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ABSTRACT  

 

Causality and Aggregation in Economics: 

The Use of High Dimensional Panel Data in 

Micro-Econometrics and Macro-Econometrics. (December 2007) 

Dae-Heum Kwon, B.S., Korea University; 

M.S., Korea University 

Chair of Advisory Committee: Dr. David A. Bessler 

 

This study proposes one plausible procedure to address two methodological issues, 

which are common in micro- and macro- econometric analyses, for the full realization of 

research potential brought by recently available high dimensional data. To address the issue of 

how to infer the causal structure from empirical regularities, graphical causal models are 

proposed to inductively infer causal structure from non-temporal and non-experimental data. 

However, the (probabilistic) stability condition for the graphical causal models can be violated 

for high dimensional data, given that close co-movements and thus near deterministic relations 

are oftentimes observed among variables in high dimensional data. Aggregation methods are 

proposed as one possible way to address this matter, allowing one to infer causal relationships 

among disaggregated variables based on aggregated variables. Aggregation methods also are 

helpful to address the issue of how to incorporate a large information set into an empirical model, 

given that econometric considerations, such as degrees-of-freedom and multicollinearity, require 

an economy of parameters in empirical models. However, actual aggregation requires legitimate 

classifications for interpretable and consistent aggregation.  

Based on the generalized condition for the consistent and interpretable aggregation 

derived from aggregation theory and statistical dimensional methods, we propose plausible 

methodological procedure to consistently address the two related issues of causal inference and 

actual aggregation procedures. Additional issues for empirical studies of micro-economics and 

macro-economics are also discussed. The proposed procedure provides an inductive guidance for 

the specification issues among the direct, inverse, and mixed demand systems and an inverse 

demand system, which is statistically supported, is identified for the consumer behavior of soft 

drink consumption. The proposed procedure also provides ways to incorporate large information 

set into an empirical model with allowing structural understanding of U.S. macro-economy, 
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which was difficult to obtain based on the previously used factor augmented vector 

autoregressive (FAVAR) framework. The empirical results suggest the plausibility of the 

proposed method to incorporate large information sets into empirical studies by inductively 

addressing multicollinearity problem in high dimensional data.  
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CHAPTER I 

INTRODUCTION  
 

Recent advances in data processing capabilities have brought the possibility of analyzing 

larger numbers of detailed variables. In many areas of economics, high dimensional panel data 

are now available. For example, retail checkout scanner data are available for thousand of 

products at firm, regional and national levels at various frequencies. Central banks and statistical 

institutes produce a large number of macro-economic time series data. These data have brought 

forth research potentials for significant advances in the micro-econometric analysis of consumer 

behavior (Capps and Love, 2002) and the macro-econometric study of monetary policy effects 

(Stock and Watson, 2005). The availability of high dimensional data, however, raises several 

methodological issues for the full use of the research potentials brought by this large information 

set. An important methodological issue to be addressed is how to incorporate such available 

broad range of information set into empirical models, given that econometric considerations, 

such as degrees-of-freedom and multicollinearity, require an economy of parameters in empirical 

models. Another methodological issue is how to determine the causal structure to relate 

empirical regularities captured in a reduced form model to theoretical properties represented by a 

structural form model (identification problem). Given that identifying a system of equations 

means determining the causal structure, the identification problem arises from the facts that: (a) 

the causal structure is generally under-determined by the statistical properties of the data 

(induction problem). (b) theories are too heterogeneous to provide a conclusive causal structure 

or overall theories do not provide sufficient information to identify causal structure. A simple but 

fundamental version of this issue is how to relate correlation patterns to causal structures. 

How to infer the causal structure from empirical regularities and how to incorporate the 

large information set into an empirical model are two important methodological issues, which 

bring a more fundamental methodological issue. Is there a specific correct aggregation level? To 

deal with these fundamental issues consistently, we interpret theory as an inductive causal 

averaging procedure that concentrates only on similar tendencies to highlight a few common 

factors by ignoring many more individual differences and idiosyncrasies. When we follow an 

inductive causal averaging procedure, we need to identify empirically justifiable conditions that 

allow us to legitimately define common tendencies and individual idiosyncrasies. This issue is 
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studied in the context of aggregation theory and some generalized conditions for consistent 

aggregation are derived. Based on the derived generalized condition for consistent aggregation, 

we propose one possible methodological procedure to consistently address the two related issues 

of causal inference and actual aggregation procedures.  

In chapter II, the general methodological issues are discussed and a plausible procedure 

is proposed for the full realization of the research potentials brought by high dimensional data. 

More specifically, first, we provide a brief outline of developments on these issues to motivate 

this study. Second, graphical causal models are discussed to address the causality issue of how to 

infer the causal structure to relate empirical regularities captured in a reduced form model to 

theoretical properties represented by the structural form model. A (probabilistic) stability 

condition, which is one of the fundamental assumptions of the graphical causal models, is 

discussed in the context of the use of a high dimensional data set. Third, aggregation theory is 

discussed to identify consistent aggregation conditions, under which the common tendencies and 

individual idiosyncrasies can be legitimately defined. A compositional stability condition, which 

is proposed as a generalized condition for consistent aggregation, is discussed to address the 

information issue of how to incorporate large information set into an empirical model. Index 

number theory and statistical dimensional reduction methods are then discussed in the context of 

generalized conditions of aggregation theory. The relationship between the (probabilistic) 

stability condition for the causality issue and the compositional stability condition for the 

information issue is discussed. Based on the generalized condition for the consistent aggregation, 

an inductive method to systematically address causality and aggregation issues is proposed for 

the full use of the research potentials brought by high dimensional data. 

The proposed method is illustrated with retail checkout scanner data and macro-

economic time series panel data as examples of two sets of high dimensional data. In chapter III, 

the proposed method is illustrated for micro-econometric analysis of consumer behavior. When 

it can be considered as one of the main objectives of the study of consumer behavior to 

understand and measure responsiveness of consumer behavior to changes in exogenous variables, 

the empirical measure of responsiveness relies on three specification choices in an empirical 

model. First, given that there are full spectrums of direct, inverse, and mixed demand systems 

and the general relationship between elasticity and flexibility is not yet established, the measure 

depends on the relative predeterminess among the price and quantity variables represented by 

dependent and explanatory variables in an empirical model of a specific commodity. Second, 
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given that small departures from valid classification and/or aggregation can result in large 

mistakes in empirical results, the measure depends on the classification and aggregation to define 

price and quantity variables themselves. For example, the decision on classification and 

aggregation can substantially affect the conclusions about elasticity estimates in multi-stage 

budgeting approach, because cross-price elasticities or cross-quantity flexibilities among 

products in different groups are likely to be small by construction. Third, given that the different 

assumptions used to parameterize functional relationships have different implications, the 

measure depends on the functional form, which relates the dependent variable with explanatory 

variables. For example, there are four combinations of constant or variation assumptions for the 

income (or scale) coefficient and Slutsky (or Antonelli) coefficient in the differential functional 

form approach as captured in popular demand systems specifications. 

In chapter III, we propose an inductive empirical method to address these three 

methodological issues in the study of consumer behavior based on the discussion on the causality 

and aggregation issues in chapter II. The way to incorporate theoretical implications into 

empirical model specifications through the functional forms and the way to compare different 

specifications of direct, inverse, and mixed demand functions are the additional issues to be 

addressed. More specifically, first, the specification choice issue among direct, inverse, and 

mixed demand functions is addressed by using the inductively inferred causal information based 

on the graphical causal models. Second, the classification and aggregation issue are addressed by 

the compositional stability conditions and index number theory. Third, the functional form issue 

is addressed by the synthetic model approach based on the differential functional form 

framework. The comparison of alternative specifications is conducted in terms of model 

selection framework. The proposed method is illustrated with an application for soft drink 

products using retail checkout scanner data. 

In chapter IV, the proposed method is illustrated for macro-econometric analysis of the 

U.S. macro-economy. Two methodological issues for the full realization of the research potential 

brought by the available high dimensional data are discussed. One is the identification problem 

of how to infer the underlying causal structure from the data, given that the causal structure is 

generally underdetermined by the statistical properties of the data and theory does not provide 

sufficient causal information. Unlike the structural equation model (SEM) approach which 

requires too much causal information for the identification problem, the vector autoregressive 

(VAR) model approach provides the possibility of inferring causal information from statistical 
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properties of the data without pretending to have too much a priori theory and/or without 

demanding too much information from the data. Although the structural VAR framework 

provides the possibility of inferring causal information from data, how to inductively infer the 

causal structure to relate empirical regularities captured in the reduced form model to theoretical 

properties represented by the structural form model remains an open methodological issue. The 

other methodological issue to be addressed is how to incorporate an available large information 

set into an empirical model, given that econometric considerations such as degrees-of-freedom 

and multicollinearity require the economy of parameters in empirical models. This information 

problem is important, since misspecification problems can exist due to the small information set 

usually incorporated in empirical macro-econometric models, given the observation that 

monetary authorities monitor a large number of economic variables and there can be many 

possible channels through which the monetary policy affects the economy.  

In chapter IV, we propose inductive empirical methods to address these two 

methodological issues in the study of monetary policy effects based on the discussions on the 

causality and aggregation issues in chapter II. A method to infer the causal structures for the 

study of the monetary policy transmission mechanism and a method to incorporate a broad range 

of information into the empirical macro-model are the primary issues to be addressed. More 

specifically, first, the SEM and VAR approaches are compared in terms of the identification 

problem. The relative advantage of the VAR approach beyond the recursive Wold causal chain 

system and the possibility of an inductive inference on the causal structure are discussed. Second, 

possible misspecification problems due to the small information set incorporated in the standard 

VAR approach is discussed in the context of the monetary transmission mechanism literature. 

The possibility both to incorporate high dimensional macro-economic panel data into a standard 

VAR model and to infer a structural interpretation for this large information set is discussed 

based on the factor augmented vector autoregressive (FAVAR) framework and the 

compositional stability conditions. Third, an identification issue in the FAVAR model is 

addressed by using inductively inferred causal information based on the graphical causal models. 

The proposed methods are illustrated with the applications for the study of the monetary policy 

effects using macro-economic panel data. 

In chapter V, the proposed methodological procedure is summarized and several 

research topics to be further studied are suggested as concluding remarks.  



5 
 

 

CHAPTER II 

CAUSALITY AND AGGREGATION IN ECONOMICS 

 

Recent advances in data processing capabilities have brought the possibility of analyzing 

larger numbers of detailed variables. In many areas of economics, high dimensional panel data 

are now available. For example, retail checkout scanner data are available for thousand of 

products at firm, regional and national levels at various frequencies. And central banks and 

statistical institutes produce a large number of macro-economic time series data. These data have 

brought forth research potentials for significant advances in the micro-econometric analysis of 

consumer behavior and the macro-econometric study of monetary policy effects. The availability 

of high dimensional data, however, raises several methodological issues for the full use of the 

research potentials brought by this large information set. An important methodological issue to 

be addressed is how to incorporate such available broad range of information set into empirical 

models, given that econometric considerations, such as degrees-of-freedom and multicollinearity, 

require an economy of parameters in empirical models. 

Empirical studies in economics have been developed to unify the theoretical-quantitative 

approach with the empirical-statistical approach to identify either the structural parameters 

corresponding to the coefficients in the structural equation model (SEM) approach or the effects 

of structural economic shocks in the structural vector autoregressive (VAR) model approach. 

Given that identifying a system of equations means determining the causal structure, the 

identification problem arises from the following facts: (a) The causal structure is generally 

under-determined by the statistical properties of the data (induction problem). A simple but 

fundamental version of this induction problem is that correlation does not imply causation. (b) 

Theories are too heterogeneous to provide a conclusive causal structure or overall theories do not 

provide sufficient information to identify causal structure. In this respect, another 

methodological issue is how to determine the causal structure to relate empirical regularities 

captured in reduced form model to theoretical properties represented by the structural form 

model (identification problem). A simple but fundamental version of this issue is how to relate 

correlation pattern to causal structure. 

How to infer the causal structure from empirical regularities and how to incorporate the 

large information set into an empirical model are two important issues, which bring a more 

fundamental methodological issue for the full use of the research potentials brought by high 
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dimensional data. Is there a specific correct aggregation level? Where we should apply a 

theoretical model of rational behavior? To what level should the regularity assumptions 

associated with rationality be applied? Are these to be applied at the individual level, to 

reasonably homogeneous groups, or to entire economies? These questions have been discussed 

for a very long time and have turned out to be difficult to solve. It might only be properly 

addressed by manipulative (randomized) experimentations or more extensive empirical research 

than has been performed to date (Blundell and Stoker, 2005).  

To deal with these fundamental issues consistently, we interpret theory as an inductive 

causal averaging procedure that concentrates only on similar tendencies to highlight a few 

common factors by ignoring many more individual differences and idiosyncrasies. For example, 

the theory of firm (or consumer) can be understood as an inductive model that does not describe 

the actual objective function and constraints of any particular firm (or consumer) but only what 

most firms (or consumers) have in common as a tendency. It comes from observing the behavior 

of many firms (or consumers) and, based on those observations, abstracting the basic elements 

common to most of those firms (or consumers). In this respect, theory is considered to be a 

foundation for developing a more realistic account of the firm (or consumer) under consideration 

(Davis, 1999).  

When we follow an inductive causal averaging procedure that concentrates only on 

similar tendencies to highlight a few common factors by ignoring many more individual 

differences and idiosyncrasies, we need to identify empirically justifiable conditions that allow 

us to legitimately define common tendencies and individual idiosyncrasies. This issue can be 

addressed in the context of an aggregation theory and some generalized conditions for consistent 

aggregation. Based on the generalized condition for the consistent aggregation, we propose one 

possible methodological procedure to consistently address the two related issues of causal 

inference and actual aggregation procedures. More specifically, first, we provide a brief outline 

of developments on these issues to motivate this study. Second, graphical causal models are 

discussed to address the causality issue of how to determine the causal structure to relate 

empirical regularities captured in a reduced form model to theoretical properties represented by 

the structural form model. A (probabilistic) stability condition, which is one of the fundamental 

assumptions of the graphical causal models, is discussed in the context of the use of a high 

dimensional data set. Third, aggregation theory is discussed to identify consistent aggregation 

conditions, under which the common tendencies and individual idiosyncrasies can be 
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legitimately defined. A compositional stability condition, which is proposed as a generalized 

condition for consistent aggregation, is discussed to address the information issue of how to 

incorporate large information set into an empirical model. Index number theory and statistical 

dimensional reduction methods are then discussed in the context of generalized conditions of 

aggregation theory. The relationship between the (probabilistic) stability condition for the 

causality issue and the compositional stability condition for the information issue is discussed. 

Based on the generalized condition for the consistent aggregation, an inductive method to 

systematically address causality and aggregation issues are proposed for the full use of the 

research potentials brought by high dimensional data. 

 

Brief Survey  

Empirical studies in economics have relied on economic theories or researchers’ 

intuitions in order to identify either the structural parameters corresponding to the coefficients in 

the structural equation model (SEM) approach or the effects of structural economic shocks in the 

structural vector autoregressive (VAR) model approach. While the SEM approach emphasizes 

the relative importance of deductive information and proceeds from the deductive information to 

inductive information, the VAR approach emphasizes the relative importance of inductive 

information and proceeds from the inductive information to deductive information. In the SEM 

approach, the economic theory or intuitive knowledge specifies a priori the causal structure and 

then statistical methods are applied to measure the strength of the causal relations and the 

possibility is pursued to test the restrictions derived from theory. In the structural VAR, on the 

other hand, statistical properties of economic time series are summarized by the reduced form 

VAR and then the causal structures are used based on either the theoretical implications or 

institutional knowledge. The structural equations approach, especially the Cowles Commission 

approach, pursues both necessary and sufficient algebraic conditions that make a system of 

equations identified, emphasizing the role of economic theory in identification. On the other 

hand, the VAR approach is more data intense at least in the estimation step, arguing that the 

absence of purely exogenous variables in observational data impedes algebraic solution of the 

identification problem. The VAR approach pursues the possibility of (absolutely) inductive 

methods minimizing, or without using, the deductive a priori information to infer the underlying 

causal structures from the statistical observations.  



8 
 

 

Given that identifying a system of equations means determining the causal structure 

among variables in the system and theory does not provide sufficient or conclusive information 

about causal structure, several empirical methods for learning causal relationships from data 

have been pursued. Hume provides philosophical foundations for the causality issues in 

economics by providing following definitions of the causal relation: “We may define a cause to 

be an object, followed by another, and where all the objects similar to the first are followed by 

objects similar to the second. Or in other words where, if the first object has not been, the second 

never had existed (Hume, 2000, page 54).” While the first part of the Hume’s definition is 

related to the probabilistic approach, the second part of the definition is related to the 

counterfactual approach. Suppes (1970) elaborates the first part of the Hume’s definition as 

follows: an event A causes an event B if (a) The conditional probability of B given A is greater 

than B alone (prima facie causality), and (b) A occurs before B. Based on a similar idea, Granger 

(1980) proposes an operational definition as follows: a (time-series) variable A causes B, if the 

probability of B conditional on its own past history and the past history of A does not equal the 

probability of B conditional on its own past history alone. On the other hand, Lewis (1986) 

elaborates the second part of the Hume’s definition as follows: the event A causes the event B if 

and only if (abbreviated by iff hereafter in all the subsequent chapters) (a) Both A and B happen 

and (b) If A had not been, then B would not have happened. Holland (1986) describes a 

statistical approach to causal inference based on this idea.  

Granger-causality has been used in macro-econometric models, especially in time-series 

approach, whereas the Holland’s method has been applied in micro-econometric models, 

especially in experimental settings. However, given that causality denotes the possibility of 

controlling one variable in order to influence another one (efficient cause), Granger-causality 

does not fully address the causal issue, since it is based on the incremental predictability rather 

than an efficient cause. And given that most economic data are generated from non-experimental 

settings and the randomized experiment method is not feasible in general, Holland’s method can 

not be used for empirical studies in general situations, since it is based on the counterfactuals 

which we cannot observe without experiments. 

In this respect, the problem of differentiating between causal relations and empirical 

regularities has remained an open issue in the development of econometrics. However, the 

inductive methods of learning causal relationships from non-temporal and non-experimental data 

have been developed by mathematically connecting probabilistic dependencies to graphical 
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concepts at three universities: UCLA, Carnegie Mellon University (CMU) and Stanford in mid-

1980 (Pearl, 2000). Researchers at UCLA and CMU teams pursued an approach, where (a) The 

fragments of the underlying structure are identified by searching the data patterns of conditional 

independencies and (b) The identified fragments are logically combined together to form a 

coherent causal model or a set of such models (see Spirtes et al., 2000 and Pearl, 2000 for 

examples). On the other hand, researchers at Stanford University and a number of other teams 

pursued a Bayesian approach, where data are used to update the posterior probabilities assigned 

to the candidate causal structures. This Bayesian approach provides the basis for several graph-

based learning methods (see Buntine, 1996 and Heckerman, 1996 for examples). While these 

graphical causal models or directed acyclic graph (DAG) approaches are gradually finding their 

way into economics, the graphical causal models are based on the Markov and stability 

conditions as the underlying assumptions. Given that the Markov condition is assumed in most 

empirical studies, the stability condition can be problematic and thus require careful checking in 

using these inductive causal inference methods for high dimensional data. These issues will be 

discussed later. 

Empirical studies in economics have also relied on various forms of classification and 

aggregation, since econometric considerations, such as degrees-of-freedom and multicollinearity, 

require an economy of parameters in empirical models. The full review of these classification 

and/or aggregation issue is beyond the scope of this study, since separate fields follow very 

different paths with regard to these issues. However, identifying a legitimate, but less restrictive, 

condition for a consistent aggregation remains an open issue in general. For example, in the 

consumption area, where the aggregation issue has been intensively discussed due to its 

importance in both micro-economics and macro-economics, consistent aggregation conditions 

have been studied in terms of both commodity-wise and agent-wise aggregations. For the 

commodity-wise aggregation, even though the Hicks-Leontief composite commodity theorem 

and the homothetic or weak separability concepts have been discussed in empirical micro-

economic studies, it has been demonstrated that these two types of conditions provide only 

restrictive possibilities for consistent aggregation in empirical applications. For agent-wise 

aggregation, the issue of aggregating from individual agents to an aggregate unit is oftentimes 

ignored in standard macro-economic models by assuming individuals behind the aggregation to 

be representative agents, even though it has been recognized that the changing composition of 

economic agents and their incomes have significant implications on the aggregation issue. 



10 
 

 

In a more general methodological setting, Theil argues that only very restrictive special 

conditions allow aggregate models to be consistent with disaggregate models and predictions 

through micro-equations yield more precise estimates of the aggregate dependent macro-variable 

than the corresponding macro-equations. Despite his generally negative conclusions for 

aggregation approaches, Theil’s arguments provide a general methodological framework for the 

aggregation issue (Theil, 1954). This general framework has inspired a considerable amount of 

related research, much of which has attempted to identify less restrictive legitimate aggregation 

conditions. Furthermore, Griliches (1972) argue that different true models can exist at different 

aggregation levels and they can be related by both the aggregation rules and the properties of the 

distribution of the micro-variables. However, identifying generalized legitimate aggregation 

conditions remains an open issue in aggregation theory. 

Another issue, which has been somewhat separately discussed from the issue of 

identifying generalized legitimate conditions for consistent aggregation, is how to actually 

represent original variables by aggregate variables or how to decide the weighting schemes in 

aggregating the disaggregated micro-variables into the aggregated macro-variables. Index 

number theory has been the main approach followed in the economic literature. On the other 

hand, principal component and factor analyses have been primary approaches in the statistical 

literature. Index number theory has been developed based on the dual pairs of information of 

prices and quantities from economic transactions and provided theoretical background for many 

statistical institutes to generate economic data. Different index formulas can be understood based 

on five different approaches: the fixed basket, differential, economic, stochastic and axiomatic 

approaches. Statistical dimensional reduction methods have been developed in more general 

settings. The standard factor model is introduced in economics, when it is used for study of the 

arbitrage pricing theory (APT) in financial economics. On the other hand, dynamic factor models 

have been developed in macro-economics recently, when they are used to allow distributed lag 

effects of factors on individual variables in a general dynamic setting. The relationship between 

factor analysis and principal component analysis has been established in both static and dynamic 

settings. It has been demonstrated that these two statistical dimensional reduction methods are 

useful to incorporate broad range of information into empirical models. However, given that 

these aggregation methods are oftentimes discussed without explicit linkage to legitimate 

aggregation conditions, there remains an open issue as to the conditions under which these 

aggregation methods can be used.  
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As we briefly discussed above, even though there have been significant advances, there 

remain several open issues in using the previously suggested methods to address causality and 

aggregation issues for empirical applications, especially with a high dimensional data set. Given 

that the advances for these issues have been developed separately, it is necessary to consistently 

connect the methodological developments related with causality and aggregation issues with 

some generalizations. The generalization of legitimate aggregation conditions can be the main 

element for the required procedures. As we will discuss subsequently, we propose one possible 

methodological procedure to consistently address the related issues of causality and aggregation 

for the full realization of the research potentials brought forth by high dimensional data.  

 

Graphical Causal Model  

How to infer the causal structure from the observational data has been a fundamental 

issue in empirical studies for a long time, given that the causal structure is generally 

underdetermined by the statistical properties of the data (induction problem). A simple but 

fundamental version of this issue is how to relate correlation pattern to causal structure. The 

graphical causal model explicitly aims to inductively infer the causal structure that generated 

statistical properties of the sample data. According to the graphical causal model, causality is 

based on the manipulative view under the modular situation, where a complex system can be 

built by combining simpler local parts. Given that each local causal relationship represents a 

stable and autonomous physical mechanism, it is possible to manipulate one such relationship 

without changing the others and to test whether the (marginal) distribution of B is sensitive to the 

interventions on A. This type of verification provides the semantic basis of the claim that 

variable A has a causal influence on another variable B. In this manipulative view of causality, 

the causal claims are based on the behavior of two variables A and B under the influence of a 

third variable C. When the causal structure implies some pattern of informational 

(in)dependencies among triplets, which is captured by the patterns of (un)conditional 

(in)dependencies, the criterion for causation between two variables A and B can be whether a 

third variable C exhibits a specific pattern of (in)dependency with A and B. The graphical causal 

model is based on the following propositions: (a) Not all but a certain pattern of (un)conditional 

(in)dependencies reveal underlying causal directionality empirically, and (b) By logically 

combining such partially revealed information on causal directionality, it is possible to infer 

coherent causal structures or a set of such structures under certain conditions.  
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To capture dependency patterns mentioned above, the graphical causal model 

introduces the concept of a dependency model. Let A , B , C , and D  denote four disjoint 

subsets of variables in this chapter for notational consistency. When we can determine 

informational irrelevance as a local property, such as “ A  is independent of B  given C ” or “ A  

and B  interact only via C ”, we can define conditional independent statements ( )CBAI |,  

among triplets. And when we can determine whether ( )CBAI |,  is true for all possible triplets in 

the model M , we can also define a dependency model M  by using all independent statements 

( )MI  which are true among a set of variables in the model M . Given that dependency can be 

defined as the negation of independency, we can use ( ) ( )CBAICBAD |,~|, ≡  and ( )MD  for 

dependent statements of individual triplets and of dependency model M  respectively. When two 

different dependency models M  and 'M  have the same set of variables, certain relationships 

among dependency models M  and 'M  can be defined. 'M  is an independence-map (I-map) of 

M  if ( ) ( )MIMI ⊆'  so ( )CBAI |,  in 'M  implies ( )CBAI |,  in M . This means that all the 

conditional independence statements derived from a dependency model 'M  also hold in another 

dependency model M . 'M  is a dependence-map (D-map) of M  if ( ) ( )MDMD ⊆'  so 

( )CBAD |,  in 'M  implies ( )CBAD |,  in M . This means that all the conditional dependence 

statements derived from a dependency model 'M  also hold in another dependency model M . 

Note that a relation that 'M  is a D-map of M  implies another relation that M  is a I-map of 'M  

and vice versa, because dependency is negation of independency. 'M  is an perfect-map (P-map) 

of M  if 'M  is both I-map and D-map of M , which implies ( ) ( )MIMI ='  and ( ) ( )MDMD =' . 

This means that all the conditional independence and dependence statements derived from a 

dependency model 'M  also hold in another dependency model M  and vice versa. (Bouckaert, 

1993).  

The graphical causal model introduces two types of dependency models. And the 

graphical causal model can be explained by the relationships among dependency models. A joint 

probability distribution can define a probabilistic dependency model MP by using conditional 

independence criteria. On the other hand, a graph also can define a graphical dependency model 

MG by using graphical separation criteria. A probabilistic dependency model MP is introduced by 

following two main lines of reasoning. First, even the most assertive and exhaustive causal 

proposition is usually subject to exceptions, either because randomness occurs due to our 

ignorance of the underlying boundary conditions or because all nature’s laws are inherently 
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probabilistic. So causes tend to make their consequences more likely, but not absolutely certain. 

Probability theory allows us to focus on the main issue of causality by virtue of being equipped 

to tolerate unexplained exceptions. Second, empirical information becomes verifiable or 

falsifiable by statistical methods. Empirical knowledge can be encoded in conditional probability 

statements and a joint probability distribution is computed from those statements through 

Bayes’s rule: ( ) ( ) ( ) ( ) ( )APABPBPBAPBAP ||, == , where BA |  stands for an event A  in the 

context specified by B  and ( ) ( ) ( )BPBAPBAP ,| =  specifies the belief in A  under the 

assumption that B  is known with certainty. In this respect, ( )BAP |  can also be read that B  

probabilistically causes A  with the quantitative belief of ( )BAP | . Conditional independency in 

a probabilistic dependency model MP captures the informational irrelevance structure among 

disjoint subsets of variables. A  is independent of B  given C , written as ( )CBAI |, , means that 

once we know C , knowledge of B  does not provide additional information about A , and thus 

learning B  would no longer influence our belief in A  or the probability of A . More formally, 

A  is conditionally independent of B  given C , iff ( ) ( )CAPCBAP |,| =  or 

( ) ( ) ( )CBPCAPCBAP |||, = . The unconditional or marginal independence can be treated as a 

particular case of conditional independence such as ( )∅|, BAI , iff ( ) ( ) ( )APAPBAP =∅=∅ |,|  

or ( ) ( ) ( )BPAPBAP =∅|, . 

To understand the graphical dependency model MG, the following graphical concepts 

are introduced. A graph model consists of a set of vertices (or nodes) V  corresponding to 

variables and a set of edges (or links or arcs) E  that connect some pair of variables. Each edge 

can be either directed or undirected to denote a certain relationship in pairs of variables. A pair 

of nodes is adjacent if they are connected by either an undirected edge or a directed edge. A 

triple < A , C , B > is unshielded iff A  is adjacent to C , B  is adjacent to C , but A  is not 

adjacent to B . C  is a collider of A  and B  if both A  and B  direct into C . Given that C  is a 

collider of A  and B , C  is shielded-collider of A  and B  if A  and B  are also adjacent and C is 

an unshielded-collider of A  and B  if A and B are not adjacent. Two nodes are connected if a 

path exists between two nodes in a graph and they are disconnected otherwise, where a path is a 

sequence of consecutive edges of any directionality. When two sets of nodes A  and B  are 

connected or interact only via third set C , conditioning on C  can be understood as a blocking 

those interactions. The (un)conditional independence in graphical dependency model MG is 
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characterized by (a) The lack of edges between nodes or lack of information flow between 

variables as well as (b) A graphical concept of separating the dependency between nodes or of 

blocking (or screening-off) the information flows between variables. An undirected graph has a 

simple definition of separation. Two sets of nodes A  and B  are separated by a third set C  in 

undirected graph, iff every path between the nodes in A  and B contains at least one node in C . 

In such a case, a set C  is called as a Cutset separating A  and B . A directed acyclic graph 

(DAG), which is a directed graph with an acyclic constraint, has a more complicated notion of 

separation in order to capture directionality. A set SAB is said to d-separated (directionally 

separated) A  and B  iff SAB blocks every path between A  and B . More specifically, a path is 

said to be d-separated by a Sepset (separating set) SAB in a DAG iff (1) a path contains 

BCA →→  or BCA ←←  (causal chain) or BCA →←  (causal fork) such that the middle 

node C  is in Sepset SAB and (2) a path contains an BCA ←→ (inverted fork, unshielded 

collider, or v-structure) such that the middle node C  and any descendents of C  are not in 

Sepset SAB. Note that the acyclic constraint is needed to define the graphical dependency model 

when we use d-separation as a conditional independence criterion. While undirected graphs or 

Markov networks (Pearl, 1988) are used primarily to represent symmetrical relationships, 

Directed graphs, especially DAGs or Bayesian networks, (Pearl, 1985) have been used to 

represent asymmetrical causal relationships. Since the causality is the issue to be addressed in 

this study, our discussion of graphical dependency models MG are restricted to the directed 

acyclic graph (DAG) not the undirected graph. 

These two types of dependency models have distinctive features. A probabilistic 

dependency model MP provides an empirical or statistical method to infer patterns of conditional 

independencies from observational or non-experimental sample data, which involves 

probabilistic calculations. On the other hand, a graphical dependency model MG provides a 

logical method for a qualitative characterization of conditional independence pattern in terms of 

graphical topology, which does not involve numerical calculations. There exist relationships 

between the two dependency models under certain conditions. It has been demonstrated that 

when it is assumed that a probability distribution satisfies the Markov and stability conditions, 

DAG is a perfect map of a probabilistic dependency model for the continuous normal 

distribution (Pearl, 1988) and for the discrete multinomial distribution (Meek, 1995b). The 

Markov and stability conditions can be understood by representing a causal model as a set of 

equations in the form of ( )iiii uPafX ,= , Ii ,,1L=∀ , where iPa  (denoting parents) stands for 
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the set of variables judged to be immediate causes of iX  and iu  represent errors due to omitted 

factors. If it is assumed that there are no cycles representing mutual causations or feedback 

processes (causal acyclic condition), then the corresponding model is called semi-Markovian. 

And in addition to the acyclic condition, if it is assumed that a set of measured variables in the 

model includes all the common causes of all the pairs of variables, so the error terms iu  are 

mutually independent (causal sufficiency condition), then the model is called Markovian. Note 

that the causal Markov condition is based on both acyclic and sufficiency conditions. Note also 

that these two conditions are assumed in most empirical studies in economics, although using 

these conditions can be problematic. The model is defined to be stable (Pearl and Verma, 1991) 

or faithful (Spirtes et al. 2000) or a DAG-isomorphism (Pearl 1988), if it is assumed that all the 

(un)conditional (in)dependencies are invariant to parametric changes represented by the 

functions ( )⋅if  and the distributions ( )iuP . This means that all the unconditional and 

conditional probabilistic structures are stable with respect to changes of their numerical values. 

This stability condition has following implications: (a) All the observed (un)conditional 

probabilistic structures are due to the underlying causal structures, not their special numerical 

values in probabilistic structures. (b) No (in)dependence in probability dependency model can be 

destroyed or induced by changing probabilistic parameter values. (c) It is possible to effectively 

and efficiently encode (un)conditional (in)dependencies structures into graphical dependency 

model without numerical probabilities. Thus, with the Markov condition, (d) It is possible to 

infer the underlying causal structures from the observed marginal and conditional probabilistic 

structures, where the observation is done through the statistical decisions based on either the 

Neyman-Pearson type statistical test (conditional independence test approach) or the Bayesian 

information criterion (goodness-of-fit scoring approach). 

It has been mathematically demonstrated that a necessary and sufficient condition for a 

probability distribution to be Markov is that every variable be independent of all its 

nondescendants, conditional on its direct parents iPa  (see Pearl and Verma, 1991 for example). 

This implies that (a) An effect is independent of its indirect causes conditional on its direct 

causes, and (b) Variables are independent conditional on their common causes. This implication 

of the Markov condition provides a meaningful causal interpretation for a certain dependency 

pattern, which is captured in the first part of the d-separation criteria. For the two types of causal 

structures of the causal chains ( BCA →→  or BCA ←← ) and the causal fork ( BCA →← ), 
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the two extreme variables A  and B , which are unconditionally dependent, become independent 

once we conditioning on the middle variable C by the Markov condition. The Markov condition 

can be intuitively understood as a generalization of the Markov property, which is originated 

from probability theory, by expanding the concepts of the past, current, and future states. 

According to probability theory, a stochastic process has a Markov property if the conditional 

probability distribution of future states of the process depends only upon the current state and not 

on any past states. Only the current state gives information relevant to the future behavior of the 

process. Knowledge of the history or path of the process does not add any new information. So 

given the current state, the future state is conditionally independent of any of the past states. The 

above idea is captured in the first part of d-separation criteria, which states that for causal chain 

BCA →→  or BCA ←←  and the causal fork BCA →← , the middle variable C  should be 

in the Sepset SAB, because the two extreme variables A  and B , which are unconditionally 

dependent, become independent once we conditioning on the middle variable C . Note that this 

criterion of the Sepset in the DAGs or Bayesian networks is common to criterion of the Cutset in 

the undirected graphs or Markov networks.  

Given the common graphical separation criterion for both the undirected graph and the 

directed graph, the unique separation criterion is the second condition of the d-separate criterion 

in DAG, which provides the “observational clue” for the causal directionality. It based on the 

following phenomenon known as the Berkson’s paradox or selection bias in the statistical 

literature (Berkson 1946) and the explaining away effect in the artificial intelligence (Kim and 

Pearl 1983). Observation on a common consequence of (unconditionally) independent causes 

tends to make those causes dependent, because information about one of the causes tends to 

make the other more or less likely, given that the consequence is observed. So when it is found 

that the three variables exhibit intransitive pattern of dependencies such that (a) The variables A  

and B  are each correlated with a third variable C  but are independent of each other ( BCA −− ) 

and (b) The two extreme variables A  and B , which are unconditionally independent, become 

dependent once we conditioning on the middle variable C , the only meaningful interpretation in 

terms of causal directionality is the middle variable C  is the common effect of A  and B  

(unshielded-collider, BCA ←→ ). Intuitively this interpretation of intransitive triples involves 

a virtual control of the effect variable, whereas the randomized experiment involves an actual 

manipulation of the putative causes. That is, if we can find another means B  of potentially 

controlling C  without affecting A , we preclude C  from being a cause of A . For example, one 
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of the reasons people insist that rain ( A ) causes wet grass ( C ) and not the other way around is 

that they can easily find other means such as sprinkler ( B ) that are totally independent of the 

rain ( A ) to getting the wet grass ( C ) (Pearl, 2000). The above idea is captured in the second 

part of d-separation criteria, which states that for the causal inverted fork BCA ←→ , the 

middle variable C  or any of its descendants should not be in the Sepset SAB, because the two 

extreme variables A  and B , which are unconditionally independent, become dependent once we 

conditioning on the middle variable C .  

The causal structure is generally underdetermined by the statistical properties of the data 

(induction problem). A simple but fundamental version of the induction problem is that 

correlation does not imply causation. This induction problem, however, can be partially 

addressed by the full use of the maximum information of unconditional and conditional 

probabilistic structures of non-temporal and non-experimental data. Under certain conditions, the 

combinational information of unconditional and conditional independencies among all the 

possible pairs of variables provides “empirical clues” (a) to discriminate the true statistical 

relationships from spurious correlations without causal orientations and (b) to discriminate the 

unshielded-collider structure from the observational equivalent causal structures of causal chain 

and fork. While correlation does not imply causation in general, no causation does imply no 

correlation under the stability and Markov conditions. This proposition of no correlation without 

causation can be understood as follows: (a1) The stability condition implies that if two variables 

are statistically independent, then neither variable is a direct cause of the other. (a2) The Markov 

condition implies that if a pair of variables is statistically dependent, then one of the variables is 

a direct cause of the other. Note that the sufficiency condition embedded in the Markov 

condition allows discriminating the spurious correlation induced by the common cause. On the 

other hand, the stability condition, with the Markov condition, makes it possible to discriminate 

the possible unstable existence or nonexistence of spurious correlation, which is possibly 

induced by the numerical parameter values. Fundamentally this proposition allows for the 

possibility of an inductive inference of causal structures from the statistical observations. When 

three variables exhibit intransitive pattern of dependencies ( BCA −− ) such that (i) there exist 

non-spurious correlations between A  and C and between B  and C . (ii) A  and B  are 

independent, which is not induced by the numerical parameter values, there are following two 

possibilities: (b1) The two extreme variables A  and B , which are unconditionally dependent, 

become independent once we conditioning on the middle variable C . (b2) The two extreme 
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variables A  and B , which become dependent once we conditioning on the middle variable C , 

are independent without conditioning any subset of variables. The first probabilistic structure, 

which is commonly implied by both causal chain ( BCA →→ or BCA ←← ) and causal fork 

( BCA →← ), provides a causal interpretation for the simple but fundamental version of 

induction problem that correlation does not imply causation. On the other hand, the second 

probabilistic structure, which is implied by the unshielded-collider ( BCA ←→ ), makes it 

possible to inductively infer C  as the common effect of A  and B . Note that this type of causal 

orientation is the only possible (truly inductive) causal inference based on the statistical 

observations. This is the reason why a third variable is needed to decide the causal direction 

between two variables.  

The observed equivalence between causal chain and causal fork can not be discriminated 

based only on statistical observations without using non-observational extra causal information 

or manipulative (randomized) experimentation. However, the graph theory provides “logical 

clues” to partially address the observational equivalence problem. After the maximum 

information of unconditional and conditional probabilistic structures from data is obtained, (a) 

All the discriminative information between the true statistical relationships and spurious 

correlations among variables without causal orientations are summarized into the graph with 

undirected edges, named as the skeleton, and (b) All the discriminative information of the 

unshielded-collider structure from the observational equivalent causal structures of causal chain 

and fork are summarized into the partially oriented graph, named as the partially directed acyclic 

graph (PDAG) with causal orientations from independent causes to the common effect. By 

logically deciding causal directions for the remaining undirected edges in PDAG, the completed 

partially directed acyclic graph (completed PDAG or essential graph), which is maximally 

oriented PDAG, can be further inferred. The logical inferences about causal directions are based 

on the idea that orienting the remaining undirected edges in PDAG does not result in the causal 

structure which is inconsistent with the statistical observations, as long as the logically decided 

orientations do not create either new unshielded-collider structure or a cyclic causal structure. It 

is mathematically demonstrated that the following four rules are the maximally possible logical 

orientation rules for the remaining undirected edges in the partially directed acyclic graph 

(PDAG) (see Verma and Pearl, 1992, Meek, 1995a, and Pearl, 2000). (Rule 1) Orient BA →  for 

the remaining undirected edges BA −  in PDAG, whenever there is an arrow AC →  and that C  

and B  are not adjacent. Rule 1 is based on the fact that the orientation BA ←  would create an 
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empirically unsupported new unshielded-collider at A. (Rule 2) Orient BA →  for the remaining 

undirected edges BA −  in PDAG, whenever there is a causal chain BCA →→ . Rule 2 is based 

on the fact that the orientation BA ← would create directed cyclic pattern which is impossible 

by the acyclic assumption. Note that rule 2 creates a collider at B  but it is a shielded-collder not 

an unshielded-collider. So this rule does not result in an inconsistency with the statistical 

observations. (Rule 3) Orient BA →  for the remaining undirected edges BA −  in PDAG, 

whenever there are two chains BCA →−  and BDA →−  and that C  and D  are not adjacent. 

(Rule 4) Orient BA →  for the remaining undirected edges BA −  in PDAG, whenever there are 

two chains DCA →−  and BDC →→  and that A  and D  are adjacent but B  and C  are not 

adjacent. Rules 3 and 4 is based on the fact that the orientation BA ← , by two applications of 

rule 2, would create empirically unsupported new unshielded-collider at A  ( DAC ←→  for 

rule 3 and CAB ←→  for rule 4). These four rules are illustrated by Figure 2.1. 

 

C C A A A A A A

A ⇒ A C ⇒ C C D ⇒ C D B C ⇒ B C

B B B B B B D D

(1) (2) (3) (4)

Figure 2.1. Logical Orientation Rules for Undirected Edges in PDAG  

 

The graph theory, not only provides logical orientation rules to partially discriminate 

observational equivalent causal structures, but also allows the full use of the maximum 

information of unconditional and conditional probabilistic structures from data. Checking or 

searching all the relevant (un)conditional probabilistic structures among all the possible pairs of 

variables with respect to all possible combinations of other variables as the Sepset becomes 

feasible only by systematically and efficiently defining the relevant or entire search space, which 

consists of all possible causal hypotheses represented by DAGs. In graph theory, the 

relationships, which are used to relate the probabilistic dependency model MP and the graphical 

dependency model MG, are also used to define some relationships between two graphical 

dependency models. Two graphical dependency models of DAGs are perfect-map or 

observational equivalence for each other iff they have the same skeleton and the same 

unshieleded-colliders (Verma and Pearl 1990). This observational equivalence, which places a 
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limit on the ability of the statistical approach to infer causal structure, provides logical 

background to systematically classify the search space by eliminating the problem of multiple 

searching for the statistically equivalent DAGs. The independent-map relationships are then used 

to efficiently connect the systematically classified search spaces or the equivalence classes of 

DAGs. The independent-map relationships relate each other by the natural relationship of 

whether one equivalent class E  specifies more restrictions than the other 'E . In particular, when 

one equivalent class 'E  is an independent-map of the other E , E  imposes more independence 

constraint than 'E  and thus 'E  contains more edges than does E . Based on this fact, the whole 

search space can be systematically organized by a sequence of Independent-map relations 

between each equivalent class Io EEE ,,, 1 L  such that iE  is an Independent-map of 1+iE  and there 

is only one edge difference between them. Note that 0E  is a completely connected graph so is a 

trivial I-map of all DAGs and IE  is a completely disconnected graph so is a trivial D-map of all 

DAGs.  

This idea can be illustrated for the three variable case by using the following Figure 2.2., 

which is adopted from Kocka et al. (2001) with some modifications. All the possible causal 

hypotheses except cyclic ones are represented by the DAGs. Each box represents an equivalence 

class of DAGs. For example, the equivalence of DAG (8)-(10) can be illustrated by applying 

Bayes’s rule for factorization based on the DAG as well as the specified common conditional 

independence/dependence pattern. The joint distribution ( )CBAP ,,  can be factorized as follows: 

( ) ( ) ( )BPBAPACP ||  for DAG (8), ( ) ( ) ( )APACPABP ||  for DAG (9) and ( ) ( ) ( )CPCAPABP ||  

for DAG (10). The relationship ( ) ( ) ( ) ( ) ( )APABPBAPBPBAP |,| ==  makes the two DAGs (8) 

and (9) equivalent and the relationship ( ) ( ) ( ) ( ) ( )CPCAPCAPAPACP |,| ==  makes the two 

DAGs (9) and (10) equivalent. So the DAGs (8)-(10) are equivalent in terms of factorization of 

joint distributions. Under the Gaussian and multinomial distributions, this independence 

equivalence become identical to distributional equivalence, which means that equivalence class 

of DAGs have the same probability distribution. Connections among boxes represent the 

sequence of independent-map relationships. For example, when DAG (8)-(10) are represented by 

equivalence class iE , DAGs (1)-(6) are represented by equivalence class 1−iE  and the union of 

two equivalence classes of DAGs (19)-(20) and DAG (21)-(22) is represented by equivalence  
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(1) (2) (3) (4) (5) (6)

A ← B A ← B A ← B A → B A → B A → B
↖ ↗ ↖ ↙ ↘ ↙ ↘ ↙ ↘ ↗ ↖ ↗

C C C C C C

D(A,B|ø)  D(A,B|C)
D(A,C|ø)  D(A,C|B)
D(B,C|ø)  D(B,C|A)

(8) (12) (16)

A ← B A B A → B
↘ ↘ ↗ ↙

C C C

(9) (13) (17)

A → B A B A ← B
↘ ↖ ↗ ↙

C C C

(7) (10) (11) (14) (15) (18)

A ← B A → B A B A B A → B A ← B
↖ ↖ ↘ ↙ ↖ ↙ ↗ ↗

C C C C C C

D(A,B|ø)  D(A,B|C) D(A,B|ø)  D(A,B|C) I (A,B|ø)  D(A,B|C) D(A,B|ø)  I (A,B|C) D(A,B|ø)  D(A,B|C) D(A,B|ø)  D(A,B|C)
D(A,C|ø)  D(A,C|B) D(A,C|ø)  D(A,C|B) D(A,C|ø)  D(A,C|B) D(A,C|ø)  D(A,C|B) I (A,C|ø)  D(A,C|B) D(A,C|ø)  I (A,C|B)
I (B,C|ø)  D(B,C|A) D(B,C|ø)  I (B,C|A) D(B,C|ø)  D(B,C|A) D(B,C|ø)  D(B,C|A) D(B,C|ø)  D(B,C|A) D(B,C|ø)  D(B,C|A)

(19) (20) (21) (22) (23) (24)

A B A B A ← B A → B A B A B
↖ ↘ ↙ ↗

C C C C C C

I (A,B|ø)  I (A,B|C) D(A,B|ø)  D(A,B|C) I (A,B|ø)  I (A,B|C)
I (A,C|ø)  I (A,C|B) I (A,C|ø)  I (A,C|B) I (A,C|ø)  I (A,C|B)
D(B,C|ø)  D(B,C|A) I (B,C|ø)  I (B,C|A) D(B,C|ø)  D(B,C|A)

(25)

A B

C

I (A,B|ø)  I (A,B|C)
I (A,C|ø)  I (A,C|B)
I (B,C|ø)  I (B,C|A)

 
Figure 2.2. Search Space Defined by the Graph Theory
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class 1+iE . Note that DAG (1)-(6) can be represented by equivalence class 0E  which is a trivial I-

map of all DAGs and DAG (25) can be represented by IE  which is a trivial D-map of all DAGs. 

Note also that it is possible to travel or to search all equivalence classes of DAGs by a specific 

sequence of single edge modifications along these connections. 

Many computer algorithms have been suggested to implement the logic of the graphical 

causal models for empirical studies. These algorithms can be classified as two types of 

approaches according to the two distinctive ways of the statistical observation, where the 

observation is done through the statistical decisions based on either the Neyman-Pearson type 

statistical test (conditional independence test approach) or the Bayesian information criterion 

(goodness-of-fit scoring approach). The first conditional independence test approach is based on 

the qualitative information about whether or not a particular individual local conditional 

independence constraint holds. On the other hand, the second goodness-of-fit scoring approach is 

based on the quantitative measure of how much the global independency patterns associated with 

an entire causal structure explain the data. 

The conditional independence test approach starts by searching for a Sepset SAB in all 

possible subsets of V\{A,B} such that I(A,B|SAB) holds for each pair of variables A  and B  by 

applying local conditional independence tests on A  and B  conditional on SAB. The categorical 

or qualitative decisions of such local tests are used to reconstruct topologies of the underlying 

DAG and to decide orientations based on the pattern of unshieleded-colliders. By using logical 

orientation rules, the partially directed acyclic graph (PDAG) is transformed into the completed 

partially directed acyclic graph (completed PDAG), which can be either a particular DAG or 

equivalent set of DAGs. The main task for this approach is to deal with the complexity and 

reliability problems in searching for the possible Sepsets. As this approach searches among all 

possible subsets in V\{A,B}, it involves a growing number of higher-order independence tests. 

As the number of variables increases, all the possible subsets rapidly increase, so the algorithm 

can become infeasible even when searching for the sparse true graphs. Furthermore, higher order 

conditional independence tests are generally less reliable than lower order independence tests 

(Spirtes et al., 2000).  

There are several algorithms suggested to deal with this task. Among them, PC 

algorithm is used in this study, because it provides an efficient and reliable way of searching for 

Sepsets SAB. The PC algorithm, named after its authors of Peter and Clark, is discussed in Spirtes 

et al. (2000). PC algorithm commences by forming a completely connected undirected graph. It 
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then searches for the Sepsets SAB of cardinality 0, then cardinality 1, and so on. The search for a 

Sepset SAB is limited to variables that are adjacent to A and B at every stage. Edges are 

recursively removed from a complete graph as conditional independence is found. By this way, 

PC algorithm bounds the number of independence tests as ( ) ( )!11 12 −− − KNN K , where N  is the 

number of variables and K  is the highest number of adjacent variables in the graph. PC 

algorithm uses Neyman-Pearson type statistical tests of partial correlation for conditional 

independence test by assuming linear Gaussian distributions.  

The goodness-of-fit scoring approach starts by logically defining the search space which 

consists of all possible causal hypotheses represented by DAGs. It then searches the DAG that 

best explains the data, where the explanation power of a given DAG at each search step is scored 

and compared by a goodness-of-fit measure. The main difficulty for this approach is that the 

number of possible hypothetic causal structures of DAGs rapidly increases as the number of 

variables N  increases. It is demonstrated that the number of different DAG structures ( )Nr  is 

given by the recurrence formula ( ) ( ) ( ) ( )iNr
i
N

Nr
I

i

iNii −∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

=

−+

1

1 21  (Robinson, 1977). This 

formula, for examples, gives ( ) 32 =r , ( ) 253 =r , ( ) 5434 =r , and ( ) 292815 =r as the number of 

possible DAGs for the number of variables 2, 3, 4, and 5 respectively. As the number of 

variables increases, all the possible DAGs rapidly increase so the algorithm can become 

infeasible even when searching for the sparse true graphs. This complexity problem suggests that 

it is needed to systematically represent the whole search space and to efficiently generate and 

evaluate neighbors for a particular state in the search.  

There are several algorithms suggested to deal with this task. Among them, the two-

phase Greedy Equivalence Search (GES) algorithm is used in this study, because it provides an 

efficient and optimal search algorithm. The GES algorithm is originated from Meek (1997) and 

its optimality is proved by Chickering (2002). Algorithmic logics are based on the results of 

graphical theory as follows: (a) The two-phase Greedy Equivalence Search (GES) algorithm 

greedily moves to equivalent classes of DAG as neighbors until it reaches the local maximum at 

each of the two phases of search procedure. This algorithmic logic relies on the result of graph 

theory that the whole search space can be systematically represented by the equivalence classes 

of DAG. (b) The two-phase GES algorithm restricts the neighbors of particular state of 

equivalent classes of DAG iE  as either 1−iE  for first single edge addition phase or 1+iE  for 



24 
 

 

second single edge removal phase. This algorithmic logic relies on the result of graph theory that 

the whole search space can be efficiently searchable along the natural connections by the 

sequence of independent-map relations among equivalent classes Io EEE ,,, 1 L  such that iE  is an 

independent-map of 1+iE  and there is only one edge number difference between iE  and 1+iE . 

Note that when the algorithm considers the edge addition or removal, it also checks for the 

possible unshielded-colliders. For example using the above figure of three variable case, the 

current state 1−IE  which consists of DAGs (19)-(20) is compared with four neighbors of 2−IE  

which consist of DAG (7) and DAG (11) as the possible unshielded-collider patterns as well as 

DAGs (8)-(10) and DAGs (12)-(14) in the first edge addition phase. 

GES algorithm uses the Bayesian Information Criterion (BIC) as a measure of scoring 

goodness-fit of a given DAG G  at each step of the search. The BIC is chosen as a goodness-fit 

score because (a) It is a consistent approximation of the Bayesian posterior probability under the 

Gaussian and multinomial distributions and (b) It has decomposability and equivalence 

properties that allow efficient scoring. BIC for a given DAG G  of a set of variables 

{ }NXXV ,,1 L=  can be written as follows: ( ) ( ) ( ) ( )2logdim|log, TGGVPGVBIC ⋅−= , where 

T  is the sample size and ( )Gdim  is the dimension or the number of parameters of DAG G  and 

( )GVP |log  is the log-likelihood function for a set of variables V  given DAG G . For a given 

DAG G  at each step of the search procedures, ( )Gdim  is calculated by counting the number of 

edges in G  and ( )GVP |log  is calculated by ∑= n nnN PaXPXXP )|(log),,(log 1 K , which has 

decomposable property and thus can be efficiently evaluated. Because the scoring function BIC 

is based on the factorization of the joint distribution by the DAG ∏= n nnN PaXPXXP )|(),,( 1 K  

but the equivalence class of DAGs or the partially directed acyclic graph (PDAG) is used to 

represent each state, the PDAG is transformed into the completed partially directed acyclic graph 

(completed PDAG or essential graph) by using logical orientation rules at each step of the search 

procedures,. The property of equivalent BIC scores for members of an equivalence class comes 

from the fact that DAGs in an equivalence class have the same number of edges and a common 

factorization. Note that the BIC measure involves too many parameters for a completely 

connected graph, so the GES algorithm usually uses the completely unconnected graph as its 

initial PDAG. But it is possible to start the search with another PDAG based on other causal 
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information such as theory and/or the completed PDAG, which can be resulted from the PC 

algorithm (Spirtes and Meek, 1995).  

Two distinctive approaches to infer causal structures among variables represented by 

DAGs can be compared with respect to several aspects. Several other algorithms and their 

characteristics are discussed in Sangüesa and Cortés (1997). Among them, one comparison has 

an interesting feature in terms of using the logical orientation rule. In the PC algorithm, the 

logical orientation rule is used only after all the possible statistical information from data is 

obtained. On the other hand, the logical orientation rule is used at every step of the search 

procedures in the GES algorithm. This implies that separating the logical extension rule from the 

algorithms is relatively easy in the PC algorithm but relatively difficult in the GES algorithm. 

This different feature of two algorithms has implications for the purpose of relaxing the acyclic 

and sufficiency assumptions, given that the logical orientation rule relies on the Markov 

condition, which is based on the acyclic and sufficiency assumptions. In fact, the conditional 

independence test approach makes some progress for relaxing the acyclic or sufficiency 

assumptions. In particular, based on the PC algorithm, Richardson and Spirtes (1999) develop 

Cyclic Causal Discovery (CCD) algorithm to allow cyclic possibility and Spirtes et al. (2000) 

develop Fast Causal Inference (FCI) algorithm to relax sufficiency condition. These 

developments are not incorporated in this study, since it is still ambiguous how to distinguish 

between feedback and latent phenomena (Moneta and Spirtes, 2006). We hope that it is not too 

harmful to assume the acyclic and sufficiency conditions, given the observation that these two 

conditions are implicitly or explicitly assumed in most empirical studies in economics. 

The other comparison has practical implications. The conditional independence test 

approach is based on the qualitative decision about local independence tests, so it is susceptible 

to incorrect qualitative local decisions, which can be sensitive to the chosen significant level. 

Based on the simulation results, it is recommended to systematically lower the significance level 

as the sample size increases. For example, 0.2 for the sample size less than 100 and 0.1 for the 

sample size between 100 and 300 are recommended as the significance level for local 

independence tests (Spirtes et al., 2000). However, it is still not easy to decide the appropriate 

significance level for the local tests, because the power of algorithm against alternatives is an 

extremely complex and unknown function of the power of the individual local test. The 

goodness-of-fit scoring approach does not require choosing a specific significance level, because 

it is based on the quantitative measure about how much the overall independence constraints 
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associated with an entire causal structure are true. In this respect, it allows users to make finer 

distinctions among alternative causal structures or to combining them to better inferences by the 

model averaging process based on the quantitative measure such as BIC in GES algorithm.  

The overall graphical causal models or DAG approaches can be also compared with the 

traditional structural equation model (SEM) approaches. To infer causal relationship between 

two variables A  and B , the DAG use the criterion whether a third variable C  exhibits a 

specific pattern of dependency with A  and B . In this respect, the DAG approach can be 

compared with the SEM approach, where the simultaneous relationships of the j th endogenous 

variable ( A ) and other endogenous variables included in the j th equation ( B ) are discriminated 

(identification or induction problem) by the assumed exogenous variables ( C ) excluded from 

the j th equation as the additional third causal determinants or specific shifters for behavioral 

equations of other endogenous variables included in the j th equation. However, methods to 

address this induction problem are quite different.  

In the SEM approach, the selection of exogenous variables is usually considered as 

maintained assumptions derived from the theory rather than something to be learned form data 

itself. Even when the hypothetical test approach is implemented based on regression framework, 

(a) The non-nested hypothetical test approaches oftentimes have the power problem related with 

the statistical hypotheses test, so that they have generally little power to discriminate competing 

specifications. (b) The nesting hypothetical test approaches based on variable selection methods 

also faces following issues: (b1) When the small explanatory variable set is initially assumed and 

then subsequently expanded into larger selected variable set (bottom-up approach), the omitted 

variable (especially common cause variable) problem in initial (or subsequent) small model can 

mislead the testing results. For example, if true causal structure is 1
ttt xWy →←  but the initial 

small model ttt xay ε+= 1
1 omits the common cause variable tW , then hypothetic test of 

0: 10 =aH  can be rejected. (b2) When the large explanatory variable set is initially assumed and 

then subsequently reduced into smaller selected variable set (top-down approach), the included 

variable (especially common effect variable) problem in initial (or subsequent) large model can 

mislead the testing results. For example, if true causal structure is 1
ttt xWy ←→  but the initial 

large model t
k
tkttt xaWxay εβ +∑++= 1

1  includes the common effect variable tW , then 
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hypothetic test of 0: 10 =aH  can be rejected. Note that these problems can arise, even though the 

causal sufficiency condition is assumed.  

In the DAG approach, on the other hand, all the unconditional and conditional 

probabilistic structures among all the relevant combinations of variables are efficiently checked 

in search procedures to obtain the maximum information of specific pattern of dependencies 

among variables from data, where relevant search spaces are logically decided based on the 

graph theory. Note that checking or searching all the relevant (un)conditional probabilistic 

structures among all the possible combinations of variables becomes infeasible without 

systematically and efficiently defining the relevant or entire search space. The graph theory also 

provides logical orientation rules to discriminate observational equivalent causal structures, 

which can not be discriminated based on statistical properties only, without using non-

observational extra causal information or manipulative (randomized) experimentation. 

