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ABSTRACT

Causality and Aggregation in Economics:

The Use of High Dimensional Panel Data in
Micro-Econometrics and Macro-Econometrics. (December 2007)
Dae-Heum Kwon, B.S., Korea University;

M.S., Korea University
Chair of Advisory Committee: Dr. David A. Bessler

This study proposes one plausible procedure to address two methodological issues,
which are common in micro- and macro- econometric analyses, for the full realization of
research potential brought by recently available high dimensional data. To address the issue of
how to infer the causal structure from empirical regularities, graphical causal models are
proposed to inductively infer causal structure from non-temporal and non-experimental data.
However, the (probabilistic) stability condition for the graphical causal models can be violated
for high dimensional data, given that close co-movements and thus near deterministic relations
are oftentimes observed among variables in high dimensional data. Aggregation methods are
proposed as one possible way to address this matter, allowing one to infer causal relationships
among disaggregated variables based on aggregated variables. Aggregation methods also are
helpful to address the issue of how to incorporate a large information set into an empirical model,
given that econometric considerations, such as degrees-of-freedom and multicollinearity, require
an economy of parameters in empirical models. However, actual aggregation requires legitimate
classifications for interpretable and consistent aggregation.

Based on the generalized condition for the consistent and interpretable aggregation
derived from aggregation theory and statistical dimensional methods, we propose plausible
methodological procedure to consistently address the two related issues of causal inference and
actual aggregation procedures. Additional issues for empirical studies of micro-economics and
macro-economics are also discussed. The proposed procedure provides an inductive guidance for
the specification issues among the direct, inverse, and mixed demand systems and an inverse
demand system, which is statistically supported, is identified for the consumer behavior of soft
drink consumption. The proposed procedure also provides ways to incorporate large information

set into an empirical model with allowing structural understanding of U.S. macro-economy,
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which was difficult to obtain based on the previously used factor augmented vector
autoregressive (FAVAR) framework. The empirical results suggest the plausibility of the
proposed method to incorporate large information sets into empirical studies by inductively

addressing multicollinearity problem in high dimensional data.
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CHAPTER |
INTRODUCTION

Recent advances in data processing capabilities have brought the possibility of analyzing
larger numbers of detailed variables. In many areas of economics, high dimensional panel data
are now available. For example, retail checkout scanner data are available for thousand of
products at firm, regional and national levels at various frequencies. Central banks and statistical
institutes produce a large number of macro-economic time series data. These data have brought
forth research potentials for significant advances in the micro-econometric analysis of consumer
behavior (Capps and Love, 2002) and the macro-econometric study of monetary policy effects
(Stock and Watson, 2005). The availability of high dimensional data, however, raises several
methodological issues for the full use of the research potentials brought by this large information
set. An important methodological issue to be addressed is how to incorporate such available
broad range of information set into empirical models, given that econometric considerations,
such as degrees-of-freedom and multicollinearity, require an economy of parameters in empirical
models. Another methodological issue is how to determine the causal structure to relate
empirical regularities captured in a reduced form model to theoretical properties represented by a
structural form model (identification problem). Given that identifying a system of equations
means determining the causal structure, the identification problem arises from the facts that: (a)
the causal structure is generally under-determined by the statistical properties of the data
(induction problem). (b) theories are too heterogeneous to provide a conclusive causal structure
or overall theories do not provide sufficient information to identify causal structure. A simple but
fundamental version of this issue is how to relate correlation patterns to causal structures.

How to infer the causal structure from empirical regularities and how to incorporate the
large information set into an empirical model are two important methodological issues, which
bring a more fundamental methodological issue. Is there a specific correct aggregation level? To
deal with these fundamental issues consistently, we interpret theory as an inductive causal
averaging procedure that concentrates only on similar tendencies to highlight a few common
factors by ignoring many more individual differences and idiosyncrasies. When we follow an
inductive causal averaging procedure, we need to identify empirically justifiable conditions that

allow us to legitimately define common tendencies and individual idiosyncrasies. This issue is

This dissertation follows the style of American Journal of Agricultural Economics.



studied in the context of aggregation theory and some generalized conditions for consistent
aggregation are derived. Based on the derived generalized condition for consistent aggregation,
we propose one possible methodological procedure to consistently address the two related issues
of causal inference and actual aggregation procedures.

In chapter II, the general methodological issues are discussed and a plausible procedure
is proposed for the full realization of the research potentials brought by high dimensional data.
More specifically, first, we provide a brief outline of developments on these issues to motivate
this study. Second, graphical causal models are discussed to address the causality issue of how to
infer the causal structure to relate empirical regularities captured in a reduced form model to
theoretical properties represented by the structural form model. A (probabilistic) stability
condition, which is one of the fundamental assumptions of the graphical causal models, is
discussed in the context of the use of a high dimensional data set. Third, aggregation theory is
discussed to identify consistent aggregation conditions, under which the common tendencies and
individual idiosyncrasies can be legitimately defined. A compositional stability condition, which
is proposed as a generalized condition for consistent aggregation, is discussed to address the
information issue of how to incorporate large information set into an empirical model. Index
number theory and statistical dimensional reduction methods are then discussed in the context of
generalized conditions of aggregation theory. The relationship between the (probabilistic)
stability condition for the causality issue and the compositional stability condition for the
information issue is discussed. Based on the generalized condition for the consistent aggregation,
an inductive method to systematically address causality and aggregation issues is proposed for
the full use of the research potentials brought by high dimensional data.

The proposed method is illustrated with retail checkout scanner data and macro-
economic time series panel data as examples of two sets of high dimensional data. In chapter III,
the proposed method is illustrated for micro-econometric analysis of consumer behavior. When
it can be considered as one of the main objectives of the study of consumer behavior to
understand and measure responsiveness of consumer behavior to changes in exogenous variables,
the empirical measure of responsiveness relies on three specification choices in an empirical
model. First, given that there are full spectrums of direct, inverse, and mixed demand systems
and the general relationship between elasticity and flexibility is not yet established, the measure
depends on the relative predeterminess among the price and quantity variables represented by

dependent and explanatory variables in an empirical model of a specific commodity. Second,



given that small departures from valid classification and/or aggregation can result in large
mistakes in empirical results, the measure depends on the classification and aggregation to define
price and quantity variables themselves. For example, the decision on classification and
aggregation can substantially affect the conclusions about elasticity estimates in multi-stage
budgeting approach, because cross-price elasticities or cross-quantity flexibilities among
products in different groups are likely to be small by construction. Third, given that the different
assumptions used to parameterize functional relationships have different implications, the
measure depends on the functional form, which relates the dependent variable with explanatory
variables. For example, there are four combinations of constant or variation assumptions for the
income (or scale) coefficient and Slutsky (or Antonelli) coefficient in the differential functional
form approach as captured in popular demand systems specifications.

In chapter III, we propose an inductive empirical method to address these three
methodological issues in the study of consumer behavior based on the discussion on the causality
and aggregation issues in chapter II. The way to incorporate theoretical implications into
empirical model specifications through the functional forms and the way to compare different
specifications of direct, inverse, and mixed demand functions are the additional issues to be
addressed. More specifically, first, the specification choice issue among direct, inverse, and
mixed demand functions is addressed by using the inductively inferred causal information based
on the graphical causal models. Second, the classification and aggregation issue are addressed by
the compositional stability conditions and index number theory. Third, the functional form issue
is addressed by the synthetic model approach based on the differential functional form
framework. The comparison of alternative specifications is conducted in terms of model
selection framework. The proposed method is illustrated with an application for soft drink
products using retail checkout scanner data.

