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ABSTRACT  

The Evolution of Total Lightning and Radar Reflectivity Characteristics of Two 

Mesoscale Convective Systems over Houston, Texas. (December 2007)  

Charles Lee Hodapp, B.S., Texas A&M University  

Chair of Advisory Committee: Dr. Larry Carey 

 

 Two mesoscale convective systems (MCSs) passed over the Houston Lightning 

Detection and Ranging (LDAR) network on 31 October 2005 and 21 April 2006. As the 

MCSs traverse the LDAR network, the systems slowly mature with a weakening 

convective line and a developing stratiform region and radar bright band. The 

intensification of stratiform region precipitation, including the bright band, is thought to 

play an important role in stratiform lightning structure, charge structure, and total 

lightning production of MCSs.  The stratiform areas quadruple in size and the mean 

reflectivity values increase substantially by ~ 6 dB. As the stratiform region matures, 

VHF source density plots show a lightning pathway that slopes rearward and downward 

from the back of the convective line and into the stratiform region. At early times for 

both MCSs, the pathway extends horizontally rearward 40 to 50 km into the stratiform 

region at an altitude of 9 to 12 km. Near the end of the analysis time period, the pathway 

slopes rearward 40 km and downward through the transition zone before extending 40 to 

50 km in the stratiform region at an altitude of 4 - 7 km. The sloping pathway likely 

results from charged ice particles advected from the convective line by storm relative 
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front-to-rear flow while the level pathway extending further into the stratiform region is 

likely caused by both charge advection and local in-situ charging. 

 As the stratiform region matures, the stratiform flash rates double and lightning 

heights decrease. The percentage of lightning flashes originating in the stratiform region 

increases significantly from 10 - 20% to 50 - 60%. Overall, the number of positive 

cloud-to-ground flashes in the stratiform region also increases. Between both MCSs, 

60% of the positive CGs originated in the convective or transition regions. Both in-situ 

charging mechanisms created by the development of the mesoscale updraft and charge 

advection by the front-to-rear flow likely contribute to the increased electrification and 

lightning in the stratiform region. 
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1. INTRODUCTION 

1.1 Lightning 
 

Lightning has captured the curiosity and imagination of the general public and 

scientists throughout history.  In some cultures, the luminous bolts were thought to be 

thrown down from the skies by ancient gods (Prinz 1977).  In the last couple of 

centuries, scientists have studied what lightning is and possible causes of the electrical 

discharge.  Today, lightning may be defined as a self-propagating electrical discharge 

resulting from the buildup of positive and negative space charge (Uman 1986).   

Lightning is the number two killer of all weather related phenomenon, preceded 

only by flash and river flooding (Curran et al. 2000) (Table 1.1).   Although lightning is 

reported to produce fewer damages than other weather events (Curran et al. 2000), there 

may be underreporting of lightning injuries, deaths, and damage to National Oceanic and 

Atmospheric Administration’s (NOAA’s) storm reports (e.g., Holle et al. 1996, Lopez et 

al. 1993).  Therefore, lightning could cause similar, or exceed, damages caused by other 

weather phenomenon. Lightning has fascinated people for ages, but is a very destructive 

phenomenon. 

 
 
 
 
 
 
 
 
 

                                                 
This thesis follows the style of Monthly Weather Review. 
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Table 1.1: Weather related deaths per year from 1959 -1994 and 1994 deaths and injuries.  Order 
is by 30-yr death rate then by 1994 deaths.  Adapted from Curran et al. (2000).  
 

 

 

1.1.1 Thunderstorm Electrification   
 

 Electrification within thunderstorms occurs when hydrometers of opposite 

polarity are separated within the cloud.  This process is not fully understood and many 

theories have been proposed to try and explain it, primarily inductive and non-inductive 

charging. 

1.1.1.1 Inductive Charging Mechanism  
 

One theory is the inductive charging process, which relies on a pre-existing 

electric field to polarize hydrometeors.  The electric field is induced by a positive charge 

region in the highly conductive upper atmosphere, a net negative charge on the earth’s 

surface, and a less conductive part of the atmosphere between through which current 

flows.  The fair weather electric field is ~ - 100 Vm-1 near the earth’s surface 
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(MacGorman and Rust 1998).  There are two dominant methods that are considered 

responsible for inductive charging: 1) Wilson’s selective ion capture mechanism (Wilson 

1929) and 2) rebounding collisions of two polarized hydrometeors (Sartor 1954).  

Wilson’s mechanism involves hydrometeors that are polarized by the electric field 

whose drift velocity must be faster than the drift velocity of ions.  As shown in Fig. 1.1, 

negative ions are captured by the underside of the hydrometeor and positive ions, if their 

motion is slower than the hydrometeor fall speed, are not captured.  If the positive ion’s 

motion is faster than the hydrometeor fall speed, it is captured on the top of the 

hydrometeor and the net charge of the hydrometeor would be neutralized.  This method 

is unlikely to produce electrified storms, in the absence of other charging mechanisms, 

because fair weather ion densities are too small in a storm cell’s lifetime (e.g., 

MacGorman and Rust 1998).   

The other inductive method is a particle-particle collision process.  Precipitating 

hydrometeors are polarized by the electric field as well as cloud particles.  As these 

particles collide, charge is transferred from the bottom of the falling precipitating 

particle to the cloud particle and the opposite charge is transferred from the cloud 

particle to the precipitating particle as shown in Fig. 1.2.  Charge separation occurs as a 

result of particle sedimentation due to the force of gravity.  The larger, negatively 

charged precipitating particles have terminal velocities which cause them to fall out of 

the cloud, while the smaller, positively charged cloud particles remain suspended or 

move upward in updrafts (e.g., MacGorman and Rust 1998).  There are limitations, 

however, to the inductive mechanism.  In order to strengthen the existing electric field,   
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FIG. 1.1: Depicting selective ion capture of (a) collision between an uncharged water drop 
polarized in an electric field and a negative ion and (b) deflection of a positive ion from an 
uncharged polarized drop.  Adapted from MacGorman and Rust (1998). 
 

 

 

 

FIG. 1.2: Induction charging of rebounding particles.  Adapted from MacGorman and Rust 
(1998). 
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colliding particles must separate with positively charged particles moving to a positive 

charge region and negatively charged particles moving to a negative charge region.  

Also, the conductivity of the colliding particles must be great enough so that charge may 

be transferred during the time of contact (e.g., MacGorman and Rust 1998). Research  

has shown that this process can only be effective when the electric field is much greater 

than the fair weather electric field, thus suggesting that the electric field must already be 

increased by some other method for this process to be a viable contributor to storm 

electrification (Aufdermaur and Johnson 1972).   

1.1.1.2 Non-Inductive Charging Mechanisms 
 

The non-inductive charging (NIC) mechanisms, which involve rebounding 

collisions between ice particles, are the most widely accepted theory for cloud 

electrification.  Unlike the inductive charging mechanisms, NIC processes transfer 

charge without the effects of the electric field (Saunders 1993).  Many lab experiments 

have supported this theory (e.g., Takahashi 1978, Gaskell and Illingworth 1980, 

Jayaratne et al. 1993).  As small ice crystals collide and rebound from larger ice particles 

(i.e., graupel or hail) in the presence of super-cooled water, the graupel takes on a 

negative charge while the ice crystals take on a positive charge.  Differential 

sedimentation of the oppositely charged ice particles produces an electric dipole with 

positive charge at the top of the thunderstorm and a layered negative charge region 

below.  Takahashi (1978) found that the amount of charge and sign deposited on the 

large ice particle depend on the temperature and liquid water content of the cloud where 

the collision occurs.  Many studies have supported Takahashi (1978); however, more 
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parameters were also found to affect the sign and amount of charge deposited, such as: 

the size of the ice crystals colliding with graupel, impact velocity, and contaminants in 

the water droplets (e.g., Keith and Saunders 1990).  The results from Takahashi (1978) 

and Saunders et al. (1991) on the effect of polarity on cloud water content and 

temperature are broadly consistent (Fig. 1.3).  They conclude that if rebounding 

collisions occur below the charge reversal temperature, which is a function of liquid 

water content, then the charge transfer reverses, with graupel taking on a positive charge 

and the rising ice crystals taking on a negative charge.  This non-inductive charging 

mechanism is thought to cause the ‘classical’ tripolar cloud charge structure (Fig. 1.4).  

Above the charge reversal temperature (-10°C to -20°C), negative (positive) charge is 

transferred to graupel (ice crystals) creating a main negative and upper positive charge 

layers while below the reversal temperature, graupel acquires positive charge and creates 

the lower positive charge region (e.g., Jayaratne et al. 1983).  

One possible theory explaining the transfer of charge during collisions involves 

differences in quasi-liquid water layers on colliding particles.  As the particles collide, 

mass transfers from the thicker to the thinner quasi liquid layers.  Mass also tends to 

flow from warmer surfaces to colder surfaces and high curvature to low curvature 

particles.  Therefore, when particles collide, negative charge and mass will transfer from 

the thicker quasi liquid layer to the thinner one.  As these particles separate, the warmer 

highly curved particle becomes positively charged while the cooler less curved particle 

becomes negatively charged (Baker and Dash 1994). 
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Another theory is contact potential charging where the charging of graupel is 

based on its riming growth rate.  At temperatures below the charge reversal temperature, 

graupel is negatively charged because droplets freeze fast to its surface and produces a 

contact potential difference between it and a colliding ice crystal.  At higher 

temperatures, droplets do not freeze as fast and graupel surface growth is enhanced 

inducing positive charge transfer upon contact (Saunders et al. 1993). 

 

 

FIG. 1.3: The polarity of charge gained by graupel as a function of temperature and liquid water 
content for Takahashi (1978) and Saunders et al. (1991) laboratory experiments.  Bold dashed 
lines are the results from Saunders et al. (1991) experiments while the solid contours labeled 
with charge (fC) values gained by graupel are from the Takahashi (1978) experiments with 
shading indicating negative charge.  Adapted from MacGorman and Rust (1998). 
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FIG. 1.4: Depiction of the thunderstorm tripole charge structure.  The thunderstorm dipole is 
made up of the main negative and upper positive charge regions.  The addition of the lower 
positive charge region accounts for the tripole structure.  Adapted from MacGorman and Rust 
(1998). 
 

Also, since water freezes from the outside in, there is a temperature difference 

between the outside shell and the inner side of the shell.  This difference in temperature 

causes a thermoelectric effect, which creates a positive charge on the outside shell and a 

net negative charge on the inside of the shell due to the diffusion of higher mobility H+ 

ions into colder ice (Wallace and Hobbs 1977).  Due to the expansion of water as it 

freezes, ice splinters may break off from the outside shell as the droplets freeze 

completely on the hailstone.  The ice splinters will carry away a net positive charge and 

leave the hailstone with a net negative charge (Wallace and Hobbs 1977).  Also, 

collisions may break off positive carrying splinters, leaving a larger negatively charged 

ice particle.  This theory may contribute to the explanation of the upper positive and 
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main negative regions.  Below the reversal temperature, these charging could be 

reversed due to longer freeze times.  It is more likely that the positive graupel charging 

below the reversal temperature is caused by one of the other theories (Saunders 1993). 

1.1.1.3 Other Charging Mechanisms 
 

Although the NIC mechanism by rebounding collisions, along with the inductive 

charging process once the electric field is strong, is thought to produce the thunderstorm 

tripole charge structure, there is another charging processes that may play a role in 

screening layers and also the lower positive charge region: the convective charging 

mechanism (e.g., Williams and Lhermitte 1983).  The fair weather electric field provides 

an abundant source of positive space charge near the surface of the earth as positive ions 

flow from the ionosphere toward the surface.  Once an updraft forms, the positive space 

charge is advected upward into the storm.  Negative charge, produced by cosmic rays, is 

attracted to the top of the cloud by the advected positive charge and attaches to cloud 

particles along the cloud boundary.  Cooling by entrainment produces downdrafts along 

the sides of the cloud that advect the negative charge downward along the edges and 

toward cloud base.  This negative charge at the base of the cloud induces positive corona 

by the generation of positive ions by positive point discharge, which in turn produces 

additional positive charge at the base of the cloud, fueling the process.  The mechanism 

was ruled out as a cause for total cloud electrification by Chauzy and Soula (1999) 

(among others) who found that the total charge produced was comparable to that of a 

single flash.  They did note however, that the corona charge transported to the base of 

the cloud could contribute to the lower positive charge region. 
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Melting can also induce charging in a thunderstorm (Simpson 1909, Drake 

1968), although the effects are seen more in stratiform precipitation (e.g., Shepherd et al. 

1996).  If the electric field is positive at 0°C, then the upper side of the drops will induce 

a positive charge.  As the drop breaks, the fragments coming off the top of the drop will 

be positively charged and the remaining drop will be negatively charged, creating a 

positive melting layer.  As a precipitation particle, inductively charged in a positive 

electric field, melts, it sheds positively charged droplets, creating a positive charge layer 

while the negatively charged larger particles fall to the ground (Simpson 1909).    

Drake’s mechanism is a non-inductive melting mechanism. As the particle melts, it 

would shed negatively charged particles regardless of the electric field, creating a 

negatively charged layer near the melting level as the positively charged particles fall to 

the ground (Drake 1968). 

1.1.2 Thunderstorm Charge Structure       

The electric tripole structure discussed earlier with the upper main positive 

region, main negative region, and lower positive region is the general electrical structure 

of thunderstorms.  However, it is understood that more complex vertical electrical 

charge structures exist in thunderstorms (Fig. 1.5) (Stolzenburg et al. 1998b).  In their 

studies of several different storm types (New Mexican thunderstorms, MCS convective 

cells, and supercells), Stolzenburg et al. (1998b) indicate a negative charge region 

located near the top of the thunderstorms in addition to the tripole structure in the updraft 

region of thunderstorms.  Also, they found six separate charge regions exist outside the 

updrafts and concluded that other charge mechanisms, such as those listed above, not 
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just the NIC mechanism of rebounding collisions of ice particles, contributed to these 

charge structures. 

1.1.2.1 The Lightning Flash  

When the potential difference between two separated charge regions exceeds the 

electrical breakdown or breakeven field (which is less than the electrical breakdown 

field due to a sustained electron avalanche) (e.g., MacGorman and Rust 1998), a 

lightning flash occurs.  There are two types of lightning flashes: 1) Cloud to ground 

(CG) flashes , flashes with a ground contact point; and 2) intracloud (IC) flashes, flashes 

that occur either within the confines of a thundercloud, between thunderclouds, or 

between a  thundercloud and air.  IC flashes usually dominate ordinary convective 

storms with common IC/CG ratios of 5 or 10 to 1(Krehbiel 1986).  As the storms 

increase in intensity, IC:CG ratios also increase (Williams 2001).  IC flashes often occur 

before CG flashes with a possibility of 10 or more IC flashes preceding the first CG 

flash (e.g., Williams 1989).  CG lightning often occurs between the main negative 

charge region and the ground and IC flashes occur between oppositely charged regions, 

such as the upper positive and main negative charge regions (Shao and Krehbiel 1996).  

Although IC flashes do not affect objects or persons on the ground, they do affect the 

safety of vehicles that pass through electrified clouds such as aircraft and spacecraft.  IC 

discharges are composed of two stages; an early or active stage and a late or final stage.  

The first stage consists of a bidirectional streamer with the positively charged segment 

propagating into the negative region and transferring negative charge through the flash 

origin point to the negatively charged segment of the streamer propagating through the 
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FIG. 1.5: Conceptual model of the storm structure for updraft and non-updraft regions of a 
convective thunderstorm.  Shown is the tripole electrical structure plus an additional upper 
negative charge layer in the updraft region.  Also shown are the 6 charge layers found in non-
updraft regions of convection.  The height levels (indicated by temperature levels), relative 
charge density (indicated by densities of plus and minus signs), and relative strengths of updrafts 
and downdrafts (indicated by arrow size) may vary depending on convective type of storm.  
Adapted from Stolzenburg et al. (1998b). 
 
 
positive region.  The second stage of this flash begins once this connection between the 

positive and negative regions is lost.  Then negative charge is fed to the flash origin 

point from other sources in the negative region (Rakov and Uman 2003).  

