# CHARACTERIZATION OF AMMONIA EMISSIONS FROM GROUND LEVEL

# AREA SOURCES AT CENTRAL TEXAS DAIRIES

A Dissertation

by

# ATILLA MUTLU

Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2007

Major Subject: Biological & Agricultural Engineering

# CHARACTERIZATION OF AMMONIA EMISSIONS FROM GROUND LEVEL

# AREA SOURCES AT CENTRAL TEXAS DAIRIES

A Dissertation

by

# ATILLA MUTLU

# Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of

# DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Committee Members, Saqib Mukhtar Ronald E. Lacey John W. Nielsen-Gammon Calvin B. Parnell, Jr. Gerald L. Riskowski

Head of Department,

December 2007

Major Subject: Biological & Agricultural Engineering

#### ABSTRACT

Characterization of Ammonia Emissions from Ground Level Area Sources at Central Texas Dairies. (December 2007) Atilla Mutlu, B.S.; M.S., Cukurova University Chair of Advisory Committee: Dr. Saqib Mukhtar

There is a need for a robust and accurate technique to measure ammonia (NH<sub>3</sub>) emissions from animal feeding operations (AFOs) to obtain emission inventories and to develop abatement strategies. Seasonal studies were conducted to measure NH<sub>3</sub> emissions from open-lot and free-stall dairies in central Texas since summer of 2003. Ammonia emission flux (EFI) was measured using an isolation flux chambers (FC) protocol from ground level area sources (GLAS) and converted to emission factor (EF) to potentially develop source specific NH<sub>3</sub> emission control strategies. The GLAS including open-lots, free-stall barns, separated solids, primary and secondary lagoons and milking parlor were sampled to estimate NH<sub>3</sub> emissions.

In the first study, assessment of summer and winter data from the open-lot dairy indicated that overall NH<sub>3</sub> EFs were  $11.6 \pm 7.1$  kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> for the summer and  $6.2 \pm 3.7$  kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> for the winter season. The estimated annual NH<sub>3</sub> EF was  $9.4 \pm 5.7$  kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> for this open-lot dairy. The estimated NH<sub>3</sub> emission factor for winter was nearly 47% lower than summer EF. Open-lot corrals (~63%) in summer

and (~95%) in winter were the highest contributors to  $NH_3$  emissions for the open-lot dairy.

In the second study, the EFs for the free-stall dairy were determined to be 11.1  $\pm 4.9$  kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> for summer season and  $4.7\pm 4.9$  kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> for winter season. The estimated annual NH<sub>3</sub> EF was 8.4  $\pm 4.9$  kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> for this free-stall dairy. In winter, composted manure and free-stalls contributed nearly 73% to the total NH<sub>3</sub> emissions for the dairy. However in summer, approximately 65% of overall NH<sub>3</sub> emissions were contributed by two lagoons at the dairy.

The overall differences between winter and summer NH<sub>3</sub> emissions from the dairies were due to ambient temperature variations and loading rates of manure on GLAS. There was spatial variation of NH<sub>3</sub> emissions from the open-lot earthen corrals due to variable animal density within different divisions of the open-lot. This spatial variability was attributed to dispirit manure loading within these areas.

# **DEDICATION**

This dissertation is dedicated to my beloved family: my son, Arda Kaan and my lovely wife, Muge.

#### ACKNOWLEDGEMENTS

I am thankful to God for letting me have this opportunity and complete my graduate study program to pursue my Ph.D. degree.

I would like to give special thanks to Dr. Saqib Mukhtar, my advisor, who provided me with excellent guidance, encouragement and motivation to pursue my PhD degree in the Department of Biological and Agricultural Engineering at Texas A&M University. I would also like to express sincere thanks to my committee members; Dr. Calvin B. Parnell, Dr. Ronald E. Lacey, and Dr. John W. Nielsen-Gammon for their advice, support and patience on this endeavor.

I do not forget the invaluable members of the air sampling crew for their help and effort during the sampling trips: Cale Boriack, Dr. Sergio Capareda, John Wanjura, Brock Faulkner, Ordway Boriack, Scott Emsoff, Jeniffer Lange, Jacob Powell, Russ Eggmeyer and Kyle Kieschnick. I will keep all of you in my mind as my friend.

My parents, Cennet and Mustafa Mutlu, and my brother Atalay Mutlu. It did not really matter how far apart we were but, I always felt your warm support in my heart. I cannot thank you enough for your endless support and valuable sharing.

And final words go to my beloved family. There were only two people under the roof when I began my PhD program. Now, there are three people under the same roof. Arda Kaan, my little angel, you brought me something that I have never experienced before. And my best friend and wife Muge, my only source of inspiration, you showed me the way where I have never been. I love both of you so much more, than anything. I could not have completed this dissertation without your constant support, and sacrifice. You all made me feel that I could accomplish this endeavor.

# **TABLE OF CONTENTS**

| ABSTRAC                  | Γ                                                       | iii  |
|--------------------------|---------------------------------------------------------|------|
| DEDICATION               |                                                         |      |
| ACKNOWI                  | LEDGEMENTS                                              | vi   |
| TABLE OF                 | CONTENTS                                                | viii |
| LIST OF FI               | GURES                                                   | X    |
| LIST OF TA               | ABLES                                                   | xii  |
| CHAPTER                  |                                                         |      |
| Ι                        | INTRODUCTION                                            | 1    |
| II                       | A LITERATURE REVIEW FOR CHARACTERIZING AMMONIA          |      |
|                          | EMISSIONS FROM ANIMAL FEEDING OPERATIONS                | 5    |
|                          | 2.1. Introduction                                       | 5    |
|                          | 2.2. Properties of Ammonia                              | 6    |
|                          | 2.3. Ammonia Production at AFOs                         | 8    |
|                          | 2.3.1. Ammonia Volatilization and Deposition            | 8    |
|                          | 2.4. Environmental Impacts of Ammonia Emissions         | 11   |
|                          | 2.5. Ammonia Emissions and Current Regulatory Processes | 12   |
|                          | 2.6. Ammonia Measurement Methods                        | 14   |
|                          | 2.6.1. Flux Enclosure Method                            | 15   |
|                          | 2.6.2. Nitrogen Balance Method                          | 18   |
|                          | 2.6.3. Micrometeorological Method                       | 19   |
| 2.6.4. Dispersion Models |                                                         |      |
|                          | 2.7. Ammonia Measurement Devices                        |      |
|                          | 2.7.1. Denuders                                         | 22   |
|                          | 2.7.2. High-tech Sensors                                | 23   |
|                          | 2.8. Ammonia Emission Factors                           | 26   |

III

# SEASONAL AND SPATIAL VARIATIONS OF AMMONIA

# EMISSIONS FROM AN OPEN-LOT DAIRY OPERATION 28 3.1 Introduction 28

| <b>J</b> .1. IIIIIOuucioii                             | 20 |
|--------------------------------------------------------|----|
| 3.2. Materials and Methods                             | 30 |
| 3.3. Sampling Site: Open-lot Dairy                     | 31 |
| 3.4. Sampling Equipment                                | 33 |
| 3.5. Sampling Method                                   | 36 |
| 3.6. Calibration                                       | 37 |
| 3.7. Adsorption and Uncertainty Analysis               | 40 |
| 3.8. Results and Discussions                           | 41 |
| 3.8.1. Seasonal Variations of Ammonia Emissions at the |    |
| Open-lot Dairy                                         | 41 |
| 3.8.2. Spatial Variability of Ammonia Emissions at the |    |
| Open-lot Corral                                        | 51 |
| -                                                      |    |

| Open-lot Condi   |    |
|------------------|----|
| 3.9. Conclusions | 58 |

# IV SEASONAL AMMONIA EMISSIONS FROM A FREE-STALL

| DAIRY IN CENTRAL TEXAS                 | 60  |
|----------------------------------------|-----|
| 4.1. Introduction                      | 60  |
| 4.2. Materials and Methods             | 64  |
| 4.2.1. Sampling Site: Free-stall Dairy | 64  |
| 4.2.2. Sampling Equipment              | 65  |
| 4.2.3. Sampling Method                 | 67  |
| 4.3. Results and Discussions           | 70  |
| 4.4. Conclusions                       | 78  |
| V CONCLUSIONS AND FUTURE RESEARCH      | 80  |
| REFERENCES                             | 84  |
| APPENDIX A                             | 95  |
| APPENDIX B                             | 100 |
| VITA                                   | 128 |

Page

# LIST OF FIGURES

| FIGURE |      |                                                                               | Page |
|--------|------|-------------------------------------------------------------------------------|------|
| ,      | 2.1  | Ammonia paths in the atmosphere                                               | 10   |
| -      | 3.1  | Sampled open-lot dairy                                                        | 30   |
| ,<br>- | 3.2  | Schematic of sampled open-lot corral divisions                                | 32   |
| -      | 3.3  | Schematic of isolation flux chamber                                           | 33   |
| -      | 3.4  | Sampling schematic                                                            | 35   |
| -      | 3.5  | Calibration illustration for NH <sub>3</sub> analyzer                         | 38   |
| -      | 3.6  | Calibration steps for NH <sub>3</sub> analyzer                                | 39   |
| -      | 3.7  | Seasonal GLAS contribution to overall EFs at the open-lot dairy               | 46   |
| -      | 3.8  | Histogram of collected ammonia open-lot samples in summer                     | 52   |
| -      | 3.9  | Histogram of collected ammonia open-lot samples in winter                     | 52   |
| -      | 3.10 | Spatial variations of summer ammonia concentrations in open-lot divisions     | 56   |
| -      | 3.11 | Spatial variations of winter ammonia concentrations in open-lot divisions     | 57   |
| 2      | 4.1  | An aerial view of the sampled dairy                                           | 64   |
| 2      | 4.2  | Schematic of the flux chamber                                                 | 66   |
| 2      | 4.3  | Isolation flux chambers in a free-stall barn                                  | 67   |
| 2      | 4.4  | Seasonal Variations of GLAS in free-stall dairy                               | 76   |
| ]      | B.1  | Randomly selected flux sampling points on open-lot corral divisions in summer | 101  |

| FIGURE |                                                                               | Page |
|--------|-------------------------------------------------------------------------------|------|
| B.2    | Randomly selected flux sampling points on open-lot corral divisions in winter | 102  |

# LIST OF TABLES

| TABLE |                                                                                  | Page |
|-------|----------------------------------------------------------------------------------|------|
| 2.1   | Properties of NH <sub>3</sub> gas                                                | 7    |
| 3.1   | Summary of summer NH <sub>3</sub> Emissions (2000-head dairy)                    | 42   |
| 3.2   | Summary of winter NH <sub>3</sub> emissions (2000-head dairy)                    | 43   |
| 3.3   | Seasonal ammonia EFs for GLAS of the open-lot dairy                              | 45   |
| 3.4   | Summer and winter estimated NH <sub>3</sub> EFs from the open-lot divisions      | 47   |
| 3.5   | Developed and reported NH <sub>3</sub> EFs                                       | 48   |
| 3.6   | Seasonal GLAS and ambient weather data                                           | 50   |
| 3.7   | Ammonia EF comparison of open-lot divisions                                      | 54   |
| 4.1   | Summary of winter NH <sub>3</sub> emissions                                      | 71   |
| 4.2   | Summary of summer NH <sub>3</sub> emissions                                      | 72   |
| 4.3   | Ammonia EFs from different GLAS of the dairy in winter season                    | 73   |
| 4.4   | Ammonia EFs from different GLAS of the dairy in summer season                    | 75   |
| 5.1   | Summer NH <sub>3</sub> emissions from the open-lots at the open-lot dairy        | 103  |
| 5.2   | Summer $NH_3$ emissions from the primary lagoon at the open-lot dairy            | 107  |
| 5.3   | Summer NH <sub>3</sub> emissions from the secondary lagoon at the open-lot dairy | 108  |
| 5.4   | Summer $NH_3$ emissions from the solid separator at the open-lot dairy           | 109  |
| 5.5   | Winter NH <sub>3</sub> emissions from the open-lots at the open-lot dairy        | 110  |
| 5.6   | Winter $NH_3$ emissions from the primary lagoon at the open-lot dairy            | 114  |
| 5.7   | Winter NH <sub>3</sub> emissions from the secondary lagoon at the open-lot dairy | 115  |

| 5.8  | Winter $NH_3$ emissions from the solid separator at the open-lot dairy             | 116 |
|------|------------------------------------------------------------------------------------|-----|
| 5.9  | Winter $NH_3$ emissions from the milking parlor at the open-lot dairy              | 117 |
| 5.10 | Summer NH <sub>3</sub> emissions from the free-stalls at the free-stall dairy      | 118 |
| 5.11 | Summer $NH_3$ emissions from the primary lagoon at the free-stall dairy            | 121 |
| 5.12 | Summer NH <sub>3</sub> emissions from the secondary lagoon at the free-stall dairy | 122 |
| 5.13 | Summer $NH_3$ emissions from the composting area at the free-stall dairy .         | 123 |
| 5.14 | Summer NH <sub>3</sub> emissions from the crowding area at the free-stall dairy    | 124 |
| 5.15 | Summer NH <sub>3</sub> emissions from the open-lot at the free-stall dairy         | 125 |
| 5.16 | Summer NH <sub>3</sub> emissions from the separated solid at the free-stall dairy  | 126 |
| 5.17 | Winter NH <sub>3</sub> emissions from the different GLAS of the free-stall dairy   | 127 |

Page

## **CHAPTER I**

## INTRODUCTION

Recently, agricultural ammonia (NH<sub>3</sub>) emissions into the atmosphere have been recognized as an important air quality issue. Animal feeding operations (AFOs) are known to be the most significant contributors to overall agricultural NH<sub>3</sub> emissions and cattle, including dairy cows, are the major livestock sources to emit NH<sub>3</sub>. In both Europe and the United States, agricultural NH<sub>3</sub> emissions from AFOs and fertilizer applications are estimated to be up to 80% of the total NH<sub>3</sub> emissions (Battye et al., 1994; DEFRA, 2002).

Ammonia is released to the atmosphere due to the biological decomposition of dairy manure. Animal feeding operations would classify as a pollutant source if manure, which is generated in AFOs or used for fertilizer application, is considered a "hazardous substance". The US lawmakers are currently debating whether animal waste should be termed as a "toxic pollutant" (Sadler, 2007).

Currently, NH<sub>3</sub> emissions from animal agriculture are not regulated under the Clean Air Act (CAA). Ammonia emissions are only subject to be reported to federal, state, or local agencies if the emission exceeds reportable quantity (RQ). Two federal acts were designated to manage this reporting process.

This thesis follows the style of Transactions of the ASABE.

The RQ set by Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), and Emergency Planning and Community Right-to-Know Act (EPCRA) for NH<sub>3</sub> is 45.4 kg per day (100 pounds per day).

The potential for federal air quality regulations accelerates the need for better estimates and effective management practices for reducing NH<sub>3</sub> emissions. It is important to obtain real-time, direct estimates of emissions from different NH<sub>3</sub> emission sources at AFOs. There is also need for a better technique to measure NH<sub>3</sub> emissions from AFOs to obtain emission inventories and to develop abatement strategies.

The quantification of NH<sub>3</sub> emissions from ground level area sources (GLAS) in a dairy operation is needed to understand which sources contribute the most to the overall NH<sub>3</sub> emissions during winter and summer seasons. Information on seasonal NH<sub>3</sub> emission variations at GLAS from dairy operations will assist with the evaluation and selection of best management practices to control and reduce NH<sub>3</sub> emissions. The estimated real-time and direct NH<sub>3</sub> emission factors from central Texas dairies will help to develop farm-scale NH<sub>3</sub> inventories.

The isolation flux chamber (FC) is one of the direct measuring techniques for surface gas emissions, such as NH<sub>3</sub>. This measurement technique is also applicable to quiescent liquid surfaces such as lagoons where surface runoff and waste water are stored and treated under anaerobic conditions.

Ammonia EFs for dairies have been reported generally based on the nitrogen mass balance method. Ammonia EFs for dairy facilities were estimated to be anywhere from 1.5 kg-NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> to 55.5 kg-NH<sub>3</sub> year<sup>-1</sup>head<sup>-1</sup> in both Europe and the US. These EFs were generally estimated from the nitrogen content in excreted manure or from a mass balance of nitrogen inputs and outputs at dairy operations. None of these studies conducted real time, direct NH<sub>3</sub> emissions and flux measurements from individual waste storage and treatment sources (GLAS) of a dairy operation.

Flux chambers have been used to measure gaseous emissions, especially NH<sub>3</sub>, from the GLAS. At an AFO, these sources may include lagoons, compost piles, manure storage, open lots, animal buildings, and milking parlors. In this study, using a flux chamber protocol, NH<sub>3</sub> emission fluxes (EFI) were measured from GLAS and converted to emission factor (EF) for free-stall and open-lot dairies during winter and summer seasons.

An ammonia emissions measurement study at open-lot and free-stall dairies was conducted to test the following hypotheses:

• Ammonia emissions such as ERs and EFs can be determined from each individual GLAS of dairy facilities using a direct measurement system,

• Treatment lagoons in the summer and open-lots in the winter are the largest emitters of NH<sub>3</sub> at a dairy feeding operation,

• Ammonia emissions from open-lot surfaces are highly spatially variable,

These hypotheses above will be accepted or rejected using appropriate statistical analysis of collected real-time and on-site data. Data collection process to test these hypotheses and statistical analyses are described in the next chapter.

#### CHAPTER II

# A LITERATURE REVIEW FOR CHARACTERIZING AMMONIA EMISSIONS FROM ANIMAL FEEDING OPERATIONS

## **2.1. Introduction**

Increasing public concerns over air quality impacts from animal feeding operations (AFOs) in the United States have led the USEPA to begin establishing an airmonitoring study to obtain reliable emission inventory for livestock and poultry facilities.

Ammonia (NH<sub>3</sub>) emissions are considered an important environmental issue. Agricultural NH<sub>3</sub> emissions from AFOs and fertilizer applications are considered as major contributors (up to 80%) to the total NH<sub>3</sub> emissions (Battye et al., 1994; DEFRA, 2002).

Mansell (2005) indicated in the final report of Western Regional Air Partnership (WRAP) visibility modeling that there were large uncertainties in the variation of emitted concentrations, seasonal variation, and spatial distribution of NH<sub>3</sub> emissions. Those uncertainties may hinder obtaining accurate NH<sub>3</sub> emissions estimates.

Source-specific ambient NH<sub>3</sub> concentrations should be measured in order to determine NH<sub>3</sub> emission flux (EFI), rates (ER) and factors (EF). Accurately determined EFs will help to develop a reliable emission inventory (EI) for AFOs.

## 2.2. Properties of Ammonia

Ammonia is generally known as a gas with a characteristic sharp odor. It is colorless and lighter than air. Physical properties of gases are important parameters to determine behavior of gases in known conditions. Gas behaviors can be accurately predicted using the ideal gas law. According to Cooper and Alley (2002), we need to separate between gas and vapor phases. The main reason for making a distinction is due to different control techniques that can be applied to gas and vapor. Pollutants such as sulfur dioxide (SO<sub>2</sub>), carbon monoxide (CO), or nitric oxide (NO) are considered gases and most volatile organic compounds (VOCs) are considered as vapors (Cooper and Alley, 2002).

In gas phase, in this case NH<sub>3</sub>, internal energy of the molecules plays an important role. Critical temperature is defined as the highest temperature value for the condensation (liquefied form), critical pressure is the value when the gas liquefied at the critical temperature. Critical volume is also an important parameter to determine gas behaviors, and it is defined as a volume of constant mass of gas at critical temperature and pressure.

Steward et al. (1986) and Appl (1999) described thermodynamic properties of NH<sub>3</sub>. Thermodynamic properties are important parameters for understanding and managing gas behaviors under different environmental conditions. These properties for NH<sub>3</sub> gas are presented in Table 2.1.

| Molecular weight                                              | 17.0312                                                        |
|---------------------------------------------------------------|----------------------------------------------------------------|
| Molecular volume (at 0°C, 1 atm)                              | 22.08 L mol <sup>-1</sup>                                      |
| Critical temperature point                                    | 132.4 °C                                                       |
| Critical pressure point                                       | 112 atm                                                        |
| Critical volume                                               | $4.225 \text{ cm}^3 \text{ g}^{-1}$                            |
| Critical density                                              | $0.2350 \text{ g cm}^{-3}$                                     |
| R (ideal gas law constant)                                    | $4.8180 \text{ atm } \text{cm}^3 \text{g}^{-1} \text{ K}^{-1}$ |
| Density (at 0°C, 1 atm.)                                      | 0.7714 g L <sup>-1</sup>                                       |
| Melting point                                                 | -77.71 °C                                                      |
| Boiling point (at 1 atm.)                                     | - 33.43 °C                                                     |
| Vapor pressure                                                | 6.077 kPa                                                      |
| Enthalpy (Standart gas at 25 °C)                              | -46.22 kJ mol <sup>-1</sup>                                    |
| Heating value                                                 | 18.577 kJ g <sup>-1</sup>                                      |
| NH <sub>3</sub> - O <sub>2</sub> mixture (at 20°C, 101.3 kPA) | 15-79 vol% NH <sub>3</sub>                                     |
| NH <sub>3</sub> - Air mixture (at 0°C, 101.3 kPA)             | 16-27 vol% NH <sub>3</sub>                                     |
| NH <sub>3</sub> - Air mixture (at 100°C, 101.3 kPA)           | 15.5-27 vol% NH <sub>3</sub>                                   |

Table 2.1 Properties of NH<sub>3</sub> gas.

Ammonia has a pyramid-shaped molecular geometry and is very similar to the configuration of water (Appl, 1999). Therefore, liquid NH<sub>3</sub> has the ability to dissolve many substances. Anhydrous (water-free) NH<sub>3</sub> gas is easily converted to liquid form under pressure (at 20°C liquid ammonia has a vapor pressure of about 8.16 atm).

## 2.3. Ammonia Production at AFOs

Biological decomposition of manure from AFOs results in emission of  $NH_3$  and other gases. Ammonia is released into the atmosphere due to microbial decomposition of manure. Manure and urine that are excreted by livestock are the most significant sources of  $NH_3$  emissions. Dairy cows consume a significant amount of nitrogen (N) containing substances in their feed. Ammonia is produced by conversion of N in manure to total ammoniacal N (TAN= $NH_4^+$ -N +  $NH_3$ -N). This conversion occurs in different biochemical degradation processes such as hydrolysis of urea and volatilization. Hydrolysis of urea can be simplified by following equation:

Hydrolysis of Urea:  $CO(NH_2)_2 + H_2O \rightarrow CO_2 + 2NH_3$ 

Urea plays an important role as the main source of ammonia in the urine of cattle, cows, pigs, and other mammals. Urease is an enzyme and mostly found in animal manure and soil. Urease is used for the converting of urea to TAN (DEFRA, 2002). Ammonia volatilization process is explained with details in following topic.

## 2.3.1. Ammonia Volatilization and Deposition

In general, atmospheric gases in the atmosphere tend to move from higher levels of concentration to lower levels of concentration by diffusion. Similarly, NH<sub>3</sub> volatilizes from high concentration zones, such as urine and excreta accumulated in a corral, to lower concentration zones such as the atmosphere. In other words, NH<sub>3</sub> is released from the liquid or semi-solid zone as gas phase (DEFRA, 2002). Manure is considered the main source of NH<sub>3</sub> volatilization in AFOs. Ammonia is released from the source as total ammoniacal N (TAN). The volatilization of NH<sub>3</sub> is variable and depends upon several factors: including surface and ambient temperature, air velocity, moisture content, pH level, and TAN concentration of the of the emitting source (Arogo et al., 2001 and Becker and Graves, 2004).

Ammonia emissions may change seasonally during the year. High temperatures increase NH<sub>3</sub> volatilization. High wind speed may increase NH<sub>3</sub> emission if manure is stored in open areas. The population of animals at AFO may vary during a year. Animal density may also effect NH<sub>3</sub> emissions from the AFO. These factors cause NH<sub>3</sub> emissions to vary in terms of season and region (USEPA, 2002).

The pH value of stored solid manure may range from 7.5 to 8.5, but manure stored as liquid or semi-liquid may have lower pH. Therefore, livestock manure may be stored as liquid or semi-liquid to reduce NH<sub>3</sub> emissions from the livestock facility (USEPA, 2002).



Figure 2.1. Ammonia paths in the atmosphere. (Source: DEFRA, 2002)

Ammonia in the atmosphere is deposited back to the earth's surface as "dry" (most common) or "wet" (Figure 1). In dry deposition, fine particles containing (ammonium)  $NH_4^+$  and  $NH_3$  are absorbed by soil and water surfaces. Dry deposition is decreased by increasing distance from the emitting surface. Dry deposition generally occurs in locally and local deposition can be seen in the first 500 m from the emitting source (Fowler et al., 1998). In another study by Fangmeier et al., 1994 reports that the  $NH_3$  concentration was reduced by 50-70 % at the distance of 600 m and 4 km from the source, respectively. In wet deposition,  $NH_4^+$  and  $NH_3$  can be deposited to the surface by rainfalls. Wet deposition occurs in long distances from the emitting sources (DEFRA, 2002).

Increasing ambient NH<sub>3</sub> concentration and atmospheric deposition of N are related to increasing NH<sub>3</sub> emissions from AFOs (DEFRA, 2002) and Fowler et al., (1998) reported that NH<sub>3</sub> dry deposition is decreased by increasing the distance from the source. Ammonia may be removed in the atmosphere to the earth's surface in the form of reduced ammonia  $(NH_x)$  ( $NH_x = NH_3 + NH_4^+$ ) by depositions. High concentration of  $NH_x$  at the earth's surface may cause acidification of soils due to nitrification; eutrophication of water sources result in a decline or loss of species and damaged forest systems (Asman et al., 1987; Phillips et al., 2000; Aneja et al., 2003).

# 2.4. Environmental Impacts of Ammonia Emissions

In the atmosphere,  $NH_3$  neutralizes acidic aerosols such as nitrogen oxides  $NO_x$ (combination of NO and  $NO_2$ ) and sulfur dioxides (SO<sub>2</sub>). This chemical process is considered to be a major source of atmospheric acidification (Aneja et al., 2003 and Asman and Janssen, 1987; Arogo et al., 2001).

Asman and Janssen (1987), Brost et al. (1988) and Arogo et al. (2001) described N-based aerosols as combinations of  $NH_3$  with acidic compounds. Ammonia reacts with nitric acid (HNO<sub>3</sub>), hydrochloric acid (HCl), and sulfuric acid (H<sub>2</sub>SO<sub>4</sub>) to form ammonium nitrate ( $NH_4NO_3$ ), ammonium chloride ( $NH_4Cl$ ), and ammonium sulfate (( $NH_4$ )<sub>2</sub>SO<sub>4</sub>), respectively.

Potential environmental effects of these N-based aerosols may include the following (Arogo et al., 2001):

• High concentrations of particulate aerosols may cause respiratory diseases in the vicinity,

• Nitrate contamination may increase in drinking water,

• Eutrophication, as a result of nutrient pollution, may increase N and phosphorus levels in natural waters and impair water quality,

• Higher concentration of N may cause direct damage to vegetation,

• Increasing nitrous oxide (N<sub>2</sub>O), which is considered a strong greenhouse gas, when associated with higher N concentration may effect climatic changes (global warming), and

• Nitrogen levels of forest soils and soil acidification may increase during high N concentration in the ecosystem.

There is a large uncertainty associated with determining NH<sub>3</sub> emissions from the source and NH<sub>3</sub> deposition from the atmosphere. There is a need for real time and source specific measurements and models to minimize this uncertainty. Models are important tools that may predict sufficient details about changes in NH<sub>3</sub> emission when field measurements are not available.

## 2.5. Ammonia Emissions and Current Regulatory Processes

Currently, NH<sub>3</sub> emissions from animal agriculture are not regulated. Ammonia emissions are only subject to be reported to federal, state, or local agencies if the emission exceeds reportable quantity (RQ). Currently, two major programs are designated to manage this reporting process. The first program was enacted in 1980 and called the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), also known as "Superfund". This program was intended to clean up abandoned sites or locations that may have contained hazardous substances (HS). This program was first applied concerning toxic waste dumps to Love Canal and Times Beach in the 1970's. The CERCLA gives USEPA several legal authorities to protect public health and the environment (USEPA, 2007).

The second program, Emergency Planning and Community Right-to-Know Act (EPCRA), was enacted in 1986. This program contains an extremely hazardous substances (EHS) list and intends to protect the public and environment from releasing of EHS.

The primary purpose of reporting HS emissions in CERCLA and EPCRA is defined by USEPA (1998) as "to notify various levels of government of potential hazards so that the necessary response actions can be taken in a timely fashion to ensure maximum protection of human health and the environment". Section 103 of CERCLA states that release notifications help EPA determine the sites that could have potential threat to public health.

In general, CERCLA provides release reports on a federal scale by submitting to National Response Center (NRC) while EPCRA reports are submitted to state emergency response centers (SERCs) and local emergency response centers (LERCs). Ammonia is not considered a hazardous air pollutant; therefore, it is not listed in EPA's hazardous air pollutant (HAP) list (USEPA, 2007a). However, NH<sub>3</sub> is listed (CAS# 7664-41-7) as one of the hazardous substances by CERCLA.

In addition, more than 300 hazardous substances, including NH<sub>3</sub>, were listed (CAS# 7664-41-7) as extremely hazardous substances (EHS) under section 302 of EPCRA and its reportable quantity (RQ) was set at 45.4 kg per day (100 pounds per day). EPCRA requires a report if RQ of NH<sub>3</sub> is released from an animal feeding facility in a 24 hour period (USEPA, 2007b).

If EPCRA is applied to a dairy facility, according to definition of "facility", the barns, open-lot corrals, lagoons and manure storage structures would be subjected to a combined (overall) RQ analysis. This analysis must be site-specific and should not compare with any other management practices.

## 2.6. Ammonia Measurement Methods

Several measuring methods have been developed in the last 20 years. Some techniques are available for direct NH<sub>3</sub> measurement (Ni and Heber, 2001; Phillips et al., 2001). Several sensors are also available to measure NH<sub>3</sub> concentrations from AFOs.

Ammonia sampling methods and appropriate monitoring instrument/device play an important role to quantify NH<sub>3</sub> emissions from AFOs. It is essential in a research study to obtain high quality data using a suitable method and measurement system (Ni and Heber, 2001). Ammonia concentrations are measured using a flux enclosure, nitrogen mass balance, and micrometeorological methods.

## 2.6.1. Flux Enclosure Method

Enclosure methods are used to determine direct NH<sub>3</sub> flux from a source. Enclosure methods involve simple, portable devices that can be used on different surfaces or at multiple spots on the same surface (Harper, 2005).

Isolation flux chambers (IFC) and wind tunnels are common devices for the flux enclosure method. Isolation flux chambers have been previously used by Aneja et al. (2000), Mukhtar et al. (2003) and Capareda et al. (2005) to measure NH<sub>3</sub> fluxes from different emitting surfaces (i.e. open-lot corrals, lagoon surfaces, and composted manure surfaces). The IFC is equipped with several ports; the major ports include inlet and outlet ports. The inlet port is used to pull pollutant-free air into the chamber. The outlet port is used to measure well-mixed polluted air. Another port is left open to the atmosphere to stabilize internal atmospheric pressure. Pollutant-free air, called "zero grade sweep air", is applied at a known flow rate to provide enough air exchanges in order to have well-mixed air sampling inside of the chamber. Once NH<sub>3</sub> concentrations are measured with an analyzer, flux emissions are determined using the following equation:

$$EFl_{NH_3} = \frac{C_{mass} \times V_{fc}}{A_{fc}}$$
(eq.2.1)

where:

 $EFl_{NH_2} = NH_3$  gas emission flux (µg m<sup>-2</sup> sec<sup>-1</sup>),

 $C_{mass}$  = mass concentration, (µg m<sup>-3</sup>),

 $V_{fc}$  = volumetric flow through the flux chamber (m<sup>3</sup> sec<sup>-1</sup>),

 $A_{fc}$  = area of flux chamber ("footprint", m<sup>2</sup>).

Surface emission flux ( $\mu g m^{-2} sec^{-1}$ ) is determined as the product of measured concentration in mass ( $\mu g m^{-3}$ ) and volumetric sweep air flow rate ( $m^3 sec^{-1}$ ) divided by the enclosed surface area "footprint" ( $m^2$ ). The IFC method allows comparing one measurement with another one when using the same chamber under the same conditions (Arogo et al., 2006).

Wind tunnels are another type of enclosure that has one side open to the atmosphere. Polluted air is pulled from the inlet side by a fan and is drawn to the opposite end (exhaust) of the tunnel. Ammonia flux can be determined as following when wind tunnels are used (Shah et al., 2006):

$$EFl_{NH_3} = (C_{out} - C_{in})\frac{V}{A}$$
(eq.2.2)

where:

 $EFl_{NH_2} = NH_3$  gas emission flux (µg m<sup>-2</sup> sec<sup>-1</sup>),

- $C_{out}$  = Measured NH<sub>3</sub> concentration at outlet, (µg m<sup>-3</sup>),
- $C_{in}$  = Measured NH<sub>3</sub> concentration at inlet, (µg m<sup>-3</sup>),

V = volumetric flow rate through the wind tunnel (
$$m^3 \text{ sec}^{-1}$$
),

 $A_{fc}$  = area of treated surface ("footprint", m<sup>2</sup>).

