm)

N
o

rm
al

iz
ed

 A
b

so
rb

an
ce

45

46

47

48

50

53

58

 
d 

0

0.2

0.4

0.6

0.8

1

450 500 550 600 650 700

Wavelength (nm)

N
o

rm
al

iz
ed

 R
el

at
iv

e 
In

te
ns

ity

46

47

48

49

51

54

59

 
Figure 4.2. Continued. c) UV absorption, and d) fluorescence: spectra for the 

di-sulfonated BODIPYs.  All these spectra were recorded in deionized water at 

concentrations of approximately 10-6 M for the UV spectra 10-7 to 10 -6 M for the 

fluorescence, then normalized. 



                                                                       

 

 

61 

4.2.3 Determination of Quantum Yields  

Since the purpose for this work is to improve the water solubility for BODIPYs, all the 

relative quantum yields are measured in deionized water.  

Fluorescence quantum yields measurements were performed on a Cary Eclipse 

Spectrofluorometer. The slit width was 5 nm for both excitation and emission. Relative 

quantum efficiencies were obtained by comparing the areas under the corrected emission 

spectrum. The following equation was used to calculate quantum yield.  

2

2

st

x

x

st

st

x
stx A

A
I
I

η
η

Φ=Φ  

Where stΦ  is the reported quantum yield of the standard, I is the integrated emission 

spectrum, A is the absorbance at the excitation wavelength and η is the refractive index of 

the solvents used. X subscript denotes unknown, and st denotes standard. Fluorescein (Φ 

= 0.92 in 0.1 M NaOHaq) and Rhodamine 6G (Φ = 0.94 in ethanol) were used as 

standards.47 
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Table 4.1. Special characteristics of dyes in H2O 

dye λabs
a

 

(nm) 

εa 

(M-1cm-1) 

λemi.
a

 

(nm) 

fwhma 

(nm) 

Φa 

      

42 497 58130 513 48 � 0.001 b 

43 492 85340 507 58 � 0.001 b 

44 494 69840 507 26 0.34 ± 0.03 b 

45 501 92030 511 36 � 0.002 b 

46 496 114820 511 25 � 0.001 b 

47 498 77360 509 46 0.15 ± 0.01 b 

48 498 80290 511 27 0.49 ± 0.05 b 

49 494 149640 507 27 0.47 ± 0.05 b 

50 498 99640 509 27 0.34 ± 0.04 b 

52 509 73280 523 28 0.27 ± 0.03 c 

53 512 78300 524 25 0.41 ± 0.04 c 

57 514 66340 540 42 � 0.002 c 

58 518 57000 538 35 � 0.008 c 

a In H2O. b Fluorescein was used as a standard (Φ = 0.92  in 0.1 N NaOHaq). c Rhodamine 

6G was used as a standard (Φ = 0.94 in EtOH). For each compound, it was excited at the 

same wavelength as standard. 

 

4.3 Conclusion 

Sulfonation reactions of BODIPY derivatives are hard to develop into useful synthetic 

procedures for two reasons: (i) inappropriate conditions give mixtures of products; and (ii) 

sulfonic acid derivatives of BODIPYs can be hard to purify.  The sulfonation reactions 



                                                                       

 

 

63 

shown in Scheme 4.1 – 4.6 tend to give predominantly one product, and Scheme 4.8 give 

essentially binary mixtures that are easily separated by flash chromatography.   

Conjugation of the target materials to biomolecules could be achieved via amide bond 

formation to amines or acids, or “click” chemistry.  Further, some of the dyes presented 

here can be derivatized via organometallic couplings to the organic halide functionalities, 

and, in the case of the chlorinated derivatives 52, 53, 57 and 58 via SNAr reactions. 
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APPENDIX A 

 EXPERIMENTAL DATA FOR CHAPTER II  

 

General Experimental Procedures. All chemicals were obtained from commercial 

suppliers and used without further purification. Chromatography on silica gel was 

performed using a forced flow of the indicated solvent on EM reagents silica gel 60 

(230-400 mesh). 1H NMR spectra were recorded at room temperature and chemical shifts 

are reports in ppm from the solvent resonance (CDCl3 7.24 ppm and CD3OD 3.31 ppm). 

Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = 

triplet, q = quartet, br = broad, m = multiplet), number of protons, and coupling of 

constants. Proton decoupled 13C NMR spectra were also reported at room temperature. 

Chemical shifts are reported in ppm from tetramethylsilane resonance (CDCl3 77.2 ppm 

and CD3OD 49.0 ppm). Mass spectra were measured under ESI condition.  
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NH HN

CF3

14  
 

Concentrated HCl (4 ml) was added to a solution of pyrrole (5.8 ml, 83.5 mmol) and 

trifluoroacetaldehyde methyl hemiacetal (4.4 ml, 46.1 mmol) in 200 ml THF. The 

solution was refluxed for 2h, then 100 ml CH2Cl2 was added to the residue. After 

washing with sat. sodium bicarbonate aqueous ( 2 x 100 ml) and H2O (2 x 100 ml), the 

combined organic layers were dried over anhydrous sodium sulfate and concentrated to 

dryness. The residue was then applied to a silica gel flash column using 1:1 

CH2Cl2/hexane to afford white solid (4.34 g, 48 %), which should be stored at 0 oC. Rf = 

0.5 (2:1 CH2Cl2/hexane). 1H NMR (500 MHz, CDCl3) δ 7.97 (br, 2H), 6.73 (m, 2H), 6.27 

(br, 2H), 6.24 (m, 2H), 4.80 (q, 1H, 3JHF = 9.0 Hz). 

 
1H NMR 

 

 

 

 

 

 

 



                                                                       

 

 

69 

N HN

CF3

15
ClCl

 
 

A solution of 14 (4.34 g, 20.3 mmol) in 150 ml dry THF was purged with N2 and cooled 

to -78oC. A suspension of N-chlorosuccinimide (5.7 g, 42.6 mml) in 80 ml THF was 

added to the cooled solution. The reaction mixture was stirred at -78oC for 1.5 h, then 

warmed to room temperature and stirred for additional 3 h. H2O (50 ml) was added to the 

mixture. After extraction with CH2Cl2 (3 x 100 ml), the combined organic layers were 

dried over anhydrous Na2SO4, filtered, and the solution was evaporated to dryness. The 

residue was used for oxidation immediately without further purification.  

DDQ (4.6 g, 20.3 mmol) was added to the solution of dichloro-dipyrromethane as 

generated above in 150 ml CH2Cl2. The mixture was stirred at the room temperature for 1 

h. After evaporation the solvent, the residue was applied to a silica gel flash column using 

hexane to afford the orange powder (2.54 g, 45 % for 2 steps). Rf = 0.7 (20% 

EtOAc/hexane). 1H NMR (300 MHz, CDCl3) δ 7.19 (m, 2H), 6.35 (d, 2H, J = 4.4 Hz). 

 
1H NMR 

 



                                                                       

 

 

70 

N N
B
F2

CF3

Cl Cl

16  
 

A solution of 15 (2.54 g, 9 mmol) and triethylamine (7.6 ml, 6 eq) in 150 ml dry CH2Cl2 

was stirred at room temperature for 10 min. Boron trifluoride etherate (9 ml, 8 eq) was 

added slowly over 10 min. After 12 h stirring at reflux, the resulting solution was washed 

with water (3 x 100 ml), dried over anhydrous Na2SO4, filtered, and the solution was 

rotary evaporated. The residue was passed through a short silica gel flash column with 

EtOAc. After removing the solvent in vacuo, the product 3 was recrystallized from 

EtOAc as green crystals (3 g, 100 %). 1H NMR (300 MHz, CDCl3) δ 7.40 (d, 2H, J = 4.6 

Hz), 6.55 (d, 2H, J = 4.6 Hz); 13C NMR (75 MHz, CDCl3) δ 149.5, 131.9, 131.4, 124.0, 

121.3, 120.3. MS (ESI) calcd for C10H4BCl2F5N2
+ (M+) 327.9765 found 327.9766; IR 

(thin film) 3177, 2928, 1572, 1394, 1279, 1220, 1122, 1104, 986, 773, 725 cm-1.    