Even though IC flashes usually dominate storms, more studies have focused on 

CG flashes due to their destructive force, safety implications, and the availability of geo-

location measurements.  Once the electrical breakdown point is reached, the following 

processes occur as summarized from Rakov and Uman (2003). A CG flash is initialized 
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by a step leader moving intermittently toward the ground carrying either positive or 

negative charge.  Branching may occur as the leader attempts to find the path of least 

resistance.  As the stepped leader approaches ground to within ~50 m, an upward leader 

of opposite charge is initiated due to the increased electric field near the surface and 

propagates upward to connect to the stepped leader in the attachment process.  Once the 

connection is made, the stepped leader is effectively grounded and the return stroke is 

initialized.  The return stroke lowers the charge originally deposited on the stepped 

leader to the ground, usually on the order of tens of coulombs.  If additional charge is 

available at the top of the lightning channel, subsequent strokes could occur.  Subsequent 

strokes are indicated by a dart leader, which may not be branched because the heated and 

less dense path created by the previous stroke is the path of least resistance.  However, if 

the time differential between the previous stroke and dart leader is ever in excess of 100 

milliseconds, the air would have sufficiently cooled and a stepped leader will once again 

be formed with branching in order to find the most favorable path.  These processes are 

also shown in (Fig. 1.6).   

There are four types of CG lightning: downward negative lightning, downward 

positive lightning, upward negative lightning, and upward positive lightning (Rakov and 

Uman 2003, MacGorman and Rust 1998).  Flashes that lower negative charge to the 

ground (downward negative lightning) make up 90% of CG flashes in ordinary 

thunderstorms (Orville and Huffines 2001).  Positive CG dominated storms are rare, 

with only 15% of warm season severe storms in the U.S. producing predominately 

positive CG flashes (Carey et al. 2003).  Positive CGs are thought to be responsible for  
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FIG. 1.6: Diagram showing the various processes involved in a negative CG lightning flash.  
Adapted from Uman (1987). 

 
forest fires and the majority of lightning damage seen due to their longer continuing 

current (Rust et al. 1985). 

1.2 Mesoscale Convective Systems (MCSs) 
 

Mesoscale convective systems (MCSs) are the largest of the thunderstorms that 

contain regions of both convective and stratiform precipitation under one cloud complex.  

They may span ~ 100 km in a horizontal direction and have lifetimes of approximately 
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10 hours (Zipser 1982, Houze 2004).  Because of their size and long lifetimes, they 

account for a large proportion of precipitation in both the tropics and midlatitudes.  They 

are responsible for 30-70% of U.S. warm season rainfall (Fritch et al. 1986).  MCSs 

often contain severe weather in the form of damaging winds, hail, and tornadoes and 

additionally pose a flash flooding threat (Maddox 1983, Houze et al. 1990).  Not only do 

MCSs produce severe weather, they are also prolific producers of lightning and contain a 

significant fraction of warm season CG lightning in the central U.S.  (Goodman and 

MacGorman 1986). 

1.2.1 Organizational Modes 

Blanchard (1990) studied different organizational modes of MCSs that occurred 

in springtime over Oklahoma.  He found that spatial characteristics of MCSs may be 

grouped into three convective modes: linear convective systems, occluding convective 

systems, or chaotic convective systems (Fig 1.7).  The linear convective system consists 

of a series of convective cells that converge to form a linear structure and a region of 

stratiform precipitation with a transition zone, or reflectivity trough, between.  

Occluding MCSs result from the merging of one convective line typically situated east-

west along a stationary boundary with another convective line that is typically organized 

north-south along an advancing trough.  The third pattern involves dispersed convective 

cells that never organized into a linear structure.  The linear MCS is the most prevalent  

(68%) of these patterns, followed by chaotic convective systems (24%) and occluded 

convective systems (8%) (Blanchard 1990). 
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The most prevalent mode of MCS, linear MCSs, develops by one of four 

processes: broken line, back building, broken areal, or embedded areal (Fig. 1.8) 

(Bluestein and Jain 1985).  The broken line process occurs when several discrete cells 

form simultaneously and join into a linear structure through expansion or by newer cells 

developing between the older cells.  Back building lines result from newer cells 

developing upstream, relative to storm motion, from older cells and then merging with 

the older cells.  Linear MCSs that develop from a broken areal configuration start from a 

chaotic displacement of convective cells which eventually organize into a linear 

structure.  The last development classification for an MCS is the embedded areal process 

in which a convective line forms within a region of stratiform precipitation (Bluestein 

and Jain 1985).   

As linear MCSs mature, they tend to develop one of three types of stratiform 

regions: trailing, leading, or parallel (Parker and Johnson 2000).  The first type, trailing 

stratiform MCS, includes a leading convective line with maximum reflectivities 

followed by a transition zone made up of lower reflectivities and then by a secondary 

maximum of reflectivity (stratiform region) (Houze et al. 1990).  In the second case, 

leading stratiform MCSs, the convective lines are preceded by the stratiform region.  A 

transition may or may not be present in this case.  The third case, MCSs with parallel 

stratiform regions, are seen when the stratiform region moves parallel to the line and 

often to the left of the convective lines motion (Parker and Johnson 2000).  
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FIG. 1.7:  Schematic of the evolution of three convective modes seen in PRE-STORM program.  
The three modes are:  (a-c) linear convective systems, (d-f) occluding convective systems, and 
(g-i) chaotic convective systems.  Adapted from Blanchard (1990). 
 
 
 

 

FIG. 1.8: Idealized depiction of squall line formation.  Adapted from Bluestein and Jain (1985). 



  
   

18

Not only did Parker and Johnson (2000) find the trailing stratiform type to be the 

most prevalent (58%) of the cases they studied, they also found that most MCSs evolve 

into trailing stratiform MCSs as they mature.  Houze et al. (1990) also found that a 

majority (two thirds) of the total number (63) of MCSs they studied over Oklahoma had 

a leading convective line followed by a trailing stratiform region.  They further dissect 

the leading line, trailing stratiform (LLTS) into symmetric and asymmetric MCSs (Fig. 

1.9).  The symmetric case exhibits a homogeneous convective line with a stratiform 

region centered directly behind it.  The asymmetric case involves a convective line with 

stronger cells on its southern, southwestern, or western end and the stratiform region that 

is usually located on the opposite side of the line toward its northern, northeastern, or 

eastern ends.  Asymmetric MCSs are typically the dissipating and final stages of MCSs 

(Loehrer and Johnson 1995). 

 

 

 

FIG. 1.9: Schematic depicting (a) symmetric and (b) asymmetric types of leading line-trailing 
stratiform MCS precipitation organization (from Houze et al. 1990). Large vector indicates 
direction of system motion. Levels of shading denote increasing radar reflectivity, with most 
intense values corresponding to convective-cell cores. Adapted from Houze et al. (1990). 
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1.2.2 Kinematic and Microphysical Processes of MCSs  

A conceptual model of a line normal cross-section of a mature leading-line 

trailing stratiform (LLTS) MCS showing the three main regions of a LLTS MCS 

(convective, transition zone, and stratiform) and the kinematic processes that take place 

within each region is shown in Fig. 1.10.  The formation of the convective line typically 

begins when warm, moist air is forced over cooler, denser air by a lifting mechanism 

(e.g., cold front).  Updrafts created along this boundary form new convective cells.  As 

the convective cells mature and congeal together, the convective line forms and begin to 

take on the characteristics as stated in Houze (1990).  These characteristics include the 

leading convective line having slight arc shape, convex toward the leading edge, with a 

generally northeast to southwest orientation.  The line consists of a series of elongated 

intense reflectivity cells oriented 45-90° to the line connected by echoes of moderate 

reflectivity. The elongated cells produce a large reflectivity gradient and the appearance 

of a jagged leading edge along the line.  A weaker reflectivity gradient is seen toward to 

the rear of the line.  The convective line moves normal to line orientation at speeds 

typically greater than 10 m s-1 (Houze 1990).   

 In response to strong (order 10 m s-1) vertical motions in the mature cells, the 

heaviest precipitation develops and falls in the convective region.  The low level 

downdrafts created by falling rain and hail (precipitation loading) and evaporation 

descends to the ground and spreads out underneath the convective region.  Evaporative 

cooling of this air produces the surface cold pool that advances ahead of the convective 

line.  As the cold pool strengthens, smaller, lighter particles are carried farther aloft and  
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FIG. 1.10:  Conceptual model of a mature leading line trailing stratiform MCS viewed in a 
vertival cross section normal to the convective line.   See text for further explanation.  Adapted 
from Houze et al. (1989). 
 

 

swept rearward into the stratiform region by the storm-relative front-to-rear flow (Houze 

1989).   

Rutledge et al. (1988) found typical storm-relative front-to-rear flow speeds of 20 

m s-1.  A meso-low (Fritsch and Chappel 1980) develops ahead of the advancing cold 

pool as it provides another lifting mechanism in which new cells may develop, 

regenerating the line (L2, Fig. 1.10).  A meso-high (Fujita 1955), in addition to the 

surface cold pool, is also created at low levels by the low level downdrafts (H1, Fig 

1.10).  Also, latent heating due to condensation and freezing of water particles creates a 

small hydrostatic low at the base of the most intense updrafts (L3, Fig 1.10).  Mature 

cells are followed by older dissipating cells which are characterized by an updraft core 

and downdraft at mid to upper levels.  As these cells dissipate they are carried rearward 

by the storm-relative front-to-rear flow (Houze 1989). 



  
   

21

The convective region is followed by a reflectivity trough (i.e., transition zone) 

caused by deep subsidence, which inhibits particle growth.  The subsidence is seen 

through all levels and is made up of dynamically-driven upper level downdrafts that 

follow the upper level updrafts of the mature and dissipating cells, and also a low-level 

downdraft created by melting and evaporative cooling.  These two downdrafts create a 

net region of downward motion (Biggerstaff and Houze 1993, Houze 1993).  The 

subsidence at midlevels results in less ice particle growth via deposition and aggregation 

than seen in the stratiform region following, and therefore results in the reflectivity 

minimum between the convective and stratiform regions (Biggerstaff and Houze 1993).  

Also, Yeh et al. (1991) suggested that the reflectivity minimum was due to precipitation 

sizes being half as large as those found in the trailing stratiform region.       

LLTS MCSs have a stratiform region consisting of a large area (> 104 km2) of a 

secondary maximum of reflectivity (20 – 40 dBZ) separated from the convective region 

by a low reflectivity channel (Biggerstaff and Houze 1991, Houze 1990).  The stratiform 

region is composed of ice particles that are carried rearward from the convective line by 

the ascending front-to-rear flow.  As these smaller particles fall through the stratiform 

region and the broad and relatively weak mesoscale updraft (order 0.1 to 1 m s-1), they 

grow by deposition and aggregation, and begin to melt near the height of the 0°C 

isotherm.  Once the melting level is reached, melting ice aggregates generate enhanced 

reflectivity (i.e., known as the radar bright band) (e.g., Biggerstaff and Houze 1991).  

The bright band occurs because ice develops an outer coating of water as it melts which 

increases its reflectivity.  Also, as the particle melts, it becomes more aerodynamic and 
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has a faster terminal velocity than the snow above.  This decreases the particle number 

density and therefore decreases the reflectivity in regions below the melting level.  These 

processes produce a layer of enhanced reflectivity near and just below the melting level, 

thus creating the radar bright band (e.g., Rinehart 2004).  A relative increase in 

precipitation is found under the bright band compared to surrounding areas (Rutledge 

and Houze 1987).  The strongest mesoscale updrafts normally occur in the front of the 

radar bright band and decrease rearward through the stratiform region (Houze 1993). 

Below the radar bright band and in the lower stratiform region is a characteristic 

mesoscale downdraft created by evaporation, melting, and sublimation (e.g., Smull and 

Houze 1985).  Enhancing the downdraft is a relatively dry, sinking air mass that enters 

the system through the rear and is sometimes labeled the rear inflow jet.  The jet usually 

enters the rear of the system at upper levels and slowly descends through the melting 

layer into lower levels before making its way to the rear of the convective line.  A notch 

in the rear stratiform cloud deck is a visible sign of the rear inflow as the precipitation is 

eroded away by the dry mid-level air (Smull and Houze 1985).  The rear inflow jet is 

generated by a combination of horizontal buoyancy gradients (Weisman 1992) and line 

end effects (Skamarock et al. 1994).  Below the rear inflow jet at the rear of the system, 

a wake low (not shown in Fig 1.10) is created by subsidence warming of dry air (Fujita 

1955).  A meso-low (Brown 1979) (L4, Fig 1.10) is created near the melting level by the 

warm buoyant rising air above the rear inflow jet and sinking air below it.  A meso-high 

is found above the entire mesoscale cloud system (H2, Fig 1.10).   
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1.3 Electrical Properties of MCSs 

1.3.1 MCS Charge Structure  

The charge structure of MCS convective regions seen observationally and in 

models resembles the structure described for thunderstorms shown by Fig. 1.5.  

Stolzenburg et al. (1998a) used 16 electric field soundings from multiple MCSs to infer 

the charge structure of MCS convective regions.  In the updraft regions, a lower positive 

charge region from 2 to 6 km is found, above which resided a negative layer between 6 

and 8 km.  Above the main negative region is an upper positive region followed by a 

negative charge layer from 11-12 km.  The upper negative charge region is inferred to be 

caused by a screening layer while the three lower charge layers are thought to be due to 

non-inductive charging mechanisms.  Electric field change measurements indicate that 

most of the lightning takes place between the upper positive and main negative charge 

layers (Stolzenburg 1998a).   

Two additional charge layers are found outside the updraft regions (Stolzenburg 

1998a).  The lowest layer, near cloud base, contains a positive charge.  Above this layer 

is a shallow (z < 0.5 km) negative layer.  A positive layer, above the negative layer, is 

found at 4-6 km followed by yet another negative charge region.  Just like the previously 

discussed updraft charging layers, there is an upper positive charge followed again by an 

upper negative charge above the main negative charge layer.  The charge magnitudes in 

the non-updraft regions are larger and the charge depth generally smaller than those from 

the updraft portions of the MCS convective region.  The main difference between the 

two different regions in the convective line lies in the charge layers beneath the main 
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negative charge region.  In the non-updraft regions, there is a negative charge layer 

sandwiched between two positive layers below the main negative charge layer 

(Stolzenburg et al. 1998a).  The additional two charging layers in the non-updraft 

regions may indicate prevalent charging mechanisms other than ice-ice collisional non-

inductive charging, such as non-inductive melting charging (Drake 1968) and inductive 

charging (Stolzenburg 1998b). 

The transition zone lies behind the convective region of the MCS in a region of 

subsidence and lower reflectivity values.  Schuur et al. (1991) found very similar charge 

regions in the transition zone as those found by Stolzenburg et al. (1998a) in non-updraft 

convective regions, except for the lowest positive charge region.  The absence of the 

lower positive charge region is likely due to the absence of lower precipitation particles 

in the transition zone.  Schuur et al. (1991) proposed that advection of charge from the 

convective regions contributed to the charge structure since all the charge layers were 

found in the front-to-rear flow.  They also suggested screening layers could contribute to 

the upper and lower charge layers, while in-situ charging could contribute to internal 

charge layers because reflectivity contours of the transition zone are consistent with 

graupel fallout speeds and the charge layers are consistent with the inverted dipole 

theory.    

Stratiform charging processes are not as well understood as those in the 

convective region and transition zone.  Marshall and Rust (1993) found two types of 

vertical electrical structures in stratiform regions in MCSs.  The first (type A) structure 

consists of four main alternating polarity charge regions with the lowest charge of 



  
   

25

negative polarity.  The type A structure also has a fifth charge region at cloud top with 

negative polarity.  Their second (type B) electrical structure had fewer charge regions 

with just the four main charge layers.  Another difference between the two types of 

electrical structure is the opposite polarities near the melting level.  In a study of 

electrification of symmetric and asymmetric MCSs, Schuur and Rutledge (2001) noted 

that the type A (B) structure was most likely associated with a symmetric (asymmetric) 

MCS.  Once again, there are two theories used to explain the charged layers. One theory 

is in-situ charging, where local kinematic and microphysical processes within the 

stratiform region produce the charge structure.  Candidate in-situ charging mechanisms 

include the ice-ice collisional non-inductive charging process, which requires the 

presence of supercooled water, small ice crystals, and larger ice particles such as 

aggregates or graupel (e.g., Rutledge et al. 1990).  Another potential in-situ charging 

process is melting charging (Simpson 1909, Drake 1968) near the bright band of the 

stratiform region (e.g., Shepherd et al. 1996). The other theory is charge advection, 

where positive charge, typically resident on small ice particles from the top of the 

convective clouds, is advected by the storm-relative front-to-rear flow into the stratiform 

region (e.g., Rutledge and MacGorman 1988).  

 Stolzenburg et al. (1994) found that charge layers tend to follow the descending 

slope of reflectivity contours from upper levels in the convective region rearward into 

the stratiform regions.  They found that the uppermost positive layer could be correlated 

to 25-30 dBZ contours and the densest negative layer to the 35 dBZ contour.  The 
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negative layer at cloud top is thought to be a screening layer.  Charge advection is 

thought to be the primary cause of these layers in the upper stratiform region.  