There are some concerns regarding the wind tunnel systems. Condensation on the inner surface and rainfall, which can reduce NH<sub>3</sub> emission, must be avoided when the wind tunnel is used. There are several problems that may occur when enclosures are used due to strong effects of environmental conditions and gas behaviors. Since NH<sub>3</sub> is considered as highly reactive and is soluble in water, absorbance may occur inside of the enclosure or tubing walls which may negatively affect the accuracy of measurements due to possible condensation (Harper, 2005). However, enclosures are a suitable method to compare replicated measurements on the emission surface (Shah, 2006; Harper, 2005).

According to Shah et al. (2006), the closed-dynamic chamber may be the most preferred method for measuring NH<sub>3</sub> fluxes for real-time data on the soil surface and short crops. There are also some limitations of the flux chamber method. The first limitation could be accurately supplying sweep air flow rate, which plays an important role to determine gas emissions. If the sweep air flow rate can not be supplied accurately, different dilution ratios occur inside of the chamber and provide non-constant emission values from the flux chamber that has fixed a volume. Disturbing gas emitting surfaces may increase gas emission. Solar radiation may increase temperature and relative humidity levels inside of the chamber. Insulation should be used to avoid any environmental disturbance inside of the chamber. Wind tunnels are also applicable for directly measuring gas emissions from the quiescent and turbulent surfaces. Wind tunnels could be the best method for NH<sub>3</sub> volatilization if it is used at variable fan speeds. Harper (2005) indicated that the wind tunnel system can be suitable for obtaining relative comparisons from the gas-emitting sources.

## 2.6.2. Nitrogen Balance Method

The nitrogen mass balance (NMB) approach is a rough estimate of NH<sub>3</sub> emissions for the AFOs. There are two assumptions made by researchers regarding N balance. The first assumption, more realistically, is that the N balance process is an indicator of NH<sub>3</sub> losses. The second assumption is that all of the N loss is in the NH<sub>3</sub> form (Shah et al., 2006). The NMB method consists of two parts: N inputs into the AFO, and N outputs from the AFO (Arogo et al., 2006).

All potential N sources are considered as input parameters such as animal feed, bedding materials, N from fertilizer applications and from the ambient air. N outputs from an AFO are described as the sale of animals, animal product (e.g. milk, meat), harvested crop, mortalities, surface runoff from applied manure to surface, manure storages, and emitted gas emissions. Ammonia emissions are determined as the net difference between inputs and outputs in a N budget at AFOs (Arogo et al., 2006).

There are some limitations of this method. The NMB methods do not include any direct measurements of NH<sub>3</sub> emissions so that this method provides rough and higher emission estimates. It is not easy to determine all the parameters in N budget as inputs and outputs. More samples are needed to characterize all model inputs and outputs.

However, the NMB methods are preferable to some investigators due to lower cost and simplicity related to the direct measurement methods.

## 2.6.3. Micrometeorological Method

Micrometeorological methods (MMs) are suitable for monitoring flux emissions at large spatial sources (Shah et al., 2006). Ammonia concentration and meteorological parameters, such as wind speed and temperature, are the main inputs to the MMs. The meteorological data is collected at different heights above the experiment surface (Arogo et al., 2006).

The MMs do not agitate the pollutant source and ambient conditions which may affect NH<sub>3</sub> release. They also provide continuous measurements and average emissions within the source area. These advantages minimize possible sampling problems during the experiment. The MMs are applicable for large scale areas that usually emit low emissions. They also require sensitive equipment and operation knowledge to apply protocol steps (Harper, 2005).

Several types of MMs have been used: Eddy correlation and Eddy accumulation (Zhu et al., 2000), Gradient and aerodynamic techniques which use energy and momentum balance (Harper et al., 2000; Sutton et al., 2000), and energy mass balance (Denmead et al., 1998).

In all, the gradient and eddy correlation methods require more than 100 meter fetch length with uniform distribution. Energy mass balance method is robust and simple. Energy mass balance may be the most preferable method for determining NH<sub>3</sub> flux from animal waste stockpiles and is also applicable for the liquid surfaces (Shah et al., 2006).

# 2.6.4. Dispersion Models

Dispersion modeling (DM) is one of the most commonly used air quality modeling and recommended models such as AERMOD (the American Meteorological Society/Environmental Protection Agency Regulatory Model Improvement Committee's Dispersion Model) are described in the EPA's Guideline on Air Quality Models, 40 CFR Part 51 (USEPA, 2006a). Dispersion models can be used to determine gas emissions where direct measurements are not suitable or feasible due to physical limitations (e.g. site characteristics, topography) (Arogo et al., 2006).

Dispersion models can be employed for small scale (from a few meters to a few kilometers) or large scale sources (region, counties, state) (Arogo et al., 2006).

Dispersion models are mathematical methods and run based on the Gaussian distribution theory. Flux emissions and meteorological parameters (wind speed, wind direction, ambient air temperature, and solar radiation) are the main inputs and must be known for use in the model in order to predict downwind pollutant concentration at specified receptor points (USEPA, 2006a). Variations on the wind speeds and directions are the main factors to define atmospheric stability. Some assumptions are made to

simplify the model, which could include uniform flux and homogenous turbulence (Seinfeld and Pandis, 1998).

Dispersion models are important tools that help understanding the transport of gases and particles through the atmosphere. It is essential that dispersion models need to be validated with measured values at the source (Arogo et al., 2006). Dispersion modeling and MMs are similar. Concentrations of pollutants are measured downwind from fugitive sources and the models are used to back-calculate emission rates (ERs).

Dispersion models, even if simplified by several assumptions, are still complex and do not take into account all meteorological conditions into the model. Dispersion models reduce sampling costs and time on the field, but require experience and knowledge to process data and analyze the model output.

# 2.7. Ammonia Measurement Devices

There are several types of devices that have been used to measure  $NH_3$  emissions in parallel of technologic developments. Most of the devices measure direct and timeaveraged  $NH_3$  concentrations during sampling. Ammonia emissions may exist as gaseous  $NH_{3(g)}$  and particulate  $NH_4^+$  forms in the atmosphere. There are some techniques available to measure only gaseous  $NH_{3(g)}$  or particulate  $NH_4^+$ . Different measurement devices/systems are described in following topics.

## 2.7.1. Denuders

The denuder device is designed to exclude particulates from the collection area. The air is forced into the denuder tubes at a known and constant flow rate. Ammonia gas is captured by creating an absorbing surface (collection surface) inside of the denuders. The absorbing surface is usually coated with acidic solution such as citric acid, oxalic acid, and phosphoric acid (Perrino and Gherardi,1998; McCulloch et al., 1998).

Air molecules move more quickly than particles in the atmosphere, which causes a different diffusion velocity between air molecules and particles (Harper, 2005). Gas phase  $NH_3$  is absorbed by the denuder walls while the particulates pass through with drawn air and are collected on a filter due to difference in diffusion velocity of  $NH_3$  gas and  $NH_4^+$  particles (Arogo et al, 2006).

The other type of denuder is commonly called filter packs. The filter packs are active NH<sub>3</sub> samplers containing Teflon filters treated with acid (i.e. citric acid, oxalic acid). Polluted air is vacuumed through the filters using a pump. Acid reacts with NH<sub>3</sub> during the sampling process to form solids. The first stage filter is used to remove larger particulates from polluted air. After large particulates are removed, second and third stage filters are analyzed in the laboratory. The second and third stage denuder filters are typically extracted with a known amount of distilled water. The extracted solution is then reacted with the Nessler's Reagent and absorbance of solution is read on a spectrophotometer at 425 nm (Fitz et al. 2003). The calculations of actual NH<sub>3</sub> concentration in the samples are done using a calibration curve based on NH<sub>4</sub>-N standard solutions of different concentrations treated the same way as the denuder extracts. By

knowing the volume of the air sampled,  $NH_3$  concentration can be calculated in  $\mu g NH_3$  m<sup>-3</sup>.

Upwind/downwind ambient NH<sub>3</sub> concentrations can be measured by using an active denuder system. Active denuder methods are used to determine the dry deposition of gaseous concentrations and to monitor gas concentrations at known multiple heights using a tower system. Denuder towers are located at several heights above the surface. Asman (1998) indicated that 60% of the NH<sub>3</sub> emitted from sources were up to 3 m in height. Asman (1998) also pointed out that local deposition shows variations with vegetation cover, atmospheric stability, surface roughness and source height. This method has been used in several studies by Harrison et al.(1990), Wiebe et al. (1990), Andersen et al. (1994), Aneja et al. (1998), Horvath and Sutton (1998), Fitz et al. (2003), Huang et al. (2004), and Cassel et al. (2005).

The major problem associated with the denuder system is to control flow rate during the sampling. Total volume of air is considered a dominant parameter when precision of the denuder is determined. Therefore a little error in volumetric air flow rate will cause a high error in the concentration. Flow rates should be regulated and frequently recorded with appropriate flow meters that have high precision.

## 2.7.2. High-tech Sensors

High-tech sensors have been widely used to detect real-time and direct NH<sub>3</sub> concentration from emitting sources. High-tech sensors are applicable to both solid and
liquid surfaces. Chemiluminescence, photo-acoustic analyzers and open-path laser sensors have been widely used in air quality research recently.

The chemiluminescence analyzer works based on the reaction of nitric oxide (NO) with ozone (O<sub>3</sub>). An air sample is drawn into the analyzer by an external vacuum pump. This air sample is mixed with O<sub>3</sub> which is generated by an internal ozone creator in a reaction chamber of the analyzer. The sensor measures nitrogen oxides (NO<sub>x</sub>), and total nitrogen N<sub>t</sub> (N<sub>t</sub>= NO+ NO<sub>2</sub>+ NH<sub>3</sub>), sequentially. Nitrogen oxide is converted to NO in a molybdenum converter at 325°C. The NO<sub>2</sub> concentration is determined by subtracting the NO<sub>x</sub> concentration from the NO concentration. Ammonia concentrations are determined by subtracting NO<sub>x</sub> signals from the N<sub>t</sub> signal in either parts per million (ppm) or parts per billion (ppb). Previous studies (Mukhtar et al., 2003 and Capareda et al., 2005) have provided details of the principle of chemiluminescence to measure NH<sub>3</sub> concentrations.

Photo-acoustic sensors are infrared detectors that detect light absorption at a fixed wavelength range. Webber et al. (2001) describe that the sampling environment consists of ambient temperature, varies typically between 0 °C and 40 °C, atmospheric pressure and activities of water vapor in the air. Laser wavelength levels can be adjusted to level where  $CO_2$  absorption and water vapor are minimal. This adjusted wavelength level is the best for measuring NH<sub>3</sub> concentration. The performance of photo-acoustic sensors depends on  $CO_2$  and water vapor concentrations in the polluted air (Shah et al., 2006). The accuracy of the photo acoustic sensor is reliable at high concentrations,

however, it is not stable and sensitive at low concentrations (<3 ppm) when compared with chemiluminescence analyzers (Arogo et al., 2006).

The open-path sensors are used to measure mean concentration of polluted gas on an open path. Open-path tunable diode lasers and open-path Fourier transform infrared devices are common types of the optical sensors. The optical sensors are generally used to combine meteorological measurement and dispersion model methods to determine NH<sub>3</sub> emissions. Tunable diode sensors can be adjusted to specific wavelength levels which generate individual absorption lines and each absorption line is used for a specific gas measurement. The sensor is tuned to a single absorption line to measure gas concentration. Fourier sensors have a single absorption line which passes a single beam of light to the atmosphere. Absorbance is detected by Least Square fitting method (Harper, 2005).

High-tech gas sensors and analyzers are very expensive and need frequent calibrations to increase accuracy. Some of the calibrations can be done by users but others need to be calibrated by manufacturer which will add more cost to sampling procedure. In addition, high maintenance costs may be other disadvantages for these sensors. Respond time, user friendly operating steps, portable design and easy to carry in the field are the advantages of high-tech analyzers.

## 2.8. Ammonia Emission Factors

In 2005, the USEPA offered a "consent agreement" to individual AFOs who will participate as volunteers and allow conducting a source specific study to monitor air emissions from their AFOs. This "Consent Agreement" protects participating AFOs from enforcement while monitoring study is being conducted at their sites (USEPA, 2006).

The National Air Emission Monitoring Study (NAEMS) was established in 2006 by the Consent Agreement. Various gases including NH<sub>3</sub> and airborne pollutants emitted from livestock and poultry operations will be monitored across the nation.

The USEPA defines emission factor as "a representative value that attempts to relate the quantity of a pollutant released to the atmosphere with an activity associated with the release of that pollutant" (USEPA, 1995).

Having a reliable NH<sub>3</sub> inventory is essential to determine how much NH<sub>3</sub> is emitted into the atmosphere (emission factors) and possible affects to the environment. An inventory is a list that shows all quantities of estimated gas emissions from all known sources. We can identify the major source of emissions and determine the most contributing source to overall NH<sub>3</sub> emission. According to Pain et al. (1998), Total NH<sub>3</sub> emissions in a cattle farm come from housing for cattle production (28%), manure storage buildings (17%) and land spreading (50%). The USEPA (2002) reported that total N loss occurred in lagoons as 43% and open-lots as 15% and flush barns as 22% in dairy farm. Therefore, emission factors and emission inventories are important tools for air quality management. Emission factors are important for developing emission control strategies. Reliable EFs will determine the highest contributor to overall emission inventory. Control strategies may be applied to those most contributing sources in order to reduce overall EF for the AFOs. Emission factors will guide us to determine applicability of control programs and selecting appropriate mitigation strategies.

Ammonia EFs for dairies have been reported generally based on the nitrogen mass balance and measurement-based method. In Europe and the US EFs for dairy facilities were estimated to be anywhere from 1.5 kg-NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> to 55.5 kg-NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup>. Ammonia air emissions from dairy operations were reported as 38.1 kg-NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> in the year 2002 National Emissions Inventory (NEI) by USEPA.

The EFs were generally estimated from the nitrogen content in excreted manure or from a mass balance of nitrogen inputs and outputs at dairy operations. Some of these studies were conducted as direct NH<sub>3</sub> emissions and flux measurements from individual waste management sources, ground level area sources (GLAS), of a dairy operation. Additionally, differences in climate, housing, feed and waste management practices between European dairy operations and dairies in the southwestern US contributed to the differences among reported EFs.

Ammonia ERs and EFs can also be determined as a function of management practices and environmental conditions (Cassel et al., 2005). Estimated emission factors vary by different type of management practices, sampling methods and sampling seasons.

27

### **CHAPTER III**

# SEASONAL AND SPATIAL VARIATIONS OF AMMONIA EMISSIONS FROM AN OPEN-LOT DAIRY OPERATION

# **3.1. Introduction**

Studies show that agricultural and animal feeding operations contribute considerable amount of NH<sub>3</sub> to the atmosphere (Battye et al., 1994; Aneja et al., 2003 and Arogo et al., 2001). Cattle, including dairy cows, are the largest animal sources contributing to NH<sub>3</sub> emissions. Atmospheric NH<sub>3</sub> is considered to be a precursor to  $PM_{2.5}$  (particulate matter with aerodynamic diameter less than 2.5 µm) (Battye et al., 1994; Gupta et al., 2003 and Aneja et al., 2001) and PM (PM<sub>2.5</sub> and PM<sub>10</sub>) is one of the six criteria pollutants for which National Ambient Air Quality Standards (NAAQS) were developed by the USEPA. Since NH<sub>3</sub> is highly correlated with PM<sub>2.5</sub>, it is anticipated that NH<sub>3</sub> emissions from AFOs in the US may be regulated in the near future.

Real time and continuous NH<sub>3</sub> measurements from GLAS are necessary to estimate ERs and EFs for a livestock facility. Ammonia EFs can be determined as a function of management practices and environmental conditions (Cassel et al., 2005).

Ammonia EFs for dairies have been reported generally based on the nitrogen mass balance method. In Europe and the US, EFs for dairy facilities were estimated to be anywhere from 1.5 to 55.5 kg-NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> using nitrogen analysis and mass

balance method. Some EFs reported using real time measurements varied from 1.8 to 40 kg-NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> in Europe and the US. However, NH<sub>3</sub> emission measurements were limited to naturally or ventilated dairy barns and milking parlor areas only. Ammonia emissions from dairy operations were reported as 38.1 kg-NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> in the year 2002 National Emissions Inventory (NEI) by USEPA (USEPA,2002).

The isolated flux chamber (FC) is one of the direct measuring techniques for emissions of surface gas such as NH<sub>3</sub>. The USEPA has published a protocol using this method for GLAS gaseous emissions (Gholson et al., 1989). This measurement technique is also applicable to quiescent liquid surfaces such as lagoons where surface runoff and waste water are stored and treated under anaerobic conditions.

In our study, this protocol was used to determine NH<sub>3</sub> emission factors from different GLAS at an open-lot dairy in central Texas.

The objectives of our study were:

- to estimate seasonal ammonia EFs from an open-lot dairy using a realtime measurement system,
  - to evaluate seasonal variations of EFs during two consecutive seasons,

• to determine spatial variations of NH<sub>3</sub> emissions in open-lot corrals due to different surface characteristics and animal activity during summer and winter.

Information on seasonal  $NH_3$  emission variations at GLAS from dairy operations will assist the evaluation and selection of best management practices to control and abate such emissions.

# **3.2. Materials and Methods**

An open-lot dairy (Fig. 3.1) in central Texas was selected to estimate NH<sub>3</sub> emissions using a USEPA approved FC measurement protocol. An open-lot corral was randomly selected to represent the entire lot area. In addition, GLAS including primary and secondary lagoons, milking parlor facility (winter only), and separated solids were sampled for NH<sub>3</sub> emissions during summer and winter conditions.



Figure 3.1. Sampled open-lot dairy.

Ammonia EFs were calculated using real time NH<sub>3</sub> concentration data. These NH<sub>3</sub> concentrations were measured from GLAS for five days each during summer and winter sampling. Due to the highly spatially variable emissions of NH<sub>3</sub> from the open-lot

corral, a total of 94 measurements in summer and 96 measurements in winter were made continuously from the same corral. Additionally, 30 and 31 manure samples during summer and winter respectively were collected from open-lot corral surfaces for total nitrogen (N), pH and moisture content analyses in the laboratory.

A total of 115 and 109 NH<sub>3</sub> concentration measurements were made from the open-lot dairy GLAS in summer and winter seasons, respectively.

# **3.3. Sampling Site: Open-lot Dairy**

Approximately 2,000 lactating cows were housed at the open-lot dairy during this study in the summer and winter of 2005. This dairy included 12 earthen corrals which were centralized feeding and watering areas with free standing shelters for relief from severe weather conditions. Each corral was an un-paved, confined area with access to feed bunkers and water tanks. Although most of the manure (feces and urine) was deposited on the open-lot corral, a fraction of manure and process generated waste water was conveyed from the crowding area (the area where cows are held temporarily awaiting milking) and milking parlor to the primary lagoon. The secondary lagoon was used to store treated effluent from the primary lagoon and to irrigate crop and pasture land.

Accumulated manure in the concrete alley on the feeding side of corrals was removed by scraping using tractor mounted blades once a day. The scraped manure was stockpiled on-site between lagoons and the corrals. Manure stockpiles were hauled frequently from the dairy using commercial trucks.

In both studies, one corral was randomly chosen to represent all open lots at the dairy. Based upon animal activity, the middle section (30.5m x 67m) of this corral was divided in to five sub-divisions namely dry division, transition from dry to shaded division (trans-ds), shaded division, transition from shaded to feeding division (trans-sf) and feeding division. Corral divisions and their dimensions are illustrated in Figure 3.2.



Figure 3.2. Schematic of sampled open-lot corral divisions.

Approximately 170 milking cows were fed in the sampled corral. Each corral had a similar total area of 8,585 m<sup>2</sup>.

# **3.4.** Sampling Equipment

Isolation FCs have been used to measure emission fluxes of volatile organic compounds (VOCs) and inorganic gaseous pollutants from a wide variety of sources (Eklund, 1992). The basic design of the FC includes a hemispherical top (dome) and a cylindrical skirt. Odotech Incorporated supplied the hemispherical top for use in this research (Odotech Inc. Montreal, Canada). A custom-fabricated stainless steel skirt and the dome were joined by a set of wing nuts and sealed using a rubber gasket (Figure 3.3).



Figure 3.3. Schematic of isolation flux chamber.

The dome contained four symmetrical holes with stainless steel fittings. A tubing inlet located at one of the stainless steel fittings allowed for the flow of sweep air into the chamber. Sweep air is NH<sub>3</sub> free purified air and is generated from a zero-air

generator (Model 737-12, AADCO Instruments, Village of Cleaves OH). A fitting on the top of the dome allowed for the pollutant stream to be conveyed to a measurement device. Two of these holes were used to connect the FC to Teflon<sup>®</sup> and low density polyethylene (LDPE) tubing used to move the sweep air (contaminant free zero grade air) and sampling air (polluted air from FC) to and from the FC for purging and sampling, respectively (Mukhtar, et al., 2003).

On-site measurements for these studies were conducted by using a mobile laboratory. The mobile laboratory included NH<sub>3</sub> analyzers, air flow mixing devices, a multiplexer system including mass flow controllers (MFC) (Aalborg, Inc. Orangeburg, New York), a zero air generator, certified gas cylinders (Praxair, Inc., Danbury, CT) and power generators for electricity. This sampling set-up is illustrated in Figure 3.4.



Figure 3.4. Sampling schematic.

The ambient air temperatures was collected from an on-site weather station and GLAS surface (temperature probe buried 1-2 cm below the surface) and chamber (probe hanging inside the chamber) temperatures were measured and recorded using HOBO data loggers mounted on the flux chambers (Onset Computer Corporation, Pocasset, MA).

# **3.5. Sampling Method**

The sampled corral area was divided in to 25 equal grids, 5 rows and 5 columns. Each grid was approximately 6 m x 13.4 m. All sampling points in each grid were randomly distributed. Randomly chosen sampling points for this study are illustrated in Appendix B.1 and B.2 for summer and winter season, respectively. A minimum of three random samples were taken from each grid.

The EPA protocol requires 3 to 4 volumetric air exchanges in the FC during the sampling process. The FC dimensions in Figure 3.3 and an  $NH_3$ -free sweep air flow rate of 7 L min<sup>-1</sup> provided 3.5 air exchanges for 30 minutes of  $NH_3$  sampling.

A chemiluminescence analyzer (Model 17C, Thermo Environmental Instruments, TEI, Massachusetts.) was used to measure NH<sub>3</sub> for real time and continuous sampling. Previous studies (Mukhtar, et al., 2003; Capareda et al., 2005 and Boriack et al., 2004). have provided details of the principle of chemiluminescence to measure NH<sub>3</sub> concentrations.

Using the ideal gas law, measured volumetric NH<sub>3</sub> concentrations (parts per million-PPM) were converted into mass concentration ( $C_{mass}$ ,  $\mu g.m^{-3}$ ) and equations (3.1), (3.2), and (3.3) were used to calculate NH<sub>3</sub> EFIs, ERs and EFs, respectively:

$$EFl_{NH_3} = \frac{C_{mass} \times V_{fc}}{A_{fc}}$$
(eq. 3.1)

Where:

$$EFl_{NH3} = NH_3$$
 gas emission flux (µg m<sup>-2</sup> sec<sup>-1</sup>),

 $V_{fc}$  = volumetric flow through the flux chamber (m<sup>3</sup> sec<sup>-1</sup>),

 $A_{fc}$  = area of flux chamber ("footprint", m<sup>2</sup>).

$$ER = EFl_{NH_3} \times A_{sc} \qquad (eq. 3. 2)$$

where:

\_\_\_

$$EF = (\frac{ER}{TNA}) \times 365$$
 (eq. 3.3)

where:

TNA = Total number of animal.

# **3.6.** Calibration

The TEI analyzers were calibrated using known concentrations of  $NH_3$ ,  $NO_2$  and NO, certified high purity standard gases guaranteed by the manufacturer to be within  $\pm$  2% accuracy (Praxair, Inc., Danbury, CT). The analyzers were calibrated by using 50 ppm and 100 ppm  $NH_3$ ,  $NO_2$  and NO. Each cylinder was connected to a MFC. All MFCs were annually calibrated by the manufacturer. A Teflon static mixing tube was used to obtain a well mixed diluted gas which was conveyed to the analyzer at the rate of

2 L min<sup>-1</sup>. The analyzed air mixture was vented to the atmosphere. Calibration set-up is illustrated in Figure 3.5.



Figure 3.5. Calibration illustration for NH<sub>3</sub> analyzer. (Source: Boriack, 2005)

Calibration of the NH<sub>3</sub> analyzer is performed in 4 steps and details are presented in Figure 3.6.

- Zero- The instrument is set up for zeroing by attaching zero air generator for 12 hours prior to calibration.
- 2. NO- The chemiluminescent detector is calibrated with NO.
- 3.  $NO_2$  The  $NO_x$  converter efficiency is calibrated with  $NO_2$ .
- 4.  $NH_3$  The  $N_t$  coverter efficiency is calibrated with  $NH_3$ .



Figure 3.6. Calibration steps for NH<sub>3</sub> analyzer (Boriack, 2005).

Calibration process was completed by saving background and coefficient values for each used gas. The analyzers were calibrated before starting the field experiment and calibration checks were performed after each field experiment to determine stabilization of the instrument.

# 3.7. Adsorption and Uncertainty Analysis

Adsorption studies were conducted earlier to determine losses from the sampling tube (Teflon) and the FC system (Mukhtar, et al., 2003; Capareda et al., 2005). Results indicated that an adsorption loss of NH<sub>3</sub> on Teflon tubing was negligible (Mukhtar, et al., 2003) and NH<sub>3</sub> adsorption losses were approximately 8% for flux chamber (Capareda et al., 2005). Ammonia concentrations from the analyzer were corrected based upon adsorption losses.

Uncertainty analysis was performed on NH<sub>3</sub> sampling process (Boriack et al., 2004). The first order Taylor series technique was used to calculate uncertainty of this sampling procedure.

The uncertainty analysis was performed for the NH<sub>3</sub> sampling system including the analyzer, calibration gases, and the MFC. The overall uncertainty was found to be in the range of 8 to 10% for this NH<sub>3</sub> sampling set-up.

# **3.8. Results and Discussion**

# 3.8.1. Seasonal Variations of Ammonia Emissions at the Open-lot Dairy

In this study, a total of 110 NH<sub>3</sub> concentration measurements were made from the open-lot dairy GLAS in summer and winter seasons. Each corral had a similar total area of 8570 m<sup>2</sup>. In both studies, one corral was randomly chosen to represent all open lots at the dairy. Preliminary assessment of summer and winter data (Tables 3.1 and 3.2 ) indicated that overall NH<sub>3</sub> emission rates (ERs) were  $66.2 \pm 22.2$  kg day<sup>-1</sup> for the summer and  $35.9 \pm 10$  kg day<sup>-1</sup> for the winter season for the 2000-head dairy. The estimated NH<sub>3</sub> emission rate for winter was nearly one half (~54%) of that from summer. Open-lots (~60%) and lagoons (~40%) in summer and open-lot corrals (~97%) in winter were the highest contributors to NH<sub>3</sub> emission for the open-lot dairy.

|                                                                                                                    | # of                 | GLAS              | Measured <sup>1</sup> | Mass                       |                          |                     |  |
|--------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|-----------------------|----------------------------|--------------------------|---------------------|--|
| GLAS                                                                                                               | Samples              | Area              | Concentration         | Concentration <sup>2</sup> | Source Flux <sup>3</sup> | Emission Rates      |  |
|                                                                                                                    | Samples              | (m <sup>2</sup> ) | (ppb)                 | $(\mu g m^{-3})$           | $(\mu g m^{-2} s^{-1})$  | $(kgNH_3 day^{-1})$ |  |
| Open                                                                                                               | 0.4                  | 102000            | $10700^{a}$           | 7453                       | 4.5                      | 40.0                |  |
| Lots                                                                                                               | 94                   | 103000            | (4783) <sup>b</sup>   | (3332)                     | (2.0)                    | (17.8)              |  |
| Lagoon 1                                                                                                           | 6                    | 6275              | 22999 <sup>a</sup>    | 16019                      | 9.2                      | 5.0                 |  |
| Lagoon-1                                                                                                           | 0                    |                   | (11428)               | (7960)                     | (4.6)                    | (2.5)               |  |
| Lagoon 2                                                                                                           | 6                    | 46094             | 12701 <sup>a</sup>    | 8847                       | 5.3                      | 21.2                |  |
| Lagoon-2                                                                                                           |                      |                   | (1323)                | (921)                      | (0.5)                    | (1.9)               |  |
| Solid                                                                                                              | 4                    | 50                | 15 <sup>a</sup>       | 10                         | 0.0*                     | 0.0*                |  |
| Separator 4                                                                                                        |                      | (43)              | (30)                  | (0.0)                      | (0.0)                    |                     |  |
| Statistic                                                                                                          | 110 <sup>c</sup>     |                   |                       |                            |                          | 66.2 <sup>c</sup>   |  |
| 22.2 <sup>c,b</sup>                                                                                                |                      |                   |                       |                            |                          |                     |  |
| <sup>a</sup> Average                                                                                               | <sup>a</sup> Average |                   |                       |                            |                          |                     |  |
| <sup>b</sup> 95% confidence interval (CI)                                                                          |                      |                   |                       |                            |                          |                     |  |
| <sup>c</sup> Summation                                                                                             |                      |                   |                       |                            |                          |                     |  |
| <sup>1</sup> Flux chamber measurement at 7 L min <sup>-1</sup> sweep air flow rate and 30 minutes sampling period. |                      |                   |                       |                            |                          |                     |  |
| <sup>2</sup> at standard conditions.                                                                               |                      |                   |                       |                            |                          |                     |  |
| <sup>3</sup> Source Flux from footprint of the flux chamber (0.192 m <sup>2</sup> )                                |                      |                   |                       |                            |                          |                     |  |
| *Source Flux and Emission Rates < 0.005                                                                            |                      |                   |                       |                            |                          |                     |  |

Table 3.1. Summary of summer NH<sub>3</sub> Emissions (2000-head dairy).

|                                                                                                                    |                  | CLAC              | Maagurad <sup>1</sup> | Maga                               |                         |                     |
|--------------------------------------------------------------------------------------------------------------------|------------------|-------------------|-----------------------|------------------------------------|-------------------------|---------------------|
| CLAS                                                                                                               | # of             | GLAS              | Concentration         | Mass<br>Concentration <sup>2</sup> | Source $Flux^3$         | Emission Rates      |
| GLAS                                                                                                               | Samples          | Alca              | Concentration         |                                    |                         |                     |
|                                                                                                                    | ~                | (m <sup>2</sup> ) | (ppb)                 | (µg m <sup>-</sup> )               | $(\mu g m^{-2} s^{-1})$ | $(kgNH_3 day^{-1})$ |
| Onan Lata                                                                                                          | 06               | 103000            | 9240 <sup>a</sup>     | 6436                               | 3.9                     | 34.7                |
| Open Lois                                                                                                          | 90               |                   | $(2582)^{b}$          | (1798)                             | (1.1)                   | (9.4)               |
| Lagoon 1                                                                                                           | 5                | 6275              | 1530 <sup>a</sup>     | 1066                               | 0.6                     | 0.3                 |
| Lagoon-1                                                                                                           | 5                |                   | (1163)                | (810)                              | (0.4)                   | (0.2)               |
| Lagaan 2                                                                                                           | 3                | 22800             | 1072 <sup>a</sup>     | 746                                | 0.5                     | 0.9                 |
| Lagoon-2                                                                                                           |                  |                   | (477)                 | (332)                              | (0.2)                   | (0.4)               |
| Solid                                                                                                              | or 3             | 500               | 821 <sup>a</sup>      | 572                                | 0.3                     | 0.0*                |
| Separator                                                                                                          |                  |                   | (157)                 | (110)                              | (0.1)                   | (0.0)               |
| Milking                                                                                                            | 2                | 500               | 131 <sup>a</sup>      | 91                                 | 0.1                     | 0.0*                |
| Parlor                                                                                                             | Parlor           | 300               | (6)                   | (4)                                | (0.0)                   | (0.0)               |
| Statistic                                                                                                          | 110 <sup>c</sup> |                   |                       |                                    |                         | 35.9 <sup>c</sup>   |
| 10 <sup>c,b</sup>                                                                                                  |                  |                   |                       |                                    |                         |                     |
| <sup>a</sup> Average                                                                                               |                  |                   |                       |                                    |                         |                     |
| <sup>b</sup> 95% confidence interval (CI)                                                                          |                  |                   |                       |                                    |                         |                     |
| <sup>c</sup> Summation                                                                                             |                  |                   |                       |                                    |                         |                     |
| <sup>1</sup> Flux chamber measurement at 7 L min <sup>-1</sup> sweep air flow rate and 30 minutes sampling period. |                  |                   |                       |                                    |                         |                     |
| <sup>2</sup> at standard conditions.                                                                               |                  |                   |                       |                                    |                         |                     |
| <sup>3</sup> Source Flux from footprint of the flux chamber $(0.192 \text{ m}^2)$                                  |                  |                   |                       |                                    |                         |                     |
| *Emission Rates < 0.005                                                                                            |                  |                   |                       |                                    |                         |                     |

Table 3.2. Summary of winter NH<sub>3</sub> Emissions (2000-head dairy).