 
1H NMR 
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13C NMR 

 

 
 

 

Mass spectrum 
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17

N N
B
F2

CF3

N Cl

 
 

Potassium carbonate (63 mg, 0.45 mmol) was added to a solution of 16 (50 mg, 0.15 

mmol) and piperidine (15.7 �l, 0.15 mmol) in 5 ml acetonitrile. The mixture was stirred 

at room temperature for 10 min. The residue was filtered and concentrated and then was 

applied to a silica gel flash column using 20 % EtOAc/hexane to yield an orange solid 

(58 mg, 100%). Rf = 0.2 (20% EtOAc/hexane). 1H NMR (500 MHz, CDCl3) δ 7.43 (m, 

1H), 6.73 (m, 1H), 6.51 (d, 2H, J = 5.6 Hz), 6.25 (d, 2H, J = 5.6 Hz), 3.98 (br, 4H), 

1.85-1.74 (m, 6H); 13C NMR (125 MHz, CDCl3) �162.3, 135.9, 134.4, 129.1, 126.0, 

124.7, 122.5, 118.2, 117.5, 114.6 (q), 113.7, 53.3, 26.8, 24.2; F NMR (300 MHz, CDCl3) 

�122.48 (s), 43.01 (q). MS (ESI) calcd for C15H15BClF5N3
+ (M + H)+ 378.0968 found 

378.1056.   

 
1H NMR 
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13 C NMR 

 

 
 

 
19F NMR 
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Mass spectrum 
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18

N N
B
F2

CF3

N N

 
 

Potassium carbonate (50 mg, 0.36 mmol) was added to a solution of 16 (20 mg, 0.06 

mmol) and piperidine (30.0 �l, 0.30 mmol) in 5 ml acetonitrile. The mixture was stirred 

at room temperature for 48 h. The residue was filtered and concentrated and then was 

applied to a silica gel flash column using 5 % EtOAc/Hexane to yield a purple solid (24 

mg, 93%). Rf = 0.4 (20% EtOAc/hexane). 1H NMR (500 MHz, CDCl3) δ 7.07 (m, 2H), 

6.08 (br, 2H), 3.55 (br, 8H), 1.81-1.61 (m, 12H); 13C NMR (125 MHz, CDCl3) �160.5, 

128.6, 126.5, 109.5, 52.8, 26.2, 24.5; MS (ESI) calcd for C20H24BF5N4
+ (M+) 426.20 

found 426.21.   

 
1H NMR 
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13C NMR 

 

 
 

 

Mass spectrum 
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19

NH HN

Br

 
 

Pyrrole (25 eq) and 4-bromobenzaldehyde (21.4 g, 116 mmol) were added to a 500 ml 

dry round-bottomed flask and degassed with a stream of N2 for 5 min. TFA (0.1 ml) was 

then added. The solution was stirred under N2 at room temperature for 1 h and then 

excess pyrrole was removed under reduced pressure. The residue was recrystallized in the 

minimal hexane and dichloromethane mixture to give a white solid (11.7 g, 34%).  1H 

NMR (300 MHz, CDCl3) δ 7.93 (br, 2 H), 7.43 (d, 2H, J = 8.62 Hz), 7.11 (d, 2H, J = 8.62 

Hz), 6.17 (m, 2H), 5.89 (s, 2H), 5.45 (s, 1H); 13C NMR (75 MHz, CDCl3) δ 141.3, 

132.0, 131.8, 130.3, 121.0, 117.6, 108.7, 107.6, 43.6;  MS (ESI)  calcd for C15H14BrN2
+ 

(M+H)+ 301.03 found 301.02. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                       

 

 

78 

1HNMR 

 

 
 
13C NMR 
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20

N HN

Cl Cl

Br

 
 

A solution of 19 (7.84 g, 26 mmol) in 200 ml dry THF was purged with N2 and cooled to 

-78oC. A suspension of N-chlorosuccinimide (2.2 eq) in 60 ml THF was added to the 

cooled solution. The reaction mixture was stirred at -78oC for 1.5 h, then warmed to room 

temperature and stirred for additional 3 h. H2O (100 ml)was added to the mixture. After 

extraction with CH2Cl2 (3 x 100 ml), the combined organic layers were dried over 

anhydrous Na2SO4, filtered, and the solution was evaporated to dryness. The residue was 

used for oxidation immediately without further purification.  

 

DDQ (2.8 g, 12.3 mmol) was added to the solution of dichloro-dipyrromethane as 

generated above in 250 ml CH2Cl2. The mixture was stirred at the room temperature for 1 

h. After evaporation the solvent, the residue was applied to a silica gel flash column using 

hexane to afford the orange powder (5.08 g, 53 % for 2 steps). Rf = 0.7 (20% 

EtOAc/hexane). 1H NMR (300 MHz, CDCl3) δ 7.63 (d, 2H, J = 8.5 Hz), 7.35 (d, 2H, J = 

8.5 Hz), 6.52 (d, 2H, J = 4.3 Hz), 6.30 (d, 2H, J = 4.3 Hz); 13C NMR (75 MHz, CDCl3) 

δ 142.2, 138.4, 138.3, 134.5, 132.4, 131.3, 129.9, 123.9, 117.4; MS (ESI) calcd for 

C15H10BrCl2N2
+ (M+H)+ 366.9404 found 366.9403. 
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1H NMR 

 

 
 
13C NMR 
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N
B
F2

N

Cl Cl

Br

21  
 

A solution of 20 (4.73 g, 13 mmol) and triethylamine (2.2 eq) in 120 ml dry CH2Cl2 was 

stirred at the room temperature for 10 min. Boron trifluoride etherate (4.3 eq) was added 

slowly over 10 min. After 24 h stirring, the resulting solution was washed with water (3 x 

100 ml), dried over anhydrous Na2SO4, filtered, and the solution was evaporated to 

dryness. The residue was passed through a short silica gel flash column with EtOAc. 

After removing the solvent in vacuo, the product 21 was recrystallized from 

hexance/dichloromethane as red crystals (5.21 g, 98 %). 1H NMR (300 MHz, CDCl3) 

δ 7.72 (d, 2H, J = 8.7 Hz), 7.41 (d, 2H, J = 8.7 Hz), 6.84 (d, 2H, J = 4.4 Hz), 6.49 (d, 2H, 

J = 4.4 Hz); 13C NMR (75 MHz, CDCl3) δ 145.6, 142.4, 133.6, 132.1, 131.9, 131.3, 

125.8, 119.3; MS (ESI) calcd for C15H9BBrCl2F2N2
+ (M+H)+ 414.9838 found 414.9407. 

IR (thin film) 3135, 1569, 1542, 1391, 1261, 1199, 1107, 983, 728 cm-1.   
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13C NMR 
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H
N

COOCH3

22  
 

Thionyl chloride (4.22 ml, 57.9 mmol) was dropwise added to a solution of 

piperidine-4-carboxylic acid (5 g, 38.6 mmol) in MeOH (70 ml) and solution was heated 

to reflux for 12 hours.  After cooling to 25 0C, the mixture was concentrated and 50 ml 

ether was added to solidify the salt. Dissolved the salt in 50 ml dichloromethane and 

washed with ammonium hydroxide (3 x 50 ml), 100 ml saturated NaCl, dried over 

Na2SO4 and the solvent was removed under reduced pressure to give a clear oil (3.2 g, 

58%).  1H NMR (300 MHz, CDCl3) δ  3.21 (s, 3H), 2.60 (m, 2H), 2.19 (m, 2H), 1.98 (m, 

1H), 1.50 (s, 1H), 1.41 (m, 2H), 1.18 (m, 2H).  The compound was used without further 

purification and characterization. 
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23

N N

N
B
F2

Br

H3COOC

Cl

 
 

A solution of 21 (20 mg, 0.048 mmol) and 22 (13.77 mg, 0.096 mmol) in 5 ml 

acetonitrile was stirred at room temperature for 10 min. The residue was concentrated and 

then applied to a silica gel flash column using 20 % EtOAc/hexane to yield an orange 

solid (24.7 mg, 98%). Rf = 0.2 (20% EtOAc/hexane). 1H NMR (300 MHz, CDCl3) δ 7.57 