They also noted, along with Schuur and Rutledge (2000a) and Shepherd et al. 

(1996), that the melting level is associated with the densest positive charge (similar to 

type A structure seen by Marshall and Rust (1993)) near 4 km.  Candidate mechanisms 

responsible for the positive layer seen near the melting level are inductive charging by 

drop breaking, melting, and non-inductive charging.  If the electric field is positive at 

0°C, then the upper side of the drops will induce a positive charge.  As the drop breaks, 

the fragments coming off the top of the drop are positively charge and the remaining 

drop is negatively charged via the inductive melting mechanism, creating a positive 

melting layer.  Since the positive layer is found at the melting level, melting charging 

(Simpson 1909, Drake 1968) is also considered.  The Simpson (1909) inductive melting 

mechanism is the likely cause for a positive charge layer near the melting level because 

of the positive electric field in that region. The positive electric field is normally seen in 

electric field soundings due to the negative charge layer right above the melting level 

(Stolzenburg et al. 1994).  The non-inductive melting mechanism of Drake (1968) is less 

likely to produce the charge structure seen near the melting level because it would 

always result in a negative charge at that level.  The melting mechanism could account 

for the observed charge structure at the melting level in the stratiform region as opposed 

to the convective region because aggregates shed particles easier than rimed graupel 

(Shepherd et al. 1996).  The collisions between precipitation and ice cloud particles 

could induce a positive charge on the precipitation particles and negative charge on the 
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cloud particles via ice-ice NIC mechanism.  This may help to explain the negative 

charge region seen above the melting level; however, the question remains on how the 

falling positively charged precipitation particles would be related to the melting level 

since they would continue to fall to the earth (Stolzenburg 1994, Shepherd et al. 1996).   

The negative charge region beneath the bright band corresponds to the 40 dBZ 

contour, except in places of stronger precipitation.  The negative charge layer is either a 

screening layer or produced by negatively charged precipitation from the drop breaking 

mechanism.  Since the negative charge is not seen in high precipitation, it is likely that 

the layer is formed by screening (Stolzenburg et al. 1994).  The charge region below the 

cloud is positive and is likely due to positively charged precipitation (e.g., Moore and 

Vonnegut 1977) or by positive ions discharged from the ground (e.g., Standler and Winn 

1979).  A conceptual model of mature MCSs that encompasses the previously discussed 

convective, transition zone, and stratiform regions’ charge structure and also includes the 

flow structure from Fig. 1.10 is shown in Fig. 1.11.  Unlike convection, the stratiform 

region is very complex and contains many large stratified charge regions. Observational 

and modeling studies support the mixture of charge advection and in-situ charging 

mechanisms in the generation of these charge layers (e.g., Rutledge et al. 1990, 

Stolzenburg 1994, Schuur and Rutledge 2000a,b).  Further research needs to be 

conducted in order to gain a better understanding of charge layers and charging 

mechanisms in the stratiform region of MCSs.  
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FIG. 1.11:  A conceptual model of the charge structure of mature leading line trailing stratiform MCSs.  Dashed lines indicate radar 
reflectivity contours from 10-50 dBZ with a spacing of 10 dBZ.  Positive charge layers are lightly shaded with negative charge layers 
shaded heavily.  In the convective region and transition zone, thick solid arrows depict updrafts and downdrafts while thin solid arrows 
show divergent outflows.  Smaller open arrows throughout the system indicate storm relative motions and larger open arrows indicate 
mesoscale updrafts and downdrafts.  Adapted from Stolzenburg et al. (1998).   
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1.3.2 MCS Lightning   

MCSs are known producers of abundant lightning and the electrical and lightning 

properties of these systems have been the focus of many research studies, with much of 

the past attention focusing on cloud-to-ground (CG) lightning in relation to radar or 

satellite inferred storm structure (e.g., Goodman and MacGorman 1986, Rutledge and 

MacGorman 1988, Rutledge et al. 1990).  The predominant source of lightning is 

centered on the vigorous vertical motion and abundant precipitation ice mass found in 

the convective region, where thousands of flashes may occur in an hour (Goodman and 

MacGorman 1986).  Significantly more flashes are found in the convective region than 

in the stratiform region, where longer flashes tend to occur (Mazur and Rust 1983).  As a 

thunderstorm becomes more intense and vertical, it becomes more electrified (Williams 

et al. 1989, Goodman et al. 2005).  Non-inductive charging is likely the dominant 

charging mechanism for the convective region (Takahashi 1978, Jayaratne et al. 1983, 

Illingworth 1985) as the updraft is able to maintain charge separation.  Once the updraft 

weakens, ice particles fall, the separation of charge lessens, and the amount of IC flashes 

decrease (Williams et al. 1989).   

Rutledge and MacGorman (1988) found that the maximum negative ground flash 

rate occurs with the maximum rainfall in the convective region and the maximum 

positive ground flash rate corresponds with the maximum rainfall in the stratiform 

region.  This effect is known as the lightning bipole (Orville et al. 1988).  The time lag 

between the two maximums was approximately two hours, which suggests possible 

charge advection from the top of the convective region to the stratiform region by the 
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front-to-rear flow. Another possibility is in situ charging, where lightning in the 

stratiform region is generated by local non-inductive charging or melting processes.  An 

increase in stratiform electrical activity typically lags convective rainfall and is 

coincident with stratiform rainfall peaks (Rutledge et al. 1990, Rutledge and Petersen 

1994).  Holle et al. (1994) showed that negative CGs are predominant throughout the life 

cycle of an MCS with positive CGs increasing in the stratiform region during the mature 

and dissipating stages of the system.  The rate of CGs found under the stratiform region 

is positively correlated to the magnitude of reflectivities found above the 0°C level 

(Rutledge and Petersen 1994). 

Recently, networks capable of accurately measuring the time of arrival of 

impulsive VHF radiation from lightning propagation have been employed allowing 

researchers to produce highly detailed pictures of the three dimensional lightning 

structure in storms (Rison et al. 1999, Krehbiel et al. 2000, Goodman et al. 2005).  Carey 

et al. (2005) and Dotzek et al. (2005) describe the detailed total lightning structure of 

mature leading-line trailing stratiform (LLTS) MCSs.  According to their studies, VHF 

sources occur primarily in the convective region in a bimodal pattern, suggesting a 

tripole charge structure in the convective line.  The lightning structure shown in the line-

normal horizontal and vertical plane reveals a slanting lightning pathway beginning 

toward the top of the convective region, then descending 4-5 km downward and 40-50 

km rearward through the transition zone and stratiform region in and above the bright 

band (Fig. 1.12).  The VHF source densities also occur in layers in the stratiform region, 

suggesting layers of charge consistent with past electric field studies involving LLTS 
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MCSs (e.g., Stolzenburg 1998a).  Carey et al. (2005) present a conceptual model of a 

mature LLTS MCS similar to Fig. 1.13 in which the general ice particle trajectory from 

the top of the convective region to the stratiform radar bright band corresponds to the 

lightning pathway.  Carey et al. (2005) also examined 7 flashes producing positive CGs, 

all of which initiated in the MCS convective region and propagated through the 

stratiform region and then to the ground.  In a study by Lang et al. (2004), 30 of 39 

positive CG flashes originated in the convective region.  They also found that positive 

CGs in the stratiform region deposited more charge on the ground than those from the 

convective region, along with Petersen and Rutledge (1992). Both Carey et al. (2005)  

 

 

 

FIG. 1.12: A 30-min, line-normal vertical composite of radar reflectivity (dBZ, contours every 5 
dBZ) and VHF lightning source density (km−3 h−1, shaded as shown) through a mature leading 
line, trailing stratiform MCS over the DFW region on 16 June 2002 from 0609 to 0639 UTC. 
Adapted from Carey et al. (2005). 
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and Lang et al. (2004) suggest that the stratiform charge is a conduit for positive CG 

lightning from the convective line and may also initiate its own positive CGs.  Lyons et 

al. (2003) found that as VHF source heights lowered in the two MCSs that they studied, 

that sprite production increased.  Sprites are electrical discharges found in the 

mesosphere and are thought to be caused by large charge moment changes, the product 

of the amount of charge transferred to the ground and the lightning channel length of 

positive CGs (Pasko et al. 1997).  The mean heights of the parent positive CG flashes 

associated with the sprites were found near the melting, close to 4 km.     

 

 
FIG. 1.13: Conceptual model of the kinematic and precipitation structure of a mature leading-
line, trailing-stratiform (LLTS) mesoscale convective system (MCS) that is viewed in a vertical 
cross-section oriented perpendicular to the convective line (i.e., parallel to its motion)(Carey et 
al. 2005). Key regions of the line-normal structure are highlighted at the top, including the 
convective (CONV) region and transition zone (TZ).  The thin line depicts the visual or satellite 
detected cloud boundary. The bold line depicts the radar observed outline of precipitation. The 
shaded areas indicate regions of enhanced precipitation or larger radar reflectivity, including the 
radar bright band (BB). The dashed arrows depict important storm relative flow fields, including 
the ascending front-to-rear (FTR) and descending rear-to-front (RTF) flows. The bold, repeating 
arrows indicate the approximate trajectories of ice particles, which are represented by asterisks. 
The direction of storm motion and height of the 0_C isotherm are indicated. Large block arrows 
indicate the approximate locations of the mesoscale updraft (MU), mesoscale downdraft (MD), 
and transition zone downdraft (TD). Adapted from Houze et al. (1989) and Biggerstaff and 
Houze (1991). 
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1.4 Objective    

With the recent deployment of the Texas A&M University (TAMU) Lightning 

Detection and Ranging (LDAR) network in Houston, Texas, the three-dimensional 

properties of total (i.e., CG and intracloud [IC]) lightning can be readily observed in a 

sub-tropical, coastal, urban environment.  The network consists of 12 VHF time-of-

arrival (TOA) sensors with an effective range of 130 km from the network center (Ely et  

al. 2007).  Many MCS cases have passed over and been recorded by the Houston LDAR 

network since it become operational in 2005.  Two LLTS formed, evolved, and traversed 

the Houston LDAR network on 31 October 2005 and 21 April 2006.  

It is hypothesized that the intensification of stratiform region precipitation, 

including the bright band, plays an important role in the lightning pathway, charge 

structure, and total lightning production of the stratiform region.  The advection of 

particles from the convective region and in situ processes created by the increase in the 

mesoscale updraft are directly related to the intensification of the stratiform region.  The 

advection and in-situ generation of charge are also thought to lead to an increase in total 

electrification of the stratiform region, which should ultimately lead to increased total 

(IC + CG) and CG lightning production.  Charge advection is considered to be prevalent 

throughout stratiform development, allowing the stratiform region to be a conduit for 

flashes originating in the convective line.  On the other hand, in-situ charging is 

considered to increase as the mesoscale updraft develops, because of availability of 

cloud water and larger ice growth by deposition and aggregation, causing charge 

generation and more flashes to originate in the stratiform region.   
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The objective of the proposed thesis is to document the evolution in total 

lightning and radar reflectivity in two MCS cases, 31 October 2005 LLTS MCS and 21 

April 2006 LLTS MCS, with emphasis on the stratiform region.  These MCSs will be 

studied during the time in which they are well within range of and over the Houston 

LDAR network. Using Houston (KHGX) Weather Surveillance Radar – 1988 Doppler 

(WSR-88D), LDAR VHF source data, and National Lightning and Detection Network 

(NLDN) ground flash data, it will be shown that the total lightning structure and flash 

rate of LLTS MCSs evolves in response to the evolving microphysical and kinematic 

properties.  Also, more insight into the defining microphysical and kinematic processes 

of a LLTS MCS, which are responsible for the observed total lightning structure, will be 

revealed.  An investigation will also be conducted on where positive CGs in the 

stratiform region originate.  More analysis of total lightning data in MCSs will be 

performed in order to improve our knowledge of MCS microphysical, kinematic, and 

electrical properties. 
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2. DATA AND METHODOLOGY 
 

This study documents the evolution in total lightning and radar reflectivity for 

two LLTS MCSs on 31 October 2005 and 21 April 2006, with emphasis on the 

stratiform region.  The Houston (KHGX) Weather Surveillance Radar – 1988 Doppler 

(WSR-88D) is used in conjunction with LDAR VHF lightning source data and National 

Lightning Detection Network (NLDN) ground flash data to provide insight into the 

electrical nature and lightning structure of the two MCSs as they passed within the 

effective range of the Houston LDAR network, which is less than 130 km according to 

Ely et al. (2007).   

2.1 Radar Data 

The Level-II WSR-88D reflectivity data from KHGX, which are available from 

the National Climatic Data Center (NCDC), are used to analyze the reflectivity structure 

of two LLTS MCSs that traversed Houston on 31 October 2005 and 21 April 2006.  

WSR-88Ds are S-band (10 cm) radars that provide radar reflectivity within a range of 

230 km from the radar and both mean radial velocity and velocity spectrum width within 

a range of 115 km.  The spatial resolution of reflectivity is 0.95° by 1 km (Crum et al. 

1993).  The radars continually make 360° azimuthal sweeps at increasing elevation 

angles.  When the radar cycles through a complete set of elevation angles, the set of 

sweeps is called a volume scan.  There are currently two volume coverage patterns 

(VCPs) that are primarily used for convective weather, VCP 21 (Fig. 2.1) and VCP-11 

(Fig. 2.2).  VCP-21 makes 11 sweeps at 9 different angles between 0.5° and 19.5° and 
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takes 6 minutes to complete the volume scan.  On the other hand, VCP-11 makes 16 

sweeps at 14 separate elevation angles between 0.5° and 19.5° and only takes 5 minutes 

to complete.  VCP-11 is commonly used for severe weather because it provides more 

complete vertical and temporal coverage of storms by containing more elevation scans at 

levels greater than 5° and having a faster turnaround time (Brown et al. 2000).  Due to 

the maximum elevation scan of 19.5°, neither VCP is able to scan the tops of storms 

within around 25 km of the radar.  This area is called the “cone of silence” because no 

data is detected.  However, due to the large horizontal size (> 100 km) of the MCSs, the 

cone of silence has a negligible effect on the analyzed radar properties.  As the MCSs 

passed within range, KHGX was operating under VCP-11 in severe weather mode. 

2.1.1 Radar Reflectivity 

Radar reflectivity is the measure of power returned to the radar by a 

backscattering target and is influenced by the size, shape, number, aspect, and dielectric 

constant of the target (Rinehart 2004).  Radar reflectivity factor (z) is defined as:  

z = CPR2/|K|2     (2.1) 

where C is a radar constant, P is the transmitted power, R is the distance to the target, 

and K is function of the complex index of refraction of the target.  The values of |K|2 for 

ice and water are 0.197 and 0.93 respectively.  The equivalent radar reflectivity is 

estimated by radar when it is assumed that the backscattering hydrometeors are spherical 

and composed of water in the radar range equation.  Therefore, the equivalent radar 

reflectivity factor for ice (zi) in terms of the radar reflectivity of water (zw) is: 
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FIG 2.1:  WSR 88D volume coverage pattern 21 (VCP 21).  
(http://www.srh.noaa.gov/radar/radinfo/vcp21.gif) 

 

FIG 2.2: WSR-88D volume coverage pattern 11 (VCP 11). 
(http://www.srh.noaa.gov/radar/radinfo/vcp11.gif) 

http://www.srh.noaa.gov/radar/radinfo/vcp21.gif
http://www.srh.noaa.gov/radar/radinfo/vcp11.gif
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zi = (|Ki| / |Kw| )zw= 0.223z.    (2.2) 

Radar reflectivity is usually expressed in decibel units (dB) as follows: 

dBZ = 10log10(z).    (2.3) 

Therefore, as ice melts to water, the radar reflectivity increases to: 

    dBZ(water) = dBZ(ice) + 6.5dB.    (2.4) 

This process plays a profound role in the creation of the bright band as mentioned in 

section 1.2.3.  The radar reflectivity factor may also be expressed as: 

z =     (2.5) 6

0

( )D N D dD
∞

∫

Where D is the particle diameter and N(D) is the particle size distribution such that 

N(D)dD is the number of particles of size D in a volume.  Note that radar reflectivity is 

highly correlated with particle size.  For example, small raindrops yield a much lower 

reflectivity than large hailstones.  