Graphical causal models or DAG approaches can be used for the empirical studies. 

Both PC and GES algorithms are implemented in Tetrad IV program. However, there are some 

caveats for their use in data analysis especially for the high dimensional data set. The graphical 

causal models are based on the Markov and stability conditions. Although the Markov condition 

is commonly assumed for most empirical studies and thus can be accepted, the Markov condition 

only makes the graphical dependency model as an independent-map of the probabilistic 

dependency model. This means that the underlying causal structure implies the probabilistic 

dependency pattern. On the other hand, the inductive inference of causal structure from the data 

is possible only when the probabilistic dependency model implies the underlying causal structure. 

In this respect, the stability condition needs to be further discussed to use the graphical causal 

models or DAG approach in empirical study, since the stability condition, with the Markov 

condition, makes a DAG as a perfect-map of (or equivalent to) a statistical dependency pattern. 

Recall that the stability condition implies that all the unconditional and conditional probabilistic 

structures are stable with respect to changes in their numerical values. This stability has 

following implications: (a) All the observed (un)conditional probabilistic structures are due to 

the underlying causal structures, not their special numerical values. (b) No spurious 

independence in probability dependency model can be destroyed or induced by changing 

probabilistic parameter values. (c) It is possible to effectively and efficiently encode 

(un)conditional (in)dependencies structures into graphical dependency model without numerical 

probabilities. Thus, with the Markov condition, (d) It is possible to infer the underlying causal 
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structures from the observed marginal and conditional probabilistic structures, where the 

observation is done through the statistical decisions based on either the Neyman-Pearson type 

statistical test (conditional independence test approach) or the Bayesian information criterion 

(goodness-of-fit scoring approach). 

There can be two circumstances where the stability condition can be violated, as 

discussed in the Tetrad II manual. One possible circumstance is that there may exist strict 

equality among products of parameters, so that a spurious independence in probability 

distribution can be destroyed or induced by changing underlying parameter values. For example, 

in the linear modeling of causal structure of AuCBA ++= 21 λλ  and CuBC += 3λ , the restriction 

of 321 λλλ ⋅−=  can numerically induces independence between A  and B , even if a structural 

dependence exists between A  and B . It has been demonstrated that for the Gaussian 

distribution (Pearl and Verma, 1991) and multinomial distribution (Meek, 1995b), the strict 

equalities among products of parameters have very little possibility or Lebesgue measure of zero 

in any probability space in which parameters vary independently of one another. Note that 

parameters vary independently of one another under the modular situation, where a complex 

system can be built by combining simpler local parts and it is possible to manipulate one such 

relationship without changing the others. 

The other possible circumstance is that there may exist deterministic or near 

deterministic relationships among variables so that any the statistically observed (un)conditional 

probabilistic structures are due to not only the underlying causal structures but also their special 

numerical values. According to Tetrad II manual, the Tetrad program should not be used for the 

following cases or these second cases should be practically addressed in empirical study, where 

(a) There are deterministic relationships among variables or (b) There are conditional 

probabilities very close to 1 in the discrete case or (c) There are correlations very close to 1 in 

the linear case. These restrictions for using the Tetrad program can be understood based on the 

following reasoning. If ( ) 1| ≈BAP , then ( ) ( )BAPCBAP |,| =  can be hold for any set of 

variable C , regardless of the causal structures among them. So it is not possible to infer reliable 

causal structure from the probabilistic dependency pattern. For example from Tetrad II manual, 

when there are four variables A , B , C , and D  such that (i) A , B , and C  are independent each 

other. (ii) D  is the common cause of A , B , and C , the near deterministic relationship between 

C  and D  such as ( ) 1| ≈CDP  can numerically induce independence between A  and B  by 
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conditioning on C , instead of conditioning on D . For another example from empirical study, 

even for the same commodity, any causal relationships between price 1p  and quantity 1q  can be 

statistically broken, when another related commodity’s price 2p  has a high co-movement with 

1p . It is because high correlation between 1p  and 2p  can induce ( ) ( )21121 |,| ppPqppP =  

through ( ) 1| 21 ≈ppP . Note that this problem is similar to the multicollinearity problem, which 

makes it difficult to obtain precise estimates of the separate effects of the variables in regression 

methods. Given the observation that many variables in a high dimensional data set oftentimes 

move very closely, the use of the graphical causal model for the high dimensional data set can be 

problematic, since the stability condition can be violated in its applications for high dimensional 

data sets. One possible way to address this problematic situation is to use aggregation method. 

However, before using aggregation method, the legitimate aggregation condition should be 

empirically identified to consistently infer causal structures among disaggregated variables by 

using the aggregated variables as the legitimate representatives. This issue is closely related with 

the next topic to be discussed. 

 

Aggregation Theory  

Theil’s aggregation theory is concerned with the transformation of individual relations 

(micro-relations) to a relation for the group as a whole (macro-relations) (Theil, 1971). It 

considers the possibility that micro-relations can be studied through the macro-relations, where 

micro-variables are grouped and represented by macro-variables. The main issue is to understand 

the general relationship between micro-parameters and macro-parameters. The ultimate goal is to 

identify conditions for the meaningful aggregation that makes it possible to represent micro-

relations by macro-relations. Theil (1954) shows that macro-parameters generally depend upon 

complicated combinations of corresponding and non-corresponding micro-parameters. He, 

however, also identifies two special conditions for the possibility of meaningful aggregation, 

which are the micro-homogeneity and the compositional stability conditions. While the micro-

homogeneity condition means that each of the micro-parameters is equal across all individual 

units, the compositional stability means that the ratios of micro-variables over macro-variables 

are constant over time (Monteforte, 2004). If one of these conditions is satisfied, then the 

aggregated macro-model is considered as a legitimate representative of the underlying 

disaggregated micro-model. 
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Theil’s aggregation theory can be understood as follows. For a given T  time period, 

each individual unit has its own linear behavioral relationship. That is, for each individual micro-

unit ( Nn ,.....,1= ), an endogenous variable ny  linearly depends on K  exogenous variables 

],.....,[ 1 nKnn xxx =  with corresponding micro-parameters ]',.....,[ 1 nKnn βββ = . These relationships 

can be represented by following set of micro-equations.  

(1)  nnnn uxy += β   , Nn ,.....,1=∀ . 

To study the general tendency of phenomena which are common to most of all Nn ,.....,1=  

individual micro-unit behaviors, it is postulated that the relation between the aggregated 

dependent variable Y  and aggregated predetermined variables ],.....,[ 1 KXXX =  can be 

represented in the same linear form of micro-equations as the following macro-equation (2). And 

macro-parameters ]',.....,[ 1 Kβββ =  are estimated by the least-squares estimation method (4). 

(2)  UXY += β  where 

(3)  ∑
=

≡
N

n
nyY

1

  and  ∑
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≡
N

n
nxX

1

. 

(4)  YXXX ')'(ˆ 1−=β . 

Theil studies this estimator’s properties, especially in the context of the relationship between 

macro-parameters and micro-parameters. When micro-variables are represented by macro-

variables through aggregation functions (3), the correct specification of the aggregated relation 

becomes following equation (5). 
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Note that the true aggregated equation (5) has the NK ⋅  explanatory variables, so it contains as 

detailed information as a set of individual micro-relations as a whole, except the loss of 

information due to using aggregated dependent variable. Note also that the aggregation function 

(3) defined as the simple sum can be generalized to the weighted average as )'3( ∑≡ n
y

n yWY '  

and ∑≡ n
x

n xWX ' . When the weighted average is used, the true aggregated relation can be 

written as follows )'5( . 
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Since equation )'5( is fully equivalent to (5), the following discussion can be applied, mutatis 

mutandis, to the macro-parameters in the macro-equation by using )'2(  '''' UXY += β  (Theil, 

1954). Especially equation )'5(  is equivalent to (5), when we use the same weighting schemes 

for Y  and X  by y
nW = x

nW . Theil defines linear aggregation of economic relations as simple 

summation, simple average, and fixed weights average aggregations. The micro-homogeneity 

condition can be understood immediately as follows. When all micro-parameters are equal 

across all individual units, we can write ββ =n , Nn ,.....,1=∀  in the set of micro-equations (1). 

This implies that the macro-equation has a natural meaning such that all macro-parameters are 

equivalent to the common micro-parameters, because the true aggregate relation becomes )''5( .  

)''5(  UXuxyY
N

n
n
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n
n
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n
n +=+=⎟
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ββ
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  , by assumption ββ =n  Nn ,.....,1=∀ . 

This micro-homogeneity condition, however, might be a too restrictive condition to use for 

practical purposes, because it requires the complete knowledge of all micro-parameters. In this 

respect, we do not assume any restrictions on micro-parameters for each individual micro-unit in 

this study. 

Using the true aggregated equation (5), the macro-parameter estimator can be written as follows. 

(6) β̂ = YXXX ')'( 1−    , by the true aggregation (5) ∑∑
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To interpret this result, Theil postulates the following set of auxiliary equations (7), where 

exogenous micro-variables nx  are assumed to be linearly related with macro-variables X . When 

we assume that auxiliary-disturbances nv  are independent of exogenous macro-variables X  and 

they have zero means, we can consistently estimate the coefficient nA  by the least-squares 

method (8). Note that in this study, ( ) 0=Cov  is used to represent an independent relation, which 

is equivalent to no correlation under normal distribution with linearity.  

(7) nnn vAXx +=  
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(8) nn xXXXA ')'(ˆ 1−=    , where 

( )nAE ˆ  = [ ]nn vXXXEA ')'( 1−+  , by assumptions of ( ) 0, =XvCov n and ( ) 0=nvE  

= nA     , Nn ,.....,1=∀ . 

Note that equations (3) and (7) imply that the sum of coefficients becomes a KK ⋅  unit matrix 

and the sum of disturbances becomes a KT ⋅  zero matrix for the set of auxiliary equations. 

Because the coefficient nA  sums to 1 across micro-units, it can be used as the weighting scheme. 
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Using the result (9) as well as the assumption of the correct specification of micro-equations, 

nnnn uxy += β , which implies that micro-disturbances nu  are independent with exogenous 

macro-variables X  and have zero means, Theil interprets the macro-parameter estimator β̂  as a 

consistent estimator for∑ nnA β as in (12).  
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Defining macro-parameters as mathematical expectation of its least-squares estimator, Theil 

(1954) concludes that macro-parameters generally depend upon complicated combinations of 

corresponding and non-corresponding micro-parameters as in (13). He then further decomposes 

corresponding micro-parameters into simple sum (if 1=c ) or simple average (if Nc 1= ) of 

corresponding micro-parameters and a deviation term from it. He labels the sum of this deviation 

term and the non-corresponding micro-parameters as the aggregation bias as in (14). 
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Note that Theil defines the true macro-parameters as either a simple sum of micro-parameters by 

using 1=c  (Theil, 1954) or a simple average of micro-parameters by using Nc 1=  (Theil, 

1971). This choice of a constant c  is arbitrary because it is not related to the weighting schemes 

used in the aggregation function of (3) or )'3( , so it is not related to the correct specification of 

aggregated relation (5). For example, when we choose to use the same weighting schemes for 

Y and X by y
nW = x

nW in )'3( , the correct specification of aggregated relation )'5(  become 

exactly equivalent to (5), we can see that the choice of c  does not depend on weighting schemes 

used in aggregation function and thus true macro-parameters defined based on the choice of c  

do not depend on the correct specification of aggregated relation. 

Theil’s conclusion summarized above has negative implications for the aggregate 

approach. Few economists will or can meaningfully interpret macro-parameters as complicated 

mixtures of heterogeneous components. However, meaningful aggregation can be possible based 

on a special case considered in Theil’s discussions, which is the compositional stability condition. 

When each of macro-variable is composed of micro-variables of a homogeneous group with a 

constant compositional factor over time, the ratios of micro-variables over macro-variables 

becomes constant over time and the set of auxiliary equations (7) becomes equation )'7( .  
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This in turn implies that macro-parameters depend upon only the corresponding micro-

parameters as in )'13( , thus aggregated macro-parameters in macro-equations meaningfully and 

legitimately represent underlying homogeneous micro-parameters in micro-equations. 
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The homogeneity of micro-variables within a specific group is identified by the implied 

condition that micro-variables within the subset move absolutely synchronously and so have a 

correlation of one. By using the aggregation method that micro-variables are grouped and 

represented by macro-variables based on the condition that each macro-variable is composed of 

grouped micro-variables with a constant compositional factor nkka ,  over time, (a) each macro-

variable obtains a meaningful interpretation, since each macro-variable is composed of 

corresponding homogenous set of micro-variables measured by perfect correlation of one, and 

(b) each macro-parameter obtains a meaningful interpretation, since each macro-parameter is 

composed of only the corresponding homogeneous set of micro-parameters, not the non-

corresponding micro-parameters. Note that this interpretation does not involve arbitrary choice 

of simple sum (if 1=c ) or simple average (if Nc 1= ).  

This form of the compositional stability condition, however, requires a very strict 

condition that the variation in micro-variables within a group is strictly restricted by the equation 

of )'7( nkkknk aXx ,= , Kk ,.....,1=∀  and Nn ,.....,1=∀ , without allowing any deviations from it. 

Obviously this condition is too restrictive to apply with real world data. In practice, the 



35 
 

 

homogeneous group of micro-variables can only be identified through the certain group of 

micro-variables that are highly, but not perfectly, correlated, with the possibility that the 

aggregation bias in the aggregate model can be small as the specification error. In this respect, 

the strict form of compositional stability condition needs to be generalized for empirical 

applications. The strict proportionality condition for the postulated set of equations of micro-

variables over macro-variables can be generalized for the less restrictive condition to obtain 

meaningful macro-parameters, which depend upon only the corresponding micro-parameters. 

When we decompose the set of auxiliary equations nnn vAXx +=  into nnn dHXx +=  as in 

)''7(  and replace assumptions ( ) 0, =XvCov n  and ( ) 0=nvE  with conditions ( ) 0, =XdCov n  and 

( ) 0=ndE  as in )'8( , we obtain the same legitimate aggregation result as in )'12( , by again using 

assumptions ( ) 0, =XuCov n  and ( ) 0=nuE . Note that the conditions ( ) 0, =XuCov n  and 

( ) 0=nuE  are based on the assumptions ( ) 0, =nn xuCov  and ( ) 0=nuE , which are in turn from the 

background assumption of the correct specification of micro-equations (1) nnnn uxy += β . Note 

again that in this study, ( ) 0=Cov  is used to represent an independent relation, which is 

equivalent to no correlation under normal distribution with linearity. 
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)'8( nn xXXXH ')'(ˆ 1−=     , where 
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This generalized form of the compositional stability requires the condition of 

( ) 0, =XdCov n  in the set of equations nnn dHXx += . Hausman (1978) shows that this type of 

no regressor-error correlation condition can be empirically studied by using a statistical test of 

0:0 =nH γ  in IV

nnnn IVHXx εγ +⋅+= , where IV  are Instrumental Variables such that IV  is 

closely correlated with regressor X  (the relevance condition of IV ) and independent of error 

nd  (the validity condition of IV ). Based on this Hausman type misspecification testing method, 

we can empirically test the generalized form of the compositional stability condition, if we can 

find appropriate instrumental variables.  

In terms of identifying the homogeneous group of micro-variables, it is also possible to 

generalize the strict requirement that micro-variables of all items within the subset move 

absolutely synchronously and have a correlation of one. The main feature of the compositional 

stability condition is that each macro-variable is composed of grouped micro-variables with a 
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“stable” compositional factor over time, so the ratios of micro-variables over macro-variables are 

“near” constant with a certain stability over time. In this respect, the compositional stability 

condition can be generalized to require a less strict requirement. We can use the conditions that 

micro-variables within group are highly correlated but micro-variables across groups are only 

weakly correlated over time, instead of the strict requirement that micro-variables within group 

are perfectly correlated with correlation of one. Not only the degree of co-movement, but also 

the way to measure the co-movement can be generalized. While the strict form of the 

compositional stability condition requires that micro-variables within the subset move absolutely 

synchronously, the generalized form of the compositional stability condition can allow the 

possible lead and lag dependencies among micro-variables within a group, as long as micro-

variables within the group are highly correlated but micro-variables across groups are only 

weakly correlated. While the standard static correlation only measures synchronous or 

contemporaneous co-movements between variables and requires an independence assumption 

over time, there are several alternative measurements of dependency allowing for possible leads 

and/or lags in dependency among the time-series data in a dynamic setting. Two of these are the 

co-integration and the cross correlation. Co-integration is designed to measure long-run co-

movements, so it can be too restrictive to use for identifying mid-run or short-run or 

contemporaneous dependency patterns. The cross-correlation with some leads and lags can 

capture mid-run or short-run dependency by varying lead and lag parameters, but the choice of 

lead and lag parameters can be somewhat arbitrary. In this respect, we propose to use the 

standard static correlation as well as the dynamic correlation defined in (15) and (16) to measure 

the high co-movements of micro-variables within a group and near independences of micro-

variables across groups.  

(15) ( )λρ yx =
( )

( ) ( )λλ
λ

yx

yx

SS
C

⋅
  for frequency λ  where πλπ ≤≤−  

(16) ( )Λyxρ =
( )

( ) ( )∫⋅∫

∫

ΛΛ

Λ

λλλλ
λλ

dSdS
dC

yx

yx   for frequency band [ )21,λλ=Λ where πλλ ≤<≤ 210 , 

where x  and y  are two zero-mean real stochastic processes, ( )λxS  and ( )λxS  are the spectral 

density functions, and ( )λyxC is the co-spectrum of x  and y .  

The dynamic correlation, proposed from the frequency domain approach, has useful properties 

such as: (a) The dynamic correlation measures different degrees of co-movement which varies 
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between -1 and 1 just as standard static correlation. (b) The dynamic correlation over the entire 

frequency band is identical to static correlation after suitable pre-filtering and it is also related to 

stochastic co-integration. (c) The dynamic correlation can be decomposed by frequency and 

frequency band, where the low or high frequency band in spectral domain have implication for 

the long-run or short-run in time domain respectively (Croux, Forni, and Reichlin, 2001).  

This generalization of the compositional stability condition in terms of not only the 

degree of co-movement but also the way to measure the co-movement makes it possible to 

approximate the condition of ( ) 0, =XdCov n  and ( ) 0=ndE  by the condition of ( ) δ≤', kk ddCov , 

'kk ≠∀  where δ is a small value. This approximate condition in turn implies a block-diagonal 

pattern of the covariance or correlation matrix among micro-variables as in (17). The correlation 

is measured by static correlation )(χCorr  or dynamic correlation )(χDynCorr , where χ is 

defined as follows. We first transpose nnn vAXx +=  into T

n
TT

n

T

n vXAx += , Nn ,.....,1=∀ . By 

expanding to incorporate all NK ⋅  micro-variables, we can write nnn vAXx +=  as the matrix 

form υχ +ℵ⋅= L . Based on the logic of decomposition of set of auxiliary equations to derive 

generalized compositional stability condition, we decompose υχ +ℵ⋅= L  into 

( ) dLBDiag +ℵ⋅  as in (18), where the dimension of χ , υ  and d  are ( )TKN × , and L is of 

dimension ( )KKN × , ℵ  is of dimension ( )TK × , and ( )LBDiag denotes a block diagonal 

matrix of L. The equation )''7(  is recalled to clarify the relationship, where ( )nADiag  denotes 

a diagonal matrix of nA . 
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Note that the equivalence between nnn vAXx +=  and χ = υ+ℵ⋅L  through T

n
TT

n

T

n vXAx +=  

implies the equivalence between ( ) nnn dADiagXx +⋅= = nn dHX +  and χ = ( ) dLBDiag +ℵ⋅ . 

Given that the strict form of compositional stability condition ( )nn ADiagXx ⋅=  implies the 

block diagonal structure in the standard correlation matrix )(χCorr=Σ , we can infer the 

approximate form of compositional stability condition ( ) nnnnn dHXdADiagXx +=+= with 

( ) δ≤', kk ddCov , 'kk ≠∀  by identifying the approximate block diagonal structure in static or 

dynamic correlation matrix Σ  = )(χCorr  or )(χDynCorr . Note that the generalized form of the 

stability condition  ( ) 0, =XdCov n  and ( ) 0=ndE  is approximated by the condition of 

( ) δ≤', kk ddCov , 'kk ≠∀  in the equation nnn vAXx += ( ) nn dADiagX +⋅= = nn dHX + . 

This approximate form of the compositional stability condition can also be used to 

search for a specific homogeneous group to define an interpretable macro-variable, which is 

composed of highly correlated micro-variables with stable compositional factor. In this case, we 

can use an index k  as micro-variables’ group index that should be empirically identified, instead 

of using k  as an index for pre-determined classes of exogenous variables. The problem of 

forming suitable partitions before conducting any empirical test to justify those classifications 

has relied on researchers’ intuition rather than empirical data patterns. For example from demand 

analysis, intuitive partitions are formed based on several reference variables such as animal 

origin, product quality etc., which hopefully proxy consumers’ unobservable marginal utility 

structures. This intuition-based approach has an ambiguous aspect, since alternative choices of 

reference variables may result in several different classifications. More fundamentally, such 
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intuitive partitions based on the subjective reasoning are only a small set of possible partitions 

among an extremely large number of possible partitions. Thus when classification is empirically 

rejected, it can be simply because of researchers’ unsuccessful identification of the partition 

itself, not because of non-existence of legitimate classification itself. Given the empirical 

implausibility of attempting all possible partitions, it is better to pursue inductive partitions 

related with legitimate aggregation conditions based on the data pattern itself. The approximate 

form of the compositional stability condition can be used for searching for a specific 

homogeneous group, which is composed of highly correlated micro-variables with a stable 

compositional factor, so it allows us to define an interpretable macro-variable based on empirical 

data patterns. For this purpose, we choose to use the modified k-nearest neighbor algorithm 

based on Wise’s pseudo-color map code in this study. This algorithm keeps track of changes of 

correlation matrix, when it reorders the variables in the correlation matrix to sort highly 

correlated variables near each other along the main diagonal. On the other hand, other standard 

clustering methods, such as hierarchical algorithm and k-mean algorithm, use the correlation 

matrix as only an initial input of similarity measures and thus it is not easy to keep track of 

changes of correlation matrix (Xu and Wunsch, 2005). For example, based on the same 

correlation matrix from macro-economic data used in preliminary study, the modified k-nearest 

neighbor algorithm, which returns an intuitively interpretable reordered final correlation matrix 

as a final result, provides a meaningful clustering result, whereas the hierarchical algorithm, 

which returns a not-easy-to-interpret dendogram as a final result, only provides an ambiguous 

final clustering result based on either the intuitive reasoning or the correlation matrix. 

Theil reaches his generally negative conclusion for aggregation based on two kinds of 

main assumptions. One is ( ) 0, =XuCov n and ( ) 0=nuE , which is related with the background 

assumption of correctly specified micro-equations. The other is ( ) 0, =XvCov n and ( ) 0=nvE , 

which is the primary assumption that makes it possible to relate the macro-parameters to the 

micro-parameters. By replacing these primary assumptions with the testable condition of 

( ) 0, =XdCov n and ( ) 0=ndE , we reach a generalized form of the compositional stability 

condition for the positive possibility of legitimate aggregation. This generalized condition is, 

however, involved with the difficult search for instrumental variables in a Hausman-type 

misspecification test in the set of equations nnn dHXx += . When appropriate instrumental 

variables are not available, we can use the approximate form of the compositional stability 
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condition based on the empirically identifiable pattern of ( ) δ≤', kk ddCov  through the implied 

block-diagonal pattern in a static or dynamic correlation matrix among micro-variables. This 

approximate form of the compositional stability condition can also be used for searching specific 

homogeneous groups of original variables to form an initial partitioning. 

 

Index Number Theory  

Heretofore, we have explored the possibility for legitimate aggregation in generalized 

forms of the compositional stability condition based on Theil’s aggregation theory. Given that 

Theil’s theory is valid for the weighted average aggregation, mutatis mutandis, as mentioned in 

)'5( , one of the remaining issues is how to decide the weighting schemes in aggregating micro-

variables into macro-variables. This issue has been studied under the Index number theory, 

which is based on distinct features of economic phenomena, especially in the area of micro-

economic. All economic transactions on N  commodities reveal dual pairs of information of 

prices [ ]Npppp ,,, 21 L=  and quantities [ ]Nqqqq ,,, 21 L=  such that total sum of each product of 

individual price and quantity equals the total value (V ) of N  commodities. There have been 

many different index formulas suggested to represent these dual pairs of individual information 

by a pair of aggregate price index P  and aggregate quantity index Q  such that the product of 

the price index and the quantity index equals the total value of N  commodities. In this context, 

the index number problem can be understood to find P  and Q  for given p , q  and V  as in (19)  

(19)  QPVvqpqp
N

n
n

N

n
nn

T ⋅=≡≡≡⋅ ∑∑
== 11

 

However, it turns out that it is mathematically impossible to determine functional forms of 

aggregate price and quantity variables, when (a) both the price p  and quantity q  vector are 

regarded as independent variables and (b) aggregate price P  and quantity Q  variables have a 

positivity property (Eichhorn, 1978). Many distinct index formulas suggested are based on the 

some variants of equation (19) as explained below as )'19( , )''19( , or )'''19(  i.e. instead of 

decomposing total value level into price and quantity level, the alternative forms of the 

decomposition of total value change over time into the product of the price change component 

and the quantity change component, which uses the relative price and relative quantity to define 

the aggregate index (Diewert, 2001). Many different index formulas can be understood based on 

five different approaches, which are fixed basket, differential, economic, stochastic and 
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axiomatic approaches. Note that if the price index is determined, then the quantity index may be 

implicitly decided using the product rule ( QPVV ⋅=01 ), or vice versa. Thus discussions can 

be focused on the price index. 

The fixed basket approach tries to decompose total value ratio over time into aggregate 

price and quantity components as in )'19( . The price index is defined as the value ratio for the 

price changes to purchase a fixed reference basket of quantities )(qm  as in (20). Different price 

indexes can be derived, depending on how one chooses the fixed basket as a common reference 

commodity bundle )(qm  representing the two periods. Choosing 0)( qqm =  or 1)( qqm =  results 

in the Laspeyres or Paasche index, respectively. Choosing annual base year quantities for )(qm  

results in the Lowe index, which is used by many statistical institutes to produce monthly data in 

timely fashion. If we choose the geometric average of 10)( qqqm ⋅=  for the reference basket 

or take the geometric average of the Laspeyres or Paasche indexes PaascheLaspeyres PP ⋅ , we get the 

Walsh or Fisher index, respectively (Diewert, 2001). 
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In the Divisia differential approach, the observed price, quantity, and value are regarded 

as continuous functions of (continuous) time. By taking differentials with respect to time, the 

logarithmic rate of changes of total value is decomposed into logarithmic rate of changes of price 

and quantity as in )''19( . This approach treats price and quantity indexes symmetrically. 

Different price indices can be derived, depending on how one makes discrete approximations to 

the continuous time index (21). If we take the arithmetic average of ( ) 210

nn ss +  for numerical 

approximation or assume the most regular path of monotone paths or constant growth rate paths 

for line integrals in the absence of additional information, we get the Tornquivist-Theil price 

index (Hillinger, 2002). 
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In the economic approach, observed quantity is regarded as the solution of an 

individual’s optimization decision, given price data. This approach explicitly uses functional 

relations between quantity and price by assuming that the consumer (producer) is maximizing a 

utility (production) function subject to a budget constraint or minimizing cost function subject to 

a given utility (output) level as in )'''19( . The price index or cost of living index is defined as the 

ratio of minimum cost for the price changes to achieving the common reference utility 

(production) level representing two periods as in (22). Different price indices can be derived, 

depending on how one chooses both the reference utility (production) level and the functional 

form of utility (production) function ( )⋅u , the cost function ( )⋅C  or Mckenzie expenditure 

function ( )⋅M  (Balk, 2005). If we choose the geometric average of 10)( uuqu =  for the 

reference utility level and the translog functional form for the quadratic approximation to 

arbitrary cost function ( )upC , , economic price index or cost of living index becomes the 

Tornquivist-Theil price index (Diewert, 2001). 

)'''19(  ( ) ( ) { })),((),(|),,(),(),(),()()( ttqutquqpMinttqutpCttqtpMtqtp T
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)(tV≡ = )()( tQtP ⋅ . 

(22) ( )
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= . 

Note that the economic approach has a similar idea with the fixed basket approach in using 

common reference vector representing standard of living in two periods. While the fixed basket 

approach uses common reference commodity bundles to represent the two periods, the economic 

approach uses common reference utility (production) level to represent the two periods. The 

economic approach can also be understood in the connection to the Divisia differential approach 

by using differential property of the Mckenzie-expenditure function as in (23) (Balk, 2005). 
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In the stochastic approach, each of the observed N  price relatives or some 

transformation of price relatives is regarded as an estimate of a common inflation rate with an 

idiosyncratic error term as in (24), whose variability decreases as the representative value share 

increases, i.e. as the commodity becomes more important in the budget. This approach can be 

used to derive a standard error of the index number. Different price indices can be derived by 

applying Generalized Least Squares method, depending on how the functions ( )⋅f  and ( )⋅m  

are chosen as in (25). The choice of natural logarithm for ( )⋅f  and the arithmetic average for 

( ) 2)( 10

nnn sssm +=  results in the Tornquivist-Theil price index (Selvanathana and Prasada Rao, 

1994).  
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There have been many index number formulas suggested, so it is useful to be able to 

evaluate various index number formulas in terms of their mathematical properties. In the 

axiomatic approach, it is attempted to determine whether a formula is consistent with reasonable 

properties. For example, good index number formulas should be invariant to changes in 

commodity ordering and measurement unit (Invariance test) and should become reciprocal to 

changes in time ordering (Time reversal test). A good price (or quantity) index should also be 

proportional to current period price (or quantity) vector 1p  (or 1q ) and inverse proportional to 

base period price (or quantity) vector 0p  (or 0q ) (Homogeneity tests). Note that properties 
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derived from or imposed on the price index can be transferred to quantity index by using the 

product rule, and vice versa. The difficulty in this axiomatic approach is the fact that there is no 

universal agreement on what the best set of reasonable axioms is (Diewert, 2004). For example, 

The Walsh index is considered as a good index based on the time reversal test and invariance test 

within the average basket approach. The Fisher index is considered as a good index from the 

axiomatic approach in the framework of ),,,( 1010 qqppP  based on list of 20 properties. The 

Tornqvist-Theil index is regarded as a good index from the axiomatic approach in the framework 

of ),,( 1001 vvppP  based on a similar list of properties.  

We choose to use the Tornqvist-Theil index in this study, although it has been argued 

that the Tornqvist-Theil, Walsh, and Fisher indexes are approximately equivalent as the class of 

superlative indexes. The preference toward the Tornqvist-Theil index, rather than the Fisher 

index, is due to following facts: (a) Although almost all of index number formulas suggested can 

be derived from any of five approaches by making different choices, the Tornqvist-Theil index is 

easily justified from any of four approaches, because it can be derived from almost all of 

approaches to index number theory with a reasonable choice within each approach. (b) Unlike 

the Fisher index, the Tornqvist-Theil index does not invoke the problematic assumption of a 

homothetic or linear homogeneous utility function. 

The class of superlative indexes and their relations with the homothetic assumption can 

be understood as follows. If we assume the utility (production) function is linearly homogeneous 

in quantities, then the cost function can be decomposed into a utility (production) level times a 

unit cost function, which is linearly homogeneous in prices (26). In this case, the cost of living 

index becomes a unit cost ratio which is independent of the reference quantity vector and the 

(implicit) quantity index becomes a utility ratio which is also independent of the reference price 

vector (27). 

(26) ( ) )()()(, qupcqupC ⋅= , 

where )( pc is linearly homogeneous unit cost function and )(⋅C is cost function, 

when )(qu is linearly homogeneous utility (or production) function 

(27) ( )
( ))(,
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Using the fact that any arbitrary (twice continuously differentiable) linear homogeneous function 

can be approximated to the second order by the quadratic mean of order r  function or the 
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flexible function (28), Diewert uses flexible functional form for  approximating the linearly 

homogenous utility (production) or unit cost function to define second-order approximate 

indexes for price and quantity index. Note that the utility (production) function determines the 

unit cost function, and vice versa, due to the duality theorem. 

(28) ≈)()( quorpc ( ) [ ]∑ ∑ ⋅⋅=
= =

N

m

N

n
n

r

m

r

nm

r
r zzzf

1 1

2/2/

,

/1

α , where 0≠r , mnnm αα = ,  

and qorpz =  for unit cost and utility functions respectively. 

Diewert argues that all of approximate indexes or superlative indexes, depending on the choice 

of value r , approximate each other to the second order, either when it is estimated at the point 

where prices and quantities are equal over time ( 01 pp = and 01 qq = ) or when prices and 

quantities move exactly proportionally ( 01 pp ⋅= μ and 01 qq ⋅= ϕ , 0, >∀ ϕμ ). After showing that 

the superlative index become the Walsh index or the Fisher index when 1=r  or 2=r  

respectively and as r  tends to 0, a limiting case of superlative index become the Tornqvist-Theil 

index, Diewert argues that the standard superlative indexes such as the Tornqvist-Theil ( 0→r ), 

Walsh ( 1=r ), Fisher ( 2=r ) indexes and other infinite number of higher order r  superlative 

indexes will all give the same answer to a reasonably high degree of approximation and 

concludes that the choice among superlative indexes does not matter much in empirical 

applications.  

Diewert’s conclusion is based on the homothetic utility function and proportionality 

assumptions. It is interesting that these two assumptions are related with two approaches for 

legitimate aggregation condition. In economics, especially micro-economics, legitimate 

aggregation conditions or valid classification conditions have been studied or identified based on 

either pattern of variables or pattern of preference (or technology). While the homothetic 

condition of preference (or technology) patterns is related with the separability condition, the 

proportionality condition of variable patterns is related with the Hick-Leontief composite 

commodity theorem. In terms of preference (or technology) pattern, it is argued that there can be 

group demand functions, when a structural property of preference (or technology) reveals a 

pattern such that the marginal rate of substitution of all pairs of items within the subset is 

homogenous of degree zero in the quantities of items within the subset and is also independent of 

the quantities of all items outside the subset. While both conditions are required for homothetic 

separability, the latter condition is required for weak separability. Although the weakly separable 

condition implies only quantity aggregates not price aggregates, both of which are required for 
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conducting consistent two-stage budgeting (Shumway and Davis, 2001). However, the 

homothetic assumption might be problematic due to its implication of unrealistic unitary income 

elasticities. The separability assumption implies rather strong condition, is difficult to test 

powerfully, and requires group price indexes that depend on the parameters of the individual 

utility (production) function (Lewbel, 1996). Separability condition is tested by estimating 

models for individual goods without imposing separability, and then testing whether the required 

elasticity restrictions such that the ratio of compensated cross-price elasticities of two 

commodities within the same group with respect to a third commodity in another group is equal 

to the ratio of their expenditure elasticities are satisfied. The problem is that without separability, 

each demand equation must include all the related individual prices. Even when enough degrees 

of freedom are available to estimate these models, the multicollinearity among the prices as well 

as the relatively complicated cross equation parameter restrictions causes the resulting tests to 

have little or no power. In a Monte Carlo study Barnett and Choi (1989) find that all of the 

standard tests fail to reject separability much of the time, even with data constructed from utility 

functions that are far from separable. Even though this “difficulty to reject” may be one reason 

why separability is so commonly assumed in practice, separability is often empirically rejected 

(see Diewert and Wales, 1995, for example). Although progress has been made in relaxing its 

restrictions (see Blundell and Robin, 1995 and Blackorby et al., 1995, for examples), even weak 

forms of separability impose very strong elasticity equality restrictions among every good in 

every group.  

While the homothetic assumption is not easy to empirically test as discussed above, it 

can also be problematic in the context of index number theory, since it is challenged by the 

recent findings of index number theories. For example, Hill (2006) shows that although 

Diewert’s approximation result is mathematically valid and has convenient implications for 

practical purposes, superlative indexes with higher order values of r  do not necessarily 

empirically approximate the standard superlative indexes very closely, using two sets of 

empirical data. Hillinger (2002) further demonstrates that the Fisher index is not a quadratic 

approximation to the true index in the general non-homothetic case, while Tornqvist-Theil index 

is very accurate, using simulation data set generated by the simple non-homothetic form of the 

Stone/Geary utility function. Hillinger’s simulation result is consistent with Samuelson and 

Swamy (1974, page 585)’s conclusion that “it is evident that the ideal (Fisher) index cannot give 

high-powered approximation to the true index in the general non-homothetic case.” In general, 
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the difficulties in empirical applications of the separability condition can be understood as the 

separability concept requires the complete knowledge of all micro-parameters. Similarly, the 

micro-homogeneity condition also requires a similar degree of information of all micro-

parameters to check the equality of micro-parameters across all individual units. This 

requirement of the complete knowledge of all micro-parameters, which for instance is not easy 

to be estimated consistently due to multicollinearity problem, can be too restrictive to use for 

practical purposes. For this reasons, we do not assume any restrictions on micro-parameters 

based on either the micro-homogeneity condition for each individual micro-unit or the 

homothetic or weakly separability condition for the utility (production) function in this study. 

While the homothetic and separability conditions and the related micro-homogeneity 

condition are based the complete knowledge of all micro-parameters, the Hicks or Leontief 

composite commodity theorem, Lewbel’s generalized composite commodity theorem and the 

compositional stability condition are based on patterns of micro-variables within the subset 

category without requiring any knowledge of micro-parameters. The Hicks or Leontief 

composite commodity theorem is based on patterns of the prices or quantities of all items within 

the subset category respectively. It is argued that there can be composite commodities, when the 

ratios of the prices (quantities) of individual commodities to composite commodity price 

(quantity) are strictly equal to constant proportional factors. A more formal argument of Hicks’ 

composite commodity theorem can be summarized as follows. If all the prices of commodities 

within group A  ( )Ap  move in exact proportion to a certain common representative price ( )AP  

with fixed vector of constant ( )μ , in other words, the variation in the price vector within group 

is restricted by the equation of AA Pp ⋅= μ , even though AP  and Bp  may vary in an arbitrary, 

then (a) an aggregated macro-utility function defined over composite commodity can be derived 

from disaggregated micro-utility functions as ( ) ( ) ( ){ }AAABAqBA PyqqqUqQU
A

≤⋅≡ μμ |,max, , 

which has similar properties corresponding to micro-utility functions such as continuity, 

monotonicity, and quasi-concavity in its arguments, (b) the corresponding property of the 

continuity from above in both micro- utility and macro-utility functions guarantee the existence 

of  solutions to both micro-optimization and corresponding macro-optimization problems, and 

(c) the optimization problem based on disaggregated micro-utility functions as 

( ){ }yqpqpqqU BBAABAqq BA

≤+|,max
,

 is equivalent to the optimization problem based on 
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aggregated macro-utility function as ( ){ }yqpQPqQU BBAABAqQ BA

≤+|,max
, μ  in terms of equivalence 

with adjustment by constant proportional factor ( )μ  between micro-optimization solution of 

( )** , BA qq  and macro-optimization solution of ( )** , BA qQ  where AAAA PyqQ *** =⋅= μ . Thus the 

composite commodity can be defined as either the weighted average of micro-commodities with 

the vector of proportional factors as weighting scheme or the real expenditure for group 

commodities deflated by the representative group price index. While the formal proofs for Hicks 

composite commodity theorem in the consumer context and its application in the producer 

context can be found in Diewert (1978), this result of Hicks composite commodity theorem can 

be intuitively understood based on the relationship 

of ( ) ( ) AAAAAAAAA QPyqPqPqp ⋅≡≡⋅⋅=⋅⋅=⋅ μμ . Similarly the Leontief-composite commodity 

theorem can also be understood by starting with quantity-proportionality ( ) AA Qq ⋅= μ1  instead 

of price-proportionality AA Pp ⋅= μ  and the intuitive relationship of AAAAA QPyqp ⋅≡≡⋅  through 

( ) ( ) AAAAAAAA QPQpQpqp ⋅=⋅⋅=⋅⋅=⋅ μμ 11 . 

We can see that the condition of Hicks-Leontief composite commodity theorem 

AA Pp ⋅= μ  and/or ( ) AA Qq ⋅= μ1  is equivalent to the strict form of compositional stability 

condition )'7( nkkknk aXx ,= , Kk ,.....,1=∀  and Nn ,.....,1=∀ , where either price variables or 

quantity variables are generalized to any explanatory or right-hand side variables. Given the 

equivalence between the conditions of Hick-Leontief composite commodity theorem and the 

strict form of the compositional stability condition, the generalized form of the compositional 

stability condition can be regarded as a generalization of the conditions of Hick-Leontief 

composite commodity theorem. In this respect, the generalized form of the compositional 

stability condition can be compared with Lewbel’s generalized composite commodity theorem, 

which can be regarded as the alternative generalization of Hick composite commodity theorem. 

The generalized form of compositional stability condition allows some deviations from the strict 

form of compositional stability condition, as long as such deviation does not cause inconsistency 

for estimating nH  in nnn dHXx += . While this generalization maintained non-randomness of 

proportionality factors nkka , Kk ,.....,1=∀  and Nn ,.....,1=∀ , Lewbel (1996) argues that the 

differences of the prices of individual commodities and composite commodity price can be 

allowed to vary as long as these differences are independent of composite commodity price or 

general rate of inflation of the group. This generalized composite theorem is based on the idea 
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that the differences between individual commodity prices and the aggregate commodity price 

can be regarded as the aggregation errors and the estimated aggregated parameters can be 

consistent if these aggregation errors are well behaved so that they can be either included in the 

intercept term or absorbed into the error term. Lewbel’s generalized composite commodity 

theorem can be understood in the context of Theil’s aggregation theory and the compositional 

stability condition. While Lewbel’s theorem requires that macro-variables X be independent of 
Lewbel
nd , which is defined by further decomposing nnn vAXx +=  into Lewbel

nn dXx +=  rather than 

nnn dHXx += . Or if we assume that either the proportionality factor 1, =nkka  or the constant 

1=c  in (14) which implies a priori condition that the true macro-parameter is a simple sum of 

the corresponding micro-parameters, then we can obtain Lewbel’s consistent aggregation 

condition from the Theil’s aggregation theory framework. This further decomposition as in )'''7(  

makes it possible for us to easily define Xxd n
Lewbel
n −≡  and allows us to avoid difficulty 

involved in searching for instrumental variables in empirically testing the compositional stability 

condition of ( ) 0, =XdCov n  in nnn dHXx += .  

)'''7(  nnn vAXx +=       , Nn ,.....,1=∀ , 

where nA =
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so nkx , = ∑
≠

+−+
K

kj
nkjjnkkk aXaXX ,, )1( = Lewbel

nkdX ,+   , Kk ,.....,1=∀ Nn ,.....,1=∀ . 

Lewbel’s theorem, however, has following ambiguities: One ambiguity in Lewbel’s 

theorem is how to deal with fact that the Hick-Leontief composite commodity theorem is based 

on non-randomness of proportionality factors nkka , . Lewbel deals with this difficulty either (a) 

By restricting his generalized theorem into log-linear model which should absorb non-random 

part of nk
K

kj njkjnkkk
Lewbel

nk vaXaXd ,,,, )1( +∑+−≡ ≠  into an intercept term in macro-parameter vector of 

β  or (b) By allowing the differences of the prices of individual commodities to the composite 

commodity price to vary and be absorbed into the random error term. If the first assumption is 

taken, the macro-model should always have a significant intercept term, which is a complicated 

mixture of heterogeneous components and thus is difficult to be meaningfully interpreted. If the 

second assumption is taken, the intuitive rationale of a constant or stable budget constraint 
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condition within each commodity group for the Hick-Leontief composite commodity theorem is 

lost. Another ambiguity in Lewbel’s theorem is that it has the same arbitrariness for the choice of 

constant 1=c  as in Theil’s case discussed above (14), because there is no reason not to choose 

Nc 1= , for example. There are no a priori reasons that the ratio of observed micro-variables to 

true macro-variable should be restricted to one. Note that the differences are transformed into 

ratios in Lewbel’s log-linear model. It is convenient either to define aggregation bias as the 

difference between micro-variables and macro-variables or to avoid the difficulty involved in 

searching for instrumental variables in empirically testing the compositional stability condition. 

However, it is restrictive because it implies that the true macro-parameters should be a simple 

sum of micro-parameters. There is no a prior reason that the true macro-parameters can not be a 

simple average of micro-parameters, for example. The other ambiguity in Lewbel’s theorem is in 

interpretation of empirically test result of no correlation or no cointegration as independence 

condition between a pair of two variables, where one is the composite commodity price or the 

general rate of inflation of the group and the other is the difference between individual 

commodity prices and the aggregate commodity price or the aggregation bias. Lewbel’s theorem 

is applied for empirical study based on the following basic logic: (a) If two variables are 

stationary, then a correlation test is conducted, (b) If both variables are nonstationary, a 

cointegration test is conducted, (c) If one is stationary but the other is nonstationary, then no test 

is conducted with conclusion that they are not cointegrated because the stationary series can not 

be cointegrated with the non-stationary series by the algebra of cointegration. If two variables 

are uncorrelated or not cointegrated, then they are interpreted as independent. Lewbel’s 

empirical testing strategy has following difficulties: (a) Correlation and cointegration are 

designed for testing linear dependencies. Thus even if independence is not rejected by these two 

tests, it is still possible that there remains some non-linear dependency, (b) Cointegration is 

designed for testing dependencies in the long-run. Thus even if cointegration is rejected by either 

empirical cointegration test or the algebra of cointegration, it is still possible that there remain 

some mid/short-run and/or contemporaneous dependencies, (c) When micro-variables are 

nonstationary, it is conceivable that the macro-variable, which is required to be representative of 

micro-variables and thus closely related to micro-variables, is also nonstationary such that 

Xxd n
Lewbel
n −≡  is stationary. In this case, an empirical testing strategy based on cointegration 

might have a tendency to accept the independent condition of Lewbel’s theorem by construction.  
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Compared with the Lewbel’s consistent aggregation condition, the generalized form of 

the compositional stability condition maintains (a) The non-randomness of proportionality 

factors and thus the intuitive rationale of Hick-Leontief composite commodity theorem and (b) It 

does not have a priori restrictions for true macro-parameters such as simple sum or simple 

average of micro-parameters in the context of Theil’s aggregation theory. (c) It does not invoke 

ambiguities involving the use of correlation or cointegration test results as an independence test, 

as in empirical application of Lewbel’s theorem, although empirical application of it requires a 

difficult search for instrumental variables in Hausman type misspecification test of 

( ) 0, =XdCov n  in nnn dHXx += . In this respect, based on the generalized form of the 

compositional stability condition among disaggregated micro-variables, we can rely on index 

number theory to decide the proper weighting schemes in aggregation of micro-variables into 

macro-variables when we have dual pairs of information. 

 

Principal Component Method  

The index number approach for deciding weighting schemes in aggregating micro-

variables into macro-variables has the advantage that the resulting index number formula does 

not require parameter estimates. The index number approach, however, requires dual pairs of 

information and these dual pairs are not always available in all areas of study. For example, even 

though there exist some efforts to use the Tornqvist-Theil index to obtain monetary aggregates 

(Barnett, 1984), it is not easy to get this kind of dual pairs in other macro-economic areas. An 

alternative way to get weighting schemes for dimensional reduction without invoking parameter 

estimates is to use the multivariate statistical method of principal component analysis.  

Principal component analysis has been a major statistical tool to condense large 

dimensional data into a small number of aggregate variables with as little loss of information as 

possible in the mean squared error sense. It seeks to reduce the dimension of the data by finding 

a few linear combinations or principal components of original variables that successively have 

maximum variance, subject to the restriction that successive principal component are 

uncorrelated with previous principal components as in (29)  

(29) χkk WPC ≡  , where =kW { } 1..maxarg =⋅⋅ TWWtsWVar χ  

 and [ ]kKNkKkkk wwwwW LL ,,,, 21= , KNKk ,,,,2,1 LL=∀ , 

where χ  is TKN × matrix defined as in (15). 
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It has been demonstrated that solving such a successive maximizing problem is equivalent to 

applying the approximations to the second-order summary matrix Σ  of data such as a covariance 

or correlation matrix, which is decomposed by the singular value decomposition theorem. There 

are several useful properties in this method. (a) When we get as many principal components as 

the number of the original variables, the total variation of original variables is equal to the total 

variation of principal components, which is equal to the sum of the eigen-values of the 

covariance matrix.   

(30) χT
KNKN QPC ≡  , where =Σ T

KNKNKN QQ ⋅Λ⋅ , 

( )KNKKN diag λλλλ ,,,,, 21 LL=Λ where kλ are descending ordered eigen-values, 

( )KNKKN eeeediagQ ,,,,, 21 LL=  where ke are (KN×1) corresponding eigen-vectors, 

and ( ) ( ) ( ) ( )∑∑∑
===

=Σ=Λ==
KN

k
kKN

KN

k
k

KN

k
k VarTraceTracePCVar

111

χλ . 

(b) The first K  principal components can explain most of variance of the original variables so 

that the rest can be disregarded with minimum loss of information, when the last KNK −⋅  

eigen-values are insignificant, i.e. KNKK λλλλλ >>>>>>> + LL 121 . When this is the case, the 

cumulative proportion of the variance explained by the first K principal components can be 

calculated by ( )Σ∑ =
TraceK

k k1
λ .  

(31) χTQPC ≡ , where for KNKK λλλλλ >>>>>>> + LL 121 , 

=Σ T
KNKNKN QQ ⋅Λ⋅ = ε+⋅Λ⋅ TQQ ≈ TQQ ⋅Λ⋅ , 

( )Kdiag λλλ ,,, 21 L=Λ  where kλ are descending order eigen-values, 

( )KeeediagQ ,,, 21 L=  where ke are (KN×1) corresponding eigen-vectors, 

And ( ) ( ) ( ) ( ) ( )ΣΛ=Σ= ∑∑∑
===

TraceTraceTraceVarPCVar
K

k
k

KN

k
k

K

k
k

111

λχ . 

The possibility of the dimensional reduction can be understood as follows using 

=Σ T
KNKNKN QQ ⋅Λ⋅ = ε+⋅Λ⋅ TQQ ≈ TQQ ⋅Λ⋅ . The first equality of =Σ T

KNKNKN QQ ⋅Λ⋅  is an 

application of the singular value decomposition theorem to the positive matrix of second-order 

data summary matrix Σ  such as the covariance or correlation matrix just as in (30). The second 

equality T
KNKNKN QQ ⋅Λ⋅ = ε+⋅Λ⋅ TQQ  represents the following further matrix decomposition of 

the resulting first decomposed matrix by the singular value decomposition theorem. When the 

last KNK −⋅  eigen-values are insignificant, i.e. KNKK λλλλλ >>>>>>> + LL 121 , the 
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corresponding ε  matrix can not be too large to ignore. The third equality 

ε+⋅Λ⋅ TQQ ≈ TQQ ⋅Λ⋅  represents this approximation where the amount of information loss is 

represented by the ε  matrix. The degree of dimensional reduction from NK ⋅  to K  depends on 

the eigen-value structure of KNKK λλλλλ >>>>>>> + LL 121  i.e. how insignificant of the last 

KNK −⋅  eigen-values, where the last insignificant KNK −⋅  eigen-values guarantee the 

amount of information loss ε  to be small.  
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(c) The subspace spanned by the first K  eigen-vectors has the smallest mean square deviation 

from original data matrix among all subspaces of dimension of K . (d) If the sample size T  is 

large, then sample eigen-values are consistent estimates of the population eigen-values and 

sample eigen-vectors and principal components are consistent estimates of orthogonal 

transformations of their population counterparts, when variable number M  (= NK ⋅  in our 

study) is fixes. Heaton and Solo (2006) also show that in a large- M  and large-T  framework, 

this conclusion is still valid by showing that the convergence rate is T , which is independent 

of M . They emphasize that (a) There is no requirement of growing gaps between eigen-values 

and (b) Increasing variable numbers M  does not imply improving estimates. 
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When we impose certain structure on ε  by assuming ( ) 0, ' =nnCov εε , 'nn ≠∀  as in 

(32), we find that principal components analysis is equivalent with factor analysis, which is  

another popular multivariate statistical method of factor analysis and whose framework will be 

summarized in (33) in the connection to the (32). 

(32) Σ = ε+⋅Λ⋅ TQQ = Ψ+⋅Λ⋅ TQQ = Ψ+⋅ TLL  
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Factor analysis model is closely related with Theil’s aggregation theory. When we use 

index k  and K  as micro-variables’ group index and total number of groups that should be 

empirically identified, we see that factors F  and residuals ε  are equivalent to macro-variables 

ℵ  and disturbances υ  by comparing (33) and (18). This is a reason to keep notation MNK =⋅  

for the number of original variables and to use the same notation for original data matrix χ  and 

factor loadings L  as defined in (18). They are actually the same matrix. We also see that, except 

for ( ) 0, ' =nnCov εε  which will be generalized, the equivalence of assumptions between the two 

methods, because the assumptions of ( ) 0, =FCov ε  and ( ) 0=εE  in factor analysis are 

equivalent to the primary conditions of ( ) 0, =XvCov n  and ( ) 0=nvE  in Theil’s aggregation 
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theory, given the assumptions of ( ) 0=FE  and ( ) IFCov =  can be interpreted as normalizing 

assumptions. The reason to use different notation for factors F  and macro-variables ℵ  for the 

same matrix is to emphasize that factor analysis and Theil’s aggregation theory have been 

developed separately. However, they are closely related with each other and we will show that 

the possible condition of getting interpretable principal components is also closely related with 

the compositional stability condition in aggregation theory. 

(33) εχ +⋅= FL , 

with assumptions of ( ) 0, =FCov ε , ( ) 0=εE , 

( ) ( ) IFFEFCov T =⋅= , ( ) 0=FE , and ( ) ( ) Ψ=⋅= TECov εεε  where Ψ is diagonal matrix, 

so that ( ) ( ) ( ) ( ) ( ) Ψ+⋅=⋅+⋅++⋅⋅=Σ= TTTTTTT LLLFEFELELFFELCov εεεεχ . 

(18) χ = υ+ℵ⋅L ,  

with assumptions of ( ) 0, =ℵυCov  and ( ) 0=υE , 

where χ  andυ are TKN × matrix and L  is KKN × and ℵ is TK × matrix. 

Factor analysis is based on the idea that when there are co-movements among original 

variables, it is conceivable that this co-movement is due to their partial dependences on the 

common latent components such that common factors can capture all the dependence among 

variables, leaving no cross correlations in the residuals. Standard factor analysis is explicitly 

based on this structural assumption so that the data admit a factor structure or a common-

idiosyncratic decomposition among original variables. While factor analysis based on the 

maximum likelihood estimation method or state space method requires parameter estimation, 

principal component analysis based on the singular value decomposition theorem has the 

advantage that it does not require such parameter estimation. In this respect, the possibility of 

relaxing the assumption of ( ) 0, ' =nnCov εε , 'nn ≠∀  and of connecting principal component 

analysis to factor analysis has been studied. Chamberlain and Rothchild (1983) and Connor and 

Korajczyk (1986) introduce the approximate factor model to allow a non-diagonal covariance 

matrix such that ( ) δεε <', nnCov  where δ  is a small value and show that the principal 

component method is equivalent to factor analysis when the number of variables M increases to 

infinity. Note that the standard and approximate factor model also assumes that factors affect 

individual variables at contemporaneous time only. To relax this rather strong assumption for 

time-series data, the distributed lag effect of factors on individual variables is also introduced. In 



58 
 

 

this dynamic setting, two approaches, commonly called as the dynamic factor model, are 

suggested to generalize the standard covariance or correlation matrix. While Forni et al (2000) 

use the spectral density matrix in a frequency-domain framework, Stock and Watson (2002) use 

cross-covariance matrix, which includes auto-covariance matrix in a time-domain framework. 

Since both approaches apply the singular value decomposition theorem to their generalized 

covariance or correlation matrix to derive eigen-vectors as weighting schemes, the dynamic 

factor model can be understood as the generalized approximate factor model based on the 

generalized principal component method. Forni and Lippi (2001), similar to Chamberlain and 

Rothchild (1983) but in the dynamic setting, shows that K -factor representation exists iff the 

first K  eigen-values of the spectral density matrix are unbounded, while other eigen-values are 

bounded as the number of variables M  increases to infinity. Stock and Watson (2002) also 

shows that principal component of the covariance matrix converge in probability to the true 

factors up to a sign change. In terms of bounding condition of cross-correlation of residuals 

( ) δεε <', nnCov  for the equivalence of principal component method to factor analysis method, 

Heaton and Solo (2006) shows that while the condition of Chamberlain and Rothchild (1983) or 

Forni and Lippi (2001) is the bounding condition of maximum eigen-value of residual 

covariance matrix in the static or dynamic setting respectively, the condition of Stock and 

Waston (2002), Bai and Ng (2002) and Bai (2003) is the bounding condition of maximum row 

sum of residual covariance matrix. They also demonstrate that these bounding conditions can be 

allowed to relaxed, provided that the growth rate of maximum eigen-value is α−1M , where 

10 ≤≤ α  and the growth rate of maximum row sum is strictly less than M , where M  is the 

number of original variables. Given that the maximum eigen-value is always less than or equal to 

the maximum row sum of residuals, this means that the sample principal components estimator 

converge to latent population factors, as long as the number of strongly correlated residuals 

grows at a rate strictly less than the number of original variables, although the higher is the 

growth rate, the slower is the convergent rate. Based on these result, we can interpret principal 

component analysis as one factoring method of the covariance or correlation matrix for the factor 

analysis model in general conditions.  

However, as Heaton and Solo (2006) emphasize, not only the number of variables but 

also the data structure itself should be the primary issue in using principal component analysis. 

The importance of the data structure can be understood based on following two extreme cases, 
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whose principal components are expressed in simple and extreme forms (Johnson and Wichern, 

1988). 

(34) 0Σ =
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When the original variables are perfectly uncorrelated with each other, so the covariance 

or correlation matrix is the diagonal matrix 0Σ  as in (34), eigen-values and eigen-vector become 

all equal as in )'34( and thus the corresponding eigen-vector as a weighting scheme results in just 

the original set of variables. So there is nothing to gain by using principal component method in 

terms of dimensional reduction.  
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When original variables are equally correlated with each other, so covariance or 

correlation matrix has the specific structure HΣ  as in (35), (a) The first eigen-value 

becomes 1λ = ( )ρ11 −− M = ( )ρρ −+ 1M  with eigen-vector [ ]MMMe T 1,,1,11 L=  and 

the remaining eigen-values become ρλλλ −=== 132 ML  with some convenient choice for 

eigen-vectors as in )'35( , (b) The first principal component becomes proportional to the simple 

sum of the original variables with proportional factor of M1 , and (c) The first principal 

component explains the total variation of original variables by the following proportion: 
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1 . When the equal 

correlation ρ  is close to 1 or the variable number M  is large, the first principal component 

explains almost all the variation of original variables. So the first principal component is the 

perfect representative aggregate in terms of dimensional reduction purpose. 
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These two extreme cases imply that not only the number of variables but also the data 

structure itself should be the primary issue to be considered in using principal component 

approach. For example, when we add a sufficient number of idiosyncratic variables which are 

not correlated with each other as well as with previously formed homogeneous groups of 

variables, i.e. add variables with data structure of 0Σ  to the variables with data structure of HΣ , 

we can create a situation where more data, through the increasing number of variables, might be 

undesirable, because the average common component will become smaller and/or the residual 

cross-correlation will eventually become larger. This implication is consistent with the Boivin 

and Ng (2003)’s simulation and empirical results that expanding the dataset by adding more 

variables without considering data structure can be not always desirable in terms of forecasting 

performance of dynamic factor model.  