(d, 2H, J = 8.5 Hz), 7.28 (d, 2H, J = 8.5 Hz), 6.79 (d, 1H, J = 5.2 Hz), 6.30 (d, 1H, J = 5.2 

Hz), 6.21 (m, 1H), 4.45 (m, 2H), 3.72 (s, 3H), 3.51 (m, 2H), 2.71 (m, 1H), 2.81-1.91 (m, 

4H); 13C NMR (75 MHz, CDCl3) δ 174.4, 162.2, 135.3, 133.4, 132.1, 131.6, 130.9, 129.8, 

129.4, 123.5, 118.6, 114.6, 113.2, 52.1, 50.2, 40.3, 28.4; MS (ESI) calcd for 

C22H21BBrClF2N3O2
+ (M+H)+ 522.06 found 522.09.�
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Mass spectrum 
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24

N N

N N
B
F2

Br

COOCH3H3COOC

 
 

Compounds 21 (3.15 g, 7.6 mmol) and 22 ( 4 eq) were dissolved in dry MeCN in a dry 

round-bottom flask equipped with a condenser.  The mixture was heated to reflux for 12 

hours to produce a dark purple solution.  The solvent was removed under reduced 

pressure and the residue was passed through a silica gel column with hexane:EtOAc (2:1) 

to give a purple solid (3.91 g, 82%).  1H NMR (300 MHz, CDCl3) δ 7.57 (d, 2H, J = 

8.31 Hz), 7.32 (d, 2 H, J = 6.96 Hz), 6.50 (d, 2H, J = 4.30 Hz), 6.02 (br, 2H), 4.02 (br, 

4H), 3.71 (s, 6H),3.13 (br, 4H),  2.56 (br, 2H),  2.04 (m, 8H);  13C NMR (75 MHz, 

CDCl3) δ 175.3, 160.5, 132.3, 131.6, 131.4, 127.8, 123.2, 107.8, 52.0, 51.1, 41.0, 28.4; 

MS (ESI) calcd (M+H)+ 629.1746 found 629.1741. 

 

 

 

 

 

 

 

 

 

 

 



                                                                       

 

 

88 

1H NMR 

 
13C NMR 

 



                                                                       

 

 

89 

25

N N

Cl Cl
B

Br

 
 

Methylmagnesium bromide (48 �l, 0.144 mmol) in diethyl ether was added to a solution 

of 21 (20 mg, 0.048 mmol) in 3 ml dry THF purged with N2. The solution was complete 

at room temperature only in 2 min and then quenched with ammonium chloride aqueous. 

The product was extracted with dichloromethane (2 x 10 ml) and washed with sodium 

bicarbonate (2 x 10 ml) and water (2 x 10 ml). Then the combined organic layers were 

dried over anhydrous sodium sulfate, concentrated and applied to a silica gel flash 

column using hexane to yield an orange solid (11.2 mg, 57%). Rf = 0.7 (20 % 

EtOAc/Hexane). 1H NMR (300 MHz, CDCl3) δ 7.66 (d, 2H, J = 8.4 Hz), 7.39 (d, 2H, J = 

8.4 Hz), 6.71 (d, 2H, J = 4.4 Hz), 6.41 (d, 2H, J = 8.4 Hz), 0.43 (s, 6H). 13C NMR (125 

MHz, CDCl3) δ 142.7, 142.1, 132.7, 132.1, 131.8, 128.1, 124.8, 119.1, 6.7. 19F NMR 

(300 MHz, CDCl3) showed no peaks at all; MS (ESI) calcd for C16H11BBrCl2N2
+ 

(M-CH3)+ 390.9576 found 390.9631. 
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19F NMR 

 
 

Mass spectrum 
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26

N N

Cl N
B

Br

COOCH3

 
 

A solution of 25 (11.2 mg, 0.027 mmol) and 22 (26 mg, 0.11 mmol) in 5 ml acetonitrile 

was stirred at room temperature for 6 h. The residue was concentrated and then applied to 

a silica gel flash column using 5 % EtOAc/hexane to yield a red solid (7 mg, 50%). Rf = 

0.2 (10% EtOAc/hexane). 1H NMR (300 MHz, CDCl3) δ 7.60 (d, 2H, J = 8.6 Hz), 7.36 (d, 

2H, J = 8.6 Hz), 6.73 (d, 2H, J = 4.8 Hz), 6.41 (d, 2H, J = 4.3 Hz), 6.31 (d, 2H, J = 4.8 

Hz), 6.26 (d, 2H, J = 4.3 Hz), 3.82 (m, 2H), 3.73 (s, 3H), 3.05 (m, 2H), 2.59 (m, 1H), 

2.08-1.88 (m, 4H), 0.41 (s, 6H). 13C NMR (125 MHz, CDCl3) δ 175.1, 163.7, 136.8, 

134.9, 134.2, 132.6, 132.3, 131.5, 130.5, 123.7, 122.0, 115.3, 113.4, 52.2, 51.7, 40.8, 28.2, 

9.6. 19F NMR (300 MHz, CDCl3) showed no peaks at all; MS (ESI) calcd for 

C24H27BBrClN3O2
+ (M+H)+ 514.1068 found 514.1118. 
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Tin tetrachloride (0.1 ml) in dichloromethane was added to a solution of 21 (20 mg, 0.048 

mmol) and trimethylsilyl cyanide (0.1 ml) in 2 ml dry dichloromethane. The reaction was 

stirred at room temperature for 2 h and then concentrated. The residue was applied to a 

silica gel flash column using 10 % EtOAc/hexane to yield orange solid (20 mg, 100%). Rf 

= 0.2 (15% EtOAc/hexane). 1H NMR (300 MHz, CDCl3) δ 7.72 (d, 2H, J = 8.2 Hz), 7.39 

(d, 2H, J = 8.2 Hz), 6.93 (d, 2H, J = 4.4 Hz), 6.57 (d, 2H, J = 4.4 Hz); 13C NMR (75 MHz, 

CDCl3) δ 146.8, 143.0, 132.7, 132.4, 132.2, 132.0, 130.8, 126.4, 120.1; 19F NMR (300 

MHz, CDCl3) δ 15.50 (q); MS (ESI) calcd for C17H9BBrF2N4
+ (M+H)+ 397.01 found 

396.95.�
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Boron trifluoride etherate (0.1 ml) was added to a solution of 21 (20 mg, 0.048 mmol) 

and trimethylsilyl cyanide (0.1 ml) in 2 ml dry dichloromethane. The reaction was stirred 

at room temperature for 2 h and then concentrated. The residue was applied to a silica gel 

flash column using 15 % EtOAc/hexane to yield an orange solid (20 mg, 100%). Rf = 0.1 

(15% EtOAc/hexane). 1H NMR (300 MHz, CDCl3) δ 7.74 (d, 2H, J = 8.4 Hz), 7.40 (d, 

2H, J = 8.4 Hz), 7.03 (d, 2H, J = 4.4 Hz), 6.68 (d, 2H, J = 4.4 Hz); 13C NMR (75 MHz, 

CDCl3) δ 146.5, 143.4, 132.6, 132.5, 132.0, 130.4, 126.9, 120.5; 19F NMR (300 MHz, 

CDCl3) showed no peaks at all; MS (ESI) calcd for C19H9BBrN6
+ (M+H)+ 411.02 found 

411.00. 
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Tin tetrachloride (50 �l, 6 eq) in dichloromethane was added to a solution of 23 (25 mg, 

0.047 mmol) and trimethylsilyl cyanide (40 �l, 6 eq) in 2 ml dry dichloromethane. The 

reaction was stirred at room temperature for 10 min and then concentrated. The residue 

was applied to a silica gel flash column using 35 % EtOAc/gexane to yield an orange 

solid (23.5 mg, 93%). Rf = 0.2 (40% EtOAc/hexane). 1H NMR (300 MHz, CDCl3) δ 7.63 