2.1.2 Analysis Techniques 

Using REORDER software (Oye and Case 1992), radar reflectivity data are 

converted from radar coordinates to Cartesian coordinates with a horizontal and vertical 

grid spacing of 1.0 km to ensure high resolution data.  The vertical gridding starts at 0.3 

km and ends at 17.3 km, for 18 unique elevations.  Interpolation was accomplished with 
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a Cressman weighting scheme (Cressman 1959).  The Cressman scheme places more 

significance on radar values that are closer to the grid point by calculating a weighted 

mean of nearby radar gates at each grid point.  The weighting function (W) is a function 

of the distance r between the data at an individual radar gate and the grid point and the 

radius of influence R according to   

2 2

2 2

R rW
R r

−
=

+
     (2.8) 

After multiple tests, a horizontal and vertical radius of influence of 2.0 km is used to 

ensure data coverage and resolution, especially at higher elevations.  After the radar was 

converted to Cartesian coordinates, several Interactive Data Language (IDL) programs 

were employed to read in the gridded data and perform analysis.   

2.1.2.1 Partitioning the Data 

  A major focus of this study is to examine the contributions the convective and 

stratiform regions have on MCS structure and evolution.  Therefore, the two regions 

must be separated and defined.  Two possible ways of partitioning the convective and 

stratiform regions were considered: (1) the automated (objective) two-dimensional 

reflectivity texture method summarized by Steiner et al. (1995) and (2) the manual 

(subjective) partitioning approach based on the known three dimensional reflectivity 

structure of the convective and stratiform regions in a LLTS MCS (e.g., Houze et al. 

1990) .  The Steiner et al. (1995) partitioning method uses a combination of three 

reflectivity based thresholds on a horizontal plane at a low altitude (e.g., 2 km) to 

classify the precipitation type.  First, any grid points characterized by reflectivity values 
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≥ 40 dBZ are automatically classified as convective.  Second, if a large reflectivity 

gradient exists within a certain background reflectivity, those grid points are also 

classified as convective.  Third, if any nearby grid points are within certain radii of 

convectively labeled grid points, they are also labeled as convective.  Any reflectivity 

values not classified as convective are classified as stratiform.  The Steiner et al. (1995) 

method has a tendency to mis-classify enhanced reflectivities in the stratiform region as 

convective and also lower convective reflectivities (especially on the leading edge of 

convection) as stratiform (McCormick 2003).  On the other hand, subjective partitioning 

uses a straight line between the convective and stratiform regions to separate the two 

regions.  Therefore, the only associated errors are in the transition between the two 

regions, where a non-linear boundary is represented by a straight line.  The subjective 

partitioning method is used in this study because it is simple to implement for a small 

number of radar volumes and typically reduces bias in the classification of echo, 

particularly in stratiform regions with enhanced reflectivity.  

In order to partition the MCS regions, the reflectivity data, along with LDAR 

VHF source data, are first rotated about the center of the LDAR network, where the 

convective line is parallel to the y-axis and line normal direction is parallel to the x-axis.  

The analysis region is then confined by the region determined by the LDAR source 

density plots, since its effective range is less than that of the radar.  Radar reflectivity 

data are then subjectively partitioned into three separate regions (convective, transition, 

and stratiform) according to their location relative to the MCS radar reflectivity structure 

in the horizontal and vertical (e.g., Houze et al. 1990).  An example of the partitioned 
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stratiform, transition, and convective regions is shown in Fig. 2.3.  The convective 

leading line is composed of a continuous series of intense reflectivity cells oriented from 

the southwest to the northeast with a strong reflectivity gradient at the front of the line.  

The stratiform region consists of a secondary maximum of reflectivity values (30 – 40 

dBZ for 31 Oct. MCS, 35-45 dBZ for 21 Apr. MCS) that is found rearward of the 

convective line.  The transition zone, a region of minimum reflectivity values (20- 30 

dBZ for 31 Oct. MCS, 25-35dBZ for Apr. MCS), separates the convective and stratiform 

regions.  Using these guidelines, two straight lines, parallel to the leading convective 

line, are used to separate these three regions.  Next, another parallel line is used to 

further sub-partition the stratiform region in the line-perpendicular domain to only go as 

far rearward as the detectable LDAR VHF sources.  The convective region is also sub-

partitioned by a parallel line in the line perpendicular domain to begin at the sharp 

reflectivity gradient at the leading edge of the line.    

2.1.2.2 Contoured Frequency by Altitude Diagrams (CFADs)   

The vertical structures of reflectivity for the defined convective and stratiform 

regions are then analyzed by using mean profiles and reflectivity contoured frequency by 

altitude diagrams (CFADs) (Yuter and Houze 1995).  In CFADs, reflectivity values are 

along the x-axis and height is along the y-axis; therefore, reflectivity is stratified by 

altitude only and the horizontal locations are ignored.  The contours in the CFADs 

represent the percentage of points per unit variable (dBZ in this case) per kilometer and 

not merely the percentage of points.  The frequency distribution of reflectivity may be  
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FIG. 2.3:  An example of subjective partitioning of the 21 April 2006 MCS.   Radar reflectivity 
values (dBZ) are contoured every 5 dBZ with every other contour labeled.  Radar reflectivity 
shown is the maximum reflectivity throughout all vertical levels.  Straight vertical lines indicate 
the partitioning used to separate the convective (C), transition (T), and stratiform (S) regions.  
See text for partitioning methods. 
 

 

evaluated by comparing contour patterns between the same levels at different times and 

between different levels at the same time.  CFADs provide a concise summary of the 

relative frequency of radar reflectivity with height and extend what is generally available 

from a single mean profile or cross-section (Yuter and Houze 1995). 

2.1.2.3 Rainfall Totals 

Radar reflectivity is often used to estimate rainfall rates.  However, there are 

many errors that can be associated with reflectivity and rain rate (z-R) relationships.  

Such errors could be caused by power calibration errors, beam attenuation, horizontal 
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winds, bright band, rain rate variations, vertical air motions (updrafts or downdrafts), 

particle size distributions, or beam blockage (e.g., Rinehart 2004).  Although these 

relations may be associated with errors, we use the z-R relations that Uijlenhoet et al. 

(2003) set forth for convective (2.6) and stratiform (2.7) regions in order to determine 

the general trends in each region’s rainfall rate.  In order to obtain the most accurate rain 

rate, a low level (2 km) elevation is used.  This level is more likely to give results based 

on precipitation actually hitting the ground and is below the effect of the radar bright 

band.  Before these calculations are performed, Z (dBZ) was converted to z (mm6 m-3) 

by the conversion       z = 10(Z/10).  Once the rain rate was found, total rainfall was 

calculated by finding the volume of rain that fell during the volume scan time and 

converting it to water mass (kg).  

     z= 300R1.4      (2.6) 

    z= 450R1.4      (2.7) 

Calibration errors differ from WSR-88D to WSR-88D and with the same WSR-

88D over a period of time (Anagnostou et al. 2001); therefore, the trends of radar 

reflectivity and calculated rain rates as the MCSs evolve are noted in this study, and not 

the actual values of these parameters. Rain rates, in addition to CFADs, time series plots 

of each region’s mean reflectivity at varying altitudes, and each region’s area are shown 

to document the evolution of the stratiform and convective regions.  Note that the 

stratiform area used for analysis and comparison with the lightning data is dependent on 

how far rearward LDAR lightning flashes are detected in the MCS.   



  
   

44

2.2 Lightning Detection and Ranging Network  

Texas A&M University’s Lightning Detection and Ranging (LDAR) network is 

composed of 12 sensors around the Houston metropolitan area and is used to detect 

three-dimensional location and time of VHF radiation sources emitted during the 

electrical discharge of lightning.  These sensors can detect IC and the intra-cloud 

component of CG flashes. The individual sensors are similar to New Mexico Institute of 

Mining and Technology’s Lightning Mapping Array (LMA) described by Rison et al. 

(1999) and are based off the original LDAR system developed at NASA’s Kennedy 

Space center.  Each sensor records the time and magnitude of the maximum pulse during 

a 100 us interval, allowing the network to record a possible 10,000 sources every second.   

The average baseline of the network is 25 km and the diameter of the network is 

approximately 80 km.  The sensors are tuned to a 5 MHz band centered on a frequency 

between 69 and 71 MHz depending on noise conditions (Rison et al. 1999, Ely et al. 

2006).  The network employs a time of arrival (TOA) technique that locates sources by 

differences in the time of arrival of the VHF signal at different sensors.  Between two 

sensors, possible source locations define a hyperbola of constant time difference.  With 

three sensors, two hyperbolas are defined and the intersection of the two hyperbolas is 

the source location.  However, multiple intersections occur for certain source locations 

and therefore a fourth sensor is needed (Fig. 2.4) (MacGorman and Rust 1998).  A 

minimum of five sensors are required to record a source arrival time in order to 

determine an accurate 3D source location.  Since there are four unknowns (x,y,z, and t),  

 



  
   

45

 

FIG. 2.4:  The location of a lightning source based on the time of arrival technique.  Hyperbolas 
on which the source occurs are formed by the difference in times in which the source is detected 
by two different sensors.  The intersection of hyperbolas from multiple pairs of sensors marks 
the location of a lightning source. Adapted from MacGorman and Rust (1998). 
 

 

the 5th (or more) sensor provides a redundant solution and improves the accuracy of the 

time and location of a VHF source in the presence of VHF noise. 

 During the time of the two cases being analyzed, 10 of the 12 sensors were 

operational.  The two sensors that were not operational were not installed until after the 

MCS events took place.  Ely et al. (2007) tested the network’s range during the MCS 

that traversed the network on 31 October 2006.  They found that the detection efficiency 

of VHF sources dropped off considerably beyond a radial distance of 130 km from the 

center of the network.  Because of the reduced detection efficiency, this study will only 

consider VHF sources that are within ~100 km from the center of the network, well 
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within the network’s effective range.  During the 31 October MCS, the calculated root 

mean square (RMS) time error was 80 ns, which led to a 3D location error of 

approximately 250 m for sources within the network’s perimeter and 1 km accuracy out 

to 100 km from the center of the network (Ely et al. 2007).      

The location of these VHF sources provide valuable information on the 

stratiform and convective charge centers of the MCS since lightning tends to propagate 

through net charge centers (e.g., Coleman et al. 2003).  The source location and time 

data are recorded for the MCSs that traversed the Houston LDAR network on 31 

October 2006 and 21 April 2007.  The VHF sources used in this study are located in the 

stratiform and convective regions along a segment of the convective line that was 

relatively straight for 100 (90) km for the 31 Oct. 2005 (21 Apr. 2006) event. 

Analysis over a relatively straight convective line is important in determining possible 

particle and charge advection by the front-to-rear flow from the convective line and into 

the stratiform region.   

2.2.1 VHF Source Density Plots 

In order to make VHF source density plots comparable to those seen in previous 

work (e.g., Carey et al. 2005), the VHF lightning source data are grouped into 10 minute 

intervals, centered on the KHGX radar volume scan times.  As mentioned section 

2.1.2.1, both the radar reflectivity data and VHF source data are then rotated about the 

center of the LDAR network where the convective line was parallel to the y-axis and line 

normal was parallel to the x-axis.  VHF composite source density and maximum 

composite radar reflectivity plots are created for three different views: (1) line normal 
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versus altitude, (2) horizontal plan view, and (3) line parallel versus altitude and overlaid 

on the corresponding maximum composite radar reflectivity contours.  In order to create 

the line normal vs. altitude (X-Z) view, the VHF source density (m3 min-1) is calculated 

by taking the integral of sources throughout the line parallel extent of the MCS being 

studied (100 km or 90 km) for the 10 min period and then dividing by the volume of the 

grid column (100 km3 or 90 km3) and also by the time interval in which the sources 

where taken (10 min).  The composite radar reflectivity is determined by the maximum 

reflectivity in the line parallel grid column.   

Similarly, the composite source density for the horizontal (X-Y) plan view is 

computed by taking the integral of sources throughout the height of the column (17 km) 

for the 10 min period and dividing by the volume of the grid column (17 km3) and the 

integration time (10 min).  The composite reflectivity shown is the maximum reflectivity 

in the vertical grid column.  The line parallel versus altitude view was created in much 

the same way.  The composite VHF source density was calculated by adding all the 

sources throughout the line normal length of the grid column (100 km for both cases) for 

the 10 min period and dividing by the total line normal grid column volume (100 km3) 

and the integration time (10 min).  The composite reflectivity shown is the maximum 

reflectivity in the line normal grid column.  These views give insight into the lightning 

pathway for a portion of the MCS that remained within the effective range of the LDAR 

network during the analysis times and where the convective line remained relatively 

straight.   
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2.2.2 Flash Algorithm  

In order to obtain flash characteristics for each region of the MCS, a modified 

version of a NASA flash algorithm is used to group individual VHF sources into flashes 

based on temporal and spatial restraints.  The algorithm requirements of a flash are as 

follows: the maximum time duration of a flash is 3 seconds, the maximum time delay 

between a source already associated with a flash and a new source is 0.5 seconds, and 

the maximum distance between a new source and an already determined flash source is 5 

km.  The algorithm also indicates flash branching.  If a new source is within 0.03 

seconds and 5 km of an already indicated flash source, then the new source is considered 

part of the same branch of the flash source.  If the time lag between sources is greater 

than 0.03 seconds, but less than 0.5 seconds, and the new source is within 5 km of 

another determined flash source, then a new branch is created.  If the time lag between 

sources is greater than 0.5 seconds or the distance between the last determined flash 

source and the new source is greater than 5 km, then a new flash begins.  Flashes that 

contained less than 3 sources are considered poorly located events that are either part of 

other, larger flashes or background noise and are not counted as flashes.  The analysis 

domain is within the effective range of the LDAR network and very few flash events 

recorded had less than 3 sources.    

Once all the VHS sources are combined into flashes, flash characteristics are 

determined for each MCS region.  Flashes are grouped in ten minute intervals centered 

on the radar scan times.  Flash rates are then calculated for each region by counting the 

number of flashes that propagated through the region and dividing by 10 minutes.  Also, 
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flash rates for the number of flashes initiating in each region were also determined by 

adding all original (i.e., first) VHF source signals of a flash in each region.  These flash 

rates give clues into how electrified each MCS region is and whether or not flashes are 

originating in one region (e.g., convective) and propagating into another region (e.g., 

stratiform). Along with flash rates, mean flash extent and mean VHF source count of 

flashes initiating in their respective regions are found.  The flash extent is calculated by 

taking the largest three-dimensional distance between any two sources of the flash.  

These characteristics are displayed in times series plots and compared with reflectivity 

data throughout the analysis time domain. 

As well as source density plots, individual flashes are also plotted as a series of 

individual VHF sources (or dots) on the same views as mentioned above.  These flashes 

are used to validate the lightning pathway as seen in the VHF source density distribution 

and also to determine flash characteristics.  Examples of these flashes are shown in the 

next section.  Line normal vs. altitude, line-parallel vs. altitude, and horizontal plan 

views are created by plotting all the individual sources throughout the analysis domain 

on a 2-D plane of the respective view.  The radar reflectivities in these plots are created 

in the same way mentioned in the source density plots.  A time-height plot is shown and 

indicates the height of sources with time.  The sources are color coded with increasing 

time, and the respective colors are used throughout all views.  Also, a histogram of 

sources with height is shown.  All these views are combined to produce one 5-panel plot 

of individual flashes.  These plots of individual flashes help confirm the VHF source 

density plots mentioned above as lightning pathways and also may help distinguish 
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separate charge layers in the thunderstorm due to the breakdown of negative charge in a 

positive charge region being noisier than breakdown of positive charge in a negative 

charge region (e.g., Rison et al. 1999).  The flash rate of both the convective and 

stratiform regions is calculated and used as a measure of the electrical strength of the 

region because flash rate is directly proportional to thunderstorm electrical power 

(Vonnegut 1963, Boccippio 2002) and also because the flash detection efficiency 

decreases less rapidly than source detection efficiency with increasing distance from the 

LDAR network center.  

2.3 National Lightning Detection Network  

The National Lightning Detection Network (NLDN) has been detecting CG 

lightning flashes since 1989 (Orville 1991).  The network originally consisted of 

magnetic direction finders, but has recently been upgraded to use a combination of TOA 

and Magnetic Direction Finding (MDF) technology and consists of 106 sensors.  The 

new method for combining the two technologies is referred to as the improved accuracy 

from combine technology (IMPACT) method (Cummins et al. 2006).     

MDF sensors calculate the location of CG flashes by the ratio of signal strengths 

recorded simultaneously at multiple MDF sites.  The sensors are composed of two 

vertically looped antennas that are mounted perpendicular to each other.  The direction 

of a lightning flash is calculated by the ratio of electromagnetic signals radiated by 

lightning from two orthogonal magnetic loop antennas.  The location of the flash may be 

found by finding the intersection of the directions from multiple sensors (Fig. 2.5) 

(Krider et al. 1980, MacGorman and Rust 1998).   
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FIG. 2.5:  A network consisting of 3 direction finding sensors determine the location of a 
lightning strike.  An optimal location algorithm is used to minimize the azimuthal errors. 
Adapted from Cummins et al. (1993). 
 