43

Assessment of summer and winter data in Table 3.3 indicated that overall NH<sub>3</sub> EFs were 11.6  $\pm$ 7.1 kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> for the summer and 6.2  $\pm$ 3.7 kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> for the winter season for a 2,000-head dairy. The long-term (1963-2007) average ambient air temperature data from a weather station located about 11 km from the dairy was downloaded from the National Climatic Data Center (NCDC) web site (NCDC, 2007). Five months, with average temperatures below 16 °C, were considered winter months and seven months, with average temperature above 16 °C, were considered summer months. Based upon this assumption, the annualized NH<sub>3</sub> EF for this dairy was estimated to be 9.4  $\pm$ 5.7 kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> for this 2000-head dairy. The estimated NH<sub>3</sub> emission factor for winter was nearly 47% lower than summer EF. In addition, nitrogen mass balance method for the open-lot dairy was performed and NH<sub>3</sub> emission factor was calculated as 27.9 kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> for this dairy facility. Details are given in Appendix-A. In comparison, the EFs calculated in this study using mass balance method are within the same range (18.2 to 39.7 kg  $NH_3$  year<sup>-1</sup> head<sup>-1</sup>) with previously reported (Table 3.5) dairy NH<sub>3</sub> EFs using the same method in Europe and the US. However, there is a significant difference between our determined EFs from mass balance and directly measured flux data. Typically, EF (27.9 kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup>) from the mass balance method was in the range of 2-5 times higher than directly measured EF (11.5 to 6.2 kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup>) values. In N-mass balance method, it is assumed that all N losses in the air are in NH<sub>3</sub> form. This assumption does not reflect the real conditions in which all N losses can be estimated in the form of  $N_2$  and  $N_2O$  (Arogo et al., 2006). Additionally, leaching losses of N are not taken into consideration.

| GLAS                                                       | GLAS   | Summer EFs*              | Winter EFs              | Annual EFs                      |  |  |
|------------------------------------------------------------|--------|--------------------------|-------------------------|---------------------------------|--|--|
| ULAS                                                       | Area   |                          |                         |                                 |  |  |
| Open Lots                                                  | 103000 | $7.3^{a} (\pm 6.6)^{b}$  | $5.9^{a} (\pm 3.6)^{b}$ | $6.8^{\rm c} (\pm 5.4)^{\rm b}$ |  |  |
| Lagoon-1                                                   | 6275   | $0.8^{a}(\pm 0.4)$       | $0.1^{c} (\pm 0.0)$     | $0.5^{\rm c}(\pm 0.2)$          |  |  |
| Lagoon-2                                                   | 46094  | $3.5^{a} (\pm 0.1)$      | $0.2^{c} (\pm 0.1)$     | $2.1^{c} (\pm 0.1)$             |  |  |
| Statistic                                                  |        | $11.6^{d} (\pm 7.1)^{d}$ | $6.2^{d} (\pm 3.7)^{d}$ | $9.4^{d} (\pm 5.7)^{d}$         |  |  |
| GLAS: Ground Level Area Source                             |        |                          |                         |                                 |  |  |
| * kg NH <sub>3</sub> year <sup>-1</sup> head <sup>-1</sup> |        |                          |                         |                                 |  |  |
| <sup>a</sup> : average                                     |        |                          |                         |                                 |  |  |
| <sup>b</sup> : CI (95%)                                    |        |                          |                         |                                 |  |  |
| <sup>c</sup> : time weighted average                       |        |                          |                         |                                 |  |  |
| <sup>d</sup> : summation                                   |        |                          |                         |                                 |  |  |
|                                                            |        |                          |                         |                                 |  |  |

Table 3.3. Seasonal ammonia EFs for GLAS of the open-lot dairy.

Figure 3.7 shows that open-lot corrals were the highest contributor as nearly 63% of the total NH<sub>3</sub> EF in summer and 95% of the total NH<sub>3</sub> EF in winter. Primary and secondary lagoons contributed nearly 37% in summer and 5% in winter to NH<sub>3</sub> emissions for the open-lot dairy. Open-lot corrals and lagoons were the major contributors to the overall NH<sub>3</sub> EF in summer season while only open-lot corrals were the highest contributors to the overall NH<sub>3</sub> EF in winter season.



Figure 3.7 Seasonal GLAS contribution to overall EFs at the open-lot dairy.

The EFs from primary and secondary lagoons in summer were  $0.8 \pm 0.4$  kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> and  $3.5 \pm 0.1$  kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> while winter season's EFs were  $0.1 \pm 0$  kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> and  $0.2 \pm 0.1$  kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup>, respectively. These differences in NH<sub>3</sub> emission from both lagoons were greater than 93% between summer and winter. As shown in Table 3.3, the summer and winter EFs for separated solids and the milking parlor were negligible (less then 0.005 kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup>).

Summer and winter EFs from the open-lot divisions and the area of each division (Table 3.3) were used to calculate the overall summer and winter ammonia EF to represent the entire open-lot corral. Table 3.4 shows that similar overall NH<sub>3</sub> EF from the open-lot corral were calculated during summer ( $7.3 \pm 6.6$  kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup>) and winter ( $5.9 \pm 3.6$  kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup>), but dispirit animal activity and manure loading on dry and shaded divisions of the corral resulted in different within season NH<sub>3</sub> emissions from these divisions.

| Sampled                                                         | Area  | Statistics | Seasonal EFs<br>(kg NH <sub>3</sub> year <sup>-1</sup> head <sup>-1</sup> ) |                         |  |
|-----------------------------------------------------------------|-------|------------|-----------------------------------------------------------------------------|-------------------------|--|
| Collar Divisions                                                | III-  |            | Summer                                                                      | Winter                  |  |
| Fooding                                                         | 11704 | n          | 12                                                                          | 12                      |  |
| reeding                                                         |       | Mean       | $1.5^{a} (\pm 1.5)^{a}$                                                     | 1.6 (±1.1)              |  |
| Trans of                                                        | 18727 | n          | 18                                                                          | 20                      |  |
| 114115-51                                                       |       | Mean       | 1.2 (±0.7)                                                                  | 1.1 (±0.8)              |  |
| Shaded                                                          | 23409 | n          | 21                                                                          | 19                      |  |
| Slidueu                                                         |       | Mean       | 2.3 (±2.8)                                                                  | 0.7 (±0.5)              |  |
| Trans de                                                        | 14045 | n          | 12                                                                          | 14                      |  |
| Trans-us                                                        |       | Mean       | 1.2 (±0.7)                                                                  | 0.9 (±0.7)              |  |
| Dra                                                             | 35113 | n          | 31                                                                          | 31                      |  |
| DIy                                                             |       | Mean       | 1.1 (±0.8)                                                                  | 1.6 (±0.6)              |  |
|                                                                 |       | Σn         | 94                                                                          | 96                      |  |
|                                                                 |       | EF         | $7.3^{b} (\pm 6.6)^{a}$                                                     | $5.9^{b} (\pm 3.6)^{a}$ |  |
| n: number of samples.                                           |       |            |                                                                             |                         |  |
| <sup>a</sup> CI (95%)                                           |       |            |                                                                             |                         |  |
| <sup>b</sup> Summation                                          |       |            |                                                                             |                         |  |
| Trans-sf: transition area between shaded and feeding divisions. |       |            |                                                                             |                         |  |

Table 3.4. Summer and winter estimated NH<sub>3</sub> EFs from the open-lot divisions.

Table 3.4 shows NH<sub>3</sub> EFs from each open-lot corral division. While summer and winter contributions of NH<sub>3</sub> emissions from feeding, Trans-sf and Trans-ds divisions were similar, shaded division in the summer contributed nearly three times greater NH<sub>3</sub> to the overall summer corral emissions as compared to its contribution of NH<sub>3</sub> to the overall winter corral emissions. This was due to little or no animal activity and manure accumulation in the shaded division during winter. The dry division during winter contributed nearly 30% more NH<sub>3</sub> to the overall winter corral emissions as compared to its contributed nearly three times greater to the overall winter corral emission during winter.

its contribution of NH<sub>3</sub> to the overall summer corral emissions. This was caused by greater animal activity and higher loading of manure in the dry division during winter.

In comparison, previously reported (Table 3.5) dairy  $NH_3$  EFs in Europe and US were higher than the seasonal EFs calculated in this study.

| Reported by                      | Emission Factors<br>(kg NH <sub>3</sub> year <sup>-1</sup> head <sup>-1</sup> )   | Method                                                                                                |
|----------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Buijsman et al. (1987)           | 12.2                                                                              | Nitrogen Analyses                                                                                     |
| Möller and Schieferdecker (1989) | 18.2                                                                              | Mass Balance                                                                                          |
| Asman (1992)                     | 39.7                                                                              | Mass Balance                                                                                          |
| Van Der Hoek (1998)              | 28.5                                                                              | Nitrogen Analyses                                                                                     |
| Pinder et al. (2004)             | 13.1-55.5                                                                         | Farm Emission Model<br>Based on manure<br>management                                                  |
| Phillips, (1998)                 | $1.5(\pm 0.4)$ (summer)<br>2.7( $\pm 0.5$ ) (winter)                              | Ferm tubes                                                                                            |
| Groot Koerkamp, (1998)           | 2.75-17.5                                                                         | Chemiluminescence                                                                                     |
| Misselbrook, (2001)              | 1.8-5.7 (collecting yard)<br>8-12.6 (feeding yard)                                | Equilibrium<br>Concentration Method                                                                   |
| Cassel et al. (2005)             | 6.9 - 52.2                                                                        | Passive Filter Pack                                                                                   |
| Misselbrook, (2006)              | $11.1(\pm 4.5) \text{ (collecting yard)} \\ 6.9 (\pm 3.0) \text{ (feeding yard)}$ | Equilibrium<br>Concentration Method                                                                   |
| Rumburg, (2007)                  | 40                                                                                | Tracer ratio method<br>for flux, optical<br>absorption<br>spectroscopy for<br>ambient<br>measurements |

Table 3.5. Developed and reported NH<sub>3</sub> EFs.

The EFs presented in Table 3.5 were generally estimated from the nitrogen content in excreted manure or from a mass balance of nitrogen inputs and outputs at dairy operations. A few NH<sub>3</sub> EFs presented in Table 3.5 were also estimated using direct

measurement methods rather than the nitrogen analysis. Phillips et al. (1998) estimated seasonal ammonia EFs from a naturally-ventilated dairy house in UK using Ferm tubes (passive NH<sub>3</sub> flux samplers) for measuring NH<sub>3</sub> emissions in summer and winter. Estimated EFs in summer and winter were 1.5 ( $\pm$  0.4) and 2.7 ( $\pm$  0.5) kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup>, respectively. The seasonal difference in emissions was due to cows spending much lesser time (4 h) in the building during summer than winter. Groot Koerkamp et al. (1998) reported EFs from mechanically ventilated cubicle dairy buildings and litter (bedding material) in several European countries using the chemiluminescence analyzer. Estimates of EFs varied from 2.75 to 17.5 kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup>. Ammonia EFs were also reported by Misselbrook et al. (2001 and 2006) in Europe. Ammonia EFs from dairy feed yard and collecting yard where cows crowd to enter the milking parlor ranged from 8-12.6 kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> and 1.8-6.9 kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup>, respectively. A recent study conducted by Rumburg et al. (2007) in the US shows an EF estimate of 40 kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> using a tracer ratio method for flux and optical absorption spectroscopy for ambient NH<sub>3</sub> measurement at the edge of the dairy building.

It is important to note that most studies involving a direct measurement method of NH<sub>3</sub> flux or concentration in Europe and US did not measure emissions from all of the potentially significant ground level area sources (GLAS) of NH<sub>3</sub> emission at a dairy operation. Additionally, southwestern US dairy management practices and climate are different than northern and Midwestern US and European dairy farms. For example, open-lot dairies in southwestern US include much larger corral area per cow and liquid waste storage and treatment structures such as two or three-stage lagoons. Reported ammonia EFs from Europe and the US using nitrogen analysis were generally higher than EFs calculated in this study and using direct measuring methods were generally in the same range with EFs calculated in this study however the EFs reported by Rumburg et al. (2007) was higher than the EFs determined in this study. In general, differences in climate, housing, feed and waste management practices contributed to the differences between reported EFs in Table 3.5 and those determined in this study.

The meteorological data from on-site weather station and temperature sensors mounted on the flux chambers are presented in Table 3.6. The temperature data is the mean value and its 95% confidence level during sampling time of each individual GLAS (emitting source) NH<sub>3</sub> measurements.

| Sampling Sites                            | Barometric<br>Pressure | GLAS<br>Temp.                   | Chamber<br>Temp.            | Ambient<br>Temp.            |  |
|-------------------------------------------|------------------------|---------------------------------|-----------------------------|-----------------------------|--|
|                                           | (kPa)                  | (°C)                            | (°C)                        | (°C)                        |  |
|                                           |                        | Summer, 2005                    |                             |                             |  |
| Open-lot                                  | $95^{a}(\pm 1)^{b}$    | $29^{a}(27.6^{c}-30.3^{d})$     | 29 <sup>a</sup> (27.8-31.1) | 27 <sup>a</sup> (25.8-27.3) |  |
| Primary lagoon                            | 95.9(±0.1)             | 34.3(32.4-36.2)                 | 34.6(33.8-35.5)             | 33.7(33.3-34)               |  |
| Secondary lagoon                          | 95.7(±0.1)             | 30.7(21.2-40.2)                 | 31.4(29.3-33.5)             | 32.4(31.1-33.7)             |  |
| Winter, 2005                              |                        |                                 |                             |                             |  |
| Open Lots                                 | $97^{a} (\pm 1.9)^{b}$ | $6.1 (5.4^{\circ}-6.7^{\circ})$ | 6.2 (5.6-6.9)               | 6 (5.6-6.4)                 |  |
| Primary lagoon                            | 96.8(±0.1)             | 9.6(5.7-16.4)                   | 11.2(5.9-16.4)              | 11.5(8.1-14.9)              |  |
| Secondary lagoon                          | 96.6(±1)               | NA                              | NA                          | 10.4                        |  |
| <sup>a</sup> Mean                         |                        |                                 |                             |                             |  |
| <sup>b</sup> 95% confidence interval (CI) |                        |                                 |                             |                             |  |
| <sup>c</sup> 95% CI for lower bound       |                        |                                 |                             |                             |  |
| <sup>d</sup> 95% CI for upper bound       |                        |                                 |                             |                             |  |

Table 3.6. Seasonal GLAS and ambient weather data.

The results showed that there was a significant difference between summer and winter GLAS (emitting source), inside of chamber and ambient air temperatures. Within a given season, ambient, chamber and GLAS temperatures were similar to one another for each sampling site. Ammonia emissions within a season (summer or winter) showed little or no dependence on source temperature or moisture. For instance in summer season, measured NH<sub>3</sub> emission from open-lot corral showed little positive dependence on corral surface temperature ( $r^2=0.08$ ) and on ambient air temperature ( $r^2=0.11$ ). Misselbrook et al. (2006) also indicated that there was a weak correlation between ambient air temperature and NH<sub>3</sub> emission rates ( $r^2=0.22$ ).

# 3.8.2. Spatial Variability of Ammonia Emissions at the Open-lot Corral

The collected NH<sub>3</sub> samples from the open-lot corral surfaces had skewed distributions in summer and winters seasons as shown in Figures 3.8 and 3.9.

### Histogram of Collected Summer Ammonia Data



Figure 3.8. Histogram of collected ammonia open-lot samples in summer.



#### Histogram of Collected Winter Ammonia Data

Figure 3.9. Histogram of collected ammonia open-lot samples in winter.

Ammonia emissions varied among dry, shaded, feeding and transition divisions of the corral. A One-way ANOVA test was run (SPPS, 2004) to determine any significant NH<sub>3</sub> emission differences among these divisions of the corral (Table 3.7). It was determined that summer NH<sub>3</sub> emissions and total N content of manure (mostly dry and aged manure) sampled from the dry division were significantly lower than all other divisions. During summer, animal activity was usually limited to feeding, and shaded divisions of the corral resulting in greater manure loading and higher NH<sub>3</sub> emissions in those divisions as compared to the rest of the corral divisions with little or no manure. Also in summer, no significant differences among corral divisions' temperature and moisture content were observed (Table 3.7).

In winter, NH<sub>3</sub> emissions from the feeding division were significantly higher than shaded and dry divisions and the shaded division had the lowest emissions of all divisions.

|                                      | Summer, 2005                                                              | Winter, 2005                                                             | Summer vs. Winter                      |
|--------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------|
|                                      | Dry division was significantly lower than all                             | Feeding division was significantly                                       | No significant difference was          |
| NH FEa                               | other divisions (p =0.012(feeding), p=0.015                               | higher than shaded and dry divisions                                     | observed between summer and            |
| $(\log NUL \log s^{-1} \log d^{-1})$ | (trans-sf), p=0.009 (shaded) and p=0.006                                  | (p = 0.011, and 0.04 < 0.05,                                             | winter seasons                         |
| (kg NH <sub>3</sub> year fiead )     | (trans-ds) < 0.05)                                                        | respectively)                                                            |                                        |
|                                      | Range: 1.1 - 2.3 kg NH <sub>3</sub> year <sup>-1</sup> head <sup>-1</sup> | Range: 0.7 -1.5 kg NH <sub>3</sub> year <sup>-1</sup> head <sup>-1</sup> |                                        |
|                                      | Dry division was significantly lower than                                 | No significant differences among                                         | No significant difference was          |
|                                      | feeding, shaded, trans-sf and trans-ds divisions                          | divisions were observed                                                  | observed                               |
|                                      | (p=0.023, 0.006, 0.000, 0.025 < 0.05,                                     |                                                                          |                                        |
| Total N (%)                          | respectively) and Trans-sf division was                                   | Range: 0.44 - 2.60 %                                                     |                                        |
|                                      | significantly higher than dry, feeding, shaded,                           |                                                                          |                                        |
|                                      | trans-ds divisions (p =0.000, 0.036, 0.007, 0.001<                        |                                                                          |                                        |
|                                      | 0.05, respectively)                                                       |                                                                          |                                        |
|                                      | Range: 0.56 - 2.18 %                                                      |                                                                          |                                        |
|                                      | No significant differences among divisions were                           | Trans-ds division was significantly                                      | MC was significantly higher in         |
|                                      | observed                                                                  | lower than feeding and trans-sf. (p                                      | winter time (43.1%) than the           |
|                                      |                                                                           | =0.036, 0.036 < 0.05, respectively)                                      | summer time (27.3%)                    |
| Moisture Content                     | Range: 4 - 73 %                                                           | Trans-sf division was significantly                                      | (p=0.002)                              |
|                                      |                                                                           | higher than shaded and trans-sd. (p                                      |                                        |
| (%)                                  |                                                                           | =0.024, 0.036 < 0.05, respectively),                                     |                                        |
|                                      |                                                                           | Shaded division was significantly                                        |                                        |
|                                      |                                                                           | lower than feeding division. ( $p = 0.035$                               |                                        |
|                                      |                                                                           | < 0.05)                                                                  |                                        |
|                                      |                                                                           | Range: 15.6 - 80.5 %                                                     | ~                                      |
|                                      | No significant differences among divisions were                           | No significant differences among                                         | Source temperature was                 |
| Source Temp. (°C)                    | observed.                                                                 | divisions were observed                                                  | significantly higher in summer         |
|                                      |                                                                           | <b>D</b>                                                                 | time $(29.9^{\circ}C)$ than the winter |
|                                      | <b>Rang: 18 - 45 °C</b>                                                   | Kange: 0.3 - 11°C                                                        | $time (8.3^{\circ}C) (p=0.00)$         |
| trans-ds: transition from            | n dry to shaded area                                                      |                                                                          |                                        |
| <b>trans-sf</b> : transition from    | shaded to feeding area                                                    |                                                                          |                                        |

Table 3.7 Ammonia EF comparison of open-lot divisions.

This is due to the fact that during winter, shaded division was the least used area by animals and therefore, manure loading of this area was lower than the rest of the corral. Winter moisture content for all corral divisions varied considerably. Shaded division and transition between dry and shaded division had significantly lower moisture contents than all other divisions. No significant differences were found among corral divisions' temperatures in winter.

Spatial variations of NH<sub>3</sub> emissions (PPM) in the open-lot corral for both summer and winter season are also illustrated with 3-D surface maps (Surfer, 2002) in Figures 3.10and 3.11, respectively. A comparison of the two maps shows that summer NH<sub>3</sub> emissions were highly spatially variable and skewed to the feeding and shaded divisions of the corral with higher animal activity and greater manure loading. In contrast, winter NH<sub>3</sub> emissions varied spatially throughout the corral area due to relatively more uniform distribution of animal activity and manure loading.



Summer Ammonia Variations in Open-lot Divisions

Figure 3.10. Spatial variations of summer ammonia concentrations in open-lot divisions.

# Winter Ammonia Variations in Open-lot Divisions



Figure 3.11. Spatial variations of winter ammonia concentrations in open-lot divisions.

#### **3.9.** Conclusions

The quantification of specific NH<sub>3</sub> emission rates (ERs) and factors (EFs) from ground level area sources (GLAS) in a dairy is needed to understand which sources contribute most to the overall NH<sub>3</sub> emissions during winter and summer conditions. Therefore, summer and winter NH<sub>3</sub> emission factors were estimated from an open-lot dairy.

Ammonia emission variations among GLAS occurred due to seasonal changes in ambient and source temperatures, and spatial variations of NH<sub>3</sub> within a given season occurred in the open-lot corrals due to varying cow density and the resulting dispirit manure loading in feeding, dry, shaded and transition divisions and the transition areas between these divisions. Within the open-lot corral, summer NH<sub>3</sub> emissions from the dry area were significantly lower than those from all other areas. In winter, NH<sub>3</sub> emissions from feeding division were significantly higher than shaded and dry divisions at the open-lot corral. Overall, summer NH<sub>3</sub> EFs were nearly two times those of winter EFs. Hence, it is necessary to consider both management practices and climate conditions to implement technologies to mitigate NH<sub>3</sub> emissions from the animal feeding operations.

Previously reported dairy NH<sub>3</sub> EFs in Europe and colder regions of the US were generally greater than those estimated in this study. Ammonia EFs vary due to differences in climate, housing, feed, and waste management practices between European/northern and Midwestern US dairy operations and open-lot dairies in the southwestern US. It is important to note that studies involving a direct measurement method of NH<sub>3</sub> flux or concentration in Europe and the US did not measure emissions from all possible ground level area sources (GLAS) of NH<sub>3</sub> emission at a dairy operation.
#### **CHAPTER IV**

# SEASONAL AMMONIA EMISSIONS FROM A FREE-STALL DAIRY IN CENTRAL TEXAS

## 4.1. Introduction

Ammonia is released to the atmosphere due to the biological decomposition of dairy manure. In both Europe and the United States, agricultural NH<sub>3</sub> emissions from animal feeding operations (AFOs) and fertilizer applications are considered as major contributors (up to 80%) to the total NH<sub>3</sub> emissions (Battye et al., 1994; DEFRA, 2002).

Animal feeding operations (AFOs) would classify as a complex if manure which is generated in AFOs or used for fertilizer application is considered a "hazardous substance". Nowadays, the US lawmakers are debating whether animal waste should be termed as a "toxic pollutant" (Sadler, 2007).

Currently, NH<sub>3</sub> emissions from animal agriculture are not regulated. Ammonia emissions are only subject to being reported to federal, state or local agencies if the emission exceeds reportable quantity (RQ). Currently, two major laws are designated to manage this reporting process.

The first law was enacted in 1980 and was called the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), also known as "Superfund". This law was intended to clean up abandoned sites that may contain hazardous substances (HS). This program was first applied to toxic waste dumps such as Love Canal and Times Beach in the 1970s. (USEPA, 2007).

The second law, Emergency Planning and Community Right-to-Know Act (EPCRA), was enacted in 1986. This program contains an extremely hazardous substances (EHS) list and intends to protect the public and environment from the releasing of EHS.

The primary purpose of releasing notifications in CERCLA and EPCRA is defined by the USEPA (1998) as "to notify various levels of government of potential hazards so that the necessary response actions can be taken in a timely fashion to ensure maximum protection of human health and the environment".

In general, CERCLA provides release reports on a federal scale by submitting to National Response Center (NRC) while EPCRA reports are submitted to state emergency response centers (SERCs) and local emergency response centers (LERCs).

EPCRA requires a person or facility owner to report to state and local agencies if RQ of substance is met by the facility. Recently, some livestock facilities (*Sierra Club vs. Seaboard Farms Inc., Sierra Club vs. Tyson Food Inc.*) have been involved in major lawsuits regarding EPCRA (Karvosky, 2005).

Ammonia is not considered a hazardous air pollutant in the Clean Air Act (CAA); therefore, it was not listed in EPA's hazardous air pollutant (HAP) list (USEPA, 2007a). However, NH<sub>3</sub> is listed (CAS# 7664-41-7) as a hazardous substances (HS) by CERCLA.

61

CERCLA includes a national priority list (NPL) of the important HSs that may pose a serious threat to public health. NPL is reported on a 2-year basis using annual information. The NPL is generated based on 3 factors: frequency of appearance at NPL, level of toxicity and potential risk for human health (ATSDR, 2006).

In addition, more than 300 substances including NH<sub>3</sub> were listed (CAS# 7664-41-7) as extremely hazardous substances (EHS) under section 302 of EPCRA and set its reportable quantity (RQ) as 45 kg per day (100 pounds per day). EPCRA requires a report if RQ of NH<sub>3</sub> is released from an animal feeding facility in a 24 hour period (USEPA, 2007b).

If EPCRA is applied to a dairy facility, according to definition of "facility", the barns, open-lot corrals, lagoons and manure storage structures would be subject to a combined (overall) RQ analysis.

Increasing public concerns over air quality impacts from AFOs in the United States has led the USEPA to begin establishing an air monitoring study to obtain reliable emission inventory for livestock and poultry facilities.

In 2005, the USEPA offered a "consent agreement" to individual AFOs who will participate as volunteers. This agreement allows conducting a source specific study to monitor air emissions from AFOs. This "Consent Agreement" protects AFOs from enforcement while monitoring study is being conducted at their sites (USEPA, 2006). The National Air Emission Monitoring Study (NAEMS) was established in 2006 by the Consent Agreement. Various gases including NH<sub>3</sub> and airborne pollutants emitted from livestock and poultry operations will be monitored across the nation.

The potential for federal air quality regulations accelerates the need for better estimates and effective management practices for reducing NH<sub>3</sub> emissions. It is important to obtain real-time, direct estimates of emissions from different NH<sub>3</sub> emission sources at AFOs. There is a need for an accurate technique to measure NH<sub>3</sub> emissions from AFOs to obtain emission inventories and to develop abatement strategies. A protocol to measure surface gas emission from GLAS using isolation flux chamber (FC) has been published by the EPA (Gholson et al., 1989). This measurement technique applies to quiescent liquid surfaces such as lagoons where surface runoff and process generated waste water from AFOs are stored and treated under anaerobic conditions.

In our study, this protocol was used to determine NH<sub>3</sub> emission factors from different GLAS at a free-stall dairy in central Texas.

The objectives of our study were:

- to estimate seasonal ammonia EFs from a free-stall dairy using a realtime measurement system; and
- to evaluate seasonal variations of EFs during two consecutive seasons.

### 4.2. Materials and Methods

#### 4.2.1. Sampling Site: Free-stall Dairy

Free-stalls and open-lot dairies are the most common dairy systems in southern and western part of US. A free-stall dairy in central Texas was chosen to determine NH<sub>3</sub> emissions from different GLAS. An aerial photo of the site showing source of NH<sub>3</sub> emissions at the dairy is presented in Figure 4.1 (TGIC, 1998). Approximately 2,100 lactating and dry cows were housed at the dairy. The open-lots at this free-stall diary were provided for dry or low milk producing cows and included centralized feeding and watering areas and free standing shelters for relief from severe weather conditions.



Figure 4.1. An aerial view of the sampled dairy (TGIC, 1998).

Manure accumulated in the free-stall barns was removed by flushing four times a day (7am, 1pm, 7pm, 1am). There were three free-stall barns located on this dairy and each free-stall was flushed in series from north to south. The slurry was then transported into a solids separator system for liquid-solid separation. Screened solids were composted on-site and used as bedding for the free-stall barns. The separated liquid portion was transported to the first cell of the anaerobic lagoon (lagoon 1). The effluent from primary lagoon was conveyed to the second cell (lagoon 2) with a pipe outlet. Lagoon 2 also accepted runoff from two other open-lots. Each open-lot was an unpaved, confined area with access to feed bunkers and water tanks. Manure produced in the open-lot was removed by scraping using tractor mounted blades. The rate of manure production was generally higher near feed bunkers and water tanks. The scraped manure was stockpiled and either land applied or composted on-site.

### 4.2.2. Sampling Equipment

Isolation FCs were used to measure real-time NH<sub>3</sub> concentrations from GLAS of the free-stall dairy. The basic design of the FC includes a hemispherical top (dome) and a cylindrical skirt (Figure 4.2). The dome contained four symmetrical holes with stainless steel fittings. A tubing inlet located at one of the stainless steel fittings allowed for the flow of sweep air into the chamber (Eklund, 1992).



Figure 4.2. Schematic of the flux chamber (Source: Boriack, 2005).

The sweep air was NH<sub>3</sub> free purified air generated from a zero-air generator (Model 737-12, AADCO Instruments, Village of Cleaves OH). A fitting on the top of the dome allowed for the pollutant stream to be conveyed to a measurement device. Two of these holes were used to connect the FC to a low density polyethylene (LDPE) tubing to convey the contaminant free zero grade air to sweep and purge the chamber and a Teflon<sup>®</sup> tubing to convey a sample of the polluted air from the chamber to NH<sub>3</sub>.gas analyzer. During summer sampling at the dairy, flux chambers were covered with cylindrical covers on the sides and on top (Figure 4.3) to minimize potential over heating of the chamber when exposed to direct sun light. This insulation kept inside temperature of the chamber similar to the ambient temperature



Figure 4.3. Isolation flux chambers in a free-stall barn.

Previous studies (Rose, 2003; Mukhtar et al., 2003, Boriack, 2005 and Capareda et al., 2005) have provided details of sampling NH<sub>3</sub> using flux chambers.

# 4.2.3. Sampling Method

The EPA protocol requires 3 to 4 volumetric air exchanges in the FC during the sampling process. Ammonia-free sweep air flow rate of 5 L.min<sup>-1</sup> was used during winter sampling and 7 L.min<sup>-1</sup> was used during summer sampling. Use of a larger capacity zero air generator allowed this increase in flow rate during summer sampling. Given the FC dimensions in Figure 2, these flow rates provided the needed air exchanges in a 30 min. period. The sampling process began when the FC was placed on a GLAS. Initially, the sweep air from the generator was pumped into the FC and it was purged for

a period of 30-min. After purging the FC, actual sampling of polluted air was initiated by conveying the Polluted air from FC to a TEI chemiluminescence analyzer (Model 17C, Thermo Environmental Instruments, TEI, Massachusetts.) to measure NH<sub>3</sub> for an additional period of 30 minutes.

The TEI analyzer was calibrated using known concentrations of  $NH_3$  and NO, certified high purity standard gases guaranteed by the manufacturer to be within  $\pm 2\%$  accuracy (Praxair, Inc., Danbury, CT). Details of the principle of chemiluminescence to measure  $NH_3$  have been provided in previous studies (Rose, 2003; Mukhtar et al., 2003, Boriack, 2005 and Capareda et al., 2005).

Adsorption studies were conducted earlier to determine losses from the sampling tube (Teflon) and the FC system. Results indicated that an adsorption loss of NH<sub>3</sub> on Teflon tubing was negligible (Mukhtar et. al., 2003) and NH<sub>3</sub> adsorption losses were approximately 8% for flux chamber (Capareda et. al., 2005). Ammonia concentrations from the analyzer were corrected based upon adsorption losses.

Uncertainty analysis was performed on NH<sub>3</sub> sampling process (Boriack, 2005). The overall uncertainty was found to be in the range of 8 to 10% for this NH<sub>3</sub> sampling set-up.

Using the ideal gas law, measured volumetric NH<sub>3</sub> concentrations (parts per million-PPM) were converted into mass concentration ( $C_{mass}$ , µg m<sup>-3</sup>) and equations (4.1), (4.2), and (4.3) were used to calculate NH<sub>3</sub> EFIs, ERs and EFs, respectively:

$$EFl_{NH_3} = \frac{C_{mass} \times V_{fc}}{A_{fc}} \qquad (eq. 4.1.)$$

Where:

 $EFl_{NH3} = NH_3$  gas emission flux (µg m<sup>-2</sup> sec<sup>-1</sup>),

 $V_{fc}$  = volumetric flow through the flux chamber (m<sup>3</sup> sec<sup>-1</sup>),

 $A_{fc}$  = area of flux chamber ("footprint", m<sup>2</sup>).

$$ER = EFl_{NH_3} \times A_{sc} \qquad (eq. 4. 2.)$$

where:

ER = Emission rate, kg day<sup>-1</sup>,

 $A_{sc}$  = Area of source (GLAS), m<sup>2</sup>.

$$EF = (\frac{ER}{TNA}) \times 365$$
 (eq. 4.3)

where:

EF = Emission factor, kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup>,

TNA = Total number of animal.