It have been demonstrated that the approximate factor model, especially the dynamic 

factor model can improve forecasting performance in many economic areas (see Bai, 2003 and 

references in there for examples). Although it might be not important to obtain interpretable 

principal components for forecasting purposes, interpretation of principal components has been 

major issue in the multivariate statistical analysis. Traditional approaches for the interpretation 

of extracted principal components use either factor loading of components for original variables 

or correlation between original variables and components. The extracted principal components 

are interpreted based on the original variables with high loadings or high correlation values. 

Although large loadings and large correlations often go together, this is not necessarily true (Al-

Kandari and Jolliffe, 2001).  

Choosing a subset of the original variables that best approximate the information in the 

extracted principal components and using such a subset to interpret the extracted principal 
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components is another way of interpretation, which dates back at least to Jolliffe (1972). In this 

respect, Al-Kandari and Jolliffe (2001, 2005) review various methods, including McCabe 

(1984)’s principal variables approach as well as traditional procedures, for choosing subsets of 

original variables to approximate and interpret the extracted principal components, using real 

data sets from various areas as well as simulation data sets that are generated such that the 

variables are allocated to a few clusters with various strengths of correlations between clusters 

and different factor loading structures at each level of correlation between clusters. After 

evaluating various procedures in terms of various efficiency criteria, they conclude that (a) The 

traditional procedure in interpreting a principal component in terms of only those variables that 

have high loadings in the component is not always successful in retaining the best variables for 

the purpose of reducing the dimensionality, or aiding interpretation of the component of interest. 

(b) The method for retaining the best subsets is often the cluster criterion, which is mainly based 

on allocating the original variables to clusters using the average-linkage method and then 

retaining one variable from each cluster. Although they choose an original variable rather than a 

principal component to represent each cluster and their results can vary depending on the choice 

of different clustering algorithms, their results imply that we need to use some grouping method 

before extracting principal components, rather than using traditional method based on factor 

loadings after extracting principal components from the entire dataset. 

The fundamental motive of seeking interpretable principal components can be 

understood by the following explanation of Johnson and Wichern (1988) with some modification 

of sentence orders for clarification. “A principal component analysis is concerned with 

explaining the variance-covariance structure through a few linear combinations of the original 

variables. Its general objectives are (1) data reduction, and (2) interpretation. … Analyses of 

principal components are more of a means to an end … because they frequently serve as 

intermediate steps in much larger investigations. For example, principal components may be 

inputs to a multiple regression. … The essential purpose of factor analysis is to describe, if 

possible, the covariance relationships among many variables in terms of a few underlying, but 

unobservable, random quantities called factors. … Factor analysis can be considered as an 

extension of principal component analysis. Both can be viewed as attempts to approximate the 

covariance matrix. However, the approximation based on the factor analysis model is more 

elaborate. … Basically the factor model is motivated by the following argument. Suppose 

variables can be grouped by their correlations. That is, all variables within a particular group are 
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highly correlated among themselves but have relatively small correlations with variables in a 

different group. It is conceivable that each group of variables represents a single underlying 

construct, or factor, that is responsible for the observed correlations. … For example, 

correlations from the group of test scores in classics, french, english, mathematics, and music 

collected by Spearman suggested an underlying intelligence factor. A second group of variables, 

representing physical-fitness scores, if available, might correspond to another factor. It is this 

type of structure that factor analysis seeks to confirm. The primary question in factor analysis is 

whether the data are consistent with a prescribed structure (Johnson and Wichern, 1988, page 

340 and 378-379).” Given that modern origins of principal component and factor analysis lie in 

the early twentieth-century attempts of Karl Pearson, Charles Spearman and others to define and 

measure intelligence for the subsequence structural analysis, the fundamental purpose is to get 

the interpretable common latent factors among original variables by using dimensional reduction 

method of principal component estimator. And its possible condition can be the special type of 

correlation structure such that all variables within a particular group are highly correlated among 

themselves but have relatively small correlations with variables in different groups.  

This special structure of covariance or correlation can be also understood as the 

approximate combinations of the two extreme correlation structures discussed in (34) and (35). If 

variables can be grouped based on their correlations such that variables in different groups have 

the first extreme type of perfectly uncorrelated structure 0Σ and variables within a particular 

group have the second extreme type of equally correlated structure HΣ  as in (36), then it is 

possible to extract the almost perfect representatives and the meaningfully interpretable 

aggregates by applying principal component method to each of homogeneous group separately, 

rather than applying it to the entire group of heterogeneous variables as in (37).  
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 or kkkkk dFL +⋅=χ , Kk ,.....,1=∀ . 

Obviously these two extreme types and the combinations of them are too strong for the real 

world data. However, it is conceivable that this combination of two extreme types of correlation 

structures can be approximated by the special type of structure mentioned above. If the original 

variables can be grouped into this kind of special data pattern empirically, principal components 

applied to each homogeneous group separately can be an almost perfect representative in terms 

of dimensional reduction purpose. This implies for the principal component approach that when 

the approximate block diagonal structure in static or dynamic correlation matrix is identified, 

estimating the principal components from each homogenous group of variables kkkkk dFL +⋅=χ , 

Kk ,.....,1=∀  can be better than estimating those from the entire data set εχ +⋅= FL  to attain 

the dimensional reduction purpose with less information loss as well as to obtain the 

meaningfully interpretable aggregate variables. The near homogeneity of original variables 

within a specific group makes it possible to provide a meaningful interpretation to this near 

perfect representative aggregate. Since the main difficulty of interpreting principal components 

is due to the fact that each of principal components is a linear combination of “all” original 

variables, using cluster method to define homogeneous subset of variables before extracting 

principal components is an intuitive solution to achieve interpretable principal components.  

The subsequent analyses of studying relationship among aggregate variables also can be 

justified to understand the relationship among disaggregate variables, since (a) The estimated 

principal components extracted from each homogenous group of variables can be legitimate 

representative for the disaggregate variable, and (b) The special type of a block diagonal 

correlation structure derived from statistical dimensional reduction methods is equivalent to the 

approximate form of the compositional stability condition obtained from Theil’s aggregation 

theory. To clarify this relationship, the equations )''7( , (18), and (33) are recalled.  

(33) εχ +⋅= FL , 

with assumptions of ( ) 0, =FCov ε , ( ) 0=εE , 

( ) ( ) IFFEFCov T =⋅= , ( ) 0=FE , and ( ) ( ) Ψ=⋅= TECov εεε  where Ψ is diagonal matrix, 

so that ( ) ( ) ( ) ( ) ( ) Ψ+⋅=⋅+⋅++⋅⋅=Σ= TTTTTTT LLLFEFELELFFELCov εεεεχ . 
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(18) χ = υ+ℵ⋅L ,  

with assumptions of ( ) 0, =ℵυCov  and ( ) 0=υE , 

where χ  andυ are TKN × matrix and L  is KKN × and ℵ is TK × matrix. 

or χ = υ+ℵ⋅L = ( ) dLBDiag +ℵ⋅  

or 
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Given that the factors F  and residuals ε  are equivalent to macro-variables ℵ  and disturbances 

υ  respectively in (33) and (18), the equivalence between nnn vAXx +=  and χ = υ+ℵ⋅L  

implies the equivalence between ( ) nnnnn dHXdADiagXx +=+⋅=  and χ = ( ) dLBDiag +ℵ⋅  in 

the equation (18) and )''7( , where ( )nADiag  denotes a diagonal matrix of nA  and 

( )LBDiag denotes a block diagonal matrix of L . The strict form of compositional stability 

condition ( )nn ADiagXx ⋅=  implies the block diagonal structure in standard correlation matrix 

)(χCorr=Σ . This suggests that by identifying the approximate block diagonal structure in static 

or dynamic correlation matrix Σ  = )(χCorr  or )(χDynCorr , we can infer the approximate form 

of compositional stability condition ( ) nnnnn dHXdADiagXx +=+=  with ( ) δ≤', kk ddCov , 

'kk ≠∀ , which is equivalent to kkkkk dFL +⋅=χ , Kk ,.....,1=∀  in terms of the factor analysis 

framework.  

Based on the special block diagonal correlation matrix, an interpretable principal 

component can be obtained by applying principal component approach onto each of homogenous 

group of variables. Given the equivalence between the principal component approach and the 

factor analysis method, which in turn is equivalent to the auxiliary equations in the Theil’s 

aggregation theory framework, the approximate form of the compositional stability condition 
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provides not only the possibility of obtaining common principal component or macro-variable as 

the representative aggregate of homogeneous micro-variables but also the possibility of getting 

interpretable macro-parameters as the representative aggregate of corresponding micro-

parameters for the subsequence analysis. In this respect, we can rely on the principal component 

method to decide the proper weighting schemes in aggregation of micro-variables into macro-

variables with as little loss of information as possible in the mean squared error sense, when we 

do not have dual pairs of information, which the index number theory is based on to derive the 

proper weighting schemes in aggregating variables. 

 

Summary and Proposed Method  

At the beginning of this study, we suggest to interpret theory as an inductive causal 

averaging procedure to deal with two methodological issues of how to infer the causal structure 

from empirical regularities and how to incorporate the large information set into empirical model. 

When we follow an inductive causal averaging procedure that concentrates only on similar 

tendencies to highlight a few common factors by ignoring many more individual differences and 

idiosyncrasies, we need to identify empirically justifiable conditions that allow us to legitimately 

define common tendencies and individual idiosyncrasies. Based on the generalized condition for 

the consistent aggregation, we propose one possible methodological procedure to consistently 

address the two related issues of causal inference and actual aggregation procedures for the full 

use of research potentials brought by high dimensional data. 

To address the issue of how to infer the causal structure from empirical regularities, the 

graphical causal models, which are empirically implemented by using either PC algorithm or 

GES algorithm, can be used to inductively infer causal structure from non-temporal and non-

experimental data. However, the (probabilistic) stability condition for the graphical causal 

models can be violated for high dimensional data, when close co-movements and thus near 

deterministic relations exist among variables in high dimensional data. One possible way to 

address this issue is using aggregation methods to infer causal relationship among disaggregate 

variables based on aggregated variables. The aggregation method is also helpful to address 

another issue of how to incorporate the large information set into empirical model, given that 

econometric considerations, such as degrees-of-freedom and multicollinearity, require the 

economy of parameters in empirical models. The weighting schemes to aggregate disaggregate 

micro-variables into aggregate macro-variable can be empirically decided, based on either index 
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number theory or principal component approach. However, the actual aggregation procedures or 

decisions on weighting schemes require the legitimate classifications or sufficient conditions for 

the interpretable and consistent aggregation. In this respect, identifying legitimate aggregation 

conditions is the main topic to be discussed for both causal inference and actual aggregation. 

We studied possible legitimate conditions for the interpretable and consistent 

aggregation based on both aggregation theory framework and statistical dimensional reduction 

methods with minimizing any deductive assumptions such as micro-homogeneity of micro-

parameters, separability, and homogeneity of utility (production) function. From both the 

aggregation theory and the statistical dimensional reduction methods, we identify the same 

generalized forms of the compositional stability condition. When generalized forms of the 

compositional stability condition can be identified in data set by grouping micro-variables based 

on their correlation or covariance matrix, there exist not only the possibility of obtaining 

interpretable common factors or macro-variables as the representative aggregate of 

homogeneous micro-variables but also the possibility of getting interpretable macro-parameters 

as the representative aggregate of corresponding micro-parameters for the subsequence analysis. 

This means that when the micro-variables can be legitimately grouped and represented by 

macro-variables, it is possible to use aggregation methods to capture micro-relations through 

macro-relations as the legitimate representatives, where micro-relation or macro-relation can be 

causal relations. In this respect, we argue that the (probabilistic) stability condition for an 

“inductive causal” procedure requires the compositional stability condition for an “inductive 

averaging” procedure.  

More specific procedure we propose is as follows; (a) Both standard static correlation 

matrix and dynamic correlation matrix over identified frequency band are used to measure co-

movement among original variables. Based on these similarity measure of disaggregate micro-

variables, the modified k-nearest neighbor algorithm is used to sort the variables such that the 

highly correlated variables are near each other along the main diagonal in reordered correlation 

matrix. The block-diagonal pattern of reordered or sorted static and dynamic correlation matrixes 

are used to identify homogeneous group of variables, based the approximate form of the 

compositional stability condition. (b) Based on identified classifications of original variables, 

index number theory or statistical dimensional reduction methods are used for actual aggregation 

procedure to decide weighting schemes for aggregating disaggregated micro-variables into 

representative macro-variables within each identified group. When we have dual pairs of price 
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and quantity or analogues information, we can use the index number theory to decide the 

weighting schemes. When such dual pairs of data are not available, principal component method 

applied onto each of groups is used as the best dimensional reduction method with as little loss 

of information as possible in the mean squared error sense. (c) The identified classification and 

aggregation of micro-variables into macro-variables can be tested, as long as appropriate 

instrumental variables can be identified. The Hausman type misspecification test of 0:0 =nH γ  

in IV

nnnn IVHXx εγ +⋅+= , where  nx  and X  are micro- and macro-variables respectively and 

IV are Instrumental Variables such that IV is closely correlated with X  and independent of nd , 

provides statistical test framework for the generalized form of the compositional stability 

condition of independence between nd  and X  in the set of equations nnn dHXx += . (d) Given 

the observed phenomena of close co-movements and thus near deterministic relations among 

variables in high dimensional data, it is conceivable and oftentimes observed that the 

(probabilistic) stability condition for the graphical causal models is violated for using high 

dimensional data in empirical study. When this is the case, based on the compositional stability 

condition, it is still possible to infer causal structures among micro-variables through 

relationships among representative aggregated macro-variables. It is possible because micro-

relations including causal relationships can be legitimately captured by the macro-relations 

incorporated by the aggregation methods as long as the compositional stability conditions hold 

among micro-variables. The PC algorithm or GES algorithm is used to infer causal structures 

among macro-variables as the legitimate representative causal relationships among micro-

variables are used for the subsequent analysis.  

The inductively inferred causal structures is crucial for subsequent empirical studies, 

since causal structures are underdetermined by empirical-statistical properties (induction 

problem) and theory often-times does not provide sufficient or conclusive information for this 

induction problem. Subsequent analyses are sensitive to the causal structure in the form of pre-

classification of dependent and independent variables and other forms of identification problem. 

The empirically justifiable classification and aggregation are also important for the full use of 

research potentials brought by high dimensional data in the subsequent empirical studies, given 

that econometric considerations, such as degrees-of-freedom and multicollinearity, require the 

economy of parameters in empirical models. Note that inductive properties are emphasized in 

every sequence of the proposed method, since any types of deductive properties can bring 
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subjectivities or ambiguities into the empirical results. While theory as the inductive causal 

averaging procedure can allow some deductive elements in its developments, empirical 

methodologies need to be based more on inductive properties to maintain their objectivity. The 

remaining subjectivities in our proposed method are left as further research issues, with the hope 

that the remaining subjectivities bring fewer ambiguities relative to previously used methods. 

The proposed method is illustrated with the applications for retail checkout scanner data and 

macro-economic time series panel data as examples of two sets of high dimensional data.  
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CHAPTER III 

USE OF HIGH DIMENSIONAL PANEL DATA IN MICRO-ECONOMETRICS 

 

The study of consumer behavior has a long history and is one of the most studied areas 

in economics. The demand analysis has significantly advanced from both theoretical and 

empirical perspectives. However, there remain three methodological issues in applying the 

micro-economic consumer theory for empirical study of consumer behavior, especially using the 

retail checkout scanner data. When to understand and measure responsiveness of consumer 

behavior to changes of exogenous variables can be considered as one of the main objectives of 

the study of consumer behavior, the empirical measure of responsiveness of consumer behavior 

to changes in exogenous variables relies on three specification choices in an empirical model. 

First, given that there are full spectrums of direct, inverse, and mixed demand systems and the 

general relationship between elasticity and flexibility is not yet established, the measure depends 

on the relative predeterminess among the price and quantity variables represented by dependent 

and explanatory variables in an empirical model of a specific commodity. Second, given that 

small departures from valid classification and/or aggregation can result in large mistakes in 

empirical results, the measure depends on the classification and aggregation to define price and 

quantity variables themselves. For example, the decision on classification and aggregation can 

substantially affect the conclusions about elasticity estimates in multi-stage budgeting approach 

because cross-price elasticity or cross-quantity flexibility between products in different groups is 

likely to be small by construction. Third, given that the different assumptions used to 

parameterize functional relationships have different implications, the measure depends on the 

functional form to relate dependent variable with explanatory variables. For example, there are 

four combinations of constant or variation assumptions for the income (or scale) coefficient and 

Slutsky (or Antonelli) coefficient in the differential functional form approach as captured in 

Rotterdam, LA/AIDS, CBS, NBR specifications. 

In this chapter, we propose an inductive empirical method to address these three 

methodological issues in the study of consumer behavior based on the discussion on the causality 

and aggregation issues in chapter II. The way to incorporate theoretical implications into 

empirical model specifications through the functional forms and the way to compare different 

specifications of direct, inverse, and mixed demand functions are the additional issues to be 

addressed. More specifically, first, the specification choice issue among direct, inverse, and 
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mixed demand functions is addressed by using the inductively inferred causal information based 

on the graphical causal models. Second, the classification and aggregation issue are addressed by 

the compositional stability conditions and index number theory. Third, the functional form issue 

is addressed by the synthetic model approach based on the differential functional form 

framework. And the comparison of alternative specifications is conducted in terms of model 

selection framework. The proposed method is illustrated with the applications for soft drink 

products using retail checkout scanner data. 

 

Theoretical Considerations  

Causality in Study of Consumer Behavior  

One of the main objectives of the study of consumer behavior is to understand and 

measure responsiveness of consumer behavior to changes in exogenous variables. 

Responsiveness is measured by elasticities or flexibilities, where the elasticity (or flexibility) is 

defined by the percentage change in quantity demanded (or willingness to pay) resulting from a 

1-percent increase in an exogenous variable. Elasticities are directly measured based on the 

direct demand function, expressing quantities as a function of price. On the other hand, 

flexibilities are directly measured based on the inverse demand function, expressing 

(normalized) prices as a function of quantities. Given that the general relationship between 

elasticity and flexibility is not yet established, the empirical measure of responsiveness of 

consumer behavior to changes in an exogenous variable relies on the relative predeterminess 

among the price and quantity variables represented by dependent and explanatory variables in an 

empirical model of a particular commodity. In many empirical studies of consumer behavior, the 

choice of individual direct or inverse demand function is usually based on researchers’ intuition 

about product properties or market characteristics of a specific commodity. A typical argument 

for predeterminess of price relies on price-taking agent assumption, short-run fixity in prices, or 

administratively setting of price in publicly offered goods. A typical argument for 

predeterminess of quantity relies on fixed biological lags in production and non-storable fixed 

supply of commodities in agricultural commodities, or Bertrand type strategic pricing rules of 

suppliers in differentiated good.  

In general, the choice of quantity-dependent demand function relies on the elastic 

supply condition and the choice of price-dependent demand function relies on the inelastic 

supply condition. In this respect, the choice issue of direct or inverse demand function can be 
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addressed by using the full simultaneous equations approach, where demand and supply 

equations are simultaneously estimated and each is identified by the appropriate instrumental 

variables such as demand and supply shifters. However, this approach is rarely pursued in 

empirical work, due to major difficulties to find appropriate instrumental variables needed to 

identify demand and supply equations of all the related commodities. Furthermore as Thurman 

(1986) argues, the practical equivalence of the two demand specifications of direct or inverse 

demand function in a simultaneous equations model does not carry over to models which are not 

fully simultaneous. In particular, he argues that the choice of dependent variable is crucial to 

econometric estimation and to economic interpretation in models where demand adjusts to 

current shocks but supply does not.  

Instead of using full simultaneous equations approach, the system-wise approach has 

been widely used to study interrelationship among related commodities demanded. However, 

given that most empirical specification of demand systems constitute a monotone set of either 

direct or inverse demand equations, the commonly used (monotonic) system-wise approach has 

some limitations, since it might be too restrictive to assume a priori that all of related goods have 

the same characteristics. Depending on the market characteristics of a particular commodity, 

some demand functions need to be specified as quantity-dependent and others as price-dependent. 

In this respective, the mixed demand system, expressing demand relationships as a function of 

mixed set of prices and quantities can be used to provide a flexible way to incorporate the 

possible combination of quantity-dependent and price-dependent specifications within a system. 

It is also argued that the mixed demand system also provide the possibility of sidestepping the 

estimation of both demand and supply functions in a full simultaneous equation framework 

(Moschini and Vissa, 1993). 

The mixed demand function is first proposed in the context of studying market 

equilibrium with some rationed commodities (Samuelson, 1965). It was then theoretically 

elaborated by in the context of demand theory by showing the equivalence between the 

compensated mixed demand function and the compensated rationed demand function (Chavas, 

1984). While it has been empirically used in a Rotterdam functional form (Moschini and Vissa, 

1993), it is also extended to a generalized Rotterdam functional form (Matsuda, 2004). The 

mixed demand function not only provides an alternative way to study interrelationship among 

related commodities demanded without sacrificing the theory of consumer behavior, but also 

makes it possible to derive some relationships between elasticity and flexibility by extending 
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arguments of Moschini and Vissa (1993). Given that the relationship between elasticity and 

flexibility is not yet established in general, these relationships can be helpful to understand 

different implications of direct, inverse, and mixed demand systems.  

The three specifications of direct, inverse, and mixed demand functions are rarely 

discussed in one place, so it is worthwhile to summarize these in terms of the properties of each 

demand system. Let the set of commodities of interest { }NmmBA ,,1,,,1 LL +=∪  be divided 

into quantity-dependent { }mA ,,1L= and price-dependent { }NmB ,,1L+=  commodity groups. 

The subscripts ( ) BAnn ∪∈', , ( ) Aji ∈, , and ( ) Bsrk ∈,, are used to denote whole and each 

group of commodities respectively. Total expenditure and the normalized prices can be 

represented by BBAA QPQPQPy ⋅+⋅≡⋅≡  and ypnn =π  respectively. The superscript c  is 

used for compensation and D , I , and M  are used for direct, inverse, and mixed demand 

systems respectively. Following functions play a crucial role in consumer theory as Chavas 

(1984) summarizes. 

· The direct utility function ( )qU , which is continuous, increasing and quasi-concave in q .  

· The indirect utility function ( )ypV , , which is continuous, decreasing and quasi-convex in p .  

· The cost or expenditure function ( )upC , , which is continuous, increasing in u ,  

and increasing, linear homogenous and concave in p .  

· The distance or transformation function ( )uqD , , which is continuous, increasing in u ,  

and increasing, linear homogenous and concave in q . 

· The restricted or rationed cost function ( )uqpC BA
R ,, , which is continuous, increasing in u , 

increasing and concave in Ap , decreasing and convex in Bq , linear homogenous in Ap . 

Note that these functions have the duality relationships, so it is possible to construct any one of 

the four functions from any other function.  

These functions and their properties are used to derive direct, inverse, and mixed 

demand functions and their properties.  

· ( ) ( )1,1, ππ VVC →=  and ( ) ( )qUUqD →= 1,  

implying that the indirect and direct utility function can be obtained by inverting the cost 

function and distance function respectively. Each direct, inverse, and mixed demand system can 

be derived as follows. 
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· ( ) ( ){ }1|1, =⋅= qqUMaxV
q

ππ  or ( ) ( ){ }yqpqUMaxypV
q

=⋅= |, ,  

where the solution ( )1,πq or ( )1,pq  is the vector of uncompensated direct demand functions. 

· ( ) ( ){ }1|1, =⋅= qVMinqU ππ
π

, 

where the solution ( )1,qπ is the vector of uncompensated (normalized) inverse demand functions. 

· ( ) ( ) ( ){ }yqpqpyppVqqUMaxyqpV BBAABABApqBA
M

BA

=+−= |,,,,,
,

 

 or ( ) ( ) ( ){ }1|,,1,,
,

=+−= BBAABABAqBA
M qqVqqUMaxqV

BA

πππππ
π

, 

where two solutions ( ) ( )1,,,, BAABAA qqyqpq π=  and ( ) ( )yqppyq BABBAB ,,1,, =⋅ππ  are the 

uncompensated quantity-dependent and price-dependent mixed demand functions respectively. 

· ( ) ( ){ }uqUqMinuC
q

=⋅= |, ππ or ( ) ( ){ }uqUqpMinupC
q

=⋅= |, , 

where the solution ( )uqc ,π or ( )upqc , is the vector of compensated direct demand functions. 

· ( ) ( ){ }uVqMinuqD =⋅= ππ
π

|, , 

where the solution ( )uqc ,π is the vector of compensated (normalized) inverse demand functions.  

· ( ) ( ){ }uqqUqpMinuqpC BAAAqBA
R

A

=⋅= ,|,, , 

where solution ( )uqpq BA
c
A ,, is the vector of compensated rationed demand, which is equal to the 

compensated quantity-dependent mixed demand. The negative of the compensated shadow or 

virtual prices is ( ) ( )uqppqC BA
C
kk

R ,,=∂∂− , which are the compensated price-dependent mixed 

demand functions (Chavas, 1984). Thus mixed cost function can be defined as follows.     
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Note that no disequilibrium occurs in mixed demand, because the prices of commodities in fixed 

supply adjust at the shadow prices to clear market, while some markets do not clear in rationed 

demand (Moschini and Vissa, 1993). 
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It have been demonstrated, based on the envelope theorem, that the following Roy, 

Wold, Hotelling-Shephard, Shephard-Hanoch, and Samuelson theorems are useful to derive each 

of direct, inverse, and mixed demand functions respectively. 
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From an empirical perspective, consumer theory is considered as properties of the 

demand system of equations such as homogeneity, symmetry, negativity, adding-up, and relation 
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of compensated and uncompensated demand functions (Barten, 1993). The first three properties 

for direct, inverse, and mixed demand functions can be derived from the properties of cost, 

distance, and restricted cost functions using Hotelling-Shephard, Shephard-Hanoch, and 

Samuelson’s envelope theorems respectively. The Euler and Young theorem are used to derive 

properties of homogeneity and symmetry. While the Euler’s theorem states that when ( )zf is r-th 

degree homogenous in z, then ( ) ( ) 'nzzfzg ∂∂= is (r-1)-th degree homogenous in z and 
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, where ( )Nn zzzz ,,,,1 LL= . The adding-up property of direct, inverse, and 

mixed demand functions can be derived from the budgetary identity equation or budgetary share 

equations. The main issue has been to derive relation of compensated and uncompensated 

demand functions. The Slutsky equation for direct demand is derived from the identity between 

compensated and uncompensated direct demands ( ) ( ) ( )[ ]upCpqypqupq c ,,,, ≡≡ . The Antonelli 

equation for inverse demand is derived from (normalized) inverse demand and direct utility 

function ( ) ( ) ( )** , qkgqkfqf nnn
n =⋅==π  and ( ) ( ) ( )*** , qkUqkUqUu =⋅==  in terms of 

scale parameters *qkq ⋅=  where k is scalar and *q is reference vector. The decomposition for 
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The resulting theoretical implications can be summarized as follows, where ⎟⎟
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mixed demand. The derivations of all theoretical properties or restrictions used for direct, 

inverse, and mixed demand system are explained in Appendix A. Since it is useful to express 
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theoretical properties as elasticity or flexibility forms as well as derivative properties, especially 

for the differential demand systems, theoretical properties are summarized in both derivative and 

elasticity (or flexibility) forms.  
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Theoretical implications for inverse demand systems 
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Theoretical implications for mixed demand systems 
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The choice of direct or inverse demand function is not trivial in empirical modeling to 

measure consumers’ responsiveness, since it has been demonstrated that the flexibility (or 

elasticity) matrix has not the simple matrix inversion relation with the elasticity (or flexibility) 

matrix estimated from the direct (or inverse) demand functions (for example, Schultz, 1938, 

Houck, 1966, and Huang, 1996). From an econometrical perspective, the reason why an inverse 

relationship between elasticities and flexibilities does not hold can be understood by a following 

simple illustration of single demand equations with only one independent variable. For 

simplification, let tp  and tq  denote logarithmic transformation of price and quantity variables, 

so that α and β  are the price elasticity and quantity flexibility respectively as in (a) 
q
ttt upq += α  and p

ttt uqp += β  and assume that direct least squares estimates are used as in 
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∑=β . We can derive two kinds of 

relationships between elasticity and flexibility as follows: (c) 2
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squared sample correlation of p and q. This relationship is based on the following relationship 
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(Schultz, 1938). (d) 1ˆˆ ≤⋅ βα , where equality hold if and only if 0=+ qp qp λλ for real scalars 

pλ and qλ , which is due to Cauchy-Schwarz inequality of ( ) ( )( )qqppqp ⋅⋅≤⋅ ''' 2  for real column 

vector p and q (Huang, 1996). We can see that even in this simplest setting, the inverse 

relationship between two direct least squares estimates of α̂  and β̂  does not hold in general. It 

holds only extremely special cases, where the squared sample correlation ( 2
, qpR ) is 1 as in (c) or 

price is exactly proportional to quantity ( ( ) ttpqt qqp ⋅=⋅−= λλλ ) as in (d).  

Given the fact that the general relationship between elasticity and flexibility is not yet 

well established, it is also worthwhile to derive some functional relationships among direct, 

inverse, and mixed demand systems. The relationships between elasticity and flexibility can be 

derived based on the mixed demand framework by extending the argument of Moschini and 

Vissa (1993). While they use a set of identity equations relating direct function to mixed function, 

there is another set of identity equations relating inverse function to mixed function. Using both 

sets of identity, we can also derive some relationship between direct and inverse demand, based 

on the mixed demand framework. Following notation is introduced. [ ]ii
D

AAE ,, ε≡ , [ ]sk
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BBE ,, ε≡ , 

[ ]ki
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D

ABE ,,, ε≡ , [ ]i
D
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D
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are submatrices from mixed demand. As Moschini and Vissa (1993) demonstrated, the direct 

demand system is related to the mixed demand system through the identities 

( )[ ] ( )yqpqyyqpppq BA
M
ABA

M
BA

D
A ,,,,,, ≡  and ( )[ ] M

BBA
M
BA

D
B qyyqpppq ≡,,,, . By applying a similar 

logic, the inverse demand system is related to the mixed demand system through the following 

identities ( )[ ] ABBA
M
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I
A pyqyqpqp ≡,,,,  and ( )[ ] ( )yqppyqyqpqp BA

M
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M
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I
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M
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M
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I
B ⋅≡⋅ 1,,1,,1,, ππππ . From the 

resulting two kinds of relationships, other implied relationships can also be derived among direct, 

inverse, and mixed demand systems. Note that these relationships are based on the partitioning 

quantity-dependent and price-dependent groups of commodities or the legitimate mixed demand 

system. Note also that the scale flexibility is defined as responsiveness of (normalized) inverse 

demand with respect to scale parameter not with respect to expenditure variable. Derivations of 
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following relationships are explained in Appendix B. The resulting relationships among direct, 

inverse, and mixed demand functions are summarized as follows: 

Theoretical relation of direct elasticities to mixed elasticities. 
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Theoretical relation of inverse flexibilities to mixed elasticities. 
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Theoretical relations of mixed elasticities to inverse flexibilities 
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Theoretical relation of direct elasticities to inverse flexibilities 
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Theoretical relation of inverse flexibilities to direct elasticities  
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Heretofore, the full modeling spectrums of monotone set of direct or inverse demand 

functions as well as mixed demand functions are explained and their relationships are derived 

based on the mixed demand system. Although the mixed demand system provides a plausible 

way to sidestep the estimation of both demand and supply functions in a full simultaneous 

equation framework, the choice among three specifications for demand system remains open 

issue. When the choice among them only relies on a subjective reasoning of product property or 

market characteristics of a specific commodity rather than empirical evidence, the coexistence 

of alternative specifications can even result in ambiguities. For example as Thurman (1986) 

mentioned, both direct (Wohlgenant and Hahn, 1982) and inverse (Shonkwiler and Taylor, 

1984) demand functions are used for poultry market data.  

Given that theory does not provide enough information for this choice and the full 

simultaneous equations approach has some ambiguities in choosing appropriate instrumental 

variables, the graphical causal models discussed in previous chapter provide an alternative 

approach for the choice of empirical modeling among direct, inverse, and mixed demand 

systems. The specification choice is closely related with the identification issue of the local 

causal structure between price and quantity for a specific commodity. When we choose either 

quantity-dependent or price-dependent specification, we implicitly assume a local causal 

structure, since the direct (or inverse) demand function is implied by the causal structure that 

price (or quantity) variable causes quantity (or price) variable. The empirically derived causal 

structures through the proposed methods of DAG can be used to decide dependent and 

explanatory variable for a specific commodity demand function within the demand system. 

Stockton, Capps, and Bessler (2005) use this approach for meat demand study and named this 

approach as a Causally-Identified Demand System (CIDS). The (probabilistic) stability 

condition of the graphical causal model, however, can be violated in using a high dimensional 

data as discussed in chapter II, given the observation that many variables in retail scanner data 

move very closely. The compositional stability condition is proposed to address this issue in 

using the graphical causal model, since the compositional stability condition makes it possible 

to capture disaggregated micro-relations by the aggregated macro-relations as the legitimate 

representatives. 
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Aggregation in Study of Consumer Behavior  

The legitimate condition of classification and the appropriate way of aggregation, 

which are related with the (probabilistic) stability condition of the graphical causal model, have 

also been major issues in the context of the more general econometric considerations in 

empirical studies especially in using a high dimensional data set. The availability of scanner data 

makes it possible to define finer variables based on thousands of individual products at the store 

level on daily frequencies. However, econometric considerations such as the degrees-of-freedom 

and multicollinearity require classification and aggregation procedures for economy of 

parameters in empirical study. While classification and aggregation issues are involved with 

multi-dimensions such as commodity-wise, agent-wise or spatial, and temporal or time 

dimensions, the main focus in empirical studies has been on the commodity-wise dimension. 

Even though the level of classification and aggregation and the choice of a specific category 

have been often based on convenience for addressing specific research objectives rather than on 

the empirical evidence (Shumway and Davis, 2001 and reference in there), it has been argued 

that small departures from valid classification and/or aggregation can result in large mistakes in 

elasticity/flexibility and welfare estimates (Lewbel, 1996). For example, the decision on 

classification and aggregation can substantially affect the conclusions about elasticity estimates 

in multi-stage budgeting approach, because cross-price elasticity or cross-quantity flexibility 

between products in different groups is likely to be small by construction itself (Rubinfeld, 2000).  

The classification and aggregation issues have been addressed by using homothetic or 

weak separability condition or generalized composite commodity condition in the context of 

quantity-dependent specification of demand function. However, there are some difficulties or 

ambiguities in using their conditions in empirical studies as discussed in chapter II. We propose 

to use the generalized form of the compositional stability condition derived from the Theil’s 

aggregation theory to address classification and aggregation issue in more general context of all 

possible direct, inverse, and mixed demand functions. The Tornqvist-Theil index, based on the 

discussion of the index number theory in chapter II, is mainly used for the actual aggregation or 

the decision of weighting schemes for aggregating disaggregated micro-variables within each of 

the identified homogenous groups into representative macro-variables. The compositional 

stability condition of ( ) 0, =XdCov n  in nnn dHXx +=  are empirically tested by using a 

Hausman type misspecification test of 0:0 =nH γ in IV

nnnn IVHXx εγ +⋅+= , where nx  are 

disaggregated micro-variables of either price or quantity of a specific group and X  are 
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corresponding aggregated macro-variables of either price or quantity of a specific group. The 

IV are Instrumental Variable such that IV is closely correlated with regressor X  (relevance 

condition of IV ) and independent of error nd  (validity condition of IV ). In this study, we use 

the total expenditure variable, which is calculated by aggregating the price and quantity macro-

variables within the demand system, as the instrumental variable based on the following 

reasoning. Given that the total expenditure is closely related with the aggregated price and 

quantity variables as in estimated aggregated demand systems, the relevance condition can holds. 

The validity condition of the total expenditure variable as an instrumental variable can also hold. 

Such possibility exists, since either each of the idiosyncratic variations of disaggregated price or 

quantity variable can cancel each other in calculating the total expenditure variable or the 

idiosyncratic variation of individual price or quantity variable, which is not captured by the 

common variation of representative macro-variables of a specific group, does not have 

dependencies on the total expenditure variable, which captures the common variation of an entire 

group of commodities within the demand system through group-representative price and quantity 

macro-variables.  

The problem of forming suitable partitions before conducting any empirical test to 

justify those classifications has relied on researchers’ intuition rather than empirical data patterns. 

The intuitive partitions based on the subjective reasoning are only a small set of possible 

partitions among an extremely large number of possible partitions. Thus when classification is 

empirically rejected, it might be simply because of researchers’ unsuccessful identification of the 

partition itself, not because of non-existence of legitimate classification itself. Given the 

empirical implausibility of attempting all possible partitions, it can be helpful to pursue inductive 

partitions related with legitimate aggregation conditions based on the data pattern itself. The 

approximate form of the compositional stability condition is used to search for a specific 

homogeneous group. The homogeneous grouping or partitioning of related commodities is 

identified by the block-diagonal pattern of static and dynamic correlation matrix of price and 

quantity variables, based on the modified k-nearest neighbor algorithm.  

The compositional stability condition as the consistent aggregation condition is closely 

related with the (probabilistic) stability condition as the fundamental condition for the graphical 

causal models. When generalized forms of the compositional stability condition can be identified 

in data set through grouping micro-variables based on their correlation or covariance matrix, 

there exist not only the possibility of obtaining interpretable aggregate indexes or macro-
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variables as the representative aggregate of homogeneous disaggregate micro-variables, but also 

the possibility of obtaining interpretable macro-parameters as the representative aggregate of 

corresponding micro-parameters for subsequent analysis. This implies that when the micro-

variables can be legitimately grouped and represented by macro-variables, it is possible to use 

aggregation methods to capture (causal) relationships among disaggregated variables through 

(causal) relationships among aggregated variables as the legitimate representatives.  

 

Functional Form in Study of Consumer Behavior  

While it is possible to define aggregated variables based on the consistent aggregation 

condition and to choose among direct, inverse, and mixed demand systems based on the 

graphical causal models, there remains another issue of deciding functional form to relate the 

dependent variable with explanatory variables in an empirical model. This issue has been a 

frequently discussed topic in empirical demand literatures. Many useful functional forms have 

been proposed and used for the direct and inverse demand functions. Several functional forms of 

direct demand system have been converted for use in inverse demand systems and vice versa, 

based on the polar relations between both specifications. However, when we want to compare 

direct, inverse, and mixed demand systems in the similar functional form specifications, the 

possible use of mixed demand system impose some limitations for considering possible range of 

functional forms. It is because the mixed demand system requires consistent and simultaneous 

specifications for both direct and indirect utility functions and the commonly used flexible 

functional forms, such as those underlying the translog and almost ideal systems, do not have a 

closed form dual representation for both direct and indirect utility functions. As Moschini and 

Vissa (1993) emphasize, an appropriate approach for a flexible demand system of mixed demand 

functions is to approximate each demand function directly by a differential Rotterdam demand 

system and to impose the theoretical restrictions.  

The Rotterdam demand system has been a commonly used functional form for both 

direct and inverse demand systems, since it is regarded as flexible in that it provides a first-order 

approximation to an arbitrary demand system in either parameter or variable space. Another 

commonly used functional form is the Almost Ideal Demand Systems (AIDS) or the Linear 

Approximate Almost Ideal Demand Systems (LA/AIDS). While these two demand systems are 

common in demand system estimation in agricultural economics, especially for using scanner 

data, the assumptions used to parameterize these two systems have different implications. While 
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the Rotterdam parameterization assumes that both the income (or scale) coefficient and the 

compensated price (or quantity) coefficient in the direct (or inverse) demand system are constant 

parameters, the LA/AIDS parameterization assumes that both the income (or scale) coefficient 

and the Slutsky (or Antonelli) coefficient in the direct (or inverse) demand system are variational 

parameters dependent on the budget shares. Two more logically possible combinations of 

constant/variational parameterization for the income (or scale) coefficient and the Slutsky (or 

Antonelli) coefficient are also used for both direct and inverse systems. While Keller and van 

Driel (1985) of Dutch Central Bureau of Statistics (CBS) introduce variational income (or scale) 

coefficient with constant Slutsky (or Antonelli) coefficient by reparameterizing the Rotterdam 

specification, Neves (1987) of Netherlands National Bureau of Research (NBR) introduce 

income (or scale) coefficient with variational Slutsky (or Antonelli) coefficient by 

reparameterizing the differential AIDS specification. Given that economic theory does not 

provide sufficient information for this issue, the use of intuitive reasoning rather than empirical 

evidence can result in coexistence of alternative specifications and thus generate ambiguities, 

since elasticities (or flexibilities) are sensitive to the functional form specification. Even though 

this general finding that elasticities (or flexibilities) are sensitive to the functional form 

specification makes this issue of functional form specification non trivial, empirical comparisons 

among alternative specification have been rarely done. The main difficulties are the alternative 

specifications are non-nested relative to each other and the non-nested hypotheses testing 

approach oftentimes does not provide a conclusive answer for this problem in general situations. 

An alternative method for this problem is using the principle of artificial nesting. In this 

respective, it has been demonstrated that the Rotterdam, the differential AIDS, and two hybrid 

demand specifications of CBS and NBR can be nested within a synthetic direct (Barten, 1993) 

and inverse (Brown, Lee, and Seal, 1995) demand system. It has been argued that these two 

synthetic direct and inverse demand systems can be considered as demand systems in their own 

right, beyond an artificial composite of known models. For example, Matsuda (2005) shows that 

one of the nesting coefficients in the inverse synthetic model of Brown, Lee, and Seal (1995) 

implies the transformation parameter of the Box-Cox scale curves. Using a similar idea based on 

the Box-Cox scale curves, Matsuda (2004) proposes a mixed demand specification, nesting 

Rotterdam and CBS specifications.  

When we want to compare direct, inverse, and mixed demand systems, we need 

parameterize three demand systems in the similar degrees of flexibility in functional form 
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specifications, when the flexibility means the capability of the empirical model to allow the 

possible combinations of constant/variational parameterization for the income (or scale) 

coefficient and the Slutsky (or Antonelli) coefficient. Given that the synthetic differential 

demand model exists for the direct and inverse demand system, the synthetic differential demand 

model is proposed for the mixed demand system based on the similar logic to derive synthetic 

demand model in direct and inverse demand systems. Furthermore Eales, Durham, and Wessells 

(1997) show that synthetic direct and inverse demand systems can be reparameterized to have 

common differential AIDS dependent variables, which makes it possible to compare direct and 

inverse demand functions. By extending the common logic of these approaches, a similar 

synthetic functional form for a mixed demand system can be specified in the common 

differential AIDS dependent variables, which makes it possible to compare direct, inverse, and 

mixed demand systems in the model selection frameworks. Rotterdam type and AIDS type 

dependent variable synthetic models can be directly derived from Rotterdam specification as 

explained below, which make it possible to derive synthetic mixed demand functions. 

Derivations of direct, inverse, mixed demand functions are explained in Appendix C. The 

original functional form and the Rotterdam type and AIDS type dependent variable synthetic 

model specifications can be summarized as follows.  

The differential family of four direct demand systems can be summarized and nested in 

either Rotterdam or AIDS dependent variable forms of synthetic direct demand systems. If the 

expenditure coefficient is defined as [ ]nnn wa ε≡  or [ ]nnnn wwc −≡ ε  and the Slutsky coefficient 

is defined as [ ]c
nnnnn wa ',', ε≡  or ( )[ ]','',', nnnn

c
nnnnn wwwc δε −−≡ , then both are nested by synthetic 

parameters of [ ]n
O

nnn wwC 1θε −≡  and ( )[ ]','2',', nnnn
Oc

nnnnn wwwC δθε −−≡  respectively. 

Rotterdam :   [ ] [ ]∑+=
=

N

n
n

c
nnnnnnn pdwQdwqdw

1'
'', lnlnln εε  or 

   [ ] [ ]∑+=
=

N

n
nnnnnn pdaQdaqdw

1'
'', lnlnln  or 

   [ ] ( )[ ]∑ −−+−=
=

N

n
nnnnnnnnnn pdwwaQdwadw

1'
'','', lnln δ . 

Differential AIDS:  [ ] ( )[ ]∑ −−+−=
=

N

n
nnnnn

c
nnnnnnn pdwwwQdwwdw

1'
'','', lnln δεε  or 

[ ] ( )[ ]∑ −+++=
=

N

n
nnnnnnnnnnn pdwwcQdwcqdw

1'
'','', lnlnln δ  or 

[ ] [ ]∑+=
=

N

n
nnnnn pdcQdcdw

1'
'', lnln . 
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CBS:   [ ] ∑+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

N

n
nnnn

n
n paQdc

Q
q

dw
1'

'', lnlnln  or 

[ ] [ ]∑++=
=

N

n
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n
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NBR:   ( ) [ ] [ ]∑+=+
=

N

n
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1'
'', lnlnln  or 

[ ] ( )[ ]∑ −++=
=

N

n
nnnnnnnnnn pdwwcQdaqdw

1'
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[ ] [ ]∑+−=
=

N

n
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Synthetic:  [ ] ( )[ ]∑ −+++=
=

N

n
nnnnn

O
nnn

O
nnn pdwwCQdwCqdw

1'
'','2',1 lnlnln δθθ  or 

( )[ ] ( ) ( )[ ]∑ −−−+−−=
=

N

n
nnnnn

O
nnn

O
nn pdwwCQdwCdw

1'
'','2',1 ln1ln1 δθθ . 

The Rotterdam type dependent variable synthetic forms can be derived as follows.  

[ ] ( ) ( )[ ]∑ −+−−++−=
=

N

n
nnnnn

O
nnnn

Oc
nnnn

O
n

O
nnnn pdwwwwwQdwwwqdw

1'
'','2','2',11 lnlnln δθδθεθθε ,  

which can be transformed into AIDS type dependent variable synthetic forms as follows. 

[ ]
[ ] [ ]
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==
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N

n
nnnnn

O
nnnn
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O
n

O
nnn pdwwwwwQdwwwdw

1'
'','2','2',11 ln1ln1 δθδθεθθε . 

Theoretical restrictions can be imposed by using following relations  

(a) Homogeneity:  0
1'

', =∑
=

N

n
nnC ,  

(b) Symmetry:  nnnn CC ,'', = ,  

(c) Adding-up:  O
N

n
nC 1

1
1 θ−=∑

=
 . 

Because: (a) ∑
=

N

n
nnC

1'
', ( )[ ] [ ]∑ ∑ −−∑ =−−≡

= ==

N

n

N

n
nnnn

Oc
nnn

N

n
nnnn

Oc
nnn wwwwww

1' 1'
','2',

1'
','2', δθεδθε , which,  by 

0
1'

', =∑
=

N

n

c
nnnw ε , is [ ] [ ] 0112

1'
',

1'
'2

1'
', =−−=∑−∑−=∑

===
n

O
N

n
nn

N

n
nn

O
N

n
nn wwwC θδθ . (b) Using c

nnn
c

nnn ww ,''', εε = , we 

can compare ( )','2',', nnnn
Oc

nnnnn wwwC δθε −−=  with ( )nnnn
Oc

nnnnn wwwC ,''2,'',' δθε −−=  as ',' nnnnn www δ−  
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with nnnnn www ,''' δ− , which is equal because nnnnnn ww ,''', δδ = . (c) Using 1
1

=∑
=

N

n
nnw ε  and 1

1
=∑

=

N

n
nw , 

[ ] ( ) ( )∑−∑=∑ −≡∑
====
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O
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n
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1
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N
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1
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=
. 

The elasticities are calculated as follows  

(a) Expenditure elasticity:  O

n

n
n w

C
1θε += ,  

(b) Compensated elasticity:  ( )','2

',

', nnn
O

n

nnc
nn w

w
C

δθε −+= , and  

(c) Uncompensated elasticity: ( )
⎥
⎥
⎦

⎤

⎢
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⎡
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Because: (a) n
O

nnn wwC 1θε −≡ , (b) ( )','2',', nnnn
Oc

nnnnn wwwC δθε −−≡ , and (c) '',', nn
C

nnnn wεεε −= ` 

The differential family of four inverse demand systems can be summarized and nested 

in either Rotterdam or AIDS dependent variable forms of synthetic inverse demand systems. If 

the scale coefficient is defined as [ ]nnn fwb ≡  or [ ]nnnn wfwd +≡  and the Antonelli coefficient 

is defined as [ ]c
nnnnn fwb ',', ≡  or ( )[ ]','',', nnnn

c
nnnnn wwfwd δ−−≡ , then both of them are nested by 

synthetic parameters of [ ]n
I

nnn wfwD 1θ+≡  and ( )[ ]','2',', nnnn
Ic

nnnnn wwfwD δθ −−≡  respectively. 

Rotterdam:   [ ] [ ]∑+=
=

N

n
n

c
nnnnnnn qdfwQdfwdw

1'
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[ ] [ ]∑+=
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n
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n
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NBR:   ( ) [ ] [ ]∑+=+
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N
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The Rotterdam type dependent variables synthetic forms can be derived as follows.  
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which can be transformed into AIDS type dependent variables synthetic forms as follows. 
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Theoretical restrictions can be imposed by using following relations  

(a) Homogeneity:  0
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n
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The elasticities are calculated as follows  

(a) Scale flexibility:   I

n

n
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The differential family of mixed demand systems can be derived and nested in either 

Rotterdam or AIDS dependent variable forms of analogous synthetic mixed demand systems. 

The expenditure coefficients of group A  and B  are defined as [ ]i
M

iii ww 1θεα −≡  and 

[ ]k
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kkk wfw 1θβ −≡  and the Slutsky coefficients are defined as ( )[ ]jiji
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where two synthetic forms of mixed demand function can be derived as follows by applying 

similar logics used to derive two synthetic forms of direct and inverse demand functions. 
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The synthetic parameters for direct, inverse, and mixed demand functions can be 

summarized as in Table 3.1. The value of 0 and 1 for 1θ captures constant and variational 

expenditure or scale coefficients and the value of 0 and 1 for 2θ captures constant and variational 

Slutsky and Antonelli coefficients respectively, where the variations rely on the budget share 

values. Even though it is difficult to directly compare each of four types of specifications, it is 

possible to indirectly compare each of them to a synthetic model, because the synthetic model 

nests all four specifications. The joint tests for combinations of possible values of 1θ  and 2θ  can 

be used to compare among the synthetic model itself and four nesting types of models within 

each of direct, inverse, and mixed demand systems respectively. 

 

Table 3.1. Synthetic Parameters for Three Specifications 

Rotterdam 0 0 0 0 0 0
LA/AIDS 1 1 1 1 1 1

NBR 0 1 0 1 0 1
CBS 1 0 1 0 1 0

Model
Direct Inverse Mixed

D
1θ D

2θ I
1θ I

2θ M
1θ M

2θ

 
* Restrictions of synthetic parameters to nest popular functional forms for three specifications.  
** Refer to synthetic demand equation. For example, synthetic parameters in the direct demand system corresponds to parameters in 

  ( )[ ] ( ) ( )[ ]∑ −−−+−−=
=

N

n
nnnnn

O
nnn

O
nn pdwwCQdwCdw

1'
'','2',1 ln1ln1 δθθ  

 

 

Model Comparison Method  

While the issue of an appropriate functional form within each of direct, inverse, and 

mixed demand systems respectively can be addressed through synthetic approaches, it is not easy 
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to nest all three specifications of direct, inverse, and mixed demand systems in composite model. 

The main difficulties to compare different specifications in terms of price-dependent and/or 

quantity-dependent modeling across direct, inverse, and mixed demand systems are again the 

alternative specifications are non-nested relative to each other and non-nested hypotheses testing 

approach oftentimes does not provide definite answer for this problem. The Likelihood 

Dominance Criterion, introduced by Pollak and Wales (1991), provides alternative method to 

rank competing models as long as the competing specifications have the common dependent 

variables. Unlike the non-nesting test procedures and artificial nesting approach, the model 

selection criterion does not require actually estimating the composite model. Saha, Shumway, 

and Talpaz (1994) demonstrated that the likelihood dominance criterion outperformed some 

widely used non-nested testing procedures such as Davidson-MacKinnon J test and Cox test in 

selecting the true model, using Monte Carlo evidence. Let 1H and 2H denote two non-nesting 

hypotheses, which are nested in composite hypothesis CH  and 1n , 2n , Cn and 1L , 2L , CL are 

corresponding number of independent parameters and log-likelihood values with assumption of 

21 nn ≤ . Let ( )τ,vC  denote the critical values of the chi-square distribution with v degrees-of-

freedom at some fixed significant level τ . The model selection approach can be summarized as 

follow based on the Pollak and Wales (1991). 

When the standard likelihood ratio test procedure is used to compare two hypotheses 

with the composite, the hypothesis iH will not be rejected iff ( )τ,22 iCiC nnCLL −<−  or 

( ) ( )τ,21 iCiC nnCLL −⋅+<  and iH will be rejected iff ( ) iCiC LLnnC 22, −<− τ or 

( ) ( ) CiCi LnnCL <−⋅+ τ,21 . This test procedure can be understood based on the intuitive 

reasoning that the additional parameters in composite model can be accepted, only when they 

increase likelihood function values. Testing separately the restrictions on the composite 

corresponding to the two non-nesting hypotheses can result in one of four possible outcomes:  

(a) reject 1H and accept 2H ,  

iff  ( ) 11 22, LLnnC CC −<− τ  and ( )τ,22 22 nnCLL CC −<−   

or ( ) ( ) ( ) ( )ττ ,21,21 2211 nnCLLnnCL CCC −⋅+<<−⋅+  . 

(b) reject 2H  and  accept 1H ,  

iff ( ) 22 22, LLnnC CC −<− τ  and  ( )τ,22 11 nnCLL CC −<−    

or ( ) ( ) ( ) ( )ττ ,21,21 1122 nnCLLnnCL CCC −⋅+<<−⋅+  . 
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(c) reject both 1H and 2H ,  

iff  ( ) 11 22, LLnnC CC −<− τ  and ( ) 22 22, LLnnC CC −<− τ   

or both ( ) ( )τ,21 11 nnCL C −⋅+  and ( ) ( )τ,21 11 nnCL C −⋅+  are less than CL .  

(d) accept both 1H and 2H ,  

iff ( )τ,22 11 nnCLL CC −<−  and ( )τ,22 22 nnCLL CC −<−   

or both ( ) ( )τ,21 11 nnCL C −⋅+  and ( ) ( )τ,21 11 nnCL C −⋅+  are greater than CL .  

According to the dominance ordering, unlike non-nesting testing procedure which may 

result in accepting or rejecting both hypotheses, when the likelihood ratio test accepts one 

hypothesis and reject the other, the decision of  accepting one hypothesis and rejecting the other 

can be determined without actually estimating or even specifying a particular composite, 

although the determination require specifying the number of independent parameters of the 

composite or the composite parameteric size Cn . Ordering dominance among competing non-

nesting hypotheses can result in one of three possible outcomes:  

(a) 2H  dominates 1H , 

iff  ( ) ( ) ( ) ( )ττ ,21,21 2211 nnCLnnCL CC −⋅+<−⋅+  and 21 LL <  when 21 nn = ,   

because reject 1H and accept 2H , iff ( ) ( ) ( ) ( )ττ ,21,21 2211 nnCLLnnCL CCC −⋅+<<−⋅+  

(b) 1H dominates 2H ,  

iff ( ) ( ) ( ) ( )ττ ,21,21 1122 nnCLnnCL CC −⋅+<−⋅+  and 12 LL <  when 21 nn = ,  

because reject 2H and accept 1H , iff ( ) ( ) ( ) ( )ττ ,21,21 1122 nnCLLnnCL CCC −⋅+<<−⋅+ .  

(c) 1H is indifferent to 2H ,  

iff ( ) ( ) ( ) ( )ττ ,21,21 1122 nnCLnnCL CC −⋅+=−⋅+  and 21 LL =  when 21 nn = ,   

based on the above two possible outcomes. 

Note that if ( ) ( )τ,21 22 nnCL C −⋅+  is very close to ( ) ( )τ,21 11 nnCL C −⋅+ , then the likelihood 

ratio test will probably either accept or reject both hypotheses. In this respective, the significance 

level to determine the critical value should not be interpreted as the significance level of the 

dominance ordering per se, but as the significance level of the fictive likelihood ratio test. 

The dependence of the dominance ordering on the composite parametric size is 

disturbing in the general case of 21 nn ≠ , since specifying it may be fairy arbitrary and different 

composite sizes may imply a different ordering. This difficulty can be mitigated by using the 
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likelihood dominance criterion, based on the proposition that ( ) ( ) ( )[ ]ττ ,,21 21 nnCnnC CC −−−⋅  

is a monotonically decreasing function of Cn , if the significance level τ is less than 0.40 and a 

range of composite parametric sizes is such that from one parameter more than the larger 

hypotheses to one parameter more than the sum of the number of parameters in the two 

hypotheses ( 11 212 ++<<+ nnnn C ).  This proposition implies that for 11 212 ++<<+ nnnn C , 

( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]ττττττ ,1,1,,,1,1 212122 CnnCnnCnnCnCnC CC −++<−−−<+−+ . The use of 

Likelihood Dominance Criterion among competing non-nesting hypotheses can result in one of 

three possible outcomes:  

(a) 2H  is preferred to 1H , 

iff  ( ) ( ) ( )[ ] 1212 ,1,121 LLCnnC −<−+−⋅ ττ  or 21 LL < for 21 nn =   

because  ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] 121221 ,1,121,,21 LLCnnCnnCnnC CC −<−+−⋅<−−−⋅ ττττ   

(b) 1H is preferred to 2H , 

iff ( ) ( ) ( )[ ]ττ ,1,121 1212 +−+⋅<− nCnCLL  or 12 LL <  for 21 nn =   

because ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]ττττ ,,21,1,121 211212 nnCnnCnCnCLL CC −−−⋅<+−+⋅<−   

(c) Indecisive between 1H  and 2H , 

iff ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]ττττ ,1,121,1,121 121222 CnnCLLnCnC −+−⋅<−<+−+⋅  

or 21 LL =  for 21 nn =  

because based on the above two possible outcomes and the relationship of 

( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]ττττττ ,1,1,,,1,1 212122 CnnCnnCnnCnCnC CC −+−<−−−<+−+ . 

Note that to narrow this indecisive range, the significant levelτ  be adjustably selected and/or the 

composite parametric size Cn can be determined directly from the significance tables for the chi-

square distribution for given 1n , 2n and 1L , 2L .  

It can be seen that the likelihood dominance criterion has similar implication with the 

two common model selection criteria of Akaike Information criterion (Akaike, 1973) and 

Schwarz information criterion (Schwarz, 1978). The Akaike and Schwarz model selection rules 

of choosing the largest value of ii nL −  and ( ) ii nTL ⋅− 2log  can be understood as pair-wise 

comparison rules for 12 LL −  in terms of relative penalty functions ( )12 nn −  and 

( ) ( )122log nnT −⋅  respectively. These two relative penalty functions have similar implications 

as the likelihood dominance criterion, since as Pollak and Wales (1991) argued that 
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( ) ( ) ( )[ ]ττ ,,21 21 nnCnnC CC −−−⋅  converges to ( ) ( )1221 nn −⋅  as ∞→Cn  based on the 

asymptotic normality property as a function of degrees-of-freedom of the chi-squared 

distribution. Based on this argument, it can be argued that the use of three model selection rules 

can result in one of three possible outcomes:  

(a) 2H  is preferred to 1H ,  

iff ( ) ( ) 121221 LLnn −<−⋅  for likelihood dominance criterion of ∞→Cn  

or ( ) ( ) 12122log LLnnT −<−⋅  for Schwarz model selection rule 

or ( ) 1212 LLnn −<−  for Akaike model selection rule.   