In chapter IV, the proposed method is illustrated for macro-econometric analysis of the
U.S. macro-economy. Two methodological issues for the full realization of the research potential
brought by the available high dimensional data are discussed. One is the identification problem
of how to infer the underlying causal structure from the data, given that the causal structure is
generally underdetermined by the statistical properties of the data and theory does not provide
sufficient causal information. Unlike the structural equation model (SEM) approach which
requires too much causal information for the identification problem, the vector autoregressive

(VAR) model approach provides the possibility of inferring causal information from statistical



properties of the data without pretending to have too much a priori theory and/or without
demanding too much information from the data. Although the structural VAR framework
provides the possibility of inferring causal information from data, how to inductively infer the
causal structure to relate empirical regularities captured in the reduced form model to theoretical
properties represented by the structural form model remains an open methodological issue. The
other methodological issue to be addressed is how to incorporate an available large information
set into an empirical model, given that econometric considerations such as degrees-of-freedom
and multicollinearity require the economy of parameters in empirical models. This information
problem is important, since misspecification problems can exist due to the small information set
usually incorporated in empirical macro-econometric models, given the observation that
monetary authorities monitor a large number of economic variables and there can be many
possible channels through which the monetary policy affects the economy.

In chapter IV, we propose inductive empirical methods to address these two
methodological issues in the study of monetary policy effects based on the discussions on the
causality and aggregation issues in chapter II. A method to infer the causal structures for the
study of the monetary policy transmission mechanism and a method to incorporate a broad range
of information into the empirical macro-model are the primary issues to be addressed. More
specifically, first, the SEM and VAR approaches are compared in terms of the identification
problem. The relative advantage of the VAR approach beyond the recursive Wold causal chain
system and the possibility of an inductive inference on the causal structure are discussed. Second,
possible misspecification problems due to the small information set incorporated in the standard
VAR approach is discussed in the context of the monetary transmission mechanism literature.
The possibility both to incorporate high dimensional macro-economic panel data into a standard
VAR model and to infer a structural interpretation for this large information set is discussed
based on the factor augmented vector autoregressive (FAVAR) framework and the
compositional stability conditions. Third, an identification issue in the FAVAR model is
addressed by using inductively inferred causal information based on the graphical causal models.
The proposed methods are illustrated with the applications for the study of the monetary policy
effects using macro-economic panel data.

In chapter V, the proposed methodological procedure is summarized and several

research topics to be further studied are suggested as concluding remarks.



CHAPTER I
CAUSALITY AND AGGREGATION IN ECONOMICS

Recent advances in data processing capabilities have brought the possibility of analyzing
larger numbers of detailed variables. In many areas of economics, high dimensional panel data
are now available. For example, retail checkout scanner data are available for thousand of
products at firm, regional and national levels at various frequencies. And central banks and
statistical institutes produce a large number of macro-economic time series data. These data have
brought forth research potentials for significant advances in the micro-econometric analysis of
consumer behavior and the macro-econometric study of monetary policy effects. The availability
of high dimensional data, however, raises several methodological issues for the full use of the
research potentials brought by this large information set. An important methodological issue to
be addressed is how to incorporate such available broad range of information set into empirical
models, given that econometric considerations, such as degrees-of-freedom and multicollinearity,
require an economy of parameters in empirical models.

Empirical studies in economics have been developed to unify the theoretical-quantitative
approach with the empirical-statistical approach to identify either the structural parameters
corresponding to the coefficients in the structural equation model (SEM) approach or the effects
of structural economic shocks in the structural vector autoregressive (VAR) model approach.
Given that identifying a system of equations means determining the causal structure, the
identification problem arises from the following facts: (a) The causal structure is generally
under-determined by the statistical properties of the data (induction problem). A simple but
fundamental version of this induction problem is that correlation does not imply causation. (b)
Theories are too heterogeneous to provide a conclusive causal structure or overall theories do not
provide sufficient information to identify causal structure. In this respect, another
methodological issue is how to determine the causal structure to relate empirical regularities
captured in reduced form model to theoretical properties represented by the structural form
model (identification problem). A simple but fundamental version of this issue is how to relate
correlation pattern to causal structure.

How to infer the causal structure from empirical regularities and how to incorporate the
large information set into an empirical model are two important issues, which bring a more

fundamental methodological issue for the full use of the research potentials brought by high



dimensional data. Is there a specific correct aggregation level? Where we should apply a
theoretical model of rational behavior? To what level should the regularity assumptions
associated with rationality be applied? Are these to be applied at the individual level, to
reasonably homogeneous groups, or to entire economies? These questions have been discussed
for a very long time and have turned out to be difficult to solve. It might only be properly
addressed by manipulative (randomized) experimentations or more extensive empirical research
than has been performed to date (Blundell and Stoker, 2005).

To deal with these fundamental issues consistently, we interpret theory as an inductive
causal averaging procedure that concentrates only on similar tendencies to highlight a few
common factors by ignoring many more individual differences and idiosyncrasies. For example,
the theory of firm (or consumer) can be understood as an inductive model that does not describe
the actual objective function and constraints of any particular firm (or consumer) but only what
most firms (or consumers) have in common as a tendency. It comes from observing the behavior
of many firms (or consumers) and, based on those observations, abstracting the basic elements
common to most of those firms (or consumers). In this respect, theory is considered to be a
foundation for developing a more realistic account of the firm (or consumer) under consideration
(Davis, 1999).

When we follow an inductive causal averaging procedure that concentrates only on
similar tendencies to highlight a few common factors by ignoring many more individual
differences and idiosyncrasies, we need to identify empirically justifiable conditions that allow
us to legitimately define common tendencies and individual idiosyncrasies. This issue can be
addressed in the context of an aggregation theory and some generalized conditions for consistent
aggregation. Based on the generalized condition for the consistent aggregation, we propose one
possible methodological procedure to consistently address the two related issues of causal
inference and actual aggregation procedures. More specifically, first, we provide a brief outline
of developments on these issues to motivate this study. Second, graphical causal models are
discussed to address the causality issue of how to determine the causal structure to relate
empirical regularities captured in a reduced form model to theoretical properties represented by
the structural form model. A (probabilistic) stability condition, which is one of the fundamental
assumptions of the graphical causal models, is discussed in the context of the use of a high
dimensional data set. Third, aggregation theory is discussed to identify consistent aggregation

conditions, under which the common tendencies and individual idiosyncrasies can be



legitimately defined. A compositional stability condition, which is proposed as a generalized
condition for consistent aggregation, is discussed to address the information issue of how to
incorporate large information set into an empirical model. Index number theory and statistical
dimensional reduction methods are then discussed in the context of generalized conditions of
aggregation theory. The relationship between the (probabilistic) stability condition for the
causality issue and the compositional stability condition for the information issue is discussed.
Based on the generalized condition for the consistent aggregation, an inductive method to
systematically address causality and aggregation issues are proposed for the full use of the

research potentials brought by high dimensional data.

Brief Survey

Empirical studies in economics have relied on economic theories or researchers’
intuitions in order to identify either the structural parameters corresponding to the coefficients in
the structural equation model (SEM) approach or the effects of structural economic shocks in the
structural vector autoregressive (VAR) model approach. While the SEM approach emphasizes
the relative importance of deductive information and proceeds from the deductive information to
inductive information, the VAR approach emphasizes the relative importance of inductive
information and proceeds from the inductive information to deductive information. In the SEM
approach, the economic theory or intuitive knowledge specifies a priori the causal structure and
then statistical methods are applied to measure the strength of the causal relations and the
possibility is pursued to test the restrictions derived from theory. In the structural VAR, on the
other hand, statistical properties of economic time series are summarized by the reduced form
VAR and then the causal structures are used based on either the theoretical implications or
institutional knowledge. The structural equations approach, especially the Cowles Commission
approach, pursues both necessary and sufficient algebraic conditions that make a system of
equations identified, emphasizing the role of economic theory in identification. On the other
hand, the VAR approach is more data intense at least in the estimation step, arguing that the
absence of purely exogenous variables in observational data impedes algebraic solution of the
identification problem. The VAR approach pursues the possibility of (absolutely) inductive
methods minimizing, or without using, the deductive a priori information to infer the underlying

causal structures from the statistical observations.



