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ABSTRACT 

 

Immobilized Metallodithiolate Ligand Supports for Construction 

of Bioinorganic Model Complexes. (December 2007) 

Kayla Nance Green, B.S., Tarleton State University 

Chair of Advisory Committee: Dr. Marcetta Y. Darensbourg 

 

 The A-cluster active site in acetyl coA synthase exploits a Ni(CGC)2- 

metallopeptide as a bidentate ligand to chelate the catalytically active square-planar 

nickel center used to produce acetyl coA.  As Nature utilizes polypeptides to isolate and 

stabilize the active sites, we have set out to immobilize biomimetic complexes to 

polyethylene-glycol (PEG) rich polystyrene polymer beads (TentaGel).  The PEG rich 

resin-beads serve to imitate the peptidic superstructure of enzyme active sites as well as 

to protect the resin-bound models from O2 decomposition.   As a model of the NiN2S2 

ligand observed in the A-cluster of acetyl coA synthase, the CGC tripeptide was 

constructed on resins using Merrifield solid phase peptide synthesis and then metallated 

with NiII to produce bright orange beads.  Derivatization with M(CO)x (M = Rh, W) 

provided qualitative identification of Ο-Ni(CGC)M(CO)x
n- via ATR-FTIR.  

Additionally, Neutron Activation Analysis (NAA) and UV-vis studies have determined 

the concentration of Ni and CGC, and qualitatively identify Ο-Ni(CGC)2-.  Furthermore, 

infrared studies and NAA experiments have been used to identify and quantify Ο-

Ni(CGC)Rh(CO)2
1-. 
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 The S-based reactivity of Ni(ema)2-, a good model of Ni(CGC)2-, toward 

oxygenation and alkylation has been pursued and compared to neutral NiN2S2 

complexes.  The spectroscopic, electrochemical and structural effects of these 

modifications will be discussed and supported using DFT computations and electrostatic 

potential maps of the resulting Ni(ema) O2
2- and Ni(ema) (CH2)3 complexes. 

 Having firmly established the synthesis, characterization and reactivity of 

NiN2S2
2- systems in solution and resin-bound, CuIIN2S2 analogues were explored.  The 

synthesis and identification of solution complexes, Cu(ema)2-, Cu(emi)2-, and Cu(CGC)2- 

via UV-Vis, EPR, and –ESI-MS will be discussed in addition to their S-based reactivity 

with Rh(CO)2
+

.  Furthermore, the resin-bound Cu(CGC)2- complex has been produced 

and characterized by EPR and its Rh(CO)2 adduct  identified by ATR-FTIR and 

compared to the analogous NiN2S2
2- systems.   

 As the active site of [FeFe] Hydrogenase utilizes a unique peptide-bound propane 

dithiolate bridge to support the FeFe organometallic unit, [FeFe]Hydrogenase models 

have been covalently anchored to the resin-beads via similar carboxylic acid 

functionalities.  The characterization (ATR-FTIR, EPR, Neutron Activation Analysis), 

stability and reactivity of the immobilized models complexes are discussed as well as 

work toward establishing the microenvironment of resin-bound complexes.  
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CHAPTER I 

INTRODUCTION 

 

 With the discovery of the dinickel site in the acetyl coA synthase (ACS) 

metalloenzyme (Figure I-1), a new paradigm for di- and poly-metallic enzyme active site 

construction has been recognized.1,2  In this case, one nickel is incorporated into a Cys-

Gly-Cys tripeptide motif, bound by two carboxyamido nitrogens of a cysteine and the 

glycine, along with the sulfurs of both cysteines, in a secure, square-planar N2S2 

coordination site.1,2  The cysteinyl sulfur atoms in turn capture a second nickel ion whose 

coordination environment is well-suited for the organometallic reactions required of the 

ACS enzymatic cycle which include oxidative addition of CH3
+, methyl-CO migratory 

insertion, and reductive elimination of RSC(=O)R'.3  It has been suggested, and 

corroborated by computational chemistry, that the NiN2S2 portion of the active site may 

be considered as a supporting ligand, capable of stabilizing the second nickel in a low- 
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Figure I-1.  Representation of the A-Cluster of acetyl coA synthase.1 
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valent redox level required for the oxidative addition of Me+.3   Another possible 

advantage of the NiN2S2 metalloligand in the ACS active site is its hemi-labile, ring-

opening property which generates an open site on the catalytic metal.4   

 Interestingly there is a passage between ACS and its partner, carbon monoxide 

dehydrogenase (CODH), in the form of a hydrophobic channel through which CO is 

directed from its site of production in CODH to its site of utilization in ACS.1,2  While the 

evolutionary design in proteins produce channels through protein folding, synthetic 

chemists may crudely mimic such isolated catalyst sites by imbedding active site mimics 

in solid-supports.5  Semi-porous resin-beads with solvent channels or microdomains 

formed by lengthy polyethylene glycol chains permit attached catalyst site isolation with 

possibilities for substrate size recognition.5,6,7  The goal of the work described below is to 

lay the foundation for the use of natural metallopeptides as resin-bound ligands for 

potentially catalytically active metals.  In this Introduction I will review solid supports 

and their use to tether reagents or catalysts. 

 

The Roots of Immobilization   

 The separation of reagents and purification of products by anchoring one to a solid 

phase has found many applications throughout chemical history. The use of 

heterogeneous media to carry out a desired chemical process finds its roots at least a 

decade before R.B. Merrifield applied it to the synthesis of peptides, vide infra.  Ion-

exchange resins for catalysis were arguably the first application that utilized polymers to 



  3 

support chemical reactions.8 Since the initial work over half a century ago, investigations 

directed toward the heterogenizing of known solution chemistry via solid-supports have 

found use in an ever-expanding number of fields.  The Novabiochem Catalog carries 

insoluble organic polymeric supports, commonly called resin-beads, that are used for  

solid-phase peptide synthesis, solid-phase organic synthesis, chromatography, 

nucleophilic and electrophilic scavengers, and oxidizing or reducing agents.9   

 Solid-phase supports include silica, nanoparticles, dendrimers, ionic liquids, sol-

gels, and insoluble organic polymers. Insoluble organic polymers will be the focus of this 

work.  Similar underlying principles are utilized in each application using these solid 

supports. That is, the use of a solid support permits easy separation of reagents from 

products, an increased stability of product or catalyst, and, in most cases, an easy 

recovery of the immobilized species.6   These properties serve as the major motivation for 

the enormous number of studies examining the use of various metal complexes for 

catalysis in the past 50+ years.6,7,10   

 The ground-breaking application of reagent-product separation using an organic 

polymer solid-support began with Merrifield’s solid-phase peptide synthesis which was 

recognized by the Nobel prize in 1984 twenty-one years following the initial reports.11, 12   

It began in 1963 when the Annual Reports on the Progress of Chemistry had a brief 

section dedicated to highly significant advances in pure chemistry.13 This article 

highlighted Merrifield’s synthesis of a tetra peptide via consecutive attachment of amino 

acids to an insoluble and microporous solid support.14  As a number of byproducts were 

also reported, several criticized the work as prevailing wisdom assumed complete 
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reactions and purification of polymer supported species would be more difficult than 

solution chemistry.13  However, later that year in the Journal of the American Chemical 

Society, Merrifield reported the total synthesis of the vasodilator bradykinin (9 amino-

acids in length, Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg).15  This initial discovery could 

not have come at a better time as medicinal chemists were realizing the importance of 

peptides as hormones, antibiotics, and other biologically active species.12  During the 

short period of time ~50 years, the synthesis and purification of peptides, up to 200 amino 

acid units, has been greatly optimized resulting in higher yields.16  The field has grown to 

include oligonucleotide and pseudopeptide synthesis. Currently, the automated synthesis 

of peptides based on Merrifield’s approach is considered common-place.  

 Merrifield’s contributions were two-fold: 1) through the use of protecting groups, 

peptide purity increases and racemization decreases.  2)  The use of a solid-support 

facilitates the separation of reagents from products.12  These initial contributions have 

since been expanded upon.   

 It should be pointed out that there are two regimes to consider when working with 

solid-supports.  The first is the synthetic chemistry used to produce the resin-bound 

species, while the second are the properties of by the solid-support itself.  Focusing on the 

latter, choosing the correct resin-bead is the foundation for designing a successful 

synthesis.  For example, the ability for solvent molecules to interact with the resin-beads 

reflects a property known as swelling.  This property permits access of reagents to sites 

embedded within the polymer and is typically considered a desirable attribute.  Lower 

cross-linking, i.e. the extent to which polymer chains are linked to one another,  results in 
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greater mobility of the polymer chain and hence greater swelling in the presence of 

solvents.  Cross-linking is necessary for these supports, however, as it engenders 

structural robustness.  As an example, for polystyrene crosslinked with divinylbenzene, 

an optimal cross-linking of ~1% has been found to give good swelling while avoiding a 

fragile polymer.11  

 The development of new linkers for catalyst or substrate attachment to resin-beads 

has advanced the field of solid phase synthesis.  A few examples are shown in Figure I-2.  

The linker (1) aids in protection of the C-terminal α-carboxyl group during the peptide 

synthesis, and  the linker (2) serves as a chemically reversible linkage between the peptide 

product and the solid-support.  Linkers are usually attached to the terminus of a 

polystyrene backbone.  If a PEG chain is present (discussed below) the linker will be 

attached to the terminus of this moiety.    The number of linkers, or available reactive 

sites is termed the “loading” of the resin and is measured in mmol of reactive sites per 

gram of resin-beads (mmol/g).     

 

Cl

Merrif ield

OMe

MeO

O

O

CF3

O

Rink Acid trif luoroacetate

O

NH2

O

Sieber Amide  

Figure I-2.  Examples of linkers used for reaction initiation sites in solid phase 

synthesis.17 
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 Many of the physical properties of the beads, discussed above, can be manipulated 

to fit the particular needs of an application.  In particular, it is important to consider the 

loading of an immobilized compound.  For example, if the product of a solid-phase 

peptide synthesis is composed of 20+ amino acids, resins with low loading >0.3 mmol/g 

provide the highest yields and purity.18  An additional consideration is that the linker 

generally determines the C-terminal functional group in the final product.9  For example, 

the Rink Amide linker, shown in Figure I-3, uses a primary amine as the platform for 

peptide construction.  Following cleavage, or removal of the peptide from the bead, the 

resulting resin-free peptide has an amidated C-terminus.  Finally, the ultimate mode of 

product cleavage is a factor to consider when choosing an appropriate linker.  Linkers 

may be acid or base labile; they may be cleaved by nucleophiles or even light.17  Thus the 

reaction conditions for cleavage must be quite different from those used to produce the 

immobilized compound.  

 

PEG

H
N

O

O

OMe

OMeNH2

 

Figure I-3.    Representation of TentaGel Beads with a Rink Amide Linker, TentaGel S-

RAM®.  PEG = polyethylene glycol, -CH2-O-CH2-CH2-[O- CH2-CH2-]nO-CH2. 

 

 In Merrifield’s original studies a chloromethylated polystyrene-divinylbenzene 

polymer was utilized.14  Such hydrophobic polystyrene is acceptable for short peptides, 
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but it does not provide the appropriate environment for longer or hydrophilic peptides.  

Therefore, taking account of the factors above, new polymeric solid supports have been 

developed for peptide synthesis as well as other applications.    For example, the grafting 

of polyethylene glycol (PEG) onto the hydrophobic polystryene backbone, endows 

polymers with hydrophilic character.  The grafting technique produces polymers with 

PEG chains of ~3000 M.W. when optimized.16  Such solid-supports are therefore roughly 

70% PEG and 30% polystyrene matrix.16, 19  Thus, the properties of the polymers that lead 

to microenvironments about the reactive sites are largely imparted by the PEG portion of 

the support.16  Additionally, these PEG functionalities increase the range of solvents 

compatible with the support.  The greater degree of swelling imparted by the PEG unit is 

a key component in optimizing the immobilization of reagents on these polymers.  The 

greater the swelling, the more access reagents have to interior sites through resulting 

solvent channels, as shown in Figure I-4.  For these reasons PEG is a common graft or 

spacer used in designing resins.  

 Resin-beads are not limited to polystyrene-divinylbenene polymer backbones.  A 

number of monomer combinations have been used to produce resin-beads.  NovaSyn TG® 

resins are composed of low cross-linked hydroxyethylpolystyrene and grafted with PEG 

between 3000 and 4000 M.W. The beads are about 90-130 μm in diameter making them 

suitable for producing resin-bound chemical libraries as well as for use in continuous flow 

solid-phase peptide synthesis.20 

 Other resin compositions, such as polyacrylamides, are available as well.  Their 

hydrophilic character is more conducive to the synthesis of long-chain peptides and 
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serves as an alternative to low loading polystyrene based resins.16    However, these beads 

degrade over time, particularly in the presence of light, and are prone to uneven 

distribution of reaction sites.21  The grafting of PEG chains, 800 M.W., onto the 

acrylamide backbone provides increased stability to the polymer, making these new resins 

viable for synthesis.22  These PEG-acrylamide (PEGA®) composite resins are generally 

utilized for continuous flow peptide synthesis and are gaining usage in solid-phase 

organic synthesis.  The beads are permeable to macromolecules up to 35 kDa, making 

them ideal for peptide libraries or on resin-enzyme assays, similar to those discussed 

below.23   

 

 

Figure I-4.  Represention of TentaGel® resins showing the PEG chains forming 

microdomains.19  

 

 A resin-bead commonly used for peptide synthesis and the focus of the studies 

herein is TentaGel  S-RAM beads, Figure I-3.  These beads are composed of a 

polystyrene backbone with 1% crosslinking, grafted with PEG, and the PEG termini are 

easily functionalized with a Rink Amide Linker (RAM).  They are purchased from 

Advanced ChemTech or Novabiochem, but are available from many companies in nearly 



  9 

identical form.  The mobility of the PEG chains is reminiscent of tentacles which 

accounts for the name TentaGel beads.  The the primary amine linker which is covalently 

linked to the carboxy functionality of the amino acid provides the site of reactivity.  These 

resins are largely PEG based, and the bulk of the bead mass is found in the length of the 

PEG chains.18  Therefore the number of amine functionalized groups is limited.  The 

number of sites available for reactivity, or loading, generally ranges between 0.20 - 0.40 

mmol/g.24 Cleavage of the resulting peptide is affected with 95% trifluoracetic acid 

resulting in an amidated C-terminus.25 This resin-bead will serve as the basis of the 

studies herein.   

 

Applications of Immobilization 

 The properties imparted by solid-phase peptide synthesis have inspired researchers 

to investigate a range of organic-transformation reactions using polymer supported 

substrates, reagents or catalysts.  The field of heterogeneous catalysis embraces the same 

basic principles as solid phase peptide synthesis; it has also contributed to understanding 

the resin-environment of immobilized species.  A number of excellent reviews have 

detailed the use of polymer supports for catalysis.6,10,26,27  One of the earliest contributions 

in this field utilized Wilkinson’s catalyst anchored via a phosphine linkage to Merrifield 

resins (polystyrene crosslinked with chloromethylated divinylbenzene)  for the 

hydrogenation of alkenes.5  By relating the size of the olefin to the rate of hydrogenation, 

Grubbs and co-workers concluded that the majority of the catalytic activity occurred on 

the inside of the polymer bead.5  This type of bead has since been used to produce 
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supported catalysts for olefin metathesis and asymmetric catalysis. 28, 27,28,29  Other types 

of insoluble polymer supports have been used to immobilize catalysts as well.  Examples 

of these supports include, but are not limited to: polyvinylpyridine30, PEGA-NH2 
31, 

butyldiethylsilyl polystyrene (PS-DES)32, and more recently, PEG based polymers.33        

 The above studies have all shown that when designing a supported catalytic 

system the choice of resin is a paramount factor to consider as different resins result in 

significantly different catalytic performances.  The selection of a resin to support a 

catalyst is guided by many factors which include whether interaction of catalyst sites 

with one another is needed, as in salen type complexes used for asymmetric catalysis.28 A 

resin-bead with high loading and poor swelling is used when catalyst-catalyst interaction 

is desired; the polystyrene beads utilized by Jacobsen for the enantioselective addition of 

phenols to terminal epoxides are an example. 34  On the other hand, catalyst isolation has 

been enhanced through the use of long, flexible spacers, such as PEG, which produce a 

highly swellable polymer support providing separation and more degrees of freedom.  

The latter property allows these catalysts to perform more like a homogeneous catalyst 

while retaining the advantages incurred by the solid support.27,28 

 Despite numerous scientific advances in this field, the number of heterogeneous 

catalysts used in industry is actually quite small as they are plagued by catalyst leaching.35  

Thus the need for a robust linkage between the catalytic complex and the solid support is 

critical to the development of such a system.27  As such, advances in developing what 

Gladyz terms “an ideal catalyst” has been the focus of many reports which have 

culminated in a number of reviews.36 
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 Nature is the ultimate designer of catalysts, metalloenzymes in particular, and in 

the process use proteins or amino acid polymers to provide stable supports for catalytic 

activity which originate in the active site.  As evolution-optimized natural catalysts, 

metalloenzymes utilize peptides as ligands to the catalytic metal and as superstructures 

housing the catalytic site creating a system superior to any man-made analogues.  It is not 

surprising, therefore, that approaches to catalyst design have drawn inspiration from 

nature.  For example, recent work by Ward and coworkers has shown that a rhodium-

diphosphine complex inserted directly into the enzymatic cavity of (strept)avidin will 

support enantioselective hydrogenation chemistry.37  Ward’s research takes advantage of 

weak contacts between the catalytic metal site and the protein environment, termed the 

secondary coordination sphere, to optimize the enantioselectivity of the reaction, Figure I-

5.  Similarly, Lu and co-workers have covalently linked a manganese salen (salen = 

salicylaldehyde ethylene diamine ) complex to apo sperm whale myoglobin resulting in a 

synthetic enzyme active site mimic capable of sulfoxidation activity.38 

 

a)       b)

                

Figure I-5.  (a)  A Rh-diphosphine-cyclooctadiene complex is anchored via  biotin 
(green) to (strept)avidin37 (b)  Manganese salen complex attached to apo sperm whale 
myoglobin to form a synthetic enzyme active site mimic.38  
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 Monitoring the ability of enzymes to enter into swollen resin-beads with 

immobilized substrates, cleave the substrate, and exit has recently garnered interest from 

those studying bio-catalyzed transformations.39  Lebl et al.  and  Bradley et al. have 

shown that enzymes (M.W. = 22-90 KDa) can access and react with substrates (organic or 

peptide) bound to simple polystyrene based resin-beads through solvent channels 

provided by swelling in an aqueous medium.40  The fruit of these labors has revealed that 

each resin-support is unique in its ability to allow access to sites embedded within and for 

biocatalysis to occur inside .   

 

Metalloenzymes as Inspiration for Immobilized Ligands 

 Nature has utilized peptide polymers to provide an environment that is substrate 

selective through solvent channels and to stabilize metallopeptide catalytic intermediates. 

Nature’s constructs also permit separation of the resulting product from the peptide 

attached catalyst.  Although these enzymes are clearly not insoluble polymers, the 

properties imparted by the enzyme superstructure are nevertheless similar to properties of 

resin-beads used for solid-phase peptide synthesis.  Inspired by such properties, the 

attachment of biologically relevant molecules derived from thiolate rich metalloenzymes 

through strong covalent linkages has been explored.    

 Metalloenzymes utilize N, S, and O donors from amino acids to strongly chelate 

metal ions, forming stable coordination sites.  The side chains of the amino acid residues 

may be solely responsible for holding a metal center, as exemplified in most 

metalloproteins, or in a growing number of examples the metal may be bound by the 
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deprotonated carboxyamido nitrogens of the peptide bonds, between residues.  A 

combination of these would surround the metal by the carboxyamido nitrogens as well as 

residue side chains.  A prime example of this hybrid motif is found in the A-cluster active 

site of acetyl coA synthase/carbon monoxide dehydrogenase.1  The A-Cluster utilizes a 

Cys-Gly-Cys (CGC) motif to enforce a square planar geometry on the NiII center 

furtherest from the 4Fe4S cluster, Nid, through the backbone amido nitrogens of one 

cysteine and the glycine.  The side chains of the two cysteine sulfurs complete the 4-

donor set arrangement.  Interestingly, this biological NiN2S2 complex serves as a 

dithiolate-metalloligand to a second Ni, Nip, which is responsible for the C-C coupling 

reaction necessary for the production of acetyl coA, Figure I-1.1,2 
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Figure I-6.  Representation of the active sites from (a) nitrile hydratase41 and (b) 

Ni(SOD).42, 43 
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Figure I-7.  Examples for thiolate reactivity of NiN2S2 complexes. 44    

  

 The N2S2 binding motif is not unique to acetyl coA synthase.  Other enzymes such 

as nitrile hydratase and Ni superoxide dismutase (NiSOD), Figure I-6, construct an N2S2 

donor set using cysteine thiolates and backbone or terminal amines.41,42,43  As such, a 

collection of MN2S2 complexes have been constructed as small molecule models to study 

the reactivity of these N2S2 complexes, with reactivity of added exogenous metals an 

obvious target for NiN2S2 models of the Nid site in ACS.  Shown in Figure I-7, clusters 

and aggregates dominate the products of metal reactivity with the NiN2S2 thiolates.44 

Such aggregation has proven difficult to prevent in the designed synthesis of “simple” 
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bimetallic complexes, such as that observed in acetyl coA synthase.  This will be 

discussed further in Chapter III.  Therefore, an approach similar to that of the enzyme 

appears to be needed for selective assembly of analogues of the biological active site.

 As Nature utilizes peptide chains to isolate and stabilize active sites, we have set 

out to use polyethylene glycol rich resin-beads as mimics of the enzyme superstructure.  

via covalent amide bonds which serve as the anchor for the resin-bound, immobilized  

biomimetic complexes.  Thus far, examples of resin-bound catalytic sites has included (1) 

organometallic catalysts anchored to solid-supports (2) organometallic catalysts housed in 

holo-enzymes and (3) biotransformations of immobilized substrates by enzymes entering 

into resins-beads.  The advantages to separation of reagents and purification of products 

by anchoring one or the other to a solid phase have resulted in a merging of classic 

heterogeneous organometallic complexes and biological chemistry.  Nature’s ability to 

assemble stable metallopeptides embedded within the protein superstructure provides 

inspiration for utilizing these peptide linkages to affix ligands within resin-beads.  

  This dissertation will focus on the work inspired by the enzymatic NiN2S2 

complex, Ni(CGC)2-, and the recent advances in immobilization of organometallic 

catalysts and metallopeptide synthesis. The immobilized metallopeptide, Ο-Ni(CGC)2-, 

obtained by the metallation of the CGC tripeptide immobilized on TentaGel S-RAM® 

beads provides the foundation for this work.  Qualitative and quantitative studies were 

used to identify this bio-inspired resin-bound complex.  These studies spurred on the 

synthesis of resin-bound CuN2S2 systems and [FeFe]-Hydrogenase model complexes in 

order to discover properties that the TentaGel S-RAM® polymer support imparts to resin-
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bound complexes and to expand the characterization techniques used to identify resin-

bound species.   
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CHAPTER II 

EXPERIMENTAL SECTION FOR CHAPTERS III-VII 

 

Abbreviations 

DIC = 1,3-diisopropylcarbodiimide 
 
DIPEA = N,N-diisopropylethylamine 
 
Fmoc = 9-fluorenylmethoxycarbonyl 

HOBt =1-hydroxy-7-azabenzotriazole 
 
IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene  

Mmt =  4-methoxytrityl 

Ni(bmedaco) = Ni-1 = (N-N’-bis-2-mercaptoethyl-N-N’-diazocyclooctane) nickel(II) 

Ni(bme*daco) = bis-(N, N’-2-mercapto-2-methylpropyl)-1,5-diazocyclooctane   

Ni(ema) (CH2)3 = Ni(II) N,N’-ethylenebis(2-propylmercapto-acetamide)  

Rink linker = Trialkoxybenzhydrylamine 

 [Et4N]2[Ni(ema)] = (Tetraethylammonium)(N,N’-ethylenebis-2-mercaptoacetamide) 

 nickel(II) 

 
[Et4N]2[Ni(ema) O2] = [Tetraethylammonium][Ni(II) N,N’-ethylene(N-

 mercaptoacetamide)(N’-sulfinatoacetamide)]  
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General Procedures and Physical Methods 

 Air sensitive reagents and complexes were handled under an inert atmosphere  

using standard Schlenk techniques or a glove box containing an Argon atmosphere.  

Solvents were purified according to standard procedures and were freshly distilled under 

N2 prior to use or purified and degassed via a Bruker solvent system.45  Reagents were 

purchased from commercial sources and used as received unless noted.    

 Solution infrared spectra were recorded on a Bruker Tensor 27 FTIR spectrometer 

using 0.1 mm NaCl sealed cells.  The Pike MIRacle™ attachment from Pike 

Technologies was used for Attenuated Total Reflectance Infrared Spectra for solid state 

samples. UV-Vis spectra were recorded on a Hewlett Packard HP8452A diode array 

spectrometer using quartz cells (1.00 cm path length).  Mass spectrometry experiments 

(ESI-MS) were performed by the Laboratory for Biological Mass Spectrometry at Texas 

A&M University.  Elemental analyses were performed by the Canadian Microanalytical 

Services, Ltd., Delta, British Columbia, Canada. 

 Cyclic Voltammograms were obtained under an Ar atmosphere at 22ºC using a 

BAS100W potentiostat equipped with a 3.0 mm glassy carbon working electrode, a 

platinum wire auxiliary electrode, and Ag/AgNO3 reference electrode.  Measurements 

were performed in a DMF solution with 0.1 M [Bu4N][BF4] as supporting electrolyte.  

Ferrocene was used as an internal standard and values reported are relative to NHE 

(Fc/Fc+ = +692 mV in DMF vs. NHE).46   

 EPR spectra were obtained with a Bruker ESP 300 spectrometer equipped with an 

Oxford ER910 cryostat operating at 10 K.  Samples were 1-2 mM in analyte in DMF 
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solution and were frozen in liquid N2 prior to recording the EPR spectra at low 

temperature (9-12 K).  The g values reported were simulated using the WinEPR Simfonia 

program.47 

Experimental Details for Chapter III 

 Materials.  The Fmoc protected peptides and TentaGel S-RAM® beads were 

obtained from Advanced Chem Tech.  The preparation of Ο-CGC and CGC is shown in 

Figure II-I and followed standard solid-phase peptide techniques. The cis-(pip)2W(CO)4 

(pip =  piperidine), was prepared as described by Darensbourg et al.48  The synthesis of 

K2[Ni(CGC)] and [Et4N]2[Ni(ema)] largely followed literature procedures with small 

deviations and is described in detail below.49,50 The preparation of K2[Ni(CGC)W(CO)4] 

and K2[Ni(CGC)W(CO)5] followed literature procedures. 4,51 

 

1) Fmoc-Cys(Mmt)-OH, DIC, DIPEA, HOBt
2) Piperidine - DMF 1:5 (v/v)
3) Fmoc-Gly-OH, DIC, DIPEA, HOBt
4) Piperidine - DMF 1:5 (v/v)
5) Fmoc-Cys(Mmt)-OH, DIC, DIPEA, HOBt
6) Piperidine - DMF 1:5 (v/v)
7) Acetic Anhydride, Pyridine
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Figure II-I.  Synthesis of Ο-CGC and CGC using solid-phase peptide synthesis. 
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 Synthesis of K2[Ni(CGC)].  The Ac-CGC-CONH2 tripeptide (H4CGC) (120 mg, 

0.38 mmol) and 80 mg (1.44 mmol) of KOH were dissolved in DMF (~20 mL) under an 

argon blanket and allowed to stir for 30 min.  A degassed DMF solution of Ni(acac)2 (94 

mg, 0.36 mmol) was added drop wise to the solution of the tripeptide. The solution 

developed into a red color over the course of 1 h and was allowed to stir overnight.  The 

red solution was then filtered through a pad of Celite and Et2O was added to precipitate a 

light pink solid.  The residual DMF was removed via canula.  The product was washed 

copiously with Et2O and CH3CN and then dried under vacuum. The pink solid is soluble 

solely in DMF.  Yield, 152 mg (89.6%). 1H NMR (d6-dmso): δ 7.44 (d, NH, 1H), 7.36 

(br, NH2, 1H), 6.75 (br, NH2, 1H), 3.57 (br, CH(NHCOCH3), 1H), 3.53 (m,CH(CONH2), 

1H), 3.45-3.18 (m, NCOCH2N, 2H), 2.28 (dd,  CH2CH(CONH2), 1H), 1.81 ( m, 

SCH2CH(NHCOCH3), 1H), 1.77 (s, CH3, 3H), 1.66 (m, SCH2CH(CONH2), 1H), 1.51(m, 

SCH2CH(NHCOCH3), 1H). UV-Vis [EtOH, λmax (ε, L/mol–1cm–1)]: 550 (62), 445 (127), 

275 (12,600). -ESI-MS, m/z: 415.1 {K[Ni(CGC)]}– and 377.1 {H[Ni(CGC)]}–. *The 

Et4N+ salt was also prepared using two equivalents of Et4NCl and was found to be 

soluble in DMF and CH3CN. 

  Synthesis of Resin-Bound [Ni(CGC)]2-.  The N-acylated CysGlyCys peptide was 

constructed on the TentaGel resin-beads using standard Fmoc techniques as shown in 

Figure II-I.  Deprotection of the Mmt protected cysteine with minimal cleavage of the 

tripeptide from the resin was accomplished via a 1:94:5 mixture of trifluoroacetic 

acid:dichloromethane:triisopropylsilane.  The solution was deployed in 5 mL aliquots at 5 

min intervals until the deprotection mixture removed from the peptide-bound resins was 
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no longer yellow, indicating removal of the cysteinyl Mmt thiol-protecting group.   

Following washes (3 x 5 mL each) with pure CH2Cl2 and MeOH solvents, a basic 

solution of green nickel acetylacetonate (25 mg, 0.1 mmol + 22 mg, 0.4 mmol KOH) in 5 

mL of dichloromethane was introduced to the resin bed.  The light-yellow color of the 

beads changed to a bright orange within 30 seconds.  After 10 minutes, the solution 

containing the nickel source was removed and the beads were again washed with CH2Cl2 

solvent until the residual washes were completely colorless.  The beads were dried in 

vacuo and stored in a vacuum desiccator.  They were frequently handled in air with no 

apparent deleterious effects.   

 Synthesis of Resin-Bound Ni(CGC)M(CO)x
n-, –Ni(CGC)W(CO)5

2- and –

Ni(CGC)Rh(CO)2
1- .  A portion of –Ni(CGC)2- (~20 mg) was placed in a syringe and 

CH2Cl2 was used to swell the resin beads.  A yellow solution of (pip)2W(CO)4 (added in 

excess, ca. 2 mg)  in CH2Cl2 was drawn up into the syringe and the mixture was agitated 

for 10 minutes on an automated shaker.  The color of the beads slowly changed from 

bright orange to burnt yellow.  The beads were washed (6 x 10 mL CH2Cl2) and dried 

under vacuum.  ATR-FTIR on dried beads:  ν(CO):  1967w, 1917s, 1850w cm-1.  An 

alternative route a product with identical ν(CO) IR spectrum utilized (THF)W(CO)5. 

 In the same way a red solution of (Rh(CO)2Cl)2 in MeOH/CH2Cl2 was exposed to 

the resin-bound nickel tripeptide. The resulting dark red beads after washing and drying 

had ν(CO) at 2067s and 1990s cm-1. 
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 Synthesis of [Et4N]2[Ni(ema)].  (1) Preparation of N,N’-ethylenebis(2-

(acetylthio)acetamide).  (Part a)  Chloroacetylchloride (24.0 mL, 301 mmol) was added 

to a 500 mL three-neck round bottom flask containing 300 mL chloroform and a large stir 

bar.  A large addition funnel was fitted on top of the three neck flask and filled with 10 

mL of ethylenediamine (150 mmol) and 40 mL chloroform.  The system was then 

degassed with nitrogen and cooled using an ice bath.  The ethylenediamine solution was 

added drop wise over the course of 2-3 h and allowed to stir an addition 30 min.  Then the 

addition funnel was filled with pyridine (24.0 mL, 297 mmol)  which was added drop 

wise.  The reaction mixture was then allowed to warm to room temperature and stirred for 

12-14 h.  Solvent was removed in vacuo to yield a white solid which was treated with 

water and filtered.  The resulting yellow/white solid was with copious amounts of water 

and a small amount of ether. (Yield: ~13 g, 40%)  1H NMR (DMSO-d6):  δ 3.16 (dd, 4), 

4.03 (s, 4), 8.26 (br, 2).  (Part b)  A slurry of 13.6 g (64 mmol) of the above ligand in 200 

mL EtOH was combined with a solution composed of 8.60 g (153 mmol) of KOH and 

12.0 mL (168 mmol) of thiolacetic acid in 100 mL of methanol.  This solution was 

refluxed for 3 h and then stirred at room temperature for 12 h.  During this time, a white 

precipitate formed which was collected via filtration and washed with copious amounts of 

water.  Yellow/white crystalline product was obtained by recyrstallizng the product from 

hot EtOH. (Yield:  ~16 g, 95%) 1H NMR (CDCl3):  δ 2.43 (s, 6), 3.37 (dd,4), 3.54 (s, 4), 

6.67 (br, 2). (2)  Preparation of the Ni complex.  In a large Schlenk flask, 1.61 g (5.51 

mmol) of the ligand from Part b above, 1.54 g (27.4 mmol) of KOH and 1.65 g (10.0 

mmol) of Et4NCl were combined and degassed.  They were then dissolved in 75 mL of 
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MeOH and allowed to stir for 30 min.  A methanol (~50 mL) solution of Ni(OAc)2•4H2O 

(1.24 g, 4.98 mmol) was added drop wise.  The resulting red solution was dried in vacuo 

and redissolved in a minimal amount of CH3CN (~50 mL).  This solution was filtered 

through a pad of Celite, reduced to 20 mL and filtered again.  This concentrated deep red 

solution was then canulated into a Schlenk tube and layered with Et2O, as always under a 

blanket of argon.  Large deep red crystalline blocks were obtained after ~3 days at room 

temperature.  1H NMR (CD3CN):  δ 2.65(s, 4), 2.80 (s, 4). 