(d, 2H, J = 8.7 Hz), 7.30 (d, 2H, J = 8.7 Hz), 6.93 (d, 1H, J = 5.4 Hz), 6.42 (dd, 2H, J = 

4.4, 3.9 Hz), 6.36 (d, 1H, J = 3.9 Hz) 4.44 (m, 2H), 3.74 (m, 2H), 3.74 (s, 3H), 2.80 (m, 

1H), 2.28-2.06 (m, 4H); 13C NMR (75 MHz, CDCl3) δ 173.9, 162.7, 135.9, 132.8, 132.4, 

132.0 (2), 131.2, 129.2, 124.4, 121.3, 115.2, 114.9, 52.3, 51.7, 39.9, 28.5; 19F NMR (300 

MHz, CDCl3) showed no peaks at all; MS (ESI) calcd for C24H20BBrClN5O2Li+ (M+Li)+ 

542.07 found 542.06. 
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Tin tetrachloride (12 �l, 0.5 eq) in dichloromethane was added to a solution of 24 (15 mg, 

0.024 mmol) and trimethylsilyl cyanide (16 �l, 5 eq) in 2 ml dry dichloromethane. The 

reaction was stirred at room temperature for 3 h and then concentrated. The residue was 

applied to a silica gel flash column using 30 % EtOAc/hexane to yield a purple solid 

(23.5 mg, 93%). Rf = 0.15 (40% EtOAc/hexane). 1H NMR (300 MHz, CDCl3) δ 7.62 (d, 

2H, J = 8.6 Hz), 7.33 (d, 2H, J = 8.6 Hz), 6.68 (d, 2H, J = 4.6 Hz), 6.26 (d, 2H, J = 4.6 

Hz), 3.86 (m, 4H), 3.74 (s, 6H), 3.23 (m, 4H), 2.64 (m, 2H), 2.14 (m, 8H); 13C NMR (125 

MHz, CDCl3) δ 175.1, 160.9, 133.2, 132.2, 131.9, 129.2, 129.1, 124.3, 110.7, 52.2, 40.5, 

28.3, 23.0; 19F NMR (300 MHz, CDCl3) showed no peaks at all; MS (ESI) calcd for 

C31H33BBrN6O4
+ (M+H)+ 643.1840 found 643.1380. 
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16-avidin  
 

A solution of compound 16 (10 eq) in THF (20 �l) was added into a solution of avidin (2 

mg) in 0.1 N NaHCO3 buffer (pH = 8.3, 0.5ml). The solution was shaken in the dark for 1 

h at room temperature. Then the residue was purified by PD10 desalting column.   
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31  

Sodium bicarbonate (2eq) was added to a solution of sodium 2-mercaptoethanesulfonate 

(50 mg) and compound 16 in THF/H2O (2:1, 10 ml). The mixture was stirred at room 

temperature for 6 h. After removal the solvents, the residue was applied to a silica gel 

flash column using 10 % MeOH/CH2Cl2 to yield purple solid (80 mg, 58%). Rf = 0.3 

(20% MeOH/CH2Cl2). 1H NMR (300 MHz, CD3OD) δ 7.62 (m, 1H), 7.19 (br, 1H), 7.12 

(d, 1H, J = 4.2 Hz ), 6.49 (d, 1H, J = 3.6 Hz), 3.64 (m, 2H) 3.24 (m, 2H); 19F NMR (300 

MHz, CD3OD) 139.17 (s), 46.89 (q, JBF = 28.2 Hz). MS (ESI) calcd for 

C12H8BClF5N2O3S2
- (M-Na)- 432.97 found 432.93. 
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A solution of compound 31 (10 eq) in 0.1 N NaHCO3 buffer (pH = 8.3, 20 �l) was added 

into a solution of avidin (2 mg) in the same buffer (0.5ml). The solution was shaken in 

the dark for 1 h at room temperature. Then the residue was purified by PD10 desalting 

column. 
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6-Aminohexanoic acid (24 mg) and compound 16 (30 mg) were dissolved in the 

co-solvent THF/H2O (2:1, 5ml). The solution was stirred at room temperature for 12 h. 

After removal the solvents, the residue was applied to a silica gel flash column using 40 

% EtOAc/hexane to yield a yellow solid (28 mg, 72%). Rf = 0.3 (50% EtOAc/hexane). 1H 

NMR (500 MHz, CD3OD) δ 7.50 (m, 1H), 6.78 (d, 1H, J = 5.5 Hz),6.66 (br, 1H), 6.19 (d, 

1H, J = 3.9 Hz), 3.53 (t, 2H, J = 7.1 Hz) 2.31 (t, 2H, J = 7.3 Hz), 1.73-1.62 (m, 4H), 1.43 

(m, 2H); 13C NMR (125 MHz, CD3OD) δ 176.3, 163.5, 135.3, 128.0, 126.4, 124.6, 122.4 

117.0, 116.9, 113.3 (q, J = 33.4 Hz ), 112.4, 45.1, 33.7, 30.3, 25.9, 24.5;  
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33  
 

6-Aminohexanoic acid (3 eq) was added to a solution of compound 31 (20 mg) in 5 ml 

water. The solution was stirred at room temperature for 48 h. After removal the solvents, 

the residue was applied to a silica gel flash column 10 % MeOH/CH2Cl2. However, it was 

really hard to separate the desired product, only 2 mg yield a purple solid was obtained. 

Rf = 0.2 (20% MeOH/CH2Cl2). 1H NMR (500 MHz, CD3OD) δ 7.53 (m, 1H), 6.87 (d, 1H, 

J = 5.5 Hz),6.71 (br, 1H), 6.47 (d, 1H, J = 3.9 Hz), 3.58 (t, 2H, J = 6.51 Hz) 3.23 (m, 2H), 

3.07 (m, 2H), 2.21 (t, 2H, J = 7.0 Hz), 1.74-1.62 (m, 4H), 1.44 (m, 2H); MS (ESI) calcd 

for C18H20BF5N3O5S2
- (M-Na)- 528.09 found 528.02. 
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APPENDIX B 

 EXPERIMENTAL DATA FOR CHAPTER III 
 

General Experimental Procedures. All chemicals were obtained from commercial 

suppliers and used without further purification. Chromatography on silica gel was 

performed using a forced flow of the indicated solvent on EM reagents silica gel 60 

(230-400 mesh). 1H NMR spectra were recorded at room temperature and chemical shifts 

are reports in ppm from the solvent resonance (CDCl3 7.24 ppm). Data are reported as 

follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = 

broad, m = multiplet), number of protons, and coupling of constants. Proton decoupled 
13C NMR spectra were also reported at room temperature. Chemical shifts are reported in 

ppm from tetramethylsiliane resonance (CDCl3 77.2 ppm). Mass spectra were measured 

under ESI condition.  
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A solution of 4-nitrobenzaldehyde (1.8 g, 12 mmol) and 2,4-dimethylpyrrole (2.46 ml, 24 

mmol) in dry CH2Cl2 (200 ml) was purged with N2 for 30 min at room temperature.  0.1 

ml TFA was added to initiate the condensation.  After 2 h, the resulting solution was 

washed with 0.1 M NaOH (2 x 100 ml) and then water (2 x 100 ml), dried over 

anhydrous Na2SO4, filtered, and the solution was rotary evaporated. The resultant product 

was used immediately. The product was dissolved in toluene (75 ml) and DDQ (2.7 g, 12 

mmol) was added in the solution. After 20 min, triethylamine (6 ml, 43 mmol) and Boron 

trifluoride etherate (7 ml, 56 mmol) were added. After stirred for 1.5 h at room 

temperature, the mixture was washed with water (3 x 100 ml), dried over anhydrous 

Na2SO4, filtered, and the solution was evaporated to dryness. The residue was applied to 

a silica gel flash column. Elution with 1:1 CH2Cl2/hexane yielded an orange crystal (1.2 g, 

30 %). Rf = 0.7 (2:1 CH2Cl2/hexane). 1H NMR (300 MHz, CDCl3) δ 8.39 (d, 2H, J = 8.8 

Hz), 7.54 (d, 2H, J = 8.8 Hz), 6.02 (s, 2H), 2.57 (s, 6H), 1.36(s, 6H). 19F NMR (300 MHz, 