(b) 1H is preferred to 2H ,  

iff ( ) ( )1212 21 nnLL −⋅<−  for likelihood dominance criterion of ∞→Cn  

or ( ) ( )1212 2log nnTLL −⋅<−  for Schwarz model selection rule 

or ( )1212 nnLL −<−  for Akaike model selection rule.   

(c) Indecisive between 1H  and 2H ,  

iff ( ) ( )1212 21 nnLL −⋅=−  for likelihood dominance criterion of ∞→Cn  

or ( ) ( )1212 2log nnTLL −⋅=−  for Schwarz model selection rule 

or ( )1212 nnLL −=−  for Akaike model selection rule.  

Note that non-nesting hypotheses and composite hypothesis should involve the same 

dependent variables for the above discussions. While Rotterdam-type synthetic models have 

different dependent variables across direct, inverse, and mixed demand systems, AIDS-type 

synthetic models have the common dependent variables across direct, inverse, and mixed 

demand systems. If the hypotheses involve different dependent variables but are functionally 

related, then the likelihood function must be adjusted by including the appropriate Jacobian bias 

term. To avoid difficulties involved this adjustment, the model selection approach is used for 

synthetic models of AIDS-type dependent variables for the comparison across direct, inverse, 

and mixed demand systems. 

 

Summary and Proposed Method  

There are significant advances in the study of demand from both theoretical and 

empirical perspective. In the theoretical perspective, the full modeling spectrums of monotone 

set of direct or inverse demand functions as well as mixed demand functions are developed. 
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While these theoretical advances bring modeling flexibility to the study of consumer behavior, 

they also bring forth the local identification issue of choosing one empirical model among three 

possible specifications of the direct, inverse, and mixed demand systems. Given that there is an 

empirical difficulty in studying all possible combinations for the mixed demand system as well 

as the direct and inverse demand systems, graphical causal models provide an inductive way to 

infer local causal structure among price and quantity variables for a particular commodity. After 

the local identification issue is guided by the graphical causal models, the model selection 

approaches, such as the likelihood dominance criterion, provide empirical method of comparing 

empirical demand model specifications. The AIDS type dependent variable synthetic functional 

forms for the direct, inverse, and mixed demand systems provide a flexible and comparable 

functional form to connect the graphical causal model and the model selection approaches, thus 

minimizing the effects of the chosen functional forms for three specifications. Note that the 

direct and inverse demand systems can be always used for comparison purposes, regardless of 

the identified causal structures from the graphical causal model. On the other hand, the identified 

causal structures from the graphical causal model provide inductive information for the possible 

combination of price and quantity dependent specifications for the mixed demand system. This 

inductive information based on the graphical causal models provides empirical guidance for the 

local identification issue, given that the researchers’ intuition for this issue does not always 

provide objective specifications. 

Recent advances in data processing capabilities have brought the possibility of analyzing 

larger number of detailed variables. The retail checkout scanner data have brought forth research 

potentials for significant advances in the micro-economic analysis of consumer behavior. Given 

the observation that many variables in this high dimensional data move very closely, the 

compositional stability condition, as a consistent aggregation condition, provides an inductive 

way to pursue the possibility of obtaining not only (a) interpretable aggregate indexes or macro-

variables as the representative aggregate of homogeneous disaggregate micro-variables but also 

(b) interpretable macro-parameters as the representative aggregate of corresponding micro-

parameters for the subsequence analysis. This implies that when the micro-variables can be 

legitimately grouped and represented by macro-variables, it is possible to use aggregation 

methods (a) to incorporate broad range of information into the empirical demand models, while 

minimizing econometric issues such as the multicollinearity and degrees of freedom and (b) to 

capture (causal) relationships among disaggregated variables through (causal) relationships 
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among aggregated variables as the legitimate representatives. This compositional stability 

condition is used (a) to provide an inductive way of forming suitable partitions before 

conducting any empirical test to justify those classifications based on the empirical data patterns 

rather than on researchers’ intuition and (b) to address the possible violation of the (probabilistic) 

stability condition to use the graphical causal models for the high dimensional data. Note that it 

is conceivable and oftentimes observed that the (probabilistic) stability condition for the 

graphical causal models is violated for using high dimensional data in empirical study, given the 

observation that there exist close co-movements and thus near deterministic relations among 

variables in high dimensional data. 

More specific procedures we propose are as follows: (a) Both standard static correlation 

matrix and dynamic correlation matrix over identified frequency bands are used to measure co-

movement among original variables. Based on these similarity measures of disaggregate micro-

variables, the modified k-nearest neighbor algorithm is used to sort the variables such that the 

highly correlated variables are near each other along the main diagonal in reordered correlation 

matrix. The block-diagonal pattern of reordered or sorted static and dynamic correlation matrixes 

are used to identify homogeneous groups of variables, based the approximate form of the 

compositional stability condition. (b) Based on identified classifications of original variables, 

index number theory is used for actual aggregation procedure to decide weighting schemes or 

aggregating disaggregated micro-variables into representative macro-variables within each 

identified group. (c) The identified classification and aggregation of micro-variables into macro-

variables can be tested, as long as appropriate instrumental variables can be identified. The 

Hausman type misspecification test of 0:0 =nH γ  in the equation IV

nnnn IVHXx εγ +⋅+= , 

where  nx  and X  are micro- and macro-variables respectively and IV are Instrumental 

Variables such that IV is closely correlated with X  and independent of nd , provides statistical 

test framework for the generalized form of the compositional stability condition of independence 

between nd  and X  in the set of equations nnn dHXx += . (d) Based on the implication that 

identified compositional stability condition in the data makes it possible to infer causal structures 

among micro-variables through relationships among representative aggregated macro-variables. 

PC algorithm or GES algorithm are used to infer causal structures among macro-variables as the 

legitimate representative causal relationships among micro-variables are used for the subsequent 

analysis. (e) Based on the local causal structure between price and quantity variables for a 
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particular commodity, the AIDS type dependent variable synthetic functional forms for the direct, 

inverse, and mixed demand systems are estimated. (f) The Rotterdam, AIDS, NBR, and CBS 

type constant and/or variational parameterizations and synthetic model are statistically compared 

and the parameterizations for expenditure (scale) elasticities (flexibilities) and Slutsky 

(Antonelli) coefficients are chosen within each of direct, inverse, and mixed specifications. 

Based on the chosen parameterization, the direct, inverse, and mixed demand system are 

compared based on the model selection approaches, such as the Akaike Information, Schwarz 

information criterion, and the likelihood dominance criterion. Note that inductive properties are 

emphasized in every sequence of the proposed method, since some types of deductive properties 

can bring subjectivities or ambiguities into the empirical results. The remaining subjectivities in 

our proposed method are left as further research issues, with the hope that the remaining 

subjectivities bring fewer ambiguities relative to the previously used methods. The proposed 

method is illustrated with the applications for retail checkout scanner data as an example of the 

high dimensional data.  

 

Empirical Analysis and Results  

The proposed methodological procedure is illustrated with the soft drink products with 

size of 6/12 oz sold at Dominick’s Finer Foods (DFF). Given that some types of deductive 

properties can bring subjectivities or ambiguities into the empirical results, inductive properties 

are emphasized. First, the data used for this study are described. Second, the common frequency 

bands for the estimated spectrum of variables are identified and the static and dynamic 

correlations among variables are measured and sorted for the classification. Third, based on the 

block diagonal pattern of the sorted correlation matrixes, the variables are classified and 

classified groups are interpreted, where variables within each of groups closely co-moves. Fourth, 

based on the classified groups, the index number theory is used to represent disaggregate 

variables by aggregate variables. And the compositional stability condition is empirically tested 

and the test results are compared with Lewbel’s composite commodity conditions. Fifth, the 

local causal structure among price and quantity variables for each of aggregate commodities is 

inferred by the graphical causal model. Sixth, based on the local causal structure used for 

identification, the direct, inverse, and mixed demand systems are estimated based on the 

synthetic demand system approach. The estimated results of three specifications of demand 
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system are related and compared. The empirical results are summarized and additional issues to 

be studied are discussed. 

 

Data Description  

The data set consists of weekly observations on 23 soft drink products with size of 6/12 

oz sold at Dominick’s Finer Foods (DFF) from 09:14:1989 through 09:22:1993 with the sample 

size 210. All the data are from the Dominick’s database, which is publicly available from the 

University of Chicago Graduate School of Business (http://www.chicagogsb.edu/). The 

Dominick’s Finer Foods (DFF) is the second largest supermarket chain in the Chicago 

metropolitan area with about 25% market share. Each soft drink used for this study is a specific 

soft drink of 6/12 oz size such as Coca-cola classic, Pepsi-cola cans, Seven-up diet can. The 

brand-level categories include Coke, Pepsi, Seven-up, Mountain Dew, Sprite, Rite-Cola, Dr. 

Pepper, A&W, Canada Dry, Sunkist, and Lipton Brisk. The size of 6/12 oz is chosen due to the 

data availability and identified homogeneity within this size of soft drinks in the preliminary 

study.  

Although the original data set is the store level weekly retail scanner data for the specific 

items represented by UPC code, the aggregated chain level data is used for this study. In order to 

characterize the chain level characteristics, the store level data are aggregated across stores by 

using the simple sum and unit value for quantity and price variables, where unit value is total 

sale revenue divided by the total quantity sold. The reasons for this is the commodity-wise 

aggregation is the main issue to be addressed in this study and the aggregation across consumers 

or regions brings forth more difficult issues, which can be addressed only with additional 

information such as demographical and economical information. Another practical reason for 

this is that there are many missing observations in the original data set due to different data 

collection period or other reasons. Aggregation based on the unit value approach is one way to 

deal with this missing observation problem, whereas the use of other index formulas brings forth 

the difficult issue of how to handle a zero price or quantity in the data set.  

For the purpose of estimating differential demand systems, the differential terms for 

price and quantity variables are approximated by the finite first differences 

( 1,, lnlnln −−≈ tntnn pppd  and 1,, lnlnln −−≈ tntnn qqqd ) and the market share terms are replaced by 

their moving average ( ( ) 21,, −+≈ tntnn www ). The market share changes dw  are approximated by 
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using the log differential property ( ( ) ( ) ( )1,,1,, lnln21ln −− −⋅+⋅≈⋅= tntntntn wwwwwdwdw ), since 

dw  has a limited range of ( )1,1− , whereas wdwdw ln⋅=  has a range of ( )∞∞− ,  (Barten, 

1993). The list of variables and detailed descriptions are given in Appendix D.  

 

Classification and Aggregation  

One of objectives of this study is to propose an inductive procedure for the construction 

of appropriate groupings of variables. An inductive property is emphasized due to the empirical 

implausibility of attempting all possible partitions before conducting any empirical test to justify 

those classifications. In this respect, it can be better to pursue inductive classifications related 

with legitimate aggregation conditions, which is based on the empirical data pattern itself rather 

than researchers’ subjective intuition. Based on the compositional stability conditions, our 

inductive procedure is based on the idea that homogeneity or similarity of a group of variables 

can be identified through their dynamic movements. When the original disaggregate variables 

within a group have similar dynamic movements so that they co-move with each other very 

closely, their high co-movements suggest their underlying similarity.  

Both the standard static correlation matrix and the dynamic correlation matrix over 

identified frequency bands are used to measure co-movement among the original variables. For 

the dynamic correlation over frequency band, several different frequency bands are chosen as the 

non-overlapping bands or regions approximately centered at peak kλ  so that 

[ ) [ ){ }πλλλλλλλ ≤<<≤−−∪=Λ jkiijji 0:,, , where the frequency kλ  is specified as 

( ){ }2,,1:2 TkTkk L=⋅= πλ  and T  is the sample size (Rodrigues, 1999). Note that if the 

frequency of a cycle is λ , the period of the cycle is λπ2 . Thus, a frequency of Tkk ⋅= πλ 2  

corresponds to a period of kTk =λπ2 . We choose common frequency bands to measure co-

movement among variables with possible leads and lags, based on the estimated spectrums of 

variables, which capture dynamics of variables in terms of their cyclic properties with long or 

short run trends (Hamilton, 1994). The estimated spectrums of price and quantity variables are 

presented in Figure 3.1. The x-axis is the frequency in terms of k  and the y-axis is the estimated 

spectrum.  
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* The full description of variables is provided in the Appendix D. 
* The top 23 variables are the price variables and the bottom 23 variables are the quantity variables.  
* The x- axis is the frequency in terms of k and the y-axis is the estimated spectrum.  

Figure 3.1. Estimated Spectrums of Price and Quantity Variables 

 

The top 23 variables are the price variables and the bottom 23 variables are the quantity variables. 

The full description of variables is provided in the Appendix D. Although there are some degrees 

of differences, the common frequency bands can be identified across price and quantity variables 

and thus among 23 commodities. We use three frequency bands: 0-62, 63-90, and 90-104.5 in 

terms of k . These correspond to a period more than 3.37 weeks (frequency Band 01), a period of 

3.32 to 2.32 weeks (frequency Band 02), a period of less than 2.30 weeks (frequency Band 03) 

respectively. These ranges approximately correspond to 1 month, a half month, and less that a 

half month period ranges.  

Based on these homogeneity or similarity measure of disaggregate micro-variables, the 

modified k-nearest neighbor algorithm is used to sort or reordered the variables such that the 

highly correlated variables are near each other along the main diagonal in the reordered 

correlation matrix. The block-diagonal pattern of sorted static and dynamic correlation matrixes 

are used to identify homogeneous group of variables, based on the approximate form of the 
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compositional stability condition. The final results of the sorted static correlation matrix and 

dynamic correlation matrixes for different frequency bands are presented in Figure 3.2. The 

black/white color scheme is used to represent the absolute value of measured correlations, where 

the darkest black represents the correlation of 1 and the brightest white represents the correlation 

of 0. The full description of variables is provided in the Appendix D, where the variables are in 

the same order. More detailed information of measured correlation for the standard static 

correlation coefficient for the price variables (lower triangular matrix) and quantity variables 

(upper triangular matrix) is presented in Table 3.2. 

The homogeneity within the group is identified based on the high co-movements of price 

and/or quantity variables in terms of measured pair-wise static and dynamic correlations among 

variables. For example in the static correlation of price and quantity variables, the correlations 

among pair of products within the identified group are larger than 0.954 and 0.948 respectively. 

Although the correlations of pair-wise variables across different groups show somewhat different 

degrees of correlation over the different frequency bands, the common groups of variables are 

identified over all the different frequency bands. It is also noticed that both price and quantity 

variables show similar correlation patterns. Based on the sorted static and dynamic correlation 

matrixes of price and quantity variables over the different frequency bands, the following six 

groups of soft drink products are identified as homogeneous groups. 

 

Group 6: The Sunkist and Canada Dry product group (Product of 1 to 4) 

Group 1: The Coca-Cola and Sprite product group (Products of 5 to 8) 

Group 2: The Pepsi-Cola and Mountain Dew product group (Product of 9 to 13) 

Group 3: The Seven-Up and Dr Pepper product group (Products of 14 to 17) 

Group 5: The A&W and Rite-Cola product group (Products of 18 to 21) 

Group 4: The Lipton Brisk product group (Products of 22 to 23) 

 

The group of 1 and 2 are discriminated by their relatively different relationship with 

group 5, given that the variables in group 1 have higher correlation with the variables in group 5. 

The group of 2 and 3 are discriminated by their relatively different relationship with group 4, 

given that the variables in group 2 have higher correlation with the variables in group 4. The 

group of 5 and 4 are discriminated by their relatively different relationship with group 2, given 

that the variables in group 4 have higher correlation with the variables in group 2.  
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* The black/white color scheme is used to represent the absolute value of measured correlation, where  
   the darkest black represents the correlation of 1 and the brightest white represents the correlation of 0.   
* See Appendix D for the description of variables, where variables are in the same order. 
 
Figure 3.2. Sorted Static and Dynamic Correlation Matrix
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Table 3.2. Sorted Static Correlation Matrix 
 

Var. # Variable Names dln(01) dln(02) dln(03) dln(04) dln(05) dln(06) dln(07) dln(08) dln(09) dln(10) dln(11) dln(12) dln(13) dln(14) dln(15) dln(16) dln(17) dln(18) dln(19) dln(20) dln(21) dln(22) dln(23)
01 SunkistStrawberry 1.000 0.988 0.983 0.975 0.248 0.272 0.269 0.274 0.282 0.287 0.281 0.289 0.269 0.264 0.282 0.300 0.297 0.212 0.191 0.187 0.189 0.196 0.187
02 SunkistOrange 0.998 1.000 0.988 0.982 0.270 0.297 0.294 0.302 0.308 0.313 0.311 0.316 0.294 0.298 0.317 0.332 0.327 0.237 0.222 0.215 0.210 0.207 0.202
03 CnadaDryGinger 0.998 0.999 1.000 0.994 0.264 0.291 0.287 0.291 0.304 0.310 0.306 0.311 0.293 0.288 0.302 0.317 0.314 0.239 0.223 0.220 0.214 0.218 0.216
04 CandaDryGngrAle 0.998 0.999 1.000 1.000 0.248 0.277 0.275 0.280 0.303 0.310 0.308 0.312 0.294 0.282 0.295 0.311 0.307 0.222 0.206 0.205 0.197 0.202 0.205
05 Sprite 0.279 0.282 0.287 0.291 1.000 0.971 0.968 0.967 0.734 0.740 0.730 0.734 0.728 0.654 0.653 0.637 0.645 0.570 0.568 0.587 0.575 0.537 0.507
06 CokeClassic 0.292 0.295 0.300 0.304 0.955 1.000 0.998 0.995 0.750 0.757 0.746 0.749 0.724 0.671 0.671 0.656 0.662 0.552 0.548 0.569 0.557 0.513 0.483
07 CokeDiet 0.291 0.295 0.300 0.304 0.954 0.999 1.000 0.995 0.748 0.756 0.745 0.748 0.722 0.661 0.661 0.647 0.652 0.550 0.544 0.568 0.555 0.506 0.480
08 CokeDietCaffeineFree 0.293 0.296 0.301 0.305 0.954 0.998 0.999 1.000 0.750 0.758 0.750 0.753 0.724 0.662 0.668 0.657 0.659 0.548 0.543 0.565 0.549 0.509 0.477
09 Pepsi 0.312 0.314 0.319 0.321 0.734 0.756 0.754 0.751 1.000 0.994 0.991 0.989 0.975 0.677 0.683 0.660 0.666 0.453 0.465 0.491 0.461 0.505 0.462
10 PepsiDiet 0.319 0.322 0.326 0.328 0.734 0.755 0.754 0.753 0.998 1.000 0.997 0.996 0.982 0.676 0.679 0.660 0.668 0.458 0.466 0.492 0.467 0.513 0.467
11 PepsiDietCaffeineFree 0.322 0.324 0.329 0.331 0.732 0.753 0.753 0.753 0.995 0.999 1.000 0.997 0.981 0.670 0.674 0.655 0.661 0.449 0.459 0.481 0.454 0.504 0.460
12 PepsiCaffeineFree 0.324 0.326 0.330 0.333 0.732 0.752 0.752 0.752 0.995 0.999 0.999 1.000 0.981 0.675 0.679 0.664 0.671 0.458 0.465 0.484 0.461 0.509 0.458
13 MountainDew 0.325 0.328 0.332 0.334 0.746 0.735 0.735 0.733 0.978 0.981 0.981 0.982 1.000 0.676 0.675 0.656 0.667 0.479 0.492 0.510 0.489 0.536 0.488
14 Seven-Up 0.319 0.321 0.325 0.329 0.652 0.648 0.644 0.642 0.646 0.644 0.641 0.641 0.662 1.000 0.993 0.982 0.988 0.467 0.477 0.490 0.464 0.359 0.316
15 Seven-UpDiet 0.321 0.325 0.329 0.332 0.648 0.645 0.642 0.641 0.643 0.642 0.640 0.641 0.661 0.998 1.000 0.990 0.991 0.458 0.469 0.481 0.449 0.353 0.304
16 DrPepperSugarFree 0.326 0.329 0.333 0.337 0.652 0.644 0.642 0.641 0.638 0.640 0.639 0.641 0.663 0.995 0.996 1.000 0.995 0.453 0.458 0.468 0.439 0.354 0.296
17 DrPepper 0.325 0.328 0.332 0.336 0.659 0.650 0.648 0.646 0.643 0.645 0.644 0.646 0.669 0.995 0.996 0.999 1.000 0.463 0.469 0.476 0.453 0.365 0.304
18 A&W_Diet 0.233 0.238 0.241 0.243 0.592 0.572 0.570 0.568 0.471 0.475 0.473 0.475 0.511 0.558 0.555 0.562 0.564 1.000 0.990 0.977 0.984 0.754 0.712
19 A&W 0.234 0.240 0.242 0.245 0.593 0.574 0.572 0.569 0.472 0.476 0.473 0.476 0.512 0.561 0.557 0.564 0.567 1.000 1.000 0.979 0.979 0.755 0.721
20 RiteColaDiet 0.222 0.228 0.230 0.233 0.601 0.588 0.586 0.584 0.482 0.486 0.483 0.484 0.516 0.541 0.537 0.539 0.544 0.990 0.989 1.000 0.979 0.754 0.722
21 RiteColaRedRasberry 0.224 0.230 0.232 0.235 0.598 0.579 0.578 0.576 0.476 0.479 0.477 0.479 0.515 0.538 0.534 0.540 0.546 0.994 0.994 0.996 1.000 0.750 0.717
22 LiptonBrisk 0.216 0.220 0.224 0.224 0.573 0.546 0.544 0.543 0.556 0.559 0.557 0.560 0.583 0.399 0.395 0.402 0.406 0.747 0.747 0.747 0.750 1.000 0.948
23 LiptonBriskDiet 0.218 0.223 0.226 0.227 0.568 0.541 0.539 0.538 0.547 0.552 0.550 0.553 0.577 0.394 0.391 0.398 0.402 0.748 0.748 0.747 0.751 0.999 1.000

 
* The lower triangular is for the static correlation coefficients of price variables and the upper triangular is for the static correlation coefficients of quantity variables  
* The shaded areas represent the identified groups. 
* See Appendix D for the description of variables, where variables are in the same order. 
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Note that the ordering of variables and groups, which is listed in Appendix D, correspond to the 

ordering in correlation matrix. The numbering for each of the groups follows the different 

ordering for the consistency in notations for the subsequent analyses.  

The above classification results can be interpreted as follows: (a) The products of group 

1 and 2 correspond to the products of Coca-Cola company (Coca-Cola and Sprite) and Pepsi 

company (Pepsi-Cola and Mountain Dew) respectively. (b) The products of group 3 and 5 

correspond to the products of competing companies (Seven-Up and Dr Pepper) and following 

companies (A&W and Rite-Cola) respectively, given that the Coca-Cola and Pepsi companies 

can be interpreted as the market leaders. (c) The products of group 6 and 4 correspond to the 

products of different substitutive groups for the carbonate soft drink products. The Sunkist and 

Canada Dry brands are identified as a homogenous group, although they represent two different 

types of substitute for the carbonate soft drink products. The Lipton Brisk product group shows 

different relationships across other groups and thus it is identified distinct group, although this 

group is closely related with group 5. 

The resulting classification based on the inductive procedure can be compared with other 

standard classifications, which rely on the researchers’ intuitive choices, for the soft drink 

products in the literature. For example, one standard classifications scheme for the soft drink 

products is based on intuitive choices among possible combinations of assumed multi-stage 

budgeting structures as follows: (a) All soft drinks are classified as the branded, private label, 

and all-other products and (b) The branded soft drinks are classified as Cola and Clear sub-

segments. (c) The Cola sub-segment consists of Coke, Pepsi, RC Cola and Dr Pepper. On the 

other hand, the Clear sub-segment consists of Sprite, 7-Up and Mt. Dew (Dhar, Chavas, and 

Gould, 2003). Comparing with this and other deductive classification, the inductive classification 

of this study has following distinctive features: (a) The Cola and Clear sub-segments are not 

identified. (i) Sprite and Mountain Dew brands belong in their companies’ brands, Coca-Cola 

and Pepsi-Cola respectively. (ii) The Seven-Up brand forms a distinct group with the Dr Pepper 

brand. (iii) The Rite-Cola brand forms a distinct group with the A&W brand. (b) The substitutive 

products for the carbonate soft drink products are classified as two distinctive groups, where one 

group consists of Sunkist and Canada Dry brands and the other group consists of Lipton Brisk 

product. (c) Diet or caffeine free products do not form distinctive groups. Note that Dhar, Chavas, 

and Gould (2003) find that classifications based on the Cola and Clear sub-segments are 

empirically rejected. In this respect, it can be argued that the classification inductively identified 
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from the data itself in this study provides another plausible classification scheme for soft drink 

products. 

The consistent aggregation condition can be empirically tested, where the classification 

is based on the sorted correlation matrices and the aggregation is based on the index number 

theory. Note that different index number formulas are used for actual aggregation procedure to 

decide weighting schemes for aggregating disaggregated original variables into representative 

aggregate variables within each identified group. It is for the robustness check of test results, 

given that the test is actually a joint test for both classification and aggregation. The following 

different index number formulas are used: Tornqvist-Theil (dd), Fisher (ff), Paasche (pp), 

Laspeyres (ll), Fisher with chain (fc), Paasche with chain (pc), Laspeyres with chain (lc), Unit 

value (uv), Quantity share weighted index (qw), and Expenditure share weighted index (ew). The 

Tornqvist-Theil index is primary used in this study. The preference toward the Tornqvist-Theil 

index, especially rather than the Fisher index, is due to facts that unlike the Fisher index, the 

Tornqvist-Theil index does not invoke the problematic assumption of a homothetic or linear 

homogeneous utility function as discussed in chapter II. Two types of consistent aggregation 

conditions are empirically tested and compared. Note that both tests are conducted for both price 

and quantity variables due to our interest in the alternative specification among direct, inverse, 

and mixed demand system.  

First, the compositional stability condition of ( ) 0, =XdCov n  in nnn dHXx +=  is 

empirically tested by using Hausman type misspecification test of 0:0 =nH γ in 
IV

nnnn IVHXx εγ +⋅+= , where nx  are disaggregated micro-variables of a specific group and 

X  are corresponding aggregated macro-variables of a specific group. The IV  is an Instrumental 

Variable such that IV is closely correlated with regressor X  (relevance condition of IV ) and 

independent of error nd  (validity condition of IV ). In this study, we choose to use the total 

expenditure variable, which is calculated by aggregating the price and quantity macro-variables, 

as the instrumental variable based on the following reasoning: (a) Given that the total 

expenditure is closely related with the aggregated price and quantity variables as in estimated 

aggregated demand systems, the relevance condition holds. (b) The validity condition of total 

expenditure variable as instrumental variable can also hold, either when each of the idiosyncratic 

variations of disaggregated price or quantity variable are canceled each other in calculating total 

expenditure, or when the idiosyncratic variation of individual price or quantity variable, which is 
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not captured by the common variation of representative macro-variables of a specific group, does 

not have dependencies on the total expenditure variable, which captures the common variation of 

an entire group of commodities within the demand system through group-representative price 

and quantity macro-variables.  

The empirical results of the compositional stability condition are presented in Table 3.3. 

The empirical test results of the compositional stability condition can be summarized as follows, 

given that a high p-value across almost all test implies a high probability of 0:0 =nH γ in 
IV

nnnn IVHXx εγ +⋅+=  , which in turn implies that ( ) 0, =XdCov n  in nnn dHXx += : (a) The 

possible bias due to classification and aggregation for price variable can be ignored and thus the 

use of aggregate price variable for representing each group can be justified, when price variables 

are used as explanatory variables. (b) The possible bias due to classification and aggregation for 

quantity variable can be ignored and thus the use of aggregate quantity variable for representing 

each group can be justified, when quantity variables are used as explanatory variables. (c) The 

classification itself, which is inductively identified, can be empirically justified in terms of both 

price and quantity variables, given that the results are robust with respect to different index 

number formulas for aggregation.  

For the comparison with the empirical finding for the Clear soft drink group in Dhar, 

Chavas, and Gould (2003), the Sprite, Mt. Dew, 7-up, and 7-up diet are tested as a one 

homogeneous group based on the compositional stability condition. The p-values for 0:0 =nH γ  

are 0.0018 (Sprite), 0.0001 (Mt. Dew), 0.00027 (7-up), and 0.0029 (7-up diet) in terms of the 

price variables and 0.000 for all the products in terms of quantity variables, when the Tornqvist-

Theil index is used for price and quantity aggregates. This result is consistent with the empirical 

rejection of homogeneity of Sprite, Mt Dew, and 7-up products in Dhar, Chavas, and Gould 

(2003) and thus provides additional evidence for the non-existence of the Clear sub-group. 

Second, Lewbel’s generalized compositional commodity condition for differential 

demand system is tested based on the correlation test of ( ) 0,:0 =XdCorrH Lewbel
n , where 

Xxd n
Lewbel
n −≡ . The empirical results of the unit root test (UR-test) for micro- and macro- 

variables imply stationarity of transformed variables in differential demand system, where unit 

root test results for disaggregate variables are in the column vector and those for aggregate 

variables are in the row vector under the heads of UR-Test for each group (Table 3.5). These 

results of unit root test are robust with respect to other specifications in unit root test. These 
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results are consistent with the observation in the demand literature that the differential demand 

system has been considered as appropriate specification to deal with the possible non-stationarity 

problems.  

The empirical results of the generalized compositional commodity condition are 

presented in Table 3.4. The empirical test results for Lewbel’s generalized compositional 

commodity condition can be summarized as follows, given that high p-value implies high 

probability of ( ) 0,:0 =XdCorrH Lewbel
n  where Xxd n

Lewbel
n −≡ : (a) The possible bias due to 

classification and aggregation for price variable can be ignored and thus the use of aggregate 

price variable for representing each group can be justified, when price variables are used as 

explanatory variables. (b) The possible bias due to classification and aggregation for quantity 

variable can not be ignored and thus the use of aggregate quantity variable for representing each 

group can not be justified, when quantity variables are used as explanatory variables. (c) The test 

results are ambiguous for classification itself. The classification itself can be empirically justified 

in terms of price variables but it can not be justified in terms of quantity variables. 

The different implications from the two test approaches of the compositional stability 

condition and Lewbel’s generalized compositional commodity condition for quantity variables 

can be explained based on the interpretation of the Lewbel’s condition in the context of Theil’s 

aggregation theory. As discussed, the ambiguity exists in the arbitrary choice on the 

proportionality factors 1=c  in relationship between micro-variables and macro-variable for each 

group nnn cXx ε+= . The choice of 1=c  is restrictive in the context of Theil’s aggregation 

theory, because it implies that the true macro-parameters should be a simple sum of micro-

parameters. However, there is no a prior reason that the true macro-parameters can not be a 

simple average of micro-parameters ( Nc 1= ), for example. On the other hand, the 

compositional stability condition considers these proportional factors to be the empirically 

estimated, without imposing any numerical restrictions except their stability. When a high 

probability of the proportionality factor 1=c  in nnn cXx ε+=  is empirically found, the same 

test results for the consistent aggregation condition are expected from the two test approaches. 

On the other hand, the low p-value of 1:0 =ncH  can explain the different results from the two 

test approaches. The empirical test results of 1:0 =ncH  in nnn cXx ε+=  are presented in Table 

3.5. In general, high p-values are found for price variables, which can explain the same 

implications of two test approaches. On the other hand, low p-values are found for quantity 
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Table 3.3. Test for Compositional Stability Condition 
 

Var. # Variable Names dd ff pp ll fc pc lc uv qw ew dd ff pp ll fc pc lc uv qw ew
01 SunkistStrawberry 0.146 0.070 0.153 0.070 0.149 0.205 0.178 0.152 0.064 0.048 0.014 0.012 0.013 0.012 0.012 0.012 0.012 0.015 0.012 0.031
02 SunkistOrange 0.077 0.207 0.174 0.595 0.076 0.063 0.142 0.172 0.761 0.778 0.689 0.692 0.688 0.704 0.688 0.686 0.691 0.688 0.696 0.730
03 CnadaDryGinger 0.050 0.113 0.113 0.052 0.048 0.081 0.057 0.111 0.022 0.020 0.700 0.695 0.695 0.699 0.698 0.704 0.695 0.699 0.709 0.898
04 CandaDryGngrAle 0.296 0.427 0.375 0.805 0.289 0.254 0.314 0.378 0.659 0.638 0.549 0.537 0.549 0.540 0.536 0.543 0.533 0.545 0.538 0.379
05 Sprite 0.468 0.542 0.990 0.143 0.535 0.597 0.156 0.993 0.145 0.190 0.256 0.241 0.131 0.414 0.296 0.156 0.443 0.133 0.139 0.665
06 CokeClassic 0.577 0.645 0.552 0.137 0.673 0.695 0.587 0.585 0.111 0.155 0.927 0.935 0.877 0.805 0.951 0.894 0.909 0.878 0.893 0.560
07 CokeDiet 0.672 0.738 0.500 0.247 0.765 0.644 0.496 0.535 0.213 0.269 0.781 0.795 0.992 0.651 0.822 0.737 0.879 0.991 0.759 0.402
08 CokeDietCaffeineFree 0.978 0.977 0.382 0.898 0.959 0.513 0.323 0.418 0.990 0.961 0.913 0.912 0.821 0.946 0.911 0.961 0.764 0.818 0.945 0.893
09 Pepsi 0.218 0.264 0.937 0.119 0.267 0.815 0.194 0.933 0.127 0.165 0.082 0.080 0.100 0.076 0.092 0.096 0.080 0.099 0.077 0.020
10 PepsiDiet 0.628 0.606 0.627 0.132 0.673 0.827 0.892 0.652 0.175 0.181 0.206 0.219 0.250 0.175 0.222 0.252 0.171 0.245 0.292 0.041
11 PepsiDietCaffeineFree 0.713 0.786 0.356 0.825 0.715 0.511 0.352 0.362 0.752 0.832 0.735 0.716 0.718 0.766 0.730 0.713 0.791 0.709 0.663 0.653
12 PepsiCaffeineFree 0.275 0.333 0.164 0.186 0.289 0.275 0.067 0.164 0.160 0.198 0.148 0.153 0.165 0.132 0.156 0.169 0.124 0.177 0.183 0.066
13 MountainDew 0.051 0.113 0.190 0.020 0.066 0.187 0.019 0.216 0.012 0.017 0.624 0.594 0.487 0.745 0.599 0.467 0.758 0.484 0.552 0.680
14 Seven-Up 0.057 0.039 0.071 0.033 0.054 0.015 0.027 0.064 0.041 0.047 0.206 0.261 0.205 0.211 0.202 0.127 0.271 0.236 0.217 0.131
15 Seven-UpDiet 0.152 0.165 0.123 0.233 0.153 0.225 0.149 0.112 0.271 0.244 0.088 0.065 0.090 0.085 0.096 0.093 0.086 0.092 0.084 0.048
16 DrPepperSugarFree 0.147 0.169 0.132 0.235 0.140 0.069 0.058 0.128 0.235 0.261 0.594 0.641 0.587 0.600 0.588 0.550 0.630 0.605 0.603 0.392
17 DrPepper 0.069 0.085 0.066 0.154 0.065 0.031 0.026 0.059 0.156 0.168 0.986 0.984 0.997 0.971 0.986 0.972 0.998 0.997 0.977 0.661
18 A&W_Diet 0.029 0.035 0.042 0.040 0.027 0.011 0.046 0.042 0.035 0.061 0.019 0.017 0.018 0.017 0.008 0.026 0.020 0.018 0.017 0.014
19 A&W 0.019 0.022 0.028 0.025 0.017 0.005 0.026 0.028 0.023 0.056 0.066 0.049 0.060 0.064 0.062 0.075 0.053 0.064 0.058 0.039
20 RiteColaDiet 0.064 0.051 0.054 0.069 0.062 0.075 0.042 0.052 0.068 0.196 0.022 0.018 0.023 0.024 0.013 0.025 0.027 0.025 0.025 0.064
21 RiteColaRedRasberry 0.206 0.129 0.186 0.074 0.202 0.367 0.156 0.190 0.106 0.151 0.015 0.014 0.015 0.013 0.013 0.015 0.011 0.015 0.013 0.013
22 LiptonBrisk 0.795 0.717 0.897 0.583 0.795 0.681 0.763 0.898 0.562 0.555 0.039 0.033 0.052 0.034 0.034 0.033 0.035 0.033 0.033 0.046
23 LiptonBriskDiet 0.398 0.426 0.329 0.576 0.403 0.386 0.350 0.332 0.554 0.548 0.105 0.092 0.138 0.090 0.094 0.094 0.097 0.096 0.092 0.127

Quantity variablesPrice variables

 
* Aggregate variables are calculated based on different index number formulas.  
   For example, dd represents aggregation based on Tornqvist-Theil Index number. See the discussion part in the text for detail pp.108. 
* All the values are the p-values for 0:0 =nH γ  in IV

nnnn IVHXx εγ +⋅+= , where IV  is the total expenditure variable as the instrumental variable.
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Table 3.4. Test for Lewbel’s Composite Commodity Condition 
 

Var. # Variable Names dd ff pp ll fc pc lc uv qw ew dd ff pp ll fc pc lc uv qw ew
01 SunkistStrawberry 0.458 0.559 0.550 0.572 0.457 0.441 0.478 0.550 0.494 0.495 0.197 0.202 0.203 0.202 0.196 0.194 0.199 0.203 0.203 0.019
02 SunkistOrange 0.126 0.087 0.077 0.098 0.126 0.128 0.126 0.077 0.100 0.100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
03 CnadaDryGinger 0.070 0.264 0.269 0.305 0.071 0.094 0.071 0.269 0.200 0.200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
04 CandaDryGngrAle 0.807 0.908 0.900 0.909 0.807 0.796 0.831 0.900 0.963 0.963 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
05 Sprite 0.748 0.670 0.209 0.595 0.659 0.483 0.774 0.212 0.614 0.610 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
06 CokeClassic 0.854 0.804 0.206 0.547 0.754 0.433 0.378 0.204 0.552 0.551 0.005 0.006 0.036 0.000 0.007 0.014 0.004 0.036 0.036 0.959
07 CokeDiet 0.740 0.699 0.177 0.797 0.654 0.382 0.305 0.176 0.802 0.802 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
08 CokeDietCaffeineFree 0.694 0.658 0.175 0.930 0.619 0.368 0.303 0.174 0.934 0.934 0.038 0.038 0.038 0.036 0.038 0.046 0.030 0.038 0.038 0.000
09 Pepsi 0.072 0.094 0.352 0.076 0.090 0.333 0.067 0.370 0.079 0.079 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
10 PepsiDiet 0.688 0.659 0.951 0.603 0.706 0.996 0.996 0.920 0.783 0.783 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
11 PepsiDietCaffeineFree 0.334 0.391 0.361 0.175 0.366 0.392 0.132 0.344 0.146 0.146 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
12 PepsiCaffeineFree 0.127 0.159 0.188 0.044 0.149 0.207 0.037 0.178 0.037 0.037 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
13 MountainDew 0.225 0.263 0.367 0.144 0.251 0.394 0.123 0.354 0.133 0.133 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
14 Seven-Up 0.112 0.113 0.085 0.150 0.112 0.108 0.122 0.088 0.152 0.152 0.732 0.726 0.739 0.712 0.732 0.733 0.730 0.737 0.737 0.888
15 Seven-UpDiet 0.976 0.966 0.990 0.947 0.976 0.978 0.979 0.998 0.935 0.934 0.727 0.720 0.734 0.706 0.727 0.729 0.725 0.732 0.732 0.578
16 DrPepperSugarFree 0.559 0.543 0.542 0.542 0.559 0.561 0.555 0.536 0.584 0.585 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
17 DrPepper 0.066 0.067 0.069 0.065 0.066 0.067 0.065 0.067 0.064 0.064 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010
18 A&W_Diet 0.972 0.967 0.931 0.968 0.974 0.825 0.904 0.931 0.888 0.889 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
19 A&W 0.678 0.660 0.633 0.662 0.680 0.559 0.788 0.633 0.613 0.614 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
20 RiteColaDiet 0.725 0.856 0.864 0.888 0.724 0.869 0.632 0.864 0.822 0.823 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
21 RiteColaRedRasberry 0.800 0.862 0.988 0.753 0.799 0.944 0.709 0.988 0.743 0.743 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
22 LiptonBrisk 0.268 0.204 0.191 0.220 0.269 0.239 0.306 0.191 0.226 0.226 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
23 LiptonBriskDiet 0.196 0.243 0.273 0.218 0.196 0.217 0.182 0.273 0.224 0.224 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Price variables Quantity variables

 
* Aggregate variables are calculated based on different index number formulas.  
   For example, dd represents aggregation based on Tornqvist-Theil Index number. See the discussion part in the text for detail pp.108. 
* All the values are the p-values for ( ) 0,:0 =XdCorrH Lewbel

n
 where Xxd n

Lewbel
n −≡ .
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Table 3.5. Tests for the Unit Root and the Proportionality Factors 
 

dd ff pp ll fc pc lc uv qw ew dd ff pp ll fc pc lc uv qw ew
dlnP06 UR-Test -11.55 -11.54 -11.55 -11.54 -11.55 -11.53 -11.57 -11.55 -11.54 -11.54 dlnQ06 UR-Test -10.95 -10.95 -10.95 -10.95 -10.95 -10.95 -10.95 -10.95 -10.95 -10.93

dln(p_01) -11.61 0.57 0.67 0.66 0.50 0.58 0.34 0.44 0.65 0.52 0.51 dln(q_01) -11.13 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.00
dln(p_02) -11.52 0.93 0.78 0.76 0.55 0.95 0.72 0.77 0.77 0.67 0.68 dln(q_02) -10.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dln(p_03) -11.54 0.27 0.35 0.68 0.46 0.26 0.40 0.26 0.68 0.78 0.79 dln(q_03) -10.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dln(p_04) -11.51 0.43 0.14 0.18 0.11 0.43 0.47 0.41 0.18 0.12 0.13 dln(q_04) -10.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dlnP01 UR-Test -11.10 -11.09 -10.98 -11.14 -11.09 -13.81 -10.72 -10.98 -11.14 -11.14 dlnQ01 UR-Test -10.86 -10.85 -10.84 -10.87 -10.85 -10.76 -10.90 -10.84 -10.84 -10.88
dln(p_05) -10.69 0.86 0.84 0.31 0.35 0.79 0.93 0.77 0.31 0.36 0.36 dln(q_05) -10.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dln(p_06) -11.15 0.53 0.54 0.08 0.85 0.47 0.26 0.16 0.08 0.82 0.82 dln(q_06) -10.89 0.02 0.03 0.10 0.00 0.03 0.02 0.04 0.10 0.10 0.81
dln(p_07) -11.16 0.67 0.66 0.10 0.37 0.59 0.30 0.20 0.10 0.37 0.37 dln(q_07) -10.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dln(p_08) -11.04 0.94 0.92 0.15 0.19 0.83 0.40 0.35 0.15 0.20 0.19 dln(q_08) -10.90 0.31 0.32 0.30 0.31 0.32 0.43 0.18 0.29 0.29 0.00

dlnP02 UR-Test -13.19 -13.19 -13.11 -11.45 -13.17 -13.10 -13.20 -13.11 -11.46 -11.46 dlnQ02 UR-Test -10.38 -10.38 -10.37 -10.39 -10.38 -10.37 -10.38 -10.37 -10.37 -10.39
dln(p_09) -11.59 0.34 0.47 0.94 0.29 0.42 0.94 0.12 0.92 0.30 0.31 dln(q_09) -10.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dln(p_10) -11.43 0.72 0.78 0.62 0.21 0.80 0.62 0.78 0.59 0.29 0.28 dln(q_10) -10.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dln(p_11) -13.10 0.53 0.55 0.30 0.72 0.52 0.31 0.25 0.29 0.64 0.64 dln(q_11) -10.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dln(p_12) -13.11 0.16 0.18 0.12 0.15 0.17 0.12 0.04 0.11 0.13 0.13 dln(q_12) -10.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dln(p_13) -12.51 0.28 0.41 0.51 0.20 0.33 0.55 0.16 0.48 0.18 0.17 dln(q_13) -14.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dlnP03 UR-Test -11.25 -11.26 -11.26 -11.26 -11.25 -11.27 -11.22 -11.26 -11.26 -11.26 dlnQ03 UR-Test -13.53 -13.52 -13.53 -13.52 -13.53 -13.53 -13.52 -13.53 -13.53 -13.47
dln(p_14) -11.27 0.25 0.28 0.27 0.30 0.26 0.33 0.13 0.28 0.29 0.27 dln(q_14) -13.39 0.46 0.46 0.47 0.45 0.42 0.46 0.48 0.50 0.50 0.53
dln(p_15) -11.25 0.85 0.75 0.82 0.73 0.85 0.88 0.92 0.82 0.75 0.75 dln(q_15) -13.38 0.80 0.80 0.80 0.82 0.80 0.81 0.80 0.80 0.80 0.93
dln(p_16) -11.17 0.84 0.88 0.86 0.91 0.84 0.97 0.65 0.85 0.98 0.98 dln(q_16) -13.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dln(p_17) -11.26 0.06 0.06 0.06 0.07 0.06 0.09 0.03 0.06 0.07 0.06 dln(q_17) -13.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

dlnP05 UR-Test -11.92 -11.93 -11.93 -11.94 -11.92 -11.87 -11.94 -11.93 -11.93 -11.93 dlnQ05 UR-Test -10.45 -10.45 -10.45 -10.45 -10.45 -10.44 -10.46 -10.45 -10.45 -10.47
dln(p_18) -11.91 0.81 0.69 0.80 0.62 0.80 0.91 0.70 0.80 0.71 0.71 dln(q_18) -10.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dln(p_19) -11.99 0.64 0.72 0.63 0.78 0.64 0.47 0.82 0.63 0.74 0.74 dln(q_19) -11.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dln(p_20) -11.90 0.83 0.98 0.90 0.98 0.83 0.88 0.75 0.90 0.90 0.90 dln(q_20) -10.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dln(p_21) -9.86 0.74 0.69 0.56 0.85 0.75 0.53 0.85 0.56 0.88 0.88 dln(q_21) -10.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dlnP04 UR-Test -12.63 -12.63 -12.63 -12.64 -12.63 -12.64 -12.62 -12.63 -12.64 -12.64 dlnQ04 UR-Test -11.69 -11.69 -11.69 -11.69 -11.69 -11.69 -11.69 -11.69 -11.69 -11.71
dln(p_22) -12.63 0.04 0.03 0.03 0.02 0.04 0.05 0.06 0.03 0.01 0.07 dln(q_22) -11.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dln(p_23) -12.64 0.04 0.05 0.07 0.02 0.04 0.06 0.04 0.07 0.01 0.07 dln(q_23) -15.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Price Variables Quantity Variables

 
* Aggregate variables are calculated based on different index number formulas.  
   For example, dd represents aggregation based on Tornqvist-Theil Index number. See the discussion part in the text for detail pp.108. 
* Unit Root test (UR-Test) is based on no constant and no trend with BIC lag length selection specification, where critical values are -2.58 (1%), -1.95 (5%), -1.62 (10%).  

The column vector of UR-Test is for disaggregate variables and row vector of UR-Test is for aggregate variables.  
* All other values are the p-values for 1:0 =ncH  in 

nnn cXx ε+⋅= . 
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variables, which can explain the different implications of two test approaches of the 

compositional stability condition and Lewbel’s generalized compositional commodity condition. 

 

Causality for Identification  

In consumer behavior study, the demand theory provides the full modeling spectrums of 

monotone set of direct or inverse demand functions and mixed demand functions with their 

properties such as homogeneity, symmetry, negativity, adding-up, and relation of compensated 

and uncompensated demand functions. The choice among direct, inverse, and mixed 

specifications has been usually based on the researchers’ intuition about product properties or 

market characteristics of a specific commodity. However, given that (a) the choice of 

specifications is not trivial in empirical modeling to measure consumers’ responsiveness. (b) 

some types of deductive properties can bring subjectivities or ambiguities into the empirical 

results, it is better to pursue an inductive procedure for this identification issue. 

The specification choice is closely related with the identification issue of the local causal 

structure between price and quantity for a specific commodity. When we choose either quantity-

dependent or price-dependent specification, we implicitly assume a local causal structure, since 

the direct (or inverse) demand function is implied by the causal structure that price (or quantity) 

variable causes quantity (or price) variable. Here we use graphical causal models to inductively 

derive this local causal structure. This empirically derived causal structure through the proposed 

methods of DAG can be used to decide dependent and explanatory variable for a specific 

commodity demand function within the demand system. Note that in the preliminary study for 

causal structures in the disaggregated original level data set, some causal relationships between 

price 1p  and quantity 1q  for the same commodity are statistically broken. It is because high 

correlation between 1p  and 2p  can induce ( ) ( )21121 |,| ppPqppP =  through ( ) 1| 21 ≈ppP , when 

the other commodity’s price 2p  has a high co-movement with 1p . Given the observation that 

many variables in soft drink products move very closely as empirically measured in aggregation 

section, the (probabilistic) stability condition of the graphical causal model is violated and thus 

DAG method can not be used for disaggregate level data set. Note that this problem is similar to 

the multicollinearity problem, which makes it difficult to obtain precise estimates of the separate 

effects of the variables in the regression method. 

The compositional stability condition provides the possibility to address this issue in 

using the graphical causal model. The use of aggregate variables to infer causal relationships 
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among observed disaggregate variables can be justified based on the compositional stability 

condition discussed in the aggregation theory. The identified block diagonal pattern of 

correlation matrixes and the empirically tested compositional stability condition discussed in 

aggregation section imply that the observed disaggregate variables meet the condition of 

compositional stability condition. This condition in turn implies that there exists not only the 

possibility of obtaining interpretable macro-variables as the representative aggregate of 

homogeneous disaggregate micro-variables, but also the possibility of getting interpretable 

macro-parameters as the representative aggregate of corresponding micro-parameters for the 

subsequence analysis. This means that when the disaggregate variables can be legitimately 

grouped and represented by aggregate variables, it is possible to use aggregate variables to 

capture (causal) relationships among disaggregate variables through (causal) relationships 

among aggregate variables as the legitimate representatives as long as the compositional stability 

conditions hold among disaggregate variables. Based on the identified compositional stability 

condition discussed in aggregation section, (causal) relationships among disaggregate micro-

variables through relationships among representative aggregated macro-variables are inferred. 

The PC algorithm or GES algorithm is used to infer local causal structures among macro-

variables as the legitimate representative causal relationships among micro-variables. The 

empirical results are presented in Figure 3.3. and 3.4. 

Before interpreting local causal information between price and quantity for each product 

for the full use of theoretical information from the demand theory, the reason to restrict causal 

information to local one need to be discussed. We do not pursue structural equation models 

approach based on the full causal structures identified from two resulting causal structures of PC 

and GES algorithms, since (a) One of main objectives of this study is to propose inductive 

methods to infer local causal structure between price and quantity for the full use of theoretical 

development in three possible specifications of direct, inverse, and mixed demand functions. 

And thus the issues to be addressed in this study are restricted to ones related with this objective. 

(b) There remain several undecided causal directions in both results and such directions can not 

be decided without additional causal information. The undirected edges in the result of the GES 

algorithms represent the limitations to identify causal directions based on the statistical 

observations only (observational equivalence). On the other hand, the bi-directed edges in the 

result of PC algorithm imply the existence of unobserved factors. The capability of identifying 

unobserved factors between two variables, based on the tetrad relationship among partial 
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correlations, is one advantage of the PC algorithm relative to the GES algorithm. On the other 

hand, given the Markov condition (causal sufficiency and acyclic assumptions), the GES 

algorithm has following advantages relative to the PC algorithm (i) The GES algorithm does not 

require the choice of the significant level. This is advantage, given that the result of PC 

algorithm oftentimes is sensitive to the choice of the significant level. (ii) The GES algorithm 

oftentimes provides finer results than the PC algorithm. The difference is due to the fact that the 

GES algorithm is based on the numerical scores on the overall hypothetic causal structures, 

whereas the PC algorithm is based on the categorical decision on individual edges and such 

categorical decisions can be sensitive to the chosen significant level. In our results, the GES 

algorithm provides all the edges (skeleton) identified by the PC algorithm with additional edges. 

Sometimes these additional edges are important to decide the causal directions among variables. 

For example of the empirical results for soft drink data, the edge 0201 QP −  is crucial to orient 

0101 PQ →  in the GES algorithm, because this orientation is based on the unshielded collider 

pattern of 020101 QPQ ←→ . In the PC algorithm, the edge 0201 QP −  is statistically removed 

and this categorical decision can be sensitive to the specified significant level. Similar patterns 

such as 0602 PP −  for 060202 PPQ ←→  and 0302 PQ −  for 030302 QPQ ←→  can be used 

to explain the different implications for local causal structure between price and quantity 

between PC and GES algorithms. In this respect, the results of the PC algorithm need to be 

carefully used for the choice of the significant level. In fact, the local causal structure between 

price and quantity variables inferred by the PC algorithm is not robust to the change of the 

significant level. In this study, the final result of PC algorithm is based on the significant level of 

0.1, which is recommended for sample size of 100-300 (Spirtes et al., 2000).  

For the full use of theoretical information from the demand theory, all we need is the 

local causal structures between price and quantity variables for each commodity. This local 

information provides the possibility to inductively address the choice issue among three possible 

specifications of direct, inverse, and mixed demand functions. The local causal structures 

between price and quantity variables among six aggregated commodity groups identified by PC 

algorithm implies the mixed demand system, where quantity dependent specifications are 

suggested for aggregate commodities of groups of 01, 02, 03, and 04 and price dependent 

specifications are suggested for aggregate commodities of groups of 05 and 06. On the other 

hand, the local causal structure identified by GES algorithm implies the inverse demand system, 

where price dependent specifications are suggested for all the aggregate commodities.  
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*  P and Q denotes representative price and quantity indices for each group defended as  
    Group 01: Coca-Cola and Sprite, Group 02: Pepsi-Cola and Mountain Dew, Group 03: Seven-Up and Dr Pepper,  

Group 04: Lipton Brisk., Group 05: A&W and Rite-Cola, Group 06: Sunkist and Canada Dry, and E denote total expenditure variable. 
*  The result of PC algorithm is based on the significant level of 0.1, which is recommended for sample size of 100-300 (Spirtes et al., 2000). 

 
Figure 3.3. Causal Structure Inferred by PC Algorithm   Figure 3.4. Causal Structure Inferred by GES Algorithm 
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Given that the direct demand system or quantity dependent specification is oftentimes used in 

empirical models, the possibility of the price dependent or mixed demand specification implied 

from the GES algorithm and the PC algorithm results need to be interpreted. One possible 

interpretation is that (a) The soft drinks are differentiated products, where the differentiated 

products are defined as the products differentiated by taste, packing and brand-base 

advertisement to influence consumers’ perception of different brands, and (b) The retail prices 

for differentiated products can be determined by strategic pricing rules of firms incorporating 

supply and demand characteristics for these products (Dhar, Chavas, and Gould, 2003).  

Note that Dhar, Chavas, and Gould (2003) use the reduced form specification for price 

and expenditure equations to deal with possible endogeneity problem in price and expenditure 

variables. Based on the Durbin, Wu, and Hausman test, they empirically found price and 

expenditure endogeneity problem. While price endogeneity problem can be addressed by the 

price dependent specification, the expenditure endogeneity problem is not fully addressed in this 

study. The reason for this is that (a) The instrumental variables in the expenditure equation need 

to be exogenous. To identify the exogeneity of those instrumental variables, we need additional 

causal information, which requires more information of additional variables. Or exogeneity of 

instrumental variables is assumed as like the exogeneity of expenditure variables is assumed. In 

addition, (b) Developing fully structural models, where price and expenditure equations are 

specified in the analytical and estimable forms with flexible demand specifications, results in 

econometric models, which is difficult to work with either analytically or empirically due to its 

highly non-linearity (Dhar, Chavas, and Gould, 2003). However, the main reason why we do not 

pursue instrumental variable approach is the same reason why we do not pursue structural 

equation models approach based on the full causal structures identified: one of main objectives 

of this study is to propose inductive methods for the full use of theoretical development in three 

possible specifications of direct, inverse, and mixed demand functions. And thus the issues to be 

addressed in this study are restricted to ones related with this objective.  

 

Direct, Inverse, and Mixed Demand Systems  

Heretofore, the consistent aggregation condition of the compositional stability condition 

is used to define variables and the empirically derived causal structure through DAG on the 

aggregated variables is used to decide dependent and explanatory variable for a specific 

commodity demand function within the demand system. There remains another issue of deciding 
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functional form to relate dependent variable with explanatory variables for the empirical study of 

consumer behavior. Another objective in this study is to propose flexible and comparable 

functional forms for the direct, inverse, and mixed demand system.  

When we want to compare direct, inverse, and mixed demand systems, we need 

parameterize direct, inverse, and mixed demand systems in the similar degrees of flexibility in 

functional form specifications, when the flexibility means the capability of empirical model to 

allow the possible combinations of constant/variational parameterization for income (or scale) 

coefficient and Slutsky (or Antonelli) coefficient. While the Rotterdam type parameterization 

assumes that both income (or scale) coefficient and compensated price (or quantity) coefficient 

in direct (or inverse) demand system are constant parameters, the LA/AIDS parameterization 

assumes that both income (or scale) coefficient and Slutsky (or Antonelli) coefficient in direct 

(or inverse) demand system are variational parameters dependent on the budget shares. For both 

direct and inverse systems, the synthetic approach in differential family provides the flexible 

way of parameterization to incorporate the logically possible combinations of constant and/or 

variational parameterization for income (or scale) coefficient and Slutsky (or Antonelli) 

coefficient. Based on the similar logic to derive synthetic demand model in direct and inverse 

demand systems, the synthetic differential demand model is proposed for the mixed demand 

system. When we want to compare direct, inverse, and mixed demand systems, the Likelihood 

Dominance Criterion, introduced by Pollak and Wales (1991), provides plausible method to rank 

competing models as long as the competing specifications have the common dependent variables. 

If the hypotheses involve different dependent variables but are functionally related, then the 

likelihood function must be adjusted by including the appropriate Jacobian bias term. To avoid 

difficulties involved with this adjustment, the synthetic direct and inverse demand systems are 

reparameterized to have common differential AIDS dependent variables, given that the 

Rotterdam type dependent variable of synthetic models have different dependent variables 

among direct, inverse, and mixed demand function. Rotterdam type and AIDS type dependent 

variable synthetic models can be directly derived from the Rotterdam specification without 

requiring consistent and simultaneous specifications for both direct and indirect utility functions. 

By extending the common logic of these approaches, a similar synthetic functional form for the 

mixed demand system is specified in the common differential AIDS dependent variables.  

The synthetic models of direct, inverse, and mixed demand systems of the common 

differential AIDS type dependent variable are proposed for the flexible and comparable 
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functional form for the direct, inverse, and mixed demand system, which makes it possible to 

compare direct, inverse, and mixed demand systems in model selection frameworks. The direct 

demand system is estimated for the comparison purpose with the inverse and mixed demand 

systems, which are chosen based on the local causal structure of the GES and PC algorithms 

respectively. The estimated parameters in all three direct, inverse, and mixed synthetic demand 

systems of the common differential AIDS type dependent variable are presented in Table 3.6. All 

three types of demand systems are estimated by the nonlinear seemingly unrelated regression 

estimation method with allowing autoregressive errors (SHAZAM). The first order 

autocorrelation is used with the restriction that the autocorrelation coefficients are constrained to 

be the same in all equations. The homogeneity, symmetry, and adding-up properties are used for 

the economy of parameters in empirical models. One equation is dropped in estimation step and 

recovered by using homogeneity, symmetry, and adding-up conditions for the direct and inverse 

demand. Since the adding-up condition in direct or inverse demand makes the demand system 

singular. On the other hand, for the mixed demand, the adding-up condition holds only at a point 

and thus does not induce the singularity in the resulting system. All the equations are used in 

estimation for the mixed demand. The number of independent parameters in all the demand 

system is 23, which include the two synthetic parameters and one autocorrelation correction term.  