Given that identifying a system of equations means determining the causal structure
among variables in the system and theory does not provide sufficient or conclusive information
about causal structure, several empirical methods for learning causal relationships from data
have been pursued. Hume provides philosophical foundations for the causality issues in
economics by providing following definitions of the causal relation: “We may define a cause to
be an object, followed by another, and where all the objects similar to the first are followed by
objects similar to the second. Or in other words where, if the first object has not been, the second
never had existed (Hume, 2000, page 54).” While the first part of the Hume’s definition is
related to the probabilistic approach, the second part of the definition is related to the
counterfactual approach. Suppes (1970) elaborates the first part of the Hume’s definition as
follows: an event A causes an event B if (a) The conditional probability of B given A is greater
than B alone (prima facie causality), and (b) A occurs before B. Based on a similar idea, Granger
(1980) proposes an operational definition as follows: a (time-series) variable A causes B, if the
probability of B conditional on its own past history and the past history of A does not equal the
probability of B conditional on its own past history alone. On the other hand, Lewis (1986)
claborates the second part of the Hume’s definition as follows: the event A causes the event B if
and only if (abbreviated by iff hereafter in all the subsequent chapters) (a) Both A and B happen
and (b) If A had not been, then B would not have happened. Holland (1986) describes a
statistical approach to causal inference based on this idea.

Granger-causality has been used in macro-econometric models, especially in time-series
approach, whereas the Holland’s method has been applied in micro-econometric models,
especially in experimental settings. However, given that causality denotes the possibility of
controlling one variable in order to influence another one (efficient cause), Granger-causality
does not fully address the causal issue, since it is based on the incremental predictability rather
than an efficient cause. And given that most economic data are generated from non-experimental
settings and the randomized experiment method is not feasible in general, Holland’s method can
not be used for empirical studies in general situations, since it is based on the counterfactuals
which we cannot observe without experiments.

In this respect, the problem of differentiating between causal relations and empirical
regularities has remained an open issue in the development of econometrics. However, the
inductive methods of learning causal relationships from non-temporal and non-experimental data

have been developed by mathematically connecting probabilistic dependencies to graphical



concepts at three universities: UCLA, Carnegie Mellon University (CMU) and Stanford in mid-
1980 (Pearl, 2000). Researchers at UCLA and CMU teams pursued an approach, where (a) The
fragments of the underlying structure are identified by searching the data patterns of conditional
independencies and (b) The identified fragments are logically combined together to form a
coherent causal model or a set of such models (see Spirtes et al., 2000 and Pearl, 2000 for
examples). On the other hand, researchers at Stanford University and a number of other teams
pursued a Bayesian approach, where data are used to update the posterior probabilities assigned
to the candidate causal structures. This Bayesian approach provides the basis for several graph-
based learning methods (see Buntine, 1996 and Heckerman, 1996 for examples). While these
graphical causal models or directed acyclic graph (DAG) approaches are gradually finding their
way into economics, the graphical causal models are based on the Markov and stability
conditions as the underlying assumptions. Given that the Markov condition is assumed in most
empirical studies, the stability condition can be problematic and thus require careful checking in
using these inductive causal inference methods for high dimensional data. These issues will be
discussed later.

Empirical studies in economics have also relied on various forms of classification and
aggregation, since econometric considerations, such as degrees-of-freedom and multicollinearity,
require an economy of parameters in empirical models. The full review of these classification
and/or aggregation issue is beyond the scope of this study, since separate fields follow very
different paths with regard to these issues. However, identifying a legitimate, but less restrictive,
condition for a consistent aggregation remains an open issue in general. For example, in the
consumption area, where the aggregation issue has been intensively discussed due to its
importance in both micro-economics and macro-economics, consistent aggregation conditions
have been studied in terms of both commodity-wise and agent-wise aggregations. For the
commodity-wise aggregation, even though the Hicks-Leontief composite commodity theorem
and the homothetic or weak separability concepts have been discussed in empirical micro-
economic studies, it has been demonstrated that these two types of conditions provide only
restrictive possibilities for consistent aggregation in empirical applications. For agent-wise
aggregation, the issue of aggregating from individual agents to an aggregate unit is oftentimes
ignored in standard macro-economic models by assuming individuals behind the aggregation to
be representative agents, even though it has been recognized that the changing composition of

economic agents and their incomes have significant implications on the aggregation issue.
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In a more general methodological setting, Theil argues that only very restrictive special
conditions allow aggregate models to be consistent with disaggregate models and predictions
through micro-equations yield more precise estimates of the aggregate dependent macro-variable
than the corresponding macro-equations. Despite his generally negative conclusions for
aggregation approaches, Theil’s arguments provide a general methodological framework for the
aggregation issue (Theil, 1954). This general framework has inspired a considerable amount of
related research, much of which has attempted to identify less restrictive legitimate aggregation
conditions. Furthermore, Griliches (1972) argue that different true models can exist at different
aggregation levels and they can be related by both the aggregation rules and the properties of the
distribution of the micro-variables. However, identifying generalized legitimate aggregation
conditions remains an open issue in aggregation theory.

Another issue, which has been somewhat separately discussed from the issue of
identifying generalized legitimate conditions for consistent aggregation, is how to actually
represent original variables by aggregate variables or how to decide the weighting schemes in
aggregating the disaggregated micro-variables into the aggregated macro-variables. Index
number theory has been the main approach followed in the economic literature. On the other
hand, principal component and factor analyses have been primary approaches in the statistical
literature. Index number theory has been developed based on the dual pairs of information of
prices and quantities from economic transactions and provided theoretical background for many
statistical institutes to generate economic data. Different index formulas can be understood based
on five different approaches: the fixed basket, differential, economic, stochastic and axiomatic
approaches. Statistical dimensional reduction methods have been developed in more general
settings. The standard factor model is introduced in economics, when it is used for study of the
arbitrage pricing theory (APT) in financial economics. On the other hand, dynamic factor models
have been developed in macro-economics recently, when they are used to allow distributed lag
effects of factors on individual variables in a general dynamic setting. The relationship between
factor analysis and principal component analysis has been established in both static and dynamic
settings. It has been demonstrated that these two statistical dimensional reduction methods are
useful to incorporate broad range of information into empirical models. However, given that
these aggregation methods are oftentimes discussed without explicit linkage to legitimate
aggregation conditions, there remains an open issue as to the conditions under which these

aggregation methods can be used.
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As we briefly discussed above, even though there have been significant advances, there
remain several open issues in using the previously suggested methods to address causality and
aggregation issues for empirical applications, especially with a high dimensional data set. Given
that the advances for these issues have been developed separately, it is necessary to consistently
connect the methodological developments related with causality and aggregation issues with
some generalizations. The generalization of legitimate aggregation conditions can be the main
element for the required procedures. As we will discuss subsequently, we propose one possible
methodological procedure to consistently address the related issues of causality and aggregation

for the full realization of the research potentials brought forth by high dimensional data.