CDCl3) δ 30.96 (q). 
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A solution of 34 (500 mg, 1.36 mmol) in 1:1 THF/EtOH (50 ml) was purged with N2 for 

10 min. 10% Pd/C (144 mg, 0.14 mmol) and 1 ml hydrazine were added. The solution 

was stirred at reflux under N2 for 30 min. Cooled to the room temperature and poured 

into 50 ml H2O. The aqueous mixture was extracted with CH2Cl2 (2 x 50 ml). The 

combined organic layers were extract dried over anhydrous Na2SO4, filtered, and the 

solution was rotary evaporated. The residue was applied to a silica gel flash column using 

20% EtOAc/hexane to afford an orange crystal (450 mg, 98%). Rf = 0.2 (20% 

EtOAc/hexane). 1H NMR (300 MHz, CDCl3) δ 7.00 (d, 2H, J = 8.8 Hz), 6.77 (d, 2H, J = 

8.8 Hz), 5.97 (s, 2H), 3.85 (br, 2H), 2.54 (s, 6H), 1.49 (s, 6H). 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                       

 

 

115 

1H NMR 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                       

 

 

116 

N
B
F2

N

NHEt

36  
 

A solution of 34 (200 mg) in 20 ml 1:1 CH2Cl2/EtOH was hydrogenated over 10% Pd/C 

and bubbled with H2 balloon at room temperature for 18 h. The mixture was filtered 

through celite and concentrated. The residue was applied to a silica gel flash column 

using 1:1 CH2Cl2/hexane to afford the orange crystals 36 (Rf = 0.3) and then eluting with 

2:1 CH2Cl2/hexane to yield 35 (Rf = 0.2) (2:1 CH2Cl2/hexane). Longer reaction time will 

give higher yield. 1H NMR (300 MHz, CDCl3) δ 7.04 (d, 2H, J = 8.8 Hz), 6.76 (d, 2H, J 

= 8.8 Hz), 5.97 (s, 2H), 3.22 (q, 2H, J = 7.2 Hz), 2.54 (s, 6H), 1.49 (s, 6H), 1.31 (t, 3H, J 

= 8.8 Hz). 
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A solution of 35 (30 mg, 0.09 mmol) in 2 ml DMF and 5 ml 2 M HCl was cooled to 0oC. 

The solution of NaNO2 (15.3 mg, 0.22mmol) in 2 ml H2O was added slowly and then the 

mixture was kept at 0oC for 30 min. NaN3 (29 mg, 0.45 mmol) in 2 ml H2O was dropwise 

added to the mixture. Some red precipitant was formed after 1 h, filtered and dried under 

vacuum. The residue was applied to a silica gel flash column 5% EtOAc/hexane to afford 

an orange powder. (22 mg, 70%). Rf = 0.5 (20% EtOAc/hexane). 1H NMR (300 MHz, 

CDCl3) δ 7.29 (d, 2H, J = 8.8 Hz), 7.17 (d, 2H, J = 8.8 Hz), 6.00 (s, 2H), 2.56 (s, 6H), 

1.43 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 156.0, 143.2, 141.3, 140.8, 131.8, 129.9, 

121.7, 120.1, 14.9 (2); MS (ESI) calcd for C19H18BF2N5
+ (M+) 365.1623 found 365.1563; 

IR (thin film) 2126, 2096, 1542, 1510, 1309, 1193, 1081, 980, 832, 761 cm-1. 
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To a solution of 37 (10 mg) and Nile red (12 mg) in 5 ml 4:1 THF/H2O was added Cu (4 

mg) and CuSO4 5H2O (1 mg). The mixture was stirred at room temperature for 24 h. 

After filtration, the residue was concentrated and applied to a silica gel flash column 

chromatography using 40-50% EtOAc/hexane to afford an purple solid (16 mg, 82%). Rf 

= 0.15 (40% EtOAc/hexane). 1H NMR (300 MHz, CDCl3) δ 9.16 (d, 2H, J = 1.8 Hz), 

8.57 (s, 1H), 8.41 (d, 1H, J = 8.3 Hz), 8.24 (dd, 1H, J = 8.3, 1.8 Hz), 8.07 (d, 2H, J = 8.6 

Hz), 7.66 (d, 1H, J = 9.0 Hz), 7.56 (d, 2H, J = 8.6 Hz), 6.70 (dd, 1H, J = 9.0, 2.8 Hz), 

6.49 (d, 1H, J = 2.8 Hz), 6.41 (s, 1H), 6.03 (s, 2H), 3.49 (q, 4H, J = 7.1 Hz), 2.59 (s, 6H), 

1.49 (s, 6H), 1.29 (t, 6H, J = 7.1 Hz); 13C NMR (75 MHz, CDCl3) δ 183.4, 156.4, 152.5, 

151.2, 148.3, 147.1, 143.0, 139.7, 139.6, 137.6, 136.0, 132.9 (2), 131.6, 131.4, 130.2, 

127.2, 126.9, 125.3, 121.8 (2), 121.1, 121.0, 118.7, 110.1, 106.0, 96.5, 45.4, 15.0, 14.9, 

12.8; 19F NMR (300 MHz, CDCl3) δ 31.01 (q); MS (ESI) calcd for C41H37BF2N7O2
+ 

(M+H)+ 708.3070 found 708.3074. 
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CuI (1.17 mmol), PdCl2(PPh3)2 (0.62 mmol), and Et3N (100 mmol) were added to a 

solution of compound 24 (3.26 g, 5.12 mmol) in dry DMF (120 ml) into a dry sealed tube.  

The mixture was heated to 80 oC for 12 hours. The DMF was removed under reduced 

pressure. The residue was dissolved in dichloromethane (150 ml), washed with water (2 x 

50 ml), saturated NaCl (50 ml), dried over Na2SO4, and concentrated. The residue was 

passed through a silica gel column with hexane:EtOAc (3:1 to 2:1) to yield a dark purple 

solid (2.55 g, 76%). 1H NMR (300 MHz, CDCl3) ��7.26 (d, 2H, J = 7.7 Hz), 7.12 (d, 2H, 

J = 7.7 Hz), 6.23 (d, 2H, J = 4.10 Hz),5.73 (br, 2 H), 3.75 (br, 4H), 3.44 (s, 6H), 2.83 (br, 

4H), 2.28 (s, 2H), 1.76 (m, 8H), 0.00 (s, 9H);  13C NMR (75 MHz, CDCl3) 175.5, 175.1, 

135.5, 131.6, 130.4, 127.7, 123.7, 104.5, 95.8, 76.6, 51.8, 51.7, 51.0, 29.7, 28.1, 0.0; MS 

(ESI) calcd for C34H42BF2N4O4Si+ (M+H)+ 647.3036, found 647.3048.     
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K2CO3 (1.1 eq) was added to a solution of compound 39 (0.12 g, 0.18 mmol) in MeOH 

(15 ml, not dry). The mixture was stirred at 25 0C for 48 hours. The reaction was 

quenched with 30 ml water, and extracted with dichloromethane (2 x 20 ml). The 

extracted organic layers were washed with saturated NaCl (20 ml), dried over Na2SO4, 

and concentrated. The residue was passed through a silica gel column with hexane:EtOAc 

(3:1 to 2:1) to give a dark purple solid (90.3 mg, 94 %).  1H NMR (500 MHz, CDCl3) 

δ 7.54 (d,  2H, J = 7.5 Hz), 7.39 (d, 2H, J = 7.5 Hz), 6.50 (d, 2H, J = 3.8 Hz), 5.99 (br, 

2H), 4.03 (br, 4H), 3.72 (s, 6H), 3.17 (s, 1H), 3.10 (br, 4H), 2.56 (br, 2H), 2.10-1.91 (m, 

8H); 13C NMR (125 MHz, CDCl3) 175.3, 160.6, 136.1, 131.8, 130.8, 127.9, 122.8, 107.7, 

83.3, 78.6, 52.0, 51.1, 41.0, 28.3; MS (ESI) calcd for C31H34BF2N4O4
+ (M+H)+ 575.2641, 

found 575.2655.     
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41  
 

Cu (2 mg) and CuSO4 5H2O (1 mg) was added to a solution of compound 37 (10 mg) and 

40 (31 mg) in 5 ml 3:1 THF/H2O. The mixture was stirred at room temperature for 24 h. 