## 4.3. Results and Discussions

Two consecutive seasonal studies were conducted at the same free-stall dairy. First study was conducted in the winter season. Twenty-nine samples were collected to determine the ERs and EFs of ammonia from different GLAS of the dairy. The second study was conducted in following summer season and fifty-five samples were collected.

Assessment of winter and summer data (Tables 4.1 and 4.2 ) indicated that overall NH<sub>3</sub> emission rates (ERs) were  $62.4 \pm 31$  kg day<sup>-1</sup> for the summer and  $26.8 \pm 27.9$ kg day<sup>-1</sup> for the winter season for 2100-head dairy. Manure composting area (~35 %) and free-stall barn (~35%) in winter and primary and secondary lagoons (~63%) in summer were the highest contributors to NH<sub>3</sub> emission for the free-stall dairy.

| GLAS                                                                                        | Number of<br>Samples | Area (m <sup>2</sup> ) | Measured<br>Concentration <sup>1</sup><br>(ppm) | Mass<br>Concentration <sup>2</sup><br>(µg m <sup>-3</sup> ) | Source Flux <sup>3</sup><br>( $\mu g m^{-2} s^{-1}$ ) | ER<br>(kg day <sup>-1</sup> ) |
|---------------------------------------------------------------------------------------------|----------------------|------------------------|-------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------|-------------------------------|
| Compost                                                                                     | 3                    | 21000                  | $17.4 \pm 23.5^{b}$                             | 12120±16400                                                 | $5.3 \pm 7.1^{b}$                                     | 9.5 ±12.9                     |
| Free Stall                                                                                  | 5                    | 10000                  | $36.4 \pm 23.3$                                 | 25354±16230                                                 | $11.0 \pm 7.0$                                        | 9.5 ±6.1                      |
| Dry Open Lot                                                                                | 3                    | 36100                  | $6.5 \pm 8.8$                                   | 4527±6130                                                   | 2±2.7                                                 | 6.1 ±8.3                      |
| Wet Open Lot                                                                                | 4                    | 1900                   | 14.1 ±5.4                                       | 9821±3800                                                   | 4.3±1.6                                               | 0.7 ±0.3                      |
| Separated Solids                                                                            | 2                    | 110                    | 9.3 ±7.9                                        | 6478±5500                                                   | 2.8 ±2.4                                              | $0.03 \pm 0.02$               |
| Lagoon 1                                                                                    | 6                    | 14000                  | $2.0 \pm 0.5$                                   | 1393±350                                                    | $0.6 \pm 0.2$                                         | $0.7 \pm 0.2$                 |
| Lagoon 2                                                                                    | 6                    | 16000                  | $0.4 \pm 0.3$                                   | 279±2210                                                    | 0.1 ±0.1                                              | $0.2 \pm 0.1$                 |
| Statistic                                                                                   | 29 <sup>a</sup>      | 88300 <sup>a</sup>     |                                                 |                                                             |                                                       | $26.8^{a} \pm 27.9^{b}$       |
| <sup>a</sup> Summation<br><sup>b</sup> 95% confidence interval (CI)<br><sup>c</sup> Average |                      |                        |                                                 |                                                             |                                                       |                               |

Table 4.1. Summary of winter NH<sub>3</sub> emissions.

<sup>1</sup> Flux chamber measurement at 7 L min<sup>-1</sup> sweep air flow rate and 30 minutes sampling period.
 <sup>2</sup> at standard conditions.
 <sup>3</sup> Source Flux from footprint of the flux chamber (0.192 m<sup>2</sup>)

| GLAS             | Number of<br>Samples | Area<br>(m <sup>2</sup> ) | Measured<br>Concentration <sup>1</sup><br>(ppm) | Mass<br>Concentration <sup>2</sup><br>(µg m <sup>-3</sup> ) | Source Flux <sup>3</sup><br>( $\mu g m^{-2} s^{-1}$ ) | ER<br>(kg day <sup>-1</sup> ) |
|------------------|----------------------|---------------------------|-------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------|-------------------------------|
| Compost          | 11                   | 16600                     | $1.8 \pm 1.5^{b}$                               | 1337±1080                                                   | $0.8 \pm 0.7^{b}$                                     | $1.2 \pm 1.0^{b}$             |
| Freestall        | 14                   | 9790                      |                                                 |                                                             |                                                       |                               |
| Non-feed         | 5                    | 2700                      | $57.0 \pm 50.3$                                 | 39727±35034                                                 | 24.5 ±22                                              | $5.7 \pm 5.0$                 |
| Feed             | 5                    | 3090                      | $73.2 \pm 71.7$                                 | 51017±49945                                                 | $31.4 \pm 31$                                         | $8.4 \pm 8.2$                 |
| Bedding          | 2                    | 3800                      | $2.4 \pm 22.2^{1}$                              | 1716±15406                                                  | 1.1 ±9.5                                              | $0.3 \pm 3.1$                 |
| Water Area       | 2                    | 200                       | $20.9 \pm 79.7$                                 | $14600 \pm 55541$                                           | $9.0 \pm 34.2$                                        | $0.2 \pm 0.6$                 |
| Open Lot         | 8                    | 38000                     | 4.7 ±3.8                                        | 3295±2645                                                   | $2.0 \pm 1.6$                                         | $6.7 \pm 5.4$                 |
| Crowding Area    | 4                    | 925                       | $9.4 \pm 7.9$                                   | 6574±5514                                                   | $4.0 \pm 3.3$                                         | $0.3 \pm 0.3$                 |
| Separated Solids | 4                    | 109                       | $3.7 \pm 7.0$                                   | 2580±4877                                                   | $1.6 \pm 3.0$                                         | $0.01 \pm 0.03$               |
| Lagoon 1         | 8                    | 19200                     | $31.8 \pm 7.2$                                  | 22152±4998                                                  | 13.1 ±3.1                                             | $22.6 \pm 5.1$                |
| Lagoon 2         | 6                    | 17000                     | $27.0 \pm 2.8$                                  | 18826±1959                                                  | $11.6 \pm 1.2$                                        | $17.0 \pm 1.8$                |
| Statistic        | 55 <sup>a</sup>      | 101625 <sup>a</sup>       | -                                               | -                                                           | -                                                     | 62.4 <sup>a</sup> ±31         |

Table 4.2. Summary of summer  $NH_3$  emissions.

<sup>a</sup> Summation
<sup>b</sup> 95% confidence interval (CI)
<sup>c</sup> Average
<sup>1</sup> Flux chamber measurement at 7 L min<sup>-1</sup> sweep air flow rate and 30 minutes sampling period.
<sup>2</sup> at standard conditions.

<sup>3</sup> Source Flux from footprint of the flux chamber (0.192 m<sup>2</sup>)

Winter NH<sub>3</sub> EFs, area of each GLAS, ambient and GLAS temperatures are presented in Table 4.1. During winter sampling, the total area of the composting windrows was nearly 27% greater (Table 4.3) than that during summer sampling (Table 4. 4). Conversely, areas of both lagoons, measured at the waterline, were lesser in winter (Table 4.1) than summer (Table 4.2) by nearly 37% and 6% for lagoon 1 and lagoon 2, respectively.

| GLAS                                                                                                                                         | GLAS Area<br>(m <sup>2</sup> ) Winter EFs |                      | Ambient<br>Temp. (°C) | GLAS<br>Temp.<br>(°C) |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------|-----------------------|-----------------------|--|--|--|
| Compost                                                                                                                                      | 21,000 $1.7^{a} (\pm 2.2)^{b}$            |                      | 8.5                   | 30.1                  |  |  |  |
| Free-stall                                                                                                                                   | 10,000 1.7 (±1.1                          |                      | 6.3                   | 6.4                   |  |  |  |
| Dry Open Lots                                                                                                                                | 36,100                                    | 1.1 (±1.4)           | -1.0                  | -1.1                  |  |  |  |
| Wet Open Lots                                                                                                                                | 1,900                                     | 0.1 (±0.05)          | -1.0                  | -1.1                  |  |  |  |
| Solid Separator                                                                                                                              | 110                                       | 0.0 (±0.0)           | 3.7                   | 3.6                   |  |  |  |
| Primary Lagoon                                                                                                                               | 14,000                                    | 0.1 (±0.03)          | 16.7                  | 8.7                   |  |  |  |
| Secondary Lagoon                                                                                                                             | 16,000                                    | 0.0 (±0.02)          | 13.0                  | 9.5                   |  |  |  |
| Statistic                                                                                                                                    | 99,110 <sup>c</sup>                       | $4.7^{\rm c}$ (±4.9) | 6.6 <sup>a</sup>      | 8.0 <sup>a</sup>      |  |  |  |
| GLAS: Ground Level Area Source<br>*: kg-NH <sub>3</sub> .year <sup>-1</sup> .head <sup>-1</sup><br>a: average<br>b: CI (95%)<br>c: summation |                                           |                      |                       |                       |  |  |  |

Table 4.3. Ammonia EFs from different GLAS of the dairy in winter season.

The highest ammonia EFs were from composting area and free-stall barns as  $1.7\pm2.2$  kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> and  $1.7\pm1.1$  kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup>, respectively. The

lowest EFs were from open lots and the primary lagoon (lagoon 1). Each source emitted  $0.1 \text{ kg NH}_3 \text{ year}^{-1} \text{ head}^{-1}$ . The highly diluted secondary lagoon (lagoon 2) and small foot print of the separated solids site contributed little to the overall EFs. The compost and the free-stall areas contributed nearly 72% to the total ammonia EF for this facility while the dry open-lot contributed an additional nearly 23%. The overall calculated ammonia EF was  $4.7 \pm 4.9 \text{ kg NH}_3 \text{ year}^{-1} \text{ head}^{-1}$  for this free-stall dairy. The average ambient temperature during winter sampling was 6.6 °C.

At the same source and ambient temperature (Table 4.3), the wet areas of openlots had higher NH<sub>3</sub> concentrations (Table 4.1) than the dry areas but due to a much smaller "foot print", EF from wet open-lots was lesser than dry open-lots. The area of free-stalls was less than one half of that of the open-lots, but much greater ammonia emissions measured from free-stalls resulted in higher EF than open-lots. This was due to the higher density of cows in the free-stall barn resulting in greater amounts of manure accumulation. Additionally, relatively higher free-stall barn temperatures as compared to open-lot also contributed to higher NH<sub>3</sub> emission from waste. High temperature of actively composting piles resulted in increased NH<sub>3</sub> emissions and higher emission rates resulted from the compost site representing the second largest area at the dairy.

The second study at the same free-stall dairy was conducted during summer season. Fifty-five samples were collected to determine NH<sub>3</sub> emissions from the same sources plus the crowding area (adjacent to the milking parlor) of the dairy. Additionally, for a better understanding of NH<sub>3</sub> emissions from the free-stall barn, NH<sub>3</sub> was measured from the feed and non–feed sides and from bedding and watering areas of the barn. Ambient air, GLAS and chamber temperatures were measured simultaneously with NH<sub>3</sub> emission measurements (Table 4.4).

Results of ammonia EFs from each individual GLAS are shown in Table4.4 Ammonia EFs ranged from nearly zero to  $4.1\pm0.9$  kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup>. Both primary (lagoon1) and secondary (lagoon 2) lagoons were the highest contributor to the overall ammonia EF in the summer season.

| GLAS GLAS Area<br>(m <sup>2</sup> )                                                                                                        |                | Summer EFs <sup>*</sup> | GLAS<br>Temp. °C        | Chamber<br>Temp. °C | Ambient<br>Temp. °C |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------|-------------------------|---------------------|---------------------|--|
| Compost                                                                                                                                    | Compost 16,600 |                         | $43.2^{a}(\pm 7.1)^{b}$ | 39.1 (±1.8)         | 33.3 (±1.6)         |  |
| Free-stall Areas                                                                                                                           |                |                         |                         |                     |                     |  |
| Non-feed                                                                                                                                   | 2,700          | 0.8 (±0.9)              | 25.8 (±3.2)             | 30.1 (±2.0)         | 33.4 (±1.3)         |  |
| Feed                                                                                                                                       | 3,090          | 1.5 (±1.4)              | 33.9 (±56.1)            | 33.2 (±5.4)         | 34.6 (±0.2)         |  |
| Bedding                                                                                                                                    | 3,800          | 0.1 (±0.0)              | 27.0 (±2.8)             | 31.1 (±2.5)         | 33.3 (±3.1)         |  |
| Watering                                                                                                                                   | 200            | 0.0 (±0.1)              | 23.8(±2.1)              | 31.5 (±4.4)         | 34.5 (±2.7)         |  |
| Open -lots                                                                                                                                 | 38,000         | 1.2 (±1.0)              | 30.6 (±3.5)             | 35.3 (±3.1)         | 33.3 (±1.4)         |  |
| Crowding area                                                                                                                              | 925            | 0.1 (±0.0)              | 21.5 (±1.0)             | 24.2 (±1.0)         | 25.6 (±1.0)         |  |
| Solids separator                                                                                                                           | 110            | 0.0 (±0.0)              | 34.0 (±5.2)             | 32.7 (±4.7)         | N/A                 |  |
| Lagoon 1                                                                                                                                   | 19,200         | 4.1 (±0.9)              | 29.5 (±1.2)             | 29.7 (±1.8)         | 29.6 (±2.3)         |  |
| Lagoon 2                                                                                                                                   | 17,000         | 3.1 (±0.3)              | 28.4 (±0.7)             | 27.7 (±2)           | 26.7 (±1.9)         |  |
| Statistic 101,625 <sup>c</sup>                                                                                                             |                | 11.1 ° (±4.9)           |                         |                     |                     |  |
| GLAS: Ground Level Area Source<br>*: kg NH <sub>3</sub> year <sup>-1</sup> head <sup>-1</sup><br>a: average<br>b: CI (95%)<br>c: summation |                |                         |                         |                     |                     |  |

Table 4.4. Ammonia EFs from different GLAS of the dairy in summer season.

Difference in NH<sub>3</sub> emissions occurred due to temperature variations, dispirit waste loading rates and biological activity. For instance, EFs from both lagoons were not significant contributors to the overall EF in the winter season in Figure 4.1. But, summer ammonia EFs were  $4.1\pm0.9$  kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> from the lagoon 1 and  $3.1\pm0.3$  kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> from lagoon 2 (Figure 4.4).



Figure 4.4. Seasonal variations of GLAS in free-stall dairy.

This increase in NH<sub>3</sub> emissions from both lagoons was attributed to increased volatilization of NH<sub>3</sub> due to much higher lagoon temperatures in summer than in the

winter. Also, greater lagoon surface areas in the summer resulted in greater estimates for summer lagoon EFs. Despite the higher compost pile surface temperature in summer than the winter season, NH<sub>3</sub> emissions from compost were lower in summer than those in winter (Table 4.1). At the time of summer NH<sub>3</sub> measurements, compost piles had already gone through an active heating cycle (the differences between pile and ambient temperatures were only 9.8 °C during summer sampling as compared to 21.6 °C during winter sampling) and microbial activity of piles was reduced, resulting in lower NH<sub>3</sub> volatilization. Additionally, lesser surface area of compost windrows also contributed to lower summer EF from the compost site. Total free-stall ammonia EF in summer  $(2.4\pm 2.4 \text{ kg NH}_3 \text{ year}^{-1} \text{ head}^{-1})$  was higher than that from winter  $(1.7\pm 1.1 \text{ kg NH}_3 \text{ year}^{-1} \text{ head}^{-1})$  due to higher summer temperatures.

During summer, feed area of free-stall had the highest NH<sub>3</sub> concentration followed by the non-feed side, water area and bedding (Table 4.2). The feed side of the barn had the most amount of waste accumulation resulting in the highest NH<sub>3</sub> emissions. Waste around the water tanks was diluted due to water spillage by cows in the vicinity, which resulted in lower NH<sub>3</sub> emissions than those from feed and non-feed sides. The free-stall bedding was composted separated solids with most nitrogen tied up in organic matter and had very little NH<sub>3</sub> volatilization, hence minimal NH<sub>3</sub> emissions were measured from the bedding area.

The overall calculated summer ammonia EF was  $11.1\pm4.9$  kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> for this facility. It is noticeable that nearly 65% of overall ammonia EFs were

contributed by two lagoons during the summer sampling. The free-stalls contributed an additional about 22% to the overall ammonia EFs.

Compared to the average ambient winter temperature of 6.6 °C (Table 4.1), the average ambient summer temperature was 31.5 °C (Table 4.2).

## **4.4.** Conclusions

Ammonia is released to the atmosphere due to biological decomposition of dairy manure. At a dairy operation, free-stalls (cows in the barn), open -lots (cows on earthen corrals), manure composting area, separated solids from flushed manure, primary and secondary lagoons and milking parlor are all ground level area sources (GLAS) of NH<sub>3</sub>.

Two consecutive seasonal studies were conducted to determine ammonia EFs at a free-stall dairy in Central Texas. The EFs were  $11.1\pm4.9$  kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> for the summer and  $4.7\pm4.9$  kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> for the winter season. The estimated annual NH<sub>3</sub> EF was  $8.4 \pm 4.9$  kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> for this free-stall dairy. In winter, composted manure and free-stalls contributed nearly 73% to the total NH<sub>3</sub> emissions at the dairy. However in summer, approximately 65% of overall NH<sub>3</sub> emissions were contributed by two lagoons at the dairy.

Overall, summer NH<sub>3</sub> emissions were nearly three times those of winter emissions. This seasonal difference was due to temperature, loading rates of dairy waste, and microbial activity of NH<sub>3</sub> emission sources at the dairy. Measuring NH<sub>3</sub> emissions and estimating EFs for individual sources of emissions at a free-stall dairy during the winters and the summers provide better assessment of the seasonal differences in overall EF from a dairy operation. This approach also assists with the implementation of best management practices (BMP) to reduce NH<sub>3</sub> emissions from individual waste management components of the dairy for winter and summer seasons. For example, covering or chemically treating lagoons, solely for the purpose of controlling ammonia emissions to the atmosphere, may not be an effective BMP in the winter when little or no NH<sub>3</sub> volatilization occurs from lagoons due to low temperatures and microbial activity. On the other hand, reducing the size of composting operation on-site or moving it offsite will reduce dairy operations ammonia emissions throughout the year.

#### **CHAPTER V**

# CONCLUSIONS AND FUTURE RESEARCH

This study focused on characterization of ammonia (NH<sub>3</sub>) emissions from openlot and free-stall dairies in central Texas. We have evaluated and determined seasonal and spatial variations of NH<sub>3</sub> emissions on these dairy facilities. The quantification of NH<sub>3</sub> emissions from ground level area sources (GLAS) in a dairy operation is needed to understand which sources contribute the highest to the overall NH<sub>3</sub> emissions during winter and summer seasons. Information on seasonal NH<sub>3</sub> emission variations at GLAS from dairy operations will assist with the evaluation and selection of best management practices (BMPs) to control and reduce NH<sub>3</sub> emissions.

The main purpose of this study was to determine a science-based NH<sub>3</sub> emissions from each individual GLAS within the dairy and developed farm-scale emission rates (ERs) and factors (EFs) for open-lot and free-stall dairies. Source-specific and directlymeasured NH<sub>3</sub> emissions can provide better estimates for dairy EFs in the US and they may be used to apply NH<sub>3</sub> emission-reducing technologies for better environmental quality.

Ammonia emission variations among GLAS occurred due to seasonal changes in ambient and source temperatures, and spatial variations of NH<sub>3</sub> within a given season occurred in the open-lot corrals due to the varying cow density and the resulting dispirit manure loading in the feeding, dry, shaded, and transition divisions. Within the open-lot corral, summer NH<sub>3</sub> emissions from the dry area were significantly lower than those from all other areas. In winter, NH<sub>3</sub> emissions from feeding division were significantly higher than shaded and dry divisions at the open-lot corral. Overall, summer NH<sub>3</sub> emissions were nearly four times those of winter emissions.

Currently, NH<sub>3</sub> emissions from animal agriculture are not regulated. Ammonia emissions are only subject to be reported to federal, state or local agencies under Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), and Emergency Planning and Community Right-to-Know Act (EPCRA) programs if the emission exceeds reportable quantity (RQ). The RQ set by CERCLA, and EPCRA for NH<sub>3</sub> is 45.4 kg per day (100 pounds per day).

The potential for federal air quality regulations accelerates the need for better estimates and effective management practices for reducing NH<sub>3</sub> emissions. It is important to obtain real-time, direct estimates of emissions from different NH<sub>3</sub> emission sources at AFOs. There is also the need for a better technique to measure NH<sub>3</sub> emissions from AFOs to obtain emission inventories and to develop abatement strategies.

Seasonal studies were conducted to measure NH<sub>3</sub> emissions from open-lot and free-stall dairies in central Texas since summer of 2003. Ammonia emission flux (EFI) was measured using an isolation flux chambers (FC) protocol from ground level area sources (GLAS) and was converted to emission factor (EF) to potentially develop source specific NH<sub>3</sub> emission control strategies. The GLAS including open-lots, free-stall barns, separated solids, primary and secondary lagoons, and milking parlor were sampled to estimate NH<sub>3</sub> emissions.

In the first study, assessment of summer and winter data from the open-lot dairy indicated that overall NH<sub>3</sub> EFs were 11.6  $\pm$ 7.1 kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> for the summer and 6.2  $\pm$ 3.7 kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> for the winter season. The estimated annual NH<sub>3</sub> EF was 9.4  $\pm$ 5.7 kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> for this open-lot dairy. The estimated EFs for winter were approximately47% lower than summer EF. The open-lot corrals were the highest contributor as nearly 63% of the total NH<sub>3</sub> EF in summer and approximately 95% of the total NH<sub>3</sub> EF in winter. Primary and secondary lagoons contributed nearly 37% in summer and nearly 5% in winter to NH<sub>3</sub> emissions for the open-lot dairy. Open-lot corrals and lagoons were the major contributors to the overall NH<sub>3</sub> EF in summer season while only open-lot corrals were the highest contributors to the overall NH<sub>3</sub> EF in winter season.

In the second study, the EFs for the free-stall dairy were determined to be 11.1  $\pm 4.9$  kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> for summer season and  $4.7\pm 4.9$  kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> for winter season. The estimated annual NH<sub>3</sub> EF was 8.4  $\pm 4.9$  kg NH<sub>3</sub> year<sup>-1</sup> head<sup>-1</sup> for this free-stall dairy. In winter, composted manure and free-stalls contributed nearly 73% to the total NH<sub>3</sub> emissions for the dairy. However in summer, approximately 65% of overall NH<sub>3</sub> emissions were contributed by two lagoons at the dairy.

The difference between the overall winter and summer NH<sub>3</sub> emissions from the dairies was due to ambient temperature variations and loading rates of manure on GLAS. There was spatial variation of NH<sub>3</sub> emission from the open-lot earthen corrals due to variable animal density within different divisions of the open-lot. This spatial variability was attributed to dispirit manure loading within these areas.

The difference in annual NH<sub>3</sub> EFs between the open-lot and free-stall dairy was due to different management practices at each dairy. On the free-stall dairy composted manure was one of the highest contributors to the overall EF in winter season, while no manure composting was conducted at the open-lot dairy. The primary lagoon was the highest contributor to overall EF in free-stall dairy in the summer season. This was attributed to large fraction of the in the free-stalls being flushed in to the primary lagoon. In contrast, the primary lagoon of the open-lot dairy collected only waste water that was conveyed from the crowding area (the area where cows are held temporarily awaiting milking) and milking parlor. This waste water was highly diluted resulting in lower NH<sub>3</sub> emissions from the primary lagoon of the open-lot dairy. Therefore, the primary lagoon had less overall NH<sub>3</sub> contributions to the EF in summer and winter time as compared to the corresponding primary lagoon at the free-stall dairy.

Dispersion modeling may be an alternative method to evaluate NH<sub>3</sub> flux measured from the chamber at a GLAS by back-calculating the NH<sub>3</sub> flux for the same GLAS by using NH<sub>3</sub> concentration at the property line of the dairy facility. Some concerns may be associated with this process. First, different dispersion models could give different results. Second, measuring NH<sub>3</sub> concentrations at the property line will not be precise if the NH<sub>3</sub> emissions are not high enough from the emitting source (GLAS).

#### REFERENCES

- Appl, M. 1999. Ammonia: Principles and industrial practice. New York, N.Y.: Wiley-VCH Verlag, Weinheim, Germany. ISBN: 3527295933.
- Aneja, V.A., A.B. Murthy, W. Battye, R. Battye, and W.G. Benjey. 1998. Analysis of ammonia and aerosol concentrations near the free troposphere at Mt. Mitchell, NC, USA. *Atmospheric Environment* 32: 353–358.
- Aneja, V. P., J.P. Chauhan, and J.T. Walker. 2000. Characterization of atmospheric ammonia emissions from swine waste storage and treatment lagoons. *J. Geophys. Res.* 105(D9): 11535-11546.
- Aneja, V. P., P.A. Roelle, G.C. Murray, J. Southerland, J.W. Erisman, D.F. Willem,
  A.H. Asman, and N. Patni. 2001. Atmospheric nitrogen compounds ii: Emissions,
  transport, transformation, deposition and assessment. *Atmospheric Environment* 35: 1903-1911.
- Aneja, V. P., D.R. Nelson, P.A. Roelle, and J.T. Walker. 2003. Agricultural ammonia emissions and ammonium concentrations associated with aerosols and precipitation in the southeast United States. *J. of Geophysical Research* 108(D4): 4152.
- Andersen, H., and M.F. Hovmand. 1994. Measurements of ammonia and ammonium by denuder and filter pack. *Atmospheric Environment* 28: 3495-3512.

- Arogo, J., P.W. Westerman, A.J. Heber, W.P. Robarge, and J.J. Classen. 2001.
  Ammonia in animal production A review. ASABE Paper No. 014089. St. Joseph, Mich.:ASABE.
- Arogo, J., P.W. Westerman, A.J. Heber, W.P. Robarge, and J.J. Classen. 2006.Ammonia emissions from animal feeding operations, 41-88. St.Joseph, Mich.: National Center for Manure & Animal Waste Management White Papers.
- Asman, W.A.H., and A.J. Janssen. 1987. A long-range transport model for ammonia and ammonium for Europe. *Atmospheric Environment* 21: 2099-2119.
- Asman, W.A.H.1992. Ammonia emissions in Europe: Updated emission and emission varitions. Bilthhoven, Netherlands.: National Institute of Public Health and Environmental Protection.
- Asman, W.A.H., 1998. Factors influencing local dry deposition of gases with special reference to ammonia. *Atmospheric Environment* 32: 415-422.
- ATSDR. 2006. Agency for Toxic Substances & Disease Registry: Department of Health and Human Services. Available at: www.atsdr.cdc.gov/cercla/#bookmark04. Accessed 05 August 2007.
- Battye, R., W. Battye, C. Overcash, and S. Fudge. 1994. Development and Selection of Ammonia Emission Factors. U.S. EPA/600/R-94/190. Research Triangle Park, NC: U.S. EPA Office of Research and Development.

- Becker, J.G. and R.E. Graves. 2004. Ammonia emissions and animal agriculture.CSRESS Mid-Atlantic RWQ Program. University of Maryland, College Park, MD.
- Boriack, C.N. 2005. Design and performance of an ammonia measurement system. MS thesis. College Station, Texas: Texas A&M University, Department of Biological and Agricultural Engineering.
- Boriack, C. N., S.C. Capareda, R.E. Lacey, A. Mutlu, S. Mukhtar, B.W. Shaw, and C.B. Parnell, Jr. 2004. Uncertainty in ammonia local measurement systems. ASABE Paper No. 044111. St. Joseph, Mich.:ASABE.
- Brost, R.A., A.C. Delany, and B.J. Huebert. 1988. Numerical modeling of concentrations and fluxes of HNO<sub>3</sub>, NH<sub>3</sub> and NH<sub>4</sub>NO<sub>3</sub> near the ground. *J. of Geophys. Res.* 93: 7137-7152.
- Buijsman, E., H.F.M. Maas, and W.A.H. Asman. 1987. Anthropogenic NH<sub>3</sub> emissions in Europe. *Atmospheric Environment* 21: 1009-1022.
- Capareda, S. C., C.N. Boriack, S. Mukhtar, A. Mutlu, B.W. Shaw, R.E. Lacey, and C.B.
  Parnell Jr. 2005. The recovery of ammonia and hydrogen sulfide from ground
  level area sources using dynamic isolation flux chambers-bench scale studies. *J. of Air & Waste Mgmt. Assoc.* 55: 999-1006.
- Cassel, T., L. Ashbaugh, R. Flocchini, and D. Meyer. 2005. Ammonia flux from openlot dairies: Development of measurement methodology and emission factors. J. of Air & Waste Mgmt. Assoc. 55: 816-825.

- Cooper, D.C. and F.C. Alley. 2002. *Air Pollution Control: A Design Approach*. 3rd ed. Prospect Heights, IL.: Waveland Press, Inc.
- DEFRA. 2002. Ammonia in UK. London, UK. Department of Environment, Food & Rural Affairs.
- Denmead, O., L.A., Harper, J. Freney, W. Griffith, R. Leuning, and R. Sharpe. 1998. A mass balance method for non-intrusive measurement of surface–air trace gas exchange. *Atmospheric Environment* 32(21): 3679-3688.
- Eklund, B. Practical guidance for flux chamber measurements of fugitive volatile organic emission rates. J. of Air & Waste Mgmt. Assoc. 42: 1583-1591.
- Fangmeier, A., A. Hadwiger-Fangmeier, L. Van der Eerden, and H.J. Jager. 1994. Effects of atmospheric ammonia on vegetation- A review. *Environmental Pollution* 86: 43-82.
- Fitz, DR., J.T. Pisano, I.L. Malkina, D. Goorahoo, and C.F. Krauter, 2003. A passive flux denuder for evaluating emissions of ammonia at a dairy farm. J. of Air & Waste Mgmt. Assoc. 53: 937-945.
- Fowler, D., C.E.R. Pitcairn, M.A. Sutton, B. Flechard, B. Loubet, M. Coyle, AND R.C. Munro. 1998. The mass budget of atmospheric ammonia in woodland within 1 km of livestock buildings. *Environmental Pollution* 102: 343-348.
- Gholson, A.R., J.R. Albritton, and R.K.M. Jayanty.1989. Evaluation of the flux chamber method for measuring volatile organic emissions from surface

impoundments. U.S. EPA/600/S3-89/008. Research Triangle Park, NC: Atmospheric Research and Exposure Assessment Lab.

- Groot Koerkamp, P.W.G, J.H.M. Metz, G.H. Uenk, V.R. Phillips, M.R. Holden, R.W.
  Sneath, J.L. Short, R.P. White, J. Hartung, J. Seedorf, M. Schroder, K.H. Linkert,
  S. Pedersen, H. Takai, J.O. Johnsen, and C.M. Wathes. 1998. Concentrations and
  emissions of ammonia in livestock buildings in northern Europe. J. Agric. Eng. *Res.* 70: 79-95.
- Gupta, A., R. Kumar, K.M. Kumari, and S.S. Srivastava. 2003. Measurement of NO<sub>2</sub>,
  HNO<sub>3</sub>, NH<sub>3</sub> and SO<sub>2</sub> and related particulate matter at a rural site in Rampur, India. *Atmospheric Environment* 34: 4837-4846.
- Harper, L.A, R.R. Sharpe, and T.B. Parkin. 2000. Gaseous nitrogen emissions from anaerobic swine lagoons: Ammonia, nitrous oxide and dinitrogen gas. J. of Environmental Quality. 29: 1356-1365.
- Harper, L.A. 2005. Ammonia: Measurement Issues. Watkinsville, GA. USDA-Southern Piedmont Conversation Research Unit: 1-65.
- Harrison, R.M., and A. Kitto. 1990. Field intercomparison of filter pack and denuder sampling methods for reactive gaseous and particulate pollutants. *Atmospheric Environment* 24(A): 2633–2640.
- Horvath, L., AND M.A. Sutton. 1998. Long-term record of ammonia and ammonium concentrations of K-Puszta, Hungary. *Atmospheric Environment* 32: 339–344.

- Huang, Z., R.M. Harrison, A.G. Allen, J.D. James, R.M. Tilling, and J. Yin. 2004. Field intercomparison of filter pack and impactor sampling for aerosol nitrate, ammonium, and sulphate at coastal and inland sites. *Atmospheric Research* 71(3): 215-232.
- Karvosky, L. 2007. EPA gives animal feeding operations immunity from environmental statutes in a "sweetheart deal". *Vermont J. of Environmental Law.* 8: 115-144.
- Mansell, G., 2005. An improved ammonia inventory for the WRAP domain. Volume I. Final Report. Novato, CA: Environ Int. Co.
- McCulloch, R.B., G.S. Few, G.C. Murray, and V.P. Aneja. 1998. Analysis of ammonia, ammonium aerosols and acid gases in the atmosphere at a commercial hog farm in eastern North Carolina. *Environmental Pollution* 102: 263-268.
- Misselbrook, T. H., B.F. Pain, and D.M. Headon. 1998. Estimates of ammonia emission from dairy cow collecting yards. *J. of Agric. Eng. Research* 71: 127-135.
- Misselbrook, T.H., J. Webb, D.R. Chadwick, S. Ellis, and B.F. Pain. 2001. Gaseous emissions from outdoor concrete yards used by livestock. *Atmospheric Environment* 35: 5331-5338.
- Misselbrook, T.H., J. Webb, and S.L. Gilhespy. 2006. Ammonia emissions from outdoor concrete yards used by livestock-quantification and mitigation. *Atmospheric Environment* 40: 6752-6763.
- Möller, D., and H. Schieferdecker. Ammonia emission and deposition of NHx in the G.D.R. *Atmospheric Environment* 23: 1187-1193.