 Synthesis of [Et4N]x[Ni(ema)Rh(CO)2]x  (x = 1,2), Complex E. Under an Ar 

atmosphere, red solids (Rh(CO)2Cl)2, νCO (MeCN) 2097, 2026 cm-1
, (30 mg, 0.077 mmol) 

and (Et4N)2Ni(ema) (80 mg, 0.154 mmol) were dissolved in 25 mL of CH3CN and stirred 

for 1 h and filtered through a Celite pad.  A red/brown solid was obtained after 

precipitation with ether and removal of supernatant fluid via cannula.  The crude product 

yield was 0.0434 g (51%).  Further purification involved redissolving the solid in 

CH3OH, precipitation with ether and removal of the supernatant fluid followed by further 

washing with Et2O.  Due to air sensitivity, CO lability, and solvation proclivity, efforts to 

obtain analytically pure compound were not entirely successful.  Crystals of 

crystallographic quality were obtained by layering the CH3CN solution with ether.  ESI-

MS (MeCN):  {[Ni(ema)Rh(CO)2]}- 420 (100%).  ν(CO) (CH3CN):  2061s, 1996s cm-1.  

Anal. Calcd (found) for [NEt4]2[Ni(ema)2(Rh(CO)2)2]·CH3OH or C33H60N6Ni2O9Rh2S4:  

C, 34.88 (35.85); H, 5.32  (6.91); N, 7.40  (6.98). 

 Preparation of [(Ni-1)Rh(CO)2][PF6], Complex D.  Under Ar a sample of 

[Rh(CO)2Cl]2 (0.0281 g, 0.072 mmol) was dissolved in 5 mL CH3CN resulting in a pale 
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yellow solution.  In a separate flask, Ni-1 (0.042 g, 0.144 mmol) and TlPF6 (0.0503 g, 

0.144 mmol) solids were mixed and dissolved in 10 mL CH3CN.  Cannula transfer of the 

purple Ni-1 solution to the Rh source resulted in immediate formation of an orange 

solution with a yellow precipitate of TlCl.  Following 2 h of stirring the solution was 

filtered through Celite, ν(CO) (CH3CN): 2077s, 2017s cm-1.  The solvent was removed in 

vacuo leaving behind a red brown solid, crude yield of 0.013 g, 15.1 % yield.  ESI-MS 

(CH3CN): {[(Ni-1)Rh(CO)2]}+ 420 (100%). Diffraction quality red needles were obtained 

by layering a concentrated CH3CN solution with Et2O. Anal. Calcd (found):  C, 24.2 

(24.5); H, 3.39  (3.49); N, 4.71  (4.83). 

 X-ray Diffraction Analysis:  Experimental conditions for data collection and the 

crystal data for the NiRh bimetallic complexes are shown in Appendix B. Complete 

reports for structures D and E are deposited in the Cambridge Database (D, E: CCDC # 

291355, 291353). Low temperature (110K) x-ray diffraction data were collected on a 

Bruker SMART CCD-based diffractometer (Mo-Kα radiation, λ = 0.71073 Å) and 

covered a hemisphere of space upon combining three sets of exposures. Structures were 

solved by direct methods. Programs used for data collection and cell refinement, Bruker 

XSCANS; data reduction, SHELXTL; absorption correction, SADABS; structure 

solution, SHELXS-97 (Sheldrick); structure refinement, SHELX-97 (Sheldrick), and 

molecular graphics and preparation of material for publication, SHELXTL-Plus, version 

5.1 or later (Bruker). 
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Experimental Details for Chapter IV 

 Preparation of Samples for Neutron Activation Analysis.  In a typical 

experiment a large batch of Ο-Ni(CGC)Rh(CO)2
-1 was synthesized using standard 

procedures described previously and identified via its signature ν(CO) bands.  The batch 

was divided into four separate samples for the analysis as shown in the Table on page 97.  

Sample 1 was stored in a vacuum dessicator and not exposed to any further physical 

stress.   Sample 2 was suspended in benzene and shaken vigorously using a lab-shaker for 

two days before being washed with ether and dried in vacuo.  As the Ο-

Ni(CGC)Rh(CO)2
1- shows a marked air stability not observed for its solution analogue, 

Ni(ema)Rh(CO)2
1-, the air stability of the resin-bound material was further explored.  

Thus, Sample 3 was loaded into a round bottom flask, filled with benzene, and bubbled 

with atmospheric air continuously for 2 days.  Finally, the beads were tested for their 

ability to retain the Ni(CGC)Rh(CO)2
1- moiety through the physical stress of repeated 

swelling (in CH2Cl2). In this experiment, the beads were placed in a fritted syringe with 

benzene, shaken for 2 hrs, washed with Et2O and dried repeatedly for 2 days.     

 Neutron Activation Analysis Method for the Determination of Rh and Ni in 

Organics.  The neutron activation analysis was performed by Dr. Dennis James and staff 

at the Center for Chemical Characterization at Texas A&M University.  Rhodium was 

determined by irradiation of samples and standards for 15 seconds, followed by a 10 

minute delay and 300 second count.  The reaction used was 103Rh (n,(γ) 104Rh) which 

produces a metastable state with half life of 4.4 seconds and a ground state with half life 

of 42 seconds.  The metastable state decays by isomeric transition to the ground state.  
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The cross sections are 11 and 135 barns, respectively.  104Rh decays by beta emission 

associated with the characteristic gamma line at 555 keV, which was used for 

quantification in this work.  Standards were typically small portions of high purity metal 

weighing 2 to 4 mg.  Peak areas for the 555 peak for standard irradiations typically 

exceeded 100,000 counts.  Typically, three standards were processed during each day’s 

experiment, with standard constants being computed and averaged for comparison to 

unknown samples for elemental determinations.  Relative standard deviations for the 

distribution of standard results were typically less than 1%.  Portions of the sample 

matrices weighing 9 to 13 mg were processed in a similar fashion.  Peak areas for 

unknown samples were from a few thousand to several tens of thousand counts.  

Computed detection limits for rhodium using this procedure were about 500 ppm by 

weight.   

 Nickel was measured following a 4 minute irradiation and 500 second count.  

Delay times, up to 3 hours, varied, depending on the concentration levels encountered, to 

maintain an acceptable input count rate and detector dead time.  The 64Ni(n(γ),65Ni) 

reaction and the characteristic reaction product gamma line at 1482 keV were used.  The 

reaction cross section was 1.49 barns.    The half-life of 65Ni is 2.52 hours.  Standards 

consisted of a 1% solution of Ni prepared commercially by dissolution of metal salts in 

dilute nitric acid.  The solution was deposited gravimetrically into the irradiation vial and 

dried prior to analysis.  Again, typical standard peak areas were on the order of 100,000 

counts.  Unknown samples of mass about 10 mg resulted in peak areas of a few thousand 

to a few tens of thousands of counts and a detection limit of about 700 ppm.  A prepared 
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secondary standard, Ni(bmedach), was analyzed as a quality control material.  QC results 

were always acceptable, within a few percent (relative) of the expected results. 

 

Experimental Details for Chapter V 

 Materials.  Cerium ammonium nitrate (CAN) was used as obtained from Strem 

Chemicals.  The [Et4N+]2[Ni(ema)2-] and Ni(ema)•(Me)2 complexes were prepared 

following published procedures and used in CV analysis to be consistent with conditions 

used for the new complexes reported herein.50, 52   

 Synthesis of Ni(ema)•(CH2)3.  To a dark red solution of [Et4N]2[Ni(ema)] (120 

mg, 0.230 mmol in  30 mL CH3CN), dibromopropane (23 μL, 0.230 mmol) was added via 

micro syringe.  The solution developed a bright red hue within 30 sec. The solution was 

stirred for an additional 20 min and stored at -20˚C for 3 days.  Red, X-ray quality blocks, 

stable to air, slowly grew during this time and were collected by filtration and washed 

with ether and small amounts of CH3CN, 41.6 mg (59% yield).  Anal. Calcd (found) for 

C9H14N2NiO2S2: C 35.44(34.83), N 4.63(4.68), H 9.02(9.18). Absorption spectrum  

(MeOH): λmax (ε, M-1 cm-1)  204(20,200), 242(1,547), 396(79), 476(29) nm.  +ESI-MS: 

m/z 326.98 [M+Na]+, 304.5 [M+H]+. Decomposition Point:  233ºC.   

 Synthesis of [Et4N]2[Ni(ema)•O2]. (Route A) A 100 mL Schlenk flask containing 

a dark red solution of [Et4N]2[Ni(ema)] (50 mg,  0.96 mmol in 20 mL CH3CN) was 

backfilled with O2(g) and stirred for 30 min.  The solution was filtered through Celite and 

layered with ether to yield bright red X-ray quality block crystals after 2 weeks.  Yield:  

16 mg (29%).  (Route B)  A CH3CN solution of [Et4N]2[Ni(ema)] (100 mg,  0.19 mmol in 
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20 mL CH3CN) was layered with ether to obtain dark red crystals of [Et4N]2[Ni(ema)] 

after 1 week.8 The supernatant was removed and replaced with ether, covering all 

crystalline material.  The flask was then exposed to small quantities of air and the 

resulting bright red X-ray quality crystals of [Et4N]2[Ni(ema)·O2]  were collected after 

one day.  Yield:  83 mg (78%).  Anal. Calcd (found) for C22H48N4NiO4S2: C 47.57 

(47.64), N 10.09 (10.66), H 8.71 (9.43). Absorption spectrum  (MeOH): λmax (ε, M-1 cm-1)  

250(13,841), 297(469), 413(35) nm.   -ESI-MS: (m/z) 293.9 [M]-, 261.93 [M -O2]-
, 229.97 

[M -SO2] . Melting Point:  157.5-159ºC. IR (CH3CN) ν(S=O) 1151, 1030 cm-1.     

 Oxidation of Ni(ema) (CH2)3.  To a 1 mg (4x10-6 mol) sample of 

Ni(ema) (CH2)3  dissolved in 4 mL of DMF  was added 2 mg (1 equiv) of solid CAN at 

22°C.  The red solution turned to a clear brown color within 10 seconds; over the course 

of minutes the solution turned yellow with subsequent complete bleaching.  An EPR 

sample of the brown product was obtained by placing 200 µL of the reaction mixture into 

a 5-mm tube and immediately freezing in liquid N2.   With NOBF4 as oxidant, no reaction 

was observed. 

 Structure Solution and Refinement.  A BRUKER SMART 1000 X-ray three-

circle diffractometer was employed for crystal screening, unit cell determination and data 

collection. The goniometer was controlled using the SMART software suite, version 

5.625. The X-ray radiation employed was generated from a Mo sealed X-ray tube (Ka = 

0.70173 A˚ with a potential of 50 kV and a current of 40 mA) and filtered with a graphite 

monochromator in the parallel mode (175mmcollimator with 0.5 mm pinholes).  

Integrated intensity information for each reflection was obtained by reduction of the data 
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frames with the program SAINT V6.63.53  The integration method employed a three-

dimensional profiling algorithm and all data were corrected for Lorentz and polarization 

factors, as well as for crystal decay effects.  Finally the data was merged and scaled to 

produce a suitable data set. The absorption correction program SADABS was employed 

to correct the data for absorption effects.54 X-Seed was employed for the final data 

presentation and structure plots.55 The tetraethyl ammonium cation of 

[Et4N]2[Ni(ema)•O2] in MeCN was found to be disordered between two positions. The 

anions were modeled by employing local bond distance restraints and included in the final 

refinement. CCDC reference numbers: 637429 and 637428.   

 Computations. All computations were set-up and analyzed by group member 

Scott Brothers.  Density functional theory (DFT) calculations, including geometry 

optimization and natural bond orbital (NBO) analysis, were performed using a hybrid 

functional (the three-parameter exchange functional of Becke (B3)56 and the correlation 

functional of Lee, Yang, and Parr (LYP)57) (B3LYP) as implemented in GAUSSIAN 03.58 

For each calculation, all atoms were optimized via use of the 6-311g(d,p) basis set.  

Additional NBO calculations were performed with a mixed basis set using Dunning’s 

correlated consistent polarized valence double-ζ (cc-pVDZ) for nitrogen and sulfur 

atoms,59 D95 for hydrogen atoms,60 and  double-ζ + polarization (DZP) for carbon and 

oxygen atoms.61   The nickel center was calculated using a contracted cc-pVTZ basis set, 

whereby the last shell of each type of function was removed to form a cc-pVDZ for Ni.  

Cartesian coordinates for the starting input geometries were extracted from the 

crystallographic structures.  A frequency calculation was performed alongside each 
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geometry optimization to ensure the stability of the ground state as ascertained by the 

absence of imaginary frequencies. Graphical visualizations of the electron density of the 

individual molecular orbitals and the electrostatic potentials were first generated as cube 

files from GAUSSIAN, and these images were implemented into and viewed by the Cerius2 

software package.62  Optimized geometries of each of the complexes were imported into 

and visualized with JIMP2.63  Geometric parameters were extracted from the optimized 

structures by use of the GaussView program.64  For each complex in this text, the energies 

have been converted from values in Hartrees to eV.   

  

Experimental Details for Chapter VI 

 Synthesis of [Et4N]2[Cu(ema)].  In a degassed Schlenk flask N, N’-

ethylenebis(2-mercaptoacetamide) (2.09 g, 4.61 mmol), KOH (1.5 g, 27.8 mmol) and 

tetraethyl ammonium chloride (1.65 g, 10.0 mmol) were combined with 100 mL of 

MeOH and magnetically stirred for 30 min.  The solution was cooled to -78˚C and a 

bright blue methanol (100 mL) solution of Cu(OAc)2 4H2O (0.8 g, 4.3 mmol) was added 

drop wise over the course of 5 minutes.  The reaction was stirred for 15 min during which 

time the light yellow solution changed to maroon and then purple.  The solution was 

quickly filtered through Celite and a purple solid (1.74 g, 83% yield)  was obtained from 

the filtrate by addition of 250 mL of Et2O.  Absorption spectrum (CH3CN): λmax (ε, M-1 

cm-1)  233(24,880), 293 (28,700), 320sh (22,100), 407 (1740) nm.  – ESI-MS: m/z 

266.9275 [M]-.     
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 Synthesis of [Et4N]2[Cu(emi)].  The solids N,N’-ethylenebis(2-

benzylthio)isobutyramide) (1.61 g, 4.62 mmol), KOH (1.5 g, 27.8 mmol) and tetraethyl 

ammonium chloride (1.65 g, 10.0 mmol)  were dissolved in 200 mL methanol and stirred 

for 30 min under a blanket of argon.  The slow addition of Cu(OAc)2 4H2O (0.8 g, 4.3 

mmol) to this solution followed by stirring at room temperature for 30 min produced a red 

solution.  The solution was allowed to stir for an additional 30 min and filtered through a 

Celite pad; addition of Et2O resulted in a microcrystalline mauve solid (1.36 g,  74% 

yield).  Crystals suitable for x-ray diffraction were obtained at -10˚ by layering a 

concentrated CH3CN solution with hexane and then ether. Absorption spectrum  

(CH3CN): λmax (ε, M-1 cm-1)  231 (23,799), 294 (25,250), 319sh (21,300), and 413 (2120) 

nm.  -ESI-MS: m/z 323.0042 [M]-.        

 Synthesis of [Et4N][Cu(ema)Rh(CO)2].  Under an argon blanket, the purple 

solid, [Et4N]2[Cu(ema)] (20 mg, 0.037 mmol), was suspended in 20 mL DMF.  After 30 

minutes stirring the solid was completely dissolved to give a yellow-red solution.  A 

yellow solution of [Rh(CO)2Cl]2 (7.373 mg, 0.0189 mmol) was then added drop wise.  

After stirring for 2 h the resulting red-brown solution showed ν(CO) = 2061, 1982 cm-1.  

A brown solid was obtained following precipitation with Et2O.  Absorption spectrum  

(DMF): λmax (ε, M-1 cm-1)  270(27,610) and 330(18, 610) nm.   

 Synthesis of [Et4N][Cu(emi) Rh(CO)2].  To a red solution of [Et4N]2[Cu(emi)] 

(20 mg, 0.034 mmol) in 20 mL DMF, a yellow solution of  [Rh(CO)2Cl]2 (7.373 mg, 

0.0189 mmol) was added drop wise.  The resulting brown-red solution provided ν(CO) = 
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2062, 1984 cm-1.  A brown solid was obtained following precipitation with Et2O.  

Absorption spectrum  (DMF): λmax (ε, M-1 cm-1)  289(25,260) and 390(18,540) nm.   

 Synthesis of [K]2[Cu(CGC)].  The H4CGC (20 mg, 0.062 mmol) ligand and 

KOH (13.92 mg, 0.0248 mmol) were combined in 20 mL of DMF and allowed to stir for 

20 minutes.  To this a blue solution of Cu(OAc)2•4(H2O) (15.6 mg, 0.0610mmol) was 

added drop wise.  The reaction mixture developed into a mauve purple after 15 minutes 

and was allowed to stir for 1h.  A light purple solid was obtained after precipitation with 

Et4O.  Yield 16.3 mg (70.0% yield). Absorption spectrum (CH3CN): λmax (ε, M-1 cm-1) 

232 (26,185), 294 (18,962), 322sh (13,450) and 367(930) nm.   -ESI-MS: m/z 326.98 

[M+Na]+, 304.5 [M+H]+. 

 Synthesis of Ο-Cu(CGC)2-.  Synthesis of Ο-Cu(CGC)2- in a fritted syringe 

paralleled the procedure used for Ο-Ni(CGC)2- described above for Chapter III.  

Deprotection of the TentaGel-bound, N-acylated, Mmt Cys-S-protected CysGlyCys 

tripeptide was accomplished via a 1:94:5 mixture of trifluoroacetic 

acid:dichloromethane:triisopropyl silane as described for the synthesis of Ο-Ni(CGC)2-.  

Following washes (3 x 5 mL each) with pure CH2Cl2 and MeOH solvent, a basic solution 

of Cu(OAc)2•4H2O in 5 mL of 50:50 methanol:CH2Cl2 was introduced to the resin bed.  

The light-yellow TentaGel beads changed to a deep purple after 2 minutes.  After 30 min, 

the CuII supernatant solution was expelled and the beads were again washed with MeOH, 

CH2Cl2, and Et2O solvent until the residual washes were completely colorless.  The beads 

were dried in vacuo and stored in a vacuum desiccator.   
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 Synthesis of Ο-Cu(CGC)Rh(CO)2
1-.  In an analogous manner to the preparation 

of Ο-Ni(CGC)Rh(CO)2
1-, a sample of Ο-Cu(CGC)2-  was placed in a fritted syringe and 

swelled in DMF.  A yellow CH2Cl2 solution of [Rh(CO)2Cl]2 was added resulting in dark 

red beads after 10 min.  The beads were washed thoroughly with CH2Cl2, MeOH, and 

Et2O (3 x each) and then dried in vacuo.  ATR-FTIR ν(CO) = 2061, 1983 cm-1.   

 

Experimental Details for Chapter VII 

 Materials.   Complexes [A], (μ-pdt-COOH)(Fe(CO)3)2,  and [B], (μ-

pdt)[Fe(CO)3][Fe(CO)2P(C2H4COOH)3], were made according to published procedures 

by group members Dr. Christine Thomas and Tianbiao Liu.65 The IMes carbene was 

obtained as its chloride salt from Acros Chemicals.    

 Methods.  All substitution reactions of Ο-am-[A] and Ο-am-[B] were carried out 

using 20 mg of [FeFe-COOH]H2ase model complexes placed in a 10 mL sample vial.  

The vial was fit with a rubber septa, degassed, covered with foil and then 20 mL of 

degassed THF was added.  The IMes ligand was deprotonated using literature methods 

but is described in detail below.66   

 Infrared spectra of the [FeFe-COOH]H2ase model complex loaded beads were 

obtained using the MIRacle attachment for solid phase samples (ATR-FTIR). The NMR 

samples were prepared by placing ~30 mg of the [FeFe-COOH]H2ase model loaded beads 

into a regular NMR tube and then adding CDCl3 to obtain a suspension of the beads.  To 

ensure the best homogeneity and signal the height of the beads was compared to the 

location of the magnetic field for the instrument, as depicted in Figure II-2.  All 31P NMR 
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spectra were referenced to phosphoric acid.  In a typical experiment, a sample of 

Ni(dppe)Cl2 in CDCl3 was used to obtain a lock signal and to shim.  The phosphoric acid 

reference was then loaded, scanned, and referenced.  Then, the Ni(dppe)Cl2 sample was 

loaded as a double check.  Finally, the resin-bead sample was loaded into the NMR 

instrument for analysis.  An extended number of transients (nt), Ο-am-[A] = 1500+ and 

Ο-am-[B] = 4500, were required to obtain a suitable spectrum for each sample on the 400 

MHz NMR.      

 

 

Figure II-2.  A suspension of Ο-am-[A] in CDCl3 for NMR spectroscopy.  It is aligned 

with a drawing provided by the TAMU NMR facility showing the location of the 

magnetic field with respect to the sample. 

 



  35 

 Synthesis of Ο-am[A].   In a fritted syringe, a 30 mg portion of TentaGel S-

RAM® Resin-Beads (Loading = 0.4 mmol/g, 30 mg = 0.0069 mmol of –NH2 sites)  were 

swollen for about 15 minutes in dry DMF.  Concurrently, a solution of 1.5 mg (0.0042 

mmol) of (μ-pdt-COOH)(Fe(CO)3)2 (ν(CO) = 2077(s), 2034(s), 1992(sh) cm-1 and 

ν(C=O) = 1730(w) cm-1) was dissolved in 5 mL of THF.  To this red solution was added 

roughly 2 μL of DIC (0.0129 mmol) and 5 μL of DIPEA (0.029 mmol).  Any solid (μ-

pdt-COOH)(Fe(CO)3)2 remaining quickly dissolved upon addition of the coupling agents 

indicating complete activation of the carboxylic acid.  The activated (μ-pdt-

COOH)(Fe(CO)3)2 was then combined with the swollen beads by drawing the solution 

into the syringe with a needle.  The syringe was covered with foil to minimize exposure to 

light and the syringe was shaken via a mechanical shaker for 2 h.  The beads were then 

washed 3 x each successively with DMF, MeOH, THF and finally Et2O.  The resulting 

ATR-FTIR of the bright-orange beads showed ν(CO) = 2074(s), 2034(s), and 1993(sh) 

cm-1.  

 Synthesis of Ο-am[B].  In a fritted syringe, a 30 mg portion of TentaGel S-RAM® 

Resin-Beads (Loading = 0.23 mmol/g, 30 mg = 0.0069 mmol –NH2 sites) were swollen 

for about 15 minutes in dry DMF.  Concurrently, a solution of 2 mg (0.00329 mmol) of 

[B] (ν(CO) = 2041(s), 1981(s), 1962(sh), 1920(w) cm-1, 31P: δ = 52.89(s) ppm)  was 

dissolved in 5 mL of THF.  To this red solution was added ca. 2 μL of DIC (0.0129 

mmol) and 5 μL of DIPEA (0.029 mmol).    Any remaining solid quickly dissolved 

indicating complete activation of the carboxylic acid.  The activated [B] was then 

combined with the swollen beads by drawing the solution into the syringe with a needle.  
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The syringe was covered with foil to minimize exposure to light and allowed to shake 

mechanically for 2 h.  The beads were then washed 3 x each successively with THF, 

DMF, MeOH, and finally Et2O.  The resulting ATR-FTIR of the bright-orange beads 

showed ν(CO) = 2038(s), 1976(s), 1950(sh), 1918(w) cm-1. 31P NMR: δ = 52.89(s) ppm.   

 Synthesis of Resin-Bound Ο-[(μ-pdt)(Fe(CO)3)(Fe(CO)2PMe3)].  In a 10 mL 

sample vial containing Ο-am-[A], approximately 15 μL of PMe3 was added via an air-

tight micro syringe and allowed to react for 4 h at room temperature.  The beads were 

then washed 3 x each successively with THF, DMF, MeOH, and finally Et2O.  The 

resulting ATR-FTIR of the red-orange beads showed ν(CO) = 2036(m), 1981(s), 1960 

(sh), 1923(w) cm-1.  31P NMR: δ = 26.1 (s) ppm. 

 Synthesis of Resin-Bound Ο-[(μ-pdt)(Fe(CO)3)(Fe(CO)2PPh3)].  In a sample 

vial with Ο-am-[A]  a THF (~2mL) solution containing 2.5 mg of PPh3 was added via 

cannula and allowed to react overnight at 55˚C.  The beads were then washed 3 x each 

successively with THF, DMF, MeOH and finally Et2O.  The resulting ATR-FTIR of the 

red-orange beads showed ν(CO) = 2045(s), 1985(s), 1960(sh), 1941(w) cm-1.   

 Synthesis of Resin-Bound Ο-[(μ-pdt)( Fe(CO)2PMe3)2].  Approximately, 15 μL 

( 0.0146 mmol) of PMe3 was added to a sample vial with Ο-am-[A] and allowed to react 

for 6 h at 50˚C, manual shaking of vial every 30 min.  The beads were then washed 3 x 

each successively with THF, DMF, MeOH and then Et2O.  The resulting ATR-FTIR of 

the red-orange beads showed ν(CO) = 1980(m), 1943(s), 1899(s) and 1876(w) cm-1.  31P 

NMR: δ = 27.4(s), 20.2(s) ppm.   
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 Synthesis of Resin-Bound Ο-(μ-pdt)[Fe(CO)2PMe3][Fe(CO)2P(C2H4COOH)3].   

A methanol solution ONMe3 (2 mg, 0.026 mmol) was added to Ο-am-[B] followed by 

PMe3 (15 μL, 0.00146 mmol) and heated at 55˚C overnight.  The resulting red-orange 

beads were then washed with THF, DMF, MeOH and Et2O.  ν(CO) = 1981(s), 1943(s), 

1909(w), and 1894(sh) cm-1.   

 Synthesis of Resin-Bound Ο-(μ-pdt)[Fe(CO)2CN][Fe(CO)2P(C2H4COOH)3].   

A methanol solution of [Et4N][CN] (3 mg, 0.0192 mmol)  was added to Ο-am-[B].  The 

orange beads were then washed with THF, DMF, MeOH and Et2O.  The dried beads 

displayed an ATR-FTIR spectrum with ν(CN) = 2076, 2036 cm-1 and ν(CO) = 1971(m), 

1931(s), 1895(w), and 1880(sh) cm-1.     

 Deprotonation of IMes.  According to Arduengo and co-workers, 66 under argon 

the [IMes][Cl] carbene (6.8 mg, 0.0198 mmol) was loaded into a small round-bottom 

flask with KOtBu (2.42 mg, 0.0216 mmol) and suspended in THF (~5 mL) under argon. 

After stirring for 45 minutes a yellow THF solution was obtained.     

 Synthesis of Resin-Bound Ο-[(μ-pdt)( 

Fe(CO)2IMes)(Fe(CO)2P(C2H4COOH)3)].  A methanol solution of ONMe3 (2 mg, 0.026 

mmol) was added to Ο-am-[B] followed by a THF solution of deprotonated IMes.  After 

reaction for 24h at 50˚C the beads were washed 3 x each successively with THF, DMF, 

MeOH, and then Et2O.  The resulting ATR-FTIR of the dried red-orange beads showed 

ν(CO) = 1980(m), 1943(s), 1911(sh), 1893(m) cm-1.   

 Synthesis of Resin-Bound Ο-am-(μ-pdt)[Fe(CO)3][Fe(CO)2IMes].  The 

addition of deprotonated IMes solution to bright orange beads of Ο-am-[(u-
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pdt)(Fe(CO)3)(Fe(CO)2PMe3)] and reacting for 24 h at 55˚ resulted in red-orange beads.  

The resulting ATR-FTIR spectrum following washes with THF, DMF, MeOH, and Et2O 

have ν(CO) = 1982(m), 1962(s), 1903(m), and 1982(sh) cm-1. 
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CHAPTER III 

A NICKEL TRIPEPTIDE AS A METALLODITHIOLATE LIGAND ANCHOR 

FOR RESIN-BOUND ORGANOMETALLICS* 

 

 The structures of numerous inorganic polymetallic compounds confirm the notion 

that NiN2S2 complexes may be considered as molecular construction units whose S-based 

aggregation properties can lead to unique, albeit largely unreactive, clusters.44  This 

aggregative tendency can be controlled by use of interacting electrophiles with low 

affinity for sulfur or by steric blocks.  The latter reaches a pinnacle in catalyst site 

isolation found in proteins, as demonstrated by the A-cluster in the active site of acetyl 

coA synthase, as described in Chapter I.   
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Figure III-1. Representation of the A-cluster active site of acetyl coA synthase.1  

 

  

                                                 
* Reproduced with permission from Green, K. G.; Brothers, Jeffery, S. P.; Reibenspies, J. 
H.; Darensbourg, M. Y. J. Am. Chem. Soc. 2006, 128, 6493-6498.  Copyright 2006 
American Chemical Society. 
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 Small molecule models of metalloenzyme active sites are valuable as synthetic 

analogues of inorganic or organometallic natural products with potential for catalytic 

activity.44  From an array of di- and tetra anionic tetradentate N2S2 ligands bound to 

nickel(II) we have established the following fundamental properties of NiN2S2 complexes 

as metalloligands:  1) They are good electron donors as established by the ν(CO) 

spectroscopy of W(CO)4 derivatives51; 2) NiN2S2 complexes can bind as mono- or 

bidentate ligands, a property fundamental to hemilability4,51; 3)  the additional lone pair 

on each sulfur donor site impose an asymmetric feature to this ligand quite unlike other 

planar ligands.  This steric feature is expressed in terms of a hinge angle defined by the 

NiN2S2 plane with respect to the binding site of the exogenous metal.51  Most important to 

our studies is the ν(CO) spectroscopy of tungsten carbonyl derivatives which can be used 

to identify NiN2S2 ligands.  With this database, we can demonstrate that the naturally 

optimized Ni(CGC)2- ligand of acetyl coA synthase behaves as a typical NiN2S2 ligand to 

W(CO)x moieties (x = 4, 5) and it can also serve as an anchor for organometallics to 

polystyrene resin beads.  Through Attenuated Total Reflectance Fourier Transform 

Infrared Spectroscopy, ATR-FTIR, the solid-supported Ni(CGC)2- is readily detectable as 

metal-carbonyl derivatives matching assignments of ν(CO) vibrational spectra to solution 

phase analogues.  Such an Aufbau of characterization permits extensions to other resin-

bound hybrid biological/organometallic moieties with potential as isolated single site 

catalysts, e.g., {Ni(CGC)Rh(CO)2
–}.   
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Synthesis and Characterization of [Ni(CGC)][W(CO)4]2- and [Ni(CGC)][W(CO)5]2-  

 According to Riordan’s report,49 we have prepared the CysGlyCys tripeptide 

derivative of nickel(II) and, through analogous syntheses which produced the series of 

NiN2S2 derivatives of W(CO)4 and W(CO)5, the K2[Ni(CGC)W(CO)x] (x = 4, 5) 

compounds were prepared and isolated as yellow, air-sensitive non-crystalline solids.4,51  

The potassium salt of [Ni(CGC)W(CO)5]2-
  was also synthesized via the addition of a 

THF solution of W(CO)5(THF), prepared by photolysis of W(CO)6 in THF, to a MeOH 

solution of K2[Ni(CGC)].48  Similarly, the [Ni(CGC)W(CO)4]2-
 complex anion was 

prepared in DMF solution by displacement of the labile piperidine ligands in 

(pip)2W(CO)4 by the thiolato donors from K2[Ni(CGC)].  

 The ν(CO) IR bands and associated CO force constants given in Table III-1 for 

[Ni(CGC)W(CO)4]2-
 and [Ni(CGC)W(CO)5]2-

  are similar to those reported for the 

analogous [Ni(ema)W(CO)4,5]2- complexes (see Chart III-1 for abbreviations).  Shown in 

Chart III-1 are the molecular structures derived from x-ray diffraction analysis of 

[Ni(ema)W(CO)4]2- (A), and the W(CO)5 and Pd(Me)Cl derivatives of Ni-1, B and C, 

respectively.51  As the [Ni(ema)W(CO)5]2- compound has not been crystallized, structure 

B serves as its neutral analogue. 
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Table III-1: CO stretching frequencies (NiN2S2W(CO)4 in dimethylformamide, DMF, 

and NiN2S2W(CO)5 in Tetrahydrofuran, THF, solvent) and calculated force constants 

(FC) for the W(CO)x (x = 4,5) derivatives  of the tripeptide Ni(CGC)2- and the Ni(ema)2-

complex ions. The vibrational mode assignments and the calculation of force constants 

are according to ref. 67. 