Graphical Causal Model

How to infer the causal structure from the observational data has been a fundamental
issue in empirical studies for a long time, given that the causal structure is generally
underdetermined by the statistical properties of the data (induction problem). A simple but
fundamental version of this issue is how to relate correlation pattern to causal structure. The
graphical causal model explicitly aims to inductively infer the causal structure that generated
statistical properties of the sample data. According to the graphical causal model, causality is
based on the manipulative view under the modular situation, where a complex system can be
built by combining simpler local parts. Given that each local causal relationship represents a
stable and autonomous physical mechanism, it is possible to manipulate one such relationship
without changing the others and to test whether the (marginal) distribution of B is sensitive to the
interventions on A. This type of verification provides the semantic basis of the claim that
variable A has a causal influence on another variable B. In this manipulative view of causality,
the causal claims are based on the behavior of two variables A and B under the influence of a
third variable C. When the causal structure implies some pattern of informational
(in)dependencies among triplets, which is captured by the patterns of (un)conditional
(in)dependencies, the criterion for causation between two variables A and B can be whether a
third variable C exhibits a specific pattern of (in)dependency with A and B. The graphical causal
model is based on the following propositions: (a) Not all but a certain pattern of (un)conditional
(in)dependencies reveal underlying causal directionality empirically, and (b) By logically
combining such partially revealed information on causal directionality, it is possible to infer

coherent causal structures or a set of such structures under certain conditions.
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To capture dependency patterns mentioned above, the graphical causal model
introduces the concept of a dependency model. Let A, B, C, and D denote four disjoint
subsets of variables in this chapter for notational consistency. When we can determine
informational irrelevance as a local property, such as “ A is independent of B given C ” or “ A

and B interact only via C ”, we can define conditional independent statements |(A,B|C)
among triplets. And when we can determine whether | (A, B C) is true for all possible triplets in

the model M , we can also define a dependency model M by using all independent statements

I(M ) which are true among a set of variables in the model M . Given that dependency can be
defined as the negation of independency, we can use D(A,B|C)=~1(A,B|C) and D(M) for
dependent statements of individual triplets and of dependency model M respectively. When two
different dependency models M and M' have the same set of variables, certain relationships
among dependency models M and M' can be defined. M' is an independence-map (I-map) of
M if I(M)c1(M) so I1(A,B|C) in M"' implies I1(A,B|C) in M . This means that all the
conditional independence statements derived from a dependency model M' also hold in another

dependency model M . M' is a dependence-map (D-map) of M if D(M ')g D(M) SO
D(A,B|C) in M' implies D(A,B|C) in M . This means that all the conditional dependence

statements derived from a dependency model M' also hold in another dependency model M .
Note that a relation that M ' is a D-map of M implies another relation that M is a I-map of M'
and vice versa, because dependency is negation of independency. M' is an perfect-map (P-map)
of M if M" is both I-map and D-map of M , which implies 1(M')=1(M ) and D(M')=D(M).
This means that all the conditional independence and dependence statements derived from a
dependency model M' also hold in another dependency model M and vice versa. (Bouckaert,
1993).

The graphical causal model introduces two types of dependency models. And the
graphical causal model can be explained by the relationships among dependency models. A joint
probability distribution can define a probabilistic dependency model Mp by using conditional
independence criteria. On the other hand, a graph also can define a graphical dependency model
Mg by using graphical separation criteria. A probabilistic dependency model Mp is introduced by
following two main lines of reasoning. First, even the most assertive and exhaustive causal
proposition is usually subject to exceptions, either because randomness occurs due to our

ignorance of the underlying boundary conditions or because all nature’s laws are inherently
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probabilistic. So causes tend to make their consequences more likely, but not absolutely certain.
Probability theory allows us to focus on the main issue of causality by virtue of being equipped
to tolerate unexplained exceptions. Second, empirical information becomes verifiable or
falsifiable by statistical methods. Empirical knowledge can be encoded in conditional probability
statements and a joint probability distribution is computed from those statements through
Bayes’s rule: P(A,B)= P(A| B)P(B)z P(B| A)P(A), where A|B stands for an event A in the
context specified by B and P(A| B)= P(A, B)/ P(B) specifies the belief in A under the
assumption that B is known with certainty. In this respect, P(A| B) can also be read that B
probabilistically causes A with the quantitative belief of P(A| B). Conditional independency in

a probabilistic dependency model Mp captures the informational irrelevance structure among

disjoint subsets of variables. A is independent of B given C , written as I(A, B C), means that

once we know C , knowledge of B does not provide additional information about A, and thus
learning B would no longer influence our belief in A or the probability of A. More formally,
A is conditionally independent of B given C , iff P(A|B,C)=P(A|C) or
P(A,B|C)=P(A|C)P(B|C). The unconditional or marginal independence can be treated as a
particular case of conditional independence such as 1(A,B|@), iff P(A|B,&)=P(A|@)=P(A)
or P(A,B|@)=P(A)P(B).

To understand the graphical dependency model Mg, the following graphical concepts
are introduced. A graph model consists of a set of vertices (or nodes) V corresponding to
variables and a set of edges (or links or arcs) E that connect some pair of variables. Each edge
can be either directed or undirected to denote a certain relationship in pairs of variables. A pair
of nodes is adjacent if they are connected by either an undirected edge or a directed edge. A
triple <A, C , B> is unshielded iff A is adjacent to C, B is adjacent to C, but A is not
adjacent to B. C is a collider of A and B if both A and B direct into C . Given that C is a
collider of A and B, C is shielded-collider of A and B if A and B are also adjacent and C is
an unshielded-collider of A and B if A and B are not adjacent. Two nodes are connected if a
path exists between two nodes in a graph and they are disconnected otherwise, where a path is a
sequence of consecutive edges of any directionality. When two sets of nodes A and B are
connected or interact only via third set C , conditioning on C can be understood as a blocking

those interactions. The (un)conditional independence in graphical dependency model Mg is
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characterized by (a) The lack of edges between nodes or lack of information flow between
variables as well as (b) A graphical concept of separating the dependency between nodes or of
blocking (or screening-off) the information flows between variables. An undirected graph has a
simple definition of separation. Two sets of nodes A and B are separated by a third set C in
undirected graph, iff every path between the nodes in A and B contains at least one node in C .
In such a case, a set C is called as a Cutset separating A and B. A directed acyclic graph
(DAG), which is a directed graph with an acyclic constraint, has a more complicated notion of
separation in order to capture directionality. A set Sag is said to d-separated (directionally
separated) A and B iff S, blocks every path between A and B. More specifically, a path is
said to be d-separated by a Sepset (separating set) Sag in a DAG iff (1) a path contains
A—>C —>B or A« C « B (causal chain) or A« C — B (causal fork) such that the middle
node C is in Sepset Spg and (2) a path contains an A — C « B (inverted fork, unshielded
collider, or v-structure) such that the middle node C and any descendents of C are not in
Sepset Sap. Note that the acyclic constraint is needed to define the graphical dependency model
when we use d-separation as a conditional independence criterion. While undirected graphs or
Markov networks (Pearl, 1988) are used primarily to represent symmetrical relationships,
Directed graphs, especially DAGs or Bayesian networks, (Pearl, 1985) have been used to
represent asymmetrical causal relationships. Since the causality is the issue to be addressed in
this study, our discussion of graphical dependency models Mg are restricted to the directed
acyclic graph (DAG) not the undirected graph.