 

Using a combination of these sensors, NLDN detects the time, location, polarity, 

multiplicity, and peak current of CG flashes.  NLDN groups individual strokes into 

flashes based on temporal and spatial clustering.  For up to 1 second after the first return 

stroke, a maximum of 14 additional strokes will be added to the flash if they are within 

10 km from the first stroke and 500 ms from the previous stroke.  The reported location, 

polarity, and peak current of the flash is based on the first return stroke.  NLDN has a 

location accuracy of 500 m and flash detection efficiency of 90% across the United 

States (Cummins et al. 1998).       

For this study, NLDN flashes with positive peak currents less than 10 kA are 

discarded because they could be misidentified IC flashes (Cummins et al. 1998, Wacker 
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and Orville 1999).  NLDN flash rates and characteristics are found for the defined 

convective and stratiform regions of the MCS and grouped into ten minute time 

segments centered on radar volume scan times.  The evolution of NLDN flash 

characteristics such as flash rate, percent positive flashes, IC:CG ratio, and positive and 

negative mean peak currents are documented for each region.  The IC:CG ratio is 

calculated by first subtracting the number of NLDN detected CG flashes from LDAR 

detected flashes to find how many IC flashes occurred.  Then, the number of IC flashes 

are divided by the number of CG flashes to compute the IC:CG ratio.  These 

characteristics are then put in context with each regions evolving radar reflectivity and 

LDAR flash characteristics in order to gain knowledge of the microphysical and 

charging aspects of the MCS.   

The stroke level data were also acquired from Vaisala, Inc. in order to associate 

NLDN positive strokes with a parent LDAR detected flash.  The stroke level data are 

used due to its increased temporal accuracy over the flash level data.  Stroke level data 

sees all strokes in a flash with a temporal resolution of microseconds, whereas the flash 

level data includes the first stroke of a flash with a resolution of one second.  The greater 

temporal resolution will improve associations between NLDN detected positive strokes 

with parent LDAR flashes.  The NLDN positive stroke locations are associated with the 

nearest LDAR flash, both temporally (<1s) and spatially (<20 km).  In some cases, there 

are no VHF sources near (<20 km and <1 s), or there are multiple flashes near the 

ground strike location make the association ambiguous.  Once the NLDN flashes are 

paired to a parent LDAR flash, they are grouped into three categories based on location: 
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(1) stratiform, if the location falls within the defined stratiform domain; (2) non-

stratiform, if the location falls within the analysis domain, but outside the stratiform 

region; and (3) outside, if the flash origination falls outside the analysis domain.  These 

groupings are then subdivided by when the flashes occurred, either before or after 2300 

(1207 UTC) for the 31 Oct 2005 (21 Apr. 2006) MCS.  This time was used because it 

appeared as a midway point for stratiform development and the evolving lightning 

pathway.  By determining the origin of these LDAR flashes, the locations of the 

initiation point of the positive CGs are determined.  The mean, maximum, and minimum 

are computed for the LDAR flash VHF source count, along with the maximum LDAR 

flash extent and NLDN return stroke current for the +CG flashes occurring in the 

stratiform and non-stratiform categories.   
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3. RESULTS 
 

3.1 2005 October 31 LLTS MCS 

 On 2005 October 31, a symmetric LLTS MCS passed within range of Houston’s 

WSR-88D (KHGX) and Texas A&M’s LDAR network.  The MCS formed near the 

Oklahoma, Texas border and evolved as it moved southeast toward and into the Gulf of 

Mexico (Fig. 3.1).  As the MCS traversed the LDAR network it underwent significant 

evolution in both the convective and stratiform regions.  The evolution of the partitioned 

MCS will be analyzed by using radar and total lightning characteristics during a time 

span of an hour and a half from 22:27 UTC to 22:53 UTC. 

 

 

FIG 3.1: NEXRAD reflectivity images of the 31 October MCS at a) 08:00 UTC, b) 12:00 UTC, 
c) 16:00 UTC, and d) 20:00 UTC. 
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3.1.1 Radar Reflectivity 

 Radar reflectivity analysis is used to investigate the evolution of the intensity and 

structure of the MCS partitioned into convective and stratiform regions (Fig. 3.2).  

Important features to notice in the horizontal plan view (Fig 3.2) of radar reflectivity are 

the growth and development of enhanced radar reflectivity (> 35 dBZ).  The enhanced 

areas of reflectivity could be indicative of the development of the radar bright band, 

which is due to particles melting below the 0°C isotherm.  During these radar scans, 

areas of radar reflectivity > 35 dBZ have grown and areas of 40 dBZ have emerged in 

the defined stratiform region (Fig. 3.2).  It is important to note that the areas of 40 dBZ 

seen rearward of the stratiform region are a part of a previous convective line that is 

dissipating due to the formation of the current convective line.  The areas associated with 

the collapsing convective line had no detectable lightning and therefore were not 

included as part of the defined stratiform region.  Also, it is important to determine if the 

remnants of convective line had any impact on the development of enhanced reflectivity 

within the defined stratiform region seen in Figs. 3.2c,d.  To assist in this determination, 

the stratiform region was divided into three equal regions extending 0 - 25 km, 25 – 50 

km, and 50 – 75 km from the stratiform and transition boundary.  Time series of mean 

reflectivity in Figure 3.3 shows a high reflectivity feature entering and exiting the 50 – 

75 km region during the 2238 UTC to 2310 UTC time period.  At the time the 40 dBZ 

feature is exiting the 50 – 75 km region, the 25 – 50 and 0 – 25 km regions exhibit only a 

slight increase in mean reflectivity values. This suggests that the feature associated with 

the remnants of prior convection moved out the back end of the analysis area and did not  
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FIG. 3.2: Composite reflectivity images for four different times during the lifetime of the 31 
October MCS.  The times shown are: a) 22:43 UTC, b) 22:59 UTC, c) 23:15 UTC, and d) 23:32 
UTC.  Reflectivity is contoured every five dBZ with every other contour labelled (25 dBZ, 35 
dBZ, 45 dBZ, 55 dBZ).  Warmer colors indicate higher reflectivity values.  Vertical solid lines 
indicate partions of the stratiform (S), transition (T), and convective (C) regions. 
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FIG. 3.3: Time series plot of the mean reflectivities (dBZ) in three equally sized areas of the 
stratiform region. Distance values indicate rearward distance in the stratiform region from the 
stratiform-transition zone boundary. 
  
 

have a significant influence on the development of the radar bright band at later times 

(Figs. 3.2c,d). 

A combination of CFADs, time series of reflectivity, and rainfall amounts are 

used to provide a summary of the MCS evolution.  CFADs provide a concise summary 

of the relative frequency of radar reflectivity values in height and extend what is 

available from a single mean profile or cross-section (Yuter and Houze 1995).  Two 

CFADs, along with mean profiles, for both the stratiform (Fig. 3.4a) and convective 

(Fig. 3.4b) regions, are compared against the corresponding LDAR VHF lightning 

source density displays at critical times in the evolution of the stratiform region lightning 
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structure. The times shown for both regions are 22:43 UTC and 23:32 UTC, near the 

beginning and end of the analysis time period.  

 Similar to Yuter and Houze (1995), the stratiform CFADs show a narrower 

reflectivity distribution than the CFADs from the convective region, which can serve as 

an indication of correct stratiform/convective partitioning. According to Fig. 3.4a, as the 

stratiform region evolves from 22:43 UTC to 23:32 UTC, there is an increase in the 

frequency of high dBZ values (> 30 dBZ) at low- to mid-levels (< 5 km), which can be 

associated with the growth of the radar bright band. The formation of the bright band 

begins with ice crystals being ejected rearward from the convective region by the front-

to-rear flow. These ice crystals then fall slowly across the mesoscale updraft and grow 

by deposition and then by aggregation before they reach the melting level. Upon falling 

through the melting level, these aggregates melt into raindrops, producing what is called 

the radar bright band, a band of maximum reflectivity (e.g., Houze et al. 1989). 

The bright band development can be shown by the increase in relative frequency 

of high reflectivity values found between the heights of 2 and 5 km. At 3 km from 22:43 

to 23:32 UTC, the upper limit of the 1% contour changes from 41 dBZ to 45 dBZ (Fig. 

3.4a) and the lower limit of the 1% contour changes from 15 dBZ to 10 dBZ.  These 

results indicate that the stratiform CFAD is broadening from 22:43 UTC to 23:32 UTC 

as the upper (lower) tails increase (decrease).  The increase in mean reflectivities is 

therefore a result of the increase in the upper tail.  The decrease of the lower tail is 

possibly due to the development of the stratiform region.  A similar increase in the mean 

stratiform region radar reflectivity with time can also be noted in Fig. 3.2. Also,  
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FIG. 3.4:  Contoured frequency by altitude diagrams (CFADs) and mean profiles of radar 
reflectivity for the 31 October MCS a) stratiform and b) convective regions for 22:43 UTC 
(solid) and 23:32 UTC (dashed).  The bin size was set to 4 dBZ and the displayed contours are 
0.1% data dBZ-1 km-1 (gray), 1% data dBZ-1 km-1 (black), and the mean dBZ (bold). 
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reflectivities decrease at higher elevations.  For example, the 1% contour decreases from 

20 dBZ to 15 dBZ from 22:43 UTC to 23:32 UTC at 13 km.  Therefore, the height of 

moderate reflectivities in the stratiform is lowering during this time period.  However, it 

is noted that the percentage of available data points from the maximum number of points 

decreases with height to below 20% above 13 km and therefore may not be 

representative of storm structure..  According to Fig. 3.4b, the largest reflectivity values 

of the convective region decreased significantly with time, a sign that the convective line 

is weakening. For example, high dBZ values of 58 - 61 were present throughout the 

lower levels at 22:43 UTC and were absent by 23:32 UTC (Fig. 3.4b). The mean radar 

reflectivity decreased by 2 to 4 dB through the entire vertical depth of the convective 

region from 22:43 UTC to 23:32 UTC. 

In addition to the CFADs, time series of mean reflectivities at all heights are 

shown for the stratiform (Fig. 3.5a) and convective (Fig 3.5b).  Reflectivities in the 

stratiform region at low-to-mid levels (< 8 km) increase steadily throughout the analysis 

time period.  Mean reflectivities of 20 dBZ, 25 dBZ, and 30 dBZ are found at 7 km, 5.5 

km, and 3 km, respectively, at 22:27 dBZ.  As the MCS matures, the mean reflectivity 

values of 20 dBZ, 25 dBZ, and 30 dBZ are found at higher heights of 8km, 6 km, and 5 

km, respectively, at 23:53 UTC.  Also, the emergence of higher reflectivities (> 35 dBZ) 

is found at 23:32 UTC at low levels (< 3 km).  Again, higher reflectivities seen at low- to 

mid-levels as the system matures could be the result of particle growth by aggregation 

and deposition as they slowly sink through the mesoscale updraft toward the melting 

level after being ejected into the stratiform region from the rear of the convective region.   
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FIG. 3.5: Time series of mean reflectivities at all elevations for the a) stratiform and b) 
convective regions of the 31 October MCS.  Mean reflectivity is contoured every 5dBZ from 10 
dBZ to 55 dBZ. 
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The sinking motion can be illustrated by the slow decrease in low reflectivities at higher 

elevations (10-13 km) (Fig. 3.5a).  Reflectivity values greater than 10 dBZ are seen near 

the altitude of 12.5 km initially.  However, these reflectivity values are only seen below 

11 km at later times.  As the reflectivity at higher heights in the stratiform region of the 

MCS decrease, low-to-mid levels see a significant increase in reflectivity. 

The convective region on the other hand, shows an increase of mean reflectivity 

values at most elevations until 22:38 UTC, followed by little change throughout all 

heights until 23:26 UTC. After 23:26 UTC, the convective region begins to lose intensity 

rapidly (Fig 3.5b).  The increase in reflectivities initially is shown by the reflectivities 

shifting from lower to higher heights, indicating a possibly of strengthening updrafts.  

These stronger updrafts would be able to carry particles to higher levels and also able to 

support larger ice particle formation such as graupel and hail.  As the reflectivity values 

begin to sink down to lower altitudes, this could signify weakening of the updraft, 

causing larger ice particles to fall lower in the cloud and then to the ground.          

To corroborate these findings, time series of mean reflectivities at a height of 4.3 

km for the stratiform and convective regions were plotted along with the defined areas of 

each region (Fig. 3.6). This height was chosen because of its proximity to the melting 

level during the time of the MCS. As shown, the stratiform mean reflectivity at 4.3 km 

intensified in time rather steadily, increasing by 8 dB from 22:27 UTC to 23:53 UTC. 

Not only did the stratiform mean reflectivity increase significantly, its area also 

expanded from 1200 km2 to 7000 km2 during the analysis time period.  The convective 

mean reflectivity shows a peak in intensity at 22:43 UTC and weakening beyond 23:32  
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FIG. 3.6:  Time series plot of the mean stratiform and convective reflectivities of the 31 October 
MCS at a height of 4.3 km.  Also plotted are the areas of the stratiform and convective regions. 
 
 
 
UTC. The convective area decreased in time, which is expected with a decrease in the 

intensity. 

Rain amounts were also determined by calculating the mass of rain that fell 

during each radar volume scan time for both stratiform and convective regions (Fig. 3.7).  

The stratiform (convective) region rain amounts increase (decrease) steadily during the 

analysis time period.  Each region’s rainfall trend is in agreement with the previous 

analyses of stratiform region intensification and weakening of convective region with 

time. 
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FIG. 3.7: Time series plot of the radar derived rainfall totals that fell under the 31 October MCS 
convective and stratiform regions during the time span of each volume scan.  

 

 

3.1.2 Total Lightning 

 Along with radar reflectivity, the total lightning structure evolved as the MCS 

traversed the LDAR network within its effective range.  The following two sections give 

insight into the evolving structure based on LDAR and NLDN data. 

3.1.2.1 Lightning Detection and Ranging (LDAR) 

Ten minute LDAR source density plots are overlaid on composite contoured 

reflectivity for several different times: 22:43 UTC, 22:59 UTC, 23:15 UTC, and 23:32 

UTC.  All four times show a maximum source density toward the rear of the convection 

at a height 8 – 10 km, with a secondary maximum seen below, near 4-5 km (Fig 3.8).   
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FIG. 3.8: VHF source density (color filled) and composite radar reflectivity (contoured) line 
normal vs. vertical cross-section plots for 4 different times during the evolution of the 31 
October  2005 MCS.   The times shown are: a) 22:43 UTC, b) 22:59 UTC, c) 23:15 UTC, and d) 
23:32 UTC.  Solid vertical lines indicate the applied partitioning method between the convective 
and stratiform regions.  VHF source densities were taken over a 10 minute interval centered on 
the radar volume start time indicated.  Resolution in the vertical (horizontal) is 1 km (2 km). 
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Since negative breakdown in a positive region is noisier than positive breakdown in a 

negative region, the layered maximum source densities with a minimum source density 

between could be indicative of the tripole storm charge structure (Carey et al. 2005).  

The line normal versus height cross section results (Fig. 3.8) show an evolving lightning 

pathway.  At earlier times (Fig. 3.8ab), the lightning pathway extends horizontally 

rearward by 40 - 50 km from the top of the convection into the stratiform region at a 

steady altitude between 8 km and 11 km.  As the MCS matures, the lightning pathway 

evolves such that it slants downward by 5 km and rearward by 40 km from the top of the 

convection at 10 km altitude through the transition zone toward the radar bright band in 

the stratiform region.  Once over the stratiform bright band, the lightning levels off and 

extends further, horizontally back into the stratiform region at a height of 5 km (Fig. 

3.8cd).  The descent of the pathway levels off just above the melting level and the radar 

bright band.  Also, note during these time steps the increasing area of the 35 dBZ and 40 

dBZ contours in the stratiform region (Fig. 3.8a-d).  This increase in area may also be 

seen in Fig. 3.2a-d.   

The path of individual flashes can be assumed because of the short time scale (10 

min).  Many flashes originating in the convective and transition regions follow the 

pathway shown at the different times.  Fig. 3.9(3.10) shows individual VHF sources 

associated with an example flash from a time period early (late) in the MCS evolution. 

The flash that occurred at 22:38 UTC (Fig. 3.9) is representative of the 22:43 UTC 

source density plot (Fig. 3.8a).  The flash first extends parallel to the convective line 

before propagating rearward into the stratiform region (Fig. 3.9d).  The main source 
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distribution of the flash remains at a constant height of 8 – 11 km as it extends from the 

convective region into the stratiform region (Fig. 3.9a,b,c,e).  There is also secondary 

maximum of sources found at a height of 4 -6 km throughout the flash extent.  These 

two maximum in sources produce a layered flash structure as seen distinctly in Figs. 