 

 

 

K2[Ni(CGC)] 1988w, 1863s, 1845sh , 1793ms cm-1 2061w, 1974sh, 1917s, 1869m cm-1 

FC (mdyn/Å) k1 = 13.43, k2 = 14.92, ki = 0.45 k1 = 15.55, k2 = 14.28, ki = 0.36 

[NEt4]2[Ni(ema)] 1986w, 1867s, 1837sh, 1791m cm-1 2060w, 1967sh, 1918s, 1868m cm-1 

FC (mdyn/Å) k1 = 13.41, k2 = 14.77, ki = 0.46 k1 = 15.56, k2 = 14.28, ki = 0.35 

 

 

  

 

Abbreviations:  Ni(ema)2- = (N,N'-ethylenebis-2-mercaptoacetamide) nickel(II); Ni-1 = (N-N'-bis-2-

mercaptoethyl-N-N'-diazocyclooctane) nickel(II) 
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 The comparison of the ν(CO) stretching frequencies and calculation of the Cotton-

Kraihanzel force constants ranks the donor ability of the Ni(CGC)2- ligand with that of the 

dianionic NiN2S2 complex, Ni(ema)2-, and better than the neutral NiN2S2 as ligands; the 

latter are in turn better electron donors towards the W(CO)x fragments than are classical 

diphosphine or diimine ligands, Figure III-2.51  This ranking has been extended to 

comparisons of ν(CO) of o-phenanthroline and NiN2S2 ligand complexes of PdII in 

[(L2)Pd(CO)(C(=O)CH3]+.51  We conclude that Ni(ema)2-, with its carboxyamido 

nitrogens and its cis dithiolate donors which induce a hinge effect at the bridging sulfurs, 

is a good model for the distal nickel, Nid, of the acetyl coA synthase active site, Figure 

III-1.  It is similar in electron donor properties to the nickel-containing CysGlyCys 

tripeptide motif which supports the organometallic chemistry at the Nip.   
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Figure III-2.  Rank of electron donor ability as evidenced by (NiN2S2)W(CO)4 

derivatives and their respective ν(CO) IR bands and force constants.  
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Preparation of Resin-Bound –Ni(CGC)W(CO)5
2-.   

 Synthesis of Ο-Ni(CGC)2-. Following the design of nature in the construction of 

the ACS active site, we strategized that the resin-bound CysGlyCys tripeptide should 

capture a nickel ion in N2S2 coordination and that this –Ni(CGC) 2- might be detected 

by derivatization with W(CO)x (x = 4,5).  The TentaGel-S RAM solid support was chosen 

for this process as such resins are expected to contain microporous domains and they are 

capable of excellent swelling in a range of solvents.  The latter feature is crucial to the 

synthesis of peptides as well as derivatives of resin-bound peptides.  The Rink linker, 

which produces an amidated carboxy terminus up addition of a concentrated solution of 

trifluoroacetic acid, facilitates the CGC synthesis discussed below.  However, the resin-

bound complexes discussed herein decompose in the presence of acid and therefore 

cannot be cleaved from the resins intact.  They will thus be identified by other means.  

 Thus according to the experiment depicted in Figure III-3, and discussed in detail 

in the Chapter II, 10 mL plastic fritted syringes were used as reaction vessels into which 

ca. 35 mg of TentaGel, polystyrene/polyethylene glycol beads were placed.  The N-

acylated CysGlyCys peptide was constructed on the resin using standard Fmoc 

techniques.  Following removal of the cysteinyl Mmt protecting group, a basic solution of 

Ni(acac)2 in CH2Cl2 was introduced to the resin bed.  Concomitant with bleaching of the 

green nickel solution, the light yellow color of the beads developed into a bright orange. 

The orange beads were dried and stored in a vacuum desiccator, however limited 

exposure to air caused no discoloration or difference to the reactions described below.   
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 Synthesis of Ο-Ni(CGC)W(CO)5
1-. A portion of the dry –Ni(CGC)2- was 

swelled with CH2Cl2 and exposed to a THF solution of W(CO)5 whereupon the beads 

changed from bright orange to a burnt yellow.  Several washes with CH2Cl2 solvent 

preceded vacuum drying of the beads prior to infrared analysis.  That the last wash was 

free of metal carbonyl was verified by its FTIR solution spectrum which showed the 

diatomic region (1800 - 2100 cm-1) to be clear of absorptions.  The dried beads were 

placed on the sample plate of the ATR-FTIR attachment.  The resulting spectrum, Figure 

III-3, showed a pattern match with solution phase [Ni(CGC)W(CO)5]=; the position of the 

intense E mode is identical.  The 20 cm-1shift in position of the low frequency, medium 

intensity A1
2 band, is attributed to ion-pairing effects, more operable for this band which 

is associated with the CO group trans to the S-donor.  The high energy A1
1 band of the 

solution complex was barely observable in the resin-bound analogue.   

 It should be noted that the addition of a green NiII solution to the peptide-free 

polystyrene resin-beads, with both Fmoc protected and deprotected N-termini, resulted in 

no change in the color of the beads.  Additionally, when (pip)2W(CO)4 was added to both 

sets of beads, no color change was observed and there were no observable ν(CO) bands.  

Importantly, the addition of NiII to deprotected –CysGly, a potentially tridentate ligand, 

produced deep red colored beads.  Altogether these controls suggest a cysteine peptide is 

required for binding nickel to the resin.  Furthermore, the CysGlyCys tripeptide creates an 

N2S2 ligand with similar ligating properties to that of solution Ni(CGC)W(CO)x
2- (x = 

4,5). 
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Figure III-3.  (a) The –CGC;  (b) The bright orange beads consisting of –Ni(CGC)2- 

suspended in CH2Cl2; (c) The –[Ni(CGC)]W(CO)5
2- and its ATR-FTIR spectrum.   
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 An interesting contrast to the reactivity of the unsupported Ni(CGC)2- with 

(pip)2W(CO)4 (which produces [Ni(CGC)W(CO)4]2-) was noted as follows:  When 

(pip)2W(CO)4 in CH2Cl2 was added to swelled –Ni(CGC)2-, the ATR-FTIR spectrum 

acquired was identical to the one obtained when W(CO)5(THF) was used as the tungsten 

carbonyl source.  This suggests that CO is released during the synthesis, possibly by both 

the (pip)2W(CO)4 precursor as well as the initial product,4,51 and the released CO is taken 

up by another  –Ni(CGC)W(CO)4
2-.  This CO-scavenging reaction occurred both within 

the confines of the closed syringe reaction vessel as well as when the derivatized beads 

were placed in a larger Schlenk flask kept at constant (1 atm) pressure or bubbled with 

CO.  The capture of CO leads to the thermodynamically favored pentacarbonyl product, 

–Ni(CGC)W(CO)5
2-, expected to be structurally similar to B above.  Notably for both 

resin-bound and resin-free forms of the Ni-W complexes, there is no evidence of further 

substitution of the Ni(CGC)2- by CO to produce W(CO)6.  As found for neutral 

NiN2S2W(CO)5 complexes, the Ni(CGC)2- is tenacious as a mono-dentate, S-donor ligand 

to the 16-electron W(CO)5 species.4,51  The ATR-FTIR spectra of derivatized  resin beads, 

stored as dried solids without exclusion of air, are identical to freshly prepared samples, 

indicating stability at a minimum of two weeks. Consistently, there is no discoloration of 

solvent used to swell the stored beads.  This stabilization is attributed to the hydrophilic 

polyethylene glycol bead environment. 
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Preparation of Resin-Bound –Ni(CGC)Rh(CO)2
1-   

 Further derivatization of the resin-bound Ni tripeptide has been directed towards 

metal carbonyl moieties of potential catalytic ability.   Analogous to diimine and 

diphosphine derivatives,68 neutral NiN2S2 ligands form Ni-Pd binuclear complexes of 

PdII(CH3)2 or PdII(CH3)(Cl), structure C, which exhibit organometallic reactivity of CO 

addition and insertion characteristic of the CO/olefin co-polymerization catalysis of 

polyketone.51  The rhodium(I) dicarbonyl unit, chelated by bidentate diimine or 

diphosphine ligands, is also known to catalyze a range of processes including 

intramolecular hydroamination,69, 70 decarbonylation,71 and carbonylation of methanol.72  

As an analogue to the Pd complexes, RhI(CO)2
+ derivatives of Ni(CGC)2- were pursued. 

 Addition of a CH2Cl2 solution of [Rh(CO)2Cl]2 as the source of RhI(CO)2
+ to 

samples of the solvent-swelled –Ni(CGC)2- led to an immediate change in the orange 

color of the beads to a dark purple/brown hue.  Upon washing with CH2Cl2 and drying as 

described before, the ATR-FTIR spectrum of the beads revealed two sharp bands of equal 

intensity at 2067 and 1990 cm-1, indicative of the A1 symmetric and B1 asymmetric 

vibrational modes of the cis-CO groups at 90º angles (Ia/Is = tan2 θ) as would be expected 

for a square planar S2Rh(CO)2 unit within the –Ni(CGC)Rh(CO)2
-1 bimetallic 

complex.73   
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Synthesis of Solution Analogues, [(Ni-1)Rh(CO)2][PF6] and 

“[NEt4][Ni(ema)Rh(CO)2]” 

 The ability of NiN2S2 to bind to Rh(CO)2
+ was corroborated by synthesis of 

solution analogues that might be amenable to isolation and crystal structure analysis.  On 

mixing of acetonitrile solutions of the red [Rh(CO)2Cl]2 dimer and the dark red 

[NEt4]2[Ni(ema)] compound, a purple/brown solution developed within an hour.  The 

ν(CO) IR spectrum of this solution exhibited two sharp bands of equal intensity at 2063 

and 1992 cm-1, consistent with the expected [NEt4][Ni(ema)Rh(CO)2] product and similar 

in pattern and position to the solid state IR spectrum of –Ni(CGC)Rh(CO)2
-.  The 

negative mode of ESI-MS corroborated the presence of Ni(ema)Rh(CO)2
- via the 

appropriate isotopic bundle at 421 m/z.  The analogous cationic complex based on the 

neutral NiN2S2 complex, [(Ni-1)Rh(CO)2][PF6], was similarly prepared by addition of 

[Rh(CO)2Cl]2 to Ni-1 in CH3CN. The symmetrical two-band ν(CO) IR absorbances for 

the red-orange [(Ni-1)Rh(CO)2]+, are positioned at 2085 and 2017 cm-1.  The significant 

shift to higher frequencies as compared to [NEt4]2[Ni(ema)Rh(CO)2]2 and the –

Ni(CGC)Rh(CO)2
- is consistent with the charge differences in the cationic vs. anionic 

derivatives. 

 Both the [Et4N]2[Ni(ema)Rh(CO)2]2 and [(Ni-1)Rh(CO)2][PF6] salts were 

crystallized and subjected to x-ray diffraction analysis.  The solid state structures are 

given as thermal ellipsoid plots in Figures III-4 and III-5 along with ball and stick 

drawings of alternative views.  In both structures the RhI is in S2(CO)2 square planar 

coordination with cis CO groups.  The [(Ni-1)Rh(CO)2]+  cation is a simple 



  50 

heterobimetallic with a single NiN2S2 unit serving as a bidentate ligand to RhI in the same 

manner as the NiPd complex, structure C above.51  The Ni(ema)2- derivative, however, 

crystallizes as a tetrametallic in which two Ni(ema)2- units serve as bidentate bridges to 

two Rh(CO)2
+ components.  The two S2Rh(CO)2 planes in E are largely eclipsed with 

slight deviation resulting in SRhRhS torsion angles averaging to 16º, Figure A-1.  The 

two S2Rh(CO)2 planes are also, for the most part, parallel.  The extrapolated intersection 

of these two planes is 3.7º.  
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Figure III-4.  Two views of [(Ni-1)Rh(CO)2]+, D, represented by a thermal ellipsoid plot 

as well as a ball and stick drawing;  PF6
- anion excluded. 
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 The intersection of NiN2S2 and RhS2(CO)2 square planes of cation D is 106º, 

which is slightly larger than the 101º angle found in the (Ni-1)Pd(Me)Cl structure C 

above.  An analogous hinge angle is defined for the tetrametallic structure E as the 

intersection of a NiN2S2 plane with the best plane defined by S2Rh2.  This turns out to be 

107.4 and 98º; as the two NiN2S2 units arrange to produce different angles with the 

dirhodium core.  
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Figure III-5.  Two views of [(Ni-ema)Rh(CO)2]2
2-, E, represented by a thermal ellipsoid 

plot and a ball and stick drawing, with Et4N+ cations excluded. 
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There are minor differences in the metric data between the free and bound NiN2S2 

ligand.  The ∠S-Ni-S of 84.65(3)º is slightly smaller in compound D than that of the free 

ligand, i.e., Ni-1, which is 89.4(1)º.  The analogous angles in compound E and its free 

ligand (Ni(ema)2-) are 98.82(5) and 97.44(8).50  The greater rigidity of Ni(ema)2- coupled 

with its larger bite angle may account for the preference for binding in a bidentate 

bridging mode.  It should be mentioned that the S2Rh(CO)2 units in E show less deviation 

from the 90º angles of regular square planarity as compared to structure D.   

  

Conclusions for Chapter III 

 Altogether these results lead to the conclusion that the –Ni(CGC)2- binds to 

Rh(CO)2 producing an S2Rh(CO)2 unit.  While the precise morphology of the resin and 

relative positioning of the resin-bound metalloligands are unknown, other groups have 

shown that polystyrene/polyethylene glycol based resins form microdomains in which site 

isolation is prescribed.19,74  Based on this characteristic of the support utilized in our 

work, it is reasonable to assume that site isolation will limit aggregation and produce a 

complex similar to D.  Although it is not clearly understood, the stabilization of resin-

bound organometallic complexes has been noted.5,6,74  In our case, the prevention of 

deleterious reactions may be attributed to these microdomains formed by the polyethylene 

glycol tentacles of the TentaGel resins. 16,19  Nevertheless in both the heterobimetallic and 

the heterotetrametallic [(NiN2S2)Rh(CO)2]x complexes (x = 1,2) the S donors produce a 

ligand field about RhI that reflects the donor ability of the respective NiN2S2 ligands.  

Interestingly, the sulfur donors from the dianionic NiN2S2, [Ni(ema)Rh(CO)2]- or –
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Ni(CGC)2-, create a Rh(CO)2
+ moiety that has electronic properties similar to Rh(CO)2I2

-, 

(ν(CO) values of 2059 and 1988 cm-1),72 which is a catalyst precursor for the Monsanto 

Acetic Acid Process.  Notably, the industrial catalysis invokes the same key steps of 

methyl oxidative addition, CO insertion, and ultimately reductive elimination, a process 

very similar to the mechanism of ACS.3  The catalytic potential of –Ni(CGC)Rh(CO)2
- 

and solution analogues awaits exploration.  

 Altogether these results lead to the conclusion that the –Ni(CGC)2- binds to 

Rh(CO)2 producing an S2Rh(CO)2 unit.  While the precise morphology of the resin and 

relative positioning of the resin-bound metalloligands are unknown, other groups have 

shown that polystyrene/polyethylene glycol based resins form microdomains in which site 

isolation is prescribed.13  Based on this characteristic of the support utilized in our work, 

it is reasonable to assume that site isolation will limit aggregation and produce a complex 

similar to D.  Although it is not clearly understood, the stabilization of resin-bound 

organometallic complexes has been noted.5,27,29,35  In our case, the prevention of 

deleterious reactions may be attributed to these microdomains formed by the polyethylene 

glycol tentacles of the TentaGel Resins. 11,13  Nevertheless in both the heterobimetallic 

and the heterotetrametallic [(NiN2S2)Rh(CO)2]x complexes (x = 1,2) the S donors produce 

a ligand field about Rh that reflects the donor ability of the respective NiN2S2 ligands.  

Interestingly the sulfur donors from the dianionic NiN2S2, [(Ni-ema)Rh(CO)2]- or –

Ni(CGC)2-, create a Rh(CO)2
+ moiety that has electronic properties similar to  Rh(CO)2I2

-, 

(ν(CO) values of 2059 and 1988 cm-1),72 which is a catalyst precursor for the Monsanto 

Acetic Acid Process.  Notably, the industrial catalysis invokes the same key steps of 
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methyl oxidative addition, CO insertion, and ultimately reductive elimination, a process 

very similar to the mechanism of ACS.4  The catalytic potential of –Ni(CGC)Rh(CO)2
- 

and solution analogues awaits exploration.  

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 



  55 

CHAPTER IV 

THE ACETYL CoA SYNTHASE PARADIGM FOR 

HYBRID BIO-ORGANOMETALLICS: 

QUANTITATIVE MEASURES FOR RESIN-BOUND Ni-Rh COMPLEXES† 

 

   

 In order to have a greater knowledge of the extent to which sites are available for 

incorporating the bioorganometallic hybrids into the resin beads, a quantitative approach 

to establishing resin-attached CGC, Ni and Rh concentrations has been developed.  In the 

following report we describe the sequential approach to quantification of the loading of 

the CGC tripeptide, the incorporation of Ni into this tripeptide and the attachment of 

Rh(CO)2
+ to the Ο-Ni(CGC)2- as well as the stability of the Ο-Ni(CGC)Rh(CO)2

1- adduct.  

Such studies are a reference point for future explorations of heterogeneous reaction 

chemistry based on the nickel tripeptide as an anchor for resin-bound bio-inspired 

organometallic complexes with catalytic potential.   

 

 

                                                 
† Reproduced with permission from Green, K. G.; James, W. D.; Cantillo, A. V.; 
Darensbourg, M.Y. J. Organomet. Chem. 2007, 692, 1392-1397.  Copyright 2006 
Elsevier. 
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b)      
Figure IV-1. a) Representation of the A-Cluster active site of acetyl coA synthase1 and b) 
presumed structure of ACS-inspired complex immobilized on TentaGel Resin.75 

 

Loading of Ni on Ο-Ni(CGC)2- 

 The extent to which the resin beads were derivatized with the Cys-Gly-Cys 

tripeptide, further loaded with nickel(II), and subsequently with rhodium(I) was evaluated 

according to the following protocol.  As shown in Scheme IV-1, the solid phase synthesis 

of the tripeptide resulted in Mmt-protected cysteinyl sulfurs and an Fmoc-protected 

terminal amino group. 75  Deprotection by piperidine induces release of the Fmoc product, 

dibenzofulvene, which produced a pale yellow solution of characteristic λmax = 290 nm.  

Beer’s law analysis of this solution yielded a CGC loading average of 0.143 mmol per 

gram of the resin beads.76  

 As shown in Scheme IV-1, route (a), mild acid conditions selectively cleave the 

Mmt group and retain the amido-Rink linkage to the resin. Concentrated acid conditions, 

route (b), lead to Mmt loss as well as cleavage of the tripeptide as H4CGC.  That the 

H4CGC was the main component on the beads was confirmed by analysis via +ESI-MS.  
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Note that this is the same procedure used previously for preparing solution phase 

Ni(CGC)2-.49   Addition of 1.4 mmol Ni(acac)2 and KOH to the resin-bound ligand, Ο-

H4CGC,  produced bright orange beads within ten minutes. The reaction was allowed to 

proceed for a further 30 minutes to ensure completeness.  (Extended times (days) gave 

identical results.)  Following extensive washes and drying as described in the Chapter II, 

the nickel-loaded beads were analyzed by Neutron Activation Analysis.  The average 

amount of nickel bound to the resin, i.e. the metal loading measured on four separately 

prepared samples, was determined to be 0.144 mmol of Ni atoms per gram of resin 

(mmol/g), as given in Table IV-1.  The concurrence of CGC 

 

 

Scheme IV-1:  Route for determining the CGC loading through Fmoc deprotection to produce 
dibenzofulvene as well as (a) deprotection of the thiolate sulfurs of Ο-Ni(CGC)2- and (b) paralleled 
cleavage and deprotection of the H4CGC tripeptide from the TentaGel Beads.  
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Table IV-1:  Average loading of Ο-Ni(CGC)2- (mmol Ni/g resin bead) determined via 

Neutron Activation Analysis on separately prepared samples.   

 
Sample # Loading (mmol/g) 
1 0.152 
2 0.143 
3 0.152 
4 0.129 
Average 0.144 

 

 

loading as reported in Figure IV-2 and the nickel loading is consistent with the uptake of 

a nickel(II) ion into each Ο-CGC site.  This result is also consistent with earlier studies 

which demonstrated that Ο-Ni(CGC)2- reaction with M(CO)x reagents, (THF)W(CO)5 and 

[Rh(CO)2Cl]2, display ν(CO) IR bands comparable to analogous resin-free complexes of 

[Ni(CGC)·W(CO)5]2- and [Ni(CGC)·Rh(CO)2]1-.75  To verify this conclusion of selective 

NiII binding into the Ο-CGC site, a dichloromethane solution of Ni(acac)2 and KOH was 

added to the underivatized (no peptide present) beads and showed no color change.  

Neutron Activation Analysis showed that the amount of nickel in this sample was less 

than 0.07 mmol/g, thus indicating that the tripeptide is required for binding of the NiII 

component.  
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*  Loading may vary up to 0.01 mmol/g per batch.   
 

Figure IV-2:  Loading of Mmt-protected Ο-CGC; Ο-Ni(CGC)2-; and Ο-

Ni(CGC)Rh(CO)2
-. 
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peptide synthesis due to slightly restricted swelling in dichloromethane (as compared to 

DMF used in the Fmoc analysis above).   

 

Loading of Rh on Ο-Ni(CGC)Rh(CO)2
1- 

 As shown in Figure IV-3, the addition of a dichloromethane solution of 

[Rh(CO)2Cl]2 to the pre-swollen Ο-Ni(CGC)2- beads transforms the orange into a 

purple/brown hue within 5 minutes.  Again mixing time was extended to 30 minutes to 

ensure reagent access to all Ο-Ni(CGC)2- sites. The beads were then washed with 

dichloromethane, methanol and diethyl ether.  The signature ν(CO) bands expressed for 

CH3CN solution phase [Ni(CGC)·RhI(CO)2]- (2058 and 1986 cm-1) were observed for 

these Ni/Rh loaded beads at 2067 and 1990 cm-1 via ATR-FTIR spectroscopy.75  

Determination of the Ni and Rh loading on such derivatized beads showed that the Ni 

loading remained about constant, 0.132 mmol/g, and that the Rh loading was 0.414 

mmol/g yielding a Rh:Ni ratio of ca. 3, Table IV-2.   

The addition of [Rh(CO)2Cl]2 to the beads sans nickel-tripeptide induces an 

immediate color change from yellow to orange/brown.  These beads showed ν(CO) bands 

at 2076s and 1998s cm-1 that dissipated after two hours, a marked difference from the 

stable Ο-Ni(CGC)Rh(CO)2
-1.  Metal analysis of these beads showed Rh loading to equal 

0.221 mmol/g indicating that the PS-PEG polymers bind carbonyl-free rhodium species 

independent from those of the dithiolate-Rh contact in Ο-Ni(CGC)Rh(CO)2
1-.  As 

polyethylene glycol is well known for its ability to form complexes with metal ions, it is 
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assumed to be the site of interaction for the extraneous Rh ions.77  It should be noted that 

attempts to add [Rh(CO)2Cl]2 directly to Ο-CGC gave complicated, transient ν(CO) 

spectra and substantial Rh uptake.  We have seen no indication that rhodium displaces 

nickel in the Ο-Ni(CGC)2- derivatives. 
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Figure IV-3:  Synthetic Route to Ο-Ni(CGC)Rh(CO)2 and its infrared spectrum obtained 

on vacuum dried polystyrene beads via ATR-FTIR. 
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Stability of Ο-Ni(CGC)Rh(CO)2
1- 

 As complexes bound to solid supports, such as those used for heterogeneous 

catalysis, are often plagued by leaching, the robustness of the Ο-Ni(CGC)Rh(CO)2
1- 

complex was investigated under a variety of conditions.  As shown in Table IV-2, and 

discussed in detail in the Experimental Section, several stresses on the environment of the 

Ο-Ni(CGC)Rh(CO)2
1- complex were attempted.  Samples 2-4 showed no discoloration of 

the beads or the supernatant solutions used in the experiments or after being washed with 

ether and dried.  Furthermore the amount of nickel and of rhodium remaining on the 

beads is substantially the same as in the control sample.  The supernatant benzene showed 

no ν(CO) bands and the ether washes were colorless.  The FTIR ν(CO) spectrum of the 

beads showed only a minor decline in intensity.  We have taken this preliminary data as 

indication that the Ni/Rh derivatized beads are largely stable.   

 

Table IV-2:  Ni and Rh loadings for Ο-Ni(CGC)Rh(CO)2
1- resulting from induced stress 

conditions. 
 

Sample Ni Loading 
(mmol/g) 

Rh Loading 
(mmol/g) 

Loading 
Rh: Ni ratio Conditions‡ 

1a 0.132 0.414 3.13 † 

1b 0.134 0.375 2.80 - 

2 0.123 0.415 3.36 Shake in Benzene 

3 0.122 0.421 3.44 Bubbled w/Air 

4 0.126 0.427 3.40 Swell/Dry 

 
‡  Conditions discussed in detail may be found in Experimental Section.  Duration of stress 
in each case was 2 days.   
† Standard = Complex made, washed with CH2Cl2, MeOH, and ether, then vacuum dried.  
Samples 2-4 were derived from batch 1a. 
 



  63 

Conclusion for Chapter IV 

 Neutron Activation Analysis has been used to determine the metal loading of Ni 

and Rh on TentaGel S RAM® beads.  The 1:1 Ni:CGC4- ratio was confirmed via the use 

of the UV-vis spectrum of free Fmoc from deprotection of the terminal amine of the 

terminal cysteine whose concentration matched that of nickel analysis by Neutron 

Activation Analysis.  Control experiments showed that the CGC ligand was necessary in 

order to produce the orange, resin-bound species Ο-Ni(CGC)2- and that no PEG-Ni 

interaction was evident.  In contrast rhodium uptake by the PEG-PS beads was observed, 

however this interaction was not responsible for the ν(CO) bands attributed to Ο-

Ni(CGC)Rh(CO)2
2-.  The rhodium loading was determined to be about 3 Rh atoms per 1 

Ni atom as determined by Neutron Activation Analysis.  The ability for the Ο-Ni(CGC)2- 

ligand to strongly secure the Rh moiety to the solid support implies potential for such 

metallodithiolato ligands to be utilized in catalysis and modeling of enzyme active-sites.  
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CHAPTER V 

AN EXPERIMENTAL AND COMPUTATIONAL STUDY OF SULFUR-

MODIFIED NUCLEOPHILICITY IN A DIANIONIC NiN2S2 COMPLEX‡ 

 

 The discovery of (N2S2)4- donor sites in biology based on Cysteine-X-Cysteine 

tripeptide motifs has prompted examination of small molecule models that build on a well 

known literature that is based on (N2S2)2- ligands which evolved over several decades.78,79  

The chemistry of metalloproteins such as acetyl coA synthase (ACS) and nitrile hydratase 

(NHase) is particularly inviting in that post-translational modification is a controlling 

factor in enzyme activity, and such S-based reactivity can be reproduced in synthetic 

analogues.1,2,41,80,81 

Shown in Scheme V-1 are the results of prior reactivity studies of Holm’s 

[Ni(N2S2)]2- complex, [Ni(ema)]2-, Ni(II) (N,N’-ethylenebis-2-mercaptoacetamide), a 

minimal biomimetic of the Cys-Gly-Cys donor environment of the distal nickel site in 

ACS, containing as does ACS two cis-dithiolato S-donors and two carboxamido N-

donors.1,50  The sulfurs are readily alkylated with MeI, and, when exposed to metal 

sources, unique polynuclear complexes in which exogenous metals are captured by the 

sulfurs are obtained.52,75,82,   The tungsten carbonyl derivative at the 6 o’clock position in 

Scheme V-1 was used to establish that the donor ability of Ni(ema)2- as a 

                                                 
‡ Reproduced with permission from Green, K. G.; Brothers, S. M.; Jenkins, R. M.; 
Carson, C. E.; Grapperhaus, C. A.; Darensbourg, M. Y. Inorg. Chem. 2007, 46, 7536-
7544.  Copyright 2007 American Chemical Society. 
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metallodithiolate ligand is superior to that of neutral NiN2S2 complexes, Figure III-2.75 

Nevertheless, the reactivity of Ni(ema)2- largely mirrors that of neutral NiN2S2 

complexes, emphasizing the nucleophilicity of cis-dithiolates, regardless of the charge on 

the complex.83, 84, 85  
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 A recent addition to the N2S2 family of metalloproteins is Nickel superoxide 

dismutase (NiSOD) which contains an N2SS’ trianionic site involving a His-Cys terminus 

dipeptide with a second cysteine three residues away.42,43  The interest in this active site 

from the view of S-based reactivity in NiN2S2 complexes is that it doesn’t occur! 86  That 
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is, the SOD reaction produces oxygen and peroxide in the dismutation of O2
- while 

avoiding S-oxygenation or S-oxidation.84  Furthermore, a popular and reasonable 

mechanism proposes a NiIII to account for the first oxidation in the ping-pong catalytic 

cycle.42  Current computational and biomimetic investigations into the mechanism have 

assumed inner sphere reactivity and have focused on the role of first coordination sphere 

effects in promoting Ni-based oxidative chemistry.86, 87  For example, the influence of 

anionic carboxyamido nitrogens as contrasted to neutral amine donors in N2S2 dithiolato 

complexes of NiII was explored by Grapperhaus, Kozlowski and Mullins by Density 

Functional Theory, concluding that as the amine donors are sequentially replaced by 

anionic carboxyamido nitrogens, electron density is delocalized onto both the nickel and 

the sulfur atoms.88 Brunold, Maroney and coworkers have suggested that the presence of 

even one carboxyamido nitrogen will direct redox or oxidative activity to the nickel rather 

than sulfur.86  Nevertheless, the potential for second coordination sphere effects is 

obvious from the protein crystal structure, and mechanisms for sulfur protection include 

hydrogen bonding as well as steric interactions.42,88 In view of the clear-cut connections 

between the synthetic and the Cys-X-Cys biological N2S2 ligand sets; of the likelihood 

that such ligand sets will be found in other biological settings; and of the great potential 

for S-based modification of such sites, we have endeavored to further develop the 

reactivity wheel of Scheme V-1 by studies of two additional S-based nucleophilic 

reactions of Ni(ema)2-.  While the reaction of Ni(ema)2-with O2 had previously been 

reported by Hegg, et al.,52, the level of O2 incorporation into nickel dithiolates can be 

complicated (yielding metallo sulfinato, sulfenato and sulfonato species)  and an 
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unambiguous characterization of the product was needed. 83,84  Chapter V reports the 

synthesis, characterization and molecular structures of the dianionic sulfinate 

[Et4N]2[Ni(ema) O2] and the neutral macrocyclic Ni(ema) (CH2)3,  derivatives of 

[Et4N]2[Ni(ema)].  The physical properties of these Ni(ema)2- derivatives as well as 

Density Functional Theory (DFT) calculations, Natural Bond Order (NBO) and  

electrostatic potential (EP) analyses are contrasted within the series of Ni(ema)2- 

derivatives and with certain neutral analogues.   

 

Synthesis and Molecular Structures of (Ni(ema) (CH2)3) and ([Et4N]2[Ni(ema) O2])  

On addition of 1,3-dibromopropane to an acetonitrile solution of 

[Et4N]2[Ni(ema)], a red crystalline, air stable solid of  Ni(ema) (CH2)3 is obtained in good 

yield. The Ni(ema) (CH2)3 is insoluble in hydrocarbons, acetonitrile, dichloromethane, 

and tetrahydrofuran but remains soluble in methanol, DMF, and water as is the 

[Et4N]2[Ni(ema)] precursor. The synthesis of [Et4N]2[Ni(ema) O2] was accomplished via 

two routes.  The higher yielding route results from placing dark red Ni(ema)2- crystals 

under ether and exposing the heterogeneous mixture to small quantities of air.  The 

crystals develop into a lighter, bright red color after 4-6 h as dioxygen diffuses into them.  

Alternatively, an acetonitrile solution of [Et4N]2[Ni(ema)] was slightly pressurized with 

O2(g) and stirred for 30 min.  The solution color perceptibly lightened and the reaction 

was monitored for completeness using UV-Vis and infrared spectroscopies.   

 Thermal ellipsoid plots of the square planar Ni(ema) (CH2)3 and Ni(ema) O2
2- as 

well as crystallographic data and full structural reports for Ni(ema) (CH2)3 and 
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[Et4N]2[Ni(ema) O2] are given in Appendix A and B.  The ball and stick drawings of 

Figure V-1 compare metric features of [Et4N]2[Ni(ema)],50 [Et4N]2[Ni(ema) O2], 

Ni(ema) (Me)2,52 and Ni(ema) (CH2)3.  Parameters of interest include a slight restriction 

of the S-Ni-S angle in the Ni(ema) (CH2)3 macrocycle complex relative to its open-chain 

analogue, Ni(ema) (Me)2, as well as Ni(ema)2- and Ni(ema) O2
2-

.  This restriction is 

compensated by increase of the N-Ni-N and the N-Ni-S angles.   

Sulf-oxygenation in the [Et4N]2[Ni(ema) O2] results in a decreased Ni-Ssulfinate 

bond distance (2.152(2) Ǻ) maintaining the Ni-Sthiolate (2.175(2)Ǻ) statistically the same 

as in [Et4N]2[Ni(ema)].50   The contracted Ni-Ssulfinate bond relative to the Ni-Sthiolate bond 

distances is observed in a number of sulfinate derivatives.84  The S=O bond lengths, 

1.444(6) and 1.436(6) Ǻ, are slightly shorter than those observed for neutral S-oxygenates 

of NiN2S2, which average to 1.46 Ǻ.   Relative to Ni(ema)2- the Ni-Sthioether distances are 

slightly elongated in the open chain dithioether Ni(ema) (Me)2, while in the macrocycle 

Ni(ema) (CH2)3 the Ni-S distances are marginally shorter.50 

 

Solution Characterizations of Ni(ema) (CH2)3 and [Et4N]2[Ni(ema) O2] 

 The NMR spectrum of Ni(ema) (CH2)3 in MeOH at 22°C displays sharp signals 

including a pentet at 1.87 and a triplet at 2.72 ppm, assigned to the bridgehead methylene 

hydrogens and the two adjacent CH2, respectively, of the propane dithioether moiety.  A 

doublet of doublets AB pattern, at 3.645 and 3.488 ppm with JAB = 56 Hz, is ascribed to 

the N to N -CH2CH2- linker while the CH2 units between the carbonyl and the thiolate 

sulfur are poorly defined underneath the methanol signal.  Much broader resonances are 
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seen in water as solvent.  The infrared spectra of both Ni(ema) (CH2)3 and 

Ni(ema) (CH3)2 (in MeOH) display a band at 1582 cm-1 which is ascribed to the C=O 

stretch of the carboxamido group. 
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Figure V-1.  Structures of (a)  Ni(ema)2- (50) , (b)  [Et4N]2[Ni(ema) O2], (c)  

Ni(ema) (Me)2
 (52)  and (d)  Ni(ema) (CH2)3 with selected bond distances (Å) and angles 

(º). 