- Mukhtar, S., A. Rose, S.C. Capareda, C.N. Boriack, R.E. Lacey, B.W Shaw, C.B.
  Parnell, Jr. 2003. Assessment of ammonia adsorption onto teflon and ldpe tubing used in pollutant stream conveyance. *Agric. Eng. Intl: the CIGR Journal of Scientific Research and Development*. V: Manuscript BC 03 012.
- NCDC. 2007. National Climatic Data Center. Available at: www.ncdc.noaa.gov/oa/ncdc.html. Accessed 7 October 2007.
- Ni, J.Q., and A. Heber. 2001. Sampling and measurement of ammonia concentration at animal facilities-a review. ASABE Paper No: 014090. St. Joseph, Mich.: ASABE.
- Pain, B.F., T.J. Van Der Weerden, B.J. Chambers, V.R. Phillips, and S.C. Jarvis. 1998.
  A new inventory for ammonia emissions from UK agriculture. *Atmospheric Environment* 32 (3): 309-313.
- Perrino, C. and M. Gherardi. 1998. Optimization of the coating layer for the measurement of ammonia by diffusion denuders. *Atmospheric Environment* 33: 4579-458.
- Phillips, V.R., S.J. Bishop, J.S. Price, and S. You. 1998. Summer emissions of ammonia from a slurry-based, UK, dairy cow house. *Bioresource Technology* 65: 213-219.
- Phillips, V.R., R. Scholtens, D.S. Lee, J.A. Garland and R.W. Sneath. 2000. A review of the methods for measuring emission rates of ammonia from livestock buildings

and slurry or manure stores, Part 1: Assessment of basic approaches. *J. Agric. Eng. Res.* 77 (4): 355-364.

- Phillips, V.R., D.S. Lee, R. Scholtens, J.A. Garland and R.W. Sneath. 2001. A review of the methods for measuring emission rates of ammonia from livestock buildings and slurry or manure stores, Part 2: Monitoring Flux rates, Concentrations and Air Flow Rates. J. Agric. Eng. Res 78: 1-14.
- Pinder, R. W. R. Strader, C.I. Davidson, and P.J.A. Adams. 2004. Temporally and spatially resolved ammonia emission inventory for dairy cows in the United States. *Atmospheric Environment* 38: 3747-3756.
- Rose, A. 2003. Development of an Ammonia Emission Factor for Texas Dairies. MS thesis. College Station, Texas: Texas A&M University, Department of Biological and Agricultural Engineering.
- Rumburg, B. G.H. Mount, J. Filipy, B. Lamb, H. Westberg, D. Yonge, R. Kincaid, and K. Johnson. 2007. Measurement and modeling of atmospheric flux of ammonia from dairy milking cow housing. *Atmospheric Environment:* doi:10.1016/j.atmosenv.2007.05.042.
- Sadler, A. 2007. Manure bill hits snag. Accessed 01 July 2007. Stephens Washington Bureau. Available at: www.arkansasnews.com/archive/2007/07/01/ WashingtonDCBureau/342595.html.
- Seinfield, J.H., and S.N. Pandis. 1998. *Atmospheric Chemistry and Physics*. New York, N.Y.: John Wiley and Sons.

- Shah, B.S, P.W. Westerman, and J. Arogo. 2006. Measuring ammonia concentrations and emissions from agricultural land and liquid surfaces: A review. J. of Air & Waste Mgmt. Assoc. 56: 945-960.
- SPSS. 2004. Statistical Package for the Social Science. Version 13.0. Chicago, IL. SPSS Inc.
- Surfer. 2002. Surface Mapping Systems. Version 8.0. Golden, CO. Golden Software, Inc.
- Sutton, M.A., E. Nemitz, C. Milford, D. Fowler, J. Moreno, R. San Jose, G.P. Wyers, R.P. Otjes, R. Harrison, S. Husted, J.K. Schjoerring. 2000. Micrometeorological measurements of net ammonia fluxes over oilseed rape during two vegetation period. *Agric. And For. Meteorol.* 2889:1-19.
- TGIC. 1998. Texas Geographical Information Council. Metadata File #3198041. Texas Natural Resource Information System. Accessed May 2004. Available at: http://www.tnris.state.tx.us/digital.htm.
- USEPA. 1995. Compilation of Air Pollutant Emissions Factors. Volume 1. AP 42, 5th edition. U.S. EPA. Research Triangle Park, N.C.
- USEPA. 1998. Introducing to CERCLA and EPCRA Release Reporting Requirements. EPA540-R-98-022. US. Environmental Protection Agency. Washington, DC.

- USEPA. National Emission Inventory (NEI) 2002: Ammonia Emission from Agricultural Operations. Revised Draft Report. 2005. 0154.03.013.004/NH<sub>3</sub>. US.
   Environmental Protection Agency. Research Triangle Park, N.C.
- USEPA. 2006. EPA Takes Important Step in Controlling Air Pollution from Farm Country Animal Feeding Operations. 22 August 2006. Available at: http://yosemite.epa.gov/opa/admpress.nsf/names/hq\_2006-8-22\_animals.
- USEPA. 2006a. Dispersion Modeling. Technology Transfer Network Support Center for Regulatory Atmospheric Modeling web Site. Available at: http://www.epa.gov/scram001/dispersionindex.htm. Accessed 08 August 2007.
- USEPA. 2007. The basic information of Superfund. Available at: http://www.epa.gov/superfund/about.htm. Accessed 05 August 2007.
- USEPA. 2007a. The original list of hazardous air pollutants. EPA Air Toxics Web Site. Available at: http://www.epa.gov/ttn/atw/188polls.html. Accessed 05 August 2007.
- USEPA. 2007b. Extremely Hazardous Substances (EHS) Chemical Profiles and Emergency First Aid Guides. Available at: http://yosemite.epa.gov/oswer/ceppoehs.nsf/EHS\_Profile. Accessed 03 August 2007.
- Van Der Hoek, K.W. 1998. Estimating ammonia emission factors in Europe: summary of the work of the UNECE ammonia expert panel. *Atmospheric Environment* 32: 315-316.

- Webber, M.E., D.S. Baer, and R.K. Hanson. 2001. Ammonia monitoring near 1.5 μm with diode laser absorption sensors. *Appl. Optics* 40(12): 2031-2042.
- Wiebe, H.A., K.G. Anlauf, E.C. Tauzon, A.M. Winer, H.W. Biermann, B.R. Appel,
  P.A. Solomon, G.R. Cass, T.G. Ellestad, K.T. Knapp, E. Peake, C.W. Spicer,
  and D.R. Lawson. 1990. A comparison of measurements of atmospheric
  ammonia by filter packs, transition-flow reactors, simple and annular denuders
  and Fourier transform infrared spectroscopy. *Atmospheric Environment* 24(A):
  1019–1028.
- Zhu, T., E. Pattey, and R.L. Desjardins. 2000. Relaxed eddy-accumulation technique for measuring ammonia volatilization. *Environmental Science and Technology* 34: 199-203.

# APPENDIX A
## A.1 TOTAL NITROGEN MASS BALANCE FOR OPEN-LOT DAIRY OPERATIONS (NRC METHOD)

$$N_{\textit{Excreted}} = N_{\textit{Feed}} - N_{\textit{Milk}} - N_{\textit{Culled}} - N_{\textit{Leaving}} + N_{\textit{Heifer}}$$

where:

| N <sub>Excreted</sub> | = Amount of nitrogen excreted from dairy cows           |
|-----------------------|---------------------------------------------------------|
| N <sub>Feed</sub>     | = Amount of nitrogen input in feed                      |
| N <sub>Milk</sub>     | = Amount of milk produced by herd                       |
| N <sub>Culled</sub>   | = Nitrogen content in culled cows                       |
| N <sub>Leaving</sub>  | = Nitrogen content of calves leaving farm               |
| N <sub>Heiffer</sub>  | = Nitrogen content of replacement heifers entering farm |

$$N_{Feed} = C_{LR}.M_{LR}.N_{LC} + C_{DR}.M_{DR}.N_{DC}$$

where:

| $C_{LR}$        | : | Concentration of nitrogen in lactating cow ration <sup>(1)</sup> | = | 31280 | mg.N/KgFeed (as drybasis)  |
|-----------------|---|------------------------------------------------------------------|---|-------|----------------------------|
| $M_{LR}$        | : | Mass of lactating cow ration <sup>(2)</sup>                      | = | 21.77 | Kg/cow-day                 |
| N <sub>LC</sub> | : | Number of lactating cows <sup>(2)</sup>                          | = | 2000  | cows                       |
| $C_{DR}$        | : | Concentration of nitrogen in dry cow ration <sup>(1)</sup>       | = | 31280 | mg.N/KgFeed (as dry basis) |
| $M_{DR}$        | : | Mass of dry cow ration <sup>(2)</sup>                            | = | 12.7  | Kg/cow-day                 |
| N <sub>DC</sub> | : | Number of dry cows <sup>(2)</sup>                                | = | 300   | cows                       |

<sup>(3)</sup>N in Feed=%Protein / 6.25

N= 19.55 (averaged % protein ) / 6.25= 3.128 % dry basis x 10000 = 31280 mgN/kg Feed dry basis.

$$N_{Feed} = \left[ 31280 \frac{mgN}{kgFeed} \times 21.77 \frac{kg}{cow.day} \times 2000 lactating cows + 31280 \frac{mgN}{kgFeed} \times 12.7 \frac{kg}{cow.day} \times 300 dryg cows \right]$$

 $x365 \frac{days}{year} x \frac{1ton}{10^9 mg}$ 

 $N_{Feed}$ =540.6 tons $N_{Feed}$ /year

$$N_{Milk} = M_M \cdot C_M$$

where:

Mass of milk produced per day<sup>(2)</sup>
Concentration of nitrogen in milk by weight<sup>(3)</sup> (%) = 29.03 kg/cow-day = 0.005  $M_{\text{M}}$  $C_{M}$ 

$$N_{Milk} = \left[29.03 \frac{kg}{cow - day} \times 2000 cows \times 0.005 \frac{1ton}{10^3 kg} \times 365 \frac{days}{year}\right]$$

### N<sub>Milk</sub>= 106 tons N<sub>Milk</sub>/year

$$N_X = C_X . M_X . N_X$$

where:

- Concentration of nitrogen in body reserves<sup>(4)</sup> Mass of animal<sup>(5)</sup> С :
- М :
- Number of animal<sup>(2)</sup> Ν :
- Type of nitrogen (from culled, leaving farm and entering farm) Х :

$$N_{Heiffer} = Mass of heiffer^{(5)} = 437 kg/head$$

$$N_{heiffer} = Number of heiffer^{(2)} = 350 kead$$

$$N_{Heiffer} = \left[26000 \frac{mg}{kg} x437 \frac{kg}{head} x350 \frac{head}{year}\right] x1 \frac{ton}{10^9 mg}$$

# $N_{Heiffer}$ =4.0 tons/year

|              | $C_{\text{culled}}^{(4)}$             | = | 29000 | mg/kg   |
|--------------|---------------------------------------|---|-------|---------|
| $N_{Culled}$ | $M_{culled} = Mass of culled^{(5)}$   | = | 624   | kg/head |
|              | $N_{culled} = Number of culled^{(2)}$ | = | 600   | head    |

$$N_{Culled} = \left[29000 \frac{mg}{kg} x 624 \frac{kg}{head} x 600 \frac{head}{year}\right] x 1 \frac{ton}{10^9 mg}$$

# $N_{Culled}$ =10.9 tons/year

|               | $C_{\text{leaving}}^{(4)}$                            | = | 29000 | mg/kg   |
|---------------|-------------------------------------------------------|---|-------|---------|
| $N_{Leaving}$ | $M_{\text{leaving}} = Mass \text{ of leaving}^{(5)}$  | = | 60    | kg/head |
| Ũ             | $N_{\text{leaving}} = \text{Number of leaving}^{(2)}$ | = | 600   | head    |

$$N_{Leaving} = \left[29000 \frac{mg}{kg} x 60 \frac{kg}{head} x 600 \frac{head}{year}\right] x 61 days^{a} x \frac{1year}{365 days} x 1 \frac{ton}{10^{9} mg}$$

<sup>a</sup> Leaving animals stay in dairy for 61 days during a year.

N<sub>Leaving</sub> =0.2 tons/year

$$N_{Excreted} = N_{Feed} - N_{Milk} - N_{Culled} - N_{Leaving} + N_{Heifer}$$

$$N_{Excreted} = 540.6 - 106 - 10.9 - 0.2 + 4.0$$

 $N_{Excreted} = 427.5 \approx 428$  tons N excreted per year.

$$N_{Excreted} = 186 \text{ kgN/head-year}$$

$$N_{Excreted} = 0.51 \text{ kgN/head-day}$$

(Estimated N production from typical dairy manure: 0.45 kgN/head-day for lactating cow and 0.23 kgN/head-day for dry cow (ASAE Standard, D384.2, March 2005)

Buijsman (1987) reported that NH<sub>3</sub> volatilizations result in a range of 10-20% of total nitrogen becomes ammonia. Average estimation of 15% is used for following conversion.

$$NH_3 = 186 kgN / head - year \times \left(\frac{15 kgNH_3}{100 kgN}\right) = 27.9 \text{ kgNH}_3/\text{head-year}$$

#### **Cited Studies:**

- <sup>(1)</sup> Results of feed and manure sample analysis.
- <sup>(2)</sup> Dairy producer.
- <sup>(3)</sup> Manure characteristics. Midwest Plan Service Publications. MWPS-18 Section 1.
- <sup>(4)</sup> National Research Council.2002. Nutrient Requirements of Dairy Cattle.7<sup>th</sup> Edition. Washington,DC. National Academy Press.
- <sup>(5)</sup> ASAE Standards. Averaged live weight for dairy cows., D384.2, March 2005

## **APPENDIX B**

#### **B.1. RANDOM AMMONIA SAMPLING POINTS IN OPEN-LOT CORRAL IN SUMMER**



Figure B.1. Randomly selected flux sampling points on open-lot corral divisions in summer.





Figure B.2. Randomly selected flux sampling points on open-lot corral divisions in winter.

## **B.3. AMMONIA EMISSION DATA**

Table 5.1 Summer NH<sub>3</sub> emissions from the open-lots at the open-lot dairy.

CAAQES-The Center of Agricultural Air Quality Engineering and Science

Texas A&M University College Station, TX

 $\% NH_3 = -2.44x \ln(NH_3, ppb) + 27.68$  (adsorption loses)

Client: Dairy XXX

Comanche county, TX

| Date:           | 6/13/2005 |                |                       |                    |
|-----------------|-----------|----------------|-----------------------|--------------------|
| Source:         | Open Lots |                |                       |                    |
| Area of Source: | 8570      | m <sup>2</sup> | 103000 m <sup>2</sup> | Entire Lot<br>Area |
| Number of Head: | 2000      | Dairy          |                       |                    |

|        |                      |            |               |                       |                 | Origina  | al NH <sub>3</sub> Emissions | s from Open L          | ots          |              |           |               |                  |
|--------|----------------------|------------|---------------|-----------------------|-----------------|----------|------------------------------|------------------------|--------------|--------------|-----------|---------------|------------------|
|        | Zero air<br>Flowrate | NH3 Concen | tration (ppb) | Mass<br>Concentration | E. Flux         | ERs      | EFs                          | Barometric<br>Pressure | Surface temp | Chamber temp | Amb. temp | Chamber<br>RH | Amb.<br>humidity |
|        | [sL/min]             | Original   | Corrected     | $(\mu g/m^3)$         | $(\mu g/m^2-s)$ | (kg/day) | (kg/cow-year                 | kPa                    | (°C)         | (°C)         | (°C)      | (%)           | (%)              |
| OL5 1  | 7.1                  | 2827.6     | 3062.0        | 2132.8                | 1.3             | 11.7     | 2.1                          | 95.4                   | 25.7         | 24.2         | 23.3      | 0.0%          | 83.8             |
| OL5 2  | 7.1                  | 1970.0     | 2150.7        | 1498.0                | 0.9             | 8.2      | 1.5                          | 95.4                   | 24.1         | 24.4         | 23.8      | 0.0%          | 82.5             |
| OL5 3  | 7.1                  | 3376.2     | 3641.4        | 2536.4                | 1.6             | 13.8     | 2.5                          | 95.4                   | 28.8         | 29.2         | 25.7      | 0.0%          | 77.8             |
| OL5 4  | 1.1                  | 5492.4     | 5858.7        | 4080.7                | 0.4             | 3.4      | 0.6                          | 95.4                   | 26.9         | 30.3         | 26.7      | 0.0%          | 75.4             |
| OL5 5  | 7.1                  | 6589.0     | 6999.2        | 4875.1                | 3.0             | 26.6     | 4.9                          | 95.4                   | 24.9         | 24.3         | 24.4      | 0.0%          | 80.8             |
| OL5 6  | 7.0                  | 216.3      | 247.8         | 172.6                 | 0.1             | 0.9      | 0.2                          | 95.4                   | 26.2         | 27.3         | 25.0      | 0.0%          | 79.0             |
| OL5 7  | 7.0                  | 212.8      | 243.9         | 169.9                 | 0.1             | 0.9      | 0.2                          | 95.4                   | 26.0         | 25.7         | 23.9      | 0.0%          | 82.2             |
| OL5 8  | 7.1                  | 294.1      | 334.7         | 233.1                 | 0.1             | 1.3      | 0.2                          | 95.4                   | 25.1         | 24.4         | 23.4      | 0.0%          | 83.7             |
| OL5 9  | 7.0                  | 1054.0     | 1166.8        | 812.7                 | 0.5             | 4.4      | 0.8                          | 95.4                   | 27.6         | 31.5         | 26.4      | 0.0%          | 76.1             |
| OL5 10 | 7.1                  | 5374.3     | 5735.5        | 3995.0                | 2.5             | 22.0     | 4.0                          | 95.4                   | 24.9         | 26.8         | 25.0      | 0.0%          | 79.1             |
| OL5 11 | 7.0                  | 6246.2     | 6643.1        | 4627.1                | 2.8             | 25.0     | 4.6                          | 95.4                   | 26.8         | 28.0         | 26.2      | 0.0%          | 76.4             |

| OL5 12 | 6.9 | 5500.8   | 5867.5   | 4086.8   | 2.5  | 21.9  | 4.0   | 95.4 | 26.3 | 28.9 | 26.8 | 0.0% | 75.2 |
|--------|-----|----------|----------|----------|------|-------|-------|------|------|------|------|------|------|
| OL5 13 | 7.0 | 187619.0 | 187619.0 | 130681.7 | 79.4 | 705.6 | 128.8 | 90.9 | 28.7 | 33.0 | 27.2 | 0.0% | 74.5 |
| OL5 14 | 7.0 | 2376.0   | 2583.0   | 1799.2   | 1.1  | 9.7   | 1.8   | 95.4 | 31.6 | 34.9 | 27.4 | 0.0% | 74.0 |
| OL5 15 | 7.0 | 24809.1  | 25550.9  | 17796.9  | 10.8 | 96.1  | 17.5  | 95.4 | 27.9 | 31.8 | 28.0 | 0.0% | 71.2 |
| OL5 16 | 7.0 | 976.4    | 1082.6   | 754.1    | 0.5  | 4.1   | 0.7   | 95.4 | 27.3 | 31.3 | 28.2 | 0.0% | 70.0 |
| OL5 17 | 7.0 | 4375.0   | 4691.1   | 3267.5   | 2.0  | 17.6  | 3.2   | 95.5 | 32.2 | 33.5 | 28.2 | 0.0% | 69.8 |
| OL5 18 | 7.0 | 7932.9   | 8390.8   | 5844.4   | 3.6  | 31.6  | 5.8   | 95.4 | 28.7 | 33.9 | 28.3 | 0.0% | 69.3 |
| OL5 19 | 6.7 | 17392.4  | 18063.1  | 12581.4  | 7.4  | 65.4  | 11.9  | 91.1 | 32.2 | 36.9 | 27.7 | 0.0% | 64.2 |
| OL5 20 | 7.0 | 1365.8   | 1503.3   | 1047.1   | 0.6  | 5.7   | 1.0   | 95.4 |      |      | 29.9 | 0.0% | 64.2 |
| OL5 21 | 7.0 | 15700.0  | 16344.7  | 11384.5  | 6.9  | 61.5  | 11.2  | 95.5 | 26.4 | 30.5 | 28.5 | 0.0% | 68.7 |
| OL5 22 | 7.0 | 6841.4   | 7261.0   | 5057.5   | 3.1  | 27.3  | 5.0   | 95.4 | 27.7 | 32.3 | 29.7 | 0.0% | 64.6 |
| OL5 23 | 7.0 | 17620.5  | 18294.4  | 12742.5  | 7.7  | 68.8  | 12.6  | 95.4 | 32.1 | 40.4 | 29.9 | 0.0% | 63.2 |
| OL5 24 | 7.0 | 5274.6   | 5631.5   | 3922.5   | 2.4  | 21.3  | 3.9   | 95.4 | 36.7 | 39.8 | 30.2 | 0.0% | 61.8 |
| OL5 25 | 7.0 | 11437.8  | 11995.8  | 8355.4   | 5.1  | 45.1  | 8.2   | 95.4 | 57.2 | 44.9 | 30.8 | 0.0% | 59.6 |
| OL5 26 | 7.0 | 18542.9  | 19229.0  | 13393.5  | 8.1  | 72.3  | 13.2  | 95.4 | 29.6 | 36.5 | 30.9 | 0.0% | 59.8 |
| OL5 27 | 7.1 | 1258.4   | 1387.6   | 966.5    | 0.6  | 5.3   | 1.0   | 95.4 |      |      | 31.1 | 0.0% | 58.9 |
| OL5 28 | 7.0 | 10031.4  | 10553.0  | 7350.4   | 4.5  | 39.7  | 7.2   | 95.3 | 36.4 | 47.3 | 31.4 | 0.0% | 57.2 |
| OL5 29 | 7.0 | 832.6    | 926.5    | 645.3    | 0.4  | 3.5   | 0.6   | 95.2 | 27.6 | 24.8 | 25.3 | 0.0% | 74.4 |
| OL5 30 | 7.0 | 8279.5   | 8748.8   | 6093.8   | 3.7  | 32.9  | 6.0   | 95.3 | 40.9 | 43.5 | 31.2 | 0.0% | 57.7 |
| OL5 31 | 7.0 | 8099.0   | 8562.4   | 5964.0   | 3.6  | 32.2  | 5.9   | 95.3 | 38.7 | 45.4 | 31.4 | 0.0% | 56.9 |
| OL5 32 | 7.0 | 3625.1   | 3903.6   | 2719.0   | 1.7  | 14.7  | 2.7   | 95.3 |      |      | 31.2 | 0.0% | 57.1 |
| OL5 33 | 7.0 | 11015.2  | 11562.8  | 8053.8   | 4.9  | 43.5  | 7.9   | 95.3 | 27.6 | 31.3 | 31.4 | 0.0% | 56.0 |
| OL5 34 | 7.0 | 107404.1 | 107404.1 | 74809.9  | 45.5 | 403.9 | 73.7  | 95.3 | 35.0 | 40.2 | 31.2 | 0.0% | 57.5 |
| OL5 35 | 7.1 | 5528.0   | 5895.8   | 4106.6   | 2.5  | 22.4  | 4.1   | 95.3 | 31.5 | 42.3 | 31.4 | 0.0% | 55.6 |
| OL5 36 | 7.0 | 4993.6   | 5338.3   | 3718.2   | 2.3  | 20.1  | 3.7   | 95.3 | 30.6 | 32.4 | 31.4 | 0.0% | 55.3 |
| OL5 38 | 7.0 | 3667.0   | 3947.7   | 2749.7   | 1.7  | 14.8  | 2.7   | 95.3 | 28.4 | 35.7 | 31.5 | 0.0% | 54.8 |
| OL5 39 | 7.1 | 1681.7   | 1842.5   | 1283.3   | 0.8  | 7.0   | 1.3   | 95.2 |      |      | 31.1 | 0.0% | 56.4 |
| OL5 40 | 7.0 | 549.4    | 616.9    | 429.7    | 0.3  | 2.3   | 0.4   | 95.3 | 30.1 | 26.4 | 26.1 | 0.0% | 73.4 |
| OL5 43 | 7.0 | 7618.1   | 8065.3   | 5617.7   | 3.4  | 30.4  | 5.5   | 95.2 | 31.7 | 28.6 | 28.5 | 0.0% | 66.0 |
| OL5 44 | 7.1 | 584.5    | 655.4    | 456.5    | 0.3  | 2.5   | 0.5   | 95.3 | 29.2 | 27.0 | 26.6 | 0.0% | 72.1 |
| OL5 46 | 7.0 | 2894.7   | 3133.0   | 2182.2   | 1.3  | 11.8  | 2.2   | 95.4 | 20.1 | 19.6 | 21.9 | 0.0% | 87.9 |
| OL5 47 | 7.0 | 51749.7  | 51749.7  | 36045.1  | 21.9 | 194.2 | 35.5  | 95.5 | 29.7 | 24.8 | 25.0 | 0.0% | 82.2 |

| OL5 48 | 7.1 | 427.7   | 482.9   | 336.3   | 0.2  | 1.8   | 0.3  | 95.4 |      |      | 25.9 | 0.0% | 75.4 |
|--------|-----|---------|---------|---------|------|-------|------|------|------|------|------|------|------|
| OL5 49 | 7.0 | 487.9   | 549.3   | 382.6   | 0.2  | 2.1   | 0.4  | 95.4 | 27.4 | 25.4 | 25.4 | 0.0% | 79.2 |
| OL5 50 | 7.0 | 1027.3  | 1137.9  | 792.6   | 0.5  | 4.3   | 0.8  | 95.2 |      |      | 27.5 | 0.0% | 69.4 |
| OL5 51 | 7.1 | 1019.9  | 1129.8  | 786.9   | 0.5  | 4.3   | 0.8  | 95.5 | 27.7 | 25.2 | 24.9 | 0.0% | 82.7 |
| OL5 52 | 7.0 | 2100.0  | 2289.3  | 1594.5  | 1.0  | 8.6   | 1.6  | 95.5 |      |      | 25.1 | 0.0% | 82.1 |
| OL5 53 | 7.0 | 1299.3  | 1431.6  | 997.2   | 0.6  | 5.4   | 1.0  | 95.7 | 21.0 |      | 19.0 | 0.0% | 91.8 |
| OL5 54 | 7.1 | 463.3   | 522.1   | 363.7   | 0.2  | 2.0   | 0.4  | 95.8 | 26.6 | 21.0 | 21.6 | 0.0% | 72.0 |
| OL5 55 | 7.0 | 1332.4  | 1467.3  | 1022.0  | 0.6  | 5.5   | 1.0  | 95.7 |      | 20.9 | 18.6 | 0.0% | 89.2 |
| OL5 56 | 7.0 | 866.1   | 962.9   | 670.7   | 0.4  | 3.6   | 0.7  | 95.6 |      | 24.6 | 18.5 | 0.0% | 93.4 |
| OL5 57 | 7.0 | 1877.3  | 2051.6  | 1429.0  | 0.9  | 7.8   | 1.4  | 95.7 |      | 25.6 | 19.3 | 0.0% | 90.4 |
| OL5 58 | 7.1 | 3109.2  | 3359.7  | 2340.1  | 1.4  | 12.7  | 2.3  | 95.6 |      | 23.4 | 24.4 | 0.0% | 85.9 |
| OL5 59 | 7.0 | 628.2   | 703.4   | 489.9   | 0.3  | 2.6   | 0.5  | 71.9 | 18.4 | 18.2 | 18.2 | 0.0% | 56.3 |
| OL5 60 | 7.0 | 5881.1  | 6263.5  | 4362.7  | 2.7  | 23.6  | 4.3  | 95.7 | 22.1 | 19.6 | 19.7 | 0.0% | 89.2 |
| OL5 61 | 7.0 | 4879.4  | 5218.9  | 3635.1  | 2.2  | 19.7  | 3.6  | 95.9 | 26.7 | 27.3 | 22.3 | 0.0% | 84.1 |
| OL5 62 | 7.0 | 1673.6  | 1833.8  | 1277.3  | 0.8  | 6.9   | 1.3  | 95.8 | 22.7 |      | 20.8 | 0.0% | 87.3 |
| OL5 63 | 7.0 | 2385.2  | 2592.8  | 1805.9  | 1.1  | 9.8   | 1.8  | 95.9 |      | 24.3 | 21.6 | 0.0% | 85.3 |
| OL5 64 | 7.0 | 3570.3  | 3845.9  | 2678.8  | 1.6  | 14.5  | 2.6  | 95.9 | 29.9 | 33.6 | 24.9 | 0.0% | 75.8 |
| OL5 65 | 7.0 | 1046.5  | 1158.6  | 807.0   | 0.5  | 4.4   | 0.8  | 95.9 | 26.4 |      | 23.1 | 0.0% | 81.9 |
| OL5 66 | 7.0 | 1923.5  | 2101.0  | 1463.4  | 0.9  | 7.9   | 1.4  | 95.9 |      | 28.6 | 24.1 | 0.0% | 78.5 |
| OL5 67 | 7.0 | 2652.5  | 2876.5  | 2003.6  | 1.2  | 10.8  | 2.0  | 96.0 |      |      | 26.7 | 0.0% | 72.4 |
| OL5 68 | 7.1 | 41971.0 | 41971.0 | 29234.0 | 17.9 | 159.2 | 29.1 | 96.0 | 29.4 | 29.7 | 26.8 | 0.0% | 72.0 |
| OL5 69 | 7.0 | 4885.3  | 5225.1  | 3639.4  | 2.2  | 19.6  | 3.6  | 96.0 | 29.2 |      | 26.0 | 0.0% | 72.6 |
| OL5 70 | 7.0 | 5508.2  | 5875.1  | 4092.2  | 2.5  | 22.1  | 4.0  | 96.0 | 29.8 |      | 27.3 | 0.0% | 68.8 |
| OL5 71 | 7.0 | 7964.2  | 8423.1  | 5866.9  | 3.6  | 31.7  | 5.8  | 96.0 | 27.8 | 31.7 | 29.0 | 0.0% | 59.8 |
| OL5 72 | 7.1 | 8392.7  | 8865.6  | 6175.1  | 3.8  | 33.6  | 6.1  | 96.0 | 34.3 |      | 29.9 | 0.0% | 58.0 |
| OL5 73 | 7.1 | 16399.0 | 17054.9 | 11879.2 | 7.3  | 64.7  | 11.8 | 95.9 | 29.5 | 34.2 | 31.2 | 0.0% | 56.0 |
| OL5 74 | 7.0 | 7450.2  | 7891.6  | 5496.7  | 3.3  | 29.7  | 5.4  | 95.9 | 34.8 |      | 31.5 | 0.0% | 54.7 |
| OL5 75 | 7.1 | 2683.3  | 2909.1  | 2026.3  | 1.2  | 11.0  | 2.0  | 95.9 |      |      | 32.3 | 0.0% | 53.7 |
| OL5 76 | 7.0 | 2241.8  | 2440.3  | 1699.7  | 1.0  | 9.2   | 1.7  | 95.7 | 45.7 | 35.9 | 32.7 | 0.0% | 50.2 |
| OL5 77 | 1.7 | 1306.2  | 1439.1  | 1002.4  | 0.2  | 1.3   | 0.2  | 91.4 | 32.9 |      | 30.9 | 0.0% | 48.7 |
| OL5 78 | 7.1 | 1407.5  | 1548.1  | 1078.3  | 0.7  | 5.9   | 1.1  | 95.8 |      |      | 31.8 | 0.0% | 51.5 |
| OL5 80 | 7.1 | 2030.7  | 2215.5  | 1543.1  | 0.9  | 8.4   | 1.5  | 95.9 | 30.4 | 29.8 | 29.0 | 0.0% | 63.9 |

| OL5 81  | 7.1 | 29686.8 | 30444.4 | 21205.3 | 13.0 | 115.4 | 21.1 | 95.8 | 30.2 |      | 30.5 | 0.0% | 57.3 |
|---------|-----|---------|---------|---------|------|-------|------|------|------|------|------|------|------|
| OL5 82  | 7.0 | 12215.7 | 12792.1 | 8910.1  | 5.4  | 48.3  | 8.8  | 95.9 |      |      | 27.7 | 0.0% | 68.3 |
| OL5 83  | 7.0 | 43856.6 | 43856.6 | 30547.3 | 18.6 | 164.9 | 30.1 | 95.9 | 30.3 |      | 28.3 | 0.0% | 65.3 |
| OL5 84  | 7.0 | 2523.8  | 2740.0  | 1908.5  | 1.2  | 10.3  | 1.9  | 95.8 |      |      | 30.0 | 0.0% | 60.0 |
| OL5 85  | 7.0 | 43102.1 | 43102.1 | 30021.8 | 18.2 | 162.1 | 29.6 | 96.0 |      |      | 26.1 | 0.0% | 73.5 |
| OL5 86  | 6.7 | 5300.0  | 5658.1  | 3941.0  | 2.3  | 20.4  | 3.7  | 96.0 | 27.1 | 25.8 | 26.8 | 0.0% | 72.6 |
| OL5 88  | 7.1 | 4180.7  | 4487.3  | 3125.5  | 1.9  | 17.0  | 3.1  | 96.0 | 27.4 | 25.9 | 26.2 | 0.0% | 71.8 |
| OL5 89  | 7.0 | 17070.8 | 17736.9 | 12354.2 | 7.5  | 66.7  | 12.2 | 96.0 | 27.2 | 24.5 | 25.2 | 0.0% | 76.5 |
| OL5 90  | 7.1 | 13181.7 | 13779.2 | 9597.6  | 5.9  | 52.2  | 9.5  | 96.0 |      |      | 24.8 | 0.0% | 78.9 |
| OL5 91  | 7.0 | 25387.9 | 26132.7 | 18202.1 | 11.1 | 98.3  | 17.9 | 95.9 |      |      | 24.0 | 0.0% | 83.1 |
| OL5 92  | 7.0 | 10007.5 | 10528.4 | 7333.3  | 4.5  | 39.6  | 7.2  | 96.0 | 25.6 | 24.4 | 25.3 | 0.0% | 76.8 |
| OL5 93  | 7.1 | 5983.5  | 6370.0  | 4436.9  | 2.7  | 24.2  | 4.4  | 95.9 | 22.8 | 23.0 | 24.0 | 0.0% | 80.0 |
| OL5 94  | 7.1 | 7700.2  | 8150.3  | 5676.9  | 3.5  | 30.9  | 5.6  | 96.0 | 25.8 | 24.6 | 24.7 | 0.0% | 79.0 |
| OL5 95  | 7.0 | 5514.4  | 5881.6  | 4096.7  | 2.5  | 22.1  | 4.0  | 95.9 | 24.1 | 23.9 | 24.4 | 0.0% | 78.2 |
| OL5 96  | 7.0 | 3281.5  | 3541.6  | 2466.8  | 1.5  | 13.3  | 2.4  | 95.9 | 26.0 | 22.1 | 22.9 | 0.0% | 85.9 |
| OL5 97  | 7.1 | 4626.8  | 4954.8  | 3451.1  | 2.1  | 18.8  | 3.4  | 95.9 | 26.7 | 21.9 | 23.1 | 0.0% | 84.1 |
| OL5 98  | 7.1 | 8049.1  | 8510.8  | 5928.0  | 3.6  | 32.2  | 5.9  | 95.9 |      |      | 23.5 | 0.0% | 84.9 |
| OL5 99  | 7.0 | 2525.1  | 2741.4  | 1909.5  | 1.2  | 10.3  | 1.9  | 95.9 |      |      | 22.9 | 0.0% | 84.9 |
| OL5 100 | 7.0 | 1207.9  | 1333.1  | 928.6   | 0.6  | 5.0   | 0.9  | 95.9 | 23.1 | 21.3 | 22.5 | 0.0% | 86.5 |

| Average     | 6.90  | 10399.18 | 10692.16 | 7447.38  | 4.50 | 40.00 | 7.30  | 95  | 29  | 29  | 27  | 0   | 72  |
|-------------|-------|----------|----------|----------|------|-------|-------|-----|-----|-----|-----|-----|-----|
| Stdev       | 0.1   | 23368.24 | 23353.13 | 16266.09 | 9.89 | 87.91 | 16.04 | 3   | 6   | 7   | 4   | 0   | 11  |
| n           | 94    | 94       | 94       | 94       | 94   | 94    | 94    | 94  | 71  | 67  | 94  | 94  | 94  |
| t-stat      | 2.0   | 2.0      | 2.0      | 2.0      | 2.0  | 2.0   | 2.0   | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
| 95%<br>conf | 0.016 | 4786.28  | 4783.18  | 3331.62  | 2.03 | 18.01 | 3.29  | 1   | 1   | 2   | 1   | 0   | 2   |
| MIN         | 1     | 213      | 244      | 170      | 0    | 1     | 0     | 72  | 18  | 18  | 18  | 0   | 49  |
| MAX         | 7     | 187619   | 187619   | 130682   | 79   | 706   | 129   | 96  | 57  | 47  | 33  | 0   | 93  |

Table 5.2 Summer NH<sub>3</sub> emissions from the primary lagoon at the open-lot dairy.