3.9a,e.  A flash representative of the lightning pathway during the time period of 23:32 

UTC (Fig. 3.8d) is shown in Fig. 3.10.  The majority of sources in this flash begin in the 

convective region near a height of 8 – 11 km, then slant rearward and downward into the 

convective region (Fig. 3.10d).   This flash appears less layered as it propagates from the 

top of the convective region to lower heights within the stratiform region.  Although 

these flashes are representative of the time period, not all flashes follow the same 

pathway.  Flashes originating in the stratiform region also contribute to the leveling off 

appearance of the source densities in the stratiform region. 

A modified version of a NASA flash algorithm is used to group individual 

LDAR sources into flashes.  Using the algorithm, flash counts are made of all flashes 

entering the stratiform region.  Total flash rates in the stratiform region doubled from 

1.5- 2 flashes min-1 to over 3 – 4 flashes min-1 during the analysis time period (Fig. 

3.11).  The maximum increase is seen after 23:15 UTC as the lightning pathway begins 

to slant downward toward the melting level.  These flashes are then classified based on 

where they originated from.  The flashes were first classified as to whether or not they 

originated in the analysis domain consisting of the defined convective, transition, and 

stratiform regions.  Throughout all times, a mean of 80% of stratiform flashes originated 

within the analysis domain (Fig. 3.12).  This would indicate that few flashes propagate 
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FIG. 3.9:  Plot of VHF lightning sources (color coded with respect to time) and composite 
reflectivity associated with a representative flash that occurred on 31 October at 22:38 UTC. The 
lightning flash originated above the convective line and extended horizontally into the stratiform 
region. The coordinates of the plots are: a) height (km) versus time (sec), b) height (km) versus 
line normal distance (km), c) normalized VHF source frequency as a function of height, d) line 
parallel distance (km) versus line normal distance (km), and e) line parallel distance (km) versus 
height (km). 
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FIG. 3.10: Same as Fig. 3.9 except for a representative flash that originated in the convective 
region and propagated rearward and downward through the stratiform region.  The flash 
occurred at 23:47 UTC. 
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into the stratiform region from areas outside the analysis domain.  In taking into account 

all flashes that originate within the analysis domain, the percentage of flashes actually 

originating in the stratiform region varies depending on whether the time is before or 

after 23:15 UTC as the stratiform region begins to intensify.  Before 23:15 UTC, an 

average of 10% of stratiform flashes originating in the analysis domain actually 

originated in the stratiform region.  However, after 23:15 UTC, this percentage increased 

to over 50% (Fig. 3.12).  The majority of stratiform flashes in the analysis domain 

originate in the stratiform region once the stratiform region becomes fully developed and 

the lightning pathway nears the melting level.   

In order to investigate whether LDAR flash detection efficiency errors 

significantly impact the results during the analysis time period, the mean flash extent is 

measured for both convective and stratiform regions.  The flash extent is measured as the 

maximum distance between any two VHF sources in one flash.  As the system traverses 

the LDAR network, the flash extents for both convective and stratiform regions remain 

relatively steady near 60 km and 20 km, respectively (Fig. 3.13).  If the LDAR flash 

detection efficiency decreased significantly with distance from the network center, then 

flashes would have been broken up into smaller, lesser extent flashes during earlier time 

periods.  This would have caused the flash extent to slowly grow with time as the MCS 

approached the network center.  The steady flash extent increases our confidence that 

flash detection efficiency did not adversely affect our results within the effective range 

of the network as defined by Ely et al. (2007). 
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FIG. 3.11: Time series plot of the 31 October MCS stratiform flash rate during ten minute 
intervals centered on the radar volume scan times. 
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FIG. 3.12:  Time series plot of the percentage of stratiform flashes originating in the 31 October 
MCS analysis domain (convective, transition, or stratiform regions).  Also plotted is the 
percentage of these flashes that originate in the stratiform region. 
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FIG. 3.13:  Time series plot of the mean flash extent for stratiform flashes originating in both the 
31 October MCS stratiform and convective regions. 
 
 

The mean VHF source count is determined for flashes originating in the 

stratiform region and those that propagate into the stratiform region from the convective 

region.  The mean VHF source count for flashes originating in the convective region and 

propagating into the stratiform region drops considerably from 800 to 400 VHF sources 

during the analysis time (Fig. 3.14).  If this was a detection error, then the mean VHF 

source count should increase with time.  The decrease in sources may be due to the 

weakening of the convective line and decreasing extent of charge layers.  Although the 

flash extent remained fairly constant throughout the time period (Fig. 3.13), the flashes 

during later times may have been less branched and extensive in the convective region 

due to decreasing charge layers as the line weakens.  The stratiform mean VHF source  
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FIG. 3.14:  Time series plot of the mean number of VHF sources that compose stratiform flashes 
originating in both the 31 October MCS stratiform and convective regions. 

 

count shows a slight increase with time.  This increase, however, could be associated 

with developing extensive charge layers in the stratiform region with time. 

The mean heights of stratiform flashes differ depending on which region 

(convective or stratiform) the flashes originated in.  Flashes originating in the convective 

region and propagating into the stratiform region tend to have higher mean heights 

compared to their counterparts in the stratiform region (Fig. 3.15).  The mean height of 

convective flashes that propagate into the stratiform region lowers steadily with time 

from 9 km to 7.5 km.  The lowering of the mean height is consistent with the slanting 

lightning pathway as well as the weakening of the convective line and lowering echo 

heights throughout the MCS (Figs. 3.5, 3.7).  The mean heights of flashes originating in 

the stratiform region show a more complex trend with the mean decreasing in height 
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from 9 km to 5 km before 23:15 UTC and from 8 km to 6 km after 23:15 UTC (Fig 

3.15).  There is also a complex difference between the mean flash height of flashes 

originating in the stratiform region and the median initiation height of these flashes.  

During early times (before 23:15 UTC), the median initiation height is generally above 

the mean flash height, while later times (after 23:15 UTC) the median initiation height is 

below the mean flash height (Fig. 3.15).  The relatively few flashes originating in the 

stratiform region during early analysis times could contribute to the nosier mean flash 

and origination height patterns.  The overall lowering of flash heights as MCSs mature 

was also found by Lyons et al. (2003) in their study of two MCSs. 

   

4

5

6

7

8

9

10

22:27 22:38 22:43 22:48 22:54 22:59 23:05 23:10 23:15 23:21 23:26 23:32 23:37 23:42 23:48 23:53

Time (UTC)

H
ei

gh
t (

km
)

Convective Flash Height

Stratiform Flash Height

Stratiform Origination Height

 

FIG. 3.15:  Time series plot of the mean flash heights of stratiform flashes originating in both the 
31 October MCS stratiform and convective regions.  Also plotted is the mean height of the 
initiation of flashes originating in the stratiform region. Data gaps occur when no flashes 
originated in the stratiform region. 
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3.1.2.2 NLDN 

NLDN data is used to document important trends in CG flashes during the 

evolution of the MCS.  The IC:CG ratio for the stratiform region remains fairly constant 

(~4) throughout the time period (Fig. 3.16).  However, the total flash rate in the 

stratiform region shows a general increasing trend with time; which along with a steady  

IC:CG ratio, indicates increasing CG rates with time as well.  CG flash rates are found to 

increase from 0.1 - 0.6 CG flashes min-1 before 23:15 UTC to 0.6 - 1 flashes min-1 after 

23:15 UTC (Fig. 3.17).  The percent of positive CGs in the stratiform region fluctuates 

between around 25 – 50%, with higher percentages concentrated near the end of the 

analysis period.  The increase in the NLDN flash rate in the stratiform region (Fig. 3.17) 

supports the similar increase found in the LDAR indicated flash rate (Fig. 3.11) during 

the same time period.  While the CG flash rate in the stratiform region increased with 

time, the opposite was found in the convective region.  The number of CGs found in the 

convective region reaches a high of 15.1 flashes min-1 at 22:54 UTC, then falls 

dramatically to 3.6 flashes min-1 at the end of the analysis time period (Fig. 3.18).  The 

percent of positive CGs is in a range from 2 - 10 % throughout the time period, 

significantly lower than the percentages found in the stratiform region.     

 Mean peak currents of positive and negative CG flashes are also different 

between stratiform and convective regions.  Positive CGs in the stratiform region deposit 

larger peak currents than their counterparts in the convective region (Fig. 3.19).  The 

stratiform peak positive currents also show an increasing trend as the stratiform region  
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FIG. 3.16: Time series plot of the flash rate and the IC:CG ratio in the 31 October MCS over a 
ten minute time span centered on the radar volume scan time.  
 
 

0

0.2

0.4

0.6

0.8

1

1.2

22:27 22:43 22:54 23:05 23:15 23:26 23:37 23:48

Time (UTC)

C
G

 F
la

sh
 R

at
e 

(fl
as

he
s 

m
in

^-
1)

0

10

20

30

40

50

60

70

Percentage (%
)

CG Flash Rate
%pos

 

FIG. 3.17: Time series plot of the CG flash rate and the percent of positive CGs occurring over a 
ten minute time period in the 31 October MCS stratiform region.   
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FIG. 3.18: Same as Fig. 3.17 except for in the 31 October MCS convective region. 
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FIG. 3.19: Time series plot of the 31 October MCS stratiform and convective CG peak currents. 
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intensifies.  The stratiform mean peak negative currents are much more variable (-2 to -

40 kA) than the negative peak currents in the convective region (~ -15 kA). 

Over the analysis time period, 18 separate stratiform region flashes are associated 

with CGs that contained a positive return stroke.  Three parent stratiform flashes can not 

be uniquely defined due to the lack of LDAR detected VHF sources near (< 20 km and < 

1 s) the ground strike point, or multiple flashes are near the ground strike location 

making the association between LDAR flash and NLDN ground stroke location 

ambiguous.  The LDAR flash initiation points are then grouped into three categories 

based on location: (1) stratiform, if the location falls within the defined stratiform 

domain; (2) non-stratiform, if the location falls within the analysis domain, but outside 

the stratiform region; and (3) outside, if the flash origination falls outside the analysis 

domain.  These groupings are then subdivided by when the flashes occur, either before 

or after 23:15 UTC.  This time is used because it appeared as a midway point for 

stratiform development and the evolving lightning pathway.  The mean, maximum, and 

minimum are then computed for the LDAR flash VHF source count, maximum LDAR 

flash extent, and NLDN return stroke current for the +CG flashes occurring in the 

stratiform and non-stratiform categories. 

 Stratiform region positive CG strokes, which occur throughout the analysis time 

period, are associated with 15 unique LDAR flashes.  The number of flashes originating 

in the stratiform, non-stratiform, and outside regions, that contain a CG with at least one 

positive return stroke located in the stratiform region, are 6, 5, and 4 respectively.  After 

further subdividing the groups based on occurrence before (after) 23:15 UTC, the 
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distributions are 0(6), 2(3), 0(4) in the stratiform, non-stratiform, and outside domains, 

respectively.  These results, plus other positive CG flash statistics, which are taken from 

the NLDN and LDAR networks, are listed in Table 3.1.  The mean LDAR flash extent 

and LDAR VHF source count of flashes from the non-stratiform region are larger than 

those from the stratiform region, which can be expected because of the distance the 

flashes need to propagate in order to tap into the charge in the stratiform region (20-40 

km).  However, flashes originating in the stratiform region generally propagate in the 

along line direction and are thus limited by the line-parallel size of the domain.  Larger 

stratiform flash extents may be seen with a larger analysis domain in the line-parallel  

 

Table 3.1: Summary of flash statistics for the 31 October MCS stratiform region positive CG 
flashes that originated in stratiform (top) and non-stratiform regions (bottom). 

      

              Stratiform   
   Count   
Total   6   
Before(after) 2315 UTC 0(6)   
  source count extent (km) current (kA)
mean 272 51 81 
min 20 13 12 
max 879 79 180 
      

        Non-stratiform   
   Count   
Total   5   
Before(after) 2315 UTC 2(3)   
  source count extent (km) current (kA)
mean 883 80 43 
min 330 48 12 
max 1986 104 82 
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direction.  Interestingly, the mean NLDN positive peak current flashes originating in the 

non-stratiform region is less than the peak current from those originating in the 

stratiform region, despite the shorter flash extents of the stratiform originating flashes. 

A five panel plot of lightning VHF sources and corresponding maximum 

reflectivity for an example stratiform flash originating in the convective and stratiform 

regions are shown in Fig. 3.20 and Fig. 3.21, respectively.  The flash originating in the 

convective region occurred at 23:02 UTC.  In the line normal distance versus height 

panel (Fig. 3.20b), it shows similar features of the composite lightning pathway 

representative of that time (Fig. 3.8b).  The flash begins at the top rear of the convective 

region and propagates 70 km horizontally rearward through the transition and stratiform 

regions.  The flash slants slightly in the line normal direction before leveling off near 8 -

10 km in the stratiform region, above other flashes seen during later times.  This flash  

 

 

 

 

 

 

 

 

 



  
   

81

could indicate the transition of the lightning pathway from extending horizontally 

rearward from the top of the convective line to slanting rearward and downward into the 

stratiform region.  The flash exhibits a somewhat of a bi-level structure with the majority  

of its VHF sources occurring between 8 – 10 km and another grouping of sources near 

the 5 km level.  The horizontal layers are more ambiguous in the line parallel distance 

vs. height plot (Fig. 3.20e).  The horizontal extent and number of VHF sources of this 

flash is the max of all flashes originating in the non-stratiform region at 103.56 km and 

1986 respectively (Table 3.1).  However, the peak positive current deposited on the earth 

by the flash is just above the mean of non-stratiform flashes (Table 3.1).    The flash that 

originates in the stratiform region at 23:42 UTC initiates near the edge of the analysis 

domain and propagates 80 km in the line parallel direction (Fig. 3.21).  The majority of 

the sources of this flash occur between the heights of 6 km and 7 km.  This flash has an 

extent of 119.86 km which is the maximum extent seen by flashes originating in the 

stratiform region and has 504 sources, which is above average of flashes originating in 

the stratiform region (Table 1). 
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FIG. 3.20:  Same as Fig. 3.9 except with a +CG flash originating from the convective line at  
23:02 UTC.  Triangles (∆) indicate a negative CG stroke while asterisks (*) indicate positive CG 
strokes. 
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FIG. 3.21:  Same as Fig. 3.9 except with a + CG flash originating in the stratiform region at 
23:42 UTC.  Triangles (∆) indicate a negative CG stroke while asterisks (*) indicate positive CG 
strokes. 
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3.2 2006 April 21 LLTS MCS  

 On 2006 April 21, another symmetric LLTS MCS traversed within range of 

Houston’s WSR-88D (KHGX) and Texas A&M’s LDAR network.  The MCS formed in 

central Texas and propagated east toward and into the Gulf of Mexico (Fig. 3.22).  As 

the MCS traversed the LDAR network, it too underwent significant evolution in both the 

convective and stratiform regions.  The evolution of the partitioned stratiform and 

convective regions will be analyzed by using total lightning and radar characteristics 

during a time span of two and a half hours from 10:40 UTC to 13:01 UTC. 

 

 
 
FIG. 3.22:  NEXRAD reflectivity images of the 21 April MCS at a) 06:00 UTC, b) 08:00 UTC, 
c) 10:00 UTC, and d) 12:00 UTC. 
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3.2.1 Radar Reflectivity 

 Radar reflectivity analysis is used to investigate the evolution of the intensity and 

structure of the MCS.  The following analyses are performed on the partitioned 

stratiform and convective regions as seen in Fig. 3.23.  Once again, a combination of 

CFADs and time series of reflectivity and rain rates are used to provide a summary of 

the MCS evolution.  Two CFADs, along with mean profiles, for both the stratiform (Fig. 

3.24a) and convective regions (Fig. 3.24b), are produced to compare against the 

corresponding LDAR VHF lightning source density displays at critical times in the 

evolution of the stratiform region lightning structure. The times shown for both regions 

are 11:09 UTC and 12:41 UTC, near the beginning and end of the analysis time period. 