 

 Electronic Absorption Spectroscopy.  The UV-vis absorption spectrum of 

Ni(ema) (CH2)3 in methanol exhibits two d-d bands with λmax at 396 and 476 nm as well 

as two intense ligand to metal charge transfer bands at 204 and 242 nm.  As shown in 

Table V-1, the absorbances for both neutral alkylates are blue shifted from those of the 

anionic parent complex, [Et4N]2[Ni(ema)], which is attributed to the overall stabilization 
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of the bond and lone pairs on reaction with the electrophiles.  A lesser blue shift of 

absorbances relative to those of [Et4N]2[Ni(ema)] is seen for the Ni(ema) O2
2- complex 

dissolved in methanol.   

 

Table V-1.  Summary of electronic absorption spectra for Ni(ema)2-(EtOH)50, 

Ni(ema)•(Me)2 (CH3CN)52, Ni(ema) •(CH2)3 (MeOH), Ni(ema)•O2
-2 (MeOH).   

 

 UV-vis 
λmax (nm) (ε, M-1 cm-1) 

 

261 (22,500)  437 (405) 552 (79) 

 

241 (18,200) 300 (sh, 3370) 416 (360) 490 (130) 

 

204 (20,200) 242 (1547) 396 (70) 476 (30) 

 

 
 

250 (13,841) 297 (469) 413 (35)  

 

Infrared Analysis.  Two ν(S=O) bands with a symmetric stretch at 1151 cm-1 and 

the corresponding asymmetric stretch at 1030 cm-1 are observed in the CH3CN solution 

IR spectrum of Ni(ema) O2
2-.52  A band at 1560 cm-1 (in MeOH) is assigned to the 

ν(C=O) stretch and is the same as that of the parent Ni(ema)2-.  The UV-vis and IR 

spectroscopic values correspond with those of the complex postulated by Hegg and co-
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workers to be the same sulfinato product produced from Ni(ema)2- in an oxygenated 

CH3CN solution.52   

Mass Spectrometry.  The parent ion of Ni(ema) (CH2)3 is observed in the 

positive mode of the ESI-mass spectrum as the sodium adduct at 326.98 m/z with the 

expected isotopic envelope.  Crystalline material from either synthetic route which 

produces [Ni(ema) O2]2- as described above has a parent isotopic bundle in the –ESI-MS 

clustered around 239.9 m/z which corresponds to [M]-.  Additional prominent isotopic 

bundles containing Ni correspond to the loss of O2 and SO2 presumed to be induced by 

ionization in the ESI-MS experiment.  A similar phenomenon was observed in neutral 

NiN2S2 sulfinate species.84 

Electrochemical Studies.  The cyclic voltammogram of Ni(ema) (CH2)3 recorded 

in DMF solvent is given in Figure V-2 and is interpreted as follows.  A reversible 

oxidation event at +1.05 V (vs. NHE) is assigned to the NiIII/II couple of the 

Ni(ema) (CH2)3  complex, and an irreversible reduction at -1.53 V is assigned to the NiII/I 

couple.  The feature at -0.71 V is a consequence of the irreversible reduction at -1.53 V as 

it is absent in scans in the anodic direction initiated at points more positive than -1.2 V.  

The full scale CV of Ni(ema) (Me)2, reported in Figure A-5,  is similar to that of 

Ni(ema) (CH2)3 with the exception that the reductive event becomes fully reversible in 

the complex with a more flexible open chain.   The inset in Figure V-2 is an of the 

expansion NiIII/II couple of Ni(ema) (CH2)3 with that of the Ni(ema) (Me)2 complex 

overlaid.   
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Figure V-2.  Cyclic Voltammogram of a 3.7 mM DMF solution of Ni(ema) (CH2)3 at a 
scan rate of 200 mV/s using a Ag/AgNO3 reference electrode, 0.1 M [nBu4N][BF4] 
electrolyte, a glassy carbon electrode and standardized to Fc/Fc+

 and reported vs. NHE.  
The inset focuses on the reversible NiII/III couple of Ni(ema) (CH2)3 (solid) and  
Ni(ema) (Me)2 (dashed). 
 

 The NiII/III couples of the dianionic Ni(ema)2- and Ni(ema) O2
2- species appear as 

fully reversible waves at -0.160 and -0.114 V, respectively, while the NiII/I couple is 

shifted beyond the DMF solvent window.   While the ca. 1 V difference between the 

NiII/III couples of the neutral and the dianionic complexes can readily be ascribed to 

charge, the small difference of ca. 50 mV between the NiII/III couples of Ni(ema) O2
2- and 

the Ni(ema)2- precursor is more subtle.   Despite S-oxygenation of the thiolate sulfur and 

the loss of π–donation, the sulfinato ligand remains a σ-donor, anionic ligand. 89,90 

Apparently, there is little change in the overall electron density of the NiII in the two 
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anions and the NiII/III potential remains relatively constant. This result contrasts to 

electrochemical studies of analogous neutral NiN2S2 and NiN2S2•O2 complexes with 

regard to differences in the NiII/I redox couple on oxygenation (the NiII/III couple being 

beyond the solvent window).84  In these cases the difference, +300 mV, is six times that 

observed for the difference in NiII/III couples of Ni(ema)2- vs. Ni(ema)•O2
2-.  As will be 

discussed below, the difference between Ni(ema)2- and the neutral NiN2S2 complexes lies 

in the greater covalency in the Ni-S bonds of the former,  and in the compensatory effect 

of both the unmodified thiolate and the carboxyamido nitrogens which is greater for the 

dianionic complexes.90 

 

   
 
Figure V-3.  X-band EPR spectra obtained from an oxidized solution of Ni(ema) (CH2)3 

in DMF at 10 K.  Simulated g values listed. 
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EPR Studies of Ni(ema)•(CH2)3
+. The good reversibility of the NiII/III couple in 

the CV indicated the likelihood of detection of NiIII produced by bulk chemical oxidation.  

The EPR spectrum obtained by group member Roxanne Jenkins of the chemical oxidation 

product of Ni(ema) (CH2)3, using CAN in DMF solvent (Figure V-3 (a)) displays a 

nearly axial EPR signal with g┴ > g║;  g values were simulated as g1 = 2.360, g2 = 2.230 

and g3 = 2.010.  As gav is significantly >2, the assignment of the product to 

[NiIII(ema) (CH2)3]+ with S = ½ and residence of the unpaired electron in a predominately 

Ni-dz2 orbital is reasonable.  This spectrum is comparable to those reported by Holm, et 

al., for oxidized products derived from Ni(ema)2- and other diamidodithiolato NiN2S2 

analogues.50   As in that work,  the stabilization of the NiIII oxidation state by interactions 

with donor molecules was probed by oxidation of Ni(ema) (CH2)3 by CAN in the 

presence of pyridine (1 pyridine: 4 DMF, (v/v)).  The color of the reaction mixture 

changed from red to clear brown, as observed in the oxidation product of the complex in 

the absence of pyridine.  The overall EPR spectral envelope is similar to that in pure 

DMF, with the exception of the three 14N hyperfine lines imposed on the g3 = 2.01 with 

aN = 18.5 G.  The EPR spectrum thus suggests a NiIII species in a z-axis elongated square 

pyramid with one nitrogen ligand in the axial coordination site.  The assumption that 

DMF is sufficiently coordinating to bind to NiIII in the absence of pyridine, would account 

for the identical position of the g3 signal.   
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Computational Details of Ni(ema)2-, [Ni(ema)•O2]2-, Ni(ema)•(CH2)3, and 

Ni(ema)•(Me)2. 

 Density functional theory calculations by group member Scott Brothers of 

Ni(ema)2-, [Ni(ema)•O2]2-, Ni(ema)•(CH2)3, and Ni(ema)•(Me)2  yielded optimized 

structures with  bond distances and angles acceptably consistent with the crystallographic 

experimental data; these are listed in Table A-3, A-4.  DFT calculations of the Ni(ema)2- 

complex reproduce the energies, orbital populations, and bond distances previously 

reported by Grapperhaus, et al.88  Figure V-4 presents the frontier molecular orbitals 

(FMO) of the four complexes under study. The HOMO of Ni(ema)2-, Figure V-4 (a), 

displays a clear cut dπ-pπ antibonding orbital interaction with respect to the antisymmetric 

combination of the pz orbitals of the two sulfurs (22% contribution per atom) and the dxz 

orbital of the nickel (39% contribution).  The HOMO-1, nearly degenerate with the 

HOMO, consists largely of the overlap of the Ni dyz (44% contribution) and the 

symmetric combination of S pz (14% contribution per atom).  The non-degeneracy is due 

to the larger contributions of the amido nitrogen and carboxylate oxygen atoms, which 

cause slight energetic differences in the molecular orbitals.  The LUMO is an antibonding 

σ orbital set comprised of 33% Ni dxy character, 12% S px,y character per sulfur atom, and 

4% N px,y character per nitrogen atom.  The gap between the HOMO and LUMO is 4.12 

eV. 

 As is shown in Figure V-4 (b), the electron density of the HOMO of the 

[Ni(ema)•O2]2- complex is localized as an antibonding orbital composed of 32% Ni dyz, 

45% Sthiolate pz character, 4% N(1) pz character, and 3% O(1) pz character, where N(1) and 
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O(1) are the amido atoms trans to Sthiolate and N(2) and O(2) are the amido atoms trans to 

Ssulfinate.  Due to the singly modified sulfur in Ni(ema)•O2
2-, the near degeneracy of the 

HOMO and HOMO-1 orbitals of the Ni(ema)2- parent complex is broken.  Nevertheless, 

as in Ni(ema)2-, the HOMO-1 still appears to be an bonding orbital orthogonal to the 

HOMO with considerable electron density on the Ni dxz, N(2) pz, and O(2) pz orbitals (36%, 

20%, and 13% contributions, respectively).   The LUMO has small percentage of electron 

density on the sulfenate oxygens but in other respects is largely the same as that of the 

Ni(ema)2- parent complex.  Interestingly, the HOMO-LUMO gap of this oxygenated 

complex is nearly identical to that in the parent complex, i.e., 4.15 eV. 

 In Ni(ema)•(Me)2 and Ni(ema)•(CH2)3, the HOMO and the HOMO-1, shown in 

Figure V-4 (c) and (d), largely reflect the analysis described above for the cis-dithiolate.  

That is, the asymmetric combination of N pz orbitals (16-18% contribution per atom) 

engage in antibonding overlap with the Ni dxz orbital (21-22% contribution), producing 

the HOMO, and the symmetric combination of the N pz orbitals (10-15% contribution per 

atom) with Ni dyz (19-20% contribution) make up the HOMO-1.  A more substantial 

contribution from the O pz orbitals (5-10% contribution) relative to the parent Ni(ema)2-

 complex is also observed.  Again, the LUMO is in the σ framework of the square plane. 

 Natural Bond Orbital Analysis.  Natural bond orbital (NBO) analysis is a 

technique derived from density functional theory as a powerful tool for clarification of the 

principal resonance structures of the molecule under study. Atomic charges from 

geometry optimization are used to determine the primary ground state structure. 

Delocalization of the electrons and resonance structures of the molecule is derived from 
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second-order effects.  In the current study, this technique was employed to assign formal 

dative or coordinate-covalent bond character between the Ni-N and Ni-S bonds, which 

undergo significant change upon modification of the thiolate sulfurs. This consequently 

affects electron delocalization in the amido framework. 

 

 
 

Figure V-4.  Frontier molecular orbitals of (a) Ni(ema)2-, (b) [Ni(ema)•O2]2-, (c) 

Ni(ema)•(CH3)2, and (d) Ni(ema)•(CH2)3.  In each column, the orbitals descend in the 

order LUMO, HOMO, and HOMO-1. 

 

The NBO analysis of Ni(ema)2- indicates an electronic population per covalent 

bond between the nickel and each sulfur atom of 1.95 electrons, with no covalency in the 

bond between nickel and nitrogen atoms.   According to this analysis, 1.71 electrons were 

found on each nitrogen atom in an sp2 hybridized orbital, with a strongly stabilized donor-
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acceptor interaction between this quasi-lone pair and the corresponding trans Ni-S* 

antibond, which has 0.296 electrons in the most stable resonance structure.  This 

stabilization is further indicative of a dative bond between the nickel and the nitrogen 

atoms with fully covalent bonds between the nickel and the sulfur atoms.  At the 6-

311G(d,p) level of theory, the second nitrogen lone pair on each nitrogen atom was not 

found; however, two bonds between nitrogen and the adjoining carbon atom were located 

with electronic populations of 1.99 and 1.78.  The small electronic population of the 

second N-Camido bond is a result of the missing lone pair on the nitrogen atom as part of 

the delocalized amido system.  By using a hybrid basis set at a higher level of theory, the 

second nitrogen lone pair was resolved.  

The NBO analysis of the S-alkylated complexes is also consistent with the DFT 

computations, for a reversal of major contributing atoms in the NiN2S2 core to the ground 

state electronic structure is also found in these results.  In the case of Ni(ema)•(CH2)3, the 

nickel is covalently bonded to each nitrogen with an electronic bond population of 1.93 

electrons, whereas each of the sulfurs has a lone pair of 1.72 electrons primarily in a p 

orbital with a slight amount of s mixing. This dative sulfur interaction has a large 

energetic stabilization through delocalization of these electrons into the Ni-N* antibond 

(0.318 electrons). This indicates that following the alkylation of the sulfurs of Ni(ema)2-, 

the formal dative bonds in the NiN2S2 core reverse positions.  Also interesting to note is 

that, in contrast to the parent complex Ni(ema)2-, two fully covalent bonds exist between 

the carbon and oxygen on the amido backbone, indicating a significant decrease in 

delocalization.  This result is graphically displayed in Figure V-5. 



  79 

 

 

 

    

Figure V-5.  The principal resonance structures of Ni(ema)2- and Ni(ema)•(CH3)2 as 

identified by natural bond orbital (NBO) analysis.  Dative bonds are a donation of the 

lone pair shown on the tail of the arrow into the corresponding trans Ni-X antibond (X = 

S, N). 

   

 Electrostatic Potentials.  The electrostatic potential maps of Ni(ema)2- and the 

related derivatives are displayed in Figure V-6.  The color coding for positive potential 

(blue) and negative potential (red) of atoms in each compound readily mirrors the change 

in electronic distribution through the series and the sites of greatest potential reactivity.  It 

should be noted that due to the difference in electrostatic parameters between neutral and 

dianionic complexes, only a qualitative comparison of the surfaces is possible.  The sites 

of greatest negative potential in the NiN2S2 core of Ni(ema)2- are the lone pairs on the 

thiolate sulfurs, indicating that reactions at these sites with electrophiles should be facile, 

as has been found.  Furthermore, the negative character of the amido nitrogens is on the 
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lone pairs on the pz orbitals; however, this negative character is a great deal less than the 

corresponding thiolate sulfur character.  These results correlate with the dative bond-

covalent bond argument presented by the NBO analysis. 

 Upon oxygenation of one of the thiolate sulfurs, pronounced changes occur as 

follows. The electron density localized on the thiolate sulfurs in the parent Ni(ema)2- 

complex shifts onto the lone pairs of oxygens on the sulfenato group.  In addition, upon 

the incorporation of oxygen into Ni(ema)2-, electron density is withdrawn from the 

thiolate sulfur cis to the sulfenato sulfur, which is expected to decrease the reactivity of 

the thiolate sulfur with additional dioxygen or electrophiles.  The electron density of the 

amido nitrogens is also decreased following the S-oxygenation of Ni(ema)2-.  This shift is 

consistent with computational studies by Maroney et al. on neutral NiN2S2 complexes.91 

Interestingly, such a withdrawal of electron density from the overall NiN2S2 core via S-

oxygenation is similar to that experienced from H-bonding to a single thiolate.88,89  Both 

effects serve to deactivate the remaining thiolate sulfur with significant implication for 

biological systems that use analogous peptidic MN2S2 active sites.88,90  Finally, the 

alkylation of the thiolates in Ni(ema)2- with electrophiles such as CH3
+ or (CH2)3

2+, 

produces pronounced changes in the EP maps as suggested by DFT and NBO 

calculations.  In the thioether or the macrocycle, the negativity of the thiolate sulfurs of 

Ni(ema)2- is almost completely quenched, leaving behind only a slight negative character 

on the lone pair oriented exo to the NiN2S2 core.  As compared to the modified sulfur 

atoms in Ni(ema)•(Me)2 and Ni(ema)•(CH2)3, the amido nitrogen atoms are the sites 
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Figure V-6.   In order of descent:  Electrostatic potentials of Ni(ema)2-, [Ni(ema)•O2]2-, 
Ni(ema)•(CH2)3 and Ni(ema)•(Me)2.  The range was taken from 1.00 (the most 
electropositive region, dark blue) to 0.33 (the most electronegative region, bright red).  
Views are along bisector of S-Ni-S angle and from top as noted. 
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of greater negativity, owing to the lone pair and formal negative charge on the nitrogen.  

It is important to note that in the parent complex Ni(ema)2- and all of the derivatized 

complexes presented herein, use of the Mulliken charges or the atomic charges as the 

basis for the electrostatic potentials indicates little to no negative character on the nickel 

center. 

 

Conclusions 

 The isolation of  [Ni(ema)•O2]2-and Ni(ema)•(CH2)3 demonstrates that thiolate S-

based reactivity of the dianionic NiN2S2 complexes based on carboxamido nitrogen donor 

scaffolds is as extensive as that previously established for neutral analogues with primary 

and secondary amine frameworks.  The [Ni(ema)•O2]2- complex, reported earlier by 

Hegg, et al.,52 and isolated here for full characterization is the first dianionic 

NiN2SthiolateSsulfinate derived from controlled reactivity of NiN2S2
2- with O2 to form a 

sulfinato complex analogous to neutral NiN2S2 complexes.  In this study we find a solid 

state reaction of crystalline [Et4N]2[Ni(ema)] is the most efficient mode of preparation.  

The unambiguous characterization of [Et4N]2[Ni(ema)•O2] via x-ray crystallography is 

significant in that the conventional expectation of outer sphere oxidation producing a NiIII 

or ligand oxidation with degradation can be avoided under the correct synthetic approach.   

It is of consequence that mild conditions involving dioxygen at ambient pressures 

lead to S-oxygenates of both neutral and dianionic NiN2S2 complexes.    Qualitatively  the 

latter are significantly more reactive.  Maroney and co-workers have noted an increased 

reactivity with anionic NiNS2 systems as well.91  As stated by Shearer et. al and 
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Grapperhaus and et. al., a mixed amido/amine complex should show reactivity between 

the neutral NiN2S2
 and the anionic NiN2S2

2-.92,88  This has been experimentally 

established by Shearer and coworkers who demonstrated that a mixed carboxamido/amine 

complex is more stable in the presence of O2 as compared to an analogous dicarboxamido 

species.92  Nevertheless, rates of reaction with O2 appear to be much slower, even in the 

dianionic complexes, than rates responsible for the turnover frequency of NiSOD 

(reported as kcat = 109M-1s-1 per Ni).91  This difference is a palpable answer to the lack of 

destruction of the enzyme active site as deleterious products, arise; however a definitive 

answer awaits further study.  

The cyclic voltammogram of [Ni(ema)•O2]2- shows that sulf-oxy  modifications of 

dithiolates fine tune the NiIII/II redox couple of dianionic complexes.  This result is of 

significance to enzymatic systems which use the Cys-Ser-Cys peptide backbone as an 

N2S2 binding site, post-translationally modified by sulf-oxygenation, as found in cobalt 

and iron nitrile hydratase.  It has been proposed that the sulfoxygenated groups of the 

N2S2 peptidic ligand are required to regulate the Lewis acidity of the metal for the 

conversion of metal-bound nitriles to amines.90   

DFT studies and derived parameters from NBO and electrostatic potential analysis 

report on the electron distribution in the dianionic NiN2S2 complexes and neutral 

derivatives derived from alkylation.  Despite the formal negative charge on each N and S 

donor atom in Ni(ema)2- ,  reactivity with electrophiles is at sulfur.  Once the active lone 

pairs of the thiolato sulfurs are quenched by covalent bond formation with carbon or 

oxygen, the negative charge in the carboxamido frame becomes localized on nitrogen, 
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creating, in the NBO analysis, covalent bond character in the N-Ni bond with the dative 

bond character shifting into the thioether S to Ni bond.  The electrostatic potential maps 

show the polar character of the carboxyamido groups remains in the neutral derivatives as 

sites for H-bonding, explaining the solubility characteristics in H-bonding solvents.  

Nevertheless, further reactivity with electrophiles is lost, yielding a class of dianionic 

tetradentate N2S2 ligands and stable, tractable neutral NiN2S2 complexes for exploration 

of metal-based  redox activity and reactivity. 
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CHAPTER VI 

SYNTHESIS AND CHARACTERIZATION OF A SERIES OF CuN2S2 2-

COMPLEXES AND STABILIZATION THROUGH 

A RESIN-BOUND CuII ANALOGUE 

 

 The biomimetic study of enzyme active sites and metallobiomolecules 

encompasses a vast range of synthetic analogues including synthetic organic ligands, 

peptides as ligands, and hybrid molecules composed of both.  As an example of the latter, 

Burrows and co-workers recently produced a hybrid complex of peptides and the salen 

ligand, which was shown to readily bind to NiII, Figure VI-1.93  Existing biomimetic 

libraries include small coordination complexes comprised of minimal donor sites to the 

biometal,83,84,85 larger ligands designed to include second coordination sphere effects, and 

peptides that more closely mirror the protein.49,92,94  When applied sequentially, such a 

buildup of complexity can help develop understanding of structural features that lead to 

spectroscopic matches to the native active sites.   
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Figure VI-1: Salen-peptide complex by Burrows et al.93 
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 Our specific interests in this chapter are in biologically active copper that is bound 

to sulfur donors from cysteine residues.  While most metal-sulfur interactions in biology 

result from strictly cysteinyl or methionine residues, there have been several discoveries 

of S-containing binding sites that also utilize the peptide backbone; i.e. the carboxyamido 

nitrogens, such as the Cys-Ser-Cys motif in nitrile hydratase which chelates Fe or Co in 

N2S2 binding pockets.41  Other prime examples are the Cys-Gly-Cys N2S2 which binds 

nickel in acetyl coA synthase, or the His-Cys-XXX-Cys arrangement in nickel- 

containing superoxide dismutase.1,42,443  While there are no known copper analogues, i.e. 

Cu(Cys-X-Cys)2-, a number of CuN2SS’ coordination spheres have been reported to occur 

in nature.  These include the redox active CuIIN2SS’ sites of plastocyanin95 (Figure VI-2), 

cucumber basic blue96, and nitrite reductase97.  These His2CysMet active sites, commonly 

referred to as Blue Copper Proteins or Type I Cu sites, can be found in electron-transfer 

proteins (cupredoxins) as well where the CuII/I shuttle occurs rapidly at very positive 

redox potentials resulting in only minimal structural changes.98   
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Figure VI-2.  Active Site of plastocyanin. 
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 These Blue Copper Proteins utilize the enzyme superstructure to fine tune the 

geometry of the active site to accommodate both oxidation states in the CuII/I redox 

couple.  Crystal field theory tells us that CuI complexes favor a tetrahedral geometry 

while CuII complexes prefer square planar. The geometry found in Type 1 copper sites is 

a hybrid of the two, thus allowing rapid redox processes to occur while maintaining 

activity.  For synthetic complexes, such as CuN2S2, developing thiolate containing ligands 

capable of supporting both copper redox states is difficult as autoreduction of CuII-S is 

often observed.  This process, 2CuII + 2RS-  2 CuI + RSSR, followed by uptake of the 

CuI ion by other CuIIN2S2 complexes results in multimetallic, aggregated species and has 

hindered isolation of many monomeric CuII-thiolate complexes.  One example of the 

mutual attraction of CuI and thiolate sulfurs, is the adamantane structure, shown in Figure 

VI-3, resulting from the addition of Cu(acac)2 to the bme*-daco ligand to produce 

Cu(bme*-daco) followed by the addition of CuCl.  The complex shows that any CuI is 

scavenged by the Cu(bme*-daco) complex resulting in a central Cu4S4 cage common for 

CuI.101 Several examples of these aggregate complexes have been reported as they are the 

thermodynamically favored product from the interaction of CuI with metal bound thiolate 

sulfurs. 44,98, 99     

 

Figure VI-3.  Representation of Cu5S4 adamantane.   
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 The active sites of Type 1 copper containing enzymes are composed of ligand sets 

capable of minor changes in geometry.  Solomon recently compared the distortions of the 

His2CysMet ligand set found in plastocyanin, a nitrite reductase and cucumber blue 

protein.100  In each of these enzymes the amino acids used as ligands to the Cu are 

separated in the polypeptide chain, resulting in a ligand set that can vary in geometry. As 

shown in Figure VI-4, the SMet-Cu-SCys angles are different in the three metallopeptide 

sites.   Although these enzymes all possess the same donor set, these geometric changes 

produce large differences in the electronic structure of CuII resulting in visible color 

differences between these enzymes.100 Solomon’s work is a prime example of how the 

physical and spectral properties of Cu complexes are affected by the geometric and 

coordination environment. 

 

 
 
Figure VI-4.  A comparison of tetragonal distortion in the CuIIN2SS’ active sites of 

plastocyanin (Pc), cucumber blue protein (CBP) and nitrite reductase (NiR) showing 

positions of the SCys and SMet compared to the N-Cu-N plane.100  
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Figure VI-5.  Representative drawing of (a) the active site of acetyl coA Synthase and (b-

d) a few examples of small molecule models for the Nid site acetyl coA Synthase.1,49,50, 101 

  

 Biomimetic studies of enzyme active sites such as acetyl coA synthase (ACS), 

nitrile hydratase, and Ni(SOD) have produced a large number of N2S2 ligands and their 

respective nickel complexes. 84,85,92  A few examples of ACS active site models are shown 

in Figure VI-5.  Inspired by enzyme active sites such as ACS, the potential for thiolate 

capture of exogenous metal ions was initially addressed through reactivity studies of the 

neutral NiN2S2 complexes.44  More recently, dianionic NiN2S2 complexes based on amido 

nitrogen donors have been explored as closer models of Cys-X-Cys active site 

units.44c,50,52  The reactivity of these dianionic NiN2S2 complexes, largely parallels that of 

the neutral NiN2S2 complexes.52,75,82   Studies utilizing Ni(ema)2- (ema = N, N’-

ethylenebis(2-mercaptoacetamide), and Ni(CGC)2-, have established that the two NiN2S2
2- 
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complexes are equal in S-based donor ability as defined by position of the infrared ν(CO) 

bands arising from the W(CO)4 derivatives of each.75  Additionally, in silico studies of 

Ni(ema)2- reported in Chapter V, have shown that thiolate alkylation redistributes electron 

density from the thiolate sulfurs  to the amido backbone.  Furthermore, thiolate 

modifications of Ni(ema)2- have provided insight into the spectroscopic and 

electrochemical consequences of S-alkylation and oxygenation.  As the synthesis, 

characterization, and reactivity of the NiN2S2
2- complexes is well established, it was my 

goal, in collaboration with Dr. David Rockcliffe and assisted by his undergraduate student 

Boram Lee, to prepare the analogous CuII complexes. The affinity for CuII to ligate in a 

square planar arrangement was used to produce the complexes shown in Chart VI-1 as 

models of CuN2SS’ metalloenzymes.  While no biological CuN2S2 active sites utilizing 

the Cys-X-Cys motif are yet known, the fact that copper frequently substitutes for Ni has 

been shown in synthetic complexes as well as enzymes such as acetyl coA synthase.2,102  

Therefore, transmetallation studies of Cu and Ni complexes bound to resin-beads are of 

interest. 

 Beginning in 1978, when the crystal structure of plastocyanin was first 

determined, a number of studies have been directed at modeling Type 1 copper sites.955a  

Selected examples of small molecule models produced to mimic the CuN2SS’ containing 

active sites are shown in Figure VI-6.  Schugar et al. reported Complex 1 which was the 

first stable CuII complex to incorporate “biological” cysteine ligation.103  The ligand 

backbone, composed of N,N’-ethylenebis(L-cysteine)2, chelates the CuII in roughly 

square planar geometry.  Complexes 2 and 3 are additional examples of neutral CuN2S2 
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complexes produced by chelation of a CuII ion by amine nitrogens and thiolate/thioether 

sulfur donors as models of CuN2SS’ sites found in nature.99,104,   Finally, Complex 4 

reported by Krüger and co-workers is the first and only dianionic square-planar CuN2S2
2- 

complex to our knowledge that incorporates amido nitrogen donors into the ligand set.105  

As a number of enzyme active sites utilize amido nitrogens from the amino acid backbone 

to chelate metal ion centers, the integration of carboxamido donors into the ligand set 

represents an additional step toward structurally mimicking enzyme active sites.1,41,42 A 

number of other CuN2S2 complexes have been reported as components of clusters bridged 

by CuI ions.99,99, 106   

 Each CuN2S2
x- complex reported has provided insight into the unique 

spectroscopy of CuII systems and can give details about the ligand set’s effects.  For 

example, the respective electronic spectra of 1-4 display intense (εmax ~ 5000  M-1 cm-1) 

absorptions around 400-600 nm attributed to a RS  Cu transition, consistent with Type I 

copper sites. 98,99,100,105  Additionally, the All hyperfine coupling values, serve as a 

reflection of the interaction of the unpaired copper electron with the copper nucleus. As 

less interaction occurs the All value decreases, which can be shown in comparing 1 (All = 

182 x 10-4 cm-1) with 4 (All = 195 x 10-4 cm-1) to type 1 Cu sites with All ~ 60 x 10-4 cm-

1.98,103,105  The geometric differences derived from the ligand set of the synthetic 

analogues, largely square planar, compared to the native CuN2SS’ enzymes, trigonal 

pyramidal to distorted tetrahedral, can play a large role in effecting these 

interactions.100,105  
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   Figure VI-6.  Examples of biomimetic CuN2S2
x- complexes. 99,103,104,105 

  

Herein the tetranionic ema and emi ligands (emi = N,N’-ethylenebis(2-

(benzylthio)isobutyramide), first reported by Holm and co-workers as the nickel 

derivatives, will be utilized to produce Cu(ema)2- and Cu(emi)2-.50  The characterization 

and properties of these CuII complexes will be compared to the previously reported 

complex 4.105  Additionally, the spectroscopy, electrochemistry and reactivity of the 

series of CuN2S2
2- complexes will be compared to the Ni analogues, Ni(ema)2- and 

Ni(emi)2-.50  Further studies have led to the use of peptides as ligands, both in solution 

and anchored to polystyrene-polyethylene glycol resin beads. 
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Synthesis and Characterization of [Et4N]2[Cu(ema)] and [Et4N]2[Cu(emi)] 

 Synthesis of [Et4N]2[Cu(ema)]. The deep purple solid, [Et4N]2[Cu(ema)], is 

obtained from the slow addition of a methanol solution of bright-blue CuII(OAc)2•4H2O 

to a light-yellow deprotonated and thiolate deprotected ema ligand in a methanolic 

solution, as shown in Equation VI-1.  The reaction is carried out at -78˚ C (dry-

ice/acetone) and is complete within 15 minutes.  Addition of Et2O to the resulting purple 

solution produced a purple solid which was washed with Et2O to give 83% yield.  Low 

temperature and short reaction times are necessary to avoid complete conversion of the 

purple solution to an uncharacterized, insoluble red-brown precipitate presumed to be an 

aggregate species produced by autoreduction.106    This reaction may be performed in the 

coordinating solvent DMF to avoid this insoluble product, however DMF results in lower 

yields (54% yield). The air-sensitive Cu(ema)2- complex as its Et4N+ salt is soluble in 

DMF and soluble in CH3CN upon heating to yield intensely, deep red solutions.   

 

 

  

 Because of the gem-dimethyl groups on the carbons neighboring the reactive 

thiolates, the emi ligand was employed to hinder aggregative decomposition as observed 

for Cu(ema)2-.  Additionally, the gem-dimethyl groups will typically impart greater 

solubility to the complex.  A red solution of [Et4N]2[Cu(emi)] was produced at room 
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temperature from drop wise addition of Cu(OAc)2•4H2O in methanol to  a basic methanol 

solution of the emi ligand.  A mauve solid (74% yield) was obtained following 

precipitation with ether.  The [Et4N]2[Cu(emi)] complex is soluble in DMF, CH3CN, 

EtOH, and MeOH.  It is most stable in coordinating solvents, such as DMF, and will 

degrade after 6h in MeOH to an uncharacterized brown, insoluble solid.   

 Molecular Structure of [Et4N]2[Cu(emi)].  The thermal ellipsoid plot of 

[Et4N]2[Cu(emi)] is shown in Figure VI-7.  Crystallographic data and full structural 

reports are given in Appendix B.  An imposed mirror plane perpendicular to the CuN2S2 

plane bisects the N-C-C-N linker backbone. Parameters of interest are the S-N-S angle, 

which is slightly wider than that reported for the [Et4N]2[Cu(phmi)] complex and nearly 

5˚ wider than that of [Et4N]2[Ni(ema)].50,105 The wider S-Cu-S angle of [Et4N]2[Cu(emi)] 

results in compressed S(1)-Cu-N(1) angles, as shown in Table VI-1.        