After filtration, the residue was concentrated and applied to a silica gel column with 20 % 

EtOAc/hexane to give a dark purple solid (11 mg, 43 %). Rf = 0.15 (20 % EtOAc/hexane). 
1H NMR (300 MHz, CDCl3) δ 8.37 (s, 1H), 8.03 (d,  4H, J = 8.5 Hz), 7.54 (d, 4H, J = 

8.5 Hz), 6.62 (br, 2H), 6.04 (s, 4H), 3.73 (s, 6H), 2.59 (s, 6H), 2.04 (br, 8H), 1.87 (m, 2H), 

1.48 (s, 6H), 1.23 (br, 8H); MS (ESI) calcd for C50H52B2F4N9O4
+ (M+H)+ 940.43, found 

940.41.     
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APPENDIX C 

 EXPERIMENTAL DATA FOR CHAPTER IV 
 

General Experimental Procedures. All chemicals were obtained from commercial 

suppliers and used without further purification. Chromatography on silica gel was 

performed using a forced flow of the indicated solvent on EM reagents silica gel 60 

(230-400 mesh). 1H NMR spectra were recorded at room temperature and chemical shifts 

are reports in ppm from the solvent resonance (CDCl3 7.24 ppm, DMSO-d6 2.50 ppm, 

CD3OD 3.31 ppm, D2O 4.79 ppm). Data are reported as follows: chemical shift, 

multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), 

number of protons, and coupling of constants. Proton decoupled 13C NMR spectra were 

also reported at room temperature. Chemical shifts are reported in ppm from 

tetramethylsiliane resonance (CDCl3 77.2 ppm, DMSO-d6 39.5 ppm, CD3OD 49.1 ppm). 

Mass spectra were measured under ESI condition.  
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A solution of chlorosulfonic acid (22 µl, 0.33 mmol) in CH2Cl2 (2 ml) was added 

dropwise to a solution of BODIPY 34 (100 mg, 0.27 mmol) in CH2Cl2 (25 ml) over 10 

min at -40 oC. Then the resulting solution was slowly warmed up to room temperature. 

After 20 min, TLC showed all of start material was consumed and NaHCO3 aqueous (1.2 

eq) was added to neutralize the solution and extracted the desired product from CH2Cl2. 

The aqueous layer was concentrated under rotary evaporated. The residue was applied to 

a silica gel flash column chromatography (dry load) using 15% MeOH/CH2Cl2 to afford 

the orange powder (80 mg, 63%). Rf = 0.4 (20% MeOH/CH2Cl2). 1H NMR (500 MHz, 

CD3OD) δ 8.46 (d, 2H, J = 8.8 Hz), 7.69 (d, 2H, J = 8.8 Hz), 6.22 (s, 1H), 2.77 (s, 3H), 

2.54 (s, 3H), 1.66 (s, 3H), 1.42 (s, 3H); 13C NMR (125 MHz, CD3OD) δ 161.2, 154.4, 

150.0, 146.6, 142.7, 142.1, 140.8, 134.6, 133.4, 131.3, 129.8, 125.7, 124.3, 15.2, 14.9, 

14.2, 13.5;MS (ESI) calcd for C19H17BF2N3NaO5S- (M-Na)- 448.0950 found 447.9834; 

IR (thin film) 1513, 1343, 1200, 1086, 988, 806 cm-1.    
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A solution of 42 (35 mg, 0.07 mmol) in EtOH (10 ml) was purged with N2 for 10 min. 

10% Pd/C (7.9 mg, 0.1 eq) and 0.05 ml hydrazine were added. The solution was stirred at 

reflux under N2 for 30 min. Cooled to the room temperature, removed Pd/C under 

vacuum filtration and evaporated the solvent. The residue was applied to a silica gel flash 

column chromatography using 15% MeOH/CH2Cl2 to afford the orange solid (30 mg, 

92%). Rf = 0.3 (20% MeOH/CH2Cl2). 1H NMR (500 MHz, CD3OD) δ 6.97 (d, 2H, J = 

8.5 Hz), 6.86 (d, 2H, J = 8.5 Hz), 6.15 (s, 1H), 2.74 (s, 3H), 2.50 (s, 3H), 1.79 (s, 3H), 

1.55 (s, 3H); 13C NMR (125 MHz, CD3OD) δ 159.5, 152.7, 150.7, 147.2, 146.5, 141.2, 

134.8, 133.7, 131.1, 130.0, 124.2, 123.5, 116.6, 15.2, 14.8, 14.1, 13.4; MS (ESI) calcd for 

C19H19BF2N3O3S- (M-Na)- 418.1208 found 418.0397; IR (thin film) 3414, 2922, 1608, 

1540, 1519, 1196, 1036, 684 cm-1.    
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A solution of 43 (29 mg, 0.07 mmol) in 2 ml H2O and 5 ml 2 M HCl was cooled to 0oC. 

The solution of NaNO2 (11.3 mg, 0.16mmol) in 2 ml H2O was added slowly and then the 

mixture was kept at 0oC for 30 min. NaN3 (22 mg, 0.33 mmol) in 2 ml H2O was dropwise 

added to the mixture. Strong green fluorescence showed up after 1 h stirring at room 

temperature. The solution residue was then neutralized with NaHCO3. Decanted H2O and 

the residue was applied to a silica gel flash column chromatography using 15% 

MeOH/CH2Cl2 to afford the orange solid (23 mg, 75%). Rf = 0.3 (20% MeOH/CH2Cl2). 
1H NMR (300 MHz, D2O) δ 6.92 (d, 2H, J = 7.2 Hz), 6.76 (d, 2H, J = 7.2 Hz), 5.81 (s, 

1H), 2.65 (s, 3H), 2.26 (s, 3H), 1.52 (s, 3H), 1.04 (s, 3H) ; 13C NMR (125 MHz, D2O)  

δ 160.0, 152.0, 146.3, 142.7, 141.5, 140.2, 133.0, 131.9, 130.3, 129.3, 129.1, 123.4, 120.1, 

14.4, 14.3, 13.5, 12.6; MS (ESI) calcd for C19H17BF2N5O3S- (M-Na)- 444.1113 found 

444.0220; IR (thin film) 2128, 2105, 1541, 1304, 1192, 1023, 686 cm-1.    
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A solution of chlorosulfonic acid (144 µl, 2.16 mmol) in CH2Cl2 was added dropwise to a 

solution of BODIPY 34 (400 mg, 1.08 mmol) in CH2Cl2 over 10 min at -40 oC. An 

orange precipitate was formed as the solution mixture warmed slowly to the room 

temperature. The disulfonic acid was isolated by the vacuum filtration and treated with 

water. The aqueous solution was neutralized with NaHCO3 (2 eq). The solution was 

concentrated to 5 ml and treated with brine. The desired product was precipitated 

afterwards to afford an orange solid. (630 mg, quat. yield). 1H NMR (300 MHz, D2O) 

δ 8.49 (d, 2H, J = 8.5 Hz), 7.70 (d, 2H, J = 8.5 Hz), 2.77 (s, 6H), 1.63 (s, 6H); 13C NMR 

(75 MHz, D2O) δ 156.1, 148.8, 144.0, 143.6, 140.5, 132.9, 130.2, 129.6, 125.3, 13.8, 13.0; 

MS (ESI) calcd for C19H16BF2N3O8S2
2- (M-2Na)2- 263.5220 found 263.4547; IR (thin 

film) 1522, 1347, 1190, 1004, 853, 669 cm-1.    
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A solution of 45 (200 mg, 0.35 mmol) in EtOH (10 ml) was purged with N2 for 10 min. 