These two types of dependency models have distinctive features. A probabilistic
dependency model Mp provides an empirical or statistical method to infer patterns of conditional
independencies from observational or non-experimental sample data, which involves
probabilistic calculations. On the other hand, a graphical dependency model Mg provides a
logical method for a qualitative characterization of conditional independence pattern in terms of
graphical topology, which does not involve numerical calculations. There exist relationships
between the two dependency models under certain conditions. It has been demonstrated that
when it is assumed that a probability distribution satisfies the Markov and stability conditions,
DAG is a perfect map of a probabilistic dependency model for the continuous normal
distribution (Pearl, 1988) and for the discrete multinomial distribution (Meek, 1995b). The
Markov and stability conditions can be understood by representing a causal model as a set of

equations in the form of X, = f,(Pa,u,), Vi=1,---,1, where Pa, (denoting parents) stands for
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the set of variables judged to be immediate causes of X, and u, represent errors due to omitted

factors. If it is assumed that there are no cycles representing mutual causations or feedback
processes (causal acyclic condition), then the corresponding model is called semi-Markovian.
And in addition to the acyclic condition, if it is assumed that a set of measured variables in the

model includes all the common causes of all the pairs of variables, so the error terms u, are

mutually independent (causal sufficiency condition), then the model is called Markovian. Note
that the causal Markov condition is based on both acyclic and sufficiency conditions. Note also
that these two conditions are assumed in most empirical studies in economics, although using
these conditions can be problematic. The model is defined to be stable (Pearl and Verma, 1991)
or faithful (Spirtes et al. 2000) or a DAG-isomorphism (Pearl 1988), if it is assumed that all the
(un)conditional (in)dependencies are invariant to parametric changes represented by the

functions f(-) and the distributions P(u,). This means that all the unconditional and

conditional probabilistic structures are stable with respect to changes of their numerical values.
This stability condition has following implications: (a) All the observed (un)conditional
probabilistic structures are due to the underlying causal structures, not their special numerical
values in probabilistic structures. (b) No (in)dependence in probability dependency model can be
destroyed or induced by changing probabilistic parameter values. (c¢) It is possible to effectively
and efficiently encode (un)conditional (in)dependencies structures into graphical dependency
model without numerical probabilities. Thus, with the Markov condition, (d) It is possible to
infer the underlying causal structures from the observed marginal and conditional probabilistic
structures, where the observation is done through the statistical decisions based on either the
Neyman-Pearson type statistical test (conditional independence test approach) or the Bayesian
information criterion (goodness-of-fit scoring approach).

It has been mathematically demonstrated that a necessary and sufficient condition for a
probability distribution to be Markov is that every variable be independent of all its

nondescendants, conditional on its direct parents Pa, (see Pearl and Verma, 1991 for example).

This implies that (a) An effect is independent of its indirect causes conditional on its direct
causes, and (b) Variables are independent conditional on their common causes. This implication
of the Markov condition provides a meaningful causal interpretation for a certain dependency
pattern, which is captured in the first part of the d-separation criteria. For the two types of causal

structures of the causal chains (A— C — B or A<« C « B) and the causal fork (A< C > B),
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the two extreme variables A and B, which are unconditionally dependent, become independent
once we conditioning on the middle variable C by the Markov condition. The Markov condition
can be intuitively understood as a generalization of the Markov property, which is originated
from probability theory, by expanding the concepts of the past, current, and future states.
According to probability theory, a stochastic process has a Markov property if the conditional
probability distribution of future states of the process depends only upon the current state and not
on any past states. Only the current state gives information relevant to the future behavior of the
process. Knowledge of the history or path of the process does not add any new information. So
given the current state, the future state is conditionally independent of any of the past states. The
above idea is captured in the first part of d-separation criteria, which states that for causal chain
A—C — B or A< C « B and the causal fork A<« C — B, the middle variable C should be
in the Sepset Sap, because the two extreme variables A and B, which are unconditionally
dependent, become independent once we conditioning on the middle variable C . Note that this
criterion of the Sepset in the DAGs or Bayesian networks is common to criterion of the Cutset in
the undirected graphs or Markov networks.

Given the common graphical separation criterion for both the undirected graph and the
directed graph, the unique separation criterion is the second condition of the d-separate criterion
in DAG, which provides the “observational clue” for the causal directionality. It based on the
following phenomenon known as the Berkson’s paradox or selection bias in the statistical
literature (Berkson 1946) and the explaining away effect in the artificial intelligence (Kim and
Pearl 1983). Observation on a common consequence of (unconditionally) independent causes
tends to make those causes dependent, because information about one of the causes tends to
make the other more or less likely, given that the consequence is observed. So when it is found
that the three variables exhibit intransitive pattern of dependencies such that (a) The variables A
and B are each correlated with a third variable C but are independent of each other (A—C —B)
and (b) The two extreme variables A and B, which are unconditionally independent, become
dependent once we conditioning on the middle variable C , the only meaningful interpretation in
terms of causal directionality is the middle variable C is the common effect of A and B
(unshielded-collider, A — C «— B). Intuitively this interpretation of intransitive triples involves
a virtual control of the effect variable, whereas the randomized experiment involves an actual
manipulation of the putative causes. That is, if we can find another means B of potentially

controlling C without affecting A, we preclude C from being a cause of A. For example, one
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of the reasons people insist that rain ( A) causes wet grass (C ) and not the other way around is
that they can easily find other means such as sprinkler ( B ) that are totally independent of the
rain ( A) to getting the wet grass (C ) (Pearl, 2000). The above idea is captured in the second
part of d-separation criteria, which states that for the causal inverted fork A— C « B, the
middle variable C or any of its descendants should not be in the Sepset Sag, because the two
extreme variables A and B, which are unconditionally independent, become dependent once we
conditioning on the middle variable C .

The causal structure is generally underdetermined by the statistical properties of the data
(induction problem). A simple but fundamental version of the induction problem is that
correlation does not imply causation. This induction problem, however, can be partially
addressed by the full use of the maximum information of unconditional and conditional
probabilistic structures of non-temporal and non-experimental data. Under certain conditions, the
combinational information of unconditional and conditional independencies among all the
possible pairs of variables provides “empirical clues” (a) to discriminate the true statistical
relationships from spurious correlations without causal orientations and (b) to discriminate the
unshielded-collider structure from the observational equivalent causal structures of causal chain
and fork. While correlation does not imply causation in general, no causation does imply no
correlation under the stability and Markov conditions. This proposition of no correlation without
causation can be understood as follows: (al) The stability condition implies that if two variables
are statistically independent, then neither variable is a direct cause of the other. (a2) The Markov
condition implies that if a pair of variables is statistically dependent, then one of the variables is
a direct cause of the other. Note that the sufficiency condition embedded in the Markov
condition allows discriminating the spurious correlation induced by the common cause. On the
other hand, the stability condition, with the Markov condition, makes it possible to discriminate
the possible unstable existence or nonexistence of spurious correlation, which is possibly
induced by the numerical parameter values. Fundamentally this proposition allows for the
possibility of an inductive inference of causal structures from the statistical observations. When
three variables exhibit intransitive pattern of dependencies ( A—C —B) such that (i) there exist
non-spurious correlations between A and C and between B and C . (ii)) A and B are
independent, which is not induced by the numerical parameter values, there are following two
possibilities: (bl) The two extreme variables A and B, which are unconditionally dependent,

become independent once we conditioning on the middle variable C . (b2) The two extreme
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variables A and B, which become dependent once we conditioning on the middle variable C ,
are independent without conditioning any subset of variables. The first probabilistic structure,
which is commonly implied by both causal chain (A—C — B or A<« C <« B) and causal fork
(A< C—>B), provides a causal interpretation for the simple but fundamental version of
induction problem that correlation does not imply causation. On the other hand, the second
probabilistic structure, which is implied by the unshielded-collider ( A— C «<— B ), makes it
possible to inductively infer C as the common effect of A and B . Note that this type of causal
orientation is the only possible (truly inductive) causal inference based on the statistical
observations. This is the reason why a third variable is needed to decide the causal direction
between two variables.