 

Figure VI-7.  Thermal ellipsoid plot of [Et4N]2[Cu(emi)]  showing 50% probability and 

the atom labeling scheme.  The Et4N+ counterions are not shown.  
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Table VI-1.  Selected bond distances (Å) and angles (˚)  for [Et4N]2[Cu(emi)] compared 

to  [Et4N]2[Cu(phmi)] and [Et4N]2[Ni(ema)].50,105 

 [Et4N]2[Cu(emi)] [Et4N]2[Cu(phmi)] [Et4N]2[Ni(ema)] 

Cu-S(1) 2.233 (3) 2.2381 (8) 2.170 (1) 

Cu-N(1) 1.940 (8) 1.963 (2) 1.857 (3) 

S(1)-Cu-S(2) 102.32 (15) 100.27 (3) 97.44 (8) 

N(1)-Cu-N(2) 85.2 (5) 83.97 (9) 85.6 (2) 

S(1)-Cu-N(1) 86.2 (3) 87.67(7) 88.4 (1) 
 

 Mass Spectrometry.  The air-sensitive dianionic Cu(ema)2- and Cu(emi)2- 

complexes were characterized using –ESI-MS, as shown in Figure VI-8. The –ESI-MS 

spectrum revealed the parent molecular ions of Cu(ema)2- and Cu(emi)2- exist as the 

oxidized CuIII species [CuIIIN2S2]- at 266.9275 and 322.9899 m/z (Calculated:  266.9423 

and 323.0490 m/z).  Cooks and co-workers reported similar copperII/III oxidation of 

copper (II) di-Bu dithiocarbamate induced by the MS experiment as well.107  As first 

shown by Krüger with 4 and as evidenced by the CV data discussed below, the CuIII state 

is easily accessible and stable for CuN2S2
2- complexes.105 The experimental isotopic 

bundles of Cu(ema)2- and Cu(emi)2- clearly show the presence of Cu, which has two 

naturally occurring isotopes Cu-63 (69%) and Cu-65 (31%), and agree with calculated 

isotopic envelope.  It is also important to note that a Tandem ESI-MS experiment with 

[Et4N]2[Cu(ema)] in CH3CN:CH3OH (50:50) showed MeOH coordination as 

[M+MeOH]-. Subsequent decomposition products were observed from deprotonation of 

the CuN2S2
2- complex and copper ion ejection, as evidenced by molecular ions 
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corresponding to ligand degradation products lacking the metal ion.  However, no 

aggregative species were observed in the mass spectrometry experiment.      
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Figure VI-8.  –ESI-MS spectra and theoretical isotopic bundles of (a) Cu(ema)2- and (b) 
Cu(emi)2-. 
  

 Electronic Absorption Spectroscopy. The electronic absorbance spectrum of 

Cu(ema)2- in CH3CN, displays  three intense bands attributed to ligand to metal charge 

transfer (LMCT) transitions observed at 233, 293, and a shoulder at 320 nm, Table VI-

2.100,105  A S CuII transition is observed at 407 nm as well. 103,103  The absorbance 

spectrum of the Cu(emi)2-
 complex is nearly identical with strong LMCT bands  at 231, 

294, and 322sh nm and a d-d transition at 367 nm.  The intensity and position of these 

bands is indicative of a CuII ion in an N2S2 coordination sphere, such as those shown in 
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Figure VI-6.99,100,103,104,105  For example, the square planar 4 has LMCT bands at 230, 247, 

255sh, 285sh, 294, and 310sh nm with ε in the range of 11,000 – 25,800 (M-1, cm-1).105  A 

characteristic intense d-d transition is observed around 500 nm as well.  The CuN2S2
2- 

absorption spectra are slightly blue shifted compared to their nickel analogues, Ni(ema)2- 

and Ni(emi)2- (λmax = 261, 437, and 552 nm and λmax = 261, 430, and 534 nm, 

respectively).50  The intensities of the d-d transitions for these nickel analogues are also 

an order of magnitude lower that of Cu(ema)2- and Cu(emi)2- which has been noted for 

other synthetic CuII complexes in an N2S2 coordination sphere.100 

 

Table VI-2:  Summary of Electronic Absorption Spectra for Cu(ema)2-, Cu(emi)2-, 

Cu(CGC)2- in CH3CN solvent.   

UV-vis λmax (nm) (ε, M-1, cm-1) 

Cu(ema)2- 233 (24 880) 293 (28 700) 320sh(22 100) 407 (1740) 

Cu(emi)2- 231 (23 799) 294 (25 250) 319sh(22 340) 413 (2120) 

Cu(CGC)2- 232 (25 185) 294 (18 962) 322sh(13 450) 367 (930) 

 

 Electrochemical Measurements.  The cyclic voltammogram of Cu(ema)2- 

recorded in DMF solvent has an irreversible oxidation at event at -1.202 V vs. Fc/Fc+ and 

is presumed to be CuII/III.  No evidence of the corresponding reduction event is observed 

when scanning in either the negative or positive direction at scan rates of 100 - 200 mV/s 

with varying starting points.  In contrast, the CV of Cu(emi)2- in DMF reveals a fully 

reversible oxidation with E1/2
 = -1.40 V vs. Fc/Fc+, Figure VI-9.   Krüger and co-workers 

have reported that the CV of 4 displays a reversible CuIII/II oxidation event at -1.16 V vs. 
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Fc/Fc+ in CH3CN.105 Although CuIII is rare, access to the high valent cuprate state can be 

attributed to stabilization afforded by the highly polarizable carboxamido nitrogens from 

the ligand set. 105,108 As such, this stability allowed for isolation and structural 

characterization of oxidized 4.105   No other redox events were observed in the solvent 

window for Cu(ema)2- and Cu(emi)2- consistent with the report for 4 as well.  The shift of 

the CuIII/II couple to more negative potentials from the reversible NiIII/II couple for 

Ni(ema)2- (E1/2 = -0.836 V vs. Fc/Fc+) is consistent with the greater effective nuclear 

charge of CuII over NiII. 
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Figure VI-9: CV overlay of the NiIII/II couple of [Et4N]2[Ni(ema)] (3.7 mM) in grey and 

the CuIII/II  couple of [Et4N]2[Cu(emi)] (2.3 mM) in black using DMF solvent at a scan 

rate of 100 mV/s using a Ag/AgNO3 reference electrode, 0.1 M [nBu4N][BF4] electrolyte, 

and a glassy-carbon electrode.   
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 Electron Paramagnetic Resonance Spectroscopy.  As the ground state of CuII 

has one unpaired electron producing a paramagnetic copper center, valuable data about 

the CuII coordination environment may be obtained through spectroscopic 

characterization using Electron Paramagnetic Resonance (EPR) spectroscopy   The X-

Band EPR spectra of Cu(ema)2- and Cu(emi)2- in DMF at 9 K are shown in Figure VI-10.  

These spectra show an axial signal with g║ >g┴, indicative of a paramagnetic CuII.100,109  

The theoretical spectrum of a square planar copper(II) complex with an unpaired electron 

should exhibit 4 hyperfine splitting lines as the nuclear spin of CuII (I=3/2) couples with 

the electron spin (2I+1 = 4 lines).  Simulations of Cu(ema)2- and Cu(emi)2- show this 

splitting, although there is some overlap of the g║ signal with that of the g┴.  The N2S2 

coordination environment can be pinpointed by comparing the g║ values to those of other 

CuN2S2 complexes.109  In the presence of S-donation the g║ EPR values are significantly 

shifted to lower g-values compared to those of nitrogen and/or oxygen-ligated 

systems.100,105,109  This is attributed to the increased electron donor ability of sulfur as a 

ligand to the CuII center. The g║ values obtained for Cu(ema)2- and Cu(emi)2-, 2.17 and 

2.22 respectively, lie directly in range of other natural and synthetic CuIIN2S2 complexes 

thus supporting the N2S2 coordination as was indicated by UV-Vis studies.109,110  

Comparison of the g-values for Cu(emi)2- and Cu(ema)2-  to those reported for complexes 

1-3 shows that the dianions have g-values slightly higher than those of neutral complexes 

indicating that less Cu-S overlap occurs in the dianionic complexes. 104,103,99  This is 

consistent with computations on NiN2S2
x- complexes that have shown the ratio of electron 

density in the Ni-S bond is decreased when carboxamido nitrogens are part of the ligand 
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set.87,89,111    The electrostatic potential maps of neutral NiN2S2 complexes qualitatively 

show that electron density is primarily located on the thiolate sulfurs.88,111  However, the 

electrostatic potential maps of the dianionic NiN2S2 complexes show much greater 

delocalization, attributed to the polarizing amido donors.  The same delocalization 

appears to hold in the dianionic CuN2S2
2- complexes as well. 88, 111   

 

2250 2750 3250 3750 4250
G

2250 2750 3250 3750 4250
G

a) b)

Simulation
Experimental
Simulation
Experimental

g     >  g

gz=2.17
gx,y= 2.11

g     >  g

gz=2.17
gx,y= 2.11

2250 2750 3250 3750 4250
G

2250 2750 3250 3750 4250
G

gz=2.22
gx,y= 2.12

 
Figure VI-10. Experimental and simulated X-Band EPR spectra of (a) [Et4N]2[Cu(ema)] 

and (b) [Et4N]2[Cu(emi)]  (2mM in DMF at 9 K, 9.75 GHz). 

 

Thiolate Reactivity of Cu(ema)2- and Cu(emi)2- with Rh(CO)2
+ 

 As the S-based reactivity towards M(CO)x for the neutral and dianionic NiN2S2 

complexes has been thoroughly explored, the reactivity of the CuN2S2 was pursued for 

comparison.44,84,111  In a preliminary investigation, adduct formation with a metal 

carbonyl was chosen as it would provide information as follows:   (1) establish thiolate 

reactivity with Rh(CO)+ toward exogenous metal binding; and (2) probe the electron 
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donor ability of the Cu(ema)2- and Cu(emi)2- complexes for comparison to nickel 

analogues and classical ligands.50, 105  The Rh(CO)2
+ was utilized for these reactions as 

adduct formation between Ni(ema)2- and Ni(CGC)2- and Rh(CO)2
+ has been clearly 

established in solution and for the resin-bound Ni(CGC)2- discussed below. 75 

 

 

 

 The Cu(ema)Rh(CO)2
1- and Cu(emi)Rh(CO)2

1- complexes were prepared in an 

analogous manner to their NiII analogues with the exception of the solvent, Equation VI-

2. 75  These CuRh bimetallic products proved to be stable only in DMF, preventing 

synthesis and characterization in the better coordinating solvent CH3CN.   As shown in 

Equation VI-2, addition of a yellow solution of [Rh(CO)2Cl]2 (ν(CO) = 2081, 2005 cm-1 

in DMF)  to the Cu(ema)2- or Cu(emi)2- resulted in deep red-brown solutions after 20 

minutes.  The DMF solution infrared spectra are shown in Figure VI-12.  The symmetric 

and asymmetric ν(CO) stretches of Cu(ema)Rh(CO)2
1- and Cu(emi)Rh(CO)2

1- are nearly 

identical to one another with ν(CO) = 2061 and 1982 and ν(CO) = 2062 and 1984 cm-1, 

respectively.  Thus the electron-donating gem-dimethyl groups on the carbons alpha to 

the thiolate donors in Cu(emi)Rh(CO)2
1- do not induce a shift to lower wavenumbers as 

compared to Cu(ema)Rh(CO)2
1-.  Nevertheless, the reactivity of the thiolates with 

[Rh(CO)2Cl]2 parallels that observed for the less electron-donating NiII analogues with 
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ν(CO) values of 2061 and 1996 cm-1 for Ni(ema)Rh(CO)2
1- as well as 2067 and 1990 cm-1  

for Ni(CGC)Rh(CO)2
1-.75    It should be noted that the molecular structure obtained for 

Ni(ema)Rh(CO)2
1- was not the expected bimetallic complex, such as that shown as the 

product in equation VI-2.  It was, rather, a tetrametallic complex with two Ni(ema)2- 

complexes bridging two Rh(CO)2 moieties, Figure VI-11.  This pseudo-paddlewheel 

reflects a minimization of repulsive interactions between the highly negative electron 

density of Ni(ema)2- and the electron rich xy-plane of the RhI acceptor which would exist 

in the later form if the complex were found as the bimetallic species.112  The molecular 

structures of the CuRh complexes await crystallization.  

 

Figure VI-11.  Molecular structure of [Et4N]2[Ni(ema)Rh(CO)2]2 with cations omitted. 

 

 The electronic absorption spectra of Cu(ema)Rh(CO)2
1- (λmax(ε) (in DMF) = 270 

(27,610) and 330 (18,610) nm) and Cu(emi)Rh(CO)2
1- (λmax(ε)  (DMF) = 289 (25,260) 

and 390 (18,540) nm) are blue shifted (~20 nm) compared to Cu(ema)2- and Cu(emi)2- in 

DMF, which is consistent with thiol-based derivatizations of NiN2S2 analogues.75, 112 
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Figure VI-12: FTIR spectra (DMF) of (a)[Et4N][Cu(ema)Rh(CO)2] and 

(b)[Et4N][Cu(emi) Rh(CO)2].  

 
 

Synthesis and Characterization of [K]2[Cu(CGC)] 

 The CuN2S2
2- complexes discussed thus far serve as preliminary models of Cu 

metalloenzymes establishing the spectroscopy and reactivity of these dianionic 

paramagnetic square-planar systems.  As the tripeptide CGC4- has been thoroughly 

studied as a ligand to NiII, the reactivity with copper was investigated.   

 The Cu(CGC)2- complex was produced in an identical manner to the Ni(CGC)2- 

complex reported in Chapter III.  The addition of Cu(OAc)2•4H2O  to a basic solution of 
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H4CGC in DMF produced a purple solution.  A lilac purple solid was obtained by Et2O 

precipitation.  The Cu(CGC)2- product was characterized by – ESI-MS which showed the 

molecular ion at 380.9721 m/z as the CuIII product (Calculated = 380.9752 m/z).  The 

EPR spectrum shows that in frozen DMF the complex contains a paramagnetic CuII with 

g║ = 2.185 and g┴ = 2.105, Figure VI-13. This highly air-sensitive CuII metallopeptide is 

soluble in DMF and slightly soluble in CH3CN but, as observed with Cu(ema)2-, 

decomposes in MeOH.  The absorption spectrum of Cu(CGC)2- differs from Cu(ema)2- 

and Cu(emi)2- only by a slight blue shift in the intense d-d band at λmax (ε, M-1, cm-1) 367 

(930) nm, Table VI-2.  The ligand to metal charge transfer bands are observed at λmax (ε, M-

1, cm-1) 232 (25,185), 294 (18,962), and 322 sh(13,450) nm.  These electronic spectral 

features show little variation from other CuN2S2
2- complexes.99,103,104  This is consistent 

with the NiII analogues, where the electronic spectra of Ni(ema)2- and Ni(CGC)2-  were 

nearly identical.49,50 
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Figure VI-13: Experimental and simulated X-Band EPR spectra of (a) Cu(CGC)2- and (b) 

Ο-Cu(CGC)2-  (2mM in DMF at 9 K, 9.75 GHz).   
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Synthesis and Characterization of Ο-Cu(CGC)2- 
 
 The following synthetic procedure was employed to produce the resin bound 

Cu(CGC)2-, referred to as Ο-Cu(CGC)2- hereafter.   In a fritted syringe, deep purple beads 

develop after 2 minutes following the addition of a bright blue solution of   

Cu(OAc)2•4H2O (1 equivalent based on the Rink-NH2 loading) to thiolate deprotected  Ο-

CysGlyCys in basic methanol:CH2Cl2 (50:50).  The reaction slurry was shaken for a total 

of 10 minutes, washed with MeOH, CH2Cl2, and Et2O solvent and then dried in vacuo.  

The dried beads loaded with CGC and CuII can be left in air for +2 weeks with no 

apparent deleterious effects, supporting earlier observations that the resin-beads provide a 

protective environment for the air-sensitive resin-bound peptide complexes.  The EPR 

spectrum obtained from a solid sample of the dry purple beads at 9 K is shown in Figure 

VI-13b.  The axial signal  with g-values of g║= 2.23 and g┴ = 2.10 is very similar to those 

obtained for Cu(ema)2-, Cu(emi)2-, and Cu(CGC)2- shown in Table VI-3 and confirm that 

the resin-bound CuCGC2- complex, Ο-Cu(CGC)2-, has been produced. 

 

Table VI-3.  Comparison of g║, g ┴ and A║ values for CuN2S2
2- complexes. 

 g║ g┴ A║ (cm-1) 

Cu(ema)2- 2.170 2.110 195 

Cu(emi)2- 2.220 2.120 175 

Cu(CGC)2- 2.185 2.105 186 

Ο-Cu(CGC)2- 2.230 2.100 195 
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 Metal Uptake Studies.  The A-cluster active site of the bimetallic Ni enzyme, 

acetyl coA synthase, shown in Figure VI-5 utilizes the metallopeptide Ni(CGC)2- as a 

ligand to the catalytically active nickel center, denoted as Nip (p = proximal), for the 

assembly of acetyl coA.  Lindahl and co-workers have shown that the Nip site can be 

interchanged with CuII
 resulting in an inactivated form of the enzyme.113  In fact, the 

preliminary structural report of acetyl coA synthase showed a copper ion in the proximal 

site, which later proved to be the product of advantageous copper in the growth media.1,2  

No transmetallation of the distal nickel, Nid, found in the Ni(CGC)2- core has been 

reported.1,2,113 Similarly, small molecule model studies using the neutral NiN2S2, Ni(bme-

daco),  showed the dithiolates had a great specificity for copper over nickel and zinc, but 

no Ni ejection from the N2S2 core.102  These studies showed that Ni(bme-daco) could 

serve as a reasonable structural model for the distal nickel of the acetyl CoA synthase 

active site. 

 As Ni(CGC)2- found in acetyl coA synthase displays a high affinity for CuII and 

NiII and model studies of the synthetic, neutral NiN2S2 complexes gave similar results, 

uptake and possible transmetallation reactions of CuII with Ο-Ni(CGC)2- and NiII with Ο-

Cu(CGC)2- were investigated.  When 20 equivalents of Cu(OAc)2•4H2O in MeOH: DMF 

(50:50) were added to bright orange beads of Ο-Ni(CGC)2-, no immediate color change 

was observed.  After shaking for 6 h the beads were slightly darker in color.  Following 

washes with DMF, MeOH, CH2Cl2 and Et2O and vacuum drying, the EPR spectrum at 9 

K showed an axial signal with g-values of  g┴ = 2.110 and g║ = 2.304.  The g║ values, 

higher than the CuN2S2 complexes, indicate the presence of a paramagnetic CuII in an 



  107 

oxygen rich donor environment.109   To probe the assignment of this new EPR signal the 

TentaGel beads, sans peptide, were incubated with a Cu(OAc)2•4H2O solution for 3 hrs.   

The EPR spectrum of the bright blue-green beads obtained from this experiment after 

washes and drying is shown in Figure VI-14a and largely matches that resulting from the 

addition of Cu(OAc)2•4H2O to Ο-Ni(CGC)2- .  More importantly, the lack of an EPR 

signal corresponding to a CuN2S2
2- complex indicates that the nickel is not displaced from 

the CGC core.  Likewise, the addition of 20 equivalents of Cu(OAc)2•4H2O to Ο-

Cu(CGC)2- results in two overlapping signals, shown in Figure VI-14b.  One species is 

attributed to the metallopeptide as evidenced by overlaying the simulated spectrum of Ο-

Cu(CGC)2-.  The other signal matches that of absorbed Cu(OAc)2•4H2O discussed above.  

As 1 equivalent of Cu(OAc)2•4H2O results in Ο-Cu(CGC)2- alone we can conclude that  

uptake of CuII by the CGC moiety occurs first but excess CuII results in Cu-PEG 

absorption.  A number of reports have shown that chelation by the PEG moiety to Rh or 

other transition metals can occur.77,114  As the majority of the TentaGel resin-beads are 

comprised of the polyethylene-glycol (PEG) spacer uptake of metals with an affinity for 

O-donors is not surprising, and is therefore not observed for NiII. 75, 114 
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Figure VI-14.  The resulting EPR spectra obtained from (a) TentaGel beads incubated 

with Cu(OAc)2•4H2O and (b) 20 equivalents of Cu(OAc)2•4H2O  mixed with Ο-

CysGlyCys. 

 

 Similarly, the addition of 20 equivalents of Ni(acac)2 to purple beads of  Ο-

Cu(CGC)2- result in no color change over the course of 6 h.  Following washes and 

vacuum drying the resulting EPR spectrum displays the axial signal previously assigned 

to Ο-Cu(CGC)2- indicating that NiII is not exchanged for the CuII center.  Furthermore, 

under the conditions described above the thiolates of the Ο-Ni(CGC)2- and Ο-Cu(CGC)2- 

do not produce stable paramagnetic, multimetallic species when exposed to exogenous 

CuII or NiII. 
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Thiolate Reactivity of Cu(CGC)2- and Ο-Cu(CGC)2- with Rh(CO)2
+  

 As the metal ion capture ability of Cu(emi)2- and Cu(ema)2- was established using 

the Rh(CO)2 unit, the same reactivity was explored with the Cu(CGC)2-.  Additionally as 

discussed in Chapter IIII, previous studies of Ο-Ni(CGC)2- utilized M(CO)x derivatives 

and the resulting ATR-FTIR spectra to qualitatively identify the resin-bound NiN2S2 

dithiolate ligand by comparison to solution NiN2S2M(CO)x species.51,75  With Cu(ema)2-, 

Cu(emi)2-, and Cu(CGC)2- as solution analogues for comparison, the synthesis of Ο-

Cu(CGC)Rh(CO)2
1- can be used as secondary support for the immobilized Ο-Cu(CGC)2- 

complex.  

 The brown solid of Cu(CGC)Rh(CO)2
1- was prepared in an analogous manner 

described for Cu(ema)2-
 and Cu(emi)2-.  The resulting infrared spectrum with ν(CO) = 

2061 and 1983 cm-1 is shown in Figure VI-15.  These bands are nearly identical to the 

Rh(CO)2 derivatives of the other CuN2S2
2- complexes.  Based on the Rh(CO)2

2- 

derivatives, Cu(ema)2-, Cu(emi)2- and Cu(CGC)2- may be designated as equal in donor 

ability to one another, but more electron donating than their Ni analogues, as shown in 

Table VI-3.  The similarity in electron donor ability with varying ligand systems is 

observed for the analogous Ni complexes, Ni(ema)2- and Ni(CGC)2-.  Through synthesis 

of the NiN2S2W(CO)4
2- derivatives and calculation of their respective Cotton-Kraihanzel 

force constants, Ni(ema)2- and Ni(CGC)2- were shown to be nearly equivalent in donor 

ability as ligands to M(CO)x functionalities.75  

 Addition of [Rh(CO)2Cl]2 in CH2Cl2 to the deep purple CH2Cl2 suspension of Ο-

Cu(CGC)2-
 beads results in red beads after 10 min.  Following washes with CH2Cl2, 
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MeOH, and Et2O and drying in vacuo the resulting ATR-FTIR spectrum is indicative of 

cis-CO groups with two bands of almost equal intensity attributed to the symmetric and 

asymmetric stretches at 2066 and 1989 cm-1 respectively, Figure VI-15.  These bands 

provide secondary qualitative evidence for the synthesis of Ο-Cu(CGC)2-. The Ο-

Cu(CGC)2- species shows the same thiolate reactivity with Rh(CO)2
+ as the Ni analogue, 

Ο-Ni(CGC)Rh(CO)2
1-, which has ν(CO) bands at 2061 and 1983 cm-1 as shown in Table 

VI-4.   

 

Table VI-4.  Comparison of MN2S2Rh(CO)2
1- complexes (M=Cu, Ni).     

MN2S2
2- ν(CO) (cm-1) 

†Cu(ema)2- 2061, 1982 

†Cu(emi)2- 2062, 1984 

†Cu(CGC)2- 2061, 1983 

*Ni(ema)2- 2061, 1996 

*Ni(CGC)2-. 2058, 1986 

        †DMF Solvent  
      * CH3CN Solvent    
 

    To qualitatively test for the air-stability of the resin-bound species, 

samples of the dried Ο-Cu(CGC)2-
 beads were exposed to air for up to two weeks and 

then swollen in THF and reacted with [Rh(CO)2Cl]2.  The IR spectra consistently 

matched those obtained from a freshly prepared sample of Ο-Cu(CGC)2-.  In contrast, 

exposure of a dried sample of Cu(CGC)2- to air results in a green oil after 1 minute. The 
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reactivity shown with Rh(CO)2
+ parallels the reactivity observed of the original 

complexes in solution.  Therefore, the anchoring to a solid-support does not affect the 

reactivity but does enhance the stability.     

a)

b)
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Figure VI-15: FTIR spectra of (a) Ο-Cu(CGC)Rh(CO)2
1- (ATR-FTIR) and (b) 

Cu(CGC)Rh(CO)2
1- (solution in DMF). 

 

Conclusions 

 The synthesis of three new dianionic CuIIN2S2
2- complexes has been described 

along with characterization by – ESI-MS, UV-Vis, and EPR which indicates a 

paramagnetic CuII coordinated by the two amido nitrogen and two thiolate sulfur donors 

provided by the ligands emi, ema, and CGC.  The conclusions drawn from solution 

spectroscopy are corroborated by the solid state structure.  The molecular structure of 
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Cu(emi)2- shows Cu-S and Cu-N bond distances consistent with a CuII ion.  Furthermore, 

the copper center is found in a symmetric square planar arrangement. The Rh(CO)2
+ 

derivatives show that the thiolate reactivity with Rh(CO)2
+ of these CuN2S2

2- complexes 

parallels the well studied NiN2S2 analogues.  The CuRh bimetallic series show that 

Cu(ema)2-, Cu(emi)2-, and Cu(CGC)2- are equal in donor ability. 

 Synthesis of Ο-Cu(CGC)2- using previously reported methodology for the Ο-

Ni(CGC)2- species produces dark purple beads that are stabilized against decomposition 

with oxygen.75  The immobilized CuCGC2- complex can be identified spectroscopically 

through EPR signals.  Electron paramagnetic spectroscopy also showed that CuII binds to 

the underivatized TentaGel beads in the absence of the CGC unit, presumably to the ether 

oxygen donors of PEG.  Nevertheless the capture of CuII by the CGC N2S2 units 

dominates the Cu-PEG interaction. Derivatization with the Rh(CO)2
+ unit qualitatively 

shows that the Cu(CGC)2- is immobilized and that the same reactivity may occur resin-

bound as observed in solution.   

 Metal uptake studies showed that CuII and NiII are stable once in the N2S2 core, 

i.e. transmetallation or metal ion exchange in MN2S2 with Ni(acac)2 and 

Cu(OAc)2 4H2O, respectively, does not occur.  Furthermore, multimetallic species 

formed by thiolates bridging to NiII or CuII were not observed using the acac or aceto 

sources for exogenous Ni or Cu.  However, the reactivity with Rh(CO)2
+ shows that 

stabilizing ligands on the exogenous metal ion can product bimetallic species such as Ο-

Cu(CGC)Rh(CO)2
1-.     
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 Finally, no CuII active sites composed of the Cys-X-Cys ligand set have been 

reported to date.  However, as examples of Ni, Fe, and Co have already been reported for 

enzymes with strikingly varying activities, and as our studies indicate a strong similarity 

between NiII and CuII in a N2S2
2- donor environments, an eventual siting of a Cys-X-Cys-

CuII moiety will not be surprising.          
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CHAPTER VII 

 
RESIN-BOUND MODELS OF THE [FeFe] HYDROGENASE ENZYME ACTIVE 

 
 SITE AND REACTIVITY 

 
 

 
 The extraordinary facility in which the diiron subunit of the six-iron H-cluster of 

the [FeFe] Hydrogenase enzyme, [FeFe]H2ase (Figure VII-1), combines protons and 

electrons to produce H2 has focused attention on understanding the mechanistic features 

of the catalytic cycle.115,116,117   From such studies established principles might be applied 

to fuel cell technology, i.e. the replacement of platinum electrodes with more economical 

base metal electrocatalysts.118  Small molecule complexes which are derivatives of the 

classic organometallic complex (μ-pdt)[FeI(CO)3]2 (pdt = propanedithiol) have served to 

model the [FeFe]H2ase enzyme active site.119, 120  It has been shown that this complex and 

its derivatives are competent in both electrochemical H2 production and in H2 uptake. 

Electrochemical studies have shown that the (μ-pdt)[Fe(CO)3]2 complex, as well as CO 

substituted derivatives, electrocatalytically produce H2 upon acid addition under reductive 

conditions. 121,122  Additional studies have shown that protonation of the disubstituted 

phosphine complex, (μ-pdt)[FeI(CO)2PMe3]2 leads to the cationic (μ-H)(μ-

pdt)[FeIICO)2PMe3]2
+ species.123  An open site in this FeIIFeII complex is generated by 

photolytic CO removal, allowing H2 binding and activation to be studied according to 

H/D isotopic exchange reactions in D2/H2O mixtures.123 
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Figure VII-1:  Representation of the dinuclear iron active site of [FeFe]H2ase.123c 

 

 Attempts to harness the activity of the [FeFe]H2ase  biological catalyst has led to 

studies aimed at stabilizing the isolated enzyme through encapsulation in sol-gels.124 

Hydrogenase enzymes are typically oxygen sensitive and have a short shelf-life at room 

temperature.  Through encapsulation of [FeFe] and [NiFe] Hydrogenase enzymes within 

sol-gel pellets, hydrogen evolution activity can be retained for more than a four week 

period, a great enhancement of stability.124  Furthermore, immobilization of [FeFe]H2ase 

models within electropolymer materials, through ester linkages, has produced electrode-

bound films capable of hydrogen production.125
  

 Recently, additional [FeFe]H2ase models have been synthesized as targets for 

immobilization on electrode surfaces with the purpose of making hydrogen producing 

electrocatalysts.65,126 This focus has yielded a new library of [FeFe]H2ase model 

complexes functionalized for chemical attachment to surface-supported primary amines 

based on peptide like coupling techniques.65,126  One example shown in Chart 1 is the (μ-

pdt-COOH)[FeI(CO)3]2 complex, hereafter denoted as [A],  in which the 

propanedithiolate bridge to the [Fe(CO)3]2 units has been functionalized with a carboxylic 

acid.65  A second example in Chart VII-1 is (μ-pdt)[FeI(CO)3][FeI(CO)2P(C2H4COOH)3], 
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the monosubstituted tri(2-carboxyethyl)phosphine functionalized derivative of the (μ-

pdt)[Fe(CO)3]2 complex, which herein will be referred to as [B].65  Upon activation of the 

carboxylic acid, these complexes have been shown to react with amines to produce stable 

amide derivatives.65,126  For example, to mimic the amido linkage of electrode 

immobilized models, reaction of [A] with aniline and the coupling agent 

diisopropylcarbodiimide produced the amide derivative shown in Equation VII-1.65  These 

studies have also shown that reactivity of the (COOH)-functionalized [FeFe]H2ase model 

complexes with PMe3 produced mono and disubstituted complexes, analogous to known 

substitution chemistry which yields (μ-pdt)[Fe(CO)3][Fe(CO)2PMe3] and (μ-

pdt)[Fe(CO)2PMe3]2.123  Overall, the carboxylic acid functionality at the bridgehead μ-pdt 

moiety has little effect on the structure, reactivity, and spectroscopy of the [Fe(CO)3]2 

core.   

  Chart VII-1 
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 Immobilization of these complexes is not limited to electrode surfaces.  In theory, 

these molecules could be linked to any surface or nanoparticle capable of supporting the 

amido linkages formed with the carboxylic acid functionalities of the [FeFe]H2ase 

models. The growing number of biological applications for immobilized models suggests 

that resin-beads should be considered as one candidate for immobilization.37,39,38   A 

number of studies have recently provided examples of immobilization of biologically 

inspired complexes to polystyrene-polyethylene glycol based resin-beads.  For example, 

the A-cluster of acetyl coA synthase utilizes the metallopeptide Ni(CGC)2-
 as a dithiolate 

ligand to the NiII center responsible for the C-C coupling reaction that produces acetyl 

coA.1 Earlier chapters detailed studies of the resin-bound Ni(CGC)2- and it use as an 

anchor to attach M(CO)x moieties which can be identified by ATR-FTIR of the dried 

beads.75   Additionally P. Desrochers has shown that a resin-bound cysteine can chelate 

through the amido nitrogen and thiolate sulfur donors to (dppe)Ni and Tp*Ni units.  The 

resulting complexes, Ο-Cys[Ni(dppe)] and Ο-Cys[Ni(Tp*)] can be identified by the 31P 

NMR spectra obtained from CDCl3 suspensions of the beads.127  With isolation and 

characterization of resin-bound biomimetic complexes established, further studies 

directed toward the reactivity of immobilized model complexes can be pursued. 
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 As the structure, spectroscopy and reactivity of the parent (μ-pdt)[FeI(CO)3]2 

complex has been well established to produce a range of [FeFe]H2ase models, the 

carboxylic acid derivatives serve as good candidates for (1)  studying the effects endowed 

by the TentaGel S-RAM® environment on the properties (spectroscopy, reactivity and 

stability) of the resulting resin-bound model complexes; and (2) inferring from such 

differences the immediate environment or second-coordination sphere effects of the resin 

itself.122, 123, 128   

 Isolation and characterization of the resin-bound organometallic [FeFe]H2ase 

model complexes shown in Chart VII-1, Ο-am-[A] and Ο-am-[B] (am = amide),  through 

ATR-FTIR and 31P NMR spectroscopy will be reported herein.  Specifically, the stability 

of the resulting complexes to air, light, and solvent will be evaluated. A range of 

substitution reactions with phosphines (PMe3 and PPh3), CN-, and carbene ligands will be 

discussed and compared to the reactivity of analogous complexes in solution.  The results 

from these investigations will be compared to solution analogues and evaluated for the 

effects and interactions of the resin-bead environment with the immobilized complexes.   