 According to Fig. 3.24a, as the stratiform region evolves from 1109 UTC to 1241 

UTC, there is an increase in frequency of high reflectivity values (> 45 dBZ) at low-to- 

mid levels (< 6 km) as the upper limit of the 1% (0.1%) contour changes from 44 (45) 

dBZ to 49 (53) dBZ.  This increase can be associated with the development and growth 

of the radar bright band, which occurs due to ice crystals growing by deposition and 

aggregation before melting near the 0°C level (Houze et al. 1989).  Also, at higher 

heights, reflectivities decrease from 1109 UTC to 1241 UTC.  Mean reflectivities drop 

10 dB from 15 dBZ to 5 dBZ at a height of 13 km, which could be indicative of particles 

slowly falling in the stratiform region.  Once again, it is noted that the percentage of 

available data points from the maximum number of points decreases with height to 

below 20% above 14 km and therefore may not be representative of storm structure.    
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FIG. 3.23: Composite reflectivity images for four different times during the lifetime of the 21 
April MCS.  The times shown are: a) 11:09 UTC, b) 11:34 UTC, c) 12 UTC, and d) 23:32 UTC.  
Reflectivity is contoured every five dBZ with every other contour labelled (25 dBZ, 35 dBZ, 45 
dBZ, 55 dBZ).  Warmer colors indicate higher reflectivity values.  Vertical solid lines indicate 
partions of the stratiform (S), transition (T), and convective (C) regions. 
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FIG. 3.24: Contoured frequency by altitude diagrams (CFADs) and mean profiles of radar 
reflectivity for the 21 April MCS a) stratiform and b) convective regions for 11:09 UTC (solid) 
and 12:41 UTC (dashed).  The bin size was set to 4 dBZ and the displayed contours are 0.1% 
data dBZ-1 km-1 (gray), 1% data dBZ-1 km-1 (black), and the mean dBZ (bold). 
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 On the other hand, the convective CFADs (Fig. 3.21b) show a weakening trend as 

reflectivity values generally decrease throughout all heights.  The largest decrease occurs 

between the heights of 8 km and 11 km where the 0.1% contour decreases by an average 

of 10 dB. In lower levels, high reflectivity values (> 60 dBZ) are shown at early times 

while they are completely absent at later times. 

In addition to the CFADs, time series of mean reflectivities at all heights are 

shown for the stratiform (Fig. 3.25a) and convective (Fig. 3.25b) regions.  The stratiform 

region’s greatest change throughout the time period occurs at low-to-mid levels.  At 

heights near 4 and 5 km, reflectivity values are below 35 dBZ during early times.  

However, as time progresses, higher reflectivities (>35 dBZ) are seen at these heights 

(Fig. 3.25a).  Also, reflectivities over 38 dBZ emerge at low heights (2-4 km) at later 

times.  Higher reflectivities seen at low-to-mid levels in the stratiform region during later 

time periods are indicative of particle deposition, aggregation, and melting as they fall 

through the melting level.  At higher levels (> 12 km) reflectivities fall significantly on 

the order of 5 dB in time (Fig. 3.25a).  The mean reflectivity at 12 km is close to 15 dBZ 

near the beginning of the time period and falls to below 10 dBZ at the end of the analysis 

period.  This could be the result of a combination of the convective line weakening and 

ejecting small ice particles at lower heights and also the particles falling from higher to 

lower heights in the stratiform region as time passes.  During two time periods, near 

11:29 UTC and 12:17 UTC, reflectivity pulses at all heights.     
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FIG. 3.25: Time series of mean reflectivities at all elevations for the 21 April MCS a) stratiform 
and b) convective regions.  Mean reflectivity is contoured every 5dBZ from 10 dBZ to 55 dBZ. 
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The convective region, on the other hand, shows decreasing mean reflectivities 

throughout all heights.  Higher mean reflectivities (> 45 dBZ) are more predominant at 

lower levels, with some mean values of 50 dBZ seen during early times (Fig. 3.25b).  

Atheights of 5 km and above, mean reflectivities drop considerably. The mean 

reflectivity at 6 km starts above 45 dBZ and then begins to decrease down to below 40 

dBZ by the end of the analysis time period.  At 10 km, the mean reflectivity begins near 

40 dBZ and continues to decreases significantly to below 25 dBZ.  The decrease in 

reflectivity at mid-to-upper levels is a sign of the convective region weakening.  As time 

passes, the weakening updraft is likely only able to support smaller particles.  However, 

similar to the stratiform region, the reflectivity pulses at all height levels near 11:29 UTC 

and 12:17 UTC (Fig. 3.25b).  These results, from both the stratiform and convective 

region, are very similar to the CFAD results for each region in showing a strengthening 

stratiform region and a weakening convective region. 

   A time series plot of stratiform and convective mean reflectivity and area at a 

height of 4.3 km is provided as additional support to the CFADs and the mean 

reflectivities at all heights (Fig. 3.26).  This height was chosen because of its proximity 

to the melting level during the time of the MCS.  Notice that the area of the stratiform 

region quadruples from 1030 UTC to 1236 UTC from less than 2,000 km2 to over 8,000 

km2.  With this increase in area, the mean stratiform reflectivity value significantly 

increases from around 32 dBZ to 38 dBZ.  Similar to the CFADS, this time series plot 

shows a strengthening of the stratiform reflectivity.  On the other hand, the convective 

area does not change nearly as dramatically (steady near 4,000 km2); however, the mean 
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FIG. 3.26: Time series plot of the mean stratiform and convective reflectivities of the 21 April 
MCS at a height of 4.3 km.  Also plotted are the areas of the mean stratiform and convective 
regions. 

 

convective reflectivity values significantly decrease from near 50 dBZ to 44 dBZ.  This, 

along with the convective CFAD and mean reflectivity plots (Figs. 3.24b & 3.25b), 

shows the convective region slowly weakening throughout the MCS lifetime during the 

analysis time period. 

The rainfall amount is calculated by determining the mass of rain that fell during 

each radar volume scan time for both stratiform and convective regions and is also used 

as a final justification for the strengthening of the stratiform region and weakening of the 

convective region (Fig. 3.27).  The rainfall totals in the stratiform region increase from 

close to 1X105 kg to 3X106 kg under the analysis area.  Rainfall below the convective 

region decreases by one half from 2X107 kg to 1X107 kg.  Total rainfall supports the  
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FIG. 3.27: Time series plot of the radar derived rain mass that fell under the 21 April MCS 
convective and stratiform regions during the time span of each volume scan.   
 

previous analyses with the stratiform region intensifying and the convective region 

becoming less intense with time. 

3.2.2 Total Lightning 

 Along with radar reflectivity, the total lightning structure evolved as the MCS 

traversed Houston within the effective range of the LDAR network.  The following two 

sections give insight into the evolving structure of the 21 April MCS based on LDAR 

and NLDN data. 

3.2.2.1 Lightning Detection and Ranging (LDAR) 

 Ten minute LDAR source density plots are overlaid on composite contoured 

reflectivity for several times: 1109 UTC, 1138 UTC, 1207 UTC, and 1241 UTC. At 

earlier times (1109 UTC, 1138 UTC), the lightning pathway extends horizontally 

rearward by 40 - 50 km from the top of the convection into the stratiform region at a 
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FIG. 3.28: VHF source density (color filled) and composite radar reflectivity (contoured) line 
normal vs. vertical cross-section plots for 4 different times during the evolution of the 21 April 
MCS.   The times shown are: a) 11:09 UTC, b) 11:38 UTC, c) 12:07 UTC, and d) 12:41 UTC.  
Solid vertical lines indicate the applied partitioning method between the convective and 
stratiform regions.  VHF source densities were taken over a 10 minute interval centered on the 
radar volume start time indicated.  Resolution in the vertical (horizontal) is 1 km (2 km). 
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steady altitude between 10 km and 12 km  (Fig. 3.28ab).  As the MCS matures, the 

lightning pathway evolves such that it slants downward by 6 km and rearward by 40 km 

from the top of the convection at 12 km altitude through the transition zone toward the 

radar bright band in the stratiform region.  Once over the stratiform bright band, the 

lightning levels off and extends 40-50 km horizontally back into the stratiform region at 

a height between about 5 and 7 km (1207 UTC, 1241 UTC) (Fig. 3.28cd).  The descent 

of the pathway levels off just above the melting level and the radar bright band.  Also, 

note during these time steps the increasing area of the 40 dBZ and 45 dBZ contours in 

the stratiform region (Fig. 3.28a-d).  This increase in area may also be seen in Fig. 3.21a-

d.  As the stratiform area increases and reflectivities become more intense, the lightning 

pathway takes on a more slanted course (Fig. 3.28).  Because of the short time scale (10 

min), the path of individual flashes can be assumed.   

Two representative flashes of the horizontal and slanting lightning pathways that 

originate in the convective region and propagate into the stratiform region occurred at 

11:09 UTC (Fig. 3.29) and 12:43 UTC (Fig. 3.30).    The flash that occurred at 11:09 

UTC originated in the convective region and propagated horizontally rearward into the 

stratiform region.  The majority of sources slants slightly in the line normal domain, but 

are concentrated at a height of 9 – 13 km as the flash extends into the stratiform region 

(Fig. 3.29).  The flash that occurred at 12:43 UTC extends 110 km rearward and 6 km 

downward from a height of 10 – 12 km at the top of the convective line through the 

transition zone and stratiform region to a height of 4 – 6 km (Fig. 3.30).  This flash 

represents the lightning pathway for the time period near 12:41 UTC (Fig. 3.28d).  
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FIG. 3.29:  Plot of VHF lightning sources (color coded with respect to time) and composite 
reflectivity associated with a representative flash that occurred on 21 April at 11:09 UTC. The 
lightning flash originated above the convective line and extended horizontally into the stratiform 
region. The coordinates of the plots are: a) height (km) versus time (sec), b) height (km) versus 
line normal distance (km), c) normalized VHF source frequency as a function of height, d) line 
parallel distance (km) versus line normal distance (km), and e) line parallel distance (km) versus 
height (km). 
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FIG. 3.30:  Same as Fig. 3.29 except for a representative flash that originated in the convective 
region and propagated rearward and downward through the stratiform region.  The flash 
occurred at 12:43 UTC. 
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Although these flashes are characteristic of their time periods, not all flashes followed 

the representative pathway.  Flashes originating in the stratiform region also contribute 

to the leveling off appearance of the source densities in the stratiform region. 

A modified version of a NASA flash algorithm is once again used to group 

individual LDAR sources into flashes.  The stratiform flash rate was calculated 

throughout the analysis time by using the flash algorithm (Fig. 3.31).   The flash rate, 

although noisy, increases with time from 5 flashes min-1 to over 10 flashes min-1 flashes.  

These flashes are then classified based on where they originated from.  The flashes were 

first classified as to whether or not they originated in the analysis domain consisting of 

the defined convective, transition, and stratiform regions.  Most (70 – 80 %) of the 

electrical activity in the stratiform region originated within the analysis domain (Fig. 

3.32).  Therefore, few lightning flashes originate outside the analysis domain and 

propagate into the stratiform region.  The percentage of flashes that originate in the 

analysis domain within the stratiform region increases from near 20 % (10:40 UTC – 

11:29 UTC) to as high as 60 % during later times (e.g., 12:41 UTC).  The increase in the 

amount of flashes originating in the stratiform region occurs as the lightning pathway 

begins to slant downward into the region and into the melting level.      

 In order to confirm that the MCS was well within the effective range of the 

LDAR network, the mean flash extent (calculated by taking the maximum distance from 

any two VHF sources in a flash) and mean source counts of all flashes are calculated.  

The mean flash extent for stratiform region flashes originating in both the convective 

and stratiform regions remained steady throughout the analysis time period.  The 
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FIG. 3.31: Time series plot of the 21 April MCS stratiform flash rate occurring over ten minute 
intervals centered on the radar volume scan times. 
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FIG. 3.32: Time series plot of the percentage of the 21 April MCS stratiform flashes originating 
in the analysis domain (convective, transition, or stratiform regions).  Also plotted is the 
percentage of these flashes that originate in the stratiform region. 
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convective region flash extents remained near 50 km while the mean stratiform flash 

extent remained near 20 km (Fig. 3.33).  If the MCS was outside the effective range, 

large flashes would have been broken up into smaller flashes due to the lack of detected 

VHF sources and the flash extent trend would have increased as the MCS traversed 

closer to the network.  The mean VHF source count of flashes in the convective region 

generally decreased in time from 500 to 200 VHF sources (Fig. 3.34).  This trend is the 

opposite of what would be expected if there was a range efficiency error, in which more 

sources would be detected as the system propagated closer to the network center.  The 

stratiform region mean VHF source count remained relatively constant at near 50 VHF 

sources per flash throughout the time period. 

 The mean heights of flashes originating in the stratiform region and convective 

regions that propagate into the stratiform region were calculated.  The mean heights of 

both sets of flashes decrease with time.  The convective flashes begin with mean heights 

of 10 km that slowly decrease down to 9 km with time.  The stratiform flash mean 

heights descend further from 10 km down to 6 km (Fig 3.35).  The decrease in flash 

heights corresponds well with the descent of the lightning pathway into the stratiform 

region with time (Fig. 3.28).  Also of note, the flash origination height of flashes 

originating in the stratiform region also decreases, from 9 km to 6 km, and stays 

generally below the mean height of those flashes throughout the time period (Fig. 3.35).  
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FIG. 3.33: Time series plot of the mean flash extent of stratiform region flashes originating in 
both the 21 April MCS stratiform and convective regions.   
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FIG. 3.34: Time series plot of the mean number of VHF sources that compose stratiform region 
flashes originating in both the 21 April MCS stratiform and convective regions. 
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FIG. 3.35: Time series plot of the mean flash heights of stratiform flashes originating in both the 
21 April MCS stratiform and convective regions.  Also plotted is the mean height of the 
initiation of flashes originating in the stratiform region. 
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FIG. 3.36: Time series plot of the flash rate and the IC:CG ratio in the 21 April MCS stratiform 
region over a ten minute time span centered on the radar volume scan time. 
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3.2.2.2 National Lightning and Detection Network (NLDN) 

NLDN data is also used to document how CG flashes evolve with the MCS.  A 

time series plot of the total stratiform lightning flash rates and the stratiform IC:CG ratio 

is shown in Fig. 3.36.  The total stratiform flash rate increases steadily as well as the 

stratiform CG flash rate, which is shown by the decreasing IC:CG ratio by roughly a 

factor of five from a maximum of ten at 11:09 UTC to a minimum of two at 13:01 UTC 

 (Fig. 3.36).  Figure 3.37 shows the stratiform CG flash rate increasing from 0.5 flashes 

min-1 to 3.4 flashes min-1 during the analysis time domain.  As the CG flash rate 

increases, so does the percent of positive CGs.  The percent of positive CGs during early 

times is around 10%.  As time progresses, the percent positive CGs increases to 37% at 

12:46 UTC (Fig. 3.37).  The percent of positive CG flashes is much higher in the 

stratiform region than it is in the convective region.  In the convective region, the percent 

of positive CGs is around 4% with a maximum of 7% (Fig 3.38).  Although the percent 

of positive CGs remains fairly constant as the convective region evolves, the CG rate 

drops from near 400 CGs in ten minutes at the beginning of the analysis time to close to 

125 CGs in ten minutes at the end of the study (Fig. 3.38).  Overall, the CG rates 

decrease in the convective region and increase in the stratiform region as the MCS 

matures.  The percent of positive CGs also increase in the stratiform while the 

percentage remains constant in the convective region over time. 

The mean peak currents of stratiform and convective CGs also differ from one 

another.  The stratiform peak positive currents have a tendency to be greater than the 

positive peak currents found in the convective region (Fig. 3.39).  Also, the peak 
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FIG. 3.37: Time series plot of the CG flash rate and percent of positive CGs occurring over a ten 
minute time period in the 21 April MCS stratiform region.   
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FIG. 3.38: Same as Fig. 3.37 except for in the 21 April MCS convective region.   
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FIG. 3.39:  Time series plot of the mean stratiform and convective CG peak currents during the 
21 April MCS.  

 

currents in the stratiform region increase from around 40 kA to 70 kA while the 

convective peak currents increase from 18 kA to 35 kA (Fig. 3.39).  The negative peak 

currents in the convective region stay relatively constant near -17 kA throughout the 

time period.  The stratiform mean negative peak currents have smaller amplitudes (~ -12 

kA) than those in the convective region during the first half of the analysis time (< 11:48  

UTC).  However, their amplitudes increase (~ -22 kA) to surpass the convective mean 

peak currents in the second half of the time period (>11:48 UTC) (Fig. 3.39).  

Throughout the analysis time period, 36 LDAR flashes are associated with 

stratiform region positive CG strokes.  The number of flashes originating in the 

stratiform, non-stratiform, and outside regions, that contain a CG with at least one 

positive return stroke located in the stratiform region, are 7, 19, and 10, respectively.  
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After further subdividing the groups based on occurrence before (after) 12:07 UTC, the 

distributions are 2(5), 6(13), 5(5) in the stratiform, non-stratiform, and outside domains, 

respectively.  These results, plus other positive CG flash statistics, which are taken from 

the NLDN and LDAR networks, are listed in Table 3.2.  The mean LDAR flash extent 

and LDAR source count of flashes from the non-stratiform region are larger than those 

from the stratiform region, which can be expected because of the distance the flashes 

need to propagate in order to tap into the charge in the stratiform region (20-40 km).  