For the comparison of different parameterization assumptions of the constant and/or 

variation for the income (or scale) coefficient and Slutsky (or Antonelli) coefficient within each 

of direct, inverse, and mixed demand system, the Wald statistic, which  is distributed chi-square 

with the same degrees of freedom as the number of restrictions, is used. For the comparison of 

competing models of three different specifications of the direct, inverse, and mixed demand 

system, three model selection rules, the Akaike Information, Schwarz information criterion, and 

the Pollak and Wales’ likelihood dominance criterion, are used. The results of the model 

selection rules can be interpreted as the ranking among the competing models, rather than the 

rejection or accepting one of the competing models. Given that all three competing models have 

the same number of independent parameters, all three model selection rules are used based on 

the comparison of the estimated log-likelihood function values such as the higher log-likelihood 

value, the higher ranking among competing models. The empirical results of these comparison 

statistics are presented in Table 3.7. 
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Table 3.6. Parameter Estimates 
 

Coefficient Estimate Std. Error t-Statistic p-value Coefficient Estimate Std. Error t-Statistic p-value Coefficient Estimate Std. Error t-Statistic p-value

th1 1.3852 0.0338 41.0025 0.0000 th1 0.9609 0.0084 113.9911 0.0000 th1 0.1086 0.0502 2.1641 0.0305

th2 4.7255 0.1193 39.6028 0.0000 th2 0.1852 0.0068 27.0705 0.0000 th2 -0.1618 0.0464 -3.4893 0.0005

c01 -0.1119 0.0110 -10.2124 0.0000 d01 -0.0144 0.0027 -5.3288 0.0000 a01 0.2790 0.0183 15.2047 0.0000

c02 -0.0813 0.0114 -7.1276 0.0000 d02 -0.0102 0.0030 -3.4277 0.0006 a02 0.3470 0.0200 17.3620 0.0000

c03 -0.0771 0.0086 -8.9905 0.0000 d03 -0.0104 0.0023 -4.5423 0.0000 a03 0.2233 0.0165 13.5553 0.0000

c04 -0.0363 0.0021 -17.0796 0.0000 d04 -0.0072 0.0007 -10.2280 0.0000 a04 0.0280 0.0060 4.6852 0.0000

c05 -0.0700 0.0070 -9.9813 0.0000 d05 -0.0085 0.0019 -4.5498 0.0000  b05 -0.0010 0.0047 -0.2020 0.8399

 c06* -0.0086 0.0071 -1.2171 0.2236  d06* 0.0116 0.0041 2.8590 0.0043    b06* 0.0150 0.0031 4.9234 0.0000

c11 0.1552 0.0486 3.1933 0.0014 d11 -0.0046 0.0024 -1.9450 0.0518 a11 -1.1976 0.0683 -17.5455 0.0000

c12 0.0393 0.0319 1.2314 0.2182 d12 -0.0019 0.0013 -1.4661 0.1426 a12 0.6802 0.0566 12.0154 0.0000

c13 -0.0851 0.0289 -2.9473 0.0032 d13 0.0002 0.0013 0.1935 0.8465 a13 0.4324 0.0504 8.5805 0.0000

c14 -0.0083 0.0108 -0.7693 0.4417 d14 0.0002 0.0005 0.4582 0.6468  a14* 0.0759 0.0259 2.9288 0.0034

c15 -0.0626 0.0241 -2.5933 0.0095 d15 -0.0003 0.0012 -0.2691 0.7879 a22 -1.2570 0.0726 -17.3187 0.0000

 c16* -0.0385 0.0209 -1.8430 0.0653  d16* 0.0064 0.0012 5.5284 0.0000 a23 0.4667 0.0583 8.0043 0.0000

c22 0.0690 0.0466 1.4810 0.1386 d22 -0.0019 0.0024 -0.8231 0.4105   a24* 0.1007 0.0279 3.6095 0.0003

c23 -0.0027 0.0276 -0.0965 0.9232 d23 -0.0034 0.0012 -2.8513 0.0044 a33 -0.9733 0.0751 -12.9635 0.0000

c24 -0.0375 0.0111 -3.3800 0.0007 d24 0.0006 0.0005 1.2309 0.2183   a34* 0.0678 0.0232 2.9224 0.0035

c25 -0.0464 0.0256 -1.8114 0.0701 d25 -0.0005 0.0012 -0.3980 0.6906   a44* -0.2708 0.0253 -10.7210 0.0000

 c26* -0.0218 0.0208 -1.0484 0.2944  d26* 0.0071 0.0013 5.4636 0.0000  b55 -0.0374 0.0075 -5.0124 0.0000

c33 0.1427 0.0435 3.2816 0.0010 d33 -0.0003 0.0022 -0.1390 0.8894  b56 0.0071 0.0021 3.4392 0.0006

c34 -0.0133 0.0095 -1.3949 0.1631 d34 0.0005 0.0004 1.0416 0.2976  b66 -0.0383 0.0066 -5.8044 0.0000

c35 -0.0224 0.0209 -1.0699 0.2847 d35 -0.0025 0.0011 -2.2266 0.0260 r51 -0.0079 0.0085 -0.9321 0.3513

 c36* -0.0192 0.0215 -0.8928 0.3720  d36* 0.0055 0.0011 4.8862 0.0000 r52 -0.0393 0.0103 -3.7990 0.0002

c44 0.1097 0.0156 7.0345 0.0000 d44 -0.0052 0.0010 -4.9888 0.0000 r53 -0.0331 0.0107 -3.0846 0.0020

c45 -0.0322 0.0132 -2.4347 0.0149 d45 0.0017 0.0007 2.5608 0.0104   r54* -0.0156 0.0056 -2.7905 0.0053

 c46* -0.0183 0.0065 -2.8149 0.0049  d46* 0.0022 0.0004 5.5577 0.0000 r61 -0.0137 0.0077 -1.7791 0.0752

c55 0.1622 0.0391 4.1501 0.0000 d55 0.0005 0.0018 0.2620 0.7933 r62 -0.0215 0.0085 -2.5286 0.0115

 c56* 0.0014 0.0224 0.0644 0.9487  d56* 0.0011 0.0011 0.9812 0.3265 r63 -0.0394 0.0092 -4.2923 0.0000

 c66* 0.0964 0.0340 2.8321 0.0046  d66* -0.0224 0.0035 -6.4711 0.0000   r64* -0.0092 0.0035 -2.6017 0.0093

rho -0.3569 0.0303 -11.7773 0.0000 rho -0.3614 0.0296 -12.2266 0.0000 rho -0.3660 0.0278 -13.1655 0.0000

Direct Model Inverse Model Mixed Model

 
+  Each number represent each group defended as Group01: Coca-Cola and Sprite, Group02: Pepsi-Cola and Mountain Dew, Group03: Seven-Up and Dr Pepper, Group04: Lipton Brisk.,             
    Group05: A&W and Rite-Cola, and Group06: Sunkist and Canada Dry. For example, c12 corresponds to parameter in quantity equation of group01 w.r.t. group02 price variable in 

  ( )[ ] ( ) ( )[ ]∑ −−−+−−=
=

N

n
nnnnn

O
nnn

O
nn pdwwCQdwCdw

1'
'','2',1 ln1ln1 δθθ  

 

*  Coefficients with * mark  are derived based on the adding-up and homogeneity conditions. 
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Table 3.7. Comparison Statistics for Three Specifications 

Restrictions on 
Synthetic parameters Wald statistic p-value Wald statistic p-value Wald statistic p-value 

th1 = 0 1681.2049 0.0000 12993.9780 0.0000 4.6833 0.0305
th2 = 0 1568.3829 0.0000 732.8099 0.0000 12.1754 0.0005
th1 = 1 129.9852 0.0000 21.5216 0.0000 315.5424 0.0000
th2 = 1 974.8223 0.0000 14180.2140 0.0000 628.0337 0.0000

th1 = 0 & th2 = 0 3032.4904 0.0000 13000.9610 0.0000 12.6597 0.0018
th1 = 1 & th2 = 1 1059.2406 0.0000 14640.0880 0.0000 3708.4420 0.0000
th1 = 0 & th2 = 1 2485.3570 0.0000 34603.8330 0.0000 1267.3297 0.0000
th1 = 1 & th2 = 0 1642.1024 0.0000 847.4041 0.0000 967.7887 0.0000

Log-Likelihood Paramter Number Log-Likelihood Paramter Number Log-Likelihood Paramter Number
 Synthetic model 1332.2280 23 2698.7700 23 1269.1490 23

Direct Inverse Mixed

 
 

Within each of direct, inverse, and mixed demand system, all the nested Rotterdam, 

LA/AIDS, NBR, and CBS specifications, which assume the fixed restriction on the synthetic 

parameters, are strongly rejected. This test results imply that none of the four nested models is 

adequate and the synthetic model is a statistically better specification. In this respect, the same 

synthetic functional form of the common differential AIDS type dependent variable is used for 

the comparison across the direct, inverse, and mixed demand system. The estimated log-

likelihood values suggest that the inverse demand specification strongly dominates both the 

direct and the mixed demand specifications and the direct demand specification statistically 

dominates the mixed demand specifications. Note that this ordering of the statistical dominance 

is interpreted as the ranking among the competing models rather than the rejection one of the 

competing models.  

The compensated and uncompensated elasticities/flexibilities estimates with their 

standard errors and corresponding p-values for the direct, inverse, and mixed demand systems 

are presented in Table 3.8. In the results of direct demand system, the own elasticities are all 

negative and statistically significant. The expenditure elasticities are close to unity, as expected 

for the normal goods. The soft drinks are net and gross p-substitutes for each other, given that 

negative estimates Dc ,
5,4ε , Dc ,

4,5ε , D
5,4ε , D

4,5ε , and D
4,6ε  are insignificant, where Dc

nn
,

',ε  and D
nn ',ε  denote the 

compensated and uncompensated elasticities in the direct demand system. In the results of 

inverse demand system, the own flexibilities are all negative and statistically significant. The 

scale flexibilities are close to unity in absolute values, as expected for the normal goods. The soft 

drinks are gross q-substitutes for each other. Note that the compensated flexibilities in inverse 
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demand system are imperfect measures of the interaction of goods in their satisfaction of wants, 

since the dominating complementarity 0', >c
nnf  does not come from the preference structures but 

from the adding-up or homogeneity condition 01' ', =∑ =
N
n

c
nnf  together with the negativity condition 

0', <c
nnf  (Barten and Bettendorf, 1989). Note that the magnitudes of the compensated cross 

flexibilities are relatively small. In the results of mixed demand system, the own elasticities 

and/or flexibilities are all negative and statistically significant. The expenditure elasticities are 

close to unity, as expected for the normal goods. The soft drinks are net and gross substitutes 

each other, given that negative estimate Mp 1,5  is insignificant. The exceptions are Mcf ,
6,5 , Mcf ,

5,6 , Mf 6,5 , 

and Mf 5,6 , whose magnitudes are relatively small compared to other estimates. Note that the 

substitutability of the mixed compensated elasticities need not be equivalent to either p-

substitutability in terms of the direct system, nor q-substitutability in terms of the inverse system, 

where the 0' >∂∂ nn pq  means p-substitutability in terms of the direct system and the 

0' <∂∂ nn qp  q- substitutability in terms of the inverse system (Moschini and Vissa, 1993). Note 

also that the expenditure elasticities for quantity dependent group (group 01-04) measure 

percentage changes in consumption with respect to one percent increase in total expenditure as in 

the direct demand system, whereas the expenditure elasticities for price dependent group (group 

05-06) measure percentage changes in willingness to pay with respect to one percent increase in 

total expenditure. On the other hand, the scale flexibilities measure percentage changes in 

normalized price with respect to one percent increase in the proportionate increase in 

consumption. For example, for group 05 (A&W and Rite Cola), the percentage increase in 

consumption with respect to one percent increase in total expenditure is 0.749 estimated in the 

direct demand system, the percentage increase in willingness to pay with respect to one percent 

increase in total expenditure is 0.100 estimated in the mixed demand system, and the percentage 

decrease in normalized price with respect to one percent increase in the proportionate increase in 

consumption is 1.038 estimated in the inverse demand system. 
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Table 3.8. Elasticities/Flexibilities Estimates 
 

P01 P02 P03 P04 P05 P06 note Q01 Q02 Q03 Q04 Q05 Q06 Group P01 P02 P03 P04 Q05 Q06 Group
Q01 -2.871 1.468 0.596 0.193 0.289 0.313 Group01 P01 -0.152 0.045 0.037 0.010 0.019 0.041 Group01 Q01 -4.291 2.459 1.561 0.272 -0.047 -0.066 Group01

0.149 0.112 0.104 0.040 0.087 0.075 Coke 0.006 0.004 0.004 0.002 0.004 0.004 Coke 0.257 0.210 0.186 0.095 0.031 0.028 Coke
0.000 0.000 0.000 0.000 0.001 0.000 Sprite 0.000 0.000 0.000 0.000 0.000 0.000 Sprite 0.000 0.000 0.000 0.004 0.134 0.018 Sprite

Q02 1.424 -3.156 0.900 0.090 0.354 0.376 Group02 P02 0.043 -0.140 0.023 0.011 0.019 0.043 Group02 Q02 2.385 -4.372 1.635 0.352 -0.158 -0.092 Group02
0.109 0.134 0.094 0.039 0.091 0.072 Pepsi 0.004 0.006 0.004 0.002 0.004 0.005 Pepsi 0.204 0.264 0.208 0.100 0.037 0.030 Pepsi
0.000 0.000 0.000 0.020 0.000 0.000 Mt. Dew 0.000 0.000 0.000 0.000 0.000 0.000 Mt. Dew 0.000 0.000 0.000 0.000 0.000 0.002 Mt. Dew

Q03 0.841 1.310 -3.075 0.155 0.403 0.354 Group03 P03 0.052 0.034 -0.151 0.011 0.007 0.046 Group03 Q03 2.203 2.380 -4.928 0.345 -0.190 -0.220 Group03
0.147 0.137 0.194 0.049 0.108 0.110 7-up 0.006 0.006 0.009 0.002 0.006 0.006 7-up 0.263 0.303 0.394 0.121 0.055 0.048 7-up
0.000 0.000 0.000 0.002 0.000 0.001 Dr Pepper 0.000 0.000 0.000 0.000 0.198 0.000 Dr Pepper 0.000 0.000 0.000 0.004 0.001 0.000 Dr Pepper

Q04 1.108 0.533 0.629 -2.189 -0.160 0.068 Group04 P04 0.055 0.065 0.045 -0.286 0.056 0.064 Group04 Q04 1.555 2.078 1.399 -5.555 -0.347 -0.209 Group04
0.228 0.228 0.200 0.266 0.275 0.135 Lipton 0.011 0.010 0.009 0.018 0.014 0.008 Lipton 0.546 0.589 0.490 0.526 0.118 0.074 Lipton
0.000 0.020 0.002 0.000 0.561 0.616 Brisk 0.000 0.000 0.000 0.000 0.000 0.000 Brisk 0.004 0.000 0.004 0.000 0.003 0.005 Brisk

Q05 0.714 0.902 0.705 -0.069 -2.731 0.467 Group05 P05 0.047 0.048 0.013 0.024 -0.161 0.028 Group05 P05 0.028 0.312 0.270 0.135 -0.196 0.049 Group05
0.214 0.232 0.189 0.118 0.324 0.203 A&W 0.010 0.010 0.010 0.006 0.014 0.010 A&W 0.079 0.097 0.100 0.051 0.035 0.017 A&W
0.001 0.000 0.000 0.561 0.000 0.022 Rite Cola 0.000 0.000 0.198 0.000 0.000 0.006 Rite Cola 0.725 0.001 0.007 0.008 0.000 0.003 Rite Cola

Q06 0.883 1.097 0.709 0.034 0.535 -3.269 Group06 P06 0.117 0.126 0.093 0.032 0.032 -0.400 Group06 P06 0.098 0.179 0.378 0.088 0.056 -0.252 Group06
0.212 0.211 0.220 0.067 0.233 0.313 Sunkist 0.012 0.013 0.011 0.004 0.012 0.034 Sunkist 0.083 0.092 0.096 0.037 0.019 0.032 Sunkist
0.000 0.000 0.001 0.616 0.022 0.000 Canada Dry 0.000 0.000 0.000 0.000 0.006 0.000 Canada Dry 0.236 0.052 0.000 0.018 0.003 0.000 Canada Dry

P01 P02 P03 P04 P05 P06 Expenditure Q01 Q02 Q03 Q04 Q05 Q06 Scale P01 P02 P03 P04 Q05 Q06 Expenditure
Q01 -3.135 1.196 0.409 0.147 0.182 0.219 0.973 P01 -0.427 -0.239 -0.159 -0.038 -0.092 -0.056 -1.014 Q01 -4.614 2.083 1.267 0.191 -0.028 -0.044 1.136

0.150 0.111 0.104 0.040 0.087 0.075 0.020 0.006 0.004 0.004 0.002 0.004 0.004 0.006 0.260 0.208 0.186 0.096 0.031 0.028 0.038
0.000 0.000 0.000 0.000 0.036 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.046 0.363 0.110 0.000

Q02 1.126 -3.462 0.689 0.038 0.234 0.271 1.095 P02 -0.227 -0.420 -0.168 -0.036 -0.091 -0.053 -0.997 Q02 2.002 -4.819 1.287 0.257 -0.136 -0.067 1.348
0.109 0.133 0.094 0.039 0.091 0.073 0.018 0.004 0.005 0.004 0.002 0.004 0.005 0.006 0.203 0.263 0.209 0.097 0.036 0.030 0.042
0.000 0.000 0.000 0.322 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.025 0.000

Q03 0.574 1.034 -3.264 0.108 0.295 0.260 0.985 P03 -0.224 -0.250 -0.347 -0.037 -0.104 -0.051 -1.015 Q03 1.843 1.959 -5.256 0.255 -0.169 -0.196 1.269
0.146 0.137 0.193 0.050 0.109 0.110 0.028 0.006 0.005 0.009 0.002 0.006 0.006 0.008 0.263 0.302 0.398 0.121 0.055 0.048 0.066
0.000 0.000 0.000 0.029 0.007 0.018 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.035 0.002 0.000 0.000

Q04 0.939 0.359 0.509 -2.219 -0.228 0.008 0.621 P04 -0.247 -0.247 -0.169 -0.339 -0.066 -0.043 -1.113 Q04 1.357 1.846 1.218 -5.604 -0.336 -0.196 0.699
0.228 0.227 0.200 0.266 0.275 0.136 0.035 0.010 0.009 0.009 0.019 0.014 0.008 0.013 0.548 0.578 0.487 0.533 0.118 0.074 0.113
0.000 0.114 0.011 0.000 0.407 0.952 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.001 0.012 0.000 0.004 0.008 0.000

Q05 0.511 0.692 0.561 -0.104 -2.814 0.395 0.749 P05 -0.234 -0.243 -0.187 -0.025 -0.275 -0.072 -1.038 P05 -0.001 0.278 0.244 0.127 -0.194 0.051 0.100
0.213 0.231 0.189 0.119 0.325 0.204 0.055 0.011 0.009 0.010 0.006 0.014 0.010 0.015 0.079 0.095 0.100 0.051 0.034 0.017 0.028
0.017 0.003 0.003 0.378 0.000 0.053 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.993 0.004 0.015 0.012 0.000 0.002 0.000

Q06 0.532 0.734 0.460 -0.028 0.392 -3.393 1.295 P06 -0.111 -0.109 -0.069 -0.008 -0.061 -0.481 -0.840 P06 0.023 0.091 0.310 0.069 0.060 -0.247 0.265
0.211 0.210 0.220 0.067 0.233 0.314 0.069 0.015 0.016 0.013 0.004 0.012 0.035 0.041 0.085 0.094 0.097 0.037 0.019 0.031 0.045
0.012 0.000 0.036 0.677 0.092 0.000 0.000 0.000 0.000 0.000 0.057 0.000 0.000 0.000 0.787 0.331 0.001 0.058 0.002 0.000 0.000

Direct Compensated Inverse Compensated Mixed Compensated

Direct Uncompensated Inverse Uncompensated Mixed Uncompensated

 
*  P and Q denotes representative price and quantity indices for each group defended as Group 01: Coca-Cola and Sprite, Group 02: Pepsi-Cola and Mountain Dew, Group 03: Seven-Up and 
Dr Pepper, Group 04: Lipton Brisk., Group 05: A&W and Rite-Cola, Group 06: Sunkist and Canada Dry, and E denote total expenditure variable 
* In each cell, the first element is the estimates, the second is the standard error, and the third is the associated p-value. 
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The convenient and familiar forms of comparison are possible across the direct, inverse, 

and mixed demand systems in terms of one of three possible forms: the elasticities in the form of 

direct demand system, the flexibilities in the form of inverse demand system, and the elasticities 

in the form of mixed demand system. These results are retrieved based on the derived 

relationships among elasticities and/or flexibilities across the direct, inverse, and mixed demand 

systems. The relationships across the direct, inverse, and mixed demand system in terms of 

uncompensated elasticities/flexibilities retrieved from the direct, inverse, and mixed demand 

system are presented in Table 3.9. The tables in diagonal positions are replicated from the 

estimated ones and the own and expenditure/scale elasticities/flexibilities are summarized in the 

tables at the bottom positions. The own elasticities and/or flexibilities are all negative and the 

soft drinks are gross substitutes each other, given that the insignificance estimates imply the 

insignificant corresponding retrieved ones. For example, the insignificant estimate D
4,5ε  in the 

direct demand system implies the corresponding insignificant retrieved one Mp 4,5  in the mixed 

demand form retrieved from the direct system estimates. In general, the expenditure elasticities 

and scale flexibilities are close to unity, as expected for the normal goods. Recall that the 

expenditure elasticities for the direct demand system and for the quantity dependent variables 

group in the mixed demand system, the expenditure elasticities for the price dependent variables 

group in the mixed demand system, and the scale flexibility for the inverse demand system 

measure different responses of consumers with respect to the changes in different variables as 

discussed.  

The magnitudes of consumers’ response measured in three different specifications are 

different in general and some differences are not trivial. For the group 05 (A&W and Rite Cola) 

as an example, (a) The percentage increase in consumption with respect to one percent increase 

in total expenditure measured in the direct, inverse, and mixed demand systems are 0.749, 0.785, 

and 0.847 represented in the direct demand form. (b) The percentage decrease in normalized 

price with respect to one percent increase in the proportionate increase in each consumption 

measured in the direct, inverse, and mixed demand systems are 1.056, 1.038, and 0.818 

represented in the inverse demand form. (c) The percentage increase in willingness to pay with 

respect to one percent increase in total expenditure measured in the direct, inverse, and mixed 

demand systems are 0.325, 0.194, and 0.100 represented in the mixed demand form. (d) The 

percentage decrease in consumption with respect to one percent increase in its own price 

measured in the direct, inverse, and mixed demand systems are 2.814, 5.132, and 5.494  
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Table 3.9. Elasticities/Flexibilities Comparisons 
 

P01 P02 P03 P04 P05 P06 Expenditure Q01 Q02 Q03 Q04 Q05 Q06 Scale P01 P02 P03 P04 Q05 Q06 Expenditure
Q01 -3.135 1.196 0.409 0.147 0.182 0.219 0.973 P01 -0.460 -0.230 -0.133 -0.037 -0.069 -0.066 -0.995 Q01 -3.058 1.301 0.484 0.137 -0.075 -0.073 1.124
Q02 1.126 -3.462 0.689 0.038 0.234 0.271 1.095 P02 -0.215 -0.438 -0.146 -0.025 -0.073 -0.069 -0.965 Q02 1.224 -3.329 0.785 0.026 -0.096 -0.091 1.285
Q03 0.574 1.034 -3.264 0.108 0.295 0.260 0.985 P03 -0.187 -0.220 -0.405 -0.031 -0.080 -0.070 -0.993 Q03 0.682 1.181 -3.157 0.094 -0.117 -0.090 1.189
Q04 0.939 0.359 0.509 -2.219 -0.228 0.008 0.621 P04 -0.254 -0.198 -0.158 -0.477 -0.017 -0.047 -1.151 Q04 0.894 0.297 0.460 -2.210 0.082 0.007 0.550
Q05 0.511 0.692 0.561 -0.104 -2.814 0.395 0.749 P05 -0.187 -0.212 -0.152 -0.003 -0.413 -0.089 -1.056 P05 0.207 0.281 0.222 -0.039 -0.361 -0.042 0.325
Q06 0.532 0.734 0.460 -0.028 0.392 -3.393 1.295 P06 -0.163 -0.184 -0.124 -0.012 -0.085 -0.339 -0.907 P06 0.181 0.249 0.161 -0.013 -0.042 -0.300 0.419

P01 P02 P03 P04 P05 P06 Expenditure Q01 Q02 Q03 Q04 Q05 Q06 Scale P01 P02 P03 P04 Q05 Q06 Expenditure
Q01 -3.841 1.327 0.731 0.173 0.502 0.135 0.972 P01 -0.427 -0.239 -0.159 -0.038 -0.092 -0.056 -1.014 Q01 -3.687 1.476 0.891 0.163 -0.102 -0.077 1.157
Q02 1.261 -4.139 1.086 0.144 0.477 0.106 1.065 P02 -0.227 -0.420 -0.168 -0.036 -0.091 -0.053 -0.997 Q02 1.403 -4.000 1.236 0.134 -0.097 -0.063 1.226
Q03 1.029 1.604 -4.684 0.159 0.849 0.061 0.981 P03 -0.224 -0.250 -0.347 -0.037 -0.104 -0.051 -1.015 Q03 1.262 1.834 -4.424 0.144 -0.169 -0.053 1.185
Q04 1.080 0.967 0.709 -3.244 -0.174 0.010 0.652 P04 -0.247 -0.247 -0.169 -0.339 -0.066 -0.043 -1.112 Q04 1.036 0.923 0.657 -3.241 0.034 0.001 0.625
Q05 1.292 1.292 1.523 -0.081 -5.132 0.322 0.785 P05 -0.234 -0.243 -0.187 -0.025 -0.275 -0.072 -1.038 P05 0.262 0.260 0.301 -0.017 -0.197 -0.029 0.194
Q06 0.274 0.224 0.048 -0.029 0.304 -2.185 1.363 P06 -0.111 -0.109 -0.069 -0.008 -0.061 -0.481 -0.840 P06 0.162 0.139 0.064 -0.016 -0.027 -0.462 0.651

P01 P02 P03 P04 P05 P06 Expenditure Q01 Q02 Q03 Q04 Q05 Q06 Scale P01 P02 P03 P04 Q05 Q06 Expenditure
Q01 -4.619 2.002 1.146 0.148 0.215 0.223 1.055 P01 -0.405 -0.256 -0.168 -0.033 -0.086 -0.075 -1.022 Q01 -4.614 2.083 1.267 0.191 -0.028 -0.044 1.136
Q02 1.993 -5.092 0.946 0.119 0.837 0.442 1.147 P02 -0.246 -0.393 -0.163 -0.034 -0.100 -0.076 -1.012 Q02 2.002 -4.819 1.287 0.257 -0.136 -0.067 1.348
Q03 1.820 1.533 -5.867 0.032 1.191 1.036 0.875 P03 -0.245 -0.248 -0.318 -0.034 -0.106 -0.097 -1.048 Q03 1.843 1.959 -5.256 0.255 -0.169 -0.196 1.269
Q04 1.330 1.148 0.325 -5.958 2.108 1.224 0.164 P04 -0.232 -0.245 -0.164 -0.205 -0.137 -0.099 -1.082 Q04 1.357 1.846 1.218 -5.604 -0.336 -0.196 0.699
Q05 0.022 1.632 1.688 0.778 -5.494 -1.123 0.847 P05 -0.157 -0.201 -0.144 -0.044 -0.265 -0.007 -0.818 P05 -0.001 0.278 0.244 0.127 -0.194 0.051 0.100
Q06 0.098 0.763 1.662 0.468 -1.332 -4.314 1.277 P06 -0.124 -0.136 -0.129 -0.029 0.007 -0.293 -0.703 P06 0.023 0.091 0.310 0.069 0.060 -0.247 0.265

Own Direct Inverse Mixed Direct Inverse Mixed Expenditure Own Direct Inverse Mixed Direct Inverse Mixed Sclae Own Direct Inverse Mixed Direct Inverse Mixed Expenditure
Q01 -3.135 -3.841 -4.619 0.973 0.972 1.055 Coke, Sprite P01 -0.460 -0.427 -0.405 -0.995 -1.014 -1.022 Coke, Sprite Q01 -3.058 -3.687 -4.614 1.124 1.157 1.136 Coke, Sprite
Q02 -3.462 -4.139 -5.092 1.095 1.065 1.147 Pepsi, Mt. Dew P02 -0.438 -0.420 -0.393 -0.965 -0.997 -1.012 Pepsi, Mt. Dew Q02 -3.329 -4.000 -4.819 1.285 1.226 1.348 Pepsi, Mt. Dew
Q03 -3.264 -4.684 -5.867 0.985 0.981 0.875 7-up, Dr Pepper P03 -0.405 -0.347 -0.318 -0.993 -1.015 -1.048 7-up, Dr Pepper Q03 -3.157 -4.424 -5.256 1.189 1.185 1.269 7-up, Dr Pepper
Q04 -2.219 -3.244 -5.958 0.621 0.652 0.164 Lipton Brisk P04 -0.477 -0.339 -0.205 -1.151 -1.112 -1.082 Lipton Brisk Q04 -2.210 -3.241 -5.604 0.550 0.625 0.699 Lipton Brisk
Q05 -2.814 -5.132 -5.494 0.749 0.785 0.847 A&W, Rite Cola P05 -0.413 -0.275 -0.265 -1.056 -1.038 -0.818 A&W, Rite Cola P05 -0.361 -0.197 -0.194 0.325 0.194 0.100 A&W, Rite Cola
Q06 -3.393 -2.185 -4.314 1.295 1.363 1.277 Sunkist,Canada P06 -0.339 -0.481 -0.293 -0.907 -0.840 -0.703 Sunkist,Canada P06 -0.300 -0.462 -0.247 0.419 0.651 0.265 Sunkist,Canada

Direct Form Estimated from Direct Model Inverse Form Retrieved from Direct Model Mixed Form Retrieved from Direct Model

Direct Form Retrieved from Inverse Model Inverse Form Estimated from Inverse Model Mixed Form Retrieved from Inverse Model

Direct Form Retrieved from Mixed Model Inverse Form Retrieved from Mixed Model Mixed Form Estimated from Mixed Model

Comparison of Own/Expenditure Elasticities in Ordinary Form Comparison of Own/Scale Flexibilities in Inverse Form Comparison of Own/Expenditure Elasticities in Mixed Form

 
*  P and Q denotes representative price and quantity indices for each group defended as Group01: Coca-Cola and Sprite, Group02: Pepsi-Cola and Mountain Dew, Group03: Seven-Up and 
Dr Pepper, Group04: Lipton Brisk., Group05: A&W and Rite-Cola, Group06: Sunkist and Canada Dry. 
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represented in the direct demand form. (e) The percentage decrease in normalized price with 

respect to one percent increase in its own consumption measured in the direct, inverse, and 

mixed demand systems are 0.413, 0.275, and 0.265 represented in the inverse demand form. (f) 

The percentage decrease in willingness to pay with respect to one percent increase in its own 

consumption measured in the direct, inverse, and mixed demand systems are 0.361, 0.197, and 

0.194 represented in the mixed demand form. Recall that these relationships are based on the 

partitioning quantity-dependent and price-dependent groups of commodities or the legitimate 

mixed demand system, which is identified by the PC algorithm.  

Given the observation that the magnitudes of consumers’ response measured in three 

different specifications are different in general, interpretation of the overall empirical results is 

not easy. However, one plausible comparison among three different demand systems of direct, 

inverse, and mixed demand systems is possible based on the model selection approach. Given 

that all three competing models have the same number of independent parameters (23), all three 

model selection rules, the Akaike Information, Schwarz information criterion, and the Pollak and 

Wales’ likelihood dominance criterion, are used based on the comparison of the estimated log-

likelihood function values, such as the higher log-likelihood value, the higher ranking among 

competing models. The estimated log-likelihood values suggest that the inverse demand 

specification (2698.77) strongly dominate both direct and mixed demand specifications and the 

direct demand specification (1332.23) statistically dominates the mixed demand specifications 

(1269.15). Additional empirical result that might lead one to prefer the inverse demand system is 

that the overall standard errors for the flexibility estimates of the inverse demand system are 

smaller than the overall standard errors for the elasticity estimates of the direct and mixed 

demand system. For example, the simple average of standard errors for the inverse, direct, and 

mixed uncompensated flexibility/elasticity estimates are 0.009, 0.159, and 0.164 respectively. 

These empirical evidences are consistent with the local causal structure inductively inferred by 

the GES algorithm. It can be also argued that the information inferred by the PC algorithm is 

also useful, given the observations that (i) The comparisons of three different specifications in 

three different forms are possible due to the reasonable partitioning of quantity-dependent and 

price-dependent groups of commodities or legitimate mixed demand system, which is identified 

by the PC algorithm. (ii) The magnitudes of consumers’ response measured in three different 

specifications do not deviate too far with each other and thus provide plausible bounds in all the 

three different forms, although they are different in general and some differences are not trivial. 
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In this respect, another possible approach to interpret the overall empirical results is to pursue the 

model averaging method rather than model selection method taken in this study, given that the 

model selection ordering of the statistical dominance need to be interpreted as the ranking among 

the competing models, rather than the rejection one of the competing models and accepting the 

other. The overall results imply that the graphical causal model method can provide reliable and 

helpful guidelines for the local identification issue of the choice among the direct, inverse, and 

mixed demand systems.  

 

Summary and Discussion  

The proposed methodological procedure to address three methodological issues in the 

study of consumer behavior is illustrated by using retail checkout scanner data of soft drinks 

products. The three methodological issues are the aggregation, causal identification, and 

functional form issues. For the aggregation issue to incorporate broad information into empirical 

model, the compositional stability condition is used. The legitimate classification is inductively 

identified among soft drinks products and the empirical evidence with comparison of Lewbel’s 

consistent aggregation condition is provided. The following six groups are used for subsequent 

analyses: Coca-Cola and Sprite product group, Pepsi-Cola and Mountain Dew product group, 

Seven-Up and Dr Pepper product group, Lipton Brisk product group, A&W and Rite-Cola 

product group, and Sunkist and Canada Dry product group. For the local (causal) identification 

issue between price and quantity variables or the model specification issue among three possible 

specifications of the direct, inverse, and mixed demand systems, the graphical causal model and 

model selection methods are used. To connect these two methods with minimizing the effect of 

parameterization assumptions, the AIDS type dependent variable form synthetic models are use 

for all the three demand systems of the direct, inverse, and mixed demand systems. The GES 

algorithm result implies the inverse demand specification, whereas the PC algorithm result 

suggests the mixed demand system. Based on these inductively inferred local causal structures 

between price and quantity variables of a particular product, the inverse and mixed demand 

systems are estimated as well as the direct demand system for comparison purpose. In all three 

demand systems, four nested parameterizations of Rotterdam, LA/AIDS, NBR, and CBS are 

statistically rejected and thus the synthetic differential functional forms are used for three 

demand systems. Based on the classification of the price dependent variable group (the A&W 

and Rite-Cola and the Sunkist and Canada Dry product groups) and the quantity dependent 
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variable group (all other three groups) in the mixed demand system, which is identified by the 

PC algorithm, the estimated elasticities and flexibilities of three specifications are compared in 

the direct, inverse, and mixed demand system forms. Based on the model selection approach of 

the Akaike Information, Schwarz information criterion, and the Pollak and Wales’ likelihood 

dominance criterion, the competing three demand systems are compared. Statistical evidences 

imply that the data support the inverse demand system, which is identified by the GES algorithm. 

Overall empirical evidences suggest that the graphical causal model provide helpful and reliable 

information for the identification issues in the study of consumer behavior.  

As future research directions, several methodological issues to be studied can be 

suggested. A first issue is how to fully use the overall empirical findings. The model averaging 

approach, rather than model selection approach used in this study, can provide more precise 

understanding of consumer behavior. One possible approach for the model averaging method is 

to use the relative log-likelihood values of the direct, inverse, and mixed demand systems. The 

main issue is how to decide relative weights among competing models. A second issue is how to 

fully use the causal information inferred by the graphical causal models. Although only the local 

causal structure between the price and quantity variables are used in this study, other causal 

information can provide the possibility of a more full understanding of the interactions in the 

market, which in turn allow a more precise measurements of consumer behavior. The main issue 

is how to combine the full causal information into the theoretical properties of demand functions 

with maintaining flexibility and estimable functional form specification. A third issue is how to 

decide the boundary of the variables included in the empirical models. For example, there can be 

latent causal structures or interactions with other (size) commodities, although the size of 6/12 oz 

is used to decide which commodities are included in the study. The causal structure identified by 

the PC algorithm suggests that there may be latent causal variables among the price variables. 

The main issue is how to satisfy or how to relax the causal sufficiency conditions in the analysis, 

especially in the GES algorithm with discriminating the possible cyclic phenomenon. A fourth 

issue is how to incorporate the possible dynamic interactions and non-linearity in consumer 

behavior. Although the differential functional form approach provides useful framework to deal 

with the possible non-stationarity of variables, incorporating the possible lagged interaction and 

structural change in consumer behavior can provide more precise understanding of consumer 

behavior. The main issue is how to capture the possible dynamic interactions and non-linearity 

phenomena without sacrificing the theoretical properties of demand functions with maintaining 
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flexibility and estimable functional form specification. A fifth issue is how to study consumer 

behavior at the original disaggregate level beyond the aggregated level used in this study, given 

that close co-movement among variables implies that the (probabilistic) stability condition is 

violated and multicollinearity problem is severe. One possible way is to use the mixed estimator. 

The main issue is how to combine aggregate level information into the mixed estimator to study 

disaggregate level. Although there remain other methodological issues to be addressed in 

empirical study, this study provides one plausible inductive procedure for the understanding of 

consumer behavior, while minimizing the deductive properties or ambiguities. The remaining 

subjectivities in our proposed method are left as further research topics, with the hope that the 

remaining subjectivities bring fewer ambiguities relative to the previously used methods. 
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CHAPTER IV 

USE OF HIGH DIMENSIONAL PANEL DATA IN MACRO-ECONOMETRICS 

 

Understanding how monetary policy affects overall economic activity has been the 

primary topic for theoretical and empirical studies in macro-economics for a long time. In this 

respect, the macro-econometrics has significantly advanced from methodological and empirical 

perspectives. In addition, recently available high dimensional macro-economic panel data has 

brought forth potential for significant advances in the macro-econometric study of monetary 

policy effect. However, there remain two methodological issues for the full realization of the 

research potential brought by these advances. One is the identification problem of how to infer 

the underlying causal structure from the data, given that the causal structure is generally 

underdetermined by the statistical properties of the data (induction problem) and theory does not 

provide sufficient causal information. While there have been many approaches to study the 

monetary policy transmission mechanism, the structural vector autoregressive (VAR) framework 

is widely used since Sims (1980) introduced the VAR approach as an alternative to structural 

equation model (SEM) approach. Although the structural VAR framework provides the 

possibility of inferring causal information from statistical properties of the data without 

pretending to have too much a priori theory and/or without demanding too much information 

from the data, how to inductively infer the causal structure to relate empirical regularities 

captured in reduced form model to theoretical properties represented by the structural form 

model remains an open methodological issue. The other methodological issue to be addressed is 

how to incorporate an available large information set into an empirical model, given that 

econometric considerations such as degrees-of-freedom and multicollinearity require the 

economy of parameters in empirical models. This information problem is important, since 

misspecification problems can exist due to the small information set incorporated in empirical 

macro-econometric model, given the observation that monetary authorities monitor a large 

number of economic variables and there can be many possible channels through which the 

monetary policy affects the economy.  

In this chapter we propose inductive empirical methods to address these two 

methodological issues in the study of monetary policy effects based on the discussions on the 

causality and aggregation issues chapter II. A method to infer the causal structures for the study 

of the monetary policy transmission mechanism and a method to incorporate a broad range of 
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information into the empirical macro-model are main issues to be addressed. More specifically, 

first, the SEM and VAR approaches are compared in terms of the identification problem. The 

relative advantage of the VAR approach beyond the recursive Wold causal chain system and the 

possibility of an inductive inference of the causal structures are discussed. Second, the possible 

misspecification problems due to the small information set incorporated in standard VAR 

approach is discussed in the context of the monetary transmission mechanism literature. The 

possibility both to incorporate high dimensional macro-economic panel data into a standard 

VAR model and to infer a structural interpretation for this large information set is discussed 

based on the factor augmented vector autoregressive (FAVAR) framework and the 

compositional stability conditions. Third, an identification issue in the FAVAR model is 

addressed by using inductively inferred causal information based on the graphical causal models. 

The proposed methods are illustrated with the applications for the study of the monetary policy 

effects using macro-economic panel data. 

 

Theoretical Considerations  

Causality in Study of Monetary Policy Effect  

Empirical studies in economics have been developed along two distinctive 

interpretations of the relative roles of deduction and induction. One approach emphasizes 

deduction and interprets econometrics as an instrument of empirical application of economic 

theory. The other approach emphasizes induction and interprets statistical method as an 

instrument for the empirical discovery of economic relationships. While the first interpretation 

leads to empirical studies which aim to measure the strength of causal relationships deductively 

derived from a priori theory, the second interpretation leads to empirical studies which aim to 

inductively infer the causal structure itself with a minimum of a priori restrictions. The extreme 

arguments of these two approaches sometimes even bring the tension between economists who 

devoted to develop formalized theory without measurement and those devoted to develop 

measurement without theory. Macro-econometrics is an area where this kind of tension has been 

clearly observed. Given that identifying a system of equations means determining the causal 

structure, the different interpretations of the relative roles of deduction and induction in inferring 

the causal or structural information from the observationally equivalent statistical properties of 

data or the reduced form information is the main issue in the debate between the Cowles 

Commission and the National Bureau of Economic Research (Koopmans, 1949). “The 
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development of methods for causal inference in macro-econometrics has been fragile with a 

tension between a deductive approach and an inductive approach. The first conceives of causes 

as something that economic theory must provide and that statistical method must measure. The 

second considers economic theory a not very reliable source of causal knowledge and opens the 

possibility of inferring causes form statistical properties of the data without pretending to have 

too much a priori theory. The first conception was advocated by some exponents of the Cowles 

Commission during 1950s and is fashionable among the calibration approach to econometrics. 

The second conception was formalized by Granger’s (1969) test of causality and by Sims’ 

(1980) vector autoregressive models, methods which are still very popular in nowadays 

econometrics (Moneta, 2007).”  

In general, the first deductive approach is incorporated in the structural equation model 

(SEM) framework, whereas the second inductive approach is incorporated in the vector 

autoregressive (VAR) framework. Two distinctive econometric approaches can be summarized 

and compared in the context of the required causal information for identification. The structural 

equation model (SEM) for M endogenous variables Y and K predetermined variables X can be 

written as follows, where predetermined variables means exogenous, lagged exogenous, and 

lagged endogenous variables. 

· The structural form SEM: 
T
t

T
t

T
t XY εβα =+  or 11 −− +−= αεβα T

t
T
t

T
t XY , where ( ) Σ=tCov ε  

· The reduced form SEM: 
T
t

T
t

T
t uXY +Π=  where 1−−=Π βα  and 1−= αε T

t
T
tu , thus ( ) ( ) ( )11ˆ −− Σ=Σ= αα T

tuCov   

The observational equivalence or under-identification in SEM can be intuitively 

understood by simply counting parameters in the structure and reduced forms. Since the 

structural form has MM × parameters in coefficient matrix α , MK × parameters in coefficient 

matrix β , and ( ) 21+⋅ MM  parameters in covariance matrix Σ  and the reduced form has 

MK × parameters in coefficient matrix Π , and ( ) 21+⋅ MM  parameters in covariance matrix 

Σ̂ , SEM has 2M  excessive number of parameters to be specified. When the normalization such 

that one endogenous variable in each equation has a coefficient of one are used ( M  restrictions), 

there remain ( )1−MM  undetermined excessive parameters. When the additional assumption 

that ( ) Σ=tCov ε  is a diagonal matrix is also introduced ( ( ) 21−⋅ MM  restrictions), there 

remain ( ) 21−⋅ MM  undetermined excessive parameters which should be resolved through 
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non-sample information. This implies that many different structural models, which correspond to 

different ( ) 21−⋅ MM  restrictions, can have the same reduced form.  

The approach to this identification problem in SEM framework can be understood as 

follows. The main issue is how to specify the undetermined excessive parameters inα and β . 

Mathematically the reduced form SEM can be transformed into the structural form SEM for a 

single j th equation with following matrix partition. The M  endogenous variable matrix TY  is 

partitioned into the normalized j th endogenous variable jy  with a coefficient of one, jM  

endogenous variables T
jY  included in the j th equation, and *

jM  endogenous variables T
jY *  

excluded from the j th equation. The K exogenous variable matrix TX is partitioned into jK  

exogenous variables T
jX  included in the j th equation and *

jK  exogenous variables T
jX *  

excluded from the j th equation. 

· The general reduced form SEM for the j th equation with suitable matrix partition: 
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· The specific reduced form SEM with exclusion assumptions of 0* =jα  and 0* =jβ : 
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The exclusion assumptions of 0* =jα  and 0* =jβ  transform the general reduced form into the 

specific reduced form, which can be used for system estimation by two-stage or three-stage least 

square methods. The required exclusion assumptions of 0* =jα  and 0* =jβ  implies that 

jjjj βαπ =Π−  and 0** =Π− jjj απ . Since the system of equations jjj απ ** Π= is *
jK  equations in 
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jM  unknowns, the solution of jα  exists if there were at least as many equations as unknowns 

(order condition) and is unique if [ ] [ ] jjjj Mrankrank =Π=Π ***π (rank condition). Intuitively the 

order condition ( jj MK ≥* ) can be understood as the condition that the number of exogenous 

variables excluded from a single j th equation must be at least as large as the number of 

endogenous variables included in a single j th equation. With the rank condition, the algebraic 

identification conditions through the exclusion assumptions in both 0* =jα  and 0* =jβ  can be 

understood as the condition that the simultaneous relationships of the j th endogenous variable 

and other endogenous variables included in the j th equation are discriminated by the exogenous 

variables, which are not in the j th equation but in other equations for endogenous variables 

included in the j th equation, as the specific shifters or additional causal determinants. For 

example, the demand (supply) shifters allow identifying supply (demand) equation. In this 

respect, the SEM approach to the identification problem can be understood as one that looks for 

additional causal determinants that discriminate among simultaneous relationships.  

The vector autoregressive (VAR) approach can be understood as follows. Note that 

initially the VAR approach is proposed to pursue the absolutely inductive method without using 

any deductive structural information (at least in the estimation step) and aims to study how 

various shocks would affect the variables of the system, minimizing the structural concept itself. 

Such objective, however, faces a difficult issue that the residual terms in a reduced form VAR 

are not in general independent, so that a shock to one becomes a shock to others depending on 

the correlation structure among them. Orthogonalization takes into account this co-movement of 

the residual terms in the reduced form VAR and makes it possible to interpret the innovations in 

structural form VAR as fundamental structural shocks. Henceforth the statistical properties of 

economic time series are summarized by the reduced form VAR and the causal structures are 

imposed in the structural form VAR based on either the theoretical implications or institutional 

knowledge.  

· The structural form VAR for 1×N  vector of variables tZ : 
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· The reduced form VAR:  
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· Derivation of vector moving average (VMA) form or impulse response function (IRF) by either 

solving analytically or recursively backwards using lag operator L: 
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The observational equivalence or under-identification in VAR framework can be 

intuitively understood by simply counting parameters in the structure and reduced forms. Since 

the structural form has 2N  parameters in coefficient matrix 0A , 2NP ×  parameters in the 

sequence of coefficient matrix { }PAA ,,1 L , and ( ) 21+⋅ NN  parameters in covariance matrix 

( ) Ω=tCov ε  and the reduced form has 2NP ⋅  parameters in the sequence of coefficient matrix 

{ }PBB ,,1 L  and ( ) 21+⋅ NN  parameters in covariance matrix ( ) Ω= ˆ
tuCov . The VAR approach 

has 2N  excessive number of parameters. When the normalization such that one endogenous 

variable in each equation has a coefficient of one are used ( N  restrictions), there remain 

( )1−NN  undetermined excessive parameters. When the additional assumption that ( ) Ω=tCov ε  

is diagonal matrix is also introduced ( ( ) 21−⋅ NN restrictions), there remain ( ) 21−⋅ NN  

undetermined excessive parameters which should be resolved through non-sample information. 

This implies that many different structural models, which correspond to different ( ) 21−⋅ NN  

restrictions, can have the same reduced form. 

The approach to this identification problem in VAR framework can be understood based 

on the following simple two-variable VAR example. The main issue is how to specify 0A  

coefficient matrix, which relates the structural and reduced form VAR specifications and 

controls how the endogenous variables are linked to each other contemporaneously. 

· The structural form VAR with normalization on diagonal elements in 0A : 
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· Derivation of structural form VAR with normalization on diagonal elements in ( ) DCov t =ε  
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· Derivation of the reduced form VAR with normalization of ( ) IDCov t ==ε  
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First, it can be assumed that ( ) Ω=tCov ε  is diagonal matrix ( ) DCov t =Ω=ε , which can be 

justified based on the argument that the innovations in structural form VAR are to be 

independent with each other, so that they can be interpreted as the fundamental structural shocks. 

Second, for recovering structural parameters from the estimated reduced form parameters, it is 

convenient to transform the normalization on diagonal elements in 0A  into the normalization on 

diagonal elements in ( ) DCov t =Ω=ε  such that (a) ( ) IDCov t ==ε , (b) The absolute value of 

diagonal elements in 0A  are the inverse of the standard deviations of the structural shocks, and 

(c) The impulse responses with respect to structural innovation equal to its unity shock is 

equivalent to the impulse response with respect to structural innovation equal to its standard 

deviation shock. Third, since the reduced form VAR system is a system of seemingly unrelated 

regressions with usually the same regressor in each equation, applying the ordinary least squares 

method on each equation is equivalent with applying the generalized least square method or the 

maximum likelihood method with the assumption of normal distribution. The covariance of the 

estimated reduced form VAR ( ) Ω= ˆ
tuCov  can be obtained with the appropriate choice of lag 

length, which allows assuming that structural and reduced form innovations are white noise. 

Fourth, based on the system of equations ( ) TAA 1

0

1

0
ˆ −−=Ω , the unknown elements in 0A  

coefficient matrix can be solved or recovered in terms of the estimated elements of ( ) Ω= ˆ
tuCov  

covariance matrix. Given that there exists the solution for the system of equations if there were 
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at least as many equations as unknowns, ( ) 21−⋅ NN  restrictions in 0A need to be imposed for 

the existence of the solution of 0A  in ( ) TAA 1

0

1

0
ˆ −−=Ω , since there are ( ) 21+⋅ NN  equations 

in ( ) Ω= ˆ
tuCov  and 2N  unknown parameters in 0A . Note that restrictions on the dynamic 

structure in the sequence of coefficient matrices { }PAA ,,1 L  are not required for the 

identification. 

There exists certain degree of corresponding relationship between SEM and VAR 

approaches in some special circumstance, although the VAR approach is proposed as an 

alternative to the SEM approach. When it is assumed (endogenous) variables have the special 

causal structure of the Wold causal chain or recursive system, where the first variable causes 

second variable and first and second variables cause third variable and so on, the assumed 

recursive causal structure among (endogenous) variables provides enough restrictions for the 

identification problem through the triangular restrictions on 0A  in VAR approach ( ( ) 21−⋅ NN  

restrictions) and α in SEM approach ( ( ) 21−⋅ MM  restrictions) with the conformable diagonal 

covariance matrix. In this case, the SEM approach to the identification problem depends only on 

restrictions on α  without requiring restrictions on β , as the VAR approach to the identification 

problem does not require restrictions on the sequence of coefficient matrix { }PAA ,,1 L . In fact, 

when the fully recursive causal model is assumed among (endogenous) variables, the SEM and 

VAR approaches to identification problem become almost equivalent beside the required block 

recursive assumption for discriminating endogenous and predetermined variables.  This 

relationship between SEM and VAR approaches can be understood as follows. 

· Derivation of the SEM framework from the VAR model in structural form: 
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The first equation become '' X
ttX ε=  by the assumptions of I=Γ0 and 01 =Γ==Γ LL . On the 

other hand, the second equation can be written as the structural form of SEM, T
t

T
t

T
t XY εβα =+ , 

where predetermined variables denote exogenous, lagged exogenous, and lagged endogenous 



 

 

139

variables. Note that the distinction among endogenous and predetermined variables is 

incorporated by block triangular restrictions on 0A  as well as the sequence of coefficient matrix 

{ }PAA ,,1 L  with the conformable block diagonal covariance matrix. Note also that although the 

SEM is usually formulated so that every parameter has an economic interpretation in the 

structural form of SEM ( T
t

T
t

T
t XY εβα =+ ), based on the same logic of expressing VAR(2) 

tttt ZAZAZ ε++= −− 2211  as the canonical form of VAR(1) ⎥
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ttt ZAZ ε+= − , the dynamic form of SEM ( '''''

1
0
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Y
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P

p
ptpt

P

p
ptpt XXYY εββαα =∑−+∑−

=
−

=
− ) can be 

written as T
t

T
t

T
t

T
t YXY εβα =Φ++ −1 , which can be transformed into the final form of a dynamic 

SEM as follows.  

· The structural form of a dynamic SEM:  
T
t

T
t

T
t

T
t YXY εβα =Φ++ −1  or 11

1
1 −−

−
− +Φ−−= αεαβα T
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t YXY  

· The reduced form of a dynamic SEM:  
T
t

T
t

T
t

T
t uYXY +Δ+Π= −1 , where 1−−=Π βα , 1−Φ−=Δ α , and 1−= αε T

t
T
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· Derivation of the final form of a dynamic SEM by solving recursively backwards: 
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where [ ] mk

kt

mt

x
y

Π=
∂
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,

, , [ ] mk
s

kst

mt

x
y

ΠΔ=
∂
∂

− ,

, , and  ( )[ ] mk

k

m I
x
y 1−Δ−Π=

∂
∂  are named as the impact 

multipliers, the dynamic multipliers, and the long-run or equilibrium multipliers respectively 

(Green, 2000). Note that the final form of a dynamic SEM can be interpreted as the analogue 

correspondence to the vector moving average (VMA) form or impulse response function (IRF) 

in VAR approach, except the conceptual difference between altering an entire time path of 

exogenous variable and giving a single shock to (exogenous) innovations. In this respect, it can 

be argued that there exists a correspondence relationship between SEM and VAR approaches, 
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when the full recursive Wold causal chain structure is assumed in addition to the required block 

recursive assumption for discriminating endogenous and predetermined variables. 

Even the restrictions of I=Γ0  and 01 =Γ==Γ PL  can be relaxed to condition of lower 

triangular matrix of 0Γ  so that the entire coefficient matrix 0A  becomes lower triangular, since it 

is demonstrated that the recursive Wold causal chain structure in the VAR approach can provide 

partial identification for a certain specific purpose of study, i.e. the understanding of (monetary) 

policy effects. This argument can be understood as follows with the assumption that all variables 

tZ  can be partitioned into variables tX  and variables tY , where tX  come before the policy 

variable tS  and tY  come after the policy variable tS  in causal order.  

· The structural form VAR: 

tPtPtt ZAZAZA ε=−−− −− L110 , Pp ,,2,1 L=∀ , 
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where 22
0a  is a scalar, and 11

0A  and 33
0A  are lower triangular matrices, thus 0A  is lower triangular, 

whose diagonal elements are not necessarily equal to one by using a normalization of 

( ) ICov t =Ω=ε . Note that 11
0A , which is analogous to 0Γ , is not identity matrix I  but lower 

triangular matrix. 

· The corresponding policy reaction function:  
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The policy in period t  is determined by (a) a policy reaction rule which depends only on the 

contemporaneous tX  but not tY , (b) all the lagged variables in the VAR system, and (c) a policy 

shocks in S
tε . 

· The reduced form VAR:  

tPtPtt uZBZBZ +++= −− L11  where pp AAB 1

0

−=  and tt Au ε10

−= , thus ( ) ( ) T
t AAuCov 1

0

1

0
ˆ −− Ω=Ω= . 

When a normalization of ( ) ICov t =Ω=ε  is used, 1

0

−A can be obtained by applying the Cholesky 

decomposition rule of lower triangular matrix for the symmetric positive definite covariance 

matrix as ( )Ω=− ˆ1

0 cholA , instead of solving the system of equations ( ) TAA 1

0

1

0
ˆ −−=Ω . 

· The vector moving average (VMA) form or impulse response function (IRF): 

∞−∞− +++= tttt uCuCuZ L11  or ∞−

−

∞−

−− +++= tttt ACACAZ εεε 1

01

1

01

1

0 L . 

When the policy variable is the j th element in tZ , the impulse response with respect to the 

policy shock is the j th columns of the sequence { }1

0

1

01

1

0 ,,, −

∞

−− ACACA L  with the assumption 

that the j th element in tu  unity and all other elements zero. Given that the inverse of lower 

triangular ( 0A ) is also lower triangular ( 1

0

−A ), (a) the policy shock in period t  ( S
tε ) has a 

contemporaneous effect only on tY  but not tX . Thus the partitioning of all variables tZ  into 

variables tX  and variables tY  is important for impulse response function of entire variables with 

respect to the policy variable innovation shock S
tε . However, (b) for the study of (monetary) 

policy effects, the orderings within tX  and tY  blocks do not matter for the impulse response 

function of any variable with respect to S
tε . Note that all other elements in tu  are assumed to be 

zero, except j th element in tu  (Christiano, Eichenbaum, and Evans, 1999). This implies that the 

identification problem to decide causal ordering among variables tZ  in the recursive assumption 

can be reduced into the partial identification problem to decide which variables come before and 

after the policy instrument variable in contemporaneous time, since the ordering within those 

blocks can be unimportant for specific object of study: understanding effects of (monetary) 

policy shocks.  

Note that when the policy variable is assumed to be in either the first or the last causal 

order, the identification problem becomes trivial for specific object of study: understanding 

effects of (monetary) policy shocks. The typical identification assumption in much of Sims’ 

earlier work (for example, Sims, 1980) is that the monetary policy variable is unaffected by 
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contemporaneous innovations in other variables. In latter work by Sims and others, the monetary 

policy variable is assumed to be potentially affected by contemporaneous macro-economic 

variables instead. This ordering change of monetary policy variable from first to last can be 

understood by the change of variable choice to represent monetary policy variable from the 

money aggregate to the federal fund rate. This change to represent monetary policy instrument is 

based on following arguments among others. (a) A policy variable should be able to predict 

macro-economic variables and it is found that the federal funds rate produces better forecasts of 

output, employment and consumption than monetary aggregates such as M1 and M2. (b) While 

the expansionary monetary policy shock is expected to increase output and decrease money 

stock and interest rate, the positive shock to M1 leads to decrease output and increase federal 

funds rate in typical VAR of the U.S. economy. The estimates of policy reaction based on 

federal funds rate functions produce reasonable responses to inflation and unemployment shocks. 

(c) It is observed that the federal funds rate was raised at all cyclical peaks (NBER) and at most 

of the Romer dates (see Bernake and Blinder, 1992 and Eichenbaum, 1992 for examples).  