The observed equivalence between causal chain and causal fork can not be discriminated
based only on statistical observations without using non-observational extra causal information
or manipulative (randomized) experimentation. However, the graph theory provides “logical
clues” to partially address the observational equivalence problem. After the maximum
information of unconditional and conditional probabilistic structures from data is obtained, (a)
All the discriminative information between the true statistical relationships and spurious
correlations among variables without causal orientations are summarized into the graph with
undirected edges, named as the skeleton, and (b) All the discriminative information of the
unshielded-collider structure from the observational equivalent causal structures of causal chain
and fork are summarized into the partially oriented graph, named as the partially directed acyclic
graph (PDAG) with causal orientations from independent causes to the common effect. By
logically deciding causal directions for the remaining undirected edges in PDAG, the completed
partially directed acyclic graph (completed PDAG or essential graph), which is maximally
oriented PDAG, can be further inferred. The logical inferences about causal directions are based
on the idea that orienting the remaining undirected edges in PDAG does not result in the causal
structure which is inconsistent with the statistical observations, as long as the logically decided
orientations do not create either new unshielded-collider structure or a cyclic causal structure. It
is mathematically demonstrated that the following four rules are the maximally possible logical
orientation rules for the remaining undirected edges in the partially directed acyclic graph
(PDAG) (see Verma and Pearl, 1992, Meek, 1995a, and Pearl, 2000). (Rule 1) Orient A— B for
the remaining undirected edges A—B in PDAG, whenever there is an arrow C — A and that C

and B are not adjacent. Rule 1 is based on the fact that the orientation A< B would create an
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empirically unsupported new unshielded-collider at A. (Rule 2) Orient A— B for the remaining
undirected edges A—B in PDAG, whenever there is a causal chain A— C — B . Rule 2 is based
on the fact that the orientation A < B would create directed cyclic pattern which is impossible
by the acyclic assumption. Note that rule 2 creates a collider at B but it is a shielded-collder not
an unshielded-collider. So this rule does not result in an inconsistency with the statistical
observations. (Rule 3) Orient A— B for the remaining undirected edges A—B in PDAG,
whenever there are two chains A—C — B and A—D — B and that C and D are not adjacent.
(Rule 4) Orient A— B for the remaining undirected edges A—B in PDAG, whenever there are
two chains A-C - D and C - D — B and that A and D are adjacent but B and C are not
adjacent. Rules 3 and 4 is based on the fact that the orientation A<« B, by two applications of
rule 2, would create empirically unsupported new unshielded-collider at A (C — A<« D for

rule 3 and B - A<« C for rule 4). These four rules are illustrated by Figure 2.1.

C C A A A A A A
A< = A< Cq = Cﬂ C@D = C@D B@C = B@C
B B B B B B D D

0 ) (3) )

Figure 2.1. Logical Orientation Rules for Undirected Edges in PDAG

The graph theory, not only provides logical orientation rules to partially discriminate
observational equivalent causal structures, but also allows the full use of the maximum
information of unconditional and conditional probabilistic structures from data. Checking or
searching all the relevant (un)conditional probabilistic structures among all the possible pairs of
variables with respect to all possible combinations of other variables as the Sepset becomes
feasible only by systematically and efficiently defining the relevant or entire search space, which
consists of all possible causal hypotheses represented by DAGs. In graph theory, the
relationships, which are used to relate the probabilistic dependency model Mp and the graphical
dependency model Mg, are also used to define some relationships between two graphical
dependency models. Two graphical dependency models of DAGs are perfect-map or
observational equivalence for each other iff they have the same skeleton and the same

unshieleded-colliders (Verma and Pearl 1990). This observational equivalence, which places a
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limit on the ability of the statistical approach to infer causal structure, provides logical
background to systematically classify the search space by eliminating the problem of multiple
searching for the statistically equivalent DAGs. The independent-map relationships are then used
to efficiently connect the systematically classified search spaces or the equivalence classes of
DAGs. The independent-map relationships relate each other by the natural relationship of
whether one equivalent class E specifies more restrictions than the other E'. In particular, when
one equivalent class E' is an independent-map of the other E, E imposes more independence
constraint than E' and thus E' contains more edges than does E . Based on this fact, the whole
search space can be systematically organized by a sequence of Independent-map relations
E

between each equivalent class E --,E, such that E, is an Independent-map of E _, and there

ISAEN

is only one edge difference between them. Note that E, is a completely connected graph so is a
trivial I-map of all DAGs and E, is a completely disconnected graph so is a trivial D-map of all
DAGs.

This idea can be illustrated for the three variable case by using the following Figure 2.2.,
which is adopted from Kocka et al. (2001) with some modifications. All the possible causal
hypotheses except cyclic ones are represented by the DAGs. Each box represents an equivalence
class of DAGs. For example, the equivalence of DAG (8)-(10) can be illustrated by applying
Bayes’s rule for factorization based on the DAG as well as the specified common conditional
independence/dependence pattern. The joint distribution P(A, B,C) can be factorized as follows:
P(C|AP(A|B)P(B) for DAG (8), P(B| A)P(C | A)P(A) for DAG (9) and P(B | A)P(A|C)P(C)
for DAG (10). The relationship P(A|B)P(B)=P(A,B)=P(B| A)P(A) makes the two DAGs (8)
and (9) equivalent and the relationship P(C | A)P(A)=P(A,C)=P(A|C)P(C) makes the two
DAGs (9) and (10) equivalent. So the DAGs (8)-(10) are equivalent in terms of factorization of
joint distributions. Under the Gaussian and multinomial distributions, this independence
equivalence become identical to distributional equivalence, which means that equivalence class
of DAGs have the same probability distribution. Connections among boxes represent the
sequence of independent-map relationships. For example, when DAG (8)-(10) are represented by

equivalence class E,, DAGs (1)-(6) are represented by equivalence class E_, and the union of

two equivalence classes of DAGs (19)-(20) and DAG (21)-(22) is represented by equivalence
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Figure 2.2. Search Space Defined by the Graph Theory
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class E. . Note that DAG (1)-(6) can be represented by equivalence class E, which is a trivial I-
map of all DAGs and DAG (25) can be represented by E, which is a trivial D-map of all DAGs.

Note also that it is possible to travel or to search all equivalence classes of DAGs by a specific
sequence of single edge modifications along these connections.

Many computer algorithms have been suggested to implement the logic of the graphical
causal models for empirical studies. These algorithms can be classified as two types of
approaches according to the two distinctive ways of the statistical observation, where the
observation is done through the statistical decisions based on either the Neyman-Pearson type
statistical test (conditional independence test approach) or the Bayesian information criterion
(goodness-of-fit scoring approach). The first conditional independence test approach is based on
the qualitative information about whether or not a particular individual local conditional
independence constraint holds. On the other hand, the second goodness-of-fit scoring approach is
based on the quantitative measure of how much the global independency patterns associated with
an entire causal structure explain the data.

The conditional independence test approach starts by searching for a Sepset Sap in all
possible subsets of VA\{A,B} such that I(A,B|Sag) holds for each pair of variables A and B by
applying local conditional independence tests on A and B conditional on Sag. The categorical
or qualitative decisions of such local tests are used to reconstruct topologies of the underlying
DAG and to decide orientations based on the pattern of unshieleded-colliders. By using logical
orientation rules, the partially directed acyclic graph (PDAG) is transformed into the completed
partially directed acyclic graph (completed PDAG), which can be either a particular DAG or
equivalent set of DAGs. The main task for this approach is to deal with the complexity and
reliability problems in searching for the possible Sepsets. As this approach searches among all
possible subsets in V\{A,B}, it involves a growing number of higher-order independence tests.
As the number of variables increases, all the possible subsets rapidly increase, so the algorithm
can become infeasible even when searching for the sparse true graphs. Furthermore, higher order
conditional independence tests are generally less reliable than lower order independence tests
(Spirtes et al., 2000).