10% Pd/C (37.1 mg, 0.1 eq) and 0.2 ml hydrazine were added. The solution was stirred at 

reflux under N2 for 30 min. Cooled to the room temperature, removed Pd/C under 

vacuum filtration and evaporated the solvent. The residue was applied to a silica gel flash 

column chromatography using 30% MeOH/CH2Cl2 to afford the orange solid (133 mg, 

70%). Rf = 0.2 (30% MeOH/CH2Cl2). 1H NMR (300 MHz, D2O) δ 7.02-6.94 (m, 4H), 

2.70 (s, 6H), 1.70 (s, 6H); 13C NMR (75 MHz, D2O) δ 154.7, 148.2, 144.1, 132.3, 131.2, 

130.0, 123.9, 117.1, 117.0, 13.0 (2); MS (ESI) C19H19BF2N3Na2O6S2
+

 (M+H)+ 544.0572 

found 544.0557; IR (thin film) 3346, 2854, 1608, 1519,1197, 1032, 655 cm-1.    
1H NMR 
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A solution of 46 (100 mg, 0.18 mmol) in 5 ml H2O and 20 ml 2 M HCl was cooled to 0oC. 

The solution of NaNO2 (32 mg, 0.46mmol) in 3 ml H2O was added slowly and then the 

mixture was kept at 0oC for 30 min. NaN3 (60 mg, 0.92 mmol) in 3 ml H2O was dropwise 

added to the mixture. Strong green fluorescence showed up after 1 h stirring at room 

temperature. The solution residue was then neutralized with NaHCO3. Decanted H2O and 

the residue was applied to a silica gel flash column chromatography using 30% 

MeOH/CH2Cl2 to afford the orange solid (88 mg, 77%). Rf = 0.2 (30% MeOH/CH2Cl2). 
1H NMR (300 MHz, D2O) δ 7.33-7.26 (m, 4H), 2.75 (s, 6H), 1.67 (s, 6H); 13C NMR (75 

MHz, D2O) δ 155.5, 146.2, 143.9, 142.0, 132.7, 130.9, 129.9, 129.5, 120.5, 13.7, 13.0; 

MS (ESI) calcd for C19H17BF2IN2O6S2
- (M-2Na+H)- 608.9634 found 608.9776; IR (thin 

film) 2130, 1549, 1295, 1038, 667 cm-1.    
1H NMR 
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To a solution of 47 (40 mg) and hexynoic acid (2 eq) in 5 ml 1:1 THF/H2O was added Cu 

(1 eq), CuSO4•H2O (0.1 eq) and TBTA (0.1 eq).  The reaction was stirred at room 

temperature for 24 h and the solvent was removed in vacuo. The residue was applied to a 

silica gel flash column chromatography using 40% MeOH/CH2Cl2 to afford the orange 

solid (20 mg, 42%). Rf = 0.1 (30% MeOH/CH2Cl2). 1H NMR (500 MHz, D2O) δ 8.30 (s, 

1H) 8.00 (d, 2H, J = 8.3 Hz), 7.49 (d, 2H, J = 8.3 Hz), 2.75 (br, 8H), 2.33 (t, 2H, J = 7.2 

Hz), 1.95 (m, 2H), 1.58 (s, 6H); 13C NMR (125 MHz, D2O) δ 180.0, 155.8, 145.1, 143.8, 

137.7, 134.3, 132.9, 130.6, 129.8, 122.5, 122.0, 121.7, 39.7, 24.6, 24.2, 13.8, 13.1; MS 

(ESI) calcd for C25H24BF2N5O8S2
2- (M-2Na)2- 317.5564 found 317.4960. 
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A solution of chlorosulfonic acid (18 µl, 0.27 mmol) in CH2Cl2 (2 ml) was added 

dropwise to a solution of tetramethyl iodoBODIPY (100 mg, 0.22 mmol) in CH2Cl2 (25 

ml) over 10 min at -40 oC. Then the resulting solution was slowly warmed up to room 

temperature. After 20 min, TLC showed all of start material was consumed and NaHCO3 

aqueous (1.2 eq) was added to neutralize the solution and extracted the desired product 

from CH2Cl2. The aqueous layer was concentrated under rotary evaporated. The residue 

was applied to a silica gel flash column chromatography (dry load) using 15% 

MeOH/CH2Cl2 to afford the orange powder (74 mg, 60%). Rf = 0.4 (20% MeOH/CH2Cl2). 
1H NMR (500 MHz, CD3OD) δ 7.95 (d, 2H, J = 8.3 Hz), 7.14 (d, 2H, J = 8.3 Hz), 6.19 (s, 

1H), 2.75 (s, 3H), 2.52 (s, 3H), 1.70 (s, 3H), 1.46 (s, 3H); 13C NMR (125 MHz, CD3OD) 

δ 159.3, 152.7, 145.7, 142.3, 139.8, 138.8, 134.4, 133.2, 132.7, 130.2, 129.0, 122.8, 94.8, 

14.0, 13.6, 13.0, 12.2; MS (ESI) calcd for C19H17BF2IN2O3S- (M-Na)- 529.0066 found 

528.8784; IR (thin film) 2922, 1717, 1540, 1312, 1193, 1033, 1006, 678 cm-1.    
1H NMR 
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A solution of chlorosulfonic acid (16 µl, 0.236 mmol) in CH2Cl2 was added dropwise to a 

solution of tetramethyl iodoBODIPY (53 mg, 0.118 mmol) in CH2Cl2 over 10 min at -40 
oC. An orange precipitate was formed as the solution mixture warmed slowly to the room 

temperature. The disulfonic acid was isolated by the vacuum filtration and treated with 

water. The aqueous solution was neutralized with NaHCO3 (2 eq). The solution was 

concentrated to 5 ml and treated with brine. The desired product was precipitated 

afterwards to afford an orange solid (68 mg, 88%).  1H NMR (500 MHz, D2O) δ 7.84 (d, 

2H, J = 8.0 Hz), 6.97 (d, 2H, J = 8.0 Hz), 2.57 (s, 6H), 1.49 (s, 6H); 13C NMR (75 MHz, 

D2O) δ 155.5, 145.7, 144.0, 139.2, 133.1, 132.7, 130.6, 129.7, 95.7, 13.7, 13.0; MS (ESI) 

calcd for C19H17BF2IN2O6S2
- (M-2Na+H)- 608.9634 found 608.9776. 
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A solution of chlorosulfonic acid (19 µl, 0.276 mmol) in CH2Cl2 was added dropwise to a 

solution of tetramethyl ethynylBODIPY (48 mg, 0.138 mmol) in CH2Cl2 over 10 min at 

-40 oC. An orange precipitate was formed as the solution mixture warmed slowly to the 

room temperature. The disulfonic acid was isolated by the vacuum filtration to afford an 

orange solid (42 mg, 60%).  1H NMR (300 MHz, D2O) δ 7.66 � d, 2H, J = 8.8 Hz), 7.29 

(d, 2H, J = 8.5 Hz), 3.48 (s, 1H), 2.63 (s, 6H), 1.54 (s, 6H); MS (ESI) calcd for 

C21H18BF2N2O6S2
-
 (M-H)- 507.0667 found 507.0815. 
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A solution of chlorosulfonic acid (19.2 µl, 0.29 mmol) in CH2Cl2 (2 ml) was added 

dropwise to a solution of BODIPY 21 (100 mg, 0.24 mmol) in CH2Cl2 (25 ml) over 10 

min at -40 oC. Then the resulting solution was slowly warmed up to room temperature. 

After 20 min, TLC showed all of start material was consumed and NaHCO3 aqueous (1.2 

eq) was added to neutralize the solution and extracted the desired product from CH2Cl2. 