Even for the general purposes, the entire causal ordering among variables of tZ  in the 

full recursive system can be unimportant in a certain circumstance. When the covariance matrix 

of the estimated residuals is almost an identity or diagonal matrix and the assumption of the full 

recursive system is used, the relationship of ( ) ( ) T
t AAIuCov 1

0

1

0
ˆ −−=≈Ω=  implies that (a) There 

is only one lower triangular matrix returned by a Choleski decomposition. (b) 1

0

−A  is not only 

lower triangular but also diagonal, which in turn suggest that neither the ordering in full 

recursive assumption nor the identification itself is important. When 1

0

−A  is diagonal matrix, the 

relationship of tt Au ε10

−=  implies that reduced and structural form shocks are proportional with 

each other.  

The full recursive Wold causal chain structure, which makes the close correspondence of 

SEM and VAR approaches for a specific purpose, is very restrictive assumption to represent the 

real causal structures. Note that when the empirical study aims to understand impulse responses 

with respect to not only policy variable but also other structural shocks and when the covariance 

matrix of the estimated residuals is not a diagonal matrix, the entire causal ordering among 

variables tZ  in the full recursive assumption is important for the result in impulse response 

functions. There are !N  or !M  possible causal orders in VAR or SEM approach respectively 

and the results in both approaches are sensitive to the specific causal ordering among 
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(endogenous) variables. In more general circumstances where non-recursive causal structures 

exist, the correspondence of SEM and VAR approaches is no longer valid, since the block 

recursive Wold causal chain structure, which discriminates endogenous and predetermined 

variables, does not by itself guarantee identification in the SEM approach. The order and rank 

conditions in the SEM approach to the identification problem requires: (a) Discriminating 

endogenous and exogenous variables such that a sufficient number of exogenous variables are 

identified relative to endogenous variables and (b) Imposing restrictions on not only 0* =jα  but 

also 0* =jβ  such that [ ] [ ] jjjj Mrankrank =Π=Π ***π  for unique solution of jα . In this respect, 

the SEM approach requires: (a) The causal information to discriminate endogenous and 

exogenous variables, (b) The causal information among endogenous variables (restrictions on 

α ), and (c) The very specific causal information between endogenous and exogenous variables 

(restrictions on β ) to discriminate the simultaneous relationships of the j th endogenous variable 

and other endogenous variables included in the j th equation by using the exogenous variables, 

which are not in the j th equation but in other equations for endogenous variables included in 

the j th equation, as the specific shifters or additional causal determinants.  

Sims (1980) argues that the restrictions used in usual SEM approach are neither credible 

nor required. The restrictions used in usual SEM framework are incredible in a sense that they 

are imposed simply because they are required to attain identification, given that theories are too 

heterogeneous to provide a conclusive causal structure or the overall theories do not provide 

sufficient information to identify causal structure. Even though the exogenous variables, defined 

as variables determined outside the model by assuming all exogenous variables are uncorrelated, 

provide general bounds of causal information in SEM framework, some variables are assumed as 

exogenous simply because seriously explaining them would require additional extensive 

modeling effort in areas away from the main interests of the model-builders. In this respect, the 

causal information to discriminate endogenous and exogenous variables assumed in usual SEM 

framework is incredible, given that the presence or absence of exogeneity cannot be inferred 

from the data and hence is not testable, as many economists using the SEM framework admit. 

The very specific causal information between endogenous and exogenous variables used in usual 

SEM framework (restrictions on β  relative to the restrictions on α ) is also incredible. For 

example for identifying this type of restrictions, based on the typical distinction between nature 

and tastes in micro-economics, although it is usually assumed  that the weather affects supply 
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and not much demand, whereas the demographic structure of the population affects demand but 

not much supply, consumers’ demand decisions can still rely on information of supply shift 

variables such as weather and firms’ hiring decisions can still depend on forecasts of the demand 

shift variables such as demographic variable, especially under the rational expectation hypothesis. 

All the restrictions used in usual SEM framework are not required for forecasting and/or 

policy analysis in a sense that the SEM approach requires too much causal information and an 

alternative approach is possible for forecasting and/or policy analysis. While the causal 

information should be very specific to meet the order and rank conditions in the SEM framework, 

the causal information for identification in the VAR framework, as an alternative to the SEM 

framework, is less demanding. Unlike the SEM approach, the VAR approach to the 

identification problem does not require: (a) The causal information to discriminate endogenous 

and exogenous variables, since all the variables in the VAR framework are considered as 

endogenous and treated symmetrically and (b) The causal information on the dynamic structure 

in the sequence of coefficient matrices { }PAA ,,1 L , which is analogous to the very specific 

causal information between endogenous and exogenous variables used in usual SEM framework 

(restrictions on β  relative to the restrictions on α ). The causal information required for 

identification in the VAR framework is only for the contemporaneous coefficient matrix 0A , 

which controls how variables are causally linked to each other contemporaneously and relates 

the structural and reduced form VAR specifications. This advantage of the VAR framework, as 

an alternative to the SEM framework, increases the possibility of incorporating inductively 

inferred causal information from statistical properties of the data into the econometric model 

without pretending to have too much a priori theory and/or without demanding too much 

information from the data. However, given that the reduced form VAR can only be interpreted as 

the descriptive statistical models, which summarizes observational equivalent statistical 

properties of data just like correlation in dynamic setting, it is still impossible to use this 

descriptive statistical model to study effects on variables in the model with respect to 

economically meaningful structural shock. In this respect, how to determine the causal structure 

to relate empirical regularities captured in reduced form model to theoretical properties 

represented by the structural form model remains an important methodological issue to be 

addressed. Note that even when the covariance matrix of the estimated residuals in the reduced 

form VAR is almost an identity or diagonal matrix, without the assumption of the full recursive 



 

 

145

causal structure, the relationship of ( ) ( ) T
t AAIuCov 1

0

1

0
ˆ −−=≈Ω=  implies that there can be many 

1

0

−A  matrices whose columns are orthonormal (orthogonal matrices)  

The identification problem can be understood in the more general context of the 

induction problem, where the causal structure is in general underdetermined by the statistical 

properties of the data. A simple but fundamental version of this induction problem is that 

correlation does not imply causation. In this respect, several inductive approaches to infer causal 

structures from data are proposed. Among them, the probabilistic approach is widely discussed, 

especially in the context of the VAR approach. In the probabilistic approach, Suppes (1970) 

defines causality such that (a) An event A causes prima facie an event B if the conditional 

probability of B given A is greater than B alone (prima facie causality) and (b) A occurs before 

B (temporal order condition). The condition of ( ) ( )BPABP >|  without temporal order 

condition is not enough to incorporate asymmetry of causality, since ( ) ( )BPABP >|  

implies ( ) ( )APBAP >| , given that  ( ) ( )BPABP >|  ⇒ ( )
( ) ( )BP
AP

BAP
>

,  ⇒ ( ) ( )
( ) ( )BP
AP

BPBAP
>

|  

⇒ ( ) ( )APBAP >| . This problem occurs due to the symmetrical property 

( ) ( ) ( ) ( ) ( )BPBAPAPABPBAP ||, ==  in the conditional probability, just as the correlation has 

the symmetrical property. Note that it can be understood that the identification problem in 

system of equations are due to analogous symmetrical property of reduced form equations for the 

structural equations. Beside the statistical property, the temporal order is the additionally 

required condition that allows incorporating the asymmetry of causality, since 

( ) ( )11 | ++ > ttt BPABP  does not imply ( ) ( )11 | ++ > ttt APBAP . 

Based on the similar logic that: (a) A cause makes an effect more likely and (b) A cause 

occurs before an effect, Granger (1980) defines causality such that a (time-series) variable A 

causes B, if the probability of B conditional on its own past history and the past history of A 

does not equal the probability of B conditional on its own past history alone 

{ } { }( ) { }( )11111
,|,,| −=−−=−=− ≠ t

P

ppttt

P

ppt

P

pptt IyyPIxyyP . However, this causality concept, based on the 

incremental predictability with the temporal order condition, is still not enough to identify the 

contemporaneous causal structure, which is required for the identification in the VAR approach. 

The relationship between Granger causality of 1−← tt xy  and structural contemporaneous 
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causality of tt xy ←  can be understood by using the following simple two-variable structural and 

reduced form VAR example. 

· Structural form VAR focusing on structural causality test of tt xy ← : 
y

ttttt xayaxay ε+++= −− 1
12
11

11
1

12
0  and x

ttttt xayayax ε+++= −− 1
22
11

21
1

21
0   

· Reduced form VAR focusing on Granger-causality test of 1−← tt xy : 
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There are all four logically possible relations between 12
1b  and 12

0a : (a) 012
1 ≠b if 012

0 ≠a  and 
12
0

12
1

22
1 aaa −≠ , (b) 012

1 =b  if 012
0 =a  and 012

1 =a , (c) 012
1 ≠b  if 012

0 =a  and 012
1 ≠a , and (d) 

012
1 =b  if either 012

0 ≠a  and 22
1

12
1

12
0 aaa −= or 012

0 ≠a  and 012
1

22
1 == aa . The corresponding 

relationship between the two causality concepts can exist as in cases (a) and (b), but the possible 

non-corresponding relationship as in cases of (c) and (d) can not be excluded. There is no 

systematic relationship between Granger-causality of 1−← tt xy  and structural-causality of 

tt xy ← . Since structural-causality 12
0a  neither implies nor is implied by Granger-causality 12

1b , it 

can be argued that a Granger causality test in a reduced form VAR is not enough to identify the 

contemporaneous causal structure in a structural form VAR. Note also that given that 012
1 =b  

implies 012
1

22
1

12
0 =+ aaa  not 012

1
12
0 == aa , it can be argued that Granger causality does not imply 

strict exogeneity, whereas strict exogeneity implies Granger causality, since 012
1

12
0 == aa implies 

012
1 =b . Note also that the restriction 012

0 =a  implies y
t

y
tu ε= , thus hypothesized shock in 

impulse response function has a clear interpretable meaning in the structural VAR approach 

(Hoover, 2006). 

Not only does Granger-causality not provide enough causal information to solve the 

induction problem, Granger-causality concept itself has some problems as a legitimate causal 

definition. Among them, two issues can be understood by following two examples. 
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Granger-causality test is sensitive for information set 1−tI  as in above example (a). 012 ≠pb implies 

21
stt ZZ −← , 032 ≠pb implies 23

stt ZZ −← , and 013 =pb implies 31
stt ZZ −←/ . However, excluding 
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common cause 2
tZ  from information set 1−tI  can mislead one to conclude 31

stt ZZ −← , since 3
1−tZ  

has information of 2
1−tZ which does have information about 1

tZ . Granger-causality concept does 

not guarantee transitivity of causality as in above example (b). 012 ≠pb implies 21
stt ZZ −←  and 

023 ≠pb  implies 32
stt ZZ −←  but 013 =pb  implies 31

stt ZZ −←/ . In this respect, it is conceivable that the 

omitted variable problem can occur in a small information set and the violation of transitivity 

can occur in a larger variable set. The variable selection approaches based on regression methods 

with several diagnostics or inclusion/deletion criteria have the similar issue. (a) When the small 

explanatory variable set is initially assumed and then subsequently expanded into larger selected 

variable set (Bottom-up approach), the omitted variable (especially common cause variable) 

problem in the initial (or subsequent) small model can mislead the subsequent procedures. For 

example, if true causal structure is 1
ttt xWy →←  but the initial small model ttt xay ε+= 1

1 omits 

the common cause variable tW , then hypothetic test of 0: 10 =aH  can be rejected. (b) When the 

large explanatory variable set is initially assumed and then subsequently reduced into smaller 

selected variable set (Top-down approach), the included variable (especially common effect 

variable) problem in initial (or subsequent) large model can mislead the subsequent procedures. 

For example, if true causal structure is 1
ttt xWy ←→  but the initial large model 

t
k
tkttt xaWxay εβ +∑++= 1

1  includes the common effect variable tW , then the hypothetic test of 

0: 10 =aH  can be rejected. In this respect, it can be argued that the variable selection approach 

and the Granger’s causality test have the same difficulty to decide the appropriate explanatory 

variable or information set. Given that asymmetry and transitivity (if cause and effect relation is 

effective) are two intuitive properties of the causality concept, the prima facie causality based on 

the conditional probability has difficulty to incorporate asymmetry and Granger’s definition 

based on the incremental predictability has an ambiguity with respect to transitivity. The causal 

concept based on the temporal order does not provide enough information for the 

contemporaneous causal structures, which is required for the identification in the VAR 

approaches. 

We propose to use the graphical causal models as an alternative inductive method of 

inferring contemporaneous causal relationships from non-temporal and non-experimental data in 

this study. The graphical causal models have been developed by mathematically connecting 

probabilistic structures to graphical concepts, which effectively and efficiently capture all the 
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probabilistic structures. The graphical causal model or directed acyclic graph (DAG) approaches 

are based on several mathematical propositions. Let A , B , and C  denote three disjoint subsets 

of variables, called vertices or nodes. When it is assumed that the cyclic or feedback causal 

structure does not exist (causal acyclic condition) and all the causally relevant variables can be 

measured (causal sufficiency condition), the probability distribution follows the Markov 

condition such that every variable is independent of all its causal nondescendants, conditional on 

its direct cause. This implies that (a) An effect is independent of its indirect causes conditional 

on its direct causes (causal chains of BCA →→  or BCA ←← ) and (b) The effect variables 

are independent conditional on their common causes (causal fork of BCA →← ). Note that two 

nodes A  and B  in both causal chain and fork are unconditionally or marginally dependent on 

each other, but conditionally independent given C . This observation provides a causal 

interpretation for a simple but fundamental version of induction problem that (unconditional) 

correlation does not imply causation. In the statistical literature, the other logically possible 

causal structure except cyclical structure among three nodes is known as the selection bias, 

where observation on a common consequence of two marginally independent causes tends to 

make those two causes dependent conditional on common effect. This selection bias occurs 

because information about one of two causes tends to make the other more or less likely, given 

that the consequence is observed (unshielded-collider of BCA ←→ ). Note that this causal 

structure of the unshielded-collider provides an “empirical clue” to address induction problem 

that correlation does not imply causation, since the combinational statistical information of 

marginal correlation (unconditionally independence of A  and B ) and partial correlation 

(conditional dependence of A  and B  given C ) make it possible to infer the causal structure of 

the unshielded-collider, which is discriminated from the observational equivalent causal 

structures of causal chain and fork. Note also that acyclic condition allows excluding possible 

cyclic structures and sufficiency condition allows including the causal fork structure.  

In graphical causal models, it is also assumed that all the marginal and conditional 

probabilistic structures are invariant to the changes of their numerical or parametric values 

(probabilistic stability condition). This implies (a) All the observed (un)conditional probabilistic 

structures are due to the underlying causal structures, not their special numerical values in 

probabilistic structures. (b) No (in)dependencies in probability structures can be destroyed or 

induced by changing probabilistic parameter values. (c) It is possible to effectively and 

efficiently encode (un)conditional (in)dependencies structures into graphical model without 
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numerical probabilities. Thus, with the Markov condition, (d) It is possible to infer the 

underlying causal structures from the observed marginal and conditional probabilistic structures, 

where the observation is done through the statistical decisions based on either the Neyman-

Pearson type statistical test (conditional independence test approach) or the Bayesian 

information criterion (goodness-of-fit scoring approach). To empirically infer the marginal and 

conditional probabilistic structures, two distinctive approaches have been proposed. While the 

accessible explanation is provided in chapter II, the conditional independence test approach is 

explained in Spirtes et al. (2000), the goodness-of-fit (Bayesian) scoring approach is explained in 

Chickering (2003), and more theoretical and conceptual aspects of graphical causal models are 

explained by Pearl (2000). While the PC algorithm incorporates the conditional independence 

test approach, GES algorithm take the goodness-of-fit Bayesian scoring approach. The PC 

algorithm is discussed in Spirtes et al. (2000) and the GES algorithm is originated from Meek 

(1997) and its optimality is proved by Chickering (2003). Spirtes et al (2000) also provide 

several algorithms in their operational software “Tetrad”, which can be used to implement the 

PC and GES algorithms. 

The observed equivalence between the causal chain and the causal fork, which is again a 

simple version of induction problem that correlation does not imply causation, can not be 

discriminated based only on statistical observations without using non-observational extra causal 

information or manipulative (randomized) experimentation. However, the graph theory provides 

“logical clues” to partially address the observational equivalence problem. After the maximum 

information of unconditional and conditional probabilistic structures from data is obtain, (a) All 

the discriminative information between the true statistical relationships and spurious correlations 

among variables without causal orientations are summarized into the graph with undirected 

edges, named as the skeleton, and (b) All the information to discriminate the unshielded-collider 

structure from the observational equivalent causal structures of causal chain and fork are 

summarized into the partially oriented graph, named as the partially directed acyclic graph 

(PDAG) with causal orientations from independent causes to the common effect. By logically 

deciding causal directions for the remaining undirected edges in PDAG, the completed partially 

directed acyclic graph (completed PDAG or essential graph), which is maximally oriented 

PDAG, can be further inferred. The logical inferences about causal directions are based on the 

idea that orienting the remaining undirected edges in PDAG does not result in the causal 

structure which is inconsistent with the statistical observations, as long as the logically decided 
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orientations do not create either the empirically unsupported new unshielded-collider structure or 

the cyclic causal structure excluded by the acyclic assumption. 

The graphical causal models or DAG approaches have several features and assumptions. 

To infer causal relationship between two variables A and B, the DAG use the criterion whether a 

third variable C exhibits a specific pattern of dependency with A and B. In this respect, the DAG 

approach can be compared with the SEM approach, where the simultaneous relationships of 

the j th endogenous variable ( A ) and other endogenous variables included in the j th equation 

( B ) are discriminated (identification or induction problem) by the assumed exogenous variables 

( C ) excluded from the j th equation as the additional third causal determinants or specific 

shifters for behavioral equations of other endogenous variables included in the j th equation. 

However, methods to address this induction problem are quite different. In the SEM approach, 

the selection of exogenous variables is usually considered as maintained assumptions derived 

from the theory rather than something to be learned form data itself. Even when the hypothetical 

test approach based on regression framework is implemented, (a) The non-nested hypothetical 

test approaches oftentimes have a power problem related with the statistical hypotheses test, so 

that they have generally little power to discriminate competing specifications or causal 

hypotheses. (b) The nesting of hypothetical tests based on variable selection methods also faces 

issues, since the top-down or bottom-up approach have difficulties in dealing with common 

effect variables or common cause variables of dependent and explanatory variables respectively 

as mentioned above. In the DAG approach, all marginal and conditional probabilistic structures 

among all the relevant combinations of variables are efficiently checked in search procedures to 

obtain the maximum information of specific pattern of dependencies among variables, where 

relevant search spaces are logically decided based on the graph theory. In this respect, the graph 

theory not only provides logical orientation rules to partially discriminate observationally 

equivalent causal structures but also allows the full use of the maximum information of 

unconditional and conditional probabilistic structures from the data. Note that checking or 

searching all the relevant (un)conditional probabilistic structures among all the possible 

combinations of variables becomes infeasible without systematically and efficiently defining the 

relevant or entire search space. 

The graph theory used in the DAG approach is based on some assumptions as discussed 

earlier. The acyclic assumption and the causal sufficiency assumption are required for the 

Markov conditions. While Richardson and Spirtes (1999) develop the Cyclic Causal Discovery 
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(CCD) algorithm to allow cyclic possibility and Spirtes et al. (2000) develop the Fast Causal 

Inference (FCI) algorithm to relax sufficient condition, these developments are not incorporated 

in this study, since it is still ambiguous how to distinguish between feedback and latent 

phenomena (Moneta and Spirtes, 2006). We hope that it is not too harmful to take the acyclic 

and sufficiency assumptions, given observation that these two assumptions are common to 

almost all the empirical models. Given the fact that while the Markov condition suggests the 

logical implication from the underlying causal structures to probabilistic dependency patterns, 

the stability condition, with the Markov condition, suggests the logical implication from 

probabilistic dependency patterns to the underlying causal structures, it can be argued that the 

stability condition, with the Markov condition, makes it possible to inductively infer the causal 

structures from the data. In this respect, the stability condition needs to be discussed more to use 

the graphical causal model in empirical study. There can be two circumstances where the 

stability condition can be violated, as discussed in the Tetrad II manual. One possible 

circumstance is that there may exists strict equality among products of parameters, so that a 

spurious (in)dependence in probability distribution can be destroyed or induced by changing 

underlying parameter values. The other possible circumstance is that there may exist 

deterministic or near deterministic relationships among variables so that any of the statistically 

observed (un)conditional probabilistic structures are due to not only the underlying causal 

structures but also their special numerical values. For the first case, it has been demonstrated that 

the strict equalities among products of parameters have very little possibility or Lebesgue 

measure of zero in any probability space in which parameters vary independently from one 

another. According to Tetrad II manual, the Tetrad program should not be used for the following 

cases or these second cases should be practically addressed in empirical study, where (a) There 

are deterministic relationships among variables or (b) There are conditional probabilities very 

close to 1 in the discrete case or (c) There are correlations very close to 1 in the linear case. 

These restrictions for using the Tetrad program can be understood based on the following 

reasoning. If ( ) 1| ≈BAP , then ( ) ( )BAPCBAP |,| =  can be hold for any set of variable C , 

regardless of the causal structures among them. So it is not possible to infer reliable causal 

structure from the probabilistic dependency pattern. Note that this problem is similar to the 

multicollinearity problem, which makes it difficult to obtain precise estimates of the separate 

effects of the variables in the regression method. Given the observation that many variables in 

high dimensional data set oftentimes move very closely, the direct use of the graphical causal 
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model for the high dimensional data set can be problematic, since the stability condition can be 

violated in its applications for high dimensional data sets. One possible way to address this 

problematic situation is to use aggregation method. However, before using an aggregation 

method, the legitimate aggregation condition should be empirically identified to consistently 

infer causal structures among disaggregated variables by the aggregated variables as the 

legitimate representatives. This issue is the next topic to be discussed. 

 

Aggregation in Study of Monetary Policy Effect  

To promote sustainable growth and stabilize inflation have been considered as main goal 

of macro-economic policy. While fiscal and monetary policy have been considered as two 

primary policy instruments to attain that goal, it is observed that monetary policy has become 

more emphasized than the fiscal policy, since (a) fiscal policy brings not only doubts that the tax 

and spending decisions can not be made in timely way, but also concerns that using fiscal policy 

in inappropriate ways can result in the possible persistent budget deficits, (b) it is observed that 

the monetary policy effects do exist over the short and mid run period, despite of the argument 

that the monetary policy has neutral effects on economic activity in the long run. In this respect, 

the understanding of how monetary policy affects the economic activity has been the primary 

topic for theoretical and empirical studies in macro-economics for a long time. While there have 

been many approaches to study the monetary policy transmission mechanism, the structural 

vector autoregressive (VAR) framework is widely used, since it does not require the excessive 

and incredible identifying restrictions in the structural equation model (SEM) framework. Sims 

(1980) introduces VAR approach as an alternative to SEM approach and Sims (1992) and 

Bernake and Blinder (1992) use these models to identify and measure the effect of monetary 

policy on macro-economic variables. However, beside the causal identification issue previously 

discussed, the relatively small information set incorporated in the standard low dimensional 

VAR model may imply potential problems in the empirical understanding of the monetary policy 

transmission mechanism based on the small number of variable VAR model, given the 

observation that (a) monetary authorities monitor a large number of economic variables and (b) 

there can be many possible channels through which the monetary policy affect the economy. 

Accordingly, there are research interests in moving beyond the low dimensional VAR. 

First, when the central bank and the private sector have additional information not 

incorporated in the model, the policy innovations measured by reduced form VAR residuals of 
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policy reaction functions is likely to be contaminated and the measured responses of economic 

variables to the monetary policy innovations is also likely to be misleading. The possibility that 

there can be missing elements in the policy reaction functions can be understood by using 

following example of the “price puzzle”. The price puzzle is counter-intuitive impulse responses 

result that contractionary shocks to monetary policy lead to persistent price increases in a VAR 

of output, prices, money, interest rate and perhaps some more variables. When the policy rule ti  

(the federal fund rate, for example) is represented as the function of the inflation expectations 

( )1+ttE π , the effect of other variables ( )tXg ' , and the policy shock S
tε  but the expected inflation 

is actually some function of not only some variables tI  included in VAR but also some other 

variables tW  omitted in the VAR, the VAR residual for policy variable S
tu  is actually some 

function of not only the policy shock S
tε  but also omitted variables ( )tt

W
t WI ,π , which have 

information about the expected inflation. If these omitted variables dominate the policy shock, 

then a primary component of the monetary policy shocks measured from the reduced form VAR 

residual is actually the omitted information about the expected inflation, which can lead to high 

future inflation. 

· The underlying policy reaction function: 

( ) ( ) S
ttttt XgEi επβ ++= + '1   by assumption of ( ) ( ) ( )tt

W
ttttt WIIE ,1 πππ +=+  

( ) ( ) ( ) S
ttt

W
ttttt WIXgIi επβπβ +++= ,'   

· The measured policy innovations: 

( ) ( ) S
ttttt uXgIi ++= 'πβ  where ( ) S

ttt
W
t

S
t WIu επβ += , . 

One possible solution to this price puzzle would be to include the omitted information about the 

expected inflation in VAR, which makes ( )tt
W
t WI ,π  term vanished. A large number of possible 

variables are studied and it is demonstrated that broad commodity price indices and some of 

financial data seems to be successful, whereas individual commodity prices have very small 

effects (Sims, 1992). However, there is difficulty in this approach to address the price puzzle. 

Although additional variables tW , which represent the omitted information about the expected 

inflation in VAR to solve the price puzzle, must have incremental predictive power for future 

inflation over the tΩ , it is not easy to find the empirical support for this argument. For example, 

Hansen (2004) compares several commodity price indices and other indicators and finds very 

little correlation between the ability to forecast inflation and to solve the price puzzle.  
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Second, when there are additional channels not incorporated in the VAR model, the 

measured responses of economic variables to monetary policy shocks can be misleading. The 

possibility that there can be missing elements in monetary transmission mechanisms or channels 

not captured in the VAR model is based on the observation that macro-economic responses to 

policy-induced interest rate changes are considerably larger than those implied by the 

conventional estimates of the interest rate elasticities of consumption and investment (Bernanke 

and Gertler, 1995). The theoretical descriptions of the monetary transmission mechanism are 

based on the following arguments that (a) The monetary policy affects the short and long term 

nominal as well as real interest rates. Short-term nominal and real interest rates are assumed to 

move in the same directions by the nominal rigidities of general price level. On the other hand, 

short-term and long-term interest rates are also assumed to move in the same directions by the 

rational expectation hypothesis of the term structure, which states that the long-term interest rate 

is an average of expected future short-term interest rates. Thus, hereafter interest rates ( i ) denote 

all the general interest rates. (b) The size of economy (Y ) can be measured by the expenditure 

method, which states that the market value of final goods and services or the sum of value added 

at every stage of production within a country in a given period of time can be measured by 

planned investment ( I ), consumer spending ( C ), government spending ( g ) and net exports 

( NX ). There are several monetary policy transmission channels described in the literatures 

including one based on the traditional macro-economic models (Mishkin, 1995).  

In the traditional ISLM macro-models, the monetary transmission mechanism can be 

described as follows. (a) The general interest rate ( i ) moves in the same direction as the required 

rate of return (cost of capital r ) or the discount rate ( 'r ). While investment spending is affected 

through the influence on the required rate of return of investments (cost of capital r ), consumer 

spending is affected through the relative price of current and future consumption (discount rate 

'r ). Both investment and consumer spending are also affected by the lending and borrowing 

activities. (b) The relative attractiveness of domestic currency to foreign currency due to 

domestic interest rate change affects the relative value of domestic currency to foreign currency 

E  (exchange rate). The exchange rate affects the relative price competitiveness of domestic 

goods to foreign goods, which influence the net export. The exchange rate also affects the 

domestic debt burden denominated in foreign currency (Mishkin, 1995).  

Descriptions of (other) asset market channels are based on the following several 

alternative propositions, where (other) assets markets are represented by the financial assets 
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prices ( SP ) and physical assets prices ( HP ). While the common stocks usually represent financial 

assets or wealth, the residential housing and durable goods represent physical asset or real capital. 

(a) The contractionary monetary policy decreases money supply and increases interest rate. 

Decreased money supply induces public to spend less, decreasing the demand for financial and 

physical assets. Increased interest rates makes bonds more attractive relative to other assets, 

decreasing financial and physical assets prices. (b) Based on the Tobin’s q theory of investment, 

where q  is defined as the ratio of market value of asset to the replacement cost of capital, it is 

argued that when asset price is decreased and thus q  is decreased, spending on asset become 

expensive relative to asset market value and thus investment spending on asset decreased. Just 

like firms’ decisions about business investment, consumers’ decisions about residential housing 

and durable goods are considered as investment decisions. (c) Based on the Modigliani’s life 

cycle model, it is argued that the consumption spending is also determined by the lifetime 

resources of consumers, which consist of human capital, real capital, and financial wealth. 

Decreased asset price reduces lifetime resources, which leads to decline in consumption 

(Mishkin, 2001).   

Descriptions of the bank credit channel are based on how bank assess borrowers, 

especially borrowers’ balance sheets ( BS ). The contractionary monetary policy deteriorates not 

only the borrowers’ debt service burden or cash-flows ( CF ) by raising interest rate but also the 

borrowers’ collateral value ( CV ) by decreasing asset prices. The deteriorated balance sheet 

makes banks’ willingness to lend decreased, which implies a decrease in the bank dependent 

borrowers’ investment or consumption. More detailed descriptions are pursued. In the bank side, 

it is argued that the small banks’ willingness to lend is restricted more than the large banks, since 

small banks are not able to substitute deposits funding with other sources of funds. In the firm 

side, it is argued that and the small or medium size firms more depend on banks than the large 

firms for external funds, since small firms can not directly access the credit markets such as 

stock and bond market. This implies that the monetary policy affects the overall economy 

through its effects on the small banks or firms. Note that size is used for proxy variable for this 

argument. On the consumer side, given that financial assets are considered more liquid than 

physical assets, the change in liquidity affects the willingness to hold non-liquid assets. For 

example, decreased stock price induced by monetary policy makes consumers’ financial position 

less secure, reducing consumers’ expenditure on physical assets, which in turn implies decreased 

willingness to lend and borrow (Bernanke and Gertler, 1995). 
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The monetary transmission mechanisms described above can be summarized for the 

contractional monetary policy (MP) as follows: 

MP => i ↑ => r  & 'r  ↑       => I  & C ↓  => Y ↓  

MP => i ↑ =>  E ↑         => NX ↓       => Y ↓  

MP => i ↑ => SP & HP ↓  => (Tobin’s q  and/or Wealth) ↓   => I  & C ↓  => Y ↓  

MP => i ↑ => ( CF  and/or SP & HP => CV ) ↓  => BS ↓  => Credit ↓   => I  & C ↓  => Y ↓  

The existence of additional channels other than the narrow interest rate channel implies 

that the standard small number of variable VAR model based on the traditional ISLM macro-

model can underestimate the monetary policy effects, since the stock and house market, for 

example, suggest possible amplified indirect monetary effects more than direct interest rate 

effects. However, the theoretical and empirical descriptions and understandings of monetary 

transmission mechanism are still incomplete, thus they can not provide clear guidelines for the 

choice of variables to enter the VAR system. For example, (a) The change in interest rates 

induced by monetary policy can affect the overall economic activity through the expectations 

such as inflationary expectations and confidence about the future outlook of the economy. 

However, the direction in which such effects work can vary from time to time and is hard to 

predict. (b) The relative importance and their total effect of different transmission mechanisms or 

channels depends on the different structures and the nature of the economy such as the history of 

business cycles, differences in depth and diversity of financial markets, different nature and size 

of firms and/or consumers and their financial structures, the elasticity of demand for exports and 

imports, relative openness of the economy, relative amount of national debt denominated in 

foreign currency, and so on. Some of these issues can only be address based on the detailed 

micro-level data, rather than aggregate data (see Juks, 2004 and references in there).  

Third, besides the potential problems due to possible omitted variables in both 

measuring policy shocks in monetary policy reaction functions and fully capturing monetary 

transmission mechanism channels, there is a more fundamental issue for choosing variable in 

empirical models. Watson (2000, page 88) argues “The main problem to be solved when 

constructing a small model is to choose the correct variables to include in the equation. This is 

the familiar problem of variable selection in regression analysis. Economic theory is of some 

help, but it usually suggests large categories of variables (money, interest rates, wages, stock 

prices, etc.), and the choice of a specific subset of variables then becomes a statistical problem. 
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The large-model approach is again guided by economic theory for choosing categories of 

variables, and the statistical problem then becomes how to combine the information in this large 

collection of variables”. The variable selection approach based on regression method can be 

problematic, since (a) The top-down or bottom-up approach has some difficulties to deal with 

common effect variables or common cause variables of dependent and explanatory variables 

respectively as discussed in the context of causality issues and (b) The variable selection 

approach requires an unrealistic assumption that the very specific observable measures precisely 

corresponds to some theoretical constructs. The observed variables may be subject to a variety of 

errors such as (a) The observed variables are likely to be contaminated by measurement errors. 

Most macroeconomic data may be subject to multiple rounds of revisions and are never free of 

measurement error. For example, various biases are involved in the measurement of inflation 

such as the inherent difficulty of full adjustment for quality improvement and (b) There is a 

conceptual ambiguity in linking each theoretical variable to a specific observed variable. The 

choice of a specific data series to represent a general economic concept is often arbitrary to some 

degree and thus a specific measured variable is likely not to correspond to a theoretical variable. 

For example, output in the theoretical model may correspond more closely to a latent measure of 

economic activity than to a specific data series such as real GDP. Considering only the common 

components of observed variables is one way to eliminate measurement errors and treating 

theoretical variables as unobserved in empirical analysis is one way to acknowledge these 

underlying problems (Bernanke, Boivin, and Eliasz, 2005). In this respect, an alternative 

approach to variable selection methods is to use statistical dimensional reduction methods such 

as factor and principal component analyses, which treat theoretical constructs as unobserved 

factors revealing their information by their multiple observable indicators. In addition, factors or 

principal components can be used to combine the information in large collection of variables into 

empirical models.  

As an alternative to the SEM approach, which requires a large number of identifying 

restrictions for system estimation by two- or three- stage least square methods for either 

forecasting or policy analysis, the VAR approach requires one to identify the contemporaneous 

coefficient matrix only in order to infer the structural economic shocks from the reduced form 

innovations. However, the inference based on the VAR approach can be misleading, unless the 

reduced form innovations span the space of the structural shocks or the VAR model does not 

have an omitted variable problem. The main issue to address this possible misspecification 
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problem is how to increase the amount of information in the VAR model so that the reduced 

form innovations span the space of the structural economic shocks, given that econometric 

considerations such as degrees-of-freedom and multicollinearity require the economy of 

parameters in empirical models. In this respect as well as the related problems of the observable 

measurements with respect to theoretical constructs, the statistical factor model is proposed to 

span the space of structural shocks, when there can be hundreds of economic variables that 

potentially contain information about the underlying shocks. Two approaches, commonly named 

as the dynamic factor model, are suggested to generalize the standard static factor models based 

on the static covariance or correlation matrix to incorporate the possible distributed lag effect of 

factors on observed variables. While Forni et al (2000) use the spectral density matrix in a 

frequency-domain framework, Stock and Watson (2002) use cross-covariance matrix, which 

includes auto-covariance matrix in a time-domain framework. Since both approaches apply the 

singular value decomposition theorem to their generalized covariance or correlation matrix to 

derive eigen-vectors as weighting schemes, the dynamic factor model can be understood as the 

generalized approximate factor model based on generalized principal component methods. The 

dynamic factor model approach is based on the propositions that (a) There are small numbers of 

unobserved common dynamic factors that produce the observed co-movement of economic time 

series, (b) These common dynamic factors are driven by the underlying common structural 

economic shocks, (c) these underlying structural shocks are only revealed by distilling the small 

numbers of common sources of co-movement from a very large number of observed variables. 

These plausible propositions of dynamic factor models, with the observed co-movement of many 

economic time series variables, have motivated recent advances in VAR modeling on how to 

best integrate this factor method into VAR and SVAR analysis for either forecasting or policy 

analysis (Stock and Watson, 2005). 

For the forecasting purpose, Stock and Watson (2002) propose to use an approximate 

dynamic factor model, where the information of a large numbers of time series variables is 

summarized by relatively small number of estimated factors, called diffusion indexes. They 

show using forecasting simulations that forecasts based on estimated factors outperform 

univariate autoregressive models, small number of variable VAR models and leading indicator 

models. Let 1+ty be the variable to be forecast based on the number XN  of variables tX  through 

the number FN  of latent factors tF . Their approach can be understood as follows: If 
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11 ++ +⋅= ttt Xy εβ  and ttt uFX +Λ= , then 11 ++ += ttt eFY α , where { }( ) 0,,| 11 =−∞=++

t

sssss FXYeE . If 

1+ty is the variable to be forecast based on the vector of variables tX  but the comovement among 

variables tX can be summarized by a small number of latent factors tF , then a three step process 

can be used for forecasting 1+ty : (a) Estimate latent factors tF̂  from the observed variables tX , 

(b) Estimate coefficients α̂  in 11 ++ += ttt eFY α  , and (c) Forecast 1+TY  based on TT FY ˆˆˆ
1 α=+ . Note 

that they found that only a few observed variables have predictive power, since most of β  in 

11 ++ +⋅= ttt Xy εβ  are zero. However, all the observed variables turn out to have predictive power 

through representative common factors, since all of the elements of β  in factor model are non 

zero in general, even though each of them is small. This means that much more information can 

be incorporated for analysis by using the dynamic factor model approach. The β  in factor 

model are derived as follows. When ttt uFX +Λ= can be written as ( ) ttt XXFE ⋅= γ| (regression 

of tF onto tX is linear), then 11 ++ += ttt eFY α implies that ( ) ( ) ttttt XXFEXyE ⋅⋅=⋅=+ γαα ||1  

and γαβ ⋅= .  

Bernanke, Boivin, and Eliasz (2005) extend this dynamic factor model for the structural 

VAR approach and propose to use factor-augmented vector autoregressive models (FAVARs) 

based on the idea that if large amounts of information about the economy can be effectively 

incorporated in the model by a small number of estimated factors, then augmenting standard 

VARs with estimated factors can be natural way to incorporate large information set into the 

structural VAR model. Note that when the number of factors FN  is much smaller than the 

number of observed variables XN , the amount of information incorporated in the model 

drastically increases by using FAVAR framework. Incorporating similar amount of information 

by directly using observed variables without factor framework would be both inefficient due to 

possible multicollinearity problem and impractical due to the degree of freedom problem. Their 

approach can be understood as follows: ( ) t
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1 , where ttytft eyFX +⋅Λ+⋅Λ= . 

When the information structure is assumed such that the central bank and the econometrician 

observe only the policy instrument (nominal interest rate) ty  with a large set of noisy 

macroeconomic indicators tX  but the comovement among variables tX can be summarized by a 

small number of latent factors tF , a three step process can be used to study monetary policy 
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effect: (a) Estimate latent factors tF̂  from the observed variables tX , (b) Estimate impulse 

response functions of factor augmented VAR, and (c) Obtain impulse response functions of 

individual macroeconomic indicators based on ttytft eyFX +⋅Λ+⋅Λ= . Note that assuming a 

full recursive causal structure among factors and policy variable, they use a Cholesky 

identification scheme where the policy variable, federal fund rate, is ordered last. Note also that 

they construct factors from the observed variables’ information space not spanned by policy 

variable ( ) tt ybXC ⋅− ˆˆ , where ( )tXĈ  denote principal components of entire observed variables 

tX and tyb ⋅ˆ  is obtained through a multiple regression of ( ) ( ) ttt
Slow
tt eybXCaXC +⋅+⋅= ˆˆˆˆ when 

( )t
Slow
tXĈ  denote principal components of slow-moving observed variables only. This is based on 

the assumption of block recursive causal structure among observed variables such that observed 

variables are divided into slow-moving and fast-moving variables, where the slow moving 

variables such as real variables are assumed not to respond to policy shock and fast moving 

variables such as financial asset prices are allowed to respond to a policy shock in 

contemporaneous time.  

Although it is demonstrated that the dynamic factor models are useful approach to 

incorporate a broad range of information in empirical macroeconomic modeling for either 

forecasting or policy analysis, it is also observed that there remain several issues to be addresses 

as Bernanke, Boivin, and Eliasz (2005) discussed. First, there is some ambiguity in the choice of 

observed variables tX . For example, Boivin and Ng (2003) using simulation and empirical data 

demonstrated that expanding the dataset by adding more variables without considering data 

structure can be not always desirable in the context of forecasting. They show that it is possible 

to forecast equally well and perhaps marginally better by pre-screening observed variables into 

smaller dataset, although their pre-screening method is considered as a largely ad hoc procedure. 

Second, there is some ambiguity in choosing the number of factors tF . Although some 

(information) criteria are proposed to determine the number of factors present in the data set tX  

(see Stock and Watson, 2002 and Bai and Ng, 2002, for examples), it is argued that these criteria 

do not necessarily address the question of how many factors should be included in the VAR. For 

example, Stock and Watson (2005, page 33) argue that “for the purposes of forecasting, it may 

suffice to use a small number of dynamic factors but for the purpose of structural VAR modeling 

the dimension of the space of dynamic factor innovations appears to be larger.” Third, although 
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the large amounts of information can be effectively incorporated by a small number of estimated 

factors to improve forecasting performances or empirical plausibility of structural analysis, there 

is difficulty to provide economic interpretations for the estimated factors tF . Given that 

structural VAR is widely used to study the monetary policy transmission mechanisms, it is not 

enough to mitigate some puzzles such as price puzzles by augmenting estimated factors when the 

estimated factors can not be economically interpreted. Stock and Watson (2005, page 33) 

suggest possible economic interpretations for the estimated factors based on the relative size of 

factor loadings and variance decomposition and argue that “additional dynamic factors account 

for additional movements of the remaining series, which are mainly financial series such as 

interest rates, stock returns, and exchange rates”. Given that these financial series are the 

possible monetary transmission mechanism channels identified in the literature as discussed, it 

can be argued that incorporating additional dynamic factors is important for the structural 

understanding of the monetary transmission mechanisms. However, it is still not easy to provide 

clear economic interpretations for the estimated factors, when the estimated factors are linear 

combinations of the entire data set. Fourth, there remains an ambiguity to use the full recursive 

contemporaneous causal structure among factors and policy variable. The estimated factors are 

independent with each other by construction so that the covariance matrix of the estimated 

residuals of FAVAR is almost diagonal matrix and thus the reduced and structural form shocks 

are proportional with each other when a Cholesky identification scheme is used. However, given 

that the estimated factors are linear combinations of the entire data set of observed variables, it is 

not easy to connect the estimated factors to the underlying structural shocks except the policy 

variable shock. Bernanke, Boivin, and Eliasz (2005) eschew such difficult issue on how to 

decide the causal orderings among the estimated factors by using the fact that the orderings 

within the before or after policy variable block are not important to understand the monetary 

policy effects when the full recursive causal structure is assumed. In their identification scheme, 

the policy variable federal fund rate is ordered last so that all the estimated factors are in the 

higher order placed block. Note that how to construct factors from the observed variables’ 

information space not spanned by policy variable in the first step also depends on the specific 

identifying assumption used in the second step. Bernanke, Boivin, and Eliasz (2005) use the 

block recursive assumption of slow variables’ block and fast variables’ block in the first step and 

the full recursive in the second step. Given that the full recursive causal structure is considered 

as a very restrictive assumption to represent the causal structure in the real data, other general 
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identification schemes need to be considered in the FAVAR model. However, there is some 

ambiguity to use other general identification schemes in FAVAR model, since more general 

identification schemes would require that the estimated factors to be identified as specific 

economic concepts.  

All the issues discussed above for using FAVAR model are related with the data 

structure of observed variables tX  and interpretation of estimated factors tF  and these two 

issues are related each other. The intuitively suggested (Bernake et al., 2005) approach is 

extracting principal components from blocks of data corresponding to different dimensions of 

the economy. Mathematically this approach can be explained as follows: 
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If we assume that each block of observed data k
tX  is explained by only the corresponding one 

factor k
tF  ( Kk ,,1L=∀ ) and each of the variables in the entire data set tX  is affected each 

other only through the corresponding factors, then each of estimated factors can be interpreted 

based on the assumed group of observed variables and the contemporaneous causal structures 

among the estimated factors can be meaningfully imposed. This approach is empirically used in 

Belviso and Milani (2005), where two types of deductive assumptions are used. In their 

empirical study, the classification of observed variables and the contemporaneous causal 

structure are chosen based on researchers’ subjective intuition. Their classification will be 

discussed in the below empirical section, when our inductive classification is discussed along 

with another subjective classification of Leeper, Sims, and Zha (1996). Their identification 

scheme is based on the full recursive restriction where the different causal orderings are tried. 

Although the results of Belviso and Milani (2005) are generally successful and they call their 

method as the structural FAVAR (SFAVAR), the deductive approach for aggregation and 

causality issues can result in ambiguity in empirical studies, given that theory does not provide 

definitive or sufficient information for these two issues.  

The possibility of inductively inferring data structure from observed variables tX  and 

obtaining interpretable estimated factors tF  from the observational data is discussed from the 
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aggregation theory and statistical dimensional reduction methods in chapter II. The main result 

can be summarized as follows. If the observed data has the special data structure of k
t

k
f

k
t FX ⋅Λ= , 

then the correlation matrix of observed data set tX  have the special block diagonal structure HΣ  

such that variables within each block are highly correlated but variables across blocks are nearly 

uncorrelated. Thus, if we can identify an approximate block diagonal structure HΣ̂  in the 

correlation matrix of observed data set tX , then we can inductively infer empirical classification 

in the form of k
t

k
t

k
f

k
t eFX +⋅Λ= . Given that the standard static correlation )(XCorr  only 

measures synchronous or contemporaneous co-movement among variables, the dynamic 

correlation )(XDynCorr  is also used to measure co-movement among observed variables. 

Σ = )(XCorr or )(XDynCorr  
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The dynamic correlation is proposed from the frequency domain framework and defined as 

follows: ( )λρ yx =
( )

( ) ( )λλ
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  for the frequency λ  and ( )Λyxρ =
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the frequency band [ )21,λλ=Λ  where πλπ ≤≤− , πλλ ≤<≤ 210 , x  and y  are two zero-mean 

real stochastic processes, ( )λxS and ( )λxS are the spectral density functions of x and y, and 

( )λyxC  is the co-spectrum. The dynamic correlation has useful properties such as: (a) The 

dynamic correlation measures different degrees of co-movement which varies between -1 and 1 

just as standard static correlation. (b) The dynamic correlation over the entire frequency band is 

identical to static correlation after suitable pre-filtering and it is also related to stochastic co-

integration. (c) The dynamic correlation can be decomposed by frequency and frequency band, 

where the low or high frequency band in spectral domain have implication for the long-run or 

short-run in time domain respectively (Croux, Forni, and Reichlin, 2001). Note that Forni et al 
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(2000) also propose the dynamic factor model based on the spectral density matrix in a 

frequency-domain framework due to the similar issue of standard correlation or covariance 

matrix. We use the standard static correlation as well as the dynamic correlation defined to 

measure the close co-movements of disaggregated variables within a group and near 

independences of disaggregated variables across groups.  

The use of aggregate variables or estimated factors to study dynamic relationships and to 

infer causal relationships among observed disaggregate variables can be theoretically justified 

based on the compositional stability condition derived from the aggregation theory as discussed 

in chapter II. The identified block diagonal pattern of correlation matrixes implies that the 

observed disaggregate variables approximately satisfy the consistent aggregation condition of 

compositional stability condition. This condition in turn implies that there exists not only the 

possibility of obtaining interpretable macro-variables as the representative aggregate of 

homogeneous disaggregate micro-variables, but also the possibility of yielding interpretable 

macro-parameters as the representative aggregate of corresponding micro-parameters for the 

subsequent analysis. This means that when the disaggregate variables can be legitimately 

grouped and represented by aggregate variables, it is possible to use aggregate variables to 

capture (causal) relationship among disaggregate variables through the (causal) relationship 

among aggregate variables as the legitimate representatives as long as the compositional stability 

conditions hold among disaggregate variables. Moreover, given that the VAR approach is 

proposed and used as an inductive method as an alternative to the deductive SEM approach, it is 

better to pursue inductive methods, where the classification/aggregation and causality issues are 

addressed based on the inductively inferred information from the data itself, rather than based on 

the maintained assumptions derived from deduction and/or researchers’ intuition. 

 

Summary and Proposed Method  

There are significant advances in macro-econometric study from the methodological and 

empirical perspective. In methodological perspective, the vector autoregressive (VAR) model 

approach is proposed and used as an alternative to the structural equation model (SEM) approach. 

Given that the SEM approach requires too much causal information for the identification 

problem, the VAR approach provide the possibility of inferring causal information from 

statistical properties of the data without pretending to have too much a priori theory and/or 

without demanding too much information from the data. Given that such possibility to 
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inductively infer the causal structure of the VAR approach, compared to the SEM approach, is 

not fully used within the full recursive causal assumption, the use of the graphical causal model 

approach is proposed to address the remaining issue of how to inductively infer the causal 

structure to relate empirical regularities captured in reduced form model to theoretical properties 

represented by the structural form model. On the other hand, recent advances in data processing 

capabilities have brought the possibility of analyzing larger number of detailed variables. The 

macro-economic panel data have brought forth research potentials for significant advances in the 

macro-economic analysis of monetary policy effects. The factor augmented VAR (FAVAR) 

approach is proposed to use such research potentials and to address informational issue in the 

small size VAR approach. For the full use of the inductive possibility of structural understanding 

of macro-economy, the use of the approximate form of the compositional stability condition is 

proposed. This method provides inductive classification of macro-economic panel data and thus 

makes it possible to obtain meaningfully interpretable estimated factors, which in turn allow the 

use of the graphical causal model for the FAVAR approach. 

Given the observation that many variables in this high dimensional data move very 

closely, the compositional stability condition as the consistent aggregation condition provides an 

inductive way to pursue the possibility of obtaining not only (a) interpretable aggregate macro-

variables as the representative aggregate of homogeneous disaggregate micro-variables but also 

(b) interpretable macro-parameters as the representative aggregate of corresponding micro-

parameters for the subsequence analysis. This implies that when the micro-variables can be 

legitimately grouped and represented by macro-variables, it is possible to use aggregation 

methods (a) to incorporate broad range of information into the empirical models with 

minimizing econometric issues such as the multicollinearity and degrees of freedom, (b) to 

capture (causal) relationships among disaggregated variables through (causal) relationships 

among aggregated variables as the legitimate representatives. This compositional stability 

condition is used (a) to provide an inductive way of forming suitable partitions before 

conducting any empirical test to justify those classifications based on the empirical data patterns 

rather than on researchers’ intuition and (b) to address the possible violation of the (probabilistic) 

stability condition to use the graphical causal models for the high dimensional data. Note that it 

is conceivable and oftentimes observed that the (probabilistic) stability condition for the 

graphical causal models is violated for using high dimensional data in empirical study, given the 
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observation that there exist close co-movements and thus near deterministic relations among 

variables in high dimensional data. 

More specific procedure we propose is as follows: (a) Both standard static correlation 

matrix and dynamic correlation matrix over identified frequency band are used to measure co-

movement among original variables. Based on these similarity measure of disaggregate micro-

variables, the modified k-nearest neighbor algorithm is used to sort the variables such that the 

highly correlated variables are near each other along the main diagonal in reordered correlation 

matrix. The block-diagonal pattern of reordered or sorted static and dynamic correlation matrixes 

are used to identify homogeneous group of variables, based the approximate form of the 

compositional stability condition. (b) Based on identified classifications of original variables, the 

statistical dimensional reduction method are used for actual aggregation procedure to decide 

weighting schemes for aggregating disaggregated micro-variables into representative macro-

variables within each identified group. The principal component method applied onto each of 

groups is used as the best dimensional reduction method with as little loss of information as 

possible in the mean squared error sense. (c) Given that the inference based on the small size 

VAR can be misleading unless the reduced form innovations span the space of the structural 

shocks or the VAR model does not have the omitted variables problem, the estimated factors are 

augmented in the VAR (FAVAR) framework to increase the amount of information in the 

empirical model so that the reduced form residuals span the space of the structural economic 

shocks. (d) Based on the residuals of reduced form FAVAR, the contemporaneous causal 

structure among innovations is inferred by the graphical causal model. The identified 

compositional stability condition in the data makes it possible to infer causal structures among 

micro-variables through relationships among representative aggregated macro-variables. The PC 

algorithm or GES algorithm is used to infer causal structures among macro-variables as the 

legitimate representative causal relationships among micro-variables for the subsequent analysis. 

(e) Based on the contemporaneous causal structure used for identification of FAVAR, structural 

relationships of the macro-economy are studied in the two types of the moving average 

representations. The impulse response functions of all the observed variables with respect to 

shocks in the monetary policy variable as well as each of the estimated factors are estimated and 

interpreted. The forecast error variance in each factor is decomposed into the parts attributable to 

each of a set of innovations processes in the FAVAR. Note that inductive properties are 

emphasized in every sequence of the proposed method, since any types of deductive properties 
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can bring subjectivities or ambiguities into the empirical results. The proposed method is 

illustrated with the applications for retail checkout scanner data as an example of the high 

dimensional data.  

 

Empirical Analysis and Results 

The proposed methodological procedure is illustrated with U.S. macro-economic panel 

data. Given that the vector autoregressive (VAR) model approach is proposed and used as an 

alternative to the deductive structural equation model (SEM) approach, inductive properties are 

emphasized in every step of empirical procedures. First, the data used for this study are 

described. Second, based on the identified common frequency for the estimated spectrum of 

variables in the data set, static and dynamic correlations among variables are measured. Third, 

based on the block diagonal pattern of the correlation matrixes identified by the modified k-

nearest neighbor algorithm, the variables are classified and classified groups are interpreted, 

where variables within each group move together closely. Fourth, based on the classified groups, 

the latent factors are estimated and augmented in the VAR (FAVAR) framework. Based on the 

residuals of reduced form FAVAR, the contemporaneous causal structure among innovations is 

inferred by the graphical causal model. Fifth, based on the causal structure used for identification, 

the impulse response functions with respect to shocks in the monetary policy variable as well as 

each of the estimated factors are estimated and interpreted. The forecast error variance in each 

factor is decomposed into the parts attributable to each of a set of innovations processes in the 

FAVAR. The empirical results are summarized and further issues to be studied are discussed. 

 

Data Description  

The data set consists of monthly observations on 103 U.S. macro-economic time series 

panel data from 1959:1 through 2003:12 with the sample size of 526. All the data are from the 

data set used in Stock and Watson (2005). According to these authors, all series are from the 

Global Insights Basic Economics Database, the Conference Boards’ indicators Database, and 

their own calculations. The data represent a broad range of macro-economic activity. Stock and 

Watson intuitively grouped the time series variables in the data set as following categories: 1. 

Real output and income, 2. Employment and hours, 3. Real retail, manufacturing and trade sales, 

3. Consumption, 4. Housing starts and sales, 5. Real inventories, 6. Orders, 7. Stock prices, 8. 
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Exchange rates, 9. Interest rates, 10. Spreads, 11. Money aggregates, 12. Price indexes, and 13. 

Miscellaneous.  

The data are transformed in four ways. First, many of the series are seasonally adjusted 

by the reporting agency. Second, the series are transformed by taking logarithms and/or 

differencing so that the transformed series are approximately stationary. In general, the first 

difference of logarithms (growth rates) is used for real variables, the second difference of 

logarithms (changes in growth rates) is used for price series, and the first differences are used for 

nominal interest rates. Third, outliers contained in some of the transformed series are identified 

as absolute median deviations larger than 6 times the inter quartile range and adjusted by 

replacing those observations with the one-sided median value of the preceding 5 observations. 

Fourth, the series are demeaned and standardized (Stock and Watson, 2005). The list of variables 

with detailed descriptions and their transformations are given in Appendix E. The grouping and 

ordering of the variables are based on the empirical results of this study. 

 

Classification and Aggregation  

One of objectives of this study is to propose an inductive procedure for the construction 

of appropriate grouping of variables. Given that theory does not provide sufficient and 

conclusive information for classification, an inductive property is emphasized due to the 

empirical implausibility of attempting all possible partitions. In this respect, it is better to pursue 

inductive classifications related with legitimate aggregation conditions, which is based on the 

empirical data pattern itself rather than researchers’ subjective intuition. Based on the 

compositional stability conditions derived from the aggregation theory, our inductive procedure 

is based on the idea that homogeneity or similarity of group of variables can be identified 

through their dynamic movements. When original disaggregate variables within a group have the 

similar dynamic movements so that they co-move each other very closely, their high co-

movements reveal their underlying similarity. 

Given that the standard static correlation only measures synchronous or 

contemporaneous co-movements between variables and it is desirable to allow possible leads 

and/or lags in dependency among the time-series data in dynamic setting, both the standard static 

correlation matrix and the dynamic correlation matrices estimated over identified frequency 

bands are used to measure co-movement among the original variables. For the dynamic 

correlations, several different frequency bands are chosen as the non-overlapping bands or 
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regions, based on the estimated spectrums of all the time series variables in the data. They 

approximately centered at peak kλ  so that [ ) [ ){ }πλλλλλλλ ≤<<≤−−∪=Λ jkiijji 0:,, , where 

the frequency kλ  is specified as ( ){ }2,,1:2 TkTkk L=⋅= πλ  and T  is the sample size 

(Rodrigues, 1999). Note that if the frequency of a cycle is λ , the period of the cycle is λπ2 . 

Thus, a frequency of Tkk ⋅= πλ 2  corresponds to a period of kTk =λπ2 . We choose common 

frequency bands to measure co-movement among variables with possible leads and lags, based 

on the estimated spectrums of variables, which capture dynamics of variables in terms of their 

cyclic properties with long or short run trends (Hamilton, 1994). The estimated spectrums of all 

the time series variables are presented in Figure 4.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

* See Appendix E for the description of variables, where variables are in the same order. 
* The x- axis is the frequency in terms of k and the y-axis is the estimated spectrum.  
Figure 4.1. Estimated Spectrums of Macroeconomic Variables
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The x-axis is the frequency in terms of k  and the y-axis is the estimated spectrum. We use five 

frequency bands: 0-30, 31-80, 81-160, 161-220, and 221-263 in terms of k , which correspond to 

period more than 17.53 months (frequency Band 01), period of 16.97 to 6.58 months (frequency 

Band 02), period of 6.49 to 3.29 months (frequency Band 03), period of 3.27 to 2.39 months 

(frequency Band 04), and period less than 2.38 months (frequency Band 05) ranges respectively. 

These ranges approximately correspond to 2.5 year and 12, 6, and 3 months and short period 

ranges, where the 2.5 year is known as a business cycle frequency, given dates of the economic 

recessions (Hamilton, 1994). 

Based on the similarity measures of disaggregate micro-variables, the modified k-nearest 

neighbor algorithm is used to sort or reordered the variables such that the highly correlated 

variables are near each other along the main diagonal in the final correlation matrix. The final 

result of the sorted static correlation matrix and dynamic correlation matrixes for different 

frequency bands are presented in Figure 4.2. The black/white color scheme is used to represent 

the absolute value of measured correlations, where the darkest black represents the correlation of 

1 and the brightest white represents the correlation of 0. The sorted static correlation matrix with 

the color scheme is presented the Appendix F. Note that the frequency Band 00 is the entire 

frequency region. It is demonstrated that dynamic correlation over entire frequency band is 

equivalent to the static correlation of pre-filtered data, where the following two-sided filter is 

used: ( ) ( )∑ +
−

+
−

=
∞

=

−

Λ
1

1212 sinsin
k

kk LL
k

kkLA
π

λλ
π

λλ , where L  is lag operator and −+ Λ∪Λ=Λ . 