CAAQES-The Center of Agricultural Air Quality Engineering and Science Texas A&M University College Station, TX

| Date:           | 6/15/2005 |       |
|-----------------|-----------|-------|
| Source:         | Lagoon-1  |       |
| Area of Source: | 6275      | $m^2$ |
| Number of Head: | 2000      | Dairy |

|          | Lagoon-1             |                                     |           |                       |                 |          |              |                        |                 |                 |              |               |                  |
|----------|----------------------|-------------------------------------|-----------|-----------------------|-----------------|----------|--------------|------------------------|-----------------|-----------------|--------------|---------------|------------------|
|          | Zero air<br>Flowrate | NH <sub>3</sub> Concentration (ppb) |           | Mass<br>Concentration | E. Flux         | ERs      | EFs          | Barometric<br>Pressure | Surface<br>temp | Chamber<br>temp | Amb.<br>temp | Chamber<br>RH | Amb.<br>humidity |
|          | [sL/min]             | Original                            | Corrected | $(\mu g/m^3)$         | $(\mu g/m^2-s)$ | (kg/day) | (kg/cow-year | (°C)                   | (°C)            | (°C)            | (°C)         | (%)           | (%)              |
|          | 6.5                  | 18299.9                             | 18982.9   | 13222.1               | 7.4             | 4.0      | 0.7          | 95.9                   |                 | 34.1            | 33.4         | 0.0           | 43.7             |
|          | 7.0                  | 28282.3                             | 29037.4   | 20225.3               | 12.3            | 6.7      | 1.2          | 95.9                   | 34.2            | 34.8            | 33.3         | 0.0           | 42.8             |
|          | 7.0                  | 38021.8                             | 38762.5   | 26999.1               | 16.4            | 8.9      | 1.6          | 95.9                   |                 |                 | 33.4         | 0.0           | 42.1             |
|          | 7.0                  | 26485.1                             | 27234.7   | 18969.7               | 11.5            | 6.2      | 1.1          | 95.9                   |                 | 34.4            | 33.8         | 0.0           | 39.7             |
|          | 6.8                  | 15308.5                             | 15946.5   | 11107.2               | 6.5             | 3.5      | 0.6          | 95.8                   | 34.5            | 35.3            | 34.2         | 0.0           | 37.5             |
|          | 7.0                  | 7581.6                              | 8027.6    | 5591.4                | 3.4             | 1.8      | 0.3          | 95.8                   |                 |                 | 33.9         | 0.0           | 39.1             |
|          |                      |                                     |           |                       |                 |          |              |                        |                 |                 |              |               |                  |
| Average  | 6.9                  | 22329.8                             | 22998.6   | 16019.1               | 9.6             | 5.2      | 0.9          | 95.9                   | 34.3            | 34.6            | 33.7         | 0.0           | 40.8             |
| Stdev    | 0.2                  | 10788.7                             | 10889.4   | 7584.8                | 4.7             | 2.5      | 0.5          | 0.1                    | 0.2             | 0.5             | 0.4          | 0.0           | 2.4              |
| n        | 6.0                  | 6.0                                 | 6.0       | 6.0                   | 6.0             | 6.0      | 6.0          | 6.0                    | 6.0             | 6.0             | 6.0          | 6.0           | 6.0              |
| t-stat   | 2.6                  | 2.6                                 | 2.6       | 2.6                   | 2.6             | 2.6      | 2.6          | 2.6                    | 2.6             | 2.6             | 2.6          | 2.6           | 2.6              |
| 95% conf | 0.2                  | 11322.1                             | 11427.8   | 7959.7                | 4.9             | 2.7      | 0.5          | 0.1                    | 0.2             | 0.5             | 0.4          | 0.0           | 2.5              |
| MIN      | 6.5                  | 7581.6                              | 8027.6    | 5591.4                | 3.4             | 1.8      | 0.3          | 95.8                   | 34.2            | 34.1            | 33.3         | 0.0           | 37.5             |
| MAX      | 7.0                  | 38021.8                             | 38762.5   | 26999.1               | 16.4            | 8.9      | 1.6          | 95.9                   | 34.5            | 35.3            | 34.2         | 0.0           | 43.7             |

Table 5.3 Summer NH<sub>3</sub> emissions from the secondary lagoon at the open-lot dairy.

CAAQES-The Center of Agricultural Air Quality Engineering and Science Texas A&M University College Station, TX

| 6/15/2005 |                                        |
|-----------|----------------------------------------|
| Lagoon-2  |                                        |
| 46094     | m <sup>2</sup>                         |
| 2000      | Dairy                                  |
|           | 6/15/2005<br>Lagoon-2<br>46094<br>2000 |

|          |                      |                         |              |                       |                 | Ι        | Lagoon-2         |                        |                 |                 |              |               |                  |
|----------|----------------------|-------------------------|--------------|-----------------------|-----------------|----------|------------------|------------------------|-----------------|-----------------|--------------|---------------|------------------|
|          | Zero air<br>Flowrate | NH <sub>3</sub> Concent | ration (ppb) | Mass<br>Concentration | E. Flux         | ERs      | EFs              | Barometric<br>Pressure | Surface<br>temp | Chamber<br>temp | Amb.<br>temp | Chamber<br>RH | Amb.<br>humidity |
|          | [sL/min]             | Original                | Corrected    | $(\mu g/m^3)$         | $(\mu g/m^2-s)$ | (kg/day) | (kg/cow-<br>year | (°C)                   | (°C)            | (°C)            | (°C)         | (%)           | [sL/min]         |
|          | 6.6                  | 13594.4                 | 14200.3      | 9890.9                | 5.7             | 22.5     | 4.1              | 95.7                   |                 | 32              | 33.2         | 0             | 39.7             |
|          | 7.0                  | 10449.5                 | 10982.4      | 7649.6                | 4.6             | 18.5     | 3.4              | 95.7                   | 30              | 32.7            | 33.2         | 0             | 38.8             |
|          | 7.0                  | 11505.6                 | 12065.3      | 8403.8                | 5.1             | 20.4     | 3.7              | 95.7                   |                 |                 | 33.1         | 0             | 40.2             |
|          | 7.0                  | 13554.2                 | 14159.4      | 9862.4                | 6.0             | 23.9     | 4.4              | 95.7                   |                 | 31              | 33.1         | 0             | 40.2             |
|          | 7.0                  | 11951.3                 | 12521.6      | 8721.6                | 5.3             | 21.2     | 3.9              | 95.7                   | 31.5            | 29.8            | 31.6         | 0             | 46.1             |
|          | 7.0                  | 11712.1                 | 12276.7      | 8551.1                | 5.2             | 20.8     | 3.8              | 95.7                   |                 |                 | 30.3         | 0             | 50.5             |
|          |                      |                         |              |                       |                 |          |                  |                        |                 |                 |              |               |                  |
| Average  | 6.9                  | 12127.8                 | 12700.9      | 8846.6                | 5.3             | 21.2     | 3.9              | 95.7                   | 30.7            | 31.4            | 32.4         | 0.0           | 42.6             |
| Stdev    | 0.2                  | 1232.3                  | 1260.5       | 878.0                 | 0.5             | 1.8      | 0.3              | 0.0                    | 1.1             | 1.3             | 1.2          | 0.0           | 4.7              |
| n        | 6.0                  | 6.0                     | 6.0          | 6.0                   | 6.0             | 6.0      | 6.0              | 6.0                    | 6.0             | 6.0             | 6.0          | 6.0           | 6.0              |
| t-stat   | 2.6                  | 2.6                     | 2.6          | 2.6                   | 2.6             | 2.6      | 2.6              | 2.6                    | 2.6             | 2.6             | 2.6          | 2.6           | 2.6              |
| 95% conf | 0.2                  | 1293.2                  | 1322.9       | 921.4                 | 0.5             | 1.9      | 0.4              | 0.0                    | 1.1             | 1.3             | 1.3          | 0.0           | 4.9              |
| MIN      | 6.6                  | 10449.5                 | 10982.4      | 7649.6                | 4.6             | 18.5     | 3.4              | 95.7                   | 30.0            | 29.8            | 30.3         | 0.0           | 38.8             |
| MAX      | 7.0                  | 13594.4                 | 14200.3      | 9890.9                | 6.0             | 23.9     | 4.4              | 95.7                   | 31.5            | 32.8            | 33.3         | 0.0           | 50.5             |

Table 5.4 Summer NH<sub>3</sub> emissions from the solid separator at the open-lot dairy.

CAAQES-The Center of Agricultural Air Quality Engineering and Science Texas A&M University College Station, TX

| Date:           | 6/15/2005 |                |
|-----------------|-----------|----------------|
|                 | Solid     |                |
| Source:         | Separator |                |
| Area of Source: | 50        | m <sup>2</sup> |
| Number of Head: | 2000      | Dairy          |

|          | Solid Separator      |                     |                   |                               |                 |          |              |                        |                 |                 |              |               |                  |
|----------|----------------------|---------------------|-------------------|-------------------------------|-----------------|----------|--------------|------------------------|-----------------|-----------------|--------------|---------------|------------------|
|          | Zero air<br>Flowrate | NH <sub>3</sub> Con | centration<br>pb) | Mass<br>Concentration E. Flux |                 | ERs      | EFs          | Barometric<br>Pressure | Surface<br>temp | Chamber<br>temp | Amb.<br>temp | Chamber<br>RH | Amb.<br>humidity |
|          | [sL/min]             | Original            | Corrected         | $(\mu g/m^3)$                 | $(\mu g/m^2-s)$ | (kg/day) | (kg/cow-year | (°C)                   | (°C)            | (°C)            | (°C)         | (%)           | [sL/min]         |
|          | 6.7                  | 1.0                 | 1.3               | 0.9                           | 0.0             | 0.0      | 0.0          | 96.0                   | 61.3            | 34.2            | 23.9         | 0.0           | 79.2             |
|          | 7.0                  | 1.0                 | 1.3               | 0.9                           | 0.0             | 0.0      | 0.0          | 96.1                   | 56.2            | 38.8            | 25.1         | 0.0           | 76.0             |
|          | 7.0                  | 46.3                | 54.8              | 38.2                          | 0.0             | 0.0      | 0.0          | 96.1                   | 0.0             | 0.0             | 25.9         | 0.0           | 74.6             |
|          | 7.0                  | 1.0                 | 1.3               | 0.9                           | 0.0             | 0.0      | 0.0          | 96.1                   | 54.1            | 37.6            | 26.4         | 0.0           | 71.3             |
|          |                      |                     |                   |                               |                 |          |              |                        |                 |                 |              |               |                  |
| Average  | 6.9                  | 12.3                | 14.7              | 10.2                          | 0.0             | 0.0      | 0.0          | 96.1                   | 42.9            | 27.6            | 25.3         | 0.0           | 75.3             |
| Stdev    | 0.2                  | 22.7                | 26.8              | 18.6                          | 0.0             | 0.0      | 0.0          | 0.0                    | 28.8            | 18.5            | 1.1          | 0.0           | 3.3              |
| n        | 4.0                  | 4.0                 | 4.0               | 4.0                           | 4.0             | 4.0      | 4.0          | 4.0                    | 4.0             | 4.0             | 4.0          | 4.0           | 4.0              |
| t-stat   | 3.2                  | 3.2                 | 3.2               | 3.2                           | 3.2             | 3.2      | 3.2          | 3.2                    | 3.2             | 3.2             | 3.2          | 3.2           | 3.2              |
| 95% conf | 0.3                  | 36.1                | 42.6              | 29.7                          | 0.0             | 0.0      | 0.0          | 0.1                    | 45.7            | 29.5            | 1.7          | 0.0           | 5.2              |
| MIN      | 6.7                  | 1.0                 | 1.3               | 0.9                           | 0.0             | 0.0      | 0.0          | 96.0                   | 0.0             | 0.0             | 23.9         | 0.0           | 71.3             |
| MAX      | 7.0                  | 46.3                | 54.8              | 38.2                          | 0.0             | 0.0      | 0.0          | 96.1                   | 61.3            | 38.8            | 26.4         | 0.0           | 79.2             |

Table 5.5 Winter NH<sub>3</sub> emissions from the open-lots at the open-lot dairy.

CAAQES-The Center of Agricultural Air Quality Engineering and Science Texas A&M University College Station, TX

| Date:<br>Source:<br>Area of So<br>Number of | ource:<br>f Head:    |                 | 12/18/200<br>Open Lo<br>8570<br>2000 | 05<br>ots<br>m <sup>2</sup><br>Dairy |                 | 103      | <mark>000</mark> E | ntire Area             |                 |                 |              |               |                  |
|---------------------------------------------|----------------------|-----------------|--------------------------------------|--------------------------------------|-----------------|----------|--------------------|------------------------|-----------------|-----------------|--------------|---------------|------------------|
|                                             |                      |                 |                                      |                                      |                 | (        | Open Lots          |                        |                 |                 |              |               |                  |
|                                             | Zero air<br>Flowrate | NH3 Conc<br>(pp | centration<br>b)                     | Mass<br>Concentration                | E. Flux         | ERs      | EFs                | Barometric<br>Pressure | Surface<br>temp | Chamber<br>temp | Amb.<br>temp | Chamber<br>RH | Amb.<br>humidity |
|                                             | [sL/min]             | Original        | Corrected                            | $(\mu g/m^3)$                        | $(\mu g/m^2-s)$ | (kg/day) | (kg/cow-year)      | (°C)                   | (°C)            | (°C)            | (°C)         | (%)           | (%)              |
| OL5 1                                       | 4.90                 | 3250.17         | 3508.5                               | 2443.8                               | 1.0             | 9.3      | 1.7                | 97.5                   | 7.8             | 7.2             | 7.8          | 0.0           | 70.9%            |
| OL5 2                                       | 7.13                 | 3764.08         | 4049.8                               | 2820.8                               | 1.7             | 15.5     | 2.8                | 97.5                   |                 |                 | 7.4          | 0.0           | 71.8%            |
| OL5 3                                       | 5.73                 | 9921.93         | 10440.4                              | 7272.0                               | 3.6             | 32.2     | 5.9                | 95.4                   | 7.6             | 7.8             | 7.1          | 0.0           | 73.3%            |
| OL5 4                                       | 7.06                 | 26873.19        | 27624.2                              | 19241.0                              | 11.8            | 105.0    | 19.2               | 97.5                   | 7.3             | 7.0             | 7.8          | 0.0           | 73.5%            |
| OL5 5                                       | 5.97                 | 23518.12        | 24251.9                              | 16892.1                              | 8.8             | 77.9     | 14.2               | 97.5                   |                 |                 | 7.8          | 0.0           | 74.4%            |
| OL5 6                                       | 7.13                 | 23619.83        | 24354.3                              | 16963.4                              | 10.5            | 93.4     | 17.0               | 97.4                   | 6.8             | 6.8             | 7.3          | 0.0           | 75.8%            |
| OL5 7                                       | 6.45                 | 65558.27        | 65963.9                              | 45945.6                              | 25.7            | 228.9    | 41.8               | 97.4                   | 6.1             | 6.6             | 6.8          | 0.0           | 76.0%            |
| OL5 8                                       | 7.10                 | 25624.26        | 26370.1                              | 18367.5                              | 11.3            | 100.7    | 18.4               | 97.4                   |                 |                 | 6.7          | 0.0           | 76.5%            |
| OL5 9                                       | 6.72                 | 7133.15         | 7563.4                               | 5268.1                               | 3.1             | 27.3     | 5.0                | 97.4                   | 6.2             | 6.3             | 6.7          | 0.0           | 75.3%            |
| OL5 11                                      | 4.53                 | 18545.86        | 19232.0                              | 13395.6                              | 5.3             | 46.9     | 8.6                | 97.4                   |                 |                 | 6.6          | 0.0           | 78.5%            |
| OL5 12                                      | 7.13                 | 3772.33         | 4058.5                               | 2826.8                               | 1.7             | 15.6     | 2.8                | 97.4                   | 6.2             | 6.2             | 6.4          | 0.0           | 77.3%            |
| OL5 13                                      | 5.41                 | 9869.70         | 10386.8                              | 7234.7                               | 3.4             | 30.2     | 5.5                | 97.4                   | 5.8             | 5.8             | 6.6          | 0.0           | 73.0%            |
| OL5 14                                      | 7.12                 | 8262.45         | 8262.5                               | 5755.0                               | 3.6             | 31.7     | 5.8                | 97.4                   |                 |                 | 6.6          | 0.0           | 72.0%            |
| OL5 15                                      | 6.07                 | 8421.43         | 8895.2                               | 6195.8                               | 3.3             | 29.0     | 5.3                | 97.4                   | 5.8             | 6.6             | 6.6          | 0.0           | 70.2%            |

| OL5 16 | 7.09 | 3955.71  | 4251.2  | 2961.1  | 1.8  | 16.2  | 3.0  | 97.5 | 6.3  | 5.9  | 6.5 | 0.0 | 70.0% |
|--------|------|----------|---------|---------|------|-------|------|------|------|------|-----|-----|-------|
| OL5 17 | 6.46 | 9392.13  | 9895.5  | 6892.5  | 3.9  | 34.4  | 6.3  | 97.5 |      |      | 6.4 | 0.0 | 71.7% |
| OL5 18 | 7.13 | 18079.04 | 18759.1 | 13066.3 | 8.1  | 71.9  | 13.1 | 97.5 | 5.8  | 7.4  | 6.6 | 0.0 | 71.4% |
| OL5 19 | 6.74 | 11821.61 | 12388.9 | 8629.2  | 5.1  | 45.0  | 8.2  | 97.5 | 6.5  | 5.8  | 6.6 | 0.0 | 70.2% |
| OL5 20 | 7.13 | 4310.95  | 4623.9  | 3220.7  | 2.0  | 17.7  | 3.2  | 97.5 |      |      | 6.3 | 0.0 | 65.6% |
| OL5 21 | 6.96 | 5563.58  | 5932.9  | 4132.4  | 2.5  | 22.2  | 4.1  | 97.6 | 6.2  | 7.0  | 6.1 | 0.0 | 62.8% |
| OL5 22 | 7.10 | 10232.32 | 10759.4 | 7494.2  | 4.6  | 41.1  | 7.5  | 97.6 | 7.0  | 6.3  | 6.2 | 0.0 | 60.1% |
| OL5 23 | 7.09 | 7297.83  | 7733.9  | 5386.9  | 3.3  | 29.5  | 5.4  | 97.6 |      |      | 6.6 | 0.0 | 58.1% |
| OL5 24 | 7.10 | 10415.82 | 10947.8 | 7625.4  | 4.7  | 41.8  | 7.6  | 97.6 | 7.8  | 10.2 | 6.7 | 0.0 | 54.7% |
| OL5 25 | 7.17 | 17131.73 | 17798.7 | 12397.3 | 7.7  | 68.7  | 12.5 | 97.6 | 8.1  | 7.7  | 6.9 | 0.0 | 52.0% |
| OL5 26 | 7.12 | 2755.15  | 2985.3  | 2079.3  | 1.3  | 11.4  | 2.1  | 97.6 |      |      | 6.9 | 0.0 | 52.3% |
| OL5 27 | 7.25 | 3188.43  | 3443.4  | 2398.4  | 1.5  | 13.4  | 2.5  | 97.5 | 7.7  | 8.2  | 7.0 | 0.0 | 52.4% |
| OL5 28 | 7.10 | 5291.68  | 5649.4  | 3934.9  | 2.4  | 21.6  | 3.9  | 97.4 | 8.2  | 9.0  | 7.2 | 0.0 | 50.4% |
| OL5 29 | 7.26 | 4060.16  | 4360.9  | 3037.5  | 1.9  | 17.0  | 3.1  | 97.3 |      |      | 7.7 | 0.0 | 48.0% |
| OL5 30 | 7.10 | 3537.11  | 3811.0  | 2654.4  | 1.6  | 14.6  | 2.7  | 97.3 | 11.3 | 8.1  | 8.2 | 0.0 | 46.9% |
| OL5 31 | 7.30 | 9594.43  | 10103.7 | 7037.5  | 4.5  | 39.7  | 7.2  | 97.2 | 9.2  | 11.8 | 8.4 | 0.0 | 47.0% |
| OL5 32 | 7.13 | 6279.59  | 6677.8  | 4651.3  | 2.9  | 25.6  | 4.7  | 97.2 |      |      | 8.6 | 0.0 | 48.5% |
| OL5 33 | 7.32 | 2234.51  | 2432.6  | 1694.3  | 1.1  | 9.6   | 1.7  | 97.2 | 11.5 | 9.6  | 9.0 | 0.0 | 48.5% |
| OL5 34 | 7.13 | 2154.92  | 2347.8  | 1635.3  | 1.0  | 9.0   | 1.6  | 97.1 | 9.8  | 10.6 | 9.0 | 0.0 | 47.8% |
| OL5 35 | 7.36 | 14512.61 | 14512.6 | 10108.4 | 6.5  | 57.5  | 10.5 | 97.1 |      |      | 9.1 | 0.0 | 50.1% |
| OL5 36 | 7.13 | 4669.92  | 4999.8  | 3482.5  | 2.2  | 19.2  | 3.5  | 97.1 | 9.6  | 9.9  | 8.7 | 0.0 | 51.7% |
| OL5 37 | 7.37 | 8885.03  | 9373.3  | 6528.7  | 4.2  | 37.2  | 6.8  | 97.1 | 8.7  | 8.6  | 8.2 | 0.0 | 52.1% |
| OL5 38 | 7.12 | 2731.92  | 2960.7  | 2062.2  | 1.3  | 11.3  | 2.1  | 97.1 |      |      | 7.8 | 0.0 | 53.0% |
| OL5 39 | 7.38 | 7555.78  | 8000.9  | 5572.8  | 3.6  | 31.8  | 5.8  | 97.1 | 6.9  | 8.5  | 7.4 | 0.0 | 53.8% |
| OL5 40 | 7.13 | 2507.38  | 2722.6  | 1896.3  | 1.2  | 10.4  | 1.9  | 97.1 | 7.0  | 7.4  | 7.4 | 0.0 | 55.3% |
| OL5 41 | 7.11 | 17801.12 | 18477.5 | 12870.1 | 7.9  | 70.7  | 12.9 | 97.1 |      |      | 7.3 | 0.0 | 56.6% |
| OL5 42 | 6.79 | 2838.37  | 3073.4  | 2140.7  | 1.3  | 11.2  | 2.0  | 97.1 | 6.6  | 9.5  | 7.0 | 0.0 | 56.8% |
| OL5 43 | 7.39 | 5322.15  | 5681.2  | 3957.1  | 2.5  | 22.6  | 4.1  | 97.1 | 7.8  | 6.6  | 6.8 | 0.0 | 59.1% |
| OL5 44 | 7.09 | 8427.54  | 8427.5  | 5870.0  | 3.6  | 32.2  | 5.9  | 97.2 |      |      | 6.6 | 0.0 | 59.9% |
| OL5 46 | 5.08 | 10143.31 | 10667.9 | 7430.5  | 3.3  | 29.2  | 5.3  | 97.1 | 5.9  | 5.6  | 6.4 | 0.0 | 60.9% |
| OL5 47 | 7.12 | 1273.65  | 1404.0  | 977.9   | 0.6  | 5.4   | 1.0  | 97.1 |      |      | 6.2 | 0.0 | 60.2% |
| OL5 48 | 5.82 | 36271.33 | 37019.6 | 25785.1 | 13.0 | 115.9 | 21.2 | 97.1 | 5.4  | 5.8  | 6.2 | 0.0 | 59.5% |

| OL5 49 | 7.02 | 2894.79  | 3133.1  | 2182.3  | 1.3  | 11.8  | 2.2  | 97.1 | 5.5  | 5.4  | 6.2 | 0.0 | 62.4% |
|--------|------|----------|---------|---------|------|-------|------|------|------|------|-----|-----|-------|
| OL5 50 | 6.46 | 6510.73  | 6917.9  | 4818.5  | 2.7  | 24.0  | 4.4  | 97.1 |      |      | 6.2 | 0.0 | 62.6% |
| OL5 52 | 4.47 | 48637.30 | 49292.5 | 34333.6 | 13.3 | 118.5 | 21.6 | 97.0 | 5.4  | 5.8  | 5.8 | 0.0 | 63.4% |
| OL5 53 | 7.13 | 4677.09  | 5007.3  | 3487.7  | 2.2  | 19.2  | 3.5  | 97.0 |      |      | 5.8 | 0.0 | 62.1% |
| OL5 54 | 5.41 | 3330.14  | 3592.9  | 2502.5  | 1.2  | 10.5  | 1.9  | 96.9 | 4.8  | 5.0  | 5.8 | 0.0 | 61.0% |
| OL5 55 | 7.13 | 4535.96  | 4859.6  | 3384.9  | 2.1  | 18.6  | 3.4  | 97.0 | 5.0  | 5.1  | 5.5 | 0.0 | 61.1% |
| OL5 56 | 6.04 | 3829.14  | 4118.2  | 2868.4  | 1.5  | 13.4  | 2.4  | 97.0 |      |      | 5.6 | 0.0 | 61.9% |
| OL5 57 | 7.12 | 3568.88  | 3844.4  | 2677.7  | 1.7  | 14.7  | 2.7  | 97.0 | 5.0  | 5.0  | 5.4 | 0.0 | 62.7% |
| OL5 58 | 6.41 | 16897.18 | 17560.7 | 12231.5 | 6.8  | 60.6  | 11.1 | 96.9 | 5.4  | 5.4  | 5.8 | 0.0 | 62.4% |
| OL5 60 | 5.07 | 18392.72 | 19076.9 | 13287.6 | 5.8  | 52.0  | 9.5  | 96.9 | 5.0  | 5.0  | 5.8 | 0.0 | 62.2% |
| OL5 61 | 7.12 | 18603.70 | 19290.6 | 13436.4 | 8.3  | 73.9  | 13.5 | 96.9 | 5.4  | 5.0  | 5.8 | 0.0 | 62.2% |
| OL5 62 | 5.84 | 5072.92  | 5421.1  | 3775.9  | 1.9  | 17.0  | 3.1  | 97.0 |      |      | 5.8 | 0.0 | 63.6% |
| OL5 63 | 7.07 | 4975.16  | 5318.9  | 3704.8  | 2.3  | 20.2  | 3.7  | 97.0 | 5.0  | 5.0  | 5.8 | 0.0 | 65.5% |
| OL5 64 | 6.33 | 2801.46  | 3034.3  | 2113.5  | 1.2  | 10.3  | 1.9  | 97.0 | 5.8  | 7.4  | 5.6 | 0.0 | 64.7% |
| OL5 65 | 7.10 | 3013.87  | 3259.0  | 2270.0  | 1.4  | 12.5  | 2.3  | 97.1 |      |      | 5.4 | 0.0 | 64.9% |
| OL5 66 | 4.98 | 59320.51 | 59832.2 | 41674.8 | 18.0 | 160.2 | 29.2 | 97.2 | 6.0  | 5.7  | 5.8 | 0.0 | 65.8% |
| OL5 67 | 7.12 | 4767.48  | 5101.9  | 3553.6  | 2.2  | 19.6  | 3.6  | 97.1 | 7.4  | 8.2  | 6.4 | 0.0 | 65.4% |
| OL5 68 | 5.70 | 17751.95 | 17751.9 | 12364.7 | 6.1  | 54.4  | 9.9  | 96.9 |      |      | 7.8 | 0.0 | 66.1% |
| OL5 69 | 6.62 | 10350.17 | 10880.4 | 7578.5  | 4.4  | 38.8  | 7.1  | 96.9 | 9.6  | 7.8  | 8.1 | 0.0 | 65.3% |
| OL5 70 | 7.12 | 62030.70 | 62498.2 | 43531.7 | 26.9 | 239.5 | 43.7 | 96.8 | 10.3 | 8.6  | 7.9 | 0.0 | 62.3% |
| OL5 71 | 6.86 | 8747.53  | 9231.6  | 6430.0  | 3.8  | 34.1  | 6.2  | 96.8 |      |      | 7.8 | 0.0 | 61.5% |
| OL5 72 | 7.13 | 9816.22  | 10331.8 | 7196.4  | 4.5  | 39.6  | 7.2  | 96.8 | 10.5 | 8.6  | 8.0 | 0.0 | 61.2% |
| OL5 73 | 7.03 | 2128.95  | 2320.2  | 1616.1  | 1.0  | 8.8   | 1.6  | 96.9 | 10.2 | 10.2 | 8.2 | 0.0 | 60.5% |
| OL5 74 | 7.10 | 3185.52  | 3440.3  | 2396.3  | 1.5  | 13.2  | 2.4  | 96.9 |      |      | 8.1 | 0.0 | 60.2% |
| OL5 75 | 7.14 | 2141.28  | 2333.3  | 1625.2  | 1.0  | 9.0   | 1.6  | 96.9 | 8.1  | 8.6  | 7.8 | 0.0 | 60.9% |
| OL5 76 | 6.65 | 1181.40  | 1304.5  | 908.6   | 0.5  | 4.7   | 0.9  | 97.0 | 7.8  | 9.2  | 7.5 | 0.0 | 60.8% |
| OL5 77 | 7.12 | 1002.10  | 1110.5  | 773.5   | 0.5  | 4.3   | 0.8  | 97.1 |      |      | 5.4 | 0.0 | 72.2% |
| OL5 78 | 5.20 | 1199.50  | 1324.0  | 922.2   | 0.4  | 3.7   | 0.7  | 97.1 | 5.4  | 5.2  | 5.4 | 0.0 | 75.4% |
| OL5 79 | 7.12 | 1302.87  | 1435.5  | 999.9   | 0.6  | 5.5   | 1.0  | 97.1 | 5.4  | 5.1  | 5.2 | 0.0 | 76.3% |
| OL5 80 | 5.89 | 989.86   | 1097.3  | 764.3   | 0.4  | 3.5   | 0.6  | 97.2 |      |      | 5.0 | 0.0 | 77.2% |
| OL5 81 | 7.12 | 1099.91  | 1216.4  | 847.3   | 0.5  | 4.7   | 0.9  | 97.2 | 4.6  | 4.6  | 4.6 | 0.0 | 77.9% |
| OL5 82 | 6.36 | 1072.60  | 1072.6  | 747.1   | 0.4  | 3.7   | 0.7  | 97.2 | 4.5  | 7.8  | 4.6 | 0.0 | 78.6% |