 

Immobilization of [FeFe]H2ase Models 

 General Synthesis.  Synthesis of the resin-bound (COOH) functionalized 

[FeFe]H2ase models, Ο-am-[A] and Ο-am-[B] was performed in plastic syringes with 

microporous frits.  The TentaGel S-RAM® beads were swollen in DMF prior to 

attachment of the model complexes.  For coupling to the amine of the beads, the 

carboxylic acid functionality of [A] and [B] was activated with a 1,3-
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diisopropylcarbodiimide (DIC), N,N-diisopropylethylamine (DIPEA), and 1-hydroxy-7-

azabenzotriazole (HOBt) “coupling cocktail”.  Following the coupling of [A] and [B] to 

the resin-beads, the beads were washed with three times each with THF, DMF, MeOH, 

and Et2O and then dried in vacuo.  
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Figure VII-2. Comparison of infrared spectra for Ο-am-[A] (ATR-FTIR) (top) and [A]   

(THF) (Bottom).   

 

 Synthesis and Characterization of Resin-Bound (COOH)[Fe(CO)3)]2 

complexes, Ο-am-[A] and Ο-am-[B]. The bright-orange resin-bound complex, Ο-

am-[A] was produced via the addition of an activated red-orange solution of [A] in THF 

to light yellow TentaGel S-RAM® Beads and shaking for 2 h.  Following standard washes 

with THF, DMF, MeOH, and Et2O (3 x each), and drying in vacuo; the solid state ATR-
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FTIR spectrum  of the beads showed ν(CO) bands at 2074, 2034, and 1993 cm- 1, which is 

shown in Figure VII-2.  Apart from the absence of the carboxylic acid stretching 

frequency, the band pattern and positions are nearly identical to those observed for the 

[A] in a THF solution, ν(CO) = 2077, 2034, 1992 and ν((C=O)OH) = 1730 cm-1.65  A 

comparison of these bands to other [FeFe]H2ase models is shown in Table VII-1.  

 The loss of the ν((C=O)OH) = 1730 cm-1 stretch for the Ο-am-[A] complex is 

indicative of the expected peptide bond formation.  Unfortunately, the resulting amide 

stretching frequency is not distinguishable from similar bands arising from the Rink 

Linker (ν(am)=1663 cm-1) of the TentaGel S-RAM® beads, which contains an amide 

bond as well.  To establish the covalent attachment via the amide bond and rule out 

physisorption of the complex, pre-swollen TentaGel S-RAM Beads were incubated with a 

THF solution of (μ-pdt)[Fe(CO)3]2.  Following the standard washes, no color change and 

no ν(CO) bands were observed on the beads.  This indicates that adsorption of the 

carboxy-derivatized [FeFe]H2ase model is not the mode of attachment and that the COOH 

moiety is required and results in covalent linkage.  Additionally, group member Jen Hess 

has shown that coupling of 2-carboxy-1,3-propanedithiol to the TentaGel resin-beads 

followed by the addition of a green THF solution of [Fe3(CO)12] results in bright orange 

beads with identical ν(CO) IR band pattern and position to Ο-am-[A].  This alternate 

synthesis to Ο-am-[A], Scheme VII-1, shows that coupling of 2-carboxy-1,3-

propanedithiol to the amide resin produces a resin-bound dithiolate ligand that parallels 

solution reactivity.129 The results serves as confirmatory evidence of an amide bond 

formation when  [A]  is coupled to the resin-bead. 
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  Table VII-1. Comparison of Resin-Bound [FeFe]H2ase model complexes with solution 

analogues.   

Complex ν(CO) (cm-1) 

Ο-am-[A] 2074(w), 2034(s), and 1993(m) 

(μ-pdt)[Fe(CO)3]2
128  2074(m), 2036(s), 1995(m) † 

[A] 65 
2077(w), 2034(s), 1992(m) 

υ((C=O)OH) = 1730 † 

Monosubstituted Complexes 

Ο-am-[B] 2038(s), 1976(s), 1950(sh), 1918(w) 

[B] 65 2041(s), 1981(s), 1962(sh), 1920(w) † 

Ο-am-(μ-pdt )[Fe(CO)3][Fe(CO)2PMe3] 2036(m), 1981(s), 1960 (sh), 1923(w) 

Ο-am-(μ-pdt)[Fe(CO)3][Fe(CO)2PPh3] 2045(s), 1985(s), 1960(sh), 1941(w) 

(μ-pdt)[Fe(CO)3][Fe(CO)2PMe3] 128 2037(s), 1980(s), 1919(w) ‡ 

Disubstituted Complexes 

Ο-am-(μ-pdt)[Fe(CO)2PMe3]2 1980(m), 1943(s), 1899(s) 

(μ-pdt-COOH)[Fe(CO)2PMe3]2
65 1984(m), 1948(s), 1903(s) † 

(μ-pdt)[Fe(CO)2PMe3][Fe(CO)2P(C2H4COOH)3] 
65 1980(m), 1942(s), 1899(w), 1876(sh) † 

Ο-am-[Fe(CO)2PMe3][Fe(CO)2P(C2H4COOH)3](μ-pdt) 1981(m), 1943(s), 1909(w), 1894(sh) 

Cyanide Derivatives 

Ο-am-[Fe(CO)2CN][Fe(CO)2P(C2H4COOH)3](μ-pdt) 1977(m), 1939(s), 1904(w), 1875(sh) 
υ(CN)=2072, 2037 

(μ-pdt)[Fe(CO)2CN][Fe(CO)2PMe3]
123  

1971(m), 1931(s), 1895(w), 1880(sh) 
υ(CN)=2078, 2036  † 

IMes Derivatives 

Ο-am-[Fe(CO)2IMes][Fe(CO)2P(C2H4COOH)3](μ-pdt) 1980(m), 1943(s), 1911(m), 1893(sh) 

(μ-pdt)[Fe(CO)2IMes][Fe(CO)2PMe3]
131 1972(m), 1933(s), 1897(m), 1882(sh) § 

Ο-am-[(μ-pdt)(Fe(CO)2IMes)(Fe(CO)2PMe3)] 1982(m), 1962(s), 1903(m), 1892(sh) 

                                                                                                Solvent:  †THF   ‡CH3CN § CH2Cl2 
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 As final proof for the resin-amine site reactivity, a ninhydrin test was carried out.  

This assay tests for the presence of active amines on the TentaGel beads via reaction with 

ninhydrin to give blue-purple colored beads.12  The addition of the ninhydrin solution to 

the unmodified yellow TentalGel S-RAM beads followed by heating produced a deep 

blue hue due to reaction of ninhydrin to the Rink Linker amine sites.  When ninhydrin 

was added to the iron-carbonyl loaded, bright-orange Ο-am-[A] beads, no color change 

was observed indicating that quantitative conversion of the amine sites to amides had 

occurred. Moreover, analogous solution coupling studies of the carboxy-functionalized 

[FeFe]H2ase models to amines such as aniline utilizing DIC as a coupling agent results in 

rapid formation of  the amide bond in high yield.65  
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Scheme VII-1.  Alternative Synthesis to Ο-am-[A]. 

 

 The (μ-pdt)[Fe(CO)3]2 complex is an air stable red solid.128  The CO ligands may 

be substituted by better donors, such as PMe3. 123,128,130,133   This reaction is facilitated by 

addition of Me3NO resulting in oxidative elimination of CO2 or UV photolysis.123 

However, loss of CO from (μ-pdt)[Fe(CO)3]2 by exposure to ambient lab light has not 

been reported.  Nevertheless, exposure of Ο-am-[A] to ambient lab light results in no 
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color change but complete loss of ν(CO) bands after 4 h.  The lack of color change 

indicates that some version of the FeFe-dithiolate unit is still attached to the beads, 

however.  The IR spectrum of the supernatant solution shows no CO bands.  Similar 

decomposition was also observed when the resin-bound complex was prepared and stored 

in CH2Cl2.  When stored in the dark as a suspension in dry THF, the ν(CO) bands 

remained over 3 weeks.  Exposure to air does not result in degradation of the complexes; 

however, they were stored under a N2 environment to avoid excessive H2O uptake.  All 

subsequent substitution reactions discussed herein were therefore carried out in sample 

vials fitted with rubber septa and covered in foil to prevent light exposure.       

  Synthesis of the second resin-bound [FeFe]H2ase model complex,  Ο-am-[B] was 

accomplished in an identical manner to that of Ο-am-[A]. Following thorough washes of 

the resulting bright-orange beads and vacuum drying, the ATR-FTIR spectrum showed 

ν(CO) bands at 2038(s), 1976(s), 1950(sh), 1918(w). A 31P NMR spectrum of a CDCl3 

suspension of the beads showed a single resonance at 52.37 ppm.  These solid phase or 

mixed phase spectra parallel those of the parent compound, [B] in solution as shown in 

Figure VII-3.65  The stability of Ο-am-[B] mimics that of Ο-am-[A].  
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Figure VII-3. The ATR-FTIR and 31P spectra of Ο-am-[B] (inset: corresponding 

spectroscopy of [B] (IR spectrum in solution: THF, 31P NMR spectrum: CDCl3).  

 

 The synthesis of resin-bound Ο-am-[A] and Ο-am-[B] have shown that common 

coupling techniques can be used to produce resin-bound organometallic complexes.  By 

establishing that all amine sites have been converted to amides, the ninhydrin test 

confirms that the (COOH)-functionalized [FeFe]H2ase models are imbedded within the 

resin-beads.39a,40b  As these complexes have shown stability in the absence of light, 

substitution of the CO ligands can now be explored. 
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Synthesis of Monosubstituted Derivatives via Ligand Substitution on Immobilized 

FeFe Carbonyls    

 The isolation and IR spectroscopy of (μ-pdt)[Fe(CO)3][Fe(CO)2L] (L = PMe3, 

PMe2Ph, P(OEt3),PPh3) were recently compared.130  These complexes were obtained 

through stoichiometrically controlled CO substitution.  Careful addition of PMe3 to (μ-

pdt)[Fe(CO)3]2 was particularly key to the synthesis of (μ-pdt)[Fe(CO)3][Fe(CO)2PMe3]  

complex in order to avoid the disubstituted species which readily forms.130  Substitution 

of one CO group with a more electron-donating phosphine results in a new band pattern 

with an overall shift to lower wavenumbers.  For example, the (μ-

pdt)[Fe(CO)3][Fe(CO)2PMe3] complex has ν(CO) = 2037(m), 1980(s), and 1919(w) cm-1 

compared to (μ-pdt)[Fe(CO)3]2 with ν(CO) = 2074(m), 2036(s), and 1995(m) cm-1.128  For 

the solution spectra of a series of (μ-pdt)[Fe(CO)3][Fe(CO)2L], the most intense band is 

shifted on average 50 wavenumbers lower than that of (μ-pdt)[Fe(CO)3]2.
130 

 Similar reactivity for resin-bound complexes may be achieved.  Scheme VII-2 

shows that addition of PMe3 to an N2-flushed THF suspension of Ο-am-[A], followed by 

washes yielded red-orange beads after 4 h.  The ATR-FTIR spectrum showed ν(CO) 

bands at 2036(m), 1981(s), 1960 (sh), 1923(w) cm-1.  As shown in Table VII-1 and 

discussed above, these values are consistent with other monosubstituted solution 

species.130  The intensity of the ν(CO) bands arising from the Rink Linker can be used as 

an internal standard to monitor the stability of the CO-containing products.  Compared to 

the ν((C=O)OH) bands from the beads, the intensity of the ν(CO) bands arising from [A] 

remain unchanged upon CO-substitution with PMe3.  Furthermore, the supernatant 
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solution remained colorless and free of ν(CO) bands following reaction with PMe3.  The 

31P NMR spectrum obtained from a CDCl3 suspension of Ο-am-[(μ-

pdt)(Fe(CO)3)(Fe(CO)2PMe3)] shows a singlet at 26.1 ppm, indicating that only one type 

of phosphorus-containing moiety is present.  
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Scheme VII-2.  Synthesis and characterization of mono and disubstituted resin-bound 

derivatives of Ο-am-[A].   

 

 Similarly, the addition of the more bulky phosphine PPh3 in THF to a suspension 

of Ο-am-[A] results in an ATR-FTIR spectrum comprised solely of ν(CO) bands at 
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2045(s), 1985(s), 1960(sh), 1941(w) cm-1.  These bands indicate that monosubstitution 

has occurred to form Ο-am-[(μ-pdt)(Fe(CO)3)(Fe(CO)2PPh3)]; they are ~10 wavenumbers 

higher than those observed for the PMe3 analogue, see Table VII-1.  This shift is 

consistent with the poorer donor ability of PPh3 as compared to PMe3.
130 The full 

conversion of Ο-am-[A] to the monosubstituted PPh3 species indicates that the bulkier 

phosphine can access all of the Ο-am-[A] sites within the bead.  Likely due to its steric 

bulk, preparation of the di-substituted PPh3 derivatives has not been reported for solution 

[FeFe]H2ase models.  This same substitution reactivity is found in the resin-bound 

species.   

 

Disubstituted Derivatives and Their Reactivity  

 As shown in Figure VIII-1, the active site of [FeFe]H2ase utilizes two cyanide 

donors which presumably facilitate the catalytic activity through structural and electronic 

effects.123a  Therefore, investigations of small molecule models of [FeFe]H2ase have 

focused on substituting two of the CO groups of (μ-pdt)[Fe(CO)3]2 with cyanides as well 

as PMe3, said to be a CN- mimic in donor ability.123,128  An increase in electron density by 

better σ donors at Fe is important as oxidation of FeI and stabilization of FeII is required 

for generation of hydrogenic iron species, FeII-H or Fe(η2-H2).123b  Furthermore, a second 

role for CN- is its potential for H-bonding to the protein, thus locking in the rotated 

structure shown in Figure VII-1, even when reduction to an FeIFeI redox level would 
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Figure VII-4.  Targets for reactivity studies of resin-bound [FeFe]H2ase models. 
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push the structure towards the symmetrical form typically seen in model complexes.123a  

Hence my goal for resin-bound [FeFe]H2ase model complexes was two-fold, with targets 

as shown in Figure VII-4.  The first objective was (1) to produce the resin-bound bridging 

hydride, FeII(μ-H)FeII, species by acid addition to Ο-[Fe(CO)2PMe3]2; (2) to create an 

open site by photochemically removing CO; and (3) to study H2 uptake through isotopic 

exchange studies.  The second target was to create a bridging CO group by oxidation of 

the resin-bound [Fe(CO)2PMe3][Fe(CO)2(IMes)] ((IMes = 1,3-bis(2,4,6-

trimethylphenyl)imidazol-2-ylidene)).    As shown by co-worker T. Liu, the bulky IMes 

carbene assists in a unique rotation of the Fe(CO)2IMes side, producing the bridging CO 

group and concomitantly yielding a open site.131  

 The addition of excess PMe3 to a THF suspension of  Ο-am-[A]  and followed by 

heating at 50˚C for 6 h yields ν(CO) bands at 1980(m), 1943(s), 1899(s) cm-1.  These 

values agree with assignment of the disubstituted species, Ο-am-[(μ-

pdt)(Fe(CO)2PMe3)2], shown in Scheme VII-2.123  The same complex is obtained via the 

addition of PMe3 to Ο-am-[(μ-pdt)(Fe(CO)3)(Fe(CO)2PMe3)] upon heating.  Phosphorus 

NMR spectra show two singlets with δ = 27.4 and 20.2 ppm which match the δ = 27.6(s), 

21.5(s) ppm observed in solution for (μ-pdt-COOH)[Fe(CO)PMe3]2.65   Comparison of 

the ν(CO) bands, shown in Table VII-1, and 31P NMR spectra of the resin-bound product 

to solution analogues has indicated that disubstitution of Ο-am-[A] proceeds to 

completion with little degradation.  The Ο-am-[(μ-pdt)(Fe(CO)2PMe3)2] complex is light 

sensitive, as are its resin-bound precursors, but it is stable as a THF suspension under an 

N2 blanket.    
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 As suggested by the goal expressed in Figure VII-4, Route (a), the reactivity of the 

stable resin-bound disubstituted complex toward protonation and ligand exchange was 

explored.  As mentioned above, further investigations have produced a bridging hydride, 

FeII(μ-H)FeII, obtained upon addition of HCl to (μ-pdt)[Fe(CO)2PMe3]2 and shown in 

Equation VII-2.123  On photolysis, the complex loses a CO group yielding an open site 

capable of reversibly binding H2.123  In an attempt to access the resin-bound (μ-H) 

species, reaction of the Ο-am-[(μ-pdt)(Fe(CO)2PMe3)2] complex with dilute (1%) 

solutions of acids such as HCl, CH3COOH, and CF3COOH were investigated.  However, 

as evidenced by the bleaching of color from the beads upon addition of HCl and 

CH3COOH, cleavage of the carboxamido linkage and decomposition of Ο-am-[(μ-

pdt)(Fe(CO)2PMe3)2] occurs.  While, the resulting supernatant THF solution became 

orange in color, it did not display detectable ν(CO) bands. Addition of NH4PF6 as a 

stabilizing counterion gave identical results. When a 1% THF solution of CF3COOH, was 

added to Ο-am-[(μ-pdt)(Fe(CO)2PMe3)2], decomposition again occurred.  However, very 

low intensity bands at 2017 and 1963 cm-1 were observed.  These bands, although similar 

in pattern, do not match the position of those observed for [(μ-pdt-COOH)(μ–
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H)(Fe(CO)2PMe3)2]PF6 (ν(CO) = 2034(s), 1994(s) cm-1).65  The amide derivative of [A], 

shown as the product in Equation VII-1, has also been studied for its stability with acids.  

The amide bond in solution proved to be robust when exposed to 10 equivalents of 

CH3COOH and HCl.  However, when exposed to concentrated solutions of HCl, the 

solution bleached resulting in uncharacterized brown solids over the course of one 

hour.123   The resin-bound species is presumably undergoing similar decomposition, even 

in the presence of dilute solutions of acid. 

 The Ο-am-[B] complex was much less reactive toward ligand exchange than its 

parent complex, [B], in solution.  Addition of PMe3 to [B] in toluene results in infrared 

spectral changes of ν(CO) = 1980, 1942, 1899, and 1876 cm-1, consistent with a 

diphosphine complex with one P-donor on each iron.132  More rigorous conditions are 

required to obtain the resin-bound analogue.  The reaction consisted of the addition of 

Me3NO to a THF suspension of Ο-am-[B] followed by PMe3 and heating at 55˚C 

overnight.  These beads were then washed with DMF, THF, MeOH and Et2O and dried in 

vacuo. The ATR-FTIR spectrum of the red-orange beads showed complete conversion to 

ν(CO) = 1981(m), 1943(s), 1909(w), 1894(sh) cm-1.  These bands correspond to the IR 

spectrum of   (μ-pdt)[Fe(CO)2PMe3][Fe(CO)2P(C2H4COOH)3] complex produced in 

solution and show that CO substitution of Ο-am-[B] occurs, albeit slowly.                   

 Reactivity with Cyanide.   The [FeFe]H2ase active site utilizes CN- as ligands 

that are believed to participate in H-bonding with surrounding amino acid side chains, 

thereby preventing rotation from the bridging CO state and loss of the structure that 

provides an open site for H2 bonding or proton addition.123a   Small molecule models with 
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CN- ligands have been produced as more faithful models to the active site.  Substitution 

of two CO groups with CN- results in a cyanide group on each Fe subunit, similar to that 

observed with the phosphine derivatives of (μ-pdt)[Fe(CO)3]2.123  Unfortunately, reported 

attempts to obtain a bridging hydride species through reaction with acids, resulted in the 

production of HCN and degradation, rather than a μ-H species.123   

 Resin-bound cyanide substituted species can be produced as well.  The addition of 

a methanolic solution of [Et4N][CN] to a THF suspension of Ο-am-[B] at room 

temperature for 12 h results in CO-substitution to yield an IR spectrum with ν(CN) = 

2072, 2037 cm-1 and   ν(CO) = 1977(m), 1939(s), 1904(w), 1875(sh) cm-1.  The two CN 

bands are consistent with the presence of isomers which have been observed for solution 

complexes of (μ-pdt)[Fe(CO)2CN][Fe(CO)2PMe3] (ν(CN) = 2076, 2036 cm-1 and   ν(CO) 

= 1971(m), 1931(s), 1895(w), 1880(sh) cm-1).132   

 With two good donors capable of stabilizing higher Fe oxidation states, the (μ-H) 

and rotated structure or (μ-CO) species were pursued, the former by protonation and the 

latter by 1 e- oxidation.  Regrettably, the addition of the oxidant FcPF6 (2 equivalents) to 

THF suspensions  of  Ο-am-[Fe(CO)2CN][Fe(CO)2P(C2H4COOH)3](μ-pdt) resulted in no 

change in ν(CO) bands.  Addition of a 1% solution of HCl resulted in degradation of the 

resin-bound complexes as was observed for the phosphine derivatives.    

 Reactivity with the N-Heterocyclic Carbenes, IMes.  Recently, the addition of 

the N-heterocyclic carbene, IMes, to (μ-pdt)[Fe(CO)3]2, followed by PMe3 substitution, 

was shown to result in the FeIFeI complex  (μ-pdt)[Fe(CO)2PMe3][Fe(CO)2IMes].131  As 

shown in Equation VII-3, the addition of FcPF6 at low temperature to a CH2Cl2 solution 
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of this complex yielded an FeIFeII species.  This species is of importance for a number of 

reasons.  The EPR spectrum of this mixed valent complex shows an S = 1/2 system, 

which is also observed in the Hox state of the [FeFe] Hydrogenase enzyme.133 Also, the IR 

spectrum has a weak band at 1861 cm-1, which suggests the presence of a bridging CO.134 

This feature, critical to a structural and spectroscopic model of the as-isolated 

[FeFe]H2ase active site, was confirmed by the molecular structure.131  The bridging CO 

species is an excellent structural model of the [FeFe]H2ase active site, both structurally 

and spectroscopically.131  However, further studies of this mixed valent species have been 

impeded by its thermal and air sensitive nature. 

 

 

  

 As immobilization has been reported to impart stabilization to resin-bound 

complexes, substitution of Ο-am-[A] and Ο-am-[B] with the IMes carbene followed by 

PMe3 addition has been pursued.5,6  Sequential addition of Me3NO and IMes to a 

suspension of Ο-am-[B] in THF and heating at 50 ˚C for 24 h produced an IR spectrum 

with ν(CO) = 1980(m), 1943(s), 1911(w), 1893(sh) cm-1.    These bands parallel those 

observed for (μ-pdt)[Fe(CO)2PMe3][Fe(CO)2IMes], ν(CO) = 1972(s), 1933(vs), 1897(s), 

and 1882(sh) cm-1.131   Unfortunately, attempts to oxidize the Ο-am-
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[Fe(CO)2IMes][Fe(CO)2P(C2H4COOH)3](μ-pdt) with FcPF6 at room temperature result in 

loss of the IMes ligand, as evidenced by the resulting IR spectrum ν(CO) bands at 

2038(s), 1976(s), 1950(sh), 1918(w) which corresponds to Ο-am-[B], Table VII-1.  The 

CO needed to regenerate Ο-am-[B] is likely obtained  through a scavenging mechanism 

similar to that reported to produce Ο-Ni(CGC)W(CO)5
2- from Ο-Ni(CGC)W(CO)4

2-.75 

 When Me3NO and IMes were added sequentially to Ο-am-[(μ-

pdt)(Fe(CO)3)(Fe(CO)2PMe3)] and heated at 55˚C for 24 h, the resulting ν(CO) bands 

(1982(m), 1962(s), 1903(m), 1892(sh) cm-1) show that IMes substitution was successful.  

Again, attempts to oxidize with FcPF6 resulted in loss of the IMes ligand and regeneration 

of the mono-substituted resin-bound complex, Ο-am-[(μ-pdt)(Fe(CO)3)(Fe(CO)2PMe3)] 

(ν(CO) = 2036(m), 1981(s), 1960 (sh), 1923(w) cm-1).  The addition CO needed to 

regenerate Ο-am-[(μ-pdt)(Fe(CO)3)(Fe(CO)2PMe3)] is assumed to result from a 

scavenging mechanism. Currently, studies are being directed at other oxidizing agents and 

conditions to obtain the mixed valent species.   

 

Interactions of TentaGel S-RAM® Beads with Ο-am-[A] 

 Understanding the environment and interactions surrounding resin-bound 

complexes would assist in elucidating the reactivity at that site.  By comparing the effects 

of solvent polarity on the υ(CO) bands of Ο-am-[A], the interactions of the TentaGel S-

RAM® beads with the immobilized compound may be better understood.  As assigned 

through computational studies by Dr. Christine Thomas and shown in Figure VII-5, the 

pseudo C2v molecule has 5 IR active CO stretches.  The deconvoluted spectrum for these 
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bands have been overlayed with the experimental ATR-FTIR spectrum of Ο-am-[A], 

showing that the three bands at lower wavenumbers have coalesced into one broad 

band.136  That this line broadening is independent of any solvent “trapped” inside the 

beads was confirmed by NMR spectroscopy.  Following synthesis of Ο-am-[A], the 

beads undergo extensive washes with DMF, THF, MeOH and Et2O and then drying in 

vacuo.  The wash with Et2O is especially important as it is key to removing coordinating 

solvents that cannot escape easily from the beads upon drying. These beads may then be 

suspended in CDCl3, a good solvent for swelling.9  The resulting 1H NMR shows that a 

suspension of the beads washed and dried according to the protocol will display the 

resonance for CDCl3 alone.  However, when the protocol is not followed, the swelling in 

CDCl3 allows for trapped solvents to leave the beads and for identification in the 1H 

NMR spectrum of the wash.135 

 As shown in Figure VII-6, the polarity of the solvent for (μ-pdt)[Fe(CO)3]2 affects 

the lowest frequency bands with respect to their overlap.  When (μ-pdt)[Fe(CO)3]2 is 

dissolved in polar solvents such as MeOH, similar broadening occurs as observed for Ο-

am-[A].  As solvent polarity decreases, however, these 3 lower frequency CO bands are 

resolved and are clearly distinguishable in benzene, the least polar of the solvents studied.   

 To mimic and compare the polyethylene glycol rich environment, expected for the 

TentaGel S-RAM® resin-bound complexes, the (μ-pdt)[Fe(CO)3]2 complex was dissolved 

in the polyether, tetraglyme (CH3(OCH2CH2)4OCH3).  The resulting infrared spectrum of 

this polyether oil shows the same broadening of the lower frequency bands observed in 

polar solvents and is consistent with the IR spectrum of the Ο-am-[A] model complex.  
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These results indicate that the line broadening of resin-bound complexes is a result of the 

resin-environment and that the TentaGel S-RAM® superstructure is not an inert, static 

environment.  Rather, it interacts through dipole-dipole interactions with complexes 

imbedded within reminiscent of enzyme secondary coordination sphere contacts. 

 

  

Figure VII-5.   (Top) Assignment of vibrational modes for the (μ-pdt)[Fe(CO)3]2 

molecule and (Bottom) deconvoluted IR spectrum of Ο-am-[A] with the resulting fitted 

spectrum (- - -) and the experimental ATR-FTIR spectrum ( ― ) overlaid.136  
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Figure VII-6.   Overlay of Infrared Spectra of O-am-[A] and (μ-pdt)[Fe(CO)3]2 

dissolved in polar to non-polar solvents. 
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Comments and Conclusions  

 Immobilization of carboxy functionalized FeFe[H2ase] model complexes using the 

TentaGel S-RAM® solid support was confirmed by comparison of the ν(CO) bands 

obtained via ATR-FTIR to solution analogues.  The substitution of CO ligands with 

phosphines was clearly established through the ν(CO) bands and 31P NMR spectra, 

indicating that resin-bound reactivity parallels that on the resin-bead.  Substitution with 

cyanide and N-heterocyclic carbene ligands is also possible as evidenced by the resulting 

band pattern and shift of CO bands to lower wavenumbers when compared to the parent 

resin-bound complex and the complexes in solution.  The ability for these resin-bound 

complexes to exhibit the same substitution reactions shows that the resin-bead is an 

immobilized support that provides an environment capable of supporting solution type 

chemistry.  That the solvation properties in the microenvironment are hydrophobic as 

expected from the formulation of the TentaGel Beads was also demonstrated in this work.  

Future work will focus on obtaining and stabilizing bridging functionalities such as μ-CO 

and μ-H-. 

   The work reported here established by the ninhydrin test that quantitative 

conversion of all the amine sites to amides occurs upon addition of the 

(COOH)[FeFe]H2ase model complexes.  Furthermore, reactivity with larger substituting 

ligands proved successful.  Therefore, the use of the TentaGel S-RAM® bead as a mimic 

of the protein for model studies of biological systems is possible.  However, the use of the 

Rink Linker is not necessary for attachment and other, acid stable linkers could and 

should be used.   
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 To experimentally define the environment of the resin-bound complex, analysis of 

the “solvation” environment and its effect on the shape of the CO bands revealed that 

interactions with the resin-bound models and the PEG superstructure are similar to that 

observed for polar solvents, such as MeOH.  As further evidence, the broadening of the 

lower frequency bands of the resin-bound model, Ο-am-[A], are directly mimicked by the 

polyether tetraglyme.  These results indicate that (1) PEG is the environment surrounding 

the model and (2) environments reminiscent of secondary coordination spheres within 

enzyme active sites exist. To date, the literature has assumed that the microenvironment 

of a resin-bound complex is rich in PEG.11 The work reported here experimentally 

establishes that PEG is the microenvironment surrounding the immobilized complexes.  

By defining the immobilization, reactivity and microenvironment of the resin-bound 

FeFe[H2ase] models, further investigations into heterogenizing bioorganometallic 

catalytic systems will surely ensue.  
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CHAPTER VIII 

CONCLUSIONS 

 

 The immobilization of catalysts onto polymeric supports has yet to achieve 

widespread use in industry although it has been shown to stabilize catalysts and provide a 

wide range of active catalysts.27,28  Despite these advantages slow turnover rates, metal 

leaching, and low catalyst loading have hindered extensive use.28  Detailed studies aimed 

at carefully characterizing the catalyst resin-bound are only now becoming widespread.137  

These investigations will develop a better understanding of the effects of the support on 

the resin-bound catalyst and assuredly improve these immobilized systems, “catalyzing” 

their widespread use.    

 An additional approach at designing new catalysts as well as the polymeric 

supports for them takes lessons from nature.  Nature has elegantly designed enzymes 

utilizing amino acids to construct peptide chains that fold into conformations suitable for 

carrying out chemical processes at rates higher than any man-made catalyst.  

Metalloenzymes, for example have rates of reaction that are typically several orders of 

magnitude higher than their synthetic counterparts.138  Enzymes are capable of achieving 

this high level of performance using several optimizations.  The redox potential of the 

metal is tuned by the surrounding proteins so that a normally irreversible redox reaction 

becomes reversible.  The tuning can be done using specific ligands, held in precise 

geometries.  Through this, proteins can stabilize a transition state by forcing the metal site 

into a geometry which has the appearance of a transition state intermediate.  Furthermore, 
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proteins provide a substrate pocket for binding in specific geometries thereby facilitating 

a situation in which very few collisions are needed for a reaction to occur.  By housing 

the metal center in a superstructure composed of this biological polymer, the catalytic site 

is primed for activity.   

 Understanding the mechanisms of metalloenzyme catalytic cycles has been 

advanced in myriad studies of small molecule models which focused on the primary 

coordination sphere surrounding the catalytic metal center.  These models have utilized 

mainly synthetic organic ligands, but as shown in this work and that of others, more 

ligands composed of peptide or peptide like chelates are under investigation.  Inspired by 

nature’s use of a polymeric support for isolating enzymatic catalysts, the immobilization 

of biomimetic complexes of active sites in acetyl coA synthase, Type I copper sites, and 

[FeFe]H2ase  have been explored and the results discussed in this dissertation. 

 Inspired by the immobilized biological ligand found in acetyl coA synthase the 

resin-bound metallopeptide Ni(CGC)2-, Ο-Ni(CGC)2-, was constructed on TentaGel beads 

using Merrifield Peptide Synthesis and then metallated using standard synthetic inorganic 

techniques.  Through ATR-FTIR spectroscopy of metal-carbonyl derivatives, resin-bound 

and in solution, the qualitative identification of the Ο-Ni(CGC)2- complex was possible.  

To our knowledge this is the first time that M(CO)x derivatives have been used in such a 

way.  Additionally, quantitative identification of Ο-Ni(CGC)2- and Ο-Ni(CGC)Rh(CO)2
- 

was made using Neutron Activation Analysis (NAA), UV-Vis studies and IR 

spectroscopy.  The accidental discovery of an Rh-PEG interaction provided a foundation 

for the expectation of other M-PEG contacts to follow.     This resin-bound work was 



  142 

largely paralleled in solution through the use of K2Ni(CGC) and [Et4N]2[Ni(ema)].  The 

Ο-Ni(CGC)M(CO)x derivatives were compared to solution complexes Ni(CGC)W(CO)4
2-

, Ni(ema)W(CO)4
2-,  and Ni(ema)Rh(CO)2

1-.  The former two complexes were used to 

establish that Ni(ema)2- is a good model of the electron donor ability of Ni(CGC)2-.  

Therefore, as examples of thiolate reactivity and modification are found in several 

enzyme active sites, ACS and nitrile hydratase for example, the thiolate reactivity of 

Ni(ema)2- was expanded upon and compared to the reactivity of neutral NiN2S2 

complexes.  The sulfinato species, Ni(ema) O2
2-, produced by exposure of crystalline 

Ni(ema)2- to oxygen is the first dianionic NiN2SthiolateSsulfinate species reported while the 

synthesis of the macrocyclic complex, Ni(ema) (CH2)3, parallels that established for the 

neutral complexes.  The electrostatic potential maps generated by Scott Brothers for the 

macrocycle shows the molecule is now polarized, with S-(CH2)3-S linker being 

electropositive and the electronegative region located abaft.  By studying thiolate 

modification of the dianionic NiN2S2
2- complex insights into the spectroscopic, structural 

and electrochemical implications of biological thiolate modification may be better 

understood. 