This dynamic correlation of the entire frequency band represents the idea, similar to that used in 

correlations of band-pass filtered data, that the synchronic cyclical components of variables can 

be measured by looking at the correlation over the extracted cycles from the variables (Croux, 

Forni, and Reichlin, 2001). 

The main feature of the compositional stability condition is that each aggregate variable 

is composed of grouped disaggregate variables with a “stable” compositional factor over time, so 

the ratios of disaggregate variables over aggregate variables are near constant and stable over 

time. In this respect, when we can identify that the correlation matrixes of observed data set tX  

have the special block diagonal structure such that variables within each block are highly 

correlated but variables across blocks are nearly uncorrelated, we can inductively infer an 

empirical classification and thus we can use the block form of factor model of i
t

i
t

i
f

i
t eFX +⋅Λ=   
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* The black/white color scheme is used to represent the absolute value of measured correlation, where  
   the darkest black represents the correlation of 1 and the brightest white represents the correlation of 0. 
* See Appendix E for the description of variables, where variables are in the same order. 
 

Figure 4.2. Sorted Static and Dynamic Correlation Matrix of Macroeconomic Variables 
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Figure 4.2. (Continued) 
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Frequency Band 05      Frequency Band 00 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10
0

10
1

10
2

10
3

 

 

 1.0

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0.0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10
0

10
1

10
2

10
3

 

 

 1.0

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0.0

 
 

Figure 4.2. (Continued) 
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Standard Static Correlation Matrix 
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Figure 4.2. (Continued) 
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where Ii ,,1L=  is the classified group index. When data reveals this special block diagonal 

structure, extracting the estimated factors from each block of variables, rather than obtaining the 

estimated factors from the entire data set, can provide better representative aggregates with clear 

interpretations for each aggregate variables based on the grouped disaggregate variables. In 

Figure 4.2 of the sorted static and dynamic correlation matrixes, we can identify that this special 

block diagonal structure commonly exists over all the different frequency bands and static 

correlation matrix, although the correlations of pair-wise variables across different groups show 

somewhat different degrees of correlation over the different frequency bands.  

Based on the sorted static correlation matrix and the dynamic correlation matrixes over 

the different frequency bands, the following groups of macro-economic variables are identified 

as homogeneous groups, which are commonly identified in both the static correlation matrix and 

the dynamic correlation matrix over the different ranges of frequency bands. 

 

Exchange Rate Variable Group: Variables of 001 to 005. 

Several foreign exchange rates for different countries such as Canada, Japan  

with average foreign exchange rate  

Stock Market Variable Group: Variables of 006 to 009 

Several S&P composite stock price indexes with S&P composite,  

stock price-earning ratio, and consumer expectation index variables 

Money Aggregate Variable Group: Variables of 010 to 016 

Several monetary stock indexes such as M1, M2, M3  

with money supply and several deposits, bank reserves variables 

Price Variable Group: Variables of 017 to 028 

Several consumer and producer price indexes  

with spot market price and sensitive materials price indexes 

Interest Rate Variable Group: Variables of 029 to 036 

Several interest rates of different maturities  

with several bond yields and commercial paper rate 

Spread Variable Group: Variables of 037 to 044 

Several spread between federal fund rates  

with interest rates variables of different maturities included above group 
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Housing Market Variable Group: Variables of 045 to 054 

Several variables on housing starts and houses permitted  

of total and different regions such as northeast, south areas. 

NAPM Variable Group: Variables of 055 to 061 

Several National Association of Purchasing Management  

(NAPM) indexes such as production, new order indexes. 

Employment Variable Group: Variables of 062 to 075 

Several employment on non-farm payrolls of total  

and different areas with employed labor force variables. 

Output Variable Group: Variables of 076 to 089 

Several industrial production indexes of total and different areas  

with personal income variables and capacity utilization variable. 

Consumption/Investment Variable Group: Variables of 090 to 096 

Several Manufacturers’ new order of different sectors  

and sales of different sectors with consumption variables 

Unemployment Variable Group: Variables of 097 to 102 

Several unemployment variables of different durations  

 with total unemployment rate variable. 

Federal Funds Rate Variable: Variable 103  

the effective federal funds rate. 

 

The complete variable names and their detailed description for each group is given in 

Appendix E, where variables are grouped and in the same order in the sorted correlation matrix. 

While this classification result has its own interpretations for each group of variables in terms of 

corresponding macro-economic theoretical variables, this classification is the inductive one 

using the empirical data itself based on the following observed patterns. First, the different 

degrees of correlation across identified groups are observed. The correlations across group in the 

long run period ranges (frequency bands 01 and 02) are relatively high, compared with those in 

the short run period ranges (frequency bands 04 and 05). This correlation pattern across different 

groups can be interpreted based on the fact that each frequency band represents a different cyclic 

period. As the dynamic correlation matrix is based on the more long run range of period, it 

measures more long run relationships among variables. And the relationships among variables 
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generally increase as they are measured in the longer period range, when there are certain 

stability or equilibrium relationships among variables. In this respect, the close co-movement 

among variables is expected more in the long run range period dynamic correlation matrix than 

in the short run range one. Second, although the correlations of pair-wise variables across 

different groups show somewhat different degrees of correlation over the different frequency 

bands, the common groups of variables are identified over all the different frequency bands. The 

Exchange Rate, Stock Market, Money Aggregate, Price, Interest Rate, Spread, and 

Unemployment variable groups are distinct homogenous groups. The money group variables are 

homogenous especially in the frequency bands of 02 and 03, although they are somewhat 

separated as the monetary aggregate variables and the reserve variables. The price group 

variables are homogenous especially in the frequency bands of 01, 02, and 03, although they are 

somewhat separated as the CPI variables and the PPI and commodity price variables. Third, the 

degrees of correlations among the variables in the NAPM, employment, output, and 

consumption/investment groups are high, especially when dynamic correlations are measured in 

longer period range (frequency bands 01 and 02) rather than shorter period range (frequency 

bands 04 and 05). The Housing Market group and NAPM group variables are discriminated by 

their relatively different relationships with variables in the Employment and Output groups, 

given that the variables in NAPM group have higher correlation with the variables in 

Employment and Output groups. The NAPM group and Employment group variables are 

discriminated by their relatively different relationships with variables in the Housing Market and 

Output groups, given that the variables in NAPM group have higher correlation with the 

variables in Housing Market group, whereas the variables Employment have higher correlation 

with the variables in Output groups. The Employment group and Output group variables are 

discriminated by their relatively different relationships with variables in the NAPM and 

Consumption/Investment groups, given that the variables in Employment group have higher 

correlation with the variables in NAPM (and Housing Market) group, whereas the variables 

Output have higher correlation with the variables in Consumption/Investment groups. The 

Output group and Consumption/Investment group variables are discriminated by their relatively 

different relationships with variables in the Employment (and NAPM) group, given that the 

variables in Output group have higher correlation with the variables in Employment (and 

NAPM) group.  
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This classification result can be interpreted in the context of monetary policy 

transmission mechanism literature. In demand side of economy, overall size of economy (output 

group) consists of consumption and investment (consumption/investment group). On the other 

hand, total labor force can be divided into employment and unemployment components. The 

money and price groups represent two important components affecting real economic activities. 

The interest rate group of variables corresponds to narrow interest rate channel of the monetary 

transmission channel. The exchange rate group of variables can be understood based on the 

traditional ISLM macro-models for the open economy. The stock market and housing market 

groups can approximately represent the corresponding asset market channels in the transmission 

mechanisms, given that stock and house represent financial and physical assets respectively. The 

NAPM or spread groups can approximately represent the expectation channel suggested in some 

monetary transmission mechanism literature.  

The resulting classification based on the inductive procedure can be compared with other 

deductive classifications, which rely on the researchers’ intuitive choices. For example, Leeper, 

Sims, and Zha (1996) implicitly classify macro-economic variables into real gross domestic 

product, real private non-residential fixed investment, and real residential fixed investment with 

some selected variables such as unemployment, several monetary aggregates, several interest 

rates, several price indexes, exchange rate in their Bayesian structural VAR model. Their 

classification has some distinctive features. (a) The real product group consists of total industrial 

production, employment, retail sales, personal consumption, and NAPM indexes. (b) The non-

residential investment group consists of several variables related with industrial structures, 

equipment component and manufacturers’ shipments to capital goods industries. (c) The 

residential investment group consists of variables related with housing starts and construction. 

(d) They individually select several similar variables. For example, M1 and total reserve 

variables are selected individually, not aggregated. Note that their aggregation is based on the 

Chow-Lin procedure, where national income and product accounts quarterly series are combined 

with each group of monthly time series variables. For another example, Belviso and Milani 

(2005) explicitly classify macro-economic variables into real activity, inflation, interest rates, 

financial market, money, credit, expectation groups for their structural factor augmented VAR 

model (SFAVR). In their classification, (a) The real activity group consists of almost all the 

variables except variables included in other groups. (b) The expectation group consists of NAPM 

group variables and spread group variables. (c) The financial market represents the stock market. 
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Comparing with two classifications mentioned above and other implicitly suggested 

deductive classifications, an inductive classification of this study has following distinctive 

features: (a) The house, consumption/investment, employment, unemployment, and production 

groups are separately identified. This separation can be observed in other empirical studies. For 

example, Leeper, Sims, and Zha (1996) separate real activity group of variables into real gross 

domestic product, real private non-residential fixed investment, and real residential fixed 

investment groups of variables in their empirical study. The non-residential investment group 

variables approximately correspond to the invest component of consumption/investment group 

variables. On the other hand, the residential investment group variables approximately 

correspond to the house group variables. The consumption or sale related variables are classified 

as consumption/investment group with investment related variables. The employment group is 

separated from the output group, since the employment group shows higher degrees of 

correlation with NAPM and housing market groups than the output group as discussed. (b) The 

spread group is separated from the NAPM group. Although Belviso and Milani (2005) identify 

these two groups as one homogeneous group, their explanations for their expectation group 

provide clues for interpret this empirically found separation. The NAPM surveys indexes are 

relatively more related with expectations about real activity such as production, employment, 

inventories, and new orders. On the other hand, the interest rate spreads are relatively more 

related with expectations about the future short-term rates and future inflations. Note that Leeper, 

Sims, and Zha (1996) include NAPM group variables into the real gross domestic product group 

variables. 

 

Causality for Identification  

Based on the classification results, a five step procedure is used to study monetary policy 

effects. First, the latent factors are estimated from the observed variables based on the principal 

component method. Given that dynamic factor approach is based on the proposition that the 

observed co-movements of variables are produced by the underlying common dynamic factors, 

which are in turn driven by underlying common structural economic shocks, the block diagonal 

pattern of static and dynamic correlation matrixes imply that (i) Co-movements among variables 

exist within blocks rather than across blocks. (ii) As common sources of comovement, there can 

be each of dynamic factors common for each specific block rather than for the entire data set. 

(iii) The underlying structural economic shocks can be revealed by estimating each of common 
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sources of comovement from each block rather than from the entire data set. Based on these 

reasoning, it can be better to estimate each latent factor from each block rather than to estimate 

factors from the entire data set. And thus each latent factor i
tF̂  is estimated from each block of 

variables in the block form of factor model framework of i
t

i
t

i
f

i
t eFX +⋅Λ= , where Ii ,,1L=  is 

index for the classified groups. Second, estimate reduced form VAR augmented with estimated 

factors (FAVAR) and obtain the covariance among innovations from the estimated reduced form 

FAVAR ( ) Ω= ˆ
tuCov . Given the monthly data is used, 13 lags are used to incorporate sufficient 

dynamics into model following Bernanke, Boivin, and Eliasz (2005). Third, based on the system 

of equations ( ) TAA 1

0

1

0
ˆ −−=Ω , the unknown elements in 0A  coefficient matrix are solved or 

recovered in terms of the estimated elements of ( ) Ω= ˆ
tuCov  covariance matrix. Since there are 

( ) 21+⋅ NN  equations in ( ) Ω= ˆ
tuCov  and 2N  unknown parameters in 0A , at least ( ) 21−⋅ NN  

restrictions in 0A  need to be imposed for the existence of a solution for 0A . The 

contemporaneous coefficient matrix 0A , which relates the structural and reduced form VAR 

specifications, specifies how variables are causally linked to each other contemporaneously.  

The causal information (in the form of restriction on 0A  matrix) required for 

identification in the FAVAR framework can be inductively inferred from data based on the 

graphical causal models or the DAG approach. The use of aggregate variables or estimated 

factors to study dynamic relationships and to infer causal relationships among observed 

disaggregate variables can be justified based on the compositional stability condition derived 

from the aggregation theory. The identified block diagonal pattern of correlation matrixes 

discussed in aggregation section implies that the observed disaggregate variables approximately 

satisfy the consistent aggregation condition of compositional stability condition. This condition 

in turn implies that there exists not only the possibility of obtaining interpretable macro-variables 

as the representative aggregate of homogeneous disaggregate micro-variables but also the 

possibility of getting interpretable macro-parameters as the representative aggregate of 

corresponding micro-parameters for the subsequence analysis. This means that when the 

disaggregate variables can be legitimately grouped and represented by aggregate variables, it is 

possible to use aggregate variables to capture (causal) relationship among disaggregate variables 

through (causal) relationship among aggregate variables as the legitimate representatives as long 

as the compositional stability conditions hold among disaggregate variables. Note that in the 



 

 

181

preliminary study for causal structures in the disaggregated original level data set, many 

reasonable causal relationships among disaggregate micro-variables are not statistically observed. 

It is because high correlation among 1x  and 2x  can induce ( ) ( )21321 |,| xxPxxxP =  through 

( ) 1| 21 ≈xxP  regardless of the causal structures among them. So it is not possible to infer reliable 

causal structure from the probabilistic dependency pattern. The (probabilistic) stability condition 

of the graphical causal model is violated and thus DAG method can not be legitimately used for 

disaggregate level data set. Note that this problem is similar to the multicollinearity problem, 

which makes it difficult to obtain precise estimates of the separate effects of the variables in the 

regression method. The GES algorithm is used to infer contemporaneous causal structures 

among innovations of FAVAR as the legitimate representative causal relationships among 

observed disaggregate variables. Note that the PC algorithm results in several undecided causal 

orientations in the similar non-spurious statistical dependencies (skeleton) with the GES 

algorithm and thus only the result of GES algorithm is used in this study. The inductively 

inferred contemporaneous causal structure by the GES algorithm is presented in Figure 4.3. The 

covariance\correlation matrix among innovations of reduced Form FAVAR is presented in Table 

4.1.  

The contemporaneous causal structure, which is inductively inferred by the GES 

algorithm without any deductive information, can be interpreted as follows. (a) There is 

observational equivalence between stock market innovations and NAPM innovations. This 

means that the causal direction can not be decided based on statistical observations only or either 

direction between them is statistically equivalent (Chi-Square(59) value is 68 with the significant 

level of 0.2082 for the likelihood ratio test of both over-identifications). Empirical results based 

on the causal direction from stock to NAPM are presented, given that the empirical results for 

the subsequent analyses including impulse responses are not sensitive to either orientation. (b) 

There are several first causes (causal roots) and last effects (causal sinks). The federal fund rate 

variable and monetary aggregate and exchange rate factors turn out to be causal root innovations. 

On the other hand, the price, unemployment and housing factors turn out to be causal sink 

innovations. Note that the observed policy variable represented by the federal fund rate is not 

causally ordered last, as Bernanke, Boivin, and Eliasz (2005) assumed. This result is also found 

in the contemporaneous causal structure inferred by the PC algorithm. 
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* See Appendix E for the description of representative aggregates 

Figure 4.3. Contemporaneous Causal Structure Inferred by GES Algorithm 
 

 

Table 4.1. Covariance\Correlation Matrix among Innovations of Reduced Form FAVAR 

ExRate Stock Money Price Interest Spread House NAPM Emp Output Cons/Inv UnEmp FFR

ExRate 0.31773 -0.02079 -0.02540 -0.11210 0.19158 -0.01092 -0.07857 0.03551 -0.00131 0.07946 0.07082 -0.02903 0.06757

Stock -0.00731 0.38890 -0.02901 -0.12784 -0.13024 -0.04496 0.03959 0.15225 0.03544 0.02279 0.16917 0.04482 -0.02200

Money -0.00550 -0.00694 0.14735 -0.02526 -0.10232 -0.11504 0.10809 -0.00558 0.01903 -0.01099 -0.07206 -0.00771 0.00281

Price -0.02635 -0.03325 -0.00404 0.17390 0.06807 0.08844 0.02109 -0.01037 -0.01320 -0.04479 -0.07110 0.05640 -0.03041

Interest 0.05789 -0.04355 -0.02106 0.01522 0.28743 0.28539 -0.02222 0.24185 0.08712 0.09416 0.09840 -0.07446 0.45529

Spread -0.00145 -0.00662 -0.01043 0.00871 0.03614 0.05579 0.00024 0.16497 0.01408 0.03802 0.04701 0.01771 -0.40940

House -0.00707 0.00394 0.00662 0.00140 -0.00190 0.00001 0.02547 0.05888 0.23645 0.16068 0.22311 0.03414 0.02908

NAPM 0.00358 0.01697 -0.00038 -0.00077 0.02318 0.00696 0.00168 0.03195 0.18262 0.25212 0.26275 0.01497 0.06110

Emp -0.00027 0.00820 0.00271 -0.00204 0.01732 0.00123 0.01399 0.01210 0.13752 0.50298 0.34197 -0.18065 0.08344

Output 0.02277 0.00723 -0.00215 -0.00949 0.02566 0.00456 0.01303 0.02291 0.09482 0.25843 0.54527 -0.12593 0.00666

Cons/Inv 0.02000 0.05286 -0.01386 -0.01486 0.02644 0.00556 0.01784 0.02353 0.06354 0.13890 0.25109 -0.05235 0.01925

UnEmp -0.00700 0.01196 -0.00127 0.01006 -0.01707 0.00179 0.00233 0.00114 -0.02865 -0.02738 -0.01122 0.18295 -0.09804

FFR 0.02356 -0.00849 0.00067 -0.00784 0.15099 -0.05982 0.00287 0.00676 0.01914 0.00209 0.00597 -0.02594 0.38262  
* The lower triangular is for covariance values and the upper triangular is for correlation values.  
* See Appendix E for the description of representative aggregated variables, where variables are in the same order. 
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The entire causal structure can be understood as three parts for a convenient explanation. 

The first part is the real economy sector, which consists of consumption/investment, output, 

employment, unemployment, and house factors. The second part is money/interest sector, which 

consists of federal fund rate, monetary aggregate, interest rate spread, and interest rate factors. 

The third part consists of exchange rate, price, stock, and NAPM factors. In the real economy 

component, the contemporaneous causal order is consumption/inventory, output/production, 

employment, and unemployment factors. The housing factor is directly affected by the monetary 

aggregate, employment, and consumption/investment factors. In the money/interest component, 

the federal fund rate and monetary aggregates affect interest rates either directly or through 

interest rate spread. Interest rate factor is also affected by the exchange rate factor. In the third 

component, the influences of the money/interest part, summarized by interest rate factor, on the 

price factor are transmitted by the NAPM and financial market (stock) factors. The price factor is 

also affected by the exchange rate factor. On the other hand, the effects of the monetary policy, 

summarized by interest rate factor, on the real economy part, more directly 

consumption/investment and output factors, are transmitted by the NAPM and financial market 

(stock) factors. In this respect, it can be argued that the monetary transmission mechanisms 

identified in this causal structure are interest rate, financial market (stock), and expectation 

(NAPM) channels. The financial market (stock) and expectation (NAPM) factors turn out to be 

crucial channels to transmit the causal influences from money/interest part into the rest parts of 

the overall economy. Note that all the causal interpretations are based on the contemporaneous 

causal structure among innovations from a reduced form FAVAR. 

 

Empirical Results of the Structural FAVAR  

Based on the identified structural coefficient matrix 0Â , the estimated impulse response 

functions of FAVAR are used to study the responses of the system to particular initial shocks. 

The impulse response functions of individual macroeconomic indicators are obtained by using 

the impulse responses of FAVAR and the estimated coefficient of i
fΛ̂  based on the 

relationship i
t

i
t

i
f

i
t eFX +⋅Λ= . The resulting impulse response functions describe the effects of 

variables to one standard deviation shock to the federal fund rate variable and each of the 

estimated factors. The impulse response functions of all the variables with respect to a initial 

shock in the federal fund rate are presented in Figure 4.4.  
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* Straight lines represent IRF estimates based on proposed Grouped FAVAR method and dotted lines straight lines represent those based on previous Ungrouped FAVAR method.  
* See Appendix E for the description of variables, where variables are in the same order. 

Figure 4.4. Impulse Responses to Federal Fund Rate Shock 
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For comparison purpose, the impulse responses obtained from the ungrouped FAVAR, 

which follows the methods of Bernanke, Boivin, and Eliasz (2005), are also presented. As 

discussed previously, their methods are based on the estimated factors from the entire data set 

(ungrouped FAVAR) and the assumed full recursive restrictions. On the other hand, the method 

used in this study is based on the estimated factors from the inductively classified groups of 

variables (grouped FAVAR) and inductively inferred causal structures. The results of the 

ungrouped FAVAR are used as the baseline with which our result is compared, since the 

FAVAR methods and empirical results of Bernanke, Boivin, and Eliasz (2005) are generally 

accepted as the benchmark for the study of the monetary policy effects (see Stock and Watson, 

2005 for example).Both ungrouped and grouped FAVAR models result in similar impulse 

responses with respect to federal fund rate shock, except the grouped FAVAR model generally 

has smaller magnitude of responses than the ungrouped FAVAR. (a) The exchange rates 

appreciate and eventually fall. (b) The stock markets, money aggregates decline. (c) Given that 

the price puzzle found in the literature remains beyond several years, the price puzzle is 

considerably reduced and prices eventually go down. The different movement among CPI, PPI, 

and spot market price index and sensitive material price index can be explained by the fact that 

the posted prices (CPI) adjust more slowly to the production cost shock induced by the federal 

fund rate shock. (d) The interest rates increase, whereas the interest rate spreads, housing market, 

and NAPM decline. (e) The real activity measures (employments, output, and 

consumption/investment group variables) decline and eventually return toward zero (long-run 

money neutrality). (f) The inventory and unemployment variables increase. The counter-intuitive 

results such as increase stock market and decrease exchange rates, found in another ungrouped 

FAVAR model applied to U.K data (Lagana and Mountford, 2005), are not found in our impulse 

responses. Given that these results appear to be sensible measures of the effect of monetary 

policy, the similar results obtained from the grouped FAVAR with graphical causal model 

approach used in this study may well be interpreted as an empirically plausible specification. 

Compared to the usual small size VAR approach, the FAVAR approach has an 

advantage to obtain impulse responses for a large number of variables, that is, for any variables 

included in the data set. However, in the previous applied (ungrouped) FAVAR approaches, the 

latent factors are estimated from the entire data set and thus the estimated factors are linear 

combinations of all the variables in the data set. In this case, the advantage of the FAVAR model 

is restricted to study of impulse responses with respect to a shock of the observed (policy) 
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variable, since it is not easy to provide economic interpretations for the impulse responses with 

respect to a shock of each of augmented factors, except the observed policy variable. Note also 

that it is not easy to provide clear economic meanings for the estimated factors and thus not easy 

to use other general identification schemes, except the full recursive one with the first or last 

ordered policy variable. Note that when the policy variable is in the middle of the causal order, 

even the full recursive assumption itself is not easy to use in the previous used (ungrouped) 

FAVAR approaches. Compared to the ungrouped FAVAR approach, the grouped FAVAR 

framework with compositional stability condition introduced in this study makes it possible to 

obtain meaningful factors and thus meaningful additional impulse responses with respect to 

shock of each of augmented factors as well as the observed (policy) variable. These additional 

impulse responses from the grouped FAVAR provide more structural information and allow the 

additional comprehensive checks on the empirical plausibility of the grouped FAVAR with a 

DAG specification.  

The additional impulse responses of selected variables with respect to shocks in each of 

augmented factors are presented in Figure 4.5. to 4.16. For the interpretation of the results, it is 

convenient to describe the results based on the two general observations: (i) The movements of 

the real activity measures (employment, output, and consumption/investment variables) are 

generally in opposite direction to the movements of the inventory and unemployment variables. 

And thus these two opposite movements of variables for the real economy part are described by 

the movement of the real economy. (ii) The movements of the federal fund rate and interest rates 

are generally in opposite direction to the movements of the monetary aggregate variables, except 

for the housing market and unemployment shocks, which will be mentioned separately. And thus 

these two opposite movements of variables for the monetary economy part are described by the 

movement of the general interest rate. Based on these two general observations, (i) The 

movement of the general interest rate can be understood as the result of the monetary policy in 

the context of the relative movements of the real economy and the prices variables. For example, 

high inflation or excessive boom can induce contractionary monetary policy. (ii) The movements 

of the exchange rates and two asset markets of stock and housing markets and two types of 

expectations of the NAPM indices and interest rate spreads can be interpreted as the monetary 

policy transmission mechanisms channels based on the movement of the general interest rate, as 

well as the relative movements of the real economy and the prices variables. For example, high 

interest rates, induced by contractionary monetary policy, can decrease asset prices to stabilize  
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* See Appendix E for the description of variables, where variables are in the same order. 

Figure 4.5. Impulse Responses to Exchange Rate Factor Shock 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
* See Appendix E for the description of variables, where variables are in the same order. 

Figure 4.6. Impulse Responses to Stock Factor Shock
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* See Appendix E for the description of variables, where variables are in the same order. 

Figure 4.7. Impulse Responses to Money Factor Shock 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
* See Appendix E for the description of variables, where variables are in the same order. 

Figure 4.8. Impulse Responses to Price Factor Shock
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* See Appendix E for the description of variables, where variables are in the same order. 

Figure 4.9. Impulse Responses to Interest Factor Shock 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
* See Appendix E for the description of variables, where variables are in the same order. 

Figure 4.10. Impulse Responses to Spread Factor Shock
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* See Appendix E for the description of variables, where variables are in the same order. 

Figure 4.11. Impulse Responses to House Factor Shock 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
* See Appendix E for the description of variables, where variables are in the same order. 

Figure 4.12. Impulse Responses to NAPM Factor Shock
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* See Appendix E for the description of variables, where variables are in the same order. 

Figure 4.13. Impulse Responses to Employment Factor Shock 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
* See Appendix E for the description of variables, where variables are in the same order. 

Figure 4.14. Impulse Responses to Output Factor Shock
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* See Appendix E for the description of variables, where variables are in the same order. 

Figure 4.15. Impulse Responses to Consumption/Investment Factor Shock 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
* See Appendix E for the description of variables, where variables are in the same order. 

Figure 4.16. Impulse Responses to Unemployment Factor Shock
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the high inflation or excessive boom economy. Note that the above descriptions only provide one 

possible convenient interpretation to check the empirical plausibility of model and thus they are 

understood in such a limited context. We do not have sufficient information on the complete 

causal structures among variables of the overall economy over the full dynamics interactions 

beyond contemporaneous time. The main advantage of VAR approach is that it does not require 

the kinds of the complex and full structural causal information. All we need for the identification 

problem in the VAR approach is the contemporaneous causal relationship among innovations, 

which can be inductively identified by the graphical causal model approach of the GES 

algorithm. 

The contemporaneous causal relationships among innovations, however, do not provide 

sufficient information on the complete and fully dynamic causal structures among variables of 

overall economy. For example, the above description implicitly involves feedback causal 

structure beyond contemporaneous time: overall economic conditions at time 1−t or t →  

monetary policy at time t →  movements of the monetary policy channels at time t or 1+t →  

overall economic conditions at time 1+t  or 2+t . For another caveat, the monetary policy 

channels of exchange rates, asset market, and expectations can be affected not only by the policy 

induced interest rates but also by the overall economic conditions as well as expectations. In fact, 

the general interest rates itself can be affected not only by the policy induced interest rates but 

also by the overall economic conditions as well as expectations. In this respect, the descriptions 

of the resulting impulse responses offered below are restricted to association without causal 

directions among variables.  

General descriptions for the additional impulse responses are as follows: (a) For the 

exchange rate shock (Figure 4.5), the general interest rate slightly decreases with the decreased 

real economy and the decreased price variables. The stock market and NAPM variables decrease, 

whereas the house and spread variables slightly increase. (b) For the stock market shock (Figure 

4.6), the general interest rate slightly increases with the increased real economy and the slightly 

decreased price variables. The exchange rates and NAPM variables increase, whereas the house 

and spread variables decrease. (c) For the money aggregates shock (Figure 4.7), the general 

interest rate drops initially but increases after some delay with the slightly increased real 

economy and the increased price variables. The exchange rate, house, NAPM variables slightly 

increase, whereas spread and stock market decreases after small jump. (d) For the prices shock 

(Figure 4.8), the general interest rate increases with the decreased real economy. The exchange 
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rate, the stock market, spread, house, NAPM variables decrease. (e) For the interest rates shock 

(Figure 4.9), the general interest rate increases with the decreased real economy and the 

decreased price variables. The exchange rate increases, whereas the stock, house, and NAPM 

variables decrease. (f) For the interest rates spread shock (Figure 4.10), the general interest rate 

increases with the slightly increased real economy and the increased price variables. The 

exchange rate increases, whereas the stock, house, and NAPM variables decrease. (g) For the 

house market shock (Figure 4.11), the general interest rate increases with the slightly increased 

real economy and the increased price variables. The monetary aggregate and exchange rates 

variables slightly increase, whereas the stock, spread, and NAPM variables decrease. (h) For the 

NAPM shock (Figure 4.12), the general interest rate slightly increases with the slightly increased 

real economy and the increased price variables. The exchange rates slightly increases, whereas 

the stock, spread, house decrease. (i) For the employment shock (Figure 4.13), the general 

interest rate slightly increases with the slightly increased real economy and the decreased price 

variables. The exchange rates, house, NAPM variables shortly increase and return to normal, 

whereas the stock market slightly increases. (j) For the output shock (Figure 4.14), the general 

interest rate decreases with the slightly increased real economy and the decreased price variables. 

The exchange rates, spread, house, NAPM, and stock market slightly increase. (k) For the 

consumption/investments shock (Figure 4.15), the general interest rate increases with the slightly 

increased real economy and the increased price variables. The exchange rate, spread, NAPM 

variables slightly increase, whereas stock market and house slightly decrease after short jump. (l) 

For the unemployment shock (Figure 4.16), the general interest rate initially drops but slightly 

increases after short delay with the slightly increased real economy and the increased price 

variables. The monetary aggregates increase. Note that all the impulse response functions trace 

the effect to one time shock under the condition that all other innovations remain unchanged and 

thus the resulting impulse responses need to be interpreted under such cetris paribus condition. 

For example, an output innovation shock (technological advance for example), not followed by 

adverse movements of fundamentals of overall economy, can induce the slightly increased real 

economy and the decreased price variables and thus the stable general interest rate. 

To study overall relationships among factors, the one-step forecast error variance in each 

factor is decomposed into the parts attributable to each of a set of innovations processes in the 

FAVAR. The results of forecast error variance decomposition are presented in Table 4.2.  
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Table 4.2. Forecast Error Variance Decomposition 
 

period Real Channel
Money 0 100.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

6 63.186 1 7.123 3 5.213 5 7.919 2 1.612 8 2.035 7 2.713 6 0.721 11 6.363 4 0.898 10 0.355 13 0.493 12 1.372 9 8.109 14.999
12 52.650 1 6.883 3 5.577 5 8.175 2 3.191 7 2.814 9 3.997 6 2.253 10 6.604 4 2.047 11 1.255 13 1.652 12 2.900 8 11.558 20.432
36 46.183 1 7.300 3 5.738 5 9.256 2 4.398 8 3.324 7 4.636 6 2.564 11 6.972 4 2.266 10 1.695 13 2.463 12 3.203 9 13.397 24.178

FFR 0 0.000 100.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 2.373 8 67.722 1 3.231 6 5.097 2 3.781 4 4.101 3 3.395 5 3.050 7 1.480 10 1.369 11 2.146 9 1.329 12 0.926 13 6.324 19.425

12 6.680 3 54.635 1 4.475 6 7.453 2 3.898 8 4.843 5 5.110 4 3.913 7 1.383 12 2.150 10 2.766 9 1.663 11 1.031 13 7.962 25.218
36 6.741 3 47.258 1 5.374 5 7.690 2 5.165 6 4.867 7 5.893 4 4.081 8 2.102 13 2.659 10 3.417 9 2.547 11 2.208 12 10.725 27.695

Interest 0 0.417 5 20.058 3 50.832 1 26.353 2 2.340 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 28.693
6 0.741 12 14.247 3 41.019 1 17.584 2 4.642 5 3.292 7 2.364 9 4.278 6 5.512 4 1.643 11 2.377 8 0.509 13 1.793 10 10.041 32.160

12 4.653 6 13.841 3 35.100 1 17.400 2 4.914 5 4.408 7 2.822 9 3.958 8 4.941 4 1.905 12 2.118 10 2.074 11 1.864 13 11.039 33.502
36 5.740 5 13.480 3 29.871 1 15.663 2 5.534 6 4.295 8 3.337 10 4.535 7 5.973 4 2.350 13 3.042 11 2.432 12 3.749 9 13.796 33.364

Spread 0 1.297 3 16.739 2 0.000 81.963 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 1.224 5 52.520 1 0.586 9 37.472 2 1.038 7 1.040 6 2.039 3 1.839 4 0.192 13 0.658 8 0.563 10 0.301 12 0.527 11 1.715 5.957

12 2.134 6 48.825 1 0.697 12 26.158 2 1.922 7 5.759 3 5.610 4 4.335 5 1.557 8 0.787 11 0.924 9 0.476 13 0.816 10 3.744 17.626
36 8.122 4 36.834 1 1.173 11 16.887 2 3.942 7 7.763 5 6.831 6 9.656 3 3.049 8 1.383 10 2.560 9 1.001 12 0.800 13 7.992 28.191

ExRate 0 0.000 0.000 0.000 0.000 100.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 1.439 8 3.225 3 1.662 7 0.687 11 79.912 1 2.432 5 0.730 10 1.431 9 2.594 4 0.573 12 1.677 6 0.412 13 3.226 2 5.256 5.280

12 2.029 10 3.238 4 2.533 7 2.469 8 70.148 1 4.981 2 1.389 11 2.244 9 2.953 6 0.916 12 3.109 5 0.681 13 3.311 3 7.658 11.083
36 3.320 7 4.875 3 4.380 4 2.849 9 61.312 1 5.803 2 2.104 11 2.833 10 3.092 8 1.522 12 3.354 6 1.093 13 3.463 5 9.062 13.590

Stock 0 0.007 6 0.336 4 0.852 2 0.442 3 0.039 5 98.323 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.481
6 1.852 5 1.778 7 3.472 2 2.787 4 1.539 8 79.436 1 3.279 3 0.722 11 0.913 10 0.530 12 0.360 13 1.500 9 1.832 6 3.303 8.327

12 5.087 2 2.730 6 3.611 4 3.012 5 2.475 8 67.561 1 4.186 3 2.640 7 2.007 11 2.059 10 0.693 13 1.856 12 2.082 9 6.616 12.313
36 5.296 2 4.382 4 4.707 3 3.266 7 3.133 8 59.311 1 4.372 5 3.023 9 2.840 10 2.191 12 1.681 13 2.222 11 3.575 6 8.934 13.795

NAPM 0 0.024 7 1.160 5 2.940 3 1.524 4 0.135 6 3.437 2 90.779 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5.096
6 0.943 11 0.817 13 1.637 7 7.263 4 0.898 12 17.465 2 53.013 1 7.501 3 4.927 5 1.054 9 1.241 8 2.253 6 0.987 10 9.476 33.127

12 3.159 9 5.537 6 1.757 11 6.814 4 3.548 7 18.757 2 38.047 1 8.388 3 3.530 8 1.207 13 1.592 12 5.812 5 1.852 10 12.140 37.507
36 3.814 8 16.024 3 2.058 11 6.506 4 5.954 7 18.756 2 26.829 1 6.157 5 2.981 9 1.231 13 1.386 12 6.028 6 2.277 10 11.626 37.372

PriceCons/Inv Output Emp UnEmpExRate Stock NAPM HouseMoney FFR Interest Spread
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Table 4.2. (Continued) 
 

period Real Channel
House 0 1.357 4 0.003 9 0.007 7 0.003 8 0.000 0.161 6 0.360 5 90.951 1 4.310 2 0.539 4 2.308 3 0.000 0.000 7.157 0.525

6 4.183 6 5.287 3 13.423 2 0.244 13 0.405 12 1.006 9 4.704 5 59.815 1 1.901 8 2.827 7 0.500 10 5.230 4 0.476 11 10.458 6.358
12 3.215 6 12.288 3 10.070 4 0.214 13 3.098 7 1.605 10 12.874 2 43.708 1 2.525 8 1.732 9 0.395 12 7.345 5 0.931 11 11.997 17.791
36 2.641 8 24.014 1 5.533 6 0.216 13 11.984 4 9.588 5 14.471 3 22.193 2 1.764 9 1.112 11 0.369 12 4.976 7 1.140 10 8.220 36.258

Cons/Inv 0 0.001 8 0.034 6 0.086 4 0.045 5 0.004 7 3.100 3 5.340 2 0.000 91.390 1 0.000 0.000 0.000 0.000 0.000 8.489
6 1.172 12 3.145 6 1.187 11 3.161 5 3.084 7 3.792 4 5.053 2 1.762 9 68.659 1 4.052 3 1.078 13 1.605 10 2.250 8 6.736 16.852

12 1.859 10 4.309 4 1.617 12 3.076 8 3.232 7 3.836 5 5.973 2 2.449 9 60.990 1 5.748 3 1.556 13 1.836 11 3.520 6 9.140 18.565
36 2.920 10 5.055 4 2.627 11 3.350 8 3.880 7 4.847 5 5.847 2 3.331 9 54.243 1 5.773 3 1.810 13 1.948 12 4.369 6 9.531 21.255

Output 0 0.001 9 0.049 7 0.124 5 0.064 6 0.006 8 1.260 4 5.302 3 0.000 24.197 2 68.997 1 0.000 0.000 0.000 24.197 6.632
6 1.828 10 2.078 8 1.224 12 4.323 5 0.290 13 10.251 3 9.519 4 3.611 6 16.493 2 44.519 1 2.666 7 1.306 11 1.893 9 20.465 27.994

12 3.005 9 6.091 5 1.872 12 3.982 7 0.658 13 10.160 3 8.888 4 4.135 6 14.260 2 38.719 1 3.098 8 2.614 10 2.519 11 19.971 27.823
36 4.400 8 8.225 5 2.520 11 3.931 7 1.695 13 10.320 3 9.399 4 5.381 6 12.744 2 33.238 1 2.924 9 2.711 10 2.513 12 18.379 30.725

Emp 0 0.000 0.012 8 0.031 6 0.016 7 0.001 9 0.319 5 1.341 4 0.000 6.121 3 17.455 2 74.702 1 0.000 0.000 23.577 1.678
6 0.941 11 1.102 10 1.846 9 3.865 7 0.741 13 12.436 2 5.761 4 4.664 6 5.101 5 10.446 3 50.151 1 0.869 12 2.078 8 16.416 27.467

12 2.230 11 6.418 4 1.839 12 3.861 9 1.222 13 15.016 2 4.768 7 4.273 8 4.786 6 8.686 3 38.930 1 4.888 5 3.083 10 18.360 29.140
36 3.339 11 14.012 2 2.089 12 3.910 9 1.958 13 12.282 3 5.415 7 5.748 5 4.269 8 7.822 4 30.155 1 5.435 6 3.569 10 17.525 29.312

UnEmp 0 0.000 0.000 0.001 7 0.001 8 0.000 0.010 6 0.044 5 0.000 0.200 4 0.570 3 2.438 2 96.737 1 0.000 3.207 0.055
6 0.546 12 0.948 10 3.882 4 2.042 6 0.517 13 3.652 5 1.555 7 0.872 11 5.168 2 1.350 9 4.950 3 73.071 1 1.446 8 11.469 8.638

12 1.604 11 3.486 7 4.375 5 3.529 6 0.640 13 7.887 2 1.752 10 1.250 12 5.717 3 2.730 8 5.226 4 59.249 1 2.554 9 13.674 15.058
36 3.381 9 7.971 2 4.151 6 3.623 8 1.555 13 7.949 3 3.634 7 3.370 10 5.094 4 3.334 11 4.574 5 48.439 1 2.926 12 13.001 20.131

Price 0 0.000 0.006 6 0.014 4 0.007 5 1.260 3 1.667 2 0.000 0.000 0.000 0.000 0.000 0.000 97.046 1 0.000 2.934
6 1.780 8 3.123 3 1.269 10 1.952 6 5.820 2 2.856 4 1.970 5 0.671 11 1.786 7 1.581 9 0.431 12 0.173 13 76.587 1 3.971 13.270

12 3.410 6 3.825 4 1.909 9 4.171 3 6.029 2 3.463 5 2.041 8 1.653 12 2.127 7 1.858 10 0.677 13 1.680 11 67.156 1 6.343 17.356
36 4.042 5 4.296 3 2.245 9 4.233 4 7.144 2 3.795 6 2.485 8 1.715 12 3.109 7 2.014 10 1.088 13 1.888 11 61.946 1 8.099 19.373

Output Emp UnEmp PriceMoney FFR Interest Spread ExRate Stock NAPM House Cons/Inv

 
* Each cell in the table contains the percentage of the forecast error accounted for by each innovation with relative ranking at each period. 
* The Real column is the sum of Consumption/Investment, Output, Employment, and Unemployment factors except own factor.  
* The Channel column is the sum of Spread, Exchange Rate, Stock, NAPM, and House factors except own factor.  
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The table gives the percentage of the forecast error uncertainty explained by each of innovations 

with the relative ranking at period of 0, 6, 12, and 36 months. It is helpful to understand the 

estimated factors or innovations as following several categories: the real economy category 

consists of the consumption/investment, output, employment, and unemployment innovations 

and the monetary policy transmission channel category consists of the interest, spread, exchange 

rate, stock, NAPM, and house market innovations. The remaining innovations are from the 

money and price factors with the federal fund rate variable. The last two columns in the Table 

4.2 are the sum (except own contribution) of attributable parts of the real economy and channel 

except interest rate factors. In general, the percentage of the forecast error uncertainty explained 

by each of innovations is not much different each other and thus there is no dominant innovation 

for explaining each of the forecast error uncertainty of all the factors. Given this general 

observation, the relative importance of each innovation is not interpreted easily. The overall 

results, however, can be interpreted as follows. The overall contribution of the monetary policy 

transmission channel except interest rate channel is approximately 20 %. This result suggests the 

importance of incorporating this set of variables into the empirical model in addition to the 

interest rate channel. The overall contribution of the real economy category factors is 

approximately 10 %. Especially their overall contributions for the money, price, and interest rate 

factors and federal fund rate variable are 13.40, 8.10, 13.80, and 10.73 %. Given that the money 

and interest rate innovations explain the price forecast error about 4.04 and 2.25 % and the price 

and interest rate innovations explain the money forecast error about 3.20 and 5.74 %, this result 

suggests that a dichotomy between the real and nominal variables is not observed. 

Other individual results can be described based on the 6 and 36 month horizons as 

representing the short run and long run relationships except own contributions. The own 

contribution for each of factors are in the diagonal positions in the table. (a) For the money 

aggregate factor, the spread (7.92), federal fund rate (7.12), consumption/investment (6.36), and 

interest rate (5.21) innovations appear to be important in the short run and the spread (9.26), 

federal fund rate (7.30), consumption/investment (6.97), and interest rate (5.74) innovations 

appear to be important in the long run. (b) For the federal fund rate, the spread (5.10), stock 

market (4.10), exchange rate (3.78), NAPM (3.40), and money (2.37) innovations appear to be 

important in the short run and the spread (7.69), money (6.74), NAPM (5.89), interest rate (5.37), 

and exchange rate (5.17) innovations appear to be important in the long run. (c) For interest rate 

factor, the spread (17.58), federal fund rate (14.25), consumption/investment (5.51) innovations 
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appear to be important in the short run and the spread (15.66), federal fund rate (13.48), 

consumption/investment (5.97), money (5.74), and exchange rate (5.53) innovations appear to be 

important in the long run. (d) For interest rate spread factor, the federal fund rate (52.53) and 

NAPM (2.04) innovations appear to be important in the short run and the federal fund rate 

(36.83), housing market (9.66), money (8.12), stock market (7.76), and NAPM (6.83) 

innovations appear to be important in the long run. (e) For the exchange rate factor, the price 

(3.226) and federal fund rate (3.225) innovations appear to be important in the short run and the 

stock market (5.88), federal fund rate (4.88), interest rate (4.38), and price (3.46) innovations 

appear to be important in the long run. (f) For the stock market factor, the interest rate (3.47) and 

NAPM (3.28) innovations appear to be important in the short run and the money (5.30), interest 

rate (4.71), federal fund rate (4.38), and NAPM (4.37) innovations appear to be important in the 

long run. (g) For the NAPM indices factor, the stock market (17.47), house market (7.50), spread 

(7.26), and consumption/investment (4.93) innovations appear to be important in the short run 

and the stock market (18.76), federal fund rate (16.02), spread (6.51), house market (6.16), and 

unemployment (6.03) innovations appear to be important in the long run. (h) For the housing 

market factor, the interest rate (13.42), federal fund rate (5.29), unemployment (5.23), NAPM 

(4.70), and money (4.18) innovations appear to be important in the short run and the federal fund 

rate (24.01), NAPM (14.47), exchange rate (11.98), stock market (9.59), and interest rate (5.53) 

innovations appear to be important in the long run. (i) For the consumption/investment factor, 

the NAPM (5.05), output (4.05), stock market (3.79), spread (3.16), and federal fund rate (3.15) 

innovations appear to be important at the short run and the NAPM (5.85), output (5.77), federal 

fund rate (5.06), stock market (4.85), and price (4.369) innovations appear to be important in the 

long run. (j) For the output factor, the consumption/investment (16.49), stock market (10.25), 

NAPM (9.52), spread (4.32), and housing market (3.61) innovations appear to be important in 

the short run and the consumption/investment (12.74), stock market (10.32), NAPM (9.40), 

federal fund rate (8.23), and housing market (5.30) innovations appear to be important in the 

long run. (k) For the employment factor, the stock market (12.44), output (10.45), NAPM (5.76), 

consumption/investment (5.10), and housing market (4.66) innovations appear to be important in 

the short run and the federal fund rate (14.01), stock market (12.28), output (7.82), housing 

market (5.75), unemployment (5.44), NAPM (5.41), and consumption/investment (4.27) 

innovations appear to be important in the long run. (l) For the unemployment factor, the 

consumption/investment (5.17), employment (4.95), interest rate (3.88), and stock market (3.65) 
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innovations appear to be important in the short run and the federal fund rate (7.97), stock market 

(7.95), consumption/investment (5.09), employment (4.57), and interest rate (4.15) innovations 

appear to be important in the long run. (m) For the price factor, the exchange rate (5.82), federal 

fund rate (3.12), and stock market (2.86) innovations appear to be important in the short run and 

the exchange rate (7.14), federal fund rate (4.30), spread (4.23), money (4.04), and stock market 

(3.80) innovations appear to be important in the long run.  

Given that there is no dominant innovation to explain each of the forecast error variance, 

the overall results can be summarized as follows. The federal fund rate innovation is important 

for each forecast error uncertainty of almost all the factors, whereas the spread, money, NAPM, 

interest rate innovations are important to explain the forecast error variance of the federal fund 

rate variable. The stock market innovation is important for each forecast error uncertainty of the 

channel and real category factors, whereas the money, interest rate, federal fund rate, and NAPM 

innovations are important to explain the forecast error variance of the stock market factor. The 

consumption/investment innovation is important for each forecast error uncertainty of the real 

category factors, whereas the NAPM, output, federal fund rate, stock market, and price 

innovations are important to explain the forecast error variance of the consumption/investment 

factor.  

 

Summary and Discussion  

The proposed methodological procedure to address two methodological issues in the 

study of monetary policy effect is illustrated by using macro-economic panel data of time series 

variables. The two methodological issues are the informational issue and the causal identification 

issue. For the informational issue to incorporate broad information into empirical model, the 

aggregation method based on the compositional stability condition is used. The legitimate 

classification is inductively identified among macro-economic variables and the empirical 

evidence is provided based on the approximate form of the compositional stability condition. 

The following groups with the Federal Funds Rate variable are used for subsequent analyses: 

Exchange Rate, Stock Market, Money Aggregate, Price, Interest Rate, Spread of interest rate, 

Housing Market, NAPM indices, Employment, Output, Consumption/Investment, 

Unemployment groups.  

Given that the disaggregate original variables approximately satisfy the consistent 

aggregation condition of compositional stability condition, the use of aggregated variables and 
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their relationships can be justified as legitimate representatives of disaggregate variables and 

their relationships for the following subsequent analyses. The estimated latent factors for each 

classified group are used in the factor augmented vector autoregressive (FAVAR) framework. 

As the homogeneity of variables in each group allows meaningful interpretations of each 

estimated factor, the contemporaneous causal structure among innovations of FAVAR is 

inductively inferred by using the GES algorithm. Based on the identified casual structure by the 

graphical causal model, the impulse response functions with respect to a shock in each of the 

estimated factors as well as the monetary policy variable are estimated. While the estimated 

impulse response functions of FAVAR are used to study the responses of the system to particular 

initial shocks, to study overall relationships among factors, the forecast error variance in each 

factor is decomposed into the parts attributable to each of a set of innovations processes in the 

FAVAR. The empirical results suggest the importance of incorporating a broad range of 

information into an empirical model. The empirical findings imply that the informational issue in 

the small size VAR can explain the so called the price puzzle phenomenon and the monetary 

policy transmission channels such as stock market, spread of interest rate and NAPM indices in 

addition to the interest rate channel are important to understand the overall macro-economy. 

Compared to the previously used ungrouped FAVAR with the recursive assumption or 

deductively grouped FAVAR with the recursive assumption, the empirically grouped FAVAR 

with inductively inferred causal structure used in this study is more consistent with the fact that 

the VAR approach emphasizes the inductively inferred information from the data itself rather 

than the deductively maintained information from the researchers’ intuition. 

As future research directions, several methodological issues to be studied can be 

suggested. A first issue is how to incorporate the non-stationarity in the original data and capture 

the possible co-integration relationships into the grouped FAVAR framework. The dynamic 

correlation and the principal component methods used in this study are based on the stationarity 

condition, which require transformations of the original data. The main issue is to find inductive 

classification and aggregation methods, which allow the possible non-stationarity of the original 

data. A second issue is how to incorporate the possible non-linearity such as structural changes. 

While the observed co-movements among macro-economic time series variables provide 

empirical foundation for the proposed non-parametric methods of classification and aggregation, 

the non-linearity phenomenon is oftentimes observed in macro-economic time series variables. 

One possible approach is to use the state space framework with the Gibbs sampler method in the 
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Bayesian perspective (Kim and Nelson, 1997). The main issue is how to inductively decide the 

parametric value, given that the state space framework is the full parametric approach. For 

example, the parameter value to capture the distributed lag effect of factors on the individual 

variables is not easily identified. A third issue is how to decide the boundary of the variables 

included in the entire data set. While the issue of what variables are included in a particular 

group can be inductively addressed by the proposed classification methods, the issue of what 

variables should be included in the entire data set can only be addressed based on the 

researchers’ intuition or the theory. This issue is related with the causal sufficiency issue in the 

graphical causal models. The main issue is how to satisfy or how to relax the causal sufficiency 

conditions in the analysis, especially in the GES algorithm with discriminating the possible 

cyclic phenomenon. A fourth issue is how to decide the number of classified groups and 

estimated factors for each group. For an example of the number of classified groups, the 

empirical testing of the compositional stability condition, illustrated in the micro-econometric 

analysis in chapter III, requires the identification of instrumental variables. One possible way to 

pursue is to use the graphical causal model to identify instrumental variables, as Chalak and 

White (2006) propose. The main issue is how to use causal structure among observed variables 

to identify the validity condition of the instrumental variables, which involve the unobserved 

causal factors. A fifth issue is how to study the complete causal structures among variables over 

the full dynamic interactions beyond contemporaneous time. While the VAR framework only 

require the contemporaneous causal structure among innovations, identifying the complete 

causal structure such as feedback phenomena over full dynamic period can allow more precise 

understanding of macro-economic phenomena. One possible way is to apply the graphical causal 

model onto the dynamically separate variables based on the possible lag. For example, the N  

vector of time series variables with P  lag of Pttt XXX −− ,,, 1 L  can be separately defined and then 

the graphical causal model is applied for this extended PN ⋅  dimensional data set. The full 

dynamic causal information can be incorporated into the VAR framework or the final form of 

dynamic SEM framework. The main issue is how to handle the complexity in the extended 

PN ⋅  dimensional data. A sixth issue is how to study macro-economic phenomena at the 

original disaggregate level beyond the aggregate level used in this study, given that close co-

movement among variables implies that the (probabilistic) stability condition is violated and 

multicollinearity problem is severe. While this issue is partially addressed based on the factor 

analysis framework, alternative approach is to use the mixed estimator. The main issue is how to 
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combine aggregate level information into the mixed estimator to study disaggregate level. 

Although there remain many other methodological issues to be addressed in empirical study, this 

study provides one plausible inductive procedure for the understanding of macro-economic 

structure, while minimizing the deductive properties or ambiguities. The remaining subjectivities 

in our proposed method are left as further research topics, with the hope that the remaining 

subjectivities bring fewer ambiguities relative to the previously used methods. 
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CHAPTER V 

CONCLUSION 
 

Economic studies have experienced significant advances in the theoretical, 

methodological, and empirical perspectives. From the empirical perspective, recent advances in 

data processing capabilities have brought the possibility of analyzing a large number of detailed 

variables. In many areas of economics, high dimensional panel data are now available. For 

example, retail checkout scanner data are available for thousand of products at firm, regional and 

national levels at various frequencies. And central banks and statistical institutes produce a large 

number of macro-economic time series data. These data have brought forth research potentials 

for significant advances in the micro-econometric analysis of consumer behavior and the macro-

econometric study of monetary policy effects. From the methodological perspective, empirical 

studies in economics have been developed to unify the theoretical-quantitative approach with the 

empirical-statistical approach. For this purpose, the structural equation model (SEM) approach 

has been proposed and used in economics. However, instead of using the full simultaneous 

equation approach, several alternative theoretical and methodological approaches have been 

proposed and used widely for several areas in economics. These phenomena are due to the fact 

that: (a) the instrumental variables needed to identify each equation in the SEM framework are 

not easy to find and/or (b) the restrictions for identification problem in the usual SEM approach 

are argued as neither credible nor required (Sims, 1980). In the study of the consumer behavior, 

the system-wise approach has been widely used to study interrelationships among related 

commodities demanded. Within this framework, full spectrums of direct, inverse, and mixed 

demand system of equations have been developed from the theoretical perspective of consumer 

behavior. On the other hand, in the study of the macro-economy, the structural vector 

autoregressive (VAR) model approach is widely used to study the effects of structural economic 

shocks. From the methodological perspective, the VAR framework provides the possibility of 

inferring causal information from statistical properties of the data without pretending to have too 

much a priori theory and/or without demanding too much information from the data.  

The availability of high dimensional data, however, raises several methodological 

issues for the full realization of the research potentials brought by the large information set. This 

study pursued one plausible procedure to address two methodological issues of how to infer the 

causal structure from empirical regularities and how to incorporate the large information set into 
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empirical model. To address the issue of how to infer the causal structure from empirical 

regularities, the graphical causal models are proposed as one plausible method to inductively 

infer causal structure from non-temporal and non-experimental data. However, the (probabilistic) 

stability condition for the graphical causal models can be violated for high dimensional data, 

when close co-movements and thus near deterministic relations exist among variables in high 

dimensional data. Aggregation methods are proposed as one possible way to address this issue, 

allowing one to infer causal relationship among disaggregated variables based on aggregated 

variables. The aggregation methods have been demonstrated to be helpful to address issue of 

how to incorporate a large information set into an empirical model, given that econometric 

considerations, such as degrees-of-freedom and multicollinearity, require an economy of 

parameters in empirical models. The weighting schemes to aggregate disaggregate micro-

variables into aggregate macro-variable can be empirically decided, based on either index 

number theory or principal component approach. However, the actual aggregation procedures or 

decisions on weighting schemes require the legitimate classifications or sufficient conditions for 

the interpretable and consistent aggregation. In this respect, identifying legitimate aggregation 

conditions is found to be a primary consideration for both causal inference and actual 

aggregation. 

We interpret theory as an inductive causal averaging procedure to deal with 

methodological issues at the beginning of this study. When we follow an inductive causal 

averaging procedure that concentrates only on similar tendencies to highlight a few common 

factors by ignoring many more individual differences and idiosyncrasies, we need to identify 

empirically justifiable conditions that allow us to legitimately define common tendencies and 

individual idiosyncrasies. We studied possible legitimate conditions for the interpretable and 

consistent aggregation based on both aggregation theory framework and statistical dimensional 

reduction methods with minimizing any deductive assumptions such as micro-homogeneity of 

micro-parameters, separability, and homogeneity of utility (production) function. From both the 

aggregation theory and the statistical dimensional reduction methods, we identify the similar 

generalized forms of the compositional stability condition. Based on the generalized condition 

for the consistent aggregation, we propose one possible methodological procedure to consistently 

address the two related issues of causal inference and actual aggregation procedures for the full 

use of research potentials brought by high dimensional data.  
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Given the observation that many variables in this high dimensional data move very 

closely, the compositional stability condition as the consistent aggregation condition provides an 

inductive way to pursue the possibility of obtaining not only (a) interpretable aggregate macro-

variables as the representative aggregate of homogeneous disaggregate micro-variables but also 

(b) interpretable macro-parameters as the representative aggregate of corresponding micro-

parameters for the subsequence analysis. This implies that when the micro-variables can be 

legitimately grouped and represented by macro-variables, it is possible to use aggregation 

methods (a) to incorporate broad range of information into the empirical models with 

minimizing econometric issues such as the multicollinearity and degrees of freedom, (b) to 

capture (causal) relationships among disaggregated variables through (causal) relationships 

among aggregated variables as the legitimate representatives. This compositional stability 

condition is used (a) to provide an inductive way of forming suitable partitions before 

conducting any empirical test to justify those classifications based on the empirical data patterns 

rather than on researchers’ intuition and (b) to address the possible violation of the (probabilistic) 

stability condition to use the graphical causal models for the high dimensional data. Note that it 

is conceivable and oftentimes observed that the (probabilistic) stability condition for the 

graphical causal models is violated for using high dimensional data in empirical study, given the 

observation that there exist close co-movements and thus near deterministic relations among 

variables in high dimensional data. In this respect, we argue that the (probabilistic) stability 

condition for an “inductive causal” procedure requires the compositional stability condition for 

an “inductive averaging” procedure.  

For the micro-econometric analysis of the consumer behavior, following methodological 

procedure is proposed and illustrated in chapter III: (a) Both a standard static correlation matrix 

and dynamic correlation matrices over identified frequency bands are used to measure co-

movement among original variables. Based on these similarity measures of disaggregate micro-

variables, the modified k-nearest neighbor algorithm is used to sort the variables such that the 

highly correlated variables are near each other along the main diagonal in the reordered 

correlation matrices. The block-diagonal pattern of reordered or sorted static and dynamic 

correlation matrices are used to identify homogeneous groups of variables based the approximate 

form of the compositional stability condition. (b) Based on identified classifications of the 

original variables, index number theory is used for the actual aggregation procedure. The 

Tornqvist-Theil index is the primary method to decide weighting schemes on aggregating 



 

 

206

disaggregated micro-variables into representative macro-variables within each identified group. 