| OL5 83  | 7.13 | 984.84  | 1091.8  | 760.5  | 0.5 | 4.2  | 0.8 | 97.2 |      |      | 4.3 | 0.0 | 79.2% |
|---------|------|---------|---------|--------|-----|------|-----|------|------|------|-----|-----|-------|
| OL5 84  | 6.69 | 1003.12 | 1003.1  | 698.7  | 0.4 | 3.6  | 0.7 | 97.2 | 3.7  | 4.3  | 3.9 | 0.0 | 79.3% |
| OL5 85  | 7.13 | 976.69  | 1083.0  | 754.3  | 0.5 | 4.2  | 0.8 | 97.1 | 3.3  | 4.1  | 3.4 | 0.0 | 81.1% |
| OL5 86  | 6.91 | 1283.24 | 1414.3  | 985.1  | 0.6 | 5.3  | 1.0 | 97.2 |      |      | 2.7 | 0.0 | 83.5% |
| OL5 87  | 7.12 | 970.54  | 1076.3  | 749.7  | 0.5 | 4.1  | 0.8 | 97.2 | 2.4  | 2.6  | 2.3 | 0.0 | 85.5% |
| OL5 88  | 7.03 | 1453.84 | 1597.9  | 1113.0 | 0.7 | 6.0  | 1.1 | 97.2 | 3.0  | 3.4  | 3.1 | 0.0 | 84.0% |
| OL5 89  | 7.13 | 1391.91 | 1531.4  | 1066.6 | 0.7 | 5.9  | 1.1 | 97.1 |      |      | 3.2 | 0.0 | 83.5% |
| OL5 90  | 7.16 | 1191.32 | 1315.2  | 916.1  | 0.6 | 5.1  | 0.9 | 97.1 | 1.1  | 1.8  | 2.2 | 0.0 | 86.7% |
| OL5 91  | 7.13 | 1758.01 | 1924.1  | 1340.2 | 0.8 | 7.4  | 1.3 | 97.1 | 0.8  | 0.7  | 1.7 | 0.0 | 88.9% |
| OL5 92  | 7.23 | 1183.07 | 1306.3  | 909.9  | 0.6 | 5.1  | 0.9 | 97.1 |      |      | 1.8 | 0.0 | 90.1% |
| OL5 93  | 7.05 | 1577.38 | 1730.6  | 1205.4 | 0.7 | 6.6  | 1.2 | 97.1 | 2.3  | 2.2  | 2.3 | 0.0 | 88.4% |
| OL5 94  | 7.28 | 1332.51 | 1467.4  | 1022.1 | 0.6 | 5.7  | 1.0 | 97.1 | 2.8  | 2.9  | 2.5 | 0.0 | 88.6% |
| OL5 95  | 7.12 | 1249.04 | 1377.5  | 959.4  | 0.6 | 5.3  | 1.0 | 97.1 |      |      | 2.5 | 0.0 | 88.4% |
| OL5 96  | 7.31 | 1130.09 | 1249.0  | 870.0  | 0.6 | 4.9  | 0.9 | 97.1 | 2.9  | 2.6  | 2.4 | 0.0 | 88.9% |
| OL5 97  | 7.08 | 1098.13 | 1214.5  | 845.9  | 0.5 | 4.6  | 0.8 | 97.0 | 2.0  | 2.5  | 2.0 | 0.0 | 90.5% |
| OL5 98  | 7.33 | 1048.70 | 1161.0  | 808.7  | 0.5 | 4.6  | 0.8 | 97.0 |      |      | 1.6 | 0.0 | 87.2% |
| OL5 99  | 7.10 | 872.93  | 970.3   | 675.9  | 0.4 | 3.7  | 0.7 | 97.1 | 0.3  | -0.5 | 0.8 | 0.0 | 88.8% |
| OL5 100 | 7.35 | 921.58  | 1023.2  | 712.7  | 0.5 | 4.0  | 0.7 | 97.1 | -0.6 | -2.8 | 0.1 | 0.0 | 90.4% |
|         |      |         |         |        |     |      |     |      |      |      |     |     |       |
| Average | 6.8  | 8912.8  | 9236.8  | 6433.7 | 3.6 | 31.9 | 5.8 | 97.2 | 6.1  | 6.2  | 6.0 | 0.0 | 67.6% |
| Stdev   | 0.7  | 12618.6 | 12740 7 | 8874.2 | 47  | 42.0 | 77  | 0.3  | 26   | 27   | 20  | 0.0 | 12.1% |

| Average  | 6.8  | 8912.8  | 9236.8  | 6433.7  | 3.6  | 31.9  | 5.8  | 97.2 | 6.1  | 6.2  | 6.0  | 0.0  | 67.6% |
|----------|------|---------|---------|---------|------|-------|------|------|------|------|------|------|-------|
| Stdev    | 0.7  | 12618.6 | 12740.7 | 8874.2  | 4.7  | 42.0  | 7.7  | 0.3  | 2.6  | 2.7  | 2.0  | 0.0  | 12.1% |
| n        | 96.0 | 96.0    | 96.0    | 96.0    | 96.0 | 96.0  | 96.0 | 96.0 | 64.0 | 64.0 | 96.0 | 96.0 | 96.0  |
| t-stat   | 2.0  | 2.0     | 2.0     | 2.0     | 2.0  | 2.0   | 2.0  | 2.0  | 2.0  | 2.0  | 2.0  | 2.0  | 2.0   |
| 95% conf | 0.1  | 2556.8  | 2581.5  | 1798.1  | 1.0  | 8.5   | 1.6  | 0.1  | 0.7  | 0.7  | 0.4  | 0.0  | 2.5%  |
| MIN      | 4.5  | 872.9   | 970.3   | 675.9   | 0.4  | 3.5   | 0.6  | 95.4 | -0.6 | -2.8 | 0.1  | 0.0  | 46.9% |
| MAX      | 7.4  | 65558.3 | 65963.9 | 45945.6 | 26.9 | 239.5 | 43.7 | 97.6 | 11.5 | 11.8 | 9.1  | 0.0  | 90.5% |

Table 5.6 Winter NH<sub>3</sub> emissions from the primary lagoon at the open-lot dairy.

CAAQES-The Center of Agricultural Air Quality Engineering and Science Texas A&M University College Station, TX

| Date:           | 12/21/2005 |      |
|-----------------|------------|------|
| Source:         | Lagoon-1   |      |
| Area of Source: | 46094      | 6275 |
| Number of Head: | 2000       | 2000 |

|          |                      |                       |                 |                       |                 | La       | agoon-1          |                        |                 |                 |           |               |                  |
|----------|----------------------|-----------------------|-----------------|-----------------------|-----------------|----------|------------------|------------------------|-----------------|-----------------|-----------|---------------|------------------|
|          | Zero air<br>Flowrate | NH <sub>3</sub> Conce | entration (ppb) | Mass<br>Concentration | E. Flux         | ERs      | EFs              | Barometric<br>Pressure | Surface<br>temp | Chamber<br>temp | Amb. temp | Chamber<br>RH | Amb.<br>humidity |
|          | [sL/min]             | Original              | Corrected       | $(\mu g/m^3)$         | $(\mu g/m^2-s)$ | (kg/day) | (kg/cow-<br>year | (°C)                   | (°C)            | (°C)            | (°C)      | (%)           | [sL/min]         |
|          | 7.04                 | 486                   | 547.0           | 381.0                 | 0.2             | 0.1      | 0.0              | 96.8                   | 12.7            | 15.7            | 15.0      | 0.0           | 26.5%            |
|          | 4.52                 | 560                   | 628.3           | 437.6                 | 0.2             | 0.1      | 0.0              | 96.8                   |                 |                 | 13.8      | 0.0           | 30.3%            |
|          | 7.13                 | 1726                  | 1889.8          | 1316.3                | 0.8             | 0.4      | 0.1              | 96.8                   | 8.5             | 11.1            | 10.7      | 0.0           | 38.4%            |
|          | 4.48                 | 2544                  | 2761.2          | 1923.2                | 0.7             | 0.4      | 0.1              | 96.9                   | 10.3            | 8.0             | 9.6       | 0.0           | 40.7%            |
|          | 7.12                 | 1664                  | 1823.5          | 1270.1                | 0.8             | 0.4      | 0.1              | 96.9                   | 7.0             | 9.8             | 8.6       | 0.0           | 44.1%            |
|          |                      |                       |                 |                       |                 |          |                  |                        |                 |                 |           |               |                  |
|          |                      |                       |                 |                       |                 |          |                  | 96.8                   | 9.6             | 11.2            | 11.6      | 0.0           | 36.0%            |
| Average  | 6.1                  | 1395.9                | 1529.9          | 1065.7                | 0.6             | 0.3      | 0.1              | 0.1                    | 2.4             | 3.3             | 2.8       | 0.0           | 7.3%             |
| Stdev    | 1.4                  | 869.7                 | 936.9           | 652.6                 | 0.3             | 0.2      | 0.0              | 5.0                    | 4.0             | 4.0             | 5.0       | 5.0           | 5.0              |
| n        | 5.0                  | 5.0                   | 5.0             | 5.0                   | 5.0             | 5.0      | 5.0              | 2.8                    | 3.2             | 3.2             | 2.8       | 2.8           | 2.8              |
| t-stat   | 2.8                  | 2.8                   | 2.8             | 2.8                   | 2.8             | 2.8      | 2.8              | 0.1                    | 3.9             | 5.2             | 3.4       | 0.0           | 9.1%             |
| 95% conf | 1.8                  | 1079.9                | 1163.3          | 810.3                 | 0.4             | 0.2      | 0.0              | 96.8                   | 7.0             | 8.0             | 8.6       | 0.0           | 26.5%            |
| MIN      | 4.5                  | 485.8                 | 547.0           | 381.0                 | 0.2             | 0.1      | 0.0              | 96.9                   | 12.7            | 15.7            | 15.0      | 0.0           | 44.1%            |
| MAX      | 7.1                  | 2543.8                | 2761.2          | 1923.2                | 0.8             | 0.4      | 0.1              | 96.8                   | 12.7            | 15.7            | 15.0      | 0.0           | 26.5%            |

Table 5.7 Winter NH<sub>3</sub> emissions from the secondary lagoon at the open-lot dairy.

CAAQES-The Center of Agricultural Air Quality Engineering and Science Texas A&M University College Station, TX

| Date:           | 12/21/2005 |
|-----------------|------------|
| Source:         | Lagoon-2   |
| Area of Source: | 46094      |
| Number of Head: | 2000       |

|          |                      |                       |                 |                       |                 | Lago     | oon-2            |                        |                 |                 |           |               |                  |
|----------|----------------------|-----------------------|-----------------|-----------------------|-----------------|----------|------------------|------------------------|-----------------|-----------------|-----------|---------------|------------------|
|          | Zero air<br>Flowrate | NH <sub>3</sub> Conce | entration (ppb) | Mass<br>Concentration | E. Flux         | ERs      | EFs              | Barometric<br>Pressure | Surface<br>temp | Chamber<br>temp | Amb. temp | Chamber<br>RH | Amb.<br>humidity |
|          | [sL/min]             | Original              | Corrected       | $(\mu g/m^3)$         | $(\mu g/m^2-s)$ | (kg/day) | (kg/cow-<br>year | (°C)                   | (°C)            | (°C)            | (°C)      | (%)           | [sL/min]         |
|          | 6.78                 | 1131                  | 1249.5          | 870.3                 | 0.5             | 1.0      | 0.2              | 96.7                   | N/A             | N/A             | 4.99      | N/A           | 61.3%            |
|          | 7.13                 | 990                   | 1096.9          | 764.1                 | 0.5             | 0.9      | 0.2              | 96.6                   |                 |                 | 15.75633  |               | 39.3%            |
|          | 7.13                 | 779                   | 868.1           | 604.7                 | 0.4             | 0.7      | 0.1              |                        |                 |                 |           |               |                  |
|          |                      |                       |                 |                       |                 |          |                  |                        |                 |                 |           |               |                  |
| Average  | 7.0                  | 966.4                 | 1071.5          | 746.3                 | 0.5             | 0.9      | 0.2              | 96.7                   |                 |                 | 10.4      |               | 0.5              |
| Stdev    | 0.2                  | 176.9                 | 192.0           | 133.7                 | 0.1             | 0.1      | 0.0              | 0.1                    |                 |                 | 7.6       |               | 0.2              |
| n        | 3.0                  | 3.0                   | 3.0             | 3.0                   | 3.0             | 3.0      | 3.0              | 2.0                    |                 |                 | 2.0       |               | 2.0              |
| t-stat   | 4.3                  | 4.3                   | 4.3             | 4.3                   | 4.3             | 4.3      | 4.3              | 12.7                   |                 |                 | 12.7      |               | 12.7             |
| 95% conf | 0.5                  | 439.4                 | 476.8           | 332.1                 | 0.2             | 0.3      | 0.1              | 1.1                    |                 |                 | 68.4      |               | 1.4              |
| MIN      | 6.8                  | 779.0                 | 868.1           | 604.7                 | 0.4             | 0.7      | 0.1              | 96.6                   |                 |                 | 5.0       |               | 0.4              |
| МАХ      | 7.1                  | 1130.5                | 1249.5          | 870.3                 | 0.5             | 1.0      | 0.2              | 96.7                   |                 |                 | 15.8      |               | 0.6              |

Table 5.8 Winter NH<sub>3</sub> emissions from the solid separator at the open-lot dairy.

CAAQES-The Center of Agricultural Air Quality Engineering and Science Texas A&M University College Station, TX

| Date:           | 12/21/2005 |                |
|-----------------|------------|----------------|
|                 | Solid      |                |
| Source:         | Separator  |                |
| Area of Source: | 500        | m <sup>2</sup> |
| Number of Head: | 2000       | Dairy          |
|                 |            |                |

|          | Solid Separator      |                       |                 |                       |                 |          |                  |                        |                 |                 |              |               |                  |
|----------|----------------------|-----------------------|-----------------|-----------------------|-----------------|----------|------------------|------------------------|-----------------|-----------------|--------------|---------------|------------------|
|          | Zero air<br>Flowrate | NH <sub>3</sub> Conce | entration (ppb) | Mass<br>Concentration | E. Flux         | ERs      | EFs              | Barometric<br>Pressure | Surface<br>temp | Chamber<br>temp | Amb.<br>temp | Chamber<br>RH | Amb.<br>humidity |
|          | [sL/min]             | Original              | Corrected       | $(\mu g/m^3)$         | $(\mu g/m^2-s)$ | (kg/day) | (kg/cow-<br>year | (°C)                   | (°C)            | (°C)            | (°C)         | (%)           | [sL/min]         |
|          | 7.13                 | 684                   | 763.9           | 532.1                 | 0.3             | 0.014    | 0.0026           | 97.2                   | 5.9             | 13              | 3.5          | 0             | 83.4%            |
|          | 4.82                 | 726                   | 810.1           | 564.2                 | 0.2             | 0.010    | 0.0019           | 97.2                   | 0               | 0               | 4.8          | 0             | 76.8%            |
|          | 7.12                 | 798                   | 889.1           | 619.3                 | 0.4             | 0.017    | 0.0030           | 97.2                   | 25.7            | 10.5            | 6.2          | 0             | 68.5%            |
|          |                      |                       |                 |                       |                 |          |                  |                        |                 |                 |              |               |                  |
| Average  | 6.4                  | 735.9                 | 821.0           | 571.9                 | 0.3             | 0.014    | 0.002            | 97.2                   | 10.5            | 7.8             | 4.9          | 0.000         | 76.2%            |
| Stdev    | 1.3                  | 58.0                  | 63.3            | 44.1                  | 0.1             | 0.003    | 0.001            | 0.0                    | 13.4            | 6.8             | 1.356        | 0.000         | 7.4%             |
| n        | 3.0                  | 3.0                   | 3.0             | 3.0                   | 3.0             | 3.0      | 3.0              | 3.0                    | 3.0             | 3.0             | 3.0          | 3.0           | 3.0              |
| t-stat   | 4.3                  | 4.3                   | 4.3             | 4.3                   | 4.3             | 4.3      | 4.3              | 4.3                    | 4.3             | 4.3             | 4.3          | 4.3           | 4.3              |
| 95% conf | 3.3                  | 144.1                 | 157.2           | 109.5                 | 0.2             | 0.008    | 0.001            | 0.0                    | 33.4            | 17.1            | 3.369        | 0.000         | 18.5%            |
| MIN      | 4.8                  | 683.6                 | 763.9           | 532.1                 | 0.2             | 0.010    | 0.002            | 97.2                   | 0.000           | 0.000           | 3.573        | 0.000         | 68.5%            |
| MAX      | 7.1                  | 798.3                 | 889.1           | 619.3                 | 0.4             | 0.017    | 0.003            | 97.2                   | 25.730          | 13.000          | 6.285        | 0.000         | 83.4%            |

Table 5.9 Winter NH<sub>3</sub> emissions from the milking parlor at the open-lot dairy.

CAAQES-The Center of Agricultural Air Quality Engineering and Science Texas A&M University College Station, TX

| Date:           | 12/21/2005     |       |
|-----------------|----------------|-------|
| Source:         | Milking Parlor |       |
| Area of Source: | 500            | $m^2$ |
| Number of Head: | 2000           | Dairy |

|          | Milking Parlor       |                       |                |               |                 |          |                  |                        |                 |                 |           |               |                  |
|----------|----------------------|-----------------------|----------------|---------------|-----------------|----------|------------------|------------------------|-----------------|-----------------|-----------|---------------|------------------|
|          | Zero air<br>Flowrate | NH <sub>3</sub> Conce | ntration (ppb) | Mass E. Flux  |                 | ERs      | EFs              | Barometric<br>Pressure | Surface<br>temp | Chamber<br>temp | Amb. temp | Chamber<br>RH | Amb.<br>humidity |
|          | [sL/min]             | Original              | Corrected      | $(\mu g/m^3)$ | $(\mu g/m^2-s)$ | (kg/day) | (kg/cow-<br>year | (°C)                   | (°C)            | (°C)            | (°C)      | (%)           | [sL/min]         |
|          | 7.07                 | 110                   | 128.0          | 89.2          | 0.1             | 0.0024   | 0.0012           | 97.0                   | 13.5            | 19.9            | 12.2      | 0.0           | 38.68%           |
|          | 4.95                 | 112                   | 130.6          | 90.9          | 0.0             | 0.0017   | 0.0008           | 96.9                   |                 |                 | 12.6      | 0.0           | 36.91%           |
|          | 7.12                 | 115                   | 133.1          | 92.7          | 0.1             | 0.0025   | 0.0012           | 96.9                   | 23.2            | 14.7            | 13.6      | 0.0           | 36.92%           |
|          |                      |                       |                |               |                 |          |                  |                        |                 |                 |           |               |                  |
| Average  | 6.4                  | 112.4                 | 130.5          | 90.9          | 0.1             | 0.0022   | 0.0011           | 96.9                   | 18.4            | 17.3            | 12.8      | 0.0           | 37.5%            |
| Stdev    | 1.2                  | 2.2                   | 2.5            | 1.8           | 0.0             | 0.0004   | 0.0002           | 0.1                    | 6.9             | 3.7             | 0.7       | 0.0           | 1.0%             |
| n        | 3.0                  | 3.0                   | 3.0            | 3.0           | 3.0             | 3.0      | 3.0              | 3.0                    | 2.0             | 2.0             | 3.0       | 3.0           | 3.0              |
| t-stat   | 4.3                  | 4.3                   | 4.3            | 4.3           | 4.3             | 4.3      | 4.3              | 4.3                    | 12.7            | 12.7            | 4.3       | 4.3           | 4.3              |
| 95% conf | 3.1                  | 5.6                   | 6.3            | 4.4           | 0.0             | 0.0011   | 0.0005           | 0.1                    | 61.6            | 32.9            | 1.9       | 0.0           | 2.5%             |
| MIN      | 4.9                  | 110.1                 | 128.0          | 89.2          | 0.0             | 0.0017   | 0.0008           | 96.9                   | 13.5            | 14.7            | 12.2      | 0.0           | 36.9%            |
| MAX      | 7.1                  | 114.6                 | 133.1          | 92.7          | 0.1             | 0.0025   | 0.0012           | 97.0                   | 23.2            | 19.9            | 13.6      | 0.0           | 38.7%            |

Table 5.10 Summer  $NH_3$  emissions from the free-stalls at the free-stall dairy.

CAAQES-The Center of Agricultural Air Quality Engineering and Science Texas A&M University College Station, TX

| Date:           | 7/14/2003  |       | Area o   | f the free-st | all divisions (m <sup>2</sup> ) |            |  |
|-----------------|------------|-------|----------|---------------|---------------------------------|------------|--|
|                 |            |       | Non-feed |               | feed                            |            |  |
| Source:         | Free-stall |       | side     | compost       | side                            | water area |  |
| Area of Source: | 9790       | m²    | 2700     | 3800          | 3090                            | 200        |  |
| Number of Head: | 2100       | Dairy |          |               |                                 |            |  |

|          |                      | Free-stall barn/Non-feed side |              |                       |                        |          |               |                        |                 |                 |              |               |                  |
|----------|----------------------|-------------------------------|--------------|-----------------------|------------------------|----------|---------------|------------------------|-----------------|-----------------|--------------|---------------|------------------|
|          | Zero air<br>Flowrate | NH <sub>3</sub> Concent       | ration (ppb) | Mass<br>Concentration | E. Flux                | ERs      | EFs           | Barometric<br>Pressure | Surface<br>temp | Chamber<br>temp | Amb.<br>temp | Chamber<br>RH | Amb.<br>humidity |
|          | [sL/min]             | Original                      | Corrected    | (µg/m <sup>3</sup> )  | (µg/m <sup>2</sup> -s) | (kg/day) | (kg/cow-year) | (kPa)                  | (°C)            | (°C)            | (°C)         | (%)           | g/m3             |
|          | 7.09                 | 45453                         | 46140.2      | 32137.9               | 19.8                   | 4.6      | 0.8           | 97.3                   | 30.1            | 31.3            | 33.1         | NA            | 12.9             |
|          | 7.09                 | 33536                         | 34292.2      | 23885.4               | 14.7                   | 3.4      | 0.6           | 97.3                   | 25.3            |                 | 34.3         | NA            | 11.8             |
|          | 7.09                 | 66000                         | 66397.9      | 46247.9               | 28.5                   | 6.6      | 1.2           | 97.2                   | 24.0            |                 | 34.6         | NA            | 11.6             |
|          | 7.09                 | 15871                         | 16518.2      | 11505.3               | 7.1                    | 1.7      | 0.3           | 97.2                   | 23.9            |                 | 32.9         | NA            | 10.6             |
|          | 7.09                 | 122959                        | 121832.7     | 84859.8               | 52.2                   | 12.2     | 2.1           | 97.2                   | 25.6            | 29.0            | 31.9         | NA            | 10.6             |
| Average  | 7.1                  | 56763.8                       | 57036.2      | 39727.3               | 24.5                   | 5.7      | 1.0           | 97.2                   | 25.8            | 30.1            | 33.4         | NA            | 11.5             |
| Stdev    | 0.0                  | 41251.7                       | 40509.1      | 28215.7               | 17.4                   | 4.1      | 0.7           | 0.1                    | 2.5             | 1.7             | 1.1          | NA            | 0.9              |
| n        | 5.0                  | 5.0                           | 5.0          | 5.0                   | 5.0                    | 5.0      | 5.0           | 5.0                    | 5.0             | 2.0             | 5.0          | NA            | 5.0              |
| t-stat   | 2.8                  | 2.8                           | 2.8          | 2.8                   | 2.8                    | 2.8      | 2.8           | 2.8                    | 2.8             | 12.7            | 2.8          | NA            | 2.8              |
| 95% conf | 0.0                  | 51220.7                       | 50298.7      | 35034.4               | 21.6                   | 5.0      | 0.9           | 0.1                    | 3.2             | 14.8            | 1.3          | NA            | 1.2              |
| MIN      | 7.1                  | 15870.7                       | 16518.2      | 11505.3               | 7.1                    | 1.7      | 0.3           | 97.2                   | 23.9            | 29.0            | 31.9         | NA            | 10.6             |
| MAX      | 7.1                  | 122958.8                      | 121832.7     | 84859.8               | 52.2                   | 12.2     | 2.1           | 97.3                   | 30.1            | 31.3            | 34.6         | NA            | 12.9             |

|                                                    |                                        |                                                        |                                                        |                                                        | Free-s                                    | tall barn/                             | compost side                           | )                                        |                                                        |                                          |                                                                             |                            |                                          |
|----------------------------------------------------|----------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-------------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------|--------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------|----------------------------|------------------------------------------|
|                                                    | Zero air<br>Flowrate                   | NH3 Concent                                            | ration (ppb)                                           | Mass<br>Concentration                                  | E. Flux                                   | ERs                                    | EFs                                    | Barometric<br>Pressure                   | Surface<br>temp                                        | Chamber<br>temp                          | Amb.<br>temp                                                                | Chamber<br>RH              | Amb.<br>humidity                         |
|                                                    | [sL/min]                               | Original                                               | Corrected                                              | (µg/m <sup>3</sup> )                                   | $(\mu g/m^2-s)$                           | (kg/day)                               | (kg/cow-year)                          | (kPa)                                    | (°C)                                                   | (°C)                                     | (°C)                                                                        | (%)                        | g/m3                                     |
|                                                    | 7.09                                   | 3911                                                   | 4204.4                                                 | 2928.5                                                 | 1.8                                       | 0.6                                    | 0.1                                    | 97.264                                   | 38.3                                                   | 33.6                                     | 34.6                                                                        | NA                         | 11.6                                     |
|                                                    | 7.09                                   | 646                                                    | 722.8                                                  | 503.5                                                  | 0.3                                       | 0.1                                    | 0.0                                    | 97.264                                   | 29.5                                                   | 32.8                                     | 34.6                                                                        | NA                         | 11.1                                     |
| Average                                            | 7.1                                    | 2278.6                                                 | 2463.6                                                 | 1716.0                                                 | 1.1                                       | 0.3                                    | 0.1                                    | 97.3                                     | 33.9                                                   | 33.2                                     | 34.6                                                                        | NA                         | 11.3                                     |
| Stdev                                              | 0.0                                    | 2308.8                                                 | 2461.8                                                 | 1714.7                                                 | 1.1                                       | 0.3                                    | 0.1                                    | 0.0                                      | 6.2                                                    | 0.6                                      | 0.0                                                                         | NA                         | 0.3                                      |
| n                                                  | 2.0                                    | 2.0                                                    | 2.0                                                    | 2.0                                                    | 2.0                                       | 2.0                                    | 2.0                                    | 2.0                                      | 2.0                                                    | 2.0                                      | 2.0                                                                         | NA                         | 2.0                                      |
| t-stat                                             | 12.7                                   | 12.7                                                   | 12.7                                                   | 12.7                                                   | 12.7                                      | 12.7                                   | 12.7                                   | 12.7                                     | 12.7                                                   | 12.7                                     | 12.7                                                                        | NA                         | 12.7                                     |
| 95% conf                                           | 0.0                                    | 20743.8                                                | 22118.7                                                | 15406.3                                                | 9.5                                       | 3.1                                    | 0.5                                    | 0.0                                      | 56.0                                                   | 5.4                                      | 0.2                                                                         | NA                         | 3.1                                      |
| MIN                                                | 7.1                                    | 646.0                                                  | 722.8                                                  | 503.5                                                  | 0.3                                       | 0.1                                    | 0.0                                    | 97.3                                     | 29.5                                                   | 32.8                                     | 34.6                                                                        | NA                         | 11.1                                     |
| MAX                                                | 7.1                                    | 3911.1                                                 | 4204.4                                                 | 2928.5                                                 | 1.8                                       | 0.6                                    | 0.1                                    | 97.3                                     | 38.3                                                   | 33.6                                     | 34.6                                                                        | NA                         | 11.6                                     |
|                                                    |                                        |                                                        |                                                        |                                                        | Free                                      | -stall bar                             | n/ Feed side                           |                                          |                                                        |                                          |                                                                             |                            |                                          |
|                                                    | Zero air<br>Flowrate                   | NH3 Concent                                            | ration (ppb)                                           | Mass<br>Concentration                                  | E. Flux                                   | ERs                                    | EFs                                    | Barometric<br>Pressure                   | Surface<br>temp                                        | Chamber<br>temp                          | Amb.<br>temp                                                                | Chamber<br>RH              | Amb.<br>humidity                         |
|                                                    | [sL/min]                               | Original                                               | Corrected                                              | (µg/m <sup>3</sup> )                                   | $(\mu g/m^2-s)$                           | (kg/day)                               | (kg/cow-year)                          | (kPa)                                    | (°C)                                                   | (°C)                                     | (°C)                                                                        | (%)                        | g/m3                                     |
|                                                    | 7.09                                   | 23145                                                  | 23875.7                                                | 16630.1                                                | 10.2                                      | 2.7                                    | 0.5                                    | 97                                       | 29.4                                                   |                                          | 35.0                                                                        | NA                         | 11.32                                    |
|                                                    | 7.09                                   | 16717                                                  | 17377.4                                                | 12103.8                                                | 7.5                                       | 2.0                                    | 0.3                                    | 97                                       | 29.4                                                   | 32.3                                     | 35.3                                                                        | NA                         | 11.01                                    |
|                                                    | 7.09                                   | 133906                                                 | 132400.6                                               | 92220.6                                                | 56.8                                      | 15.2                                   | 2.6                                    | 97                                       | 25.2                                                   | 32.1                                     | 35.2                                                                        | NA                         | 11.2                                     |
|                                                    | 7.09                                   | 138068                                                 | 136412.9                                               | 95015.3                                                | 58.5                                      | 15.6                                   | 2.7                                    | 97                                       | 26.1                                                   | 28.8                                     | 30.9                                                                        | NA                         | 10.48                                    |
|                                                    | 7.09                                   | 55593                                                  | 56160.6                                                | 39117.4                                                | 24.1                                      | 6.4                                    | 11                                     | 97                                       | 24.9                                                   |                                          | 30.3                                                                        | NA                         | 11.42                                    |
|                                                    |                                        |                                                        | 20100.0                                                | 07 // !                                                | 21.1                                      | 0.4                                    |                                        |                                          |                                                        |                                          |                                                                             |                            |                                          |
| Average                                            | 7.1                                    | 73485.5                                                | 73245.4                                                | 51017.4                                                | 31.4                                      | 8.4                                    | 1.5                                    | 97.2                                     | 27.0                                                   | 31.1                                     | 33.3                                                                        | NA                         | 11.1                                     |
| Average<br>Stdev                                   | 7.1<br>0.0                             | 73485.5<br>58946.0                                     | 73245.4<br>57749.4                                     | 51017.4<br>40224.0                                     | 31.4<br>24.8                              | 8.4<br>6.6                             | 1.5                                    | 97.2<br>0.0                              | 27.0<br>2.2                                            | 31.1<br>2.0                              | 33.3<br>2.5                                                                 | NA<br>NA                   | 11.1<br>0.4                              |
| Average<br>Stdev<br>n                              | 7.1<br>0.0<br>5.0                      | 73485.5<br>58946.0<br>5.0                              | 73245.4<br>57749.4<br>5.0                              | 51017.4<br>40224.0<br>5.0                              | 31.4<br>24.8<br>5.0                       | 8.4<br>6.6<br>5.0                      | 1.5<br>1.2<br>5.0                      | 97.2<br>0.0<br>5.0                       | 27.0<br>2.2<br>5.0                                     | 31.1<br>2.0<br>3.0                       | 33.3<br>2.5<br>5.0                                                          | NA<br>NA<br>NA             | 11.1<br>0.4<br>5.0                       |
| Average<br>Stdev<br>n<br>t-stat                    | 7.1<br>0.0<br>5.0<br>2.8               | 73485.5<br>58946.0<br>5.0<br>2.8                       | 73245.4<br>57749.4<br>5.0<br>2.8                       | 51017.4<br>40224.0<br>5.0<br>2.8                       | 31.4<br>24.8<br>5.0<br>2.8                | 8.4<br>6.6<br>5.0<br>2.8               | 1.5<br>1.2<br>5.0<br>2.8               | 97.2<br>0.0<br>5.0<br>2.8                | 27.0<br>2.2<br>5.0<br>2.8                              | 31.1<br>2.0<br>3.0<br>4.3                | 33.3<br>2.5<br>5.0<br>2.8                                                   | NA<br>NA<br>NA             | 11.1<br>0.4<br>5.0<br>2.8                |
| Average<br>Stdev<br>n<br>t-stat<br>95% conf        | 7.1<br>0.0<br>5.0<br>2.8<br>0.0        | 73485.5<br>58946.0<br>5.0<br>2.8<br>73191.2            | 73245.4<br>57749.4<br>5.0<br>2.8<br>71705.3            | 51017.4<br>40224.0<br>5.0<br>2.8<br>49944.7            | 31.4<br>24.8<br>5.0<br>2.8<br>30.7        | 8.4<br>6.6<br>5.0<br>2.8<br>8.2        | 1.5<br>1.2<br>5.0<br>2.8<br>1.4        | 97.2<br>0.0<br>5.0<br>2.8<br>0.1         | 27.0<br>2.2<br>5.0<br>2.8<br>2.8                       | 31.1<br>2.0<br>3.0<br>4.3<br>5.0         | 33.3<br>2.5<br>5.0<br>2.8<br>3.1                                            | NA<br>NA<br>NA<br>NA       | 11.1<br>0.4<br>5.0<br>2.8<br>0.5         |
| Average<br>Stdev<br>n<br>t-stat<br>95% conf<br>MIN | 7.1<br>0.0<br>5.0<br>2.8<br>0.0<br>7.1 | 73485.5<br>58946.0<br>5.0<br>2.8<br>73191.2<br>16716.6 | 73245.4<br>57749.4<br>5.0<br>2.8<br>71705.3<br>17377.4 | 51017.4<br>40224.0<br>5.0<br>2.8<br>49944.7<br>12103.8 | 31.4<br>24.8<br>5.0<br>2.8<br>30.7<br>7.5 | 8.4<br>6.6<br>5.0<br>2.8<br>8.2<br>2.0 | 1.5<br>1.2<br>5.0<br>2.8<br>1.4<br>0.3 | 97.2<br>0.0<br>5.0<br>2.8<br>0.1<br>97.2 | 27.0<br>2.2<br>5.0<br>2.8<br>2.8<br>2.8<br>2.8<br>24.9 | 31.1<br>2.0<br>3.0<br>4.3<br>5.0<br>28.8 | 33.3           2.5           5.0           2.8           3.1           30.3 | NA<br>NA<br>NA<br>NA<br>NA | 11.1<br>0.4<br>5.0<br>2.8<br>0.5<br>10.5 |