 Having firmly established the thiolate reactivity of the dianionic NiN2S2
2- 

complexes the study of the copper(II) analogues of these complexes in collaboration with 

Dr. David Rockcliffe and his undergraduate student Boram Lee, to produce models of 

CuN2SS’ active sites was carried out.  Given the great tendency for CuII/RS- to participate 

in intramolecular redox processes and subsequent generation of CuI bridging CuN2S2 

complexes, we were pleasantly surprised by the actual ease with which the Cu(ema)2-, 
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Cu(emi)2-, and Cu(CGC)2- were prepared and isolated.  As indicated by spectroscopic 

solution studies, the molecular structure obtained for Cu(emi)2- confirms that the CuII is 

found in a square planar N2S2 coordination sphere. As a number of the CuII complexes 

showed instability in solution, immobilization of Cu(CGC)2- to TentaGel resin-beads to 

provide stabilization as observed for the Ο-Ni(CGC)2- complex was carried out.  The 

thiolate reactivity of these complexes, solution and resin-bound, was studied using 

Rh(CO)2
+.  The cis-CO bands observed in the respective IR spectra showed that the Cu 

complexes serve as bidentate ligands to the Rh+ center that the CuN2S2
2- complexes are 

slightly better donors than the NiII analogues.  Furthermore, the reactivity of the resin-

bound complex, Ο-Cu(CGC)2-, parallels that observed in solution and is almost identical 

to that of Ο-Ni(CGC)2-.  Moreover, with the stability of the resin-bound and solution 

CuN2S2
2- complexes, a fundamental comparison of the spectroscopic, electrochemical and 

structural properties to the NiII analogues was made. 

 Finally, (COOH)-functionalized [FeFe]H2ase models were covalently anchored to 

TentaGel resin beads.   The CO-substitution reactions of these light sensitive immobilized 

models with phosphines parallel the chemistry observed in solution resulting in mono- 

and disubstituted derivatives.  Attempts to produce derivatives capable of binding H2 

proved unsuccessful; utilizing an acid tolerable linker would likely remedy this issue.  

Nevertheless, the CO-bands of the resin-bound complexes were used as a “handle” for 

understanding the immediate environment of the [FeFe]H2ase models.  This study showed 

that the PEG-rich environment produced CO band broadening similar to that observed in 

spectra obtained from (μ-pdt)[Fe(CO)3]2 when dissolved in polar solvents such as 
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tetraglyme.  We can therefore conclude, that these sites are surrounded by the polyether 

PEG.   

 

 

Figure VIII-1.  Representation of Ο-M(CGC)2- where M = Ni or Cu (left) and Ο-[A] 

(Right) 

 As a whole, the reactivity of solution bio-inspired model complexes is mirrored by 

the resin-bead immobilized analogues shown in Figure VIII-1.  This indicated that the 

PEG microenvironment is highly mobile showing little steric hindrance to reactive 

substrates offered to the immobilized active sites.  Characterization of the resin-bound 

complex, a problem in many heterogeneous catalysis systems, is possible using EPR for 

paramagnetic (EPR active) species but may also be accomplished by utilizing derivatives 

with CO or phosphine ligands through ATR-FTIR and 31P NMR spectroscopy.   The 
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stability imparted by the resin-bead can be used to slow or prevent decomposition 

products that result from exposure to air.  This work has been a fundamental study to 

show that resin-bound polymers as mimics of peptide superstructures can be utilized to 

isolate and characterize complexes while still retaining the reactivity.   

 Altogether the work presented in this dissertation has served to shed light on 

previously poorly-defined resin-bound complexes.  Using the combined studies in 

Chapter III and VII, establishing the linkage of the resin-bound complexes served as a 

platform to understanding the immobilized complexes, Step 1 in Figure VIII-II.  Based on 

the IR, EPR, and 31P NMR spectroscopy,  the structure of the resin bound complexes can 

be predicted by comparison to solution analogues.  Additionally, through the use of 

solvent interactions with (μ-pdt)[Fe(CO)3]2 and comparison to Ο-am-[A] a PEG rich 

environment could be firmly established.  By the stepwise removal of the “black-box” a 

much more defined picture of the resin-bound complex can be composed. 
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Figure VIII-2.  The stepwise understanding of resin-bound complexes reported in this 

dissertation using Ο-am-[A] as an example. 

   



  147 

 Sir Isaac Newton once said, “If I have seen further than others, it is by standing on 

the shoulders of giants” and this sentiment is repeated often in our labs.  As a scientist, we 

build our research on the platforms laid by others who have come before us.  The basic 

principles of coordination chemistry, first established by Werner, apply to 

metalloenzymes as well.  By applying the principles of inorganic chemistry to peptides 

produced by Merrifield type peptide synthesis a new type of heterogeneous system has 

been produced.  Specifically, my work has also “stood on the shoulders” of another giant 

(and Nobel prize winner), Bob Grubbs, whose work in the immobilization of Wilkinson’s 

catalyst on polystyrene inspired me and led the way to my own work.  Closer to home, 

group members Missy Golden, Steve Jeffery, and Marilyn Rampersad paved the way for 

the characteristic structural and solution chemistry that allowed me to “see” my 

immobilized derivatives.  Thus the work discussed in this dissertation is novel in that it 

provides information about the fundamental properties of resin-bound complexes as well 

as their characterization.  This work adds to the foundation for use of resin-bound 

complexes as functional catalysts, biological or industrial, by utilizing the protective 

resin-environment.   
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16º  

Figure A-1.  Ball and Stick representation of the [S2Rh(CO)2]2 unit of 
[Et4N]2[Ni(ema)Rh(CO)2]2, showing the deviation from eclipsed conformation. (Rh(2A) 
is located directly behind Rh(1A)).  
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Figure A-2.  Packing diagram of [Et4N]2[Ni(ema)Rh(CO)2]2.  
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Table A-1.  Infrared ν(CO) stretching frequencies for selected complexes. 
  

 
 
 

 
 

Figure A-3.  Packing diagram of Ni(ema) (CH2)3.  
 
 

Complex ν(CO) (cm-1) Sample Form 

K2[Ni(CGC)]W(CO)4 1988w, 1863s, 1845sh , 1793ms  DMF Solution 

[NEt4]2[Ni(ema)]W(CO)4] 1986w, 1867s, 1837sh, 1791m  ref. 15 

K2[Ni(CGC)]W(CO)5
 2044w, 1959sh, 1925s, 1870m DMF Solution 

–Ni(CGC)W(CO)5
2- 1967w, 1915s, 1845w ATR on beads 

[NEt4]2[Ni(ema)]Rh(CO)2 2061s, 1996s CH3CN Solution 

–Ni(CGC)Rh(CO)2
- 2067s, 1990s ATR on beads 

[(Ni-1)Rh(CO)2]+ 2077s, 2017s CH3CN Solution 

Rh(CO)2I2
- 2059s, 1988s  ref. 25 
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Figure A-4.  Packing diagram of [Et4N]2[Ni(ema) O2]. 
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Figure A-5.  The –ESI-mass spectrum of  [Et4N]2[Ni(ema) O2] showing the 
fragmentation by loss of O2 and SO2. 
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Figure A-6.  X-band EPR spectra (top) obtained from an oxidized solution of 

Ni(ema) (CH2)3 using CAN in DMF (a) and its pyridine adduct (b) in a DMF/pyridine 

solution (4:1 v/v) at 10 K and the corresponding simulations (c,d respectively). 
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Figure A-7. Representation of the NiN2S2 plane for Ni(ema)•(CH2)3 and Ni(ema)•O22- 

and deviations of each atom from the best plane. 

 

 
Figure A-8. Cyclic Voltammogram of a 3.4 mM solution of Ni(ema)[Me]2 in DMF at a 
scan rate of 200 mV/s using a Ag/AgNO3 reference electrode, 0.1 M [nBu4N][BF4] 
electrolyte, a glassy carbon electrode standardized to Fc/Fc+. Values are reported vs. 
NHE.  
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Figure A-9. Cyclic Voltammogram of a 1.8 mM solution of [Et4N]2[Ni(ema) O2] in 
DMF at a scan rate of 200 mV/s using a Ag/AgNO3 reference electrode, 0.1 M 
[nBu4N][BF4] electrolyte, a glassy carbon electrode standardized to Fc/Fc+. Values are 
reported vs. NHE.   
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Figure A-10:  Cyclic Voltammograms of Ni(ema)2- and Ni(ema)•O2

2- obtained in DMF 
at a scan rate of 200 mV/s using a Ag/AgNO3 reference electrode, 0.1 M [nBu4N][BF4] 
electrolyte, a glassy carbon electrode standardized to Fc/Fc+

.  Values are reported vs. 
NHE.  
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Figure A-11.  a)  Thermal ellipsoid plots of (a) Ni(ema) (CH2)3  and (b) 

[Et4N]2[Ni(ema) O2] showing 50% probability and the atom labeling scheme.  The Et4N+ 

counterions of [Et4N]2[Ni(ema) O2] are not shown.  
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Table A-2:  Selected bond distances and angles for 
Ni(ema) (CH2)3 and [Et4N]2[Ni(ema) O2]. 
 

 Ni(ema) (CH2)3 Ni(ema) O2 
Ni-S(1) 2.1635(6) Ǻ 2.1519(15) Ǻ 
Ni-S(2) 2.1628(7) 2.1752(15) 
Ni-N(1) 1.8431(15) 1.861(4) 
Ni-N(2) 1.8301(14) 1.861(4) 

S(1)-O(3) - 1.444(6) 
S(1)-O(4) - 1.436(6) 

S(1)-Ni(1)-S(2) 95.36(5) ˚ 99.22(6) ˚ 
N(1)-Ni(1)-N(2) 86.23(6) 85.39(19) 
N(1)-Ni(1)-S(1) 89.36(5) 87.71(14) 
N(2)-Ni(1)-S(2) 88.60(5) 87.60(13) 
O(3)-S(1)-O(4) - 116.7(4) 

 
 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Table A-3.  Selected Experimental and Optimized Parameters 
for Ni(ema) (CH2)3 

 Experimental Calculated 
Ni-S(1) 2.1635(6) Ǻ 2.231 
Ni-S(2) 2.1628(7) 2.227 
Ni-N(1) 1.8431(15) 1.843 
Ni-N(2) 1.8301(14) 1.838  

S(1)-Ni(1)-S(2) 95.36(5) ˚ 95.144 
N(1)-Ni(1)-N(2) 86.23(6) 87.014 

 
 
Table A-4.  Selected Experimental and Optimized Parameters 
for Ni(ema) O2

2- 

 Experimental Calculated 
Ni-S(1) 2.155(1) 2.189 
Ni-S(2) 2.175(1) 2.234 
Ni-N(1) 1.863(4) 1.887 
Ni-N(2) 1.859(4) 1.876 

S(1)-O(1) 1.427(6) 1.50589 
S(1)-O(2) 1.445(6) 1.50648 

S(1)-Ni(1)-S(2) 99.27(7) 100.823 
N(1)-Ni(1)-N(2) 85.45(17) 85.777 
O(1)-S(1)-S(1) 116.9(5) 114.659 
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Details of Higher order NBO Analysis 

 In order to ascertain the existence of the second nitrogen lone pair, additional 

calculations at a higher level of theory using a hybrid basis set (see experimental section 

for details) were performed.  In this analysis, the lone pair was resolved with an 

electronic population of 1.56 and resides in a pz orbital, which is highly delocalized into 

the amido system and correlates well with the original 6-311G(d,p) calculations.  

Additional lone pair delocalizations in Ni(ema)2- occur between the O pz lone pair and 

the C-N* and C-C* antibonds in the amido system.  A schematic of these effects is given 

in Figure 8.  The NBO analysis relates to the DFT frontier molecular orbitals in that the 

HOMO of Ni(ema)2- is largely S-based with minor contributions from the amido 

nitrogens. 
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Figure A-12.  Packing diagram of [Et4N]2[Cu(emi)].  
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Figure A-13.  31P NMR spectrum of Ο-am-[B] as a suspension in CDCl3 (400 MHz 

NMR, referenced to phosphoric acid). 
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Figure A-14.  31P NMR spectrum of Ο-am-(μ-pdt )[Fe(CO)3][Fe(CO)2PMe3] as a suspension in 

CDCl3 (400 MHz NMR, referenced to phosphoric acid). 
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Figure A-15.  31P NMR spectrum of Ο-am-(μ-pdt )[Fe(CO)2PMe3]2 as a suspension in CDCl3 

(400 MHz NMR, referenced to phosphoric acid). 
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Figure A-16.  Synthesis of resin-bound [Ni(CGC)][dppeNi]. 
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APPENDIX B 

CRYSTALLOGRAPHIC DATA FOR STRUCTURES  

 
 
 
 

 
  

[Et4N]2[Ni(ema) O2]

Ni(ema) (CH2)3

 [Et4N]2[Ni(ema)Rh(CO)2]2

[Et4N]2[Cu(emi)] 
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Table B-1.  Crystal data and structure refinement for [Et4N]2[Ni(ema)Rh(CO)2]2.  
   
   
      Empirical formula                  C16 H28 N3 Ni O4 Rh S2  
   
      Formula weight                     552.15  
   
      Temperature                        110(2) K  
   
      Wavelength                         0.71073 A  
   
      Unit cell dimensions               a = 27.950(5) A   alpha = 90 deg.  
                                        b = 23.526(4) A    beta = 112.113(3) deg.  
                                         c = 28.457(5) A   gamma = 90 deg.  
   
      Volume                             17336(5) Å3  
   
      Z, Calculated density              32,  1.692 Mg/m3  
   
      Absorption coefficient             1.849 mm-1  
   
      F(000)                             9024  
   
      Crystal size                       0.50 x 0.10 x 0.10 mm  
   
      Theta range for data collection    1.74 to 25.00 deg.  
   
      Limiting indices                   -28<=h<=33, -19<=k<=27, -33<=l<=29  
   
      Reflections collected / unique     44130 / 15117 [R(int) = 0.0254]  
   
      Completeness to theta = 25.00      99.0 %  
   
      Max. and min. transmission         0.8367 and 0.4584  
  
      Refinement method                  Full-matrix least-squares on F2  
   
      Data / restraints / parameters     15117 / 0 / 975  
   
      Goodness-of-fit on F2             1.091  
   
      Final R indices [I>2sigma(I)]      R1 = 0.0551, wR2 = 0.1273  
   
      R indices (all data)               R1 = 0.0722, wR2 = 0.1435  
   
      Largest diff. peak and hole        3.993 and -1.019 e. Å-3  
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Table B-2.  Bond lengths [Å] and angles [˚] for [Et4N]2[Ni(ema)Rh(CO)2]2.  
           _____________________________________________________________  
   
            Rh(1A)-C(2A)                   1.873(6)  
            Rh(1A)-C(1A)                   1.872(6)  
            Rh(1A)-S(3A)                   2.3779(13)  
            Rh(1A)-S(1A)                   2.4060(12)  
            Rh(2A)-C(3A)                   1.876(6)  
            Rh(2A)-C(4A)                   1.888(7)  
            Rh(2A)-S(2A)                   2.3493(15)  
            Rh(2A)-S(4A)                   2.4269(13)  
            S(1A)-C(5A)                    1.826(5)  
            S(1A)-Ni(1A)                   2.2009(14)  
            S(2A)-C(10A)                   1.840(6)  
            S(2A)-Ni(1A)                   2.2065(15)  
            S(3A)-C(11A)                   1.845(5)  
            S(3A)-Ni(2A)                  2.1938(14)  
            S(4A)-C(16A)                   1.814(5)  
            S(4A)-Ni(2A)                   2.1790(13)  
            Ni(1A)-N(2A)                   1.865(4)  
            Ni(1A)-N(1A)                   1.867(4)  
            Ni(2A)-N(3A)                   1.846(4)  
            Ni(2A)-N(4A)                   1.861(4)  
            O(1A)-C(1A)                    1.143(6)  
            O(2A)-C(2A)                    1.141(6)  
            O(3A)-C(3A)                    1.139(7)  
            O(4A)-C(4A)                    1.130(7)  
            O(5A)-C(6A)                    1.260(6)  
            O(6A)-C(9A)                    1.251(6)  
            O(7A)-C(12A)                  1.251(6)  
            O(8A)-C(15A)                   1.259(6)  
            N(1A)-C(6A)                    1.310(6)  
            N(1A)-C(7A)                    1.473(6)  
            N(2A)-C(9A)                    1.327(6)  
            N(2A)-C(8A)                    1.463(6)  
            N(3A)-C(12A)                  1.331(7)  
            N(3A)-C(13A)                   1.466(7)  
            N(4A)-C(15A)                   1.316(7)  
            N(4A)-C(14A)                   1.481(6)  
            C(5A)-C(6A)                    1.521(7)  
            C(7A)-C(8A)                    1.536(7)  
            C(9A)-C(10A)                  1.530(7)  
            C(11A)-C(12A)                  1.535(8)  
            C(13A)-C(14A)                  1.528(8)  
            C(15A)-C(16A)                  1.542(7)  
            Rh(1B)-C(2B)                   1.870(6)  
            Rh(1B)-C(1B)                   1.877(5)  
            Rh(1B)-S(2B)                   2.3780(13)  
            Rh(1B)-S(1B)                   2.4183(13)  
            Ni(1B)-N(2B)                   1.854(4)  
            Ni(1B)-N(1B)                   1.871(4)  
            Ni(1B)-S(1B)                   2.1925(13)  
            Ni(1B)-S(2B)#1               2.1996(14)  
            S(1B)-C(3B)                    1.832(5)  
            S(2B)-C(8B)#1                  1.836(5)  
            S(2B)-Ni(1B)#1                 2.1995(14)  
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            (Table B-2 continued) 
 
            O(1B)-C(1B)                    1.140(6)  
            O(2B)-C(2B)                    1.143(7)  
            O(3B)-C(4B)                    1.267(6)  
            O(4B)-C(7B)                    1.262(6)  
            N(1B)-C(4B)                    1.308(6)  
            N(1B)-C(5B)                    1.483(6)  
            N(2B)-C(7B)                    1.325(7)  
            N(2B)-C(6B)                    1.474(6)  
            C(3B)-C(4B)                    1.520(7)  
            C(5B)-C(6B)                    1.516(7)  
            C(7B)-C(8B)                    1.513(7)  
            C(8B)-S(2B)#1                1.836(5)  
            Rh(1C)-C(2C)                   1.874(6)  
            Rh(1C)-C(1C)                   1.899(6)  
            Rh(1C)-S(2C)                   2.3538(13)  
            Rh(1C)-S(1C)                   2.4091(13)  
            Rh(1C)-Rh(1C)#1                3.1503(9)  
            Ni(1C)-N(2C)                   1.856(4)  
            Ni(1C)-N(1C)                   1.867(4)  
            Ni(1C)-S(1C)                   2.1889(14)  
            Ni(1C)-S(2C)#1                2.1913(14)  
            S(1C)-C(3C)                    1.824(5)  
            S(2C)-C(8C)#1                  1.845(5)  
            S(2C)-Ni(1C)#1                 2.1912(14)  
            O(1C)-C(1C)                    1.139(7)  
            O(2C)-C(2C)                    1.145(6)  
            O(3C)-C(4C)                    1.258(6)  
            O(4C)-C(7C)                    1.251(6)  
            N(1C)-C(4C)                    1.310(6)  
            N(1C)-C(5C)                    1.481(6)  
            N(2C)-C(7C)                    1.327(6)  
            N(2C)-C(6C)                    1.472(6)  
            C(3C)-C(4C)                    1.534(7)  
            C(5C)-C(6C)                    1.524(7)  
            C(7C)-C(8C)                    1.527(7)  
            C(8C)-S(2C)#1                1.845(5)  
            N(1D)-C(7D)                    1.506(6)  
            N(1D)-C(1D)                    1.518(6)  
            N(1D)-C(3D)                    1.526(6)  
            N(1D)-C(5D)                    1.527(6)  
            C(1D)-C(2D)                    1.533(8)  
            C(3D)-C(4D)                    1.524(7)  
            C(5D)-C(6D)                    1.509(7)  
            C(7D)-C(8D)                    1.507(8)  
            N(1E)-C(5E)                    1.510(6)  
            N(1E)-C(7E)                    1.516(6)  
            N(1E)-C(1E)                    1.521(6)  
            N(1E)-C(3E)                    1.526(6)  
            C(1E)-C(2E)                    1.518(7)  
            C(3E)-C(4E)                    1.515(7)  
            C(5E)-C(6E)                    1.518(7)  
            C(7E)-C(8E)                    1.514(7)  
            N(1F)-C(5F)                    1.500(7)  
            N(1F)-C(3F)                    1.499(7)  
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           (Table B-2 continued) 
 
            N(1F)-C(7F)                    1.501(8)  
            N(1F)-C(1F)                    1.525(7)  
            C(1F)-C(2F)                    1.506(9)  
            C(3F)-C(4F)                    1.478(13)  
            C(5F)-C(6F)                    1.497(15)  
            C(7F)-C(8F)                    1.489(9)  
            N(1G)-C(3G)                   1.512(6)  
            N(1G)-C(1G)                    1.518(7)  
            N(1G)-C(5G)                    1.525(7)  
            N(1G)-C(7G)                    1.527(6)  
            C(1G)-C(2G)                    1.511(8)  
            C(3G)-C(4G)                    1.510(8)  
            C(5G)-C(6G)                    1.536(8)  
            C(7G)-C(8G)                    1.486(8)  
            C(2A)-Rh(1A)-C(1A)            91.3(2)  
            C(2A)-Rh(1A)-S(3A)            91.45(17)  
            C(1A)-Rh(1A)-S(3A)           175.54(16)  
            C(2A)-Rh(1A)-S(1A)           175.70(18)  
            C(1A)-Rh(1A)-S(1A)            92.98(16)  
            S(3A)-Rh(1A)-S(1A)            84.26(4)  
            C(3A)-Rh(2A)-C(4A)         88.7(3)  
            C(3A)-Rh(2A)-S(2A)           93.0(2)  
            C(4A)-Rh(2A)-S(2A)           176.60(18)  
            C(3A)-Rh(2A)-S(4A)           175.5(2)  
            C(4A)-Rh(2A)-S(4A)            95.64(17)  
            S(2A)-Rh(2A)-S(4A)           82.62(5)  
            C(5A)-S(1A)-Ni(1A)            98.04(16)  
            C(5A)-S(1A)-Rh(1A)           101.15(16)  
            Ni(1A)-S(1A)-Rh(1A)          102.82(5)  
            C(10A)-S(2A)-Ni(1A)          98.47(18)  
            C(10A)-S(2A)-Rh(2A)         112.4(2)  
            Ni(1A)-S(2A)-Rh(2A)          95.53(6)  
            C(11A)-S(3A)-Ni(2A)          97.81(18)  
            C(11A)-S(3A)-Rh(1A)         109.91(18)  
            Ni(2A)-S(3A)-Rh(1A)          90.29(5)  
            C(16A)-S(4A)-Ni(2A)         97.95(16)  
            C(16A)-S(4A)-Rh(2A)        102.76(16)  
            Ni(2A)-S(4A)-Rh(2A)          96.57(5)  
            N(2A)-Ni(1A)-N(1A)           85.72(18)  
            N(2A)-Ni(1A)-S(1A)           173.33(13)  
            N(1A)-Ni(1A)-S(1A)           87.62(13)  
            N(2A)-Ni(1A)-S(2A)           87.84(13)  
            N(1A)-Ni(1A)-S(2A)           172.77(13)  
            S(1A)-Ni(1A)-S(2A)           98.82(5)  
            N(3A)-Ni(2A)-N(4A)         85.76(18)  
            N(3A)-Ni(2A)-S(4A)           171.92(14)  
            N(4A)-Ni(2A)-S(4A)           87.59(13)  
            N(3A)-Ni(2A)-S(3A)           88.71(14)  
            N(4A)-Ni(2A)-S(3A)           171.88(13)  
            S(4A)-Ni(2A)-S(3A)           98.36(5)  
            C(6A)-N(1A)-C(7A)            118.7(4)  
            C(6A)-N(1A)-Ni(1A)           125.6(3)  
            C(7A)-N(1A)-Ni(1A)           115.1(3)  
            C(9A)-N(2A)-C(8A)            117.3(4)  
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            (Table B-2 continued) 
 
 
            C(9A)-N(2A)-Ni(1A)           126.0(3)  
            C(8A)-N(2A)-Ni(1A)           115.6(3)  
            C(12A)-N(3A)-C(13A)        117.6(4)  
            C(12A)-N(3A)-Ni(2A)        126.4(4)  
            C(13A)-N(3A)-Ni(2A)        115.6(3)  
            C(15A)-N(4A)-C(14A)        117.4(4)  
            C(15A)-N(4A)-Ni(2A)        125.5(3)  
            C(14A)-N(4A)-Ni(2A)        116.5(3)  
            O(1A)-C(1A)-Rh(1A)          174.8(5)  
            O(2A)-C(2A)-Rh(1A)         178.0(5)  
            O(3A)-C(3A)-Rh(2A)          178.0(6)  
            O(4A)-C(4A)-Rh(2A)          172.0(5)  
            C(6A)-C(5A)-S(1A)            112.0(3)  
            O(5A)-C(6A)-N(1A)            125.6(5)  
            O(5A)-C(6A)-C(5A)            119.3(4)  
            N(1A)-C(6A)-C(5A)            115.1(4)  
            N(1A)-C(7A)-C(8A)            107.7(4)  
            N(2A)-C(8A)-C(7A)            108.1(4)  
            O(6A)-C(9A)-N(2A)            126.2(5)  
            O(6A)-C(9A)-C(10A)         118.9(5)  
            N(2A)-C(9A)-C(10A)          114.9(4)  
            C(9A)-C(10A)-S(2A)          112.1(4)  
            C(12A)-C(11A)-S(3A)       112.7(4)  
            O(7A)-C(12A)-N(3A)        126.6(5)  
            O(7A)-C(12A)-C(11A)      119.5(5)  
            N(3A)-C(12A)-C(11A)       113.9(4)  
            N(3A)-C(13A)-C(14A)       109.1(4)  
            N(4A)-C(14A)-C(13A)     107.6(4)  
            O(8A)-C(15A)-N(4A)         126.5(5)  
            O(8A)-C(15A)-C(16A)       119.6(5)  
            N(4A)-C(15A)-C(16A)        113.8(4)  
            C(15A)-C(16A)-S(4A)       111.8(3)  
            C(2B)-Rh(1B)-C(1B)         89.9(2)  
            C(2B)-Rh(1B)-S(2B)           91.79(17)  
            C(1B)-Rh(1B)-S(2B)           178.18(15)  
            C(2B)-Rh(1B)-S(1B)           173.89(17)  
            C(1B)-Rh(1B)-S(1B)          94.76(15)  
            S(2B)-Rh(1B)-S(1B)            83.52(4)  
            N(2B)-Ni(1B)-N(1B)            85.84(18)  
            N(2B)-Ni(1B)-S(1B)           172.24(14)  
            N(1B)-Ni(1B)-S(1B)            87.42(13)  
            N(2B)-Ni(1B)-S(2B)#1       88.11(13)  
            N(1B)-Ni(1B)-S(2B)#1       171.63(13)  
            S(1B)-Ni(1B)-S(2B)#1       98.97(5)  
            C(3B)-S(1B)-Ni(1B)            97.71(15)  
            C(3B)-S(1B)-Rh(1B)           100.92(16)  
            Ni(1B)-S(1B)-Rh(1B)          100.46(5)  
            C(8B)#1-S(2B)-Ni(1B)#1    97.73(17)  
            C(8B)#1-S(2B)-Rh(1B)       110.05(18)  
            Ni(1B)#1-S(2B)-Rh(1B)      87.16(5)  
            C(4B)-N(1B)-C(5B)            118.3(4)  
            C(4B)-N(1B)-Ni(1B)           124.9(3)  
            C(5B)-N(1B)-Ni(1B)           115.5(3)  
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           (Table B-2 continued) 
             
 
            C(7B)-N(2B)-C(6B)            118.7(4)  
            C(7B)-N(2B)-Ni(1B)           126.2(4)  
            C(6B)-N(2B)-Ni(1B)           114.8(3)  
            O(1B)-C(1B)-Rh(1B)           173.8(5)  
            O(2B)-C(2B)-Rh(1B)           178.1(5)  
            C(4B)-C(3B)-S(1B)            111.9(3)  
            O(3B)-C(4B)-N(1B)            125.4(5)  
            O(3B)-C(4B)-C(3B)            119.1(4)  
            N(1B)-C(4B)-C(3B)            115.4(4)  
            N(1B)-C(5B)-C(6B)            107.9(4)  
            N(2B)-C(6B)-C(5B)            108.8(4)  
            O(4B)-C(7B)-N(2B)            125.8(5)  
            O(4B)-C(7B)-C(8B)            119.7(5)  
            N(2B)-C(7B)-C(8B)            114.5(4)  
            C(7B)-C(8B)-S(2B)#1         113.1(3)  
            C(2C)-Rh(1C)-C(1C)          90.9(2)  
            C(2C)-Rh(1C)-S(2C)          91.33(16)  
            C(1C)-Rh(1C)-S(2C)           171.28(16)  
            C(2C)-Rh(1C)-S(1C)           172.35(16)  
            C(1C)-Rh(1C)-S(1C)           94.41(16)  
            S(2C)-Rh(1C)-S(1C)            84.27(5)  
            C(2C)-Rh(1C)-Rh(1C)#1     90.47(16)  
            C(1C)-Rh(1C)-Rh(1C)#1    92.77(16)  
            S(2C)-Rh(1C)-Rh(1C)#1     95.65(3)  
            S(1C)-Rh(1C)-Rh(1C)#1     83.76(3)  
            N(2C)-Ni(1C)-N(1C)         85.94(18)  
            N(2C)-Ni(1C)-S(1C)           173.65(14)  
            N(1C)-Ni(1C)-S(1C)            88.01(13)  
            N(2C)-Ni(1C)-S(2C)#1       88.11(13)  
            N(1C)-Ni(1C)-S(2C)#1        172.69(13)  
            S(1C)-Ni(1C)-S(2C)#1         98.06(5)  
            C(3C)-S(1C)-Ni(1C)            98.01(17)  
            C(3C)-S(1C)-Rh(1C)           105.38(17)  
            Ni(1C)-S(1C)-Rh(1C)           95.01(5)  
            C(8C)#1-S(2C)-Ni(1C)#1    98.32(17)  
            C(8C)#1-S(2C)-Rh(1C)       111.22(19)  
            Ni(1C)#1-S(2C)-Rh(1C)     103.27(5)  
            C(4C)-N(1C)-C(5C)            118.5(4)  
            C(4C)-N(1C)-Ni(1C)           125.6(4)  
            C(5C)-N(1C)-Ni(1C)           114.7(3)  
            C(7C)-N(2C)-C(6C)            117.2(4)  
            C(7C)-N(2C)-Ni(1C)           126.0(4)  
            C(6C)-N(2C)-Ni(1C)         115.8(3)  
            O(1C)-C(1C)-Rh(1C)        172.1(5)  
            O(2C)-C(2C)-Rh(1C)           174.3(5)  
            C(4C)-C(3C)-S(1C)            112.1(3)  
            O(3C)-C(4C)-N(1C)            126.7(5)  
            O(3C)-C(4C)-C(3C)            119.0(4)  
            N(1C)-C(4C)-C(3C)            114.2(4)  
            N(1C)-C(5C)-C(6C)            108.1(4)  
            N(2C)-C(6C)-C(5C)            108.2(4)  
            O(4C)-C(7C)-N(2C)            126.7(5)  
            O(4C)-C(7C)-C(8C)            118.8(4)  
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           (Table B-2 continued) 
 
 
            N(2C)-C(7C)-C(8C)            114.6(4)  
            C(7C)-C(8C)-S(2C)#1         111.8(3)  
            C(7D)-N(1D)-C(1D)            110.7(4)  
            C(7D)-N(1D)-C(3D)            108.8(4)  
            C(1D)-N(1D)-C(3D)            110.6(4)  
            C(7D)-N(1D)-C(5D)            111.3(4)  
            C(1D)-N(1D)-C(5D)            107.7(4)  
            C(3D)-N(1D)-C(5D)            107.8(4)  
            N(1D)-C(1D)-C(2D)            114.0(4)  
            C(4D)-C(3D)-N(1D)            115.7(4)  
            C(6D)-C(5D)-N(1D)            114.5(4)  
            N(1D)-C(7D)-C(8D)           115.8(4)  
            C(5E)-N(1E)-C(7E)            112.0(4)  
            C(5E)-N(1E)-C(1E)            109.2(4)  
            C(7E)-N(1E)-C(1E)            108.3(4)  
            C(5E)-N(1E)-C(3E)            108.5(4)  
            C(7E)-N(1E)-C(3E)            108.5(4)  
            C(1E)-N(1E)-C(3E)            110.2(4)  
            C(2E)-C(1E)-N(1E)            115.7(4)  
            C(4E)-C(3E)-N(1E)            115.8(4)  
            N(1E)-C(5E)-C(6E)            115.1(4)  
            N(1E)-C(7E)-C(8E)            115.2(4)  
            C(5F)-N(1F)-C(3F)            106.3(6)  
            C(5F)-N(1F)-C(7F)            110.3(6)  
            C(3F)-N(1F)-C(7F)            111.7(5)  
            C(5F)-N(1F)-C(1F)            110.9(5)  
            C(3F)-N(1F)-C(1F)            111.2(5)  
            C(7F)-N(1F)-C(1F)            106.5(4)  
            C(2F)-C(1F)-N(1F)            116.1(5)  
            C(4F)-C(3F)-N(1F)            113.3(8)  
            N(1F)-C(5F)-C(6F)            114.4(9)  
            C(8F)-C(7F)-N(1F)            116.8(5)  
            C(3G)-N(1G)-C(1G)            111.9(4)  
            C(3G)-N(1G)-C(5G)            111.5(4)  
            C(1G)-N(1G)-C(5G)            105.3(4)  
            C(3G)-N(1G)-C(7G)            106.7(4)  
            C(1G)-N(1G)-C(7G)            110.6(4)  
            C(5G)-N(1G)-C(7G)            110.9(4)  
            C(2G)-C(1G)-N(1G)            113.8(5)  
            C(4G)-C(3G)-N(1G)            115.5(5)  
            N(1G)-C(5G)-C(6G)            114.3(5)  
            C(8G)-C(7G)-N(1G)            116.5(5)  
           _____________________________________________________________  
   
           Symmetry transformations used to generate equivalent atoms:  #1 -x+1,y,-z+1/2      
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Table B-3.  Crystal data and structure refinement for Ni(ema) (CH2)3.  
 