(c) The identified classification and aggregation of micro-variables into macro-variables can be 

tested, as long as appropriate instrumental variables can be identified. A Hausman type 

misspecification test of 0:0 =nH γ  in the equation IV

nnnn IVHXx εγ +⋅+= , where  nx  and X  

are micro- and macro-variables respectively and IV are Instrumental Variables such that IV is 

closely correlated with X  and independent of nd , provides a statistical test framework for the 

generalized form of the compositional stability condition of independence between nd  and X  in 

the set of equations nnn dHXx += . (d) Given the observed phenomena of close co-movements 

and thus near deterministic relations among variables in high dimensional data, it is conceivable 

and oftentimes observed that the (probabilistic) stability condition for the graphical causal 

models is violated for using high dimensional data in empirical study. When this is the case, it is 

still possible to infer causal structures among micro-variables through relationships among 

representative aggregated macro-variables as long as the compositional stability conditions hold 

among micro-variables. PC algorithm or GES algorithm are used to infer causal structures 

among macro-variables as the legitimate representative causal relationships among micro-

variables are used for the subsequent analysis. (e) Based on the local causal structure between 

price and quantity variables for a particular commodity, the AIDS type dependent variable 

synthetic functional forms for the direct, inverse, and mixed demand systems are estimated. (f) 

The Rotterdam, AIDS, NBR, and CBS type constant and/or variational parameterizations and 

synthetic model are statistically compared and the parameterizations for expenditure (scale) 

elasticities (flexibilities) and Slutsky (Antonelli) coefficients are chosen within each of direct, 

inverse, and mixed specifications. Based on the chosen parameterization, the direct, inverse, and 

mixed demand system are compared based on the model selection approaches, such as the 

Akaike information, Schwarz information, and the likelihood dominance criteria.  

As future research directions for the micro-econometric analysis of the high dimensional 

data, several methodological issues can be suggested. A first issue is how to fully use the overall 

empirical findings. The model averaging approach, rather than model selection approach used in 

this study, can provide more precise understanding of consumer behavior. One possible approach 

for the model averaging method is to use the relative log-likelihood values of the direct, inverse, 

and mixed demand systems. The main issue is how to decide relative weights among competing 

models. A second issue is how to fully use the causal information inferred by the graphical 
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causal models. Although only the local causal structure between the price and quantity variables 

are used in this study, other causal information can provide the possibility of a more complete 

understanding of the interactions in the market, which in turn allow a more precise 

measurements of consumer behavior. The main issue is how to combine the full causal 

information into the theoretical properties of demand functions while maintaining flexible and 

estimable functional form specification. A third issue is how to decide the boundary of the 

variables included in the empirical models. For example, there can be latent causal structures or 

interactions with other (size) commodities, although the size of 6/12 oz is used to decide what 

commodities are included in the study. The causal structure identified by the PC algorithm 

suggests that there may be latent causal variables among the price variables. The main issue is 

how to satisfy or how to relax the causal sufficiency conditions in the analysis, especially in the 

GES algorithm with discriminating the possible cyclic phenomenon. A fourth issue is how to 

incorporate the possible dynamic interactions and non-linearity in consumer behavior. Although 

the differential functional form approach provides a useful framework to deal with the possible 

non-stationarity of variables, incorporating the possible lagged interaction and structural change 

can provide more precise understanding of consumer behavior. The main issue is how to capture 

the possible dynamic interactions and non-linearity phenomena without sacrificing the 

theoretical properties of demand functions, while maintaining flexible and estimable functional 

form specification. A fifth issue is how to study consumer behavior at the original disaggregate 

level beyond the aggregated level used in this study, given that close co-movement among 

variables implies that the (probabilistic) stability condition is violated and multicollinearity 

problem is severe. One possible way is to use the mixed estimator. The main issue is how to 

combine aggregate level information into the mixed estimator to study disaggregate level.  

For the macro-econometric analysis of the macro-economy, following methodological 

procedure is proposed and illustrated in chapter IV: (a) Both a standard static correlation matrix 

and dynamic correlation matrices over identified frequency bands are used to measure co-

movement among original variables. Based on these similarity measures of disaggregate micro-

variables, the modified k-nearest neighbor algorithm is used to sort the variables such that the 

highly correlated variables are near each other along the main diagonal in reordered correlation 

matrix. The block-diagonal pattern of reordered or sorted static and dynamic correlation matrixes 

are used to identify homogeneous group of variables, based the approximate form of the 

compositional stability condition. (b) Based on identified classifications of original variables, the 
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statistical dimensional reduction method are used for actual aggregation procedure to decide 

weighting schemes for aggregating disaggregated micro-variables into representative macro-

variables within each identified group. The principal component method applied onto each of 

groups is used as the best dimensional reduction method with as little loss of information as 

possible in the mean squared error sense. (c) Given that the inference based on the small size 

VAR can be misleading unless the reduced form innovations span the space of the structural 

shocks or the VAR model does not have the omitted variables problem, the estimated factors are 

augmented in the VAR (FAVAR) framework to increase the amount of information in the 

empirical model so that the reduced form residuals span the space of the structural economic 

shocks. (d) Based on the residuals of reduced form FAVAR, the contemporaneous causal 

structure among innovations is inferred by the graphical causal model. The identified 

compositional stability condition in the data makes it possible to infer causal structures among 

micro-variables through relationships among representative aggregated macro-variables. The PC 

algorithm or GES algorithm is used to infer causal structures among macro-variables as the 

legitimate representative causal relationships among micro-variables for the subsequent analysis. 

(e) Based on the contemporaneous causal structure used for identification of FAVAR, structural 

relationships of the macro-economy are studied in the two types of the moving average 

representations. The impulse response functions of all the observed variables with respect to 

shocks in the monetary policy variable as well as each of the estimated factors are estimated and 

interpreted. The forecast error variance in each factor is decomposed into the parts attributable to 

each of a set of innovations processes in the FAVAR.  

As future research directions for the macro-econometric analysis of the high dimensional 

data, several methodological issues are suggested. A first issue is how to incorporate the non-

stationarity in the original data and capture the possible co-integration relationships into the 

grouped FAVAR framework. The dynamic correlation and the principal component methods 

used in this study are based on the stationarity condition, which require transformations of the 

original data. The main issue is to find inductive classification and aggregation methods, which 

allow the possible non-stationarity of the original data. A second issue is how to incorporate the 

possible non-linearity such as structural changes. While the observed co-movements among 

macro-economic time series variables provide empirical foundation for the proposed non-

parametric methods of classification and aggregation, the non-linearity phenomenon is 

oftentimes observed in macro-economic time series variables. One possible approach is to use 
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the state space framework with the Gibbs sampler method in the Bayesian perspective (Kim and 

Nelson, 1997). The main issue is how to inductively decide the parametric value, given that the 

state space framework is the full parametric approach. For example, the parameter value to 

capture the distributed lag effect of factors on the individual variables is not easily identified. A 

third issue is how to decide the boundary of the variables included in the entire data set. While 

the issue of what variables are included in a particular group can be inductively addressed by the 

proposed classification methods, the issue of what variables should be included in the entire data 

set can only be addressed based on the researchers’ intuition or the theory. This issue is related 

with the causal sufficiency issue in the graphical causal models. The main issue is how to satisfy 

or how to relax the causal sufficiency conditions in the analysis, especially in the GES algorithm 

with discriminating the possible cyclic phenomenon. A fourth issue is how to decide the number 

of classified groups and estimated factors for each group. For an example of the number of 

classified groups, the empirical testing of the compositional stability condition, illustrated in the 

micro-econometric analysis in chapter III, requires the identification of instrumental variables. 

One possible way to pursue is to use the graphical causal model to identify instrumental 

variables, as Chalak and White (2006) propose. The main issue is how to use causal structure 

among observed variables to identify the validity condition of the instrumental variables, which 

involve the unobserved causal factors. A fifth issue is how to study the complete causal 

structures among variables over the full dynamic interactions beyond contemporaneous time. 

While the VAR framework only requires the contemporaneous causal structure among 

innovations, identifying the complete causal structure such as feedback phenomena over full 

dynamic period can allow more precise understanding of macro-economic phenomena. One 

possible way is to apply the graphical causal model onto the dynamically separate variables 

based on the possible lag. For example, the N  vector of time series variables with P  lag 

of Pttt XXX −− ,,, 1 L  can be separately defined and then the graphical causal model is applied for 

this extended PN ⋅  dimensional data set. The full dynamic causal information can be 

incorporated into the VAR framework or the final form of dynamic SEM framework. The main 

issue is how to handle the complexity in the extended PN ⋅  dimensional data. A sixth issue is 

how to study macro-economic phenomena at the original disaggregate level beyond the 

aggregate level used in this study, given that close co-movement among variables implies that 

the (probabilistic) stability condition is violated and multicollinearity problem is severe. While 

this issue is partially addressed based on the factor analysis framework, alternative approach is to 
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use the mixed estimator. The main issue is how to combine aggregate level information into the 

mixed estimator to study disaggregate level.  

In summary, this study provides one plausible inductive procedure for the full realization 

of the recently available high dimensional data, while minimizing the use of deductive or 

subjective assumptions. Although there remain other methodological issues to be addressed in 

empirical studies, inductive properties are emphasized in every sequence of the proposed method, 

since any types of subjective properties can bring ambiguities into the empirical results. While 

theory as the inductive causal averaging procedure can allow some deductive elements in its 

developments, empirical methodologies need to be based more on inductive properties to 

maintain their objectivity. The remaining subjectivities in our proposed method are left as further 

research topics, with the hope that the remaining subjectivities bring fewer ambiguities relative 

to the previously used methods. 
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APPENDIX A  

PROPERTIES OF THREE DEMAND SYSTEMS  

 

Direct Demand System 

Theoretical implications for direct demand systems can be derived from properties of 

cost functions as follows: 

(a) Homogeneity: the linear homogeneity of cost function in prices implies the zero-degree 

homogeneity of compensated demand in prices by Hotelling-Shephard lemma 
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Inverse Demand System 

Theoretical implications for inverse demand systems can be derived from properties of 

distance functions as follows:  

(a) Homogeneity: the linear homogeneity of distance function in quantities implies the zero-

degree homogeneity of compensated demand in quantities by Shephard-Hanoch lemma 
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Mixed Demand System 

Theoretical implications for mixed demand systems can be derived from properties of 

restricted or rationed cost functions as follows:  
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j

j

c
i

q
p

p
q  or 0

1
, =∑

=

m

j

c
jiε  or 0

1
, =∑ ⋅

=

m

j

c
jiiw ε  and by using identity k

c
k pp ≡  for c

k

m

j
j

j

c
k pp

p
p

=∑
∂
∂

=1
,, 

we get 1
1

=∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

=

m

j
k

j

j

c
k

p
p

p
p  or 1

1
, =∑

=

m

j

c
jkp  or k

m

j

c
jkk wpw =∑ ⋅

=1
,  
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(b) Symmetry: the continuity of rationed cost function implies the symmetry by Young’s 

theorem 
ij

R

ji

R

pp
C

pp
C

∂∂
∂

=
∂∂

∂ , 
ks

R

sk

R

qq
C

qq
C

∂∂
∂

=
∂∂

∂ , and 
ik

R

ki

R

pq
C

qp
C

∂∂
∂

=
∂∂

∂ , which in turn implies that 

i

c
j

j

c
i

p
q

p
q

∂

∂
=

∂
∂

, 
k

c
s

s

c
k

q
p

q
p

∂
∂

=
∂
∂

, and 
k

c
i

i

c
k

q
q

p
p

∂
∂

=
∂
∂

−  respectively. By multiplying ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
y
pp ji , ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
y
pp sk , and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
y
pp ki , we get  ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

j

i

i

c
jjj

i

j

j

c
iii

q
p

p
q

y
qp

q
p

p
q

y
qp

, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

s

k

k

c
sss

k

s

s

c
kkk

p
q

q
p

y
qp

p
q

q
p

y
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, 

and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

i

k

k

c
iii

k

i

i

c
kkk

q
q

q
q

y
qp

p
p

p
p

y
qp

, which are represented by c
ijj

c
jii ww ,, εε ⋅=⋅ , 

c
kss

c
skk fwfw ,, ⋅=⋅ , and c

kii
c

ikk qwpw ,, ⋅=⋅−  respectively. 

(c) Slutsky equation: By differentiate identities of both ( ) ( )[ ]uqpCqpquqpq BA
M

BAiBA
c
i ,,,,,, ≡ , 

and ( ) ( )[ ]uqpCqppuqpp BA
M

BAkBA
c
k ,,,,,, ≡  w.r.t. both jp  and sq  respectively and using 

derivative properties of mixed demand functions ∑
∂
∂

+=∑
∂
∂

+
∂
∂

=
∂
∂

+=+=

N

mr
r

j

c
rc

j

N

mr
r

j

r

j

R

j

M

q
p
pqq

p
p

p
C

p
C

11
 and 

∑
∂
∂

=+∑
∂
∂

+−=+∑
∂
∂

+
∂
∂

=
∂
∂

+=+=+=

N

mr
r

k

c
r

k

N

mr
r

k

c
r

kk

N

mr
r

k

c
r

k

R

k

M

q
q
ppq

q
pppq

q
p

q
C

q
C

111
, we get for group A 

(c1)
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑

∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

∂
∂

+
∂
∂

=
∂
∂

+=

N

mr
r

j

c
rc

j
i

j

i

j

M
i

j

i

j

c
i q

p
pq

y
q

p
q

p
C

y
q

p
q

p
q

1
 which is [ ]∑ ⋅++=

+=

N

mr

c
jrrjiji

c
ji pww

1
,,, εεε  

through the relation of 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+=

N
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r

j

j

c
rrr

c
jj

i

i

i

j

j

i

i

j

j

c
i

p
p

p
p

y
qp

y
qp

q
y

y
q

q
p

p
q

q
p

p
q

1
, and (c2) 

⎥
⎦

⎤
⎢
⎣

⎡
∑

∂
∂

∂
∂

+
∂
∂

=
∂

∂
∂
∂

+
∂
∂

=
∂
∂

+=

N

mr
r

s

c
ri

j

i

s

M
i

s

i

s

c
i q

q
p

y
q

p
q

q
C

y
q

q
q

q
q

1
 which is [ ]∑ ⋅+=

+=

N

mr

c
srrisi

c
si fwqq

1
,,, ε  through the 

relation of 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+=

N

mr
r

s

s

c
rrr

i

i

i

s

s

i

i

s

s

c
i

p
q

q
p

y
qp

q
y

y
q

q
q

q
q

q
q

q
q

1
, and for group B (c3) 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑

∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

∂
∂

+
∂
∂

=
∂
∂

+=

N

mr
r

j

c
rc

j
k

j

k

j

M
k

j

k

j

c
k q

p
pq

y
p

p
p

p
C

y
p

p
p

p
p

1
 which is [ ]∑ ⋅++=

+=

N

mr

c
jrrjkjk

c
jk pwwfpp

1
,,,  

through the relation of 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+=

N

mr
r

j

j

c
rrr

c
jj

k

k

k

j

j

k

k

j

j

c
k

p
p

p
p

y
qp

y
qp

p
y

y
p

p
p

p
p

p
p

p
p

1
, and 
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(c4) ⎥
⎦

⎤
⎢
⎣

⎡
∑

∂
∂

∂
∂

+
∂
∂

=
∂

∂
∂
∂

+
∂
∂

=
∂
∂

+=

N

mr
r

s

c
rk

s

k

s

M
k

s

k

s

c
k q

q
p

y
p

q
p

q
C

y
p

q
p

q
p

1
 which is [ ]∑ ⋅+=

+=

N

mr

c
srrksk

c
sk fwfff

1
,,,  

through the relation of 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+=

N

mr
r

s

s

c
rrr

k

k

k

s

s

k

k

s

s

c
k

p
q

q
p

y
qp

p
y

y
p

p
q

q
p

p
q

q
p

1
.  

(d) Adding-up: (d1) 1
11

=∑+∑
+==

N

mk
kk

m

i
ii fww ε  and (d2) 0

1
, =∑

=

m

i

c
jiiwε  and s

m

i

c
sii wqw −=∑

=1
,  

or (d3) ∑−=
=

m

j
jii

1
,εε  and (d4) ∑−=

=

m

j
jkk pf

1
,1 . 

(d1) By differentiating ( ) ( ) yqyqppyqpqp k

N

mk
BAkBAi

m

i
i =∑+∑

+== 11
,,,,  w.r.t. y , we get 

1
11

=
∂
∂

=⋅∑
∂
∂

+
∂
∂

⋅∑
+== y

yq
y
p

y
q

p k

N

mk

ki
m

i
i , which equal to 1

11
=∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+==

N

mk
k

kkk
m

i
i

iii

p
y

y
p

y
qp

q
y

y
q

y
qp

 

or 1
11

=∑+∑
+==

N

mk
kk

m

i
ii fww ε  

(d2) By differentiating ( ) ( ) yqyqppyqpqp k

N

mk
BAkBAi

m

i
i =∑+∑

+== 11
,,,,  w.r.t. jp  we get 

0
11

=⋅∑
∂
∂

++
∂
∂

⋅∑
+==

k

N

mk
j

k
j

j

i
m

i
i q

p
pq

p
qp  or ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅∑

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⋅∑
+== y

p
q

y
p

q
p
p

y
p

p
qp j

j
j

k

N

mk
j

kj

j

i
m

i
i

11
, which is equal 

to ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=∑ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∑ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+== y
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p
p

p
p

y
qp

q
p

p
q

y
qp jj

N

mk
k

j

j

kkk
m

i
i

j

j

iii

11
 or  j

N

mk
jkk

m

i
jii wpww −=∑+∑

+== 1
,

1
,ε . And also 

by differentiating ( ) ( ) yqyqppyqpqp k

N

mk
BAkBAi

m

i
i =∑+∑

+== 11
,,,,  w.r.t. sq  we get 

0
11

=+⋅∑
∂
∂

+
∂
∂

⋅∑
+==

sk

N

mk
s

k

s

i
m

i
i pq

q
p

q
qp  or ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅∑

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⋅∑
+== y
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y
qq

q
p

y
q

q
qp s

s
s

k

N
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s
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s

i
m

i
i
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, which is equal 

to ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+== y
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p
q

q
p

y
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q
q

q
q

y
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N
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k

s

s

kkk
m

i
i

s

s
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11
 or s

N

mk
skk

m

i
sii wfwqw −=∑+∑

+== 1
,

1
, . Adding 

both results, we get sj

N

mk
skk

N

mk
jkk

m

i
sii

m

i
jii wwfwpwqww −−=∑+∑+∑+∑

+=+=== 1
,

1
,

1
,

1
,ε . Using Slutsky equations, 

( ) ( ) ( )∑ ∑−−+∑ ∑−+∑ ∑−−=−−
+= +== +== +=

N

mk

N
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c
jrrkjk

c
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m

i

N
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c
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c
sii

m

i

N
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c
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c
jiisj pwfwfpwfwqwpwwwww

1 1
,,
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,,
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,, εεεε
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N
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N

mr

c
srrk

c
skk fwffw

1 1
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N
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c
jrr

N

mk
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m

i
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m

i

c
sii

m

i

c
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1
,
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,

1
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N

mk
kk

m

i
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N

mr

c
srr

N

mr

c
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N

mr

c
jrr

N

mk
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m

i
ii fwwfwfwpwfww

111
,

1
,

1
,

11
εε . Using above adding-up 
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condition 1
11

=∑+∑
+==

N

mk
kk

m

i
ii fww ε , we get j

m

i

c
sii

m

i

c
jiisj wqwwww −∑+∑=−−

== 1
,

1
,ε , which implies that 

s

m

i

c
sii wqw −=∑

=1
,  since 0

1
,

1
, ∑ ==∑

==

m

i

c
ijj

m

i

c
jii ww εε  using symmetry c

ijj
c

jii ww ,, εε ⋅=⋅ . 

(d3) By using Slutsky equation ( )∑ ⋅++=
+=

N

mr

c
jrrjiji

c
ji pww

1
,,, εεε , we can write 0

1
, =∑

=

m

j

c
jiε  as  

( )[ ] 0
1 1

,, =∑ ∑ ⋅++
= +=

m

j

N

mr

c
jrrjiji pwwεε  or 0

1
,

111
, =⎥⎦

⎤
⎢⎣
⎡ ∑∑ ⋅∑ +∑ +

=+===

m

j

c
jr

N

mr
r

m

j
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m

j
ji pwwεε , which , by 1

1
, =∑

=

m

j

c
jkp , is 

∑−=
=

m

j
jii

1
,εε . 

(d4) By using Slutsky equation ( )∑ ⋅++=
+=

N

mr

c
jrrjkjk

c
jk pwwfpp

1
,,, , we can write 1

1
, =∑

=

m

j

c
jkp  as 

( )[ ] 1
1 1

,, =∑ ∑ ⋅++
= +=

m

j

N

mr

c
jrrjkjk pwwfp  or 1

1
,

111
, =⎥⎦

⎤
⎢⎣
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m

j

c
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N
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r

m

j
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m

j
jk pwwfp , which , by 1

1
, =∑

=

m

j

c
jkp , is 

∑−=
=

m

j
jkk pf

1
,1 .  

(e) Negativity: the concavity w.r.t. Ap  and convexity w.r.t. Bq  of the rationed cost function 

implie 02

2

≤
∂

∂

i

R

p
C  and 02

2

≥
∂
∂

k

R

q
C , which in turn imply that 0≤

∂
∂

i

c
i

p
q  and 0≤

∂
∂

k

c
k

q
p  respectively by 

Samuelson’s envelope theorems of ( )
i

R

BA
C
i p

Cuqpq
∂
∂

=,,  and ( )
k

R

BA
C
k q

Cuqpp
∂
∂

−=,, . 
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APPENDIX B  

RELATIONS AMONG THREE DEMAND SYSTEMS 

 

Retrieval of Direct Elasticities from Mixed Elasticities 

Direct demand system is related to mixed demand system by using following identities: 

( )[ ] ( )yqpqyyqpppq BA
M
ABA

M
BA

O
A ,,,,,, ≡  and ( )[ ] M

BBA
M
BA

O
B qyyqpppq ≡,,,, . From identity of 

( )[ ] ( )yqpqyyqpppq BA
M
ABA

M
BA

O
A ,,,,,, ≡ , (a) by differentiating identity w.r.t. Bq∇ , we get 

B

M
A

B

M
B

B
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A
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∇
∇
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∇
∇

∇
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⎞
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∇
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B

B

M
A

B

O
A

q
p

q
q

p
q , which can be written as 

1−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

B

B

B

M
B

A

B

B

M
A

A

B

B

O
A

p
q

q
p

q
q

q
q

q
p

p
q  or ( ) 1−⋅= M

BB
M
AB

O
AB FQE , (b) by differentiating w.r.t. Bp∇ , we 

get 
A

M
A

A

M
B

B

O
A

A

O
A

p
q

p
p

p
q

p
q

∇
∇

=
∇
∇

∇
∇

+
∇
∇  or 

A

M
B

B

O
A

A

M
A

A

O
A

p
p

p
q

p
q

p
q

∇
∇

∇
∇

−
∇
∇

=
∇
∇  which, using 

1−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

∇
∇

=
∇
∇

B

M
B

B

M
A

B

O
A

q
p

q
q

p
q , 

can be written as 
A

M
B

B

M
B

B

M
A

A

M
A

A

O
A

p
p

q
p

q
q

p
q

p
q

∇
∇

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

∇
∇

−
∇
∇

=
∇
∇

−1

 or ( ) M
BA

M
BB

M
AB

M
AA

O
AA PFQEE 1−⋅−=  through the 

relation of ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

−

B

A

A

M
B

B

B

B

M
B

A

B

B

M
A

A

A

A

M
A

A

A

A

O
A

p
p

p
p

p
q

q
p

q
q

q
q

q
p

p
q

q
p

p
q

1

, and (c) by differentiating 

w.r.t. y∇ , we also get 
y

q
y

q
y

p
p
q M

A
O
A

M
B

B

O
A

∇
∇

=
∇

∇
+

∇
∇

∇
∇  or 

y
p

p
q

y
q

y
q M

B

B

O
A

M
A

O
A

∇
∇

∇
∇

−
∇

∇
=

∇
∇  , which, using 

1−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

∇
∇

=
∇
∇

B

M
B

B

M
A

B

O
A

q
p

q
q

p
q  again, can be written as 

y
p

q
p

q
q

y
q

y
q M

B

B

M
B

B

M
A

M
A

O
A

∇
∇

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

∇
∇

−
∇

∇
=

∇
∇

−1

 or 

( ) M
B

M
BB

M
AB

M
A

O
A FFQEE 1−⋅−=  through ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∇

∇
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇

∇
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∇

∇
−

B

M
B

B

B

B

M
B

A

B

B

M
A

A

M
A

A

O
A

p
y

y
p

p
q

q
p

q
q

q
q

q
y

y
q

q
y

y
q

1

. 

From identities of ( )[ ] M
BBA

M
BA

O
B qyyqpppq ≡,,,, , (a) by differentiating w.r.t. Bq∇ , we get 

1=
∇
∇

∇
∇

B

M
B

B

O
B

q
p

p
q  or 

1−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

=
∇
∇

B

M
B

B

O
B

q
p

p
q , which equal to 

1−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

B

B

B

M
B

B

B

B

O
B

p
q

q
p

q
p

p
q  or ( ) 1−= M

BB
O
BB FE , (b) 

by differentiating w.r.t. Ap∇ , we get 0=
∇
∇

∇
∇

+
∇
∇

A

M
B

B

O
B

A

O
B

p
p

p
q

p
q  or 

A

M
B

B

O
B

A

O
B

p
p

p
q

p
q

∇
∇

∇
∇

−=
∇
∇ , which, using 
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1−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

=
∇
∇

B

M
B

B

O
B

q
p

p
q , can be written as 

A

M
B

B

M
B

A

O
B

p
p

q
p

p
q

∇
∇

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

−=
∇
∇

−1

 or ( ) M
BA

M
BB

O
BA PFE 1−−=  through 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

−

B

A

A

M
B

B

B

B

M
B

B

A

A

O
B

p
p

p
p

p
q

q
p

q
p

p
q

1

, and (c) by differentiating w.r.t. y∇ , we get 

0=
∇

∇
+

∇
∇

∇
∇

y
q

y
p

p
q O

B
M
B

B

O
B  or 

y
p

p
q

y
q M

B

B

O
B

O
B

∇
∇

∇
∇

−=
∇

∇ , which, using 
1−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

=
∇
∇

B

M
B

B

O
B

q
p

p
q  again, can be 

written as 
y

p
q
p

y
q M

B

B

M
B

O
B

∇
∇

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

−=
∇

∇
−1

 or ( ) M
B

M
BB

O
B FFE 1−−=  through the relation of 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇

∇
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇

∇
−

B

M
B

B

B

B

M
B

B

O
B

p
y

y
p

p
q

q
p

q
y

y
q

1

. 

 

Retrieval of Inverse Flexibilities from Mixed Elasticities 

Inverse demand system is related to mixed demand system by using following identities: 

( )[ ] ABBA
M
A

I
A pyqyqpqp ≡,,,,  and ( )[ ] ( )yqppyqyqpqp BA

M
BBBA

M
A

I
B ,,,,,, ≡  which are implied by 

( )[ ] ABBA
M
A

I
A qqq πππ ≡1,,1,, and ( )[ ] ( )1,,1,,1,, BA

M
BBBA

M
A

I
B qqqq ππππ ≡ through the relationships of 

( )[ ] yyqqq ABBA
M
A

I
A ⋅≡⋅ πππ 1,,1,,  and ( )[ ] ( ) yqyqqq BA

M
BBBA

M
A

I
B ⋅≡⋅ 1,,1,,1,, ππππ . From identities of 

( )[ ] ABBA
M
A

I
A pyqyqpqp ≡,,,, , (a) by differentiating w.r.t. Ap∇ , we get 1=

∇
∇

∇
∇

A

M
A

A

I
A

p
q

q
p  or 

1−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

=
∇
∇

A

M
A

A

I
A

p
q

q
p , which equals to 

1−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

≡⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

A

A

A

M
A

A

A

A

I
A

A

A

A

I
A

q
p

p
qq

qp
q

q
p

π
π  or  ( ) 1−= M

AA
I

AA EF , (b) 

by differentiating w.r.t. Bq∇ , we get 0=
∇
∇

+
∇
∇

∇
∇

B

I
A

B

M
A

A

I
A

q
p

q
q

q
p  or 

B

M
A

A

I
A

B

I
A

q
q

q
p

q
p

∇
∇

∇
∇

−=
∇
∇ , which, using 

1−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

=
∇
∇

A

M
A

A

I
A

p
q

q
p , can be written as 

B

M
A

A

M
A

B

I
A

q
q

p
q

q
p

∇
∇

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

−=
∇
∇

−1

 or 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

≡⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

−

A

B

B

M
A

A

A

A

M
A

A

B

B

I
A

A

B

B

I
A

q
q

q
q

q
p

p
qq

qp
q

q
p

1

π
π , which in turn equal to ( ) M

AB
M
AA

I
AB QEF 1−−= . 

From identity of ( )[ ] ( )yqppyqyqpqp BA
M
BBBA

M
A

I
B ,,,,,, ≡ , (a) by differentiating identity w.r.t. Ap∇ , 

we get 
A

M
B

A

M
A

A

I
B

p
p

p
q

q
p

∇
∇

=
∇
∇

∇
∇  or 

1−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

∇
∇

=
∇
∇

A

M
A

A

M
B

A

I
B

p
q

p
p

q
p  which can be written as 
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1−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

≡⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

A

A

A

M
A

B

A

A

M
B

B

A

A

I
B

B

A

A

I
B

q
p

p
q

p
p

p
pq

qp
q

q
p

π
π  or ( ) 1−= M

AA
M

BA
I

BA EPF , (b) by differentiating 

w.r.t. Bq∇ , we get 
B

M
B

B

I
B

B

M
A

A

I
B

q
p

q
p

q
q

q
p

∇
∇

=
∇
∇

+
∇
∇

∇
∇  or 

B

M
A

A

I
B

B

M
B

B

I
B

q
q

q
p

q
p

q
p

∇
∇

∇
∇

−
∇
∇

=
∇
∇  which, using 

1−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

∇
∇

=
∇
∇

A

M
A

A

M
B

A

I
B

p
q

p
p

q
p , can be written as 

B

M
A

A

M
A

A

M
B

B

M
B

B

I
B

q
q

p
q

p
p

q
p

q
p

∇
∇

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

∇
∇

−
∇
∇

=
∇
∇

−1

 or 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

≡⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇
∇

−

A

B

B

M
A

A

A

A

M
A

B

A

A

M
B

B

B

B

M
B

B

B

B

I
B

B

B

B

I
B

q
q

q
q

q
p

p
q

p
p

p
p

p
q

q
pq

qp
q

q
p

1

π
π  , which in turn equal 

to ( ) M
AB

M
AA

M
BA

M
BB

I
BB QEPFF 1−−= . From the relation ∑=

=

N

n
nnn ff

1'
',  or ( )I

NN
I

N FRowSumF ,=  of inverse 

demand function, we get ( )I
AB

I
AA

I
A FFRowSumF M=  and ( )I

BB
I

BA
I

B FFRowSumF M= . Using 

( ) 1−= M
AA

I
AA EF  and ( ) M

AB
M
AA

I
AB QEF 1−−= , we can write ( ) ( )[ ]M

AB
M
AA

M
AA

I
A QEERowSumF 11 −− −= M . Using 

( ) 1−= M
AA

M
BA

I
BA EPF  and ( ) M

AB
M
AA

M
BA

M
BB

I
BB QEPFF 1−−= , we can write 

( ) ( )[ ]M
AB

M
AA

M
BA

M
BB

M
AA

M
BA

I
B QEPFEPRowSumF 11 −− −= M  . 

 

Retrieval of Mixed Elasticities from Direct Elasticities 

Theoretical relationships of mixed elasticities to direct elasticities can be derived as 

follows. From ( ) 1−= M
BB

O
BB FE , we get ( ) 1−= O

BB
M

BB EF . From ( ) 1−⋅= M
BB

M
AB

O
AB FQE , we get 

( ) 1−== O
BB

O
AB

M
BB

O
AB

M
AB EEFEQ  using ( ) 1−= O

BB
M

BB EF . From ( ) M
BA

M
BB

O
BA PFE 1−−= , we get 

( ) O
BA

O
BB

O
BA

M
BB

M
BA EEEFP 1−−=−=  using ( ) 1−= O

BB
M

BB EF . From ( ) M
BA

M
BB

M
AB

M
AA

O
AA PFQEE 1−⋅−= , we get 

( ) M
BA

M
BB

M
AB

O
AA

M
AA PFQEE 1−⋅+= = ( )[ ] [ ] ( )[ ]O

BA
O
BB

O
BB

O
BB

O
AB

O
AA EEEEEE 11 −− ⋅⋅− = ( ) O

BA
O
BB

O
AB

O
AA EEEE 1−−  using 

( ) 1−= O
BB

M
BB EF , ( ) 1−= O

BB
O
AB

M
AB EEQ , and ( ) O

BA
O
BB

M
BA EEP 1−−= . From ( ) M

B
M

BB
M
AB

M
A

O
A FFQEE 1−⋅−= , we get 

( ) ( )[ ] [ ] ( )[ ] ( ) O
B

O
BB

O
AB

O
A

O
B

O
BB

O
BB

O
BB

O
AB

O
A

M
B

M
BB

M
AB

O
A

M
A EEEEEEEEEEFFQEE 1111 −−−− −=⋅⋅−=⋅+=  using 

( ) 1−= O
BB

M
BB EF , ( ) 1−= O

BB
O
AB

M
AB EEQ , and ( ) O

BA
O
BB

M
BA EEP 1−−= . From ( ) M

B
M

BB
O
B FFE 1−−= , we get 

( ) O
B

O
BB

O
B

M
BB

M
B EEEFF 1−−=−=  using ( ) 1−= O

BB
M

BB EF .  
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Retrieval of Mixed Elasticities from Inverse Flexibilities 

Theoretical relationships of mixed elasticities to inverse flexibilities can be derived as 

follows. From ( ) 1−= M
AA

I
AA EF , we get ( ) 1−= I

AA
M
AA FE . From ( ) 1−= M

AA
M

BA
I

BA EPF , we get M
AA

I
BA

M
BA EFP =  

( ) 1−= I
AA

I
BA FF  using ( ) 1−= I

AA
M
AA FE . From ( ) M

AB
M
AA

I
AB QEF 1−−= , we get ( ) I

AB
I

AA
I

AB
M
AA

M
AB FFFEQ 1−−=−=  

using ( ) 1−= I
AA

M
AA FE . From ( ) M

AB
M
AA

M
BA

M
BB

I
BB QEPFF 1−−= , we also get ( ) M

AB
M
AA

M
BA

I
BB

M
BB QEPFF 1−+=  

( )[ ] [ ] ( )[ ]I
AB

I
AA

I
AA

I
AA

I
BA

I
BB FFFFFF 11 −− ⋅⋅−=  = ( ) I

AB
I

AA
I

BA
I

BB FFFF 1−−  using ( ) 1−= I
AA

M
AA FE , ( ) 1−= I

AA
I

BA
M

BA FFP , 

and ( ) I
AB

I
AA

M
AB FFQ 1−−= . From the relation ∑−=

=

m

j
jii

1
,εε  and ∑−=

=

m

j
jkk pf

1
,1  of mixed demand 

functions, we get ( )M
AA

M
A ERowSumE −=  and ( )M

BA
M

B PRowSumIF −= . Using ( ) 1−= I
AA

M
AA FE , we can 

write ( )[ ]1−−= I
AA

M
A FRowSumE  . Using ( ) 1−= I

AA
I

BA
M

BA FFP , we can write 

( )[ ]1−−= I
AA

I
BA

M
B FFRowSumIF  . 

 

Retrieval of Direct Elasticities from Inverse Flexibilities 

Theoretical relationships of direct elasticities to inverse flexibilities can be derived as 

follows. From ( ) 1−= M
BB

O
BB FE , we get ( )[ ] 11 −−−= I

AB
I

AA
I

BA
I

BB
O
BB FFFFE  using ( ) I

AB
I

AA
I

BA
I

BB
M

BB FFFFF 1−−= . 

From ( ) 1−⋅= M
BB

M
AB

O
AB FQE , we get ( ) ( )[ ] 111 −−− −⋅−= I

AB
I

AA
I

BA
I

BB
I

AB
I

AA
O
AB FFFFFFE  using ( ) I

AB
I

AA
M
AB FFQ 1−−=  

and ( ) I
AB

I
AA

I
BA

I
BB

M
BB FFFFF 1−−= . From ( ) M

BA
M

BB
O
BA PFE 1−−= , we get 

( )[ ] ( ) 111 −−−−−= I
AA

I
BA

I
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I
AA

I
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I
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M
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M
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M
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M
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O
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M
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M
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I
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M

BB FFFFF 1−−= , and ( ) 1−= I
AA

I
BA

M
BA FFP . From the 

relation ∑−=
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N

n
nnn

1'
',εε  or ( )O
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O
N ERowSumE ,−=  of direct demand function, we can write 

( )O
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O
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O
A EERowSumE M−=  and ( )O

BB
O
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O
B EERowSumE M−= . Using above relationships relating 
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AA

I
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I
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I
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I
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I
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I
AB

I
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I
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O
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I
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O
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I
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I
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I
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I
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I
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O
BA FFFFFFE  and 

( )[ ] 11 −−−= I
AB

I
AA

I
BA

I
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O
BB FFFFE , we can relate expenditure elasticity to flexibilities as follows 
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Retrieval of Inverse Flexibilities from Direct Elasticities 

Theoretical relationships of inverse flexibilities to direct elasticities can be derived as 

follows. From ( ) 1−= M
AA

I
AA EF , we get ( )[ ] 11 −−−= O

BA
O
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O
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O
AA

I
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( ) O
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O
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O
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O
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M
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M
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I
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O
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M
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O
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O
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O
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M
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From ( ) M
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M
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I
AB QEF 1−−= , we get ( ) ( )[ ] 111 −−− −−= O
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O
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O
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O
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O
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O
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I
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( ) O
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O
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O
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O
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M
AA EEEEE 1−−=  and ( ) 1−= O
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O
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M
AB EEQ . From ( ) M
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M
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M
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M
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I
BB QEPFF 1−−= , we get 
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O
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O
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O
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O
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O
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O
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O
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O
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I
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M
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O
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M
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( ) O
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O
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O
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O
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M
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O
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M
AB EEQ . From the relation ∑=

=
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n
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( )I
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I
N FRowSumF ,=  of inverse demand function, we can write ( )I
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I
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I
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( )I
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I
BA

I
B FFRowSumF M= . Using above relations of elasticity to flexibility 

( )[ ] 11 −−−= O
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O
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O
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O
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I
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O
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O
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O
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O
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I
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( ) ( )[ ] 111 −−− −−= O
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O
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O
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O
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O
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O
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I
BA EEEEEEF and ( ) ( ) ( )[ ] ( ) 11111 −−−−− −+= O
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O
AB

O
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O
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O
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O
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O
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O
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O
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I
BB EEEEEEEEEF , 

we can relate scale flexibility of inverse demand to elasticities of direct demand as follows 
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BB

O
AB

O
BA

O
BB
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O
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I
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APPENDIX C  

DIFFERENTIAL FAMILY OF THREE DEMAND SYSTEMS 

 

For specifications of differential family of demand system, the log differential property 

of zdzdz ln⋅=  or zdzzd =ln  is frequently used for any variable z . For example, by taking 

total differentiate of identity ∑≡
=

N

n
nnqpy

1
, we get n

N

n
n

N

n
nn dpqdqpdy ∑+∑≡

== 11
, which can be written as 

( ) ( ) ( )∑+∑≡
==

N

n
nnn

N

n
nnn pdpqqdqpyyd

11
lnlnln  by log differential property and represented as  

n

N

n
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N

n
n
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y
qpqd

y
qpyd lnlnln
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⎠

⎞
⎜⎜
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⎛
+∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≡

==
 or PdQdpdwqdwyd n

N

n
n

N

n
nn lnlnlnlnln

11
+≡∑+∑≡

==
. 

Similarly by taking total differentiate of identity ∑+∑≡
+==

N
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kk

m

i
ii qpqpy

11
, we get 

∑+∑+∑+∑≡
+=+===

N
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N
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i
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m

i
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1111
, which, using zdzdz ln⋅= , can be written as 
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N
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i
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i
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⎛
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⎞
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i
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i
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1111
lnlnlnlnln  by multiplying 

y
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N
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kk

N
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i
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i
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1111
lnlnlnlnln  by budget share definition or 

[ ] AABBABBAA PdydPdPdQdQdPdQdPdQdyd lnlnlnlnlnlnlnlnlnlnln +=+++=+++≡ . 

For another example, by taking total differentiate of identity 
y
qpw nn

n ≡ , we get 

dy
y
qpdp

y
qdq

y
pdw nn

n
n

n
n

n 2
−+= , which, using the log differential property zdzdz ln⋅= ,  can be 

written as ydy
y
qppd

y
pqqd

y
qpdw nn

n
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n
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n lnlnln
2 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  and, by budget share definition, 

can be also represented as  ydwpdwqdwdw nnnnnn lnlnln −+= , which can be either 

nnnnn dwqdwdw πlnln +=  or [ ]PdQdwpdwqdwdw nnnnnn lnlnlnln +−+= . The Kronecker 

delta 1', =nnδ  for 'nn =  and 0', =nnδ  for 'nn ≠  is also frequently used. For example, 

n

N

n
nn zzw −∑

=1'
'' can be written as ( )∑ ⋅−=∑−∑

===

N

n
nnnn

N

n
nnn

N

n
nn zwzzw

1'
'','

1'
'',

1'
'' δδ . 
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Rotterdam Functional Form 

Specification of the Rotterdam direct demand systems can be derived as follows. By 

taking total differentiation of the uncompensated direct demand ( )Nnn ppyqq ,,, 1 L= , we get 

'
1'

'

n

N

n
n

nn
n dp

p
qdy

y
qdq ∑

∂
∂

+
∂
∂

=
=

. By using log differential property zdzdz ln⋅= , This equation can be 

written as ''
1'

'

lnlnln nn

N

n
n

nn
nn pdp

p
qyyd

y
qqdq ∑

∂
∂

+
∂
∂

=
=

, which, by multiplying 
y
pn , can be written as 

'
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'

'
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n
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n

nnn
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⎛
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⎝

⎛
∂
∂
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⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
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⎝

⎛
=

 or, by budget share definition, 

'
1'

', lnlnln n

N

n
nnnnnnn pdwydwqdw ∑+=

=
εε . By using Slutsky relation of '',', nnn

c
nnnnnn wwww εεε −= into 

this equation, we have [ ] '
1'

'', lnlnln n

N

n
nnn

c
nnnnnnn pdwwwydwqdw ∑ −+=

=
εεε , which can be written as 

[ ] ∑+∑−=
==

N

n
n

c
nnn

N

n
nnnnnn pdwpdwydwqdw

1'
'',
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'' lnlnlnln εε  or, by using 

identity PdQdyd lnlnln +≡ , ∑ ⋅+⋅=
=

N

n
n

c
nnnnnnn pdwQdwqdw

1'
'', lnlnln εε . 

Specification of the Rotterdam inverse demand systems can be derived as follows. By 

taking total differentiation of the compensated inverse demand ( )Nnn qqu ,,, 1 Lππ = , we get 

'
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n

N

n
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q
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u
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∂
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+
∂
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∂
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n
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n
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∂
∂
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∂
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∂
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∂
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Specification of the Rotterdam mixed demand systems can be derived as follows. By 

taking total differentiation of uncompensated mixed demand ( )Nmmii qqppyqq ,,,,,, 11 LL += , we 

get s
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Differential LA/AIDS Functional Form 

Originally the LA/AIDS direct demand systems can be derived by using following 

specification of cost function: ( ) ( ) ( )[ ]PubPaPuCy +=≡ exp,  or 
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Based on the similar logical procedure, the LA/AIDS inverse demand systems can be 

derived by using following specification of distance function: ( ) ( ) ( )[ ]qubqaquD +=≡ exp,1  or 
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CBS Functional Form 

Originally the CBS direct demand systems can be derived by subtracting Qdwn ln  from 

both side of Rotterdam models to introduce variational expenditure elasticity into Rotterdam 

specification as follows: QdwpdwQdwQdwqdw n
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Similarly the CBS inverse demand systems can be derived by adding Qdwn ln  to both 

side of Rotterdam models to introduce variational scale flexibility as follows: 
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NBR Functional Form 

Originally the NBR direct demand systems can be derived by adding Qdwn ln  to both 

side of LA/AIDS models to introduce constant expenditure elasticity into LA/AIDS specification 
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Similarly the NBR inverse demand systems can be derived by subtracting Qdwn ln  from 
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Relation among Four Functional Forms 

Since mathematical equivalences between Rotterdam and CBS and between LA/AIDS 

and NBR are obvious, it is enough to show relationships between Rotterdam and differential 

version of LA/AIDS to connect all four differential family functional forms.  
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In inverse demand functions, using QdwQdwqdwdwdw nnnnnnn lnlnlnln −++= π , 
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APPENDIX D  

DATA DESCRIPTION* 

 

Var. # Description of Variables Brand Categry UPC Code  
 

001 SUNKIST STRAWBERRY SUNKIST 4640010041
002 SUNKIST ORANGE SUNKIST 4640014021
003 CANADA DRY GINGER ALE CANADA DRY 1690000013
004 CANADA DRY GINGER ALE CANADA DRY 1690000083  

 

005 SPRITE SPRITE 4900000132
006 COCA-COLA CLASSIC COKE 4900000634
007 COKE DIET COKE 4900000658
008 COKE DIET CAFFEINE FREE COKE 4900000929  

 

009 PEPSI-COLA PEPSI 1200000013
010 PEPSI-DIET PEPSI 1200000050
011 DIET PEPSI CAFFEINE FREE PEPSI 1200000494
012 CAFFEINE FREE PEPSI PEPSI 1200000490
013 MOUNTAIN DEW MOUNTAIN DEW 1200000085  

 

014 SEVEN-UP SEVEN-UP 7800000038
015 SEVEN-UP DIET SEVEN-UP 7800000079
016 DR PEPPER SUGAR FREE DR PEPPER 5490000030
017 DR PEPPER DR PEPPER 5490000029  

 

018 A & W DIET ROOT BEER A & W 7020200006
019 A & W ROOT BEER A & W 7020200005
020 DIET RITE COLA RITE COLA 2950005254
021 DIET RITE RED RASPBERRY RITE COLA 2950085254  

 
022 LIPTON BRISK ICED TEA LIPTON 4100000814
023 LIPTON DIET BRISK TEA LIPTON 4100010728  

 
* All the products are size of 6/12 oz. 
* The classification and ordering of variables are based on the result of empirical analysis  



 

 

243

APPENDIX E  

DATA DESCRIPTION∗ 

 

Var. # Variable Name Descriptions T_Code Slow  
Exchange Rate Variable Group (ExRate) 

001 EX rate: Canada FOREIGN EXCHANGE RATE: CANADA (CANADIAN $ PER U.S.$) 5 0
002 Ex rate: UK FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER POUND) 5 0
003 Ex rate: Switz FOREIGN EXCHANGE RATE: SWITZERLAND (SWISS FRANC PER U.S.$) 5 0
004 Ex rate: avg UNITED STATES;EFFECTIVE EXCHANGE RATE(MERM)(INDEX NO.) 5 0
005 Ex rate: Japan FOREIGN EXCHANGE RATE: JAPAN (YEN PER U.S.$) 5 0  

Stock Market Variable Group (Stock) 

006 Consumer expect U. OF MICH. INDEX OF CONSUMER EXPECTATIONS(BCD-83) 2 0
007 S&P PE ratio S&P'S COMPOSITE COMMON STOCK: PRICE-EARNINGS RATIO (%,NSA) 5 0
008 S&P: indust S&P'S COMMON STOCK PRICE INDEX: INDUSTRIALS (1941-43=10) 5 0
009 S&P 500 S&P'S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43=10) 5 0  

Money Aggregate Variable Group (Money) 

010 M2 (real) MONEY SUPPLY - M2 IN 1996 DOLLARS (BCI) 5 0
011 M2 MONEY STOCK:M2(M1+O'NITE RPS,EURO$,G/P&B/D MMMFS&SAV&SM TIME DEP(BIL$, 5 0
012 M3 MONEY STOCK: M3(M2+LG TIME DEP,TERM RP'S&INST ONLY MMMFS)(BIL$,SA) 5 0
013 M1 MONEY STOCK: M1(CURR,TRAV.CKS,DEM DEP,OTHER CK'ABLE DEP)(BIL$,SA) 5 0
014 MB MONETARY BASE, ADJ FOR RESERVE REQUIREMENT CHANGES(MIL$,SA) 5 0
015 Reserves tot DEPOSITORY INST RESERVES:TOTAL,ADJ FOR RESERVE REQ CHGS(MIL$,SA) 5 0
016 Reserves nonbor DEPOSITORY INST RESERVES:NONBORROWED,ADJ RES REQ CHGS(MIL$,SA) 5 0  

Price Variable Group (Price) 

017 CPI-U: ex shelter CPI-U: ALL ITEMS LESS SHELTER (82-84=100,SA) 6 1
018 CPI-U: comm. CPI-U: COMMODITIES (82-84=100,SA) 6 1
019 CPI-U: ex med CPI-U: ALL ITEMS LESS MEDICAL CARE (82-84=100,SA) 6 1
020 CPI-U: all CPI-U: ALL ITEMS (82-84=100,SA) 6 1
021 CPI-U: transp CPI-U: TRANSPORTATION (82-84=100,SA) 6 1
022 CPI-U: ex food CPI-U: ALL ITEMS LESS FOOD (82-84=100,SA) 6 1  

 

 

                                                           
∗ In the transformation code (T-code), the following numbers are used for each transformation: 1: no transformation. 2: first 
difference, 4: logarithm, 5:first difference of logarithm, and 6: second difference of logarithm. 
* In the block recursive assumption (Slow), the number of 1 denotes the assumed slow-moving variables. 
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Var. # Variable Name Descriptions T_Code Slow  
 

023 PPI: int mat’ls PRODUCER PRICE INDEX:INTERMED MAT.SUPPLIES & COMPONENTS(82=100,SA) 6 0
024 PPI: cons gds PRODUCER PRICE INDEX:FINISHED CONSUMER GOODS (82=100,SA) 6 0
025 PPI: fin gds PRODUCER PRICE INDEX: FINISHED GOODS (82=100,SA) 6 0
026 PPI: crude mat’ls PRODUCER PRICE INDEX:CRUDE MATERIALS (82=100,SA) 6 0
027 Commod: spot price SPOT MARKET PRICE INDEX:BLS & CRB: ALL COMMODITIES(1967=100) 6 0
028 Sens mat’ls price INDEX OF SENSITIVE MATERIALS PRICES (1990=100)(BCI-99A) 6 0  

Interest Rate Variable Group (Interest) 

029 Baa bond BOND YIELD: MOODY'S BAA CORPORATE (% PER ANNUM) 2 0
030 Aaabond BOND YIELD: MOODY'S AAA CORPORATE (% PER ANNUM) 2 0
031 10 yr T-bond INTEREST RATE: U.S.TREASURY CONST MATURITIES,10-YR.(% PER ANN,NSA) 2 0
032 5 yr T-bond INTEREST RATE: U.S.TREASURY CONST MATURITIES,5-YR.(% PER ANN,NSA) 2 0
033 1 yr T-bond INTEREST RATE: U.S.TREASURY CONST MATURITIES,1-YR.(% PER ANN,NSA) 2 0
034 6 mo T-bill INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,6-MO.(% PER ANN,NSA) 2 0
035 3 mo T-bill INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,3-MO.(% PER ANN,NSA) 2 0
036 Commpaper Cmmercial Paper Rate (AC) 2 0  

Spread Variable Group (Spread) 

037 CP-FF spread cp90-fyff 1 0
038 3 mo-FF spread fygm3-fyff 1 0
039 6 mo-FF spread fygm6-fyff 1 0
040 1 yr-FF spread fygt1-fyff 1 0
041 5 yr-FFspread fygt5-fyff 1 0
042 10yr-FF spread fygt10-fyff 1 0
043 Aaa-FF spread fyaaac-fyff 1 0
044 Baa-FF spread fybaac-fyff 1 0  
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Var. # Variable Name Descriptions T_Code Slow  
Housing Market Variable Group (House) 

045 HStarts: NE HOUSING STARTS:NORTHEAST (THOUS.U.)S.A. 4 0
046 BP: NE HOUSES AUTHORIZED BY BUILD. PERMITS:NORTHEAST(THOU.U.)S.A 4 0
047 HStarts: MW HOUSING STARTS:MIDWEST(THOUS.U.)S.A. 4 0
048 BP: MW HOUSES AUTHORIZED BY BUILD. PERMITS:MIDWEST(THOU.U.)S.A. 4 0
049 BP: West HOUSES AUTHORIZED BY BUILD. PERMITS:WEST(THOU.U.)S.A. 4 0
050 HStarts: West HOUSING STARTS:WEST (THOUS.U.)S.A. 4 0
051 HStarts: Total HOUSING STARTS:NONFARM(1947-58);TOTAL FARM&NONFARM(1959-)(THOUS.,SA 4 0
052 BP: total HOUSING AUTHORIZED: TOTAL NEW PRIV HOUSING UNITS (THOUS.,SAAR) 4 0
053 HStarts: South HOUSING STARTS:SOUTH (THOUS.U.)S.A. 4 0
054 BP: South HOUSES AUTHORIZED BY BUILD. PERMITS:SOUTH(THOU.U.)S.A. 4 0  

NAPM Variable Group (NAPM) 

055 NAPM com price NAPM COMMODITY PRICES INDEX (PERCENT) 1 0
056 NAPM Invent NAPM INVENTORIES INDEX (PERCENT) 1 0
057 NAPM vendor del NAPM VENDOR DELIVERIES INDEX (PERCENT) 1 0
058 NAPM empl NAPM EMPLOYMENT INDEX (PERCENT) 1 1
059 PMI PURCHASING MANAGERS' INDEX (SA) 1 0
060 NAPM prodn NAPM PRODUCTION INDEX (PERCENT) 1 1
061 NAPM new ordrs NAPM NEW ORDERS INDEX (PERCENT) 1 0  

Employment Variable Group (Emp) 

062 Emp CPS total CIVILIAN LABOR FORCE: EMPLOYED, TOTAL (THOUS.,SA) 5 1
063 Emp CPS nonag CIVILIAN LABOR FORCE: EMPLOYED, NONAGRIC.INDUSTRIES (THOUS.,SA) 5 1
064 Emp-hrs nonag Employee hours in nonag. establishments (AR, bil. hours) 5 1
065 Emp: const EMPLOYEES ON NONFARM PAYROLLS - CONSTRUCTION 5 1
066 Emp: retail EMPLOYEES ON NONFARM PAYROLLS - RETAIL TRADE 5 1
067 Emp: TTU EMPLOYEES ON NONFARM PAYROLLS - TRADE, TRANSPORTATION, AND UTILITIES 5 1
068 Emp: services EMPLOYEES ON NONFARM PAYROLLS - SERVICE-PROVIDING 5 1
069 Emp: total EMPLOYEES ON NONFARM PAYROLLS - TOTAL PRIVATE 5 1
070 Emp: gds prod EMPLOYEES ON NONFARM PAYROLLS - GOODS-PRODUCING 5 1
071 Emp: mfg EMPLOYEES ON NONFARM PAYROLLS - MANUFACTURING 5 1
072 Emp: dble gds EMPLOYEES ON NONFARM PAYROLLS - DURABLE GOODS 5 1
073 Emp: nondbles EMPLOYEES ON NONFARM PAYROLLS - NONDURABLE GOODS 5 1
074 Emp: wholesale EMPLOYEES ON NONFARM PAYROLLS - WHOLESALE TRADE 5 1
075 Emp: FIRE EMPLOYEES ON NONFARM PAYROLLS - FINANCIAL ACTIVITIES 5 1  
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Var. # Variable Name Descriptions T_Code Slow  
Output Variable Group (Output) 

076 IP:nondble mats INDUSTRIAL PRODUCTION INDEX -  NONDURABLE GOODS MATERIALS 5 1
077 IP:bus eqpt INDUSTRIAL PRODUCTION INDEX -  BUSINESS EQUIPMENT 5 1
078 IP: dble mats INDUSTRIAL PRODUCTION INDEX -  DURABLE GOODS MATERIALS 5 1
079 IP: matls INDUSTRIAL PRODUCTION INDEX -  MATERIALS 5 1
080 IP: total INDUSTRIAL PRODUCTION INDEX -  TOTAL INDEX 5 1
081 IP: mfg INDUSTRIAL PRODUCTION INDEX -  MANUFACTURING (SIC) 5 1
082 Cap util Capacity Utilization (Mfg) 2 1
083 IP: products INDUSTRIAL PRODUCTION INDEX -  PRODUCTS, TOTAL 5 1
084 IP: final prod INDUSTRIAL PRODUCTION  INDEX -  FINAL PRODUCTS 5 1
085 IP: cons gds INDUSTRIAL PRODUCTION INDEX -  CONSUMER GOODS 5 1
086 IP: cons dble INDUSTRIAL PRODUCTION INDEX -  DURABLE CONSUMER GOODS 5 1
087 IP:cons nondble INDUSTRIAL PRODUCTION INDEX -  NONDURABLE CONSUMER GOODS 5 1
088 PI Personal income (AR, bil. chain 2000 $) 5 1
089 PI less transfers Personal income less transfer payments (AR, bil. chain 2000 $) 5 1  

Consumption/Investment Variable Group (Cons/Inv) 

090 Orders: cap gds Mfrs' new orders, nondefense capital goods (mil. chain 1982 $) 5 0
091 Orders: dble gds Mfrs' new orders, durable goods industries (bil. chain 2000 $) 5 0
092 Orders: cons gds Mfrs' new orders, consumer goods and materials (bil. chain 1982 $) 5 0
093 M&T sales Manufacturing and trade sales (mil. Chain 1996 $) 5 1
094 M&T invent/sales Ratio, mfg. and trade inventories to sales (based on chain 2000 $) 2 0
095 Retail sales Sales of retail stores (mil. Chain 2000 $) 5 1
096 Consumption Real Consumption (AC) A0m224/gmdc 5 1  

Unemployment Variable Group (Unemp) 

097 U: all UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS & OVER (%,SA) 2 1
098 U < 5 wks UNEMPLOY.BY DURATION: PERSONS UNEMPL.LESS THAN 5 WKS (THOUS.,SA) 5 1
099 U: mean duration UNEMPLOY.BY DURATION: AVERAGE(MEAN)DURATION IN WEEKS (SA) 2 1
100 U 27+ wks UNEMPLOY.BY DURATION: PERSONS UNEMPL.27 WKS + (THOUS,SA) 5 1
101 U 15+ wks UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 WKS + (THOUS.,SA) 5 1
102 U 15-26 wks UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 TO 26 WKS (THOUS.,SA) 5 1  

Federal Funds Rate Variable (FFR) 

103 FedFunds INTEREST RATE: FEDERAL FUNDS (EFFECTIVE) (% PER ANNUM,NSA) 2 0  
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APPENDIX F  

STANDARD STATIC CORRELATION MATRIX 
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 0.1

 0.0

 
* See Appendix E for the description of variables, where variables are in the same order. 
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