|          | Free-stall barn/Water Area |               |         |     |     |            |         |         |      |         |          |  |  |
|----------|----------------------------|---------------|---------|-----|-----|------------|---------|---------|------|---------|----------|--|--|
| Zero air |                            | Mass          |         |     |     | Barometric | Surface | Chamber | Amb. | Chamber | Amb.     |  |  |
| Flowrate | NH3 Concentration (ppb)    | Concentration | E. Flux | ERs | EFs | Pressure   | temp    | temp    | temp | RH      | humidity |  |  |
|          |                            |               |         |     |     |            |         |         |      | •       |          |  |  |

|          | [sL/min] | Original | Corrected | (µg/m <sup>3</sup> ) | $(\mu g/m^2-s)$ | (kg/day) | (kg/cow-year) | (kPa) | (°C) | (°C) | (°C) | (%) | g/m3 |
|----------|----------|----------|-----------|----------------------|-----------------|----------|---------------|-------|------|------|------|-----|------|
|          | 7.09     | 14069    | 14684.7   | 10228.3              | 6.3             | 0.1      | 0.0           | 97.3  | 30.1 | 31.3 | 33.1 | NA  | 12.9 |
|          | 7.09     | 26486    | 27236.0   | 18970.6              | 11.7            | 0.2      | 0.0           | 97.3  | 25.3 |      | 34.3 | NA  | 11.8 |
| Average  | 7.1      | 20277.9  | 20960.3   | 14599.4              | 9.0             | 0.2      | 0.0           | 97.3  | 27.7 | 31.3 | 33.7 | NA  | 12.3 |
| Stdev    | 0.0      | 8780.2   | 8875.1    | 6181.7               | 3.8             | 0.1      | 0.0           | 0.0   | 3.4  |      | 0.8  | NA  | 0.8  |
| n        | 2.0      | 2.0      | 2.0       | 2.0                  | 2.0             | 2.0      | 2.0           | 2.0   | 2.0  | 1.0  | 2.0  | NA  | 2.0  |
| t-stat   | 12.7     | 12.7     | 12.7      | 12.7                 | 12.7            | 12.7     | 12.7          | 12.7  | 12.7 |      | 12.7 | NA  | 12.7 |
| 95% conf | 0.0      | 78886.7  | 79739.5   | 55540.7              | 34.2            | 0.6      | 0.1           | 0.0   | 30.8 |      | 7.6  | NA  | 7.1  |
| MIN      | 7.1      | 14069.4  | 14684.7   | 10228.3              | 6.3             | 0.1      | 0.0           | 97.3  | 25.3 | 31.3 | 33.1 | NA  | 11.8 |
| MAX      | 7.1      | 26486.4  | 27236.0   | 18970.6              | 11.7            | 0.2      | 0.0           | 97.3  | 30.1 | 31.3 | 34.3 | NA  | 12.9 |

Table 5.11 Summer NH<sub>3</sub> emissions from the primary lagoon at the free-stall dairy.

CAAQES-The Center of Agricultural Air Quality Engineering and Science Texas A&M University College Station, TX

#### Client: Dairy RJ

Comanche county, TX

| Date:           | 7/15-16 200 | )3             |
|-----------------|-------------|----------------|
| Source:         | Lagoon-1    |                |
| Area of Source: | 19200       | m <sup>2</sup> |
| Number of Head: | 2100        | Dairy          |

|          |                      |                          |             |                       |                 | Lago     | on-1          |                        |                 |                 |              |               |                  |
|----------|----------------------|--------------------------|-------------|-----------------------|-----------------|----------|---------------|------------------------|-----------------|-----------------|--------------|---------------|------------------|
|          | Zero air<br>Flowrate | NH <sub>3</sub> Concentr | ation (ppb) | Mass<br>Concentration | E. Flux         | ERs      | EFs           | Barometric<br>Pressure | Surface<br>temp | Chamber<br>temp | Amb.<br>temp | Chamber<br>RH | Amb.<br>humidity |
|          | [sL/min]             | Original                 | Corrected   | (µg/m <sup>3</sup> )  | $(\mu g/m^2-s)$ | (kg/day) | (kg/cow-year) | (kPa)                  | (°C)            | (°C)            | (°C)         | (%)           | g/m3             |
|          | 7.10                 | 27393                    | 28145.5     | 19604.1               | 12.1            | 20.0     | 3.5           | 96.7                   | 31.0            | 30.3            | 31.2         |               | 10.6             |
|          | 7.09                 | 45666                    | 46351.2     | 32284.9               | 19.9            | 33.0     | 5.8           | 96.7                   | 30.3            | 31.1            | 30.6         | 0.883         | 9.9              |
|          | 7.09                 | 25691                    | 26437.1     | 18414.2               | 11.3            | 18.8     | 3.3           | 97.2                   | 27.5            | 26.6            | 25.9         | 0.969         | 17.3             |
|          | 7.12                 | 22727                    | 23455.3     | 16337.2               | 10.1            | 16.7     | 2.9           | 97.3                   | 27.9            | 27.1            | 26.5         | 0.823         | 16.3             |
|          | 7.08                 | 21312                    | 22028.5     | 15343.4               | 9.4             | 15.7     | 2.7           | 97.3                   | 27.9            | 27.9            | 26.8         |               | 17.6             |
|          | 7.08                 | 37201                    | 37945.3     | 26429.9               | 16.3            | 27.0     | 4.7           | 97.1                   | 30.0            | 31.2            | 31.4         | 0.896         | 16.0             |
|          | 7.12                 | 38659                    | 39396.0     | 27440.4               | 17.0            | 28.1     | 4.9           | 97.1                   | 30.8            | 31.4            | 32.2         | 0.786         | 16.2             |
|          | 7.08                 | 29917                    | 30674.5     | 21365.6               | 13.1            | 21.8     | 3.8           | 97.1                   | 30.3            | 31.8            | 32.4         |               | 15.2             |
| Average  | 7.1                  | 31070.6                  | 31804.2     | 22152.5               | 13.6            | 22.6     | 4.0           | 97.0                   | 29.5            | 29.7            | 29.6         | 0.9           | 14.9             |
| Stdev    | 0.0                  | 8592.4                   | 8583.2      | 5978.4                | 3.7             | 6.1      | 1.1           | 0.2                    | 1.4             | 2.1             | 2.7          | 0.1           | 3.0              |
| n        | 8.0                  | 8.0                      | 8.0         | 8.0                   | 8.0             | 8.0      | 8.0           | 8.0                    | 8.0             | 8.0             | 8.0          | 5.0           | 8.0              |
| t-stat   | 2.4                  | 2.4                      | 2.4         | 2.4                   | 2.4             | 2.4      | 2.4           | 2.4                    | 2.4             | 2.4             | 2.4          | 2.8           | 2.4              |
| 95% conf | 0.0                  | 7183.5                   | 7175.7      | 4998.1                | 3.1             | 5.1      | 0.9           | 0.2                    | 1.2             | 1.8             | 2.3          | 0.1           | 2.5              |
| MIN      | 7.1                  | 21312.3                  | 22028.5     | 15343.4               | 9.4             | 15.7     | 2.7           | 96.7                   | 27.5            | 26.6            | 25.9         | 0.8           | 9.9              |
| MAX      | 7.1                  | 45665.8                  | 46351.2     | 32284.9               | 19.9            | 33.0     | 5.8           | 97.3                   | 31.0            | 31.8            | 32.4         | 1.0           | 17.6             |

Table 5.12 Summer NH<sub>3</sub> emissions from the secondary lagoon at the free-stall dairy.

CAAQES-The Center of Agricultural Air Quality Engineering and Science Texas A&M University College Station, TX

Client: Dairy RJ Comanche county, TX

| Date:           | 7/16/2003 |       |
|-----------------|-----------|-------|
| Source:         | Lagoon-2  |       |
| Area of Source: | 17000     | m²    |
| Number of Head: | 2100      | Dairy |

|          |                      | Lagoon-2                 |             |                       |                 |          |               |                        |                 |                 |              |               |                  |
|----------|----------------------|--------------------------|-------------|-----------------------|-----------------|----------|---------------|------------------------|-----------------|-----------------|--------------|---------------|------------------|
|          | Zero air<br>Flowrate | NH <sub>3</sub> Concentr | ation (ppb) | Mass<br>Concentration | E. Flux         | ERs      | EFs           | Barometric<br>Pressure | Surface<br>temp | Chamber<br>temp | Amb.<br>temp | Chamber<br>RH | Amb.<br>humidity |
|          | [sL/min]             | Original                 | Corrected   | (µg/m <sup>3</sup> )  | $(\mu g/m^2-s)$ | (kg/day) | (kg/cow-year) | (kPa)                  | (°C)            | (°C)            | (°C)         | (%)           | g/m3             |
|          | 7.12                 | 23760                    | 24495.4     | 17061.7               | 10.5            | 15.5     | 2.7           | 97.14                  | 28.02           | 30.83           | 28.91        | 0.78          | 10.72            |
|          | 7.08                 | 23108                    | 23838.7     | 16604.3               | 10.2            | 15.0     | 2.6           | 97.17                  | 27.45           | 27.98           | 28.10        |               | 9.95             |
|          | 7.11                 | 26132                    | 26880.6     | 18723.1               | 11.6            | 17.0     | 3.0           | 97.20                  | 28.12           | 28.21           | 27.56        | 0.91          | 9.66             |
|          | 7.07                 | 30503                    | 31261.2     | 21774.3               | 13.4            | 19.6     | 3.4           | 97.28                  | 29.10           | 27.19           | 25.87        | 0.93          |                  |
|          | 7.13                 | 27247                    | 27999.4     | 19502.3               | 12.1            | 17.7     | 3.1           | 97.31                  | 29.10           | 24.95           | 25.20        | 0.92          |                  |
|          | 7.08                 | 26944                    | 27695.3     | 19290.5               | 11.9            | 17.4     | 3.0           | 97.33                  | 28.70           | 27.12           | 24.41        |               |                  |
| Average  | 7.1                  | 26282.4                  | 27028.4     | 18826.0               | 11.6            | 17.0     | 3.0           | 97.2                   | 28.4            | 27.7            | 26.7         | 0.9           | 10.1             |
| Stdev    | 0.0                  | 2670.0                   | 2680.1      | 1866.8                | 1.1             | 1.7      | 0.3           | 0.1                    | 0.7             | 1.9             | 1.8          | 0.1           | 0.5              |
| n        | 6.0                  | 6.0                      | 6.0         | 6.0                   | 6.0             | 6.0      | 6.0           | 6.0                    | 6.0             | 6.0             | 6.0          | 4.0           | 3.0              |
| t-stat   | 2.6                  | 2.6                      | 2.6         | 2.6                   | 2.6             | 2.6      | 2.6           | 2.6                    | 2.6             | 2.6             | 2.6          | 3.2           | 4.3              |
| 95% conf | 0.0                  | 2802.0                   | 2812.6      | 1959.1                | 1.2             | 1.8      | 0.3           | 0.1                    | 0.7             | 2.0             | 1.9          | 0.1           | 1.4              |
| MIN      | 7.1                  | 23107.8                  | 23838.7     | 16604.3               | 10.2            | 15.0     | 2.6           | 97.1                   | 27.4            | 25.0            | 24.4         | 0.8           | 9.7              |
| MAX      | 7.1                  | 30503.0                  | 31261.2     | 21774.3               | 13.4            | 19.6     | 3.4           | 97.3                   | 29.1            | 30.8            | 28.9         | 0.9           | 10.7             |

Table 5.13 Summer NH<sub>3</sub> emissions from the composting area at the free-stall dairy.

CAAQES-The Center of Agricultural Air Quality Engineering and Science

Texas A&M University College Station, TX Client: Dairy RJ Comanche county, TX Date: 7/17/2003 Source: compost Area of Source: 16600 m<sup>2</sup> Number of Head: 2100 Dairy

|          |                      | compost                   |            |                       |           |          |               |                        |                 |                 |              |               |                  |
|----------|----------------------|---------------------------|------------|-----------------------|-----------|----------|---------------|------------------------|-----------------|-----------------|--------------|---------------|------------------|
|          | Zero air<br>Flowrate | NH <sub>3</sub> Concentra | tion (ppb) | Mass<br>Concentration | E. Flux   | ERs      | EFs           | Barometric<br>Pressure | Surface<br>temp | Chamber<br>temp | Amb.<br>temp | Chamber<br>RH | Amb.<br>humidity |
|          | [sL/min]             | Original                  | Corrected  | (µg/m3)               | (µg/m2-s) | (kg/day) | (kg/cow-year) | (kPa)                  | (°C)            | (°C)            | (°C)         | (%)           | g/m3             |
|          | 7.08                 | 377                       | 427.3      | 297.6                 | 0.2       | 0.3      | 0.0           | 97.5                   | 63.2            | 38.8            | 30.1         |               | 11.0             |
|          | 7.12                 | 626                       | 701.2      | 488.4                 | 0.3       | 0.4      | 0.1           | 97.5                   | 39.4            | 38.8            | 30.2         |               | 11.3             |
|          | 7.08                 | 1151                      | 1271.6     | 885.7                 | 0.5       | 0.8      | 0.1           | 97.4                   | 37.9            | 33.4            | 31.1         | 0.501         | 11.1             |
|          | 7.12                 | 473                       | 533.2      | 371.4                 | 0.2       | 0.3      | 0.1           | 97.4                   | 64.6            | 43.5            | 31.9         |               | 11.1             |
|          | 7.08                 | 852                       | 947.8      | 660.2                 | 0.4       | 0.6      | 0.1           | 97.4                   | 38.6            | 41.8            | 32.1         |               | 10.5             |
|          | 7.08                 | 1546                      | 1696.5     | 1181.7                | 0.7       | 1.0      | 0.2           | 97.4                   | 35.8            | 38.0            | 34.4         | 0.296         | 12.8             |
|          | 7.11                 | 815                       | 907.5      | 632.1                 | 0.4       | 0.6      | 0.1           | 97.3                   | 39.7            | 38.2            | 34.2         |               | 12.4             |
|          | 7.08                 | 1872                      | 2046.1     | 1425.2                | 0.9       | 1.3      | 0.2           | 97.3                   | 39.2            | 37.1            | 35.8         |               | 11.6             |
|          | 7.11                 | 2296                      | 2497.6     | 1739.7                | 1.1       | 1.5      | 0.3           | 97.3                   | 34.1            | 38.8            | 35.1         | 0.295         | 13.7             |
|          | 7.08                 | 1352                      | 1488.0     | 1036.4                | 0.6       | 0.9      | 0.2           | 97.3                   | 37.4            | 40.5            | 34.6         |               | 11.4             |
|          | 7.11                 | 8136                      | 8601.0     | 5990.8                | 3.7       | 5.3      | 0.9           | 97.2                   | 44.9            | 41.4            | 37.2         |               | 11.5             |
| Average  | 7.1                  | 1772.4                    | 1919.8     | 1337.2                | 0.8       | 1.2      | 0.2           | 97.4                   | 43.2            | 39.1            | 33.3         | 0.4           | 11.7             |
| Stdev    | 0.0                  | 2193.4                    | 2307.6     | 1607.3                | 1.0       | 1.4      | 0.2           | 0.1                    | 10.6            | 2.7             | 2.4          | 0.1           | 0.9              |
| n        | 11.0                 | 11.0                      | 11.0       | 11.0                  | 11.0      | 11.0     | 11.0          | 11.0                   | 11.0            | 11.0            | 11.0         | 3.0           | 11.0             |
| t-stat   | 2.2                  | 2.2                       | 2.2        | 2.2                   | 2.2       | 2.2      | 2.2           | 2.2                    | 2.2             | 2.2             | 2.2          | 4.3           | 2.2              |
| 95% conf | 0.0                  | 1473.5                    | 1550.3     | 1079.8                | 0.7       | 1.0      | 0.2           | 0.1                    | 7.1             | 1.8             | 1.6          | 0.3           | 0.6              |
| MIN      | 7.1                  | 377.4                     | 427.3      | 297.6                 | 0.2       | 0.3      | 0.0           | 97.2                   | 34.1            | 33.4            | 30.1         | 0.3           | 10.5             |
| MAX      | 7.1                  | 8136.4                    | 8601.0     | 5990.8                | 3.7       | 5.3      | 0.9           | 97.5                   | 64.6            | 43.5            | 37.2         | 0.5           | 13.7             |

Table 5.14 Summer NH<sub>3</sub> emissions from the crowding area at the free-stall dairy.

CAAQES-The Center of Agricultural Air Quality Engineering and Science Texas A&M University College Station, TX

Client: Dairy RJ Comanche county, TX

Date:7/17/2003Source:crowding areaArea of Source:925Number of Head:2100

|          |                      | crowding area              |           |                       |           |          |               |                        |                 |                 |              |               |                  |
|----------|----------------------|----------------------------|-----------|-----------------------|-----------|----------|---------------|------------------------|-----------------|-----------------|--------------|---------------|------------------|
|          | Zero air<br>Flowrate | NH <sub>3</sub> Concentrat | ion (ppb) | Mass<br>Concentration | E. Flux   | ERs      | EFs           | Barometric<br>Pressure | Surface<br>temp | Chamber<br>temp | Amb.<br>temp | Chamber<br>RH | Amb.<br>humidity |
|          | [sL/min]             | Original                   | Corrected | (µg/m3)               | (µg/m2-s) | (kg/day) | (kg/cow-year) | (kPa)                  | (°C)            | (°C)            | (°C)         | (%)           | g/m3             |
|          | 6.83                 | 13145                      | 13741.5   | 9571.4                | 5.7       | 0.5      | 0.1           | 97.5                   | 63.2            | 38.8            | 30.1         |               | 11.0             |
|          | 7.11                 | 2406                       | 2615.3    | 1821.6                | 1.1       | 0.1      | 0.0           | 97.5                   | 39.4            | 38.8            | 30.2         |               | 11.3             |
|          | 7.08                 | 11862                      | 12430.1   | 8657.9                | 5.3       | 0.4      | 0.1           | 97.4                   | 37.9            | 33.4            | 31.1         | 0.501         | 11.1             |
|          | 7.11                 | 8493                       | 8968.8    | 6247.0                | 3.9       | 0.3      | 0.1           | 97.4                   | 64.6            | 43.5            | 31.9         |               | 11.1             |
|          |                      |                            |           |                       |           |          |               |                        |                 |                 |              |               |                  |
| Average  | 7.0                  | 8976.5                     | 9438.9    | 6574.5                | 4.0       | 0.3      | 0.1           | 97.5                   | 51.3            | 38.6            | 30.8         | 0.5           | 11.1             |
| Stdev    | 0.1                  | 4799.4                     | 4974.7    | 3465.0                | 2.1       | 0.2      | 0.0           | 0.0                    | 14.6            | 4.1             | 0.9          |               | 0.1              |
| n        | 4.0                  | 4.0                        | 4.0       | 4.0                   | 4.0       | 4.0      | 4.0           | 4.0                    | 4.0             | 4.0             | 4.0          | 1.0           | 4.0              |
| t-stat   | 3.2                  | 3.2                        | 3.2       | 3.2                   | 3.2       | 3.2      | 3.2           | 3.2                    | 3.2             | 3.2             | 3.2          |               | 3.2              |
| 95% conf | 0.2                  | 7636.9                     | 7915.9    | 5513.6                | 3.3       | 0.3      | 0.0           | 0.0                    | 23.2            | 6.6             | 1.4          | 0.0           | 0.2              |
| MIN      | 6.8                  | 2406.3                     | 2615.3    | 1821.6                | 1.1       | 0.1      | 0.0           | 97.4                   | 37.9            | 33.4            | 30.1         | 0.5           | 11.0             |
| MAX      | 7.1                  | 13144.8                    | 13741.5   | 9571.4                | 5.7       | 0.5      | 0.1           | 97.5                   | 64.6            | 43.5            | 31.9         | 0.5           | 11.3             |

 $Table \ 5.15 \ Summer \ NH_3 \ emissions \ from \ the \ open-lot \ at \ the \ free-stall \ dairy.$  CAAQES-The Center of Agricultural Air Quality Engineering and Science Texas A&M University College Station, TX

| Date:           | 7/18/2003 |       |
|-----------------|-----------|-------|
| Source:         | open-lot  |       |
| Area of Source: | 38000     | m²    |
| Number of Head: | 2100      | Dairy |

|          |                      | open-lot                  |            |                       |           |          |               |                        |                 |                 |              |               |                  |
|----------|----------------------|---------------------------|------------|-----------------------|-----------|----------|---------------|------------------------|-----------------|-----------------|--------------|---------------|------------------|
|          | Zero air<br>Flowrate | NH <sub>3</sub> Concentra | tion (ppb) | Mass<br>Concentration | E. Flux   | ERs      | EFs           | Barometric<br>Pressure | Surface<br>temp | Chamber<br>temp | Amb.<br>temp | Chamber<br>RH | Amb.<br>humidity |
|          | [sL/min]             | Original                  | Corrected  | (µg/m3)               | (µg/m2-s) | (kg/day) | (kg/cow-year) | (kPa)                  | (°C)            | (°C)            | (°C)         | (%)           | g/m3             |
|          | 7.11                 | 3758                      | 4042.9     | 2816.0                | 1.7       | 5.7      | 1.0           | 97.18                  | 25.56           | 31.21           | 30.79        | 0.51          | 15.21            |
|          | 7.08                 | 6761                      | 7178.0     | 4999.7                | 3.1       | 10.1     | 1.8           | 97.21                  | 30.13           | 33.04           | 31.44        |               | 13.99            |
|          | 7.11                 | 5790                      | 6168.7     | 4296.6                | 2.7       | 8.7      | 1.5           | 97.20                  | 25.80           | 30.81           | 31.90        | 0.70          | 12.66            |
|          | 7.07                 | 1661                      | 1820.5     | 1268.0                | 0.8       | 2.6      | 0.4           | 97.17                  |                 | 32.73           | 33.13        |               | 12.31            |
|          | 7.11                 | 13815                     | 14425.4    | 10047.7               | 6.2       | 20.4     | 3.6           | 97.14                  | 33.59           | 37.86           | 34.72        |               | 11.45            |
|          | 7.12                 | 1615                      | 1770.7     | 1233.3                | 0.8       | 2.5      | 0.4           | 97.11                  | 34.70           | 38.77           | 35.18        | 0.70          | 11.36            |
|          | 7.07                 | 921                       | 1022.4     | 712.1                 | 0.4       | 1.4      | 0.3           | 97.08                  |                 | 38.32           | 34.22        |               | 11.56            |
|          | 7.11                 | 1290                      | 1421.2     | 989.9                 | 0.6       | 2.0      | 0.4           | 97.07                  | 34.01           | 39.67           | 34.82        |               | 12.29            |
|          |                      |                           |            |                       |           |          |               |                        |                 |                 |              |               |                  |
| Average  | 7.1                  | 4451.3                    | 4731.2     | 3295.4                | 2.0       | 6.7      | 1.2           | 97.1                   | 30.6            | 35.3            | 33.3         | 0.6           | 12.6             |
| Stdev    | 0.0                  | 4368.4                    | 4542.7     | 3164.1                | 2.0       | 6.4      | 1.1           | 0.1                    | 4.1             | 3.7             | 1.7          | 0.1           | 1.4              |
| n        | 8.0                  | 8.0                       | 8.0        | 8.0                   | 8.0       | 8.0      | 8.0           | 8.0                    | 6.0             | 8.0             | 8.0          | 3.0           | 8.0              |
| t-stat   | 2.4                  | 2.4                       | 2.4        | 2.4                   | 2.4       | 2.4      | 2.4           | 2.4                    | 2.6             | 2.4             | 2.4          | 4.3           | 2.4              |
| 95% conf | 0.0                  | 3652.1                    | 3797.8     | 2645.3                | 1.6       | 5.4      | 0.9           | 0.0                    | 4.4             | 3.1             | 1.4          | 0.3           | 1.1              |
| MIN      | 7.1                  | 920.8                     | 1022.4     | 712.1                 | 0.4       | 1.4      | 0.3           | 97.1                   | 25.6            | 30.8            | 30.8         | 0.5           | 11.4             |
| MAX      | 7.1                  | 13815.0                   | 14425.4    | 10047.7               | 6.2       | 20.4     | 3.6           | 97.2                   | 34.7            | 39.7            | 35.2         | 0.7           | 15.2             |

Table 5.16 Summer NH<sub>3</sub> emissions from the separated solid at the free-stall dairy.

CAAQES-The Center of Agricultural Air Quality Engineering and Science Texas A&M University College Station, TX

Client: Dairy RJ Comanche county, TX

Date:7/15/2003Source:Separated solidArea of Source:109Number of Head:2100Dairy

Separated solid

|          | Zero air<br>Flowrate | NH <sub>3</sub> Concentration (ppb) |           | Mass<br>Concentration | E. Flux   | ERs      | EFs           | Barometric<br>Pressure | Surface<br>temp | Chamber<br>temp | Amb, temp | Chamber<br>RH | Amb.<br>humidity |
|----------|----------------------|-------------------------------------|-----------|-----------------------|-----------|----------|---------------|------------------------|-----------------|-----------------|-----------|---------------|------------------|
|          | [sL/min]             | Original                            | Corrected | (µg/m3)               | (µg/m2-s) | (kg/day) | (kg/cow-year) | (kPa)                  | (°C)            | (°C)            | (°C)      | (%)           | g/m3             |
|          | 7.09                 | 673                                 | 752.7     | 524.3                 | 0.3       | 0.0      | 0.0           | 97.6                   | 38.9            | 29.5            | NA        | NA            | 9.6              |
|          | 7.09                 | 9649                                | 10160.0   | 7076.7                | 4.4       | 0.0      | 0.0           | 97.6                   | 32.6            | 30.9            | NA        | NA            | 10.2             |
|          | 7.09                 | 2611                                | 2832.5    | 1972.9                | 1.2       | 0.0      | 0.0           | 97.6                   | 32.4            | 34.3            | NA        | NA            | 11.2             |
|          | 7.10                 | 966                                 | 1071.3    | 746.2                 | 0.5       | 0.0      | 0.0           | 97.4                   | 32.2            | 35.9            | NA        | NA            | 9.8              |
|          |                      |                                     |           |                       |           |          |               |                        |                 |                 |           |               |                  |
| Average  | 7.1                  | 3474.8                              | 3704.1    | 2580.0                | 1.6       | 0.0      | 0.0           | 97.6                   | 34.0            | 32.7            | NA        | NA            | 10.2             |
| Stdev    | 0.0                  | 4203.6                              | 4400.0    | 3064.7                | 1.9       | 0.0      | 0.0           | 0.1                    | 3.3             | 3.0             | NA        | NA            | 0.7              |
| n        | 4.0                  | 4.0                                 | 4.0       | 4.0                   | 4.0       | 4.0      | 4.0           | 4.0                    | 4.0             | 4.0             | NA        | NA            | 4.0              |
| t-stat   | 3.2                  | 3.2                                 | 3.2       | 3.2                   | 3.2       | 3.2      | 3.2           | 3.2                    | 3.2             | 3.2             | NA        | NA            | 3.2              |
| 95% conf | 0.0                  | 6688.9                              | 7001.4    | 4876.7                | 3.0       | 0.0      | 0.0           | 0.2                    | 5.2             | 4.7             | NA        | NA            | 1.1              |
| MIN      | 7.1                  | 673.3                               | 752.7     | 524.3                 | 0.3       | 0.0      | 0.0           | 97.4                   | 32.2            | 29.5            | NA        | NA            | 9.6              |
| MAX      | 7.1                  | 9649.1                              | 10160.0   | 7076.7                | 4.4       | 0.0      | 0.0           | 97.6                   | 38.9            | 35.9            | NA        | NA            | 11.2             |

| Ammonia          | Number of<br>Samples | Concentration<br>(PPM) | Stdev<br>(among samples) | cv  | Concentration<br>(µg/m <sup>3)</sup> | Flow<br>(L/min) | E Flux<br>(μg/m²/s) | Area (m <sup>2</sup> ) | ER (µg/s) | ER<br>(kg/day) | EF<br>(kg/yr/head) |
|------------------|----------------------|------------------------|--------------------------|-----|--------------------------------------|-----------------|---------------------|------------------------|-----------|----------------|--------------------|
| Compost          | 3                    | 17.4                   | 9.5                      | 54% | 12110.3                              | 5               | 5.3                 | 16600                  | 88171.4   | 7.6            |                    |
| Freestall        | 5                    | 36.4                   | 18.7                     | 51% | 25349.4                              | 5               | 11.1                | 6500                   | 72268.0   | 6.2            |                    |
| Dry Open Lot     | 3                    | 6.5                    | 3.5                      | 55% | 4494.9                               | 5               | 2.0                 | 36100                  | 71169.6   | 6.1            |                    |
| Wet OpenLot      | 4                    | 14.1                   | 3.4                      | 24% | 9817.5                               | 5               | 4.3                 | 1900                   | 8181.3    | 0.7            |                    |
| Separated Solids | 2                    | 9.3                    | 0.9                      | 9%  | 6505.6                               | 5               | 2.9                 | 109                    | 311.0     | 0.0            |                    |
| Lagoon 1         | 6                    | 2.0                    | 0.5                      | 23% | 1362.9                               | 5               | 0.6                 | 19200                  | 11476.8   | 1.0            |                    |
| Lagoon2          | 6                    | 0.4                    | 0.3                      | 61% | 298.3                                | 5               | 0.1                 | 17000                  | 2224.5    | 0.2            |                    |
| Sum              | 29                   | -                      | -                        | -   | -                                    | -               | -                   | 97409                  | 253802.6  | 21.9           | 2.52               |

Table 5.17 Winter  $NH_3$  emissions from the different GLAS of the free-stall dairy.

## VITA

| Name:          | Atilla Mutlu                                                                                                       |
|----------------|--------------------------------------------------------------------------------------------------------------------|
| Address:       | Biological and Agricultural Engineering<br>147-A Scoates Hall<br>Texas A&M University<br>College Station, TX 77843 |
| Email Address: | atilla@tamu.edu                                                                                                    |
| Education:     | Ph.D., Biological and Agricultural Engineering, Texas A&M<br>University at College Station, TX. 2007               |
|                | M.S., Agricultral Engineering, The Cukurova University, Adana, Turkey. 1999.                                       |
|                | B.S., Agricultral Engineering, The Cukurova University, Adana, Turkey. 1996.                                       |