However, flashes originating in the stratiform region generally propagate in the along 

line direction and are thus limited by the line-parallel size of the domain.  Larger 

stratiform flash extents may be seen with a larger analysis domain in the line-parallel 

direction.  Interestingly however, even though flashes originating in the non-stratiform 

domain have longer flash extents, their mean NLDN peak current is less than those that 

originate in the stratiform region.  Not shown in the table are the times in which the CGs 

occurred.  A stratiform initiated flash occurring at 10:45 UTC accounts for the first 

positive CG. This flash preceded the first non-stratiform initiated positive CG by 45 

minutes.   
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Table 3.2: Summary of flash statistics for stratiform region positive CG flashes that originated in 
the 21 April MCS stratiform (top) and non-stratiform regions (bottom). 

 

              Stratiform   
   Count   
Total   7   
Before(after) 1207 UTC 2(5)   
  source count extent (km) current (kA)
Mean 180 49 57 
Min 35 27 17 
Max 460 71 112 
      

        Non-stratiform   
   Count   
Total   19   
Before(after) 1207 UTC 6(13)   
  source count extent (km) current (kA)
Mean 807 96 43 
Min 259 50 15 
Max 1679 125 111 

 

 

A five panel plot of lightning VHF sources and corresponding maximum 

reflectivity for an example stratiform flash originating in the convective and stratiform  

regions are shown in Fig. 3.40 and Fig. 3.41, respectively.  The flash originating in the 

convective region occurred at 12:52 UTC and in the line normal distance versus height 

panel (Fig. 3.40b) shows similar features as the composite lightning pathway 

representative of that time (Fig. 3.28d).  The flash begins at the top rear of the 

convective region and propagates 30 km rearward and 6 km downward through the 

transition zone, seemingly following the slope of the 30 dBZ reflectivity contour.  The 

flash then levels off in two horizontal layers as it travels 50 km rearward through the 

stratiform region.  The first layer occurs just as the flash begins to level off between the 
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heights of 6 km and 7 km and is 20 km in line-normal extent.  The second layer occurs 

just after the first layer and extends another 30 km rearward into the stratiform region 

between the heights of 5 km and 6 km.  The horizontal layers are more ambiguous in the 

line parallel distance vs. height plot (Fig. 3.40e).  The horizontal extent of this flash is 

near the mean extent of all flashes originating in the non-stratiform region at 91.5 km 

(Table 3.2).  However, the number of sources is below the mean source count of flashes 

originating in the non-stratiform regions (Table 3.2), with a source count of 458 (Fig. 

3.40d,e).  The flash that originates in the stratiform region at 1249 UTC propagates 60 

km in the line parallel direction (Fig. 3.41).  The majority of the sources of this flash 

occur right above the melting level between the heights of 4 km and 5 km. There is a 

secondary maximum of sources that occur between the heights of 6 km and 7 km.  This 

flash has an extent of 66 km which is near the maximum extent seen by flashes 

originating in the stratiform region and has 254 sources, which is above average of 

flashes originating in the stratiform region (Table 3.2).   
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FIG. 3.40: Same as Fig. 3.29 except with a +CG flash originating from the convective line at 
12:52 UTC.  Triangles indicate negative CG strokes while *s indicate positive CG strokes. 
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FIG. 3.41: Same as Fig. 3.29 except with a +CG flash originating from the stratiform region at 
12:49 UTC.  Triangles indicate negative CG strokes while *s indicate positive CG strokes. 
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4. DISCUSSION 
 
     Many MCSs have passed within range of the Houston LDAR network since its 

deployment.  On 31 October 2005 and 21 April 2006, two LLTS MCSs evolved as they 

traversed the network and showed significant development of the stratiform region.  The 

total lightning and radar reflectivity characteristics of the evolving convective and 

stratiform regions of both MCSs are presented.  The objective is to improve our 

knowledge regarding total lightning structure and charging processes in the trailing 

stratiform region and their relationship to radar structure and precipitation properties.  

The radar and lightning properties of these two MCSs will now be discussed. 

Both MCSs show a remarkably similar evolution of the lightning pathway 

between the convective and stratiform regions.  In early stages, the VHF source density 

showed a lightning pathway extending horizontally rearward for 40 - 50 km from the top 

of the convective region at 9 to 12 km altitude into the stratiform region.  This initial 

stage of the lightning pathway has not been observed in previous studies.  As the MCS 

matures and the stratiform region intensifies, the lightning pathway evolves into the 

slanted structure with more lightning sources occurring at and above the bright band at 

lower levels (i.e., 4-7 km) (Figs. 3.8, 3.28).     Toward the end of the analysis time 

period, by 23:32 (12:41) UTC in the October (April) MCS , the line-normal lightning 

pathway observed shows similar characteristics of a mature LLTS MCS seen in previous 

studies (Carey et al. 2005, Dotzek et al. 2005) and is associated with the conceptual 

model presented in FIG. 1.13. 
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Small ice crystals that are ejected from the top of the convective line during the 

early stages are assumed to have negligible fall speeds.  These ice crystals, due to the 

non-inductive charging mechanism by rebounding collisions by ice particles, are 

expected to carry positive charge (e.g., Rutledge and MacGorman, 1988).  As these 

particles travel toward the stratiform region they remain positively charged and any 

lightning activity that taps into this charged region will propagate straight rearward and 

show a structure similar to the first LDAR source density plot (Figs. 3.8, 3.28).  The 

early stages of the lightning structure appear similar to the conceptual model of charge 

densities presented by Stolzenburg et al. (1998) (Fig. 1.11), which has charge layers 

extending horizontally rearward in the stratiform region.  The soundings that formed the 

basis of this model may have been from developing MCSs or in portions of the MCS 

without a developed stratiform region.  The slanting lightning pathway may be explained 

by lightning continuing to tap into the charge of the falling and growing ice particles.  

The strengthening mesoscale updraft increases the presence of supercooled water and, in 

combination with the enlarged ice particles, produces an active mixed phase region, 

which can result in non-inductive collisional charging (e.g., Rutledge et al. 1990, 

Williams et al. 1994, Schuur and Rutledge 2000a,b). 

The slanting pathway may also be confirmed by the lowering of mean flash VHF 

source heights.  As the systems matured, the flash heights lowered.  A decrease of 

overall MCS VHF lightning from upper (7-11.5 km) to lower (2-5 km) levels was also 

observed by Lyons et al. (2003) in their study of two maturing MCSs.  A similar 

transition is seen in positive CG flashes in this study, along with a lowering of all 
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stratiform flashes seen in these two MCSs.  Lyons et al. (2003) found that an increase of 

sprite production coincided with lowering of the flash heights as MCSs mature.  

Although no sprite observations are available for this study, flash heights are seen to 

decrease with time for both MCSs and therefore, positive CGs could be more effective 

producers of sprites as the MCSs matured (Figs. 3.15, 3.35). Along with the lowering of 

flash heights and slanting lightning pathway, the stratiform region also experienced an 

increase in flashes.  The total flash rates double in time and the percentage of flashes 

originating in the stratiform region increased from 10 - 20 % to 50 – 60% in both 

stratiform regions of the MCSs (Figs. 3.11, 3.12, 3.31, 3.32).   

The observed evolution in radar reflectivity in the time series plots and CFADs 

may partially explain the changes in the lightning pathway, source heights, and increased 

electrical activity in the stratiform region.  In both cases, the stratiform mean reflectivity 

at low levels (Figs. 3.5a, 3.25a) increased with time while the mean reflectivities in the 

convective region (Figs. 3.5b, 3.25b) decreased.  This may be explained by the Carey et 

al. (2005) conceptual model (Fig. 1.3) where small ice particles are advected from the 

top of the convective clouds into the stratiform region by the storm relative front-to-rear 

flow.  As the ice particles fall, they grow by deposition and aggregation in the mesoscale 

updraft.  Upon reaching the melting level, they begin to melt, creating the radar bright 

band.  Thus, increasing stratiform reflectivity implies strengthening of the mesoscale 

updraft, which further implies increased in-situ charging and lightning generation (e.g., 

Rutledge et al., 1990; Petersen and Rutledge, 1994).  The mean reflectivity near the 

melting level increases significantly from 26 dBZ to 34 dBZ in the 31 October 2005 
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MCS (Fig. 3.6) and from 32 dBZ to 38 dBZ in the 21 April 2006 MCS (Fig. 3.26).  The 

areas of the analyzed stratiform regions also increased, quadrupling in both cases.  

As the stratiform regions of the two MCSs are developing, the convective region 

is weakening.  The mean reflectivities at all heights decrease (Figs. 3.5b, 3.25b) along 

with its area (Figs. 3.6, 3.26).  Biggerstaff and Houze (1991) found that the most intense 

convective cells are responsible for the most intense stratiform precipitation to due 

particle projection paths.  The lag relationship between peak reflectivities of the two 

regions is thought to be due to the time it takes the particles ejected from the convective 

line to be carried by the front-to-rear flow into the stratiform region and grow while 

falling through the mesoscale updraft.  This lag relationship is also seen in the difference 

in the rainfall totals between the convective and stratiform regions of both MCSs in this 

study.  As the convective line weakened, rain totals dwindle in both MCSs.  On the other 

hand, as the stratiform regions intensified, rain totals increased.  Rutledge and 

MacGorman (1988) found that the peak rainfall rates in the stratiform region 

corresponded to peak positive CG flash rates, which is also seen in both MCSs observed 

in this study.  In agreement with their study, the positive CG flash rates continued to rise 

in the stratiform region as its rainfall rate increased (Figs. 3.17, 3.37).  Both MCSs also 

experienced an evolving lightning pathway, lowering flash heights, increasing stratiform 

flash rate, and an increasing percentage of flashes originating in the stratiform region 

during the same time period of stratiform growth and development.     

The increased stratiform electrification could possibly be explained by 

developing charge layers.  Schuur and Rutledge (2000a) found charge transitions near 
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the melting level and near the -12°C isotherm in the stratiform region of a symmetric 

MCS.  Melting driven charging mechanisms are thought to be the cause of the charge 

transition near the melting level (e.g., Shepherd et al. 1996).  While non-inductive 

collisional charging may also play a role in charging near the melting level, it is 

speculated to play a more significant role in the charge transitions near the -12°C level 

(Schuur and Rutledge 2000a,b).  The mean stratiform flash heights occurred in a layer 

between 6 - 8 km, which is just above the -12°C isotherm (6 km) (Figs. 3.15, 3.35).  

Both in-situ charging (melting and collisional) mechanisms would enhance the charging 

in and above the melting layer and play a role in both the horizontal extent of the 

lightning pathway after its descent into the stratiform region and the increased flash rate 

in the stratiform region, along with increased flash initiation.  Charge advection is also 

likely to increase stratiform electrification, especially at higher levels (e.g., Stolzenburg 

1994).  The advection of charged particles played a primary role, with a secondary 

contribution from in-situ NIC charging, in a modeling study by Schuur and Rutlegde 

(2000b).  They also noted extensive layering of charge over the radar bright band that 

was associated primarily with in-situ charging.  The slanted charge layer, along with 

layering of charge over the bright band is consistent with the slanting lightning pathway 

seen in this study (Figs. 3.4d, 3.28d).  

Charge advection and in-situ charging mechanisms likely both play a role in the 

charge structure conducive to increased production of stratiform CGs.  A majority, 19 of 

26 (73%), of flashes originating in the analysis domain with a NLDN identified positive 

ground stroke in the stratiform region, originate in the convective or transition regions 
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and propagate into the stratiform region before descending to the earth in the April MCS.  

The remaining seven positive ground flashes originate in the stratiform region.  These 

numbers are comparable to those seen in Lang et al. (2004) and indicate that charge 

advection may be an important factor in positive CG production in the stratiform region 

of LLTS MCS.  However, only 5 of 11 (45 %) flashes with a positive stroke originated 

from the convective region in the October MCS.  Positive stratiform CG production, 

which is initiated in both the stratiform and convective regions, increases after 23:15 

(12:07) UTC in the October (April) MCS, as radar reflectivity in the stratiform region 

increases.  Of all the LDAR flashes associated with NDLN positive CGs, 70% occurred 

after 12:07 UTC in the April MCS and 82% occurred after 23:15 UTC in the October 

MCS (Tables 3.1, 3.2).  Consistent with the modeling study of Schuur and Rutledge 

(2000b), results suggest that both charge advection and in-situ charging mechanisms 

likely play a role in stratiform charging.  However, in-situ charging is likely the cause of 

greater positive peak currents associated with stratiform flashes.  In initial time periods, 

the positive peak currents found in the stratiform region are comparable to those in the 

convective regions.  However, later times indicate higher positive peak currents found in 

the stratiform region over the convective region as the mesoscale updraft increases and 

the stratiform region develops and becomes more intense.  Also, the positive peak 

currents of flashes originating in the stratiform region are higher than those originating 

in the convective region and propagating into the stratiform region then to ground 

(Tables 3.1, 3.2).  This may be due to the high density positive charge normally found 

above the melting level once the bright band is developed (Schuur and Rutledge 2000a, 
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Shepherd et al. 1996).    As the stratiform region gains intensity, more positive ground 

flashes originate in both the convective and stratiform regions, overall flash rate 

increases in the stratiform region, and the lightning pathway, which extends from the 

convective line rearward into the stratiform region, evolves from extending horizontally 

rearward to a slanted rearward and downward pathway. 
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5. CONCLUSIONS  
 

MCSs are some of the largest convective systems and produce a wide variety of 

weather including damaging winds, hail, tornadoes, and flooding.  They are also prolific 

producers of lightning, which is the second most fatal weather related event.  This study 

examines the total lightning and radar reflectivity structure of two MCSs, occurring on 

31 October 2005 and 21 April 2006, that traversed Houston within the effective range of 

the LDAR network in Houston, TX.  The lightning characteristics of both MCSs evolved 

with intensification of their stratiform regions and weakening of their convective 

regions.  In summary: 

• The lightning pathway from the convective to the stratiform region initially 

extends horizontally rearward from the top of the convective region into the 

stratiform region.  As the MCS matures, the pathway slants rearward ~ 50 km 

and downward by ~ 6 km into the stratiform region and levels off near the 

bright band just above the melting level.  The slanting feature of the lightning 

pathway could be the result of positively charged ice particles advected from 

the convective region into the stratiform region and in-situ processes. 

• The evolution of the lightning pathway may also be related to the 

development of the stratiform region and the radar bright band.  The 

stratiform areas quadrupled in area and mean stratiform reflectivity increased 

significantly at all heights, especially near the melting level.     

• Stratiform flash rates and the percentage of flashes originating in the 

stratiform region increase while mean flash heights decrease as the stratiform 
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region develops and the lightning pathway slants down toward the melting 

level.  The lowering of flash heights could have been indicative of the 

production of sprites as these MCSs matured.  Charge advection and in-situ 

charging (NIC melting and collisional charging) as the mesoscale updraft 

develops are suggested to cause enhanced charge layers and the increased 

electrical activity. 

• CGs also increase as the stratiform region intensifies.  Positive CG currents 

found in the stratiform are generally higher than those found in the convective 

region and increase in time.  Also, stratiform region flashes originating in the 

stratiform region produce higher positive CG currents than those originating 

in the convective region and propagating into the stratiform and then to 

ground.    

Although these two MCSs have similar evolving lightning structure and radar 

characteristics, further studies are needed to establish charging mechanisms and charge 

layers in the stratiform region.  These studies should focus on the stratiform charge 

distributions and the microphysical conditions favorable for charging by simultaneous 

Electric Field Meter (EFM) launches and collection of in-situ microphysical data during 

the evolution of a MCS.  Also, a more in depth look at the detailed charge structure 

indicated by individual flashes from both the convective and stratiform regions depicted 

by lightning mapping systems could also refine our knowledge of the charge structure in 

the stratiform region (Lang and Rutledge 2007).  Studies should also build on the 

discussion of whether stratiform region positive CG flashes originate in the stratiform 
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region or in the convective region and propagate downward through the stratiform 

region and finally to the earth.  Finally, it would be interesting to investigate whether 

sprite producing positive CG flashes in the stratiform region are initiated primarily 

locally (i.e., in the stratiform region) or remotely (in the transition zone or convection).  

In our study, the mean VHF lightning heights for both types of stratiform region positive 

CG flashes lower as the MCS matures, which could be indicative of a greater possibility 

of sprites (Lyons et al. 2003).  
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