There are several algorithms suggested to deal with this task. Among them, PC
algorithm is used in this study, because it provides an efficient and reliable way of searching for
Sepsets Sag. The PC algorithm, named after its authors of Peter and Clark, is discussed in Spirtes

et al. (2000). PC algorithm commences by forming a completely connected undirected graph. It
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then searches for the Sepsets Sap of cardinality 0, then cardinality 1, and so on. The search for a
Sepset Sap is limited to variables that are adjacent to A and B at every stage. Edges are

recursively removed from a complete graph as conditional independence is found. By this way,
PC algorithm bounds the number of independence tests as N (N —I)H / (K —1)!, where N is the

number of variables and K is the highest number of adjacent variables in the graph. PC
algorithm uses Neyman-Pearson type statistical tests of partial correlation for conditional
independence test by assuming linear Gaussian distributions.

The goodness-of-fit scoring approach starts by logically defining the search space which
consists of all possible causal hypotheses represented by DAGs. It then searches the DAG that
best explains the data, where the explanation power of a given DAG at each search step is scored
and compared by a goodness-of-fit measure. The main difficulty for this approach is that the
number of possible hypothetic causal structures of DAGs rapidly increases as the number of
variables N increases. It is demonstrated that the number of different DAG structures r(N) is

given by the recurrence formula r(N)zZ(—l)M(

i=l

N . : i
Ile(Nl)r(N_l) (Robinson, 1977). This

formula, for examples, gives r(2)=3, r(3)=25, r(4)=543, and r(5)=29281 as the number of

possible DAGs for the number of variables 2, 3, 4, and 5 respectively. As the number of
variables increases, all the possible DAGs rapidly increase so the algorithm can become
infeasible even when searching for the sparse true graphs. This complexity problem suggests that
it is needed to systematically represent the whole search space and to efficiently generate and
evaluate neighbors for a particular state in the search.

There are several algorithms suggested to deal with this task. Among them, the two-
phase Greedy Equivalence Search (GES) algorithm is used in this study, because it provides an
efficient and optimal search algorithm. The GES algorithm is originated from Meek (1997) and
its optimality is proved by Chickering (2002). Algorithmic logics are based on the results of
graphical theory as follows: (a) The two-phase Greedy Equivalence Search (GES) algorithm
greedily moves to equivalent classes of DAG as neighbors until it reaches the local maximum at
each of the two phases of search procedure. This algorithmic logic relies on the result of graph
theory that the whole search space can be systematically represented by the equivalence classes
of DAG. (b) The two-phase GES algorithm restricts the neighbors of particular state of

equivalent classes of DAG E, as either E_ for first single edge addition phase or E, for



24

second single edge removal phase. This algorithmic logic relies on the result of graph theory that
the whole search space can be efficiently searchable along the natural connections by the

sequence of independent-map relations among equivalent classes E ,E,,---,E, such that E, is an
independent-map of E,, and there is only one edge number difference between E, and E .

Note that when the algorithm considers the edge addition or removal, it also checks for the
possible unshielded-colliders. For example using the above figure of three variable case, the

current state E,_ which consists of DAGs (19)-(20) is compared with four neighbors of E, |

which consist of DAG (7) and DAG (11) as the possible unshielded-collider patterns as well as
DAGs (8)-(10) and DAGs (12)-(14) in the first edge addition phase.

GES algorithm uses the Bayesian Information Criterion (BIC) as a measure of scoring
goodness-fit of a given DAG G at each step of the search. The BIC is chosen as a goodness-fit
score because (a) It is a consistent approximation of the Bayesian posterior probability under the
Gaussian and multinomial distributions and (b) It has decomposability and equivalence
properties that allow efficient scoring. BIC for a given DAG G of a set of variables
V ={X,,---,X,} can be written as follows: BIC(V,G)=1logP(V |G)-dim(G)-log(T/2), where
T is the sample size and dim(G) is the dimension or the number of parameters of DAG G and
log P(V |G) is the log-likelihood function for a set of variables V given DAG G . For a given
DAG G at each step of the search procedures, dim(G) is calculated by counting the number of
edges in G and logP(V |G) is calculated by logP(X,, ..., X,)=Y, logP(X,|Pa,), which has
decomposable property and thus can be efficiently evaluated. Because the scoring function BIC

is based on the factorization of the joint distribution by the DAG P(X,,..., X )=[],P(X, |Pa,)

but the equivalence class of DAGs or the partially directed acyclic graph (PDAG) is used to
represent each state, the PDAG is transformed into the completed partially directed acyclic graph
(completed PDAG or essential graph) by using logical orientation rules at each step of the search
procedures,. The property of equivalent BIC scores for members of an equivalence class comes
from the fact that DAGs in an equivalence class have the same number of edges and a common
factorization. Note that the BIC measure involves too many parameters for a completely
connected graph, so the GES algorithm usually uses the completely unconnected graph as its

initial PDAG. But it is possible to start the search with another PDAG based on other causal
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information such as theory and/or the completed PDAG, which can be resulted from the PC
algorithm (Spirtes and Meek, 1995).

Two distinctive approaches to infer causal structures among variables represented by
DAGs can be compared with respect to several aspects. Several other algorithms and their
characteristics are discussed in Sangiiesa and Cortés (1997). Among them, one comparison has
an interesting feature in terms of using the logical orientation rule. In the PC algorithm, the
logical orientation rule is used only after all the possible statistical information from data is
obtained. On the other hand, the logical orientation rule is used at every step of the search
procedures in the GES algorithm. This implies that separating the logical extension rule from the
algorithms is relatively easy in the PC algorithm but relatively difficult in the GES algorithm.
This different feature of two algorithms has implications for the purpose of relaxing the acyclic
and sufficiency assumptions, given that the logical orientation rule relies on the Markov
condition, which is based on the acyclic and sufficiency assumptions. In fact, the conditional
independence test approach makes some progress for relaxing the acyclic or sufficiency
assumptions. In particular, based on the PC algorithm, Richardson and Spirtes (1999) develop
Cyclic Causal Discovery (CCD) algorithm to allow cyclic possibility and Spirtes et al. (2000)
develop Fast Causal Inference (FCI) algorithm to relax sufficiency condition. These
developments are not incorporated in this study, since it is still ambiguous how to distinguish
between feedback and latent phenomena (Moneta and Spirtes, 2006). We hope that it is not too
harmful to assume the acyclic and sufficiency conditions, given the observation that these two
conditions are implicitly or explicitly assumed in most empirical studies in economics.

The other comparison has practical implications. The conditional independence test
approach is based on the qualitative decision about local independence tests, so it is susceptible
to incorrect qualitative local decisions, which can be sensitive to the chosen significant level.
Based on the simulation results, it is recommended to systematically lower the significance level
as the sample size increases. For example, 0.2 for the sample size less than 100 and 0.1 for the
sample size between 100 and 300 are recommended as the significance level for local
independence tests (Spirtes et al., 2000). However, it is still not easy to decide the appropriate
significance level for the local tests, because the power of algorithm against alternatives is an
extremely complex and unknown function of the power of the individual local test. The
goodness-of-fit scoring approach does not require choosing a specific significance level, because

it is based on the quantitative measure about how much the overall independence constraints
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associated with an entire causal structure are true. In this respect, it allows users to make finer
distinctions among alternative causal structures or to combining them to better inferences by the
model averaging process based on the quantitative measure such as BIC in GES algorithm.