The aqueous layer was concentrated under rotary evaporated. The residue was applied to 

a silica gel flash column chromatography (dry load) using 15% MeOH/CH2Cl2 to afford 

the orange powder (114 mg, 92%). Rf = 0.4 (20% MeOH/CH2Cl2). 1H NMR (500 MHz, 

CD3OD) δ 7.78 (d, 2H, J = 8.5 Hz), 7.51 (d, 2H, J = 8.5 Hz), 7.10 (s, 1H), 7.08 (s, 1H), 

6.67 (d, 1H, J = 4.63 Hz); 13C NMR (125 MHz, CD3OD) δ 148.9, 145.5, 141.4, 136.3, 

135.7, 134.7, 133.5, 133.2, 132.1, 131.6, 130.0, 127.0, 121.7; MS (ESI) calcd for 

C15H7BBrCl2F2N2O3S- (M-Na)- 492.8799 found 492.7563; IR (thin film) 1572, 1379, 

1259, 1198, 1119, 1055, 667 cm-1.    
1H NMR 
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A solution of chlorosulfonic acid (160 µl, 2.4 mmol) in CH2Cl2 was added dropwise to a 

solution of BODIPY 21 (500 mg, 1.2 mmol) in CH2Cl2 over 10 min at -40 oC. An orange 

precipitate was formed as the solution mixture warmed slowly to the room temperature. 

The disulfonic acid was isolated by the vacuum filtration and treated with water. The 

aqueous solution was neutralized with NaHCO3 (2 eq). The solution was concentrated to 

5 ml and treated with brine. The desired product was precipitated afterwards to afford an 

orange solid (624 mg, 85%). 1H NMR (500 MHz, D2O) δ 7.73 (d, 2H, J = 8.4 Hz), 7.45 

(d, 2H, J = 8.4 Hz), 7.27 (s, 2H); 13C NMR (75 MHz, D2O) δ 147.6, 141.9, 133.7, 132.6, 

132.3, 131.8, 131.5, 130.0, 126.7; MS (ESI) calcd for C15H6BBrCl2F2N2Na2O6S2
2- 

(M-2Na)2- 285.9135 found  285.8405; IR (thin film) 2968, 1572, 1382, 1206, 1033, 650 

cm-1.    
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Pyrrole (25 ml, 370 mmol) and 4-nitrobenzaldehyde (2.23 g, 14.8 mmol) were added to a 

dry round-bottomed flask and degassed with a stream of N2 for 5 min. TFA (0.1 ml) was 

then added, and the solution was stirred under N2 at room temperature for 1 h and then 

quenched with 0.1 M NaOH. Ethyl acetate was then added. The organic phase was 

washed with water (3 x 50 ml) and dried over anhydrous Na2SO4, filtered, and the 

solution was rotary evaporated. The crude (95% pure) product 54 was solidified from 

EtOAc/hexane as the green powder (3.3 g, 84 % crude yield). It was used to synthesize 

55 directly without any further purification.  
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A solution of 55 (3.3 g, 12.3 mmol) in 100 ml dry THF was purged with N2 and cooled to 

-78oC. To the cooled solution, a suspension of N-chlorosuccinimide (3.5 g, 25.9 mml) in 

40 ml THF was added. The reaction mixture was stirred at -78oC for 1.5 h, then warmed 

up to the room temperature and stirred for additional 3 h. 50 ml H2O was added to the 

mixture. After extraction with CH2Cl2 (3 x 100 ml), the combined organic layers were 

dried over anhydrous Na2SO4, filtered, and the solution was rotary evaporated. The 

residue was used for oxidation immediately without further purification.  

 

DDQ (2.8 g, 12.3 mmol) was added to the solution of dichloro-dipyrromethane in 150 ml 

CH2Cl2. The mixture was stirred at the room temperature for 1 h. After evaporation the 

solvent, the residue was applied to a silica gel flash column chromatography using 20% 

EtOAc/Hexane to afford the orange powder (1.7 g, 42 % for 2 steps). Rf = 0.7 (20% 

EtOAc/hexane). 1H NMR (300 MHz, CDCl3) δ 8.34 (d, 2H, J = 8.8 Hz), 7.63 (d, 2H, J = 

8.8 Hz), 6.43 (d, 2H, J = 4.3 Hz), 6.30 (d, 2H, J = 4.3 Hz), 1.56 (br, 1H); 13C NMR (75 

MHz, CDCl3) δ 148.5, 143.1, 142.1, 138.1, 136.7, 131.8, 129.7, 123.3, 118.0. 
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Compound 56 (100 mg, 0.26 mmol) and chlorosulfonic acid (21 µl, 0.31 mmol) were 

reacted by the general procedure. However, the crude product didn’t precipitate from the 

solution. The residue was treated with 10 ml water after dichloromethane was evaporated. 

Then the solution was neutralized with NaHCO3 (66 mg, 0.78 mmol). After evaporation 

the solvent, the residue was applied to a silica gel flash column chromatography (dry load) 

using 10% MeOH/CH2Cl2 to afford the monosulfonated sodium salt 57 as the orange 

powder (115 mg, 90 %). Rf = 0.7 (20% MeOH/CH2Cl2). 1H NMR (300 MHz, DMSO-d6) 

δ 8.42 (d, 2H, J = 8.7 Hz), 7.93 (d, 2H, J = 8.8 Hz), 7.09 (d, 1H, J = 4.5 Hz), 6.84 (d, 1H, 

J = 4.5 Hz), 6.82 (s, 1H); 13C NMR (75 MHz, DMSO-d6) δ 149.6, 145.5, 142.6, 140.1, 

138.2, 134.1, 133.4, 132.7, 132.3, 130.8, 130.0, 124.5, 120.8; MS (ESI) calcd for 

C15H7BCl2F2N3O5S- (M-Na)- 459.9545 found 459.8544; IR (thin film) 2982, 1558, 1390, 

1348, 1197, 1030, 667 cm-1.    
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A solution of chlorosulfonic acid (61 µl, 0.91 mmol) in CH2Cl2 was added dropwise to a 

solution of BODIPY 56 (100 mg, 0.26 mmol) in CH2Cl2 over 10 min at -40 oC. An 

orange precipitate was formed as the solution mixture warmed slowly to the room 

temperature. The disulfonic acid was isolated by the vacuum filtration and treated with 

water. The aqueous solution was neutralized with NaHCO3 (3.5 eq). The solution was 

concentrated to 5 ml and treated with brine. The desired product was precipitated 

afterwards to afford an orange solid (151 mg, 97 %). Rf = 0.1 (20% MeOH/CH2Cl2). 1H 

NMR (300 MHz, D2O) δ 8.30 (d, 2H, J = 7.5 Hz), 7.70 (d, 2H, J = 7.5 Hz), 7.18 (s, 2H); 
13C NMR (75 MHz, D2O) δ 149.4, 145.2, 143.1, 136.8, 134.5, 132.0, 131.3, 124.1; MS 

(ESI) calcd for C15H6BCl2F2N3O8S2
2- (M-2Na)2- 269.4515 found 269.3838; IR (thin film) 

3113, 1519, 1379, 1348, 1200, 1030, 848, 692, 680, 664 cm-1.   

 
1H NMR 

 

 
 



                                                                       

 

 

170 

 

13C NMR 

 
 

 

 

Mass spectrum 

 
 

 

 

 

 

 

 

 

 



                                                                       

 

 

171 

N
B
F2

N

N Cl

Br

SO3NaNaO3S

NaOOC

59  
 

Sodium bicarbonate (3 eq) was added to a solution of compounds 22 (2.1 mg) and 53 (10 

mg) in D2O (2 ml). The solution changed color to dark red immediately. 1H NMR (300 

MHz, D2O) δ 7.55 (d, 2H, J = 8.4 Hz), 7.27 (s, 1H), 7.25 (d, 2H, J = 8.4 Hz), 6.54 (s, 1H), 

4.47 (m, 2H), 3.36 (m, 2H), 2.81 (m, 1H), 1.93-1.71 (m, 4H). 
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Another 3 eq of sodium bicarbonate and 1 eq compound 22 (2.1 mg) was added to a 

solution of 59 in D2O. The mixture was stirred at room temperature for 24 h. 1H NMR 

(300 MHz, D2O) δ 7.67 (d, 2H, J = 8.3 Hz), 7.38 (d, 2H, J = 8.3 Hz), 7.01 (s, 2H), 3.90 

(m, 4H), 3.33 (m, 4H), 2.93 (m, 2H), 2.05-1.75 (m, 8H); 13C NMR (125 MHz, D2O) 

δ 185.3, 164.7, 157.1, 134.6, 132.5, 131.9, 130.5, 128.0, 127.9, 124.3, 51.6, 44.2, 29.4. 
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