     Empirical formula                  C7 H14 N2 Ni O2 S2  
 
     Formula weight                     281.03  
 
     Temperature                        273(2) K  
 
     Wavelength                        0.71073 A  
 
     Crystal system, space group        Orthorhombic,  Pbcn  
   
      Unit cell dimensions               a = 16.098(3) A   alpha = 90 deg.  
                                         b = 8.9666(10) A    beta = 90 deg.  
                                         c = 15.299(2) A   gamma = 90 deg.  
   
      Volume                             2208.4(5) Å 3  
   
      Z, Calculated density              8,  1.691 Mg/m3  
   
      Absorption coefficient             2.111 mm-1  
   
      F(000)                             1168  
   
      Theta range for data collection    2.53 to 28.64 deg.  
   
      Limiting indices                   -21<=h<=11, -11<=k<=11, -17<=l<=10  
   
      Reflections collected / unique     5952 / 2420 [R(int) = 0.0551]  
   
      Completeness to theta = 28.64      85.3 %  
   
      Absorption correction              None  
   
      Refinement method                  Full-matrix least-squares on F2  
   
      Data / restraints / parameters     2420 / 0 / 65  
   
      Goodness-of-fit on F2             1.065  
   
      Final R indices [I>2sigma(I)]      R1 = 0.0534, wR2 = 0.1709  
 
      R indices (all data)               R1 = 0.0625, wR2 = 0.1779  
   
      Largest diff. peak and hole        1.094 and -1.441 e. Å-3  
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Table B-4.  Bond lengths [Å] and angles [˚] for Ni(ema) (CH2)3. 
_____________________________________________________________  
   
            Ni(1)-N(2)                     1.833(4)  
            Ni(1)-N(1)                     1.848(4)  
            Ni(1)-S(2)                     2.1640(13)  
            Ni(1)-S(3)                     2.1669(12)  
            S(2)-C(7)                      1.822(5)  
            S(2)-C(3)                      1.837(4)  
            S(3)-C(9)                      1.828(5)  
            S(3)-C(1)                      1.846(5)  
            C(1)-C(2)                     1.515(6)  
            C(2)-C(3)                      1.543(6)  
            N(2)-C(6)                      1.344(6)  
            N(2)-C(5)                      1.455(6)  
            N(1)-C(8)                      1.345(5)  
            N(1)-C(4)                      1.479(6)  
            C(9)-C(8)                      1.527(6)  
            C(8)-O(1)                      1.235(5)  
            C(6)-O(2)                      1.243(6)  
            C(6)-C(7)                      1.528(6)  
            C(5)-C(4)                      1.539(6)  
            N(2)-Ni(1)-N(1)               86.13(17)  
            N(2)-Ni(1)-S(2)               88.81(13)  
            N(1)-Ni(1)-S(2)              169.08(11)  
            N(2)-Ni(1)-S(3)              174.55(12)  
            N(1)-Ni(1)-S(3)               89.17(12)  
            S(2)-Ni(1)-S(3)               95.36(5)  
            C(7)-S(2)-C(3)               102.4(2)  
            C(7)-S(2)-Ni(1)              99.06(16)  
            C(3)-S(2)-Ni(1)               96.70(15)  
            C(9)-S(3)-C(1)               102.7(2)  
            C(9)-S(3)-Ni(1)               98.90(15)  
            C(1)-S(3)-Ni(1)              101.08(14)  
            C(2)-C(1)-S(3)               111.5(3)  
            C(1)-C(2)-C(3)               116.8(4)  
            C(2)-C(3)-S(2)               110.1(3)  
            C(6)-N(2)-C(5)               119.9(4)  
            C(6)-N(2)-Ni(1)              125.1(3)  
            C(5)-N(2)-Ni(1)              114.9(3)  
            C(8)-N(1)-C(4)               118.2(4)  
            C(8)-N(1)-Ni(1)              123.3(3)  
            C(4)-N(1)-Ni(1)              114.3(3)  
            C(8)-C(9)-S(3)               111.4(3)  
            O(1)-C(8)-N(1)               125.4(4)  
            O(1)-C(8)-C(9)               119.6(4)  
            N(1)-C(8)-C(9)               115.0(4)  
            O(2)-C(6)-N(2)              125.3(4)  
            O(2)-C(6)-C(7)               119.9(4)  
            N(2)-C(6)-C(7)               114.7(4)  
            N(2)-C(5)-C(4)               106.4(4)  
            C(6)-C(7)-S(2)               111.6(3)  
            N(1)-C(4)-C(5)               105.9(4)  
           _____________________________________________________________  
           Symmetry transformations used to generate equivalent atoms:  
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Table B-5.  Crystal data and structure refinement for [Et4N]2Ni(ema) O2.  
   
   
      Empirical formula                  C22 H48 N4 Ni O4 S2  
   
      Formula weight                     555.47  
   
      Temperature                   110(2) K  
   
      Wavelength                         0.71073 A  
   
      Crystal system, space group        Tetragonal,  P43212  
   
      Unit cell dimensions               a = 10.1135(6) A   alpha = 90 deg.  
                                         b = 10.1135(6) A    beta = 90 deg.  
                                     c = 52.752(5) A   gamma = 90 deg.  
 
     Volume                             5395.7(7) Å3  
   
      Z, Calculated density              8,  1.368 Mg/m3  
   
      Absorption coefficient             0.908 mm-1  
   
      F(000)                             2400  
   
      Crystal size                       0.30 x 0.10 x 0.10 mm  
   
      Theta range for data collection    1.54 to 25.00 deg.  
   
      Limiting indices                   -11<=h<=12, -12<=k<=11, -62<=l<=62  
   
      Reflections collected / unique     41593 / 4626 [R(int) = 0.0414]  
   
      Completeness to theta = 25.00      97.0 %  
   
      Absorption correction              Semi-empirical from equivalents  
   
      Max. and min. transmission         0.9147 and 0.7723  
   
      Refinement method                  Full-matrix least-squares on F2  
   
      Data / restraints / parameters     4626 / 252 / 381  
   
      Goodness-of-fit on F2             1.040  
   
      Final R indices [I>2sigma(I)]      R1 = 0.0597, wR2 = 0.1571  
   
      R indices (all data)               R1 = 0.0642, wR2 = 0.1619  
   
      Absolute structure parameter       0.00(9)  
   
      Largest diff. peak and hole       0.763 and -0.491 e.A-3  
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Table B-6.    Bond lengths [Å] and angles [˚] for [Et4N]2Ni(ema) O2.  
           _____________________________________________________________  
            Ni(1)-N(2)                     1.861(4)  
            Ni(1)-N(1)                     1.861(4)  
            Ni(1)-S(1)                     2.1519(15)  
            Ni(1)-S(2)                     2.1752(15)  
            S(1)-O(2)                      1.436(6)  
            S(1)-O(1)                      1.444(6)  
            S(1)-C(1)                      1.826(7)  
            N(1)-C(2)                     1.338(7)  
            N(1)-C(3)                      1.491(7)  
            C(1)-C(2)                      1.489(8)  
            C(1)-H(1A)                   0.9900  
            C(1)-H(1B)                    0.9900  
            S(2)-C(6)                      1.836(6)  
            N(2)-C(5)                      1.308(7)  
            N(2)-C(4)                      1.478(6)  
            C(2)-O(3)                      1.259(7)  
            C(3)-C(4)                      1.484(8)  
            C(3)-H(3A)                    0.9900  
            C(3)-H(3B)                    0.9900  
            O(4)-C(5)                      1.258(6)  
            C(4)-H(4J)                     0.9900  
            C(4)-H(4K)                    0.9900  
            C(5)-C(6)                      1.530(7)  
            C(6)-H(6J)                     0.9900  
            C(6)-H(6K)                    0.9900  
            N11-C71                       1.474(7)  
            N11-C11                        1.507(7)  
            N11-C31                        1.517(7)  
            N11-C51                        1.526(7)  
            C11-C21                        1.530(8)  
            C11-H1C1                     0.9900  
            C11-H1D1                     0.9900  
            C21-H2A1                     0.9800  
            C21-H2B1                     0.9800  
            C21-H2C1                     0.9800  
            C31-C41                        1.487(9)  
            C31-H3C1                     0.9900  
            C31-H3D1                     0.9900  
            C41-H4A1                     0.9800  
            C41-H4B1                     0.9800  
            C41-H4C1                     0.9800  
            C51-C61                        1.529(8)  
            C51-H5A1                     0.9900  
            C51-H5B1                     0.9900  
            C61-H6A1                     0.9800  
            C61-H6B1                     0.9800  
            C61-H6C1                     0.9800  
            C71-C81                        1.512(8)  
            C71-H7A1                     0.9900  
            C71-H7B1                     0.9900  
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            Table B-6 (continued) 
            
            C81-H8A1                    0.9800  
            C81-H8B1                     0.9800  
            C81-H8C1                     0.9800  
            N12-C72                        1.476(7)  
            N12-C12                        1.507(7)  
            N12-C52                        1.524(7)  
            N12-C32                        1.519(7)  
            C12-C22                        1.532(9)  
            C12-H1E2                     0.9900  
            C12-H1F2                     0.9900  
            C22-H2D2                     0.9800  
            C22-H2E2                     0.9800  
            C22-H2F2                      0.9800  
            C32-C42                        1.487(9)  
            C32-H3E2                      0.9900  
            C32-H3F2                      0.9900  
            C42-H4D2                     0.9800  
            C42-H4E2                      0.9800  
            C42-H4F2                      0.9800  
            C52-C62                        1.531(8)  
            C52-H5C2                     0.9900  
            C52-H5D2                     0.9900  
            C62-H6D2                     0.9800  
            C62-H6E2                      0.9800  
            C62-H6F2                     0.9800  
            C72-C82                        1.514(8)  
            C72-H7C2                     0.9900  
            C72-H7D2                     0.9900  
            C82-H8D2                     0.9800  
            C82-H8E2                      0.9800  
            C82-H8F2                      0.9800  
            N13-C73                        1.472(6)  
            N13-C13                        1.507(6)  
            N13-C53                        1.524(6)  
            N13-C33                        1.525(6)  
            C13-C23                        1.531(7)  
            C13-H1G3                     0.9900  
            C13-H1H3                     0.9900  
            C23-H2G3                     0.9800  
            C23-H2H3                     0.9800  
            C23-H2I3                       0.9800  
            C33-C43                        1.490(8)  
            C33-H3G3                     0.9900  
            C33-H3H3                     0.9900  
            C43-H4G3                     0.9800  
            C43-H4H3                     0.9800  
            C43-H4I3                      0.9800  
            C53-C63                       1.530(7)  
            C53-H5E3                    0.9900  
            C53-H5F3                    0.9900  
            C63-H6G3                   0.9800  
            C63-H6H3                   0.9800  
            C63-H6I3                     0.9800  
            C73-C83                      1.515(7)  



 192

            Table B-6 (continued) 
 
            C73-H7E3                 0.9900  
            C73-H7F3                     0.9900  
            C83-H8G3                    0.9800  
            C83-H8H3                     0.9800  
            C83-H8I3                       0.9800  
            N(2)-Ni(1)-N(1)          85.39(19)  
            N(2)-Ni(1)-S(1)           173.03(14)  
            N(1)-Ni(1)-S(1)           87.71(14)  
            N(2)-Ni(1)-S(2)            87.60(13)   
            N(1)-Ni(1)-S(2)            171.98(15)  
            S(1)-Ni(1)-S(2)             99.22(6)  
            O(2)-S(1)-O(1)              116.7(4)  
            O(2)-S(1)-C(1)              102.4(4)  
            O(1)-S(1)-C(1)              104.9(4)  
            O(2)-S(1)-Ni(1)             112.6(3)  
            O(1)-S(1)-Ni(1)             117.9(3)  
            C(1)-S(1)-Ni(1)             98.81(19)  
            C(2)-N(1)-C(3)              118.7(4)  
            C(2)-N(1)-Ni(1)             124.4(4)  
            C(3)-N(1)-Ni(1)             114.4(4)  
            C(2)-C(1)-S(1)               111.0(4)  
            C(2)-C(1)-H(1A)           109.4  
            S(1)-C(1)-H(1A)            109.4  
            C(2)-C(1)-H(1B)           109.4  
            S(1)-C(1)-H(1B)            109.4  
            H(1A)-C(1)-H(1B)        108.0  
            C(6)-S(2)-Ni(1)             98.94(17)  
            C(5)-N(2)-C(4)              118.5(4)  
            C(5)-N(2)-Ni(1)             127.2(3)  
            C(4)-N(2)-Ni(1)             114.3(3)  
            O(3)-C(2)-N(1)              125.3(5)  
            O(3)-C(2)-C(1)              120.5(5)  
            N(1)-C(2)-C(1)              114.2(5)  
            C(4)-C(3)-N(1)              106.2(4)  
            C(4)-C(3)-H(3A)           110.5  
            N(1)-C(3)-H(3A)           110.5  
            C(4)-C(3)-H(3B)           110.5  
            N(1)-C(3)-H(3B)           110.5  
            H(3A)-C(3)-H(3B)        108.7  
            N(2)-C(4)-C(3)              109.4(4)  
            N(2)-C(4)-H(4J)            109.8  
            C(3)-C(4)-H(4J)           109.8  
            N(2)-C(4)-H(4K)          109.8  
            C(3)-C(4)-H(4K)          109.8  
            H(4J)-C(4)-H(4K)         108.2  
            O(4)-C(5)-N(2)              125.9(5)  
            O(4)-C(5)-C(6)              120.0(5)  
            N(2)-C(5)-C(6)              114.0(5)  
            C(5)-C(6)-S(2)               112.2(4)  
            C(5)-C(6)-H(6J)            109.2  
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            Table B-6 (continued) 
 
            S(2)-C(6)-H(6J)             109.2  
            C(5)-C(6)-H(6K)           109.2  
            S(2)-C(6)-H(6K)            109.2  
            H(6J)-C(6)-H(6K)         107.9  
            C71-N11-C11                111.9(5)  
            C71-N11-C31             107.8(5)  
            C11-N11-C31             111.3(5)  
            C71-N11-C51                111.2(5)  
            C11-N11-C51                105.0(5)  
            C31-N11-C51                109.7(5)  
            N11-C11-C21              114.4(6)  
            N11-C11-H1C1             108.7  
            C21-C11-H1C1             108.7  
            N11-C11-H1D1             108.7  
            C21-C11-H1D1             108.7  
            H1C1-C11-H1D1          107.6  
            C11-C21-H2A1             109.5  
            C11-C21-H2B1             109.5  
            H2A1-C21-H2B1          109.5  
            C11-C21-H2C1             109.5  
            H2A1-C21-H2C1          109.5  
            H2B1-C21-H2C1          109.5  
            C41-C31-N11                117.4(7)  
            C41-C31-H3C1             108.0  
            N11-C31-H3C1             108.0  
            C41-C31-H3D1             107.9  
            N11-C31-H3D1             108.0  
            H3C1-C31-H3D1          107.2  
            C31-C41-H4A1             109.5  
            C31-C41-H4B1             109.4  
            H4A1-C41-H4B1          109.5  
            C31-C41-H4C1             109.5  
            H4A1-C41-H4C1          109.5  
            H4B1-C41-H4C1          109.5  
            N11-C51-C61                114.5(5)  
            N11-C51-H5A1             108.6  
            C61-C51-H5A1             108.6  
            N11-C51-H5B1             108.6  
            C61-C51-H5B1             108.6  
            H5A1-C51-H5B1          107.6  
            C51-C61-H6A1             109.5  
            C51-C61-H6B1             109.5  
            H6A1-C61-H6B1         109.5  
            C51-C61-H6C1             109.5  
            H6A1-C61-H6C1          109.5  
            H6B1-C61-H6C1          109.5  
            N11-C71-C81                117.0(6)  
            N11-C71-H7A1            108.0  
            C81-C71-H7A1             108.0  
            N11-C71-H7B1             108.0  
            C81-C71-H7B1             108.0  
            H7A1-C71-H7B1          107.3  
            C71-C81-H8A1             109.5  
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            Table B-6 (continued) 
             
 
            C71-C81-H8B1             109.5  
            H8A1-C81-H8B1          109.5  
            C71-C81-H8C1             109.5  
            H8A1-C81-H8C1          109.5  
            H8B1-C81-H8C1          109.5  
            C72-N12-C12                111.6(6)  
            C72-N12-C52                111.2(6)  
            C12-N12-C52                105.9(6)  
            C72-N12-C32                107.5(7)  
            C12-N12-C32                111.5(6)  
            C52-N12-C32                109.2(6)  
            N12-C12-C22                113.7(7)  
            N12-C12-H1E2             108.8  
            C22-C12-H1E2              108.8  
            N12-C12-H1F2              108.8  
            C22-C12-H1F2              108.8  
            H1E2-C12-H1F2           107.7  
            C12-C22-H2D2             109.4  
            C12-C22-H2E2              109.5  
            H2D2-C22-H2E2          109.5  
            C12-C22-H2F2        109.5  
            H2D2-C22-H2F2     109.5  
            H2E2-C22-H2F2      109.5  
            C42-C32-N12          117.3(8)  
            C42-C32-H3E2    108.0  
            N12-C32-H3E2     108.0  
            C42-C32-H3F2      107.9  
            N12-C32-H3F2     108.0  
            H3E2-C32-H3F2    107.2  
            C32-C42-H4D2         109.5  
            C32-C42-H4E2          109.4  
            H4D2-C42-H4E2      109.5  
            C32-C42-H4F2          109.5  
            H4D2-C42-H4F2     109.5  
            H4E2-C42-H4F2     109.5  
            N12-C52-C62             114.0(7)  
            N12-C52-H5C2        108.8  
            C62-C52-H5C2         108.7  
            N12-C52-H5D2         108.7  
            C62-C52-H5D2       108.7  
            H5C2-C52-H5D2     107.6  
            C52-C62-H6D2          109.5  
            C52-C62-H6E2           109.5  
            H6D2-C62-H6E2        109.5  
            C52-C62-H6F2       109.5  
            H6D2-C62-H6F2     109.5  
            H6E2-C62-H6F2          109.5  
            N12-C72-C82                116.1(7)  
            N12-C72-H7C2          108.3  
            C82-C72-H7C2          108.3  
            N12-C72-H7D2          108.3  
            C82-C72-H7D2           108.3  
            H7C2-C72-H7D2      107.4  
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            Table B-6 (continued) 
 
            C72-C82-H8D2            109.5  
            C72-C82-H8E2            109.5  
            H8D2-C82-H8E2         109.5  
            C72-C82-H8F2        109.5  
            H8D2-C82-H8F2    109.5  
            H8E2-C82-H8F2          109.5  
            C73-N13-C13                112.4(4)  
            C73-N13-C53                111.9(4)  
            C13-N13-C53                105.7(4)  
            C73-N13-C33                107.4(4)  
            C13-N13-C33                110.9(4)  
            C53-N13-C33                108.6(4)  
            N13-C13-C23                113.8(4)  
            N13-C13-H1G3             108.8  
            C23-C13-H1G3         108.8  
            N13-C13-H1H3            108.8  
            C23-C13-H1H3         108.8  
            H1G3-C13-H1H3     107.7  
            C13-C23-H2G3            109.5  
            C13-C23-H2H3            109.5  
            H2G3-C23-H2H3        109.5  
            C13-C23-H2I3           109.5  
            H2G3-C23-H2I3           109.5  
            H2H3-C23-H2I3          109.5  
            C43-C33-N13              116.6(5)  
            C43-C33-H3G3             108.1  
            N13-C33-H3G3            108.1  
            C43-C33-H3H3           108.2  
            N13-C33-H3H3            108.1  
            H3G3-C33-H3H3         107.3  
            C33-C43-H4G3            109.5  
            C33-C43-H4H3             109.5  
            H4G3-C43-H4H3          109.5  
            C33-C43-H4I3              109.5  
            H4G3-C43-H4I3            109.5  
            H4H3-C43-H4I3            109.5  
            N13-C53-C63            114.1(5)  
            N13-C53-H5E3          108.7  
            C63-C53-H5E3        108.7  
            N13-C53-H5F3          108.7  
            C63-C53-H5F3           108.8  
            H5E3-C53-H5F3         107.6  
            C53-C63-H6G3        109.5  
            C53-C63-H6H3           109.4  
            H6G3-C63-H6H3         109.5  
            C53-C63-H6I3        109.5  
            H6G3-C63-H6I3           109.5  
            H6H3-C63-H6I3           109.5  
            N13-C73-C83             116.5(5)  
            N13-C73-H7E3            108.2  
            C83-C73-H7E3           108.2  
            N13-C73-H7F3       108.2  
            C83-C73-H7F3             108.2  
            H7E3-C73-H7F3        107.3  
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            Table B-6 (continued) 
 
            C73-C83-H8G3             109.5  
            C73-C83-H8H3             109.5  
            H8G3-C83-H8H3          109.5  
            C73-C83-H8I3              109.5  
            H8G3-C83-H8I3            109.5  
            H8H3-C83-H8I3          109.5  
           _____________________________________________________________  
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Table B-7.  Crystal data and structure refinement for [Et4N]2[Cu(emi)].  
   
   
      Empirical formula                  C18 H38 Cu0.50 N3 O4 S2  
   
      Formula weight                     456.40  
   
      Temperature                        60(2) K  
   
      Wavelength                         0.71073 A  
   
      Crystal system, space group        Orthorhombic,  Cmcm  
   
      Unit cell dimensions               a = 8.021(2) A   alpha = 90 deg.  
                                         b = 21.893(6) A    beta = 90 deg.  
                                         c = 19.809(6) A   gamma = 90 deg.  
   
      Volume                             3478.8(17) Å3  
   
      Z, Calculated density              4,  0.871 Mg/m3  
   
      Absorption coefficient             0.468 mm-1  
   
      F(000)                             982  
   
      Crystal size                       0.30 x 0.10 x 0.10 mm  
   
      Theta range for data collection    3.72 to 24.98 deg.  
   
      Limiting indices                   -9<=h<=9, -25<=k<=26, -23<=l<=23  
   
      Reflections collected / unique     8136 / 1306 [R(int) = 0.0785]  
   
      Completeness to theta = 24.98      76.7 %  
   
      Absorption correction              Semi-empirical from equivalents  
   
      Max. and min. transmission         0.9547 and 0.8723  
   
      Refinement method                  Full-matrix least-squares on F2  
   
      Data / restraints / parameters     1306 / 169 / 118  
   
      Goodness-of-fit on F2             1.089  
   
      Final R indices [I>2sigma(I)]     R1 = 0.0906, wR2 = 0.2154  
   
      R indices (all data)               R1 = 0.1463, wR2 = 0.2681  
   
      Largest diff. peak and hole        0.413 and -0.355 e.Å-3  
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           Table B-8.  Bond lengths [Å] and angles [˚] for [Et4N]2[Cu(emi)].  
           _____________________________________________________________  
   
            Cu(1)-N(1)#1                   1.940(8)  
            Cu(1)-N(1)                     1.940(8)  
            Cu(1)-S(1)#1                   2.233(3)  
            Cu(1)-S(1)                     2.233(3)  
            S(1)-C(1)                      1.825(13)  
            O(1)-C(2)                      1.272(13)  
            N(1)-C(2)                      1.214(12)  
            N(1)-C(3)                      1.482(16)  
            C(1)-C(4)                      1.441(12)  
            C(1)-C(4)#2                    1.442(12)  
            C(1)-C(2)                      1.571(14)  
            C(3)-C(3)#1                    1.41(2)  
            C(3)-H(3A)                     0.9600  
            C(4)-H(4A)                     0.9600  
            C(4)-H(4B)                     0.9598  
            C(4)-H(4C)                     0.9600  
            O(1W)-H(1)                     0.8800  
            O(1W)-H(2)                     0.8799  
            N11-C11                        1.495(4)  
            N11-C71                        1.494(4)  
            N11-C51                        1.496(4)  
            N11-C31                        1.497(4)  
            C11-C21                        1.501(5)  
            C11-H1A1                     0.9900  
            C11-H1B1                       0.9900  
            C21-H2A1                       0.9800  
            C21-H2B1                       0.9800  
            C21-H2C1                       0.9800  
            C31-C41                        1.500(5)  
            C31-H3B1                       0.9900  
            C31-H3C1                       0.9900  
            C41-H4D1                       0.9800  
            C41-H4E1                       0.9800  
            C41-H4F1                       0.9800  
            C51-C61                        1.499(5)  
            C51-H5A1                       0.9900  
            C51-H5B1                       0.9900  
            C61-H6A1                       0.9800  
            C61-H6B1                       0.9800  
            C61-H6C1                       0.9800  
            C71-C81                        1.500(5)  
            C71-H7A1                       0.9900  
            C71-H7B1                       0.9900  
            C81-H8A1                      0.9800  
            C81-H8B1                       0.9800  
            C81-H8C1                       0.9800  
            N12-C72                        1.494(4)  
            N12-C52                        1.496(4)  
            N12-C32                        1.497(4)  
            N12-C12                        1.494(4)  
            C12-C22                        1.499(5)  
            C12-H1C2                       0.9900  
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            Table B-8 (continued) 
 
            C12-H1D2                       0.9900  
            C22-H2D2                       0.9800  
            C22-H2E2                       0.9800  
            C22-H2F2                       0.9800  
            C32-C42                        1.499(5)  
            C32-H3D2                       0.9900  
            C32-H3E2                       0.9900  
            C42-H4G2                      0.9800  
            C42-H4H2                       0.9800  
            C42-H4I2                       0.9800  
            C52-C62                        1.500(5)  
            C52-H5C2                       0.9900  
            C52-H5D2                       0.9900  
            C62-H6D2                       0.9800  
            C62-H6E2                       0.9800  
            C62-H6F2                       0.9800  
            C72-C82                        1.498(5)  
            C72-H7C2                       0.9900  
            C72-H7D2                       0.9900  
            C82-H8D2                       0.9800  
            C82-H8E2                       0.9800  
            C82-H8F2                       0.9800  
            N(1)#1-Cu(1)-N(1)             85.2(5)  
            N(1)#1-Cu(1)-S(1)#1           86.2(3)  
            N(1)-Cu(1)-S(1)#1            171.4(3)  
            N(1)#1-Cu(1)-S(1)            171.4(3)  
            N(1)-Cu(1)-S(1)               86.2(3)  
            S(1)#1-Cu(1)-S(1)            102.32(15)  
            C(1)-S(1)-Cu(1)               98.4(4)  
            C(2)-N(1)-C(3)               119.8(9)  
            C(2)-N(1)-Cu(1)              126.9(7)  
            C(3)-N(1)-Cu(1)              113.3(7)  
            C(4)-C(1)-C(4)#2            105.5(12)  
            C(4)-C(1)-C(2)               109.9(7)  
            C(4)#2-C(1)-C(2)             109.9(7)  
            C(4)-C(1)-S(1)               109.7(6)  
            C(4)#2-C(1)-S(1)             109.7(6)  
            C(2)-C(1)-S(1)               112.0(8)  
            N(1)-C(2)-O(1)               130.4(10)  
            N(1)-C(2)-C(1)               116.5(10)  
            O(1)-C(2)-C(1)               113.2(9)  
            C(3)#1-C(3)-N(1)           114.1(6)  
            C(3)#1-C(3)-H(3A)            109.0  
            N(1)-C(3)-H(3A)              108.3  
            C(1)-C(4)-H(4A)              108.0  
            C(1)-C(4)-H(4B)              112.0  
            H(4A)-C(4)-H(4B)             109.5  
            C(1)-C(4)-H(4C)              108.4  
            H(4A)-C(4)-H(4C)             109.5  
            H(4B)-C(4)-H(4C)             109.5  
            H(1)-O(1W)-H(2)              96.7  
            C11-N11-C71                  109.7(4)  
            C11-N11-C51                  109.5(4)  
            C71-N11-C51                  109.6(4)  
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            Table B-8 (continued) 
 
            C11-N11-C31                  109.3(4)  
            C71-N11-C31                  109.4(4)  
            C51-N11-C31                  109.3(4)  
            N11-C11-C21                  116.6(5)  
            N11-C11-H1A1               108.1  
            C21-C11-H1A1                 108.1  
            N11-C11-H1B1                 108.2  
            C21-C11-H1B1                 108.2  
            H1A1-C11-H1B1              107.3  
            C11-C21-H2A1                 109.5  
            C11-C21-H2B1                 109.4  
            H2A1-C21-H2B1              109.5  
            C11-C21-H2C1                 109.5  
            H2A1-C21-H2C1                109.5  
            H2B1-C21-H2C1                109.5  
            N11-C31-C41                  116.5(5)  
            N11-C31-H3B1                 108.2  
            C41-C31-H3B1                 108.1  
            N11-C31-H3C1                 108.2  
            C41-C31-H3C1                 108.1  
            H3B1-C31-H3C1                107.3  
            C31-C41-H4D1                 109.5  
            C31-C41-H4E1                 109.4  
            H4D1-C41-H4E1                109.5  
            C31-C41-H4F1                 109.5  
            H4D1-C41-H4F1                109.5  
            H4E1-C41-H4F1                109.5  
            N11-C51-C61                  116.7(5)  
            N11-C51-H5A1                 108.1  
            C61-C51-H5A1                 108.2  
            N11-C51-H5B1                 108.1  
            C61-C51-H5B1                 108.1  
            H5A1-C51-H5B1                107.3  
            C51-C61-H6A1                 109.4  
            C51-C61-H6B1                 109.5  
            H6A1-C61-H6B1                109.5  
            C51-C61-H6C1                 109.5  
            H6A1-C61-H6C1                109.5  
            H6B1-C61-H6C1                109.5  
            N11-C71-C81                  116.8(5)  
            N11-C71-H7A1                 108.1  
            C81-C71-H7A1                 108.2  
            N11-C71-H7B1                 108.1  
            C81-C71-H7B1                 108.0  
            H7A1-C71-H7B1                107.3  
            C71-C81-H8A1                 109.5  
            C71-C81-H8B1                 109.6  
            H8A1-C81-H8B1              109.5  
            C71-C81-H8C1                 109.4  
            H8A1-C81-H8C1                109.5  
            H8B1-C81-H8C1                109.5  
            C72-N12-C52                  109.5(4)  
            C72-N12-C32                  109.4(4)  
            C52-N12-C32                  109.3(4)  
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            Table B-8 (continued) 
 
            C72-N12-C12                  109.7(4)  
            C52-N12-C12                  109.4(4)  
            C32-N12-C12                  109.4(4)  
            N12-C12-C22                  117.0(5)  
            N12-C12-H1C2                108.0  
            C22-C12-H1C2                 108.2  
            N12-C12-H1D2                 108.1  
            C22-C12-H1D2                 107.9  
            H1C2-C12-H1D2                107.3  
            C12-C22-H2D2                 109.5  
            C12-C22-H2E2                 109.7  
            H2D2-C22-H2E2                109.5  
            C12-C22-H2F2                 109.3  
            H2D2-C22-H2F2                109.5  
            H2E2-C22-H2F2                109.5  
            N12-C32-C42                  116.7(5)  
            N12-C32-H3D2                 107.9  
            C42-C32-H3D2                 108.1  
            N12-C32-H3E2                 108.3  
            C42-C32-H3E2                 108.2  
            H3D2-C32-H3E2                107.3  
            C32-C42-H4G2                 109.4  
            C32-C42-H4H2                 109.4  
            H4G2-C42-H4H2                109.5  
            C32-C42-H4I2                 109.6  
            H4G2-C42-H4I2                109.5  
            H4H2-C42-H4I2                109.5  
            N12-C52-C62                  116.8(5)  
            N12-C52-H5C2                 108.3  
            C62-C52-H5C2                 107.6  
            N12-C52-H5D2                 108.1  
            C62-C52-H5D2                 108.5  
            H5C2-C52-H5D2                107.3  
            C52-C62-H6D2                 109.6  
            C52-C62-H6E2                 109.0  
            H6D2-C62-H6E2                109.5  
            C52-C62-H6F2                 109.9  
            H6D2-C62-H6F2                109.5  
            H6E2-C62-H6F2                109.5  
            N12-C72-C82                  117.0(5)  
            N12-C72-H7C2                 107.8  
            C82-C72-H7C2                 107.3  
            N12-C72-H7D2                 108.0  
            C82-C72-H7D2                 109.0  
            H7C2-C72-H7D2                107.3  
            C72-C82-H8D2                 109.2  
            C72-C82-H8E2                 108.8  
            H8D2-C82-H8E2                109.5  
            C72-C82-H8F2                 110.4  
            H8D2-C82-H8F2                109.5  
            H8E2-C82-H8F2                109.5  
           _____________________________________________________________  
   
           Symmetry transformations used to generate equivalent atoms: #1 -x,y,-z+1/2    #2 -x,y,z      
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