The overall graphical causal models or DAG approaches can be also compared with the
traditional structural equation model (SEM) approaches. To infer causal relationship between
two variables A and B, the DAG use the criterion whether a third variable C exhibits a
specific pattern of dependency with A and B . In this respect, the DAG approach can be

compared with the SEM approach, where the simultaneous relationships of the j th endogenous
variable ( A) and other endogenous variables included in the j th equation ( B ) are discriminated

(identification or induction problem) by the assumed exogenous variables (C ) excluded from

the j th equation as the additional third causal determinants or specific shifters for behavioral
equations of other endogenous variables included in the j th equation. However, methods to

address this induction problem are quite different.

In the SEM approach, the selection of exogenous variables is usually considered as
maintained assumptions derived from the theory rather than something to be learned form data
itself. Even when the hypothetical test approach is implemented based on regression framework,
(a) The non-nested hypothetical test approaches oftentimes have the power problem related with
the statistical hypotheses test, so that they have generally little power to discriminate competing
specifications. (b) The nesting hypothetical test approaches based on variable selection methods
also faces following issues: (b1) When the small explanatory variable set is initially assumed and
then subsequently expanded into larger selected variable set (bottom-up approach), the omitted
variable (especially common cause variable) problem in initial (or subsequent) small model can

mislead the testing results. For example, if true causal structure is y, <~ W, — X; but the initial
small model y =aXx +¢& omits the common cause variable W, , then hypothetic test of
H,:a, =0 can be rejected. (b2) When the large explanatory variable set is initially assumed and

then subsequently reduced into smaller selected variable set (top-down approach), the included
variable (especially common effect variable) problem in initial (or subsequent) large model can

mislead the testing results. For example, if true causal structure is y, - W, < X; but the initial

large model y =ax' +pW +Yax +¢& includes the common effect variable W, , then
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hypothetic test of H :a =0 can be rejected. Note that these problems can arise, even though the

causal sufficiency condition is assumed.

In the DAG approach, on the other hand, all the unconditional and conditional
probabilistic structures among all the relevant combinations of variables are efficiently checked
in search procedures to obtain the maximum information of specific pattern of dependencies
among variables from data, where relevant search spaces are logically decided based on the
graph theory. Note that checking or searching all the relevant (un)conditional probabilistic
structures among all the possible combinations of variables becomes infeasible without
systematically and efficiently defining the relevant or entire search space. The graph theory also
provides logical orientation rules to discriminate observational equivalent causal structures,
which can not be discriminated based on statistical properties only, without using non-
observational extra causal information or manipulative (randomized) experimentation.

Graphical causal models or DAG approaches can be used for the empirical studies.
Both PC and GES algorithms are implemented in Tetrad IV program. However, there are some
caveats for their use in data analysis especially for the high dimensional data set. The graphical
causal models are based on the Markov and stability conditions. Although the Markov condition
is commonly assumed for most empirical studies and thus can be accepted, the Markov condition
only makes the graphical dependency model as an independent-map of the probabilistic
dependency model. This means that the underlying causal structure implies the probabilistic
dependency pattern. On the other hand, the inductive inference of causal structure from the data
is possible only when the probabilistic dependency model implies the underlying causal structure.
In this respect, the stability condition needs to be further discussed to use the graphical causal
models or DAG approach in empirical study, since the stability condition, with the Markov
condition, makes a DAG as a perfect-map of (or equivalent to) a statistical dependency pattern.
Recall that the stability condition implies that all the unconditional and conditional probabilistic
structures are stable with respect to changes in their numerical values. This stability has
following implications: (a) All the observed (un)conditional probabilistic structures are due to
the underlying causal structures, not their special numerical values. (b) No spurious
independence in probability dependency model can be destroyed or induced by changing
probabilistic parameter values. (c) It is possible to effectively and efficiently encode
(un)conditional (in)dependencies structures into graphical dependency model without numerical

probabilities. Thus, with the Markov condition, (d) It is possible to infer the underlying causal
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structures from the observed marginal and conditional probabilistic structures, where the
observation is done through the statistical decisions based on either the Neyman-Pearson type
statistical test (conditional independence test approach) or the Bayesian information criterion
(goodness-of-fit scoring approach).

There can be two circumstances where the stability condition can be violated, as
discussed in the Tetrad II manual. One possible circumstance is that there may exist strict
equality among products of parameters, so that a spurious independence in probability
distribution can be destroyed or induced by changing underlying parameter values. For example,

in the linear modeling of causal structure of A=AB+4,C+u, and C =A4,B+u_, the restriction
of A, =-A1,-4, can numerically induces independence between A and B, even if a structural

dependence exists between A and B . It has been demonstrated that for the Gaussian
distribution (Pearl and Verma, 1991) and multinomial distribution (Meek, 1995b), the strict
equalities among products of parameters have very little possibility or Lebesgue measure of zero
in any probability space in which parameters vary independently of one another. Note that
parameters vary independently of one another under the modular situation, where a complex
system can be built by combining simpler local parts and it is possible to manipulate one such
relationship without changing the others.

The other possible circumstance is that there may exist deterministic or near
deterministic relationships among variables so that any the statistically observed (un)conditional
probabilistic structures are due to not only the underlying causal structures but also their special
numerical values. According to Tetrad II manual, the Tetrad program should not be used for the
following cases or these second cases should be practically addressed in empirical study, where
(a) There are deterministic relationships among variables or (b) There are conditional
probabilities very close to 1 in the discrete case or (¢) There are correlations very close to 1 in
the linear case. These restrictions for using the Tetrad program can be understood based on the
following reasoning. If P(A|B)~1, then P(A|B,C)=P(A|B) can be hold for any set of
variable C , regardless of the causal structures among them. So it is not possible to infer reliable
causal structure from the probabilistic dependency pattern. For example from Tetrad II manual,
when there are four variables A,B, C, and D such that (i) A,B, and C are independent each
other. (ii) D is the common cause of A,B, and C, the near deterministic relationship between

C and D such as P(D|C)z1 can numerically induce independence between A and B by
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conditioning on C , instead of conditioning on D. For another example from empirical study,

even for the same commodity, any causal relationships between price p, and quantity g, can be
statistically broken, when another related commodity’s price p, has a high co-movement with
p, . It is because high correlation between p, and p, can induce P(pl| pz,ql): P(p1 | pz)
through P(pl | pz)z 1. Note that this problem is similar to the multicollinearity problem, which

makes it difficult to obtain precise estimates of the separate effects of the variables in regression
methods. Given the observation that many variables in a high dimensional data set oftentimes
move very closely, the use of the graphical causal model for the high dimensional data set can be
problematic, since the stability condition can be violated in its applications for high dimensional
data sets. One possible way to address this problematic situation is to use aggregation method.
However, before using aggregation method, the legitimate aggregation condition should be
empirically identified to consistently infer causal structures among disaggregated variables by
using the aggregated variables as the legitimate representatives. This issue is closely related with

the next topic to be discussed.

Aggregation Theory

Theil’s aggregation theory is concerned with the transformation of individual relations
(micro-relations) to a relation for the group as a whole (macro-relations) (Theil, 1971). It
considers the possibility that micro-relations can be studied through the macro-relations, where
micro-variables are grouped and represented by macro-variables. The main issue is to understand
the general relationship between micro-parameters and macro-parameters. The ultimate goal is to
identify conditions for the meaningful aggregation that makes it possible to represent micro-
relations by macro-relations. Theil (1954) shows that macro-parameters generally depend upon
complicated combinations of corresponding and non-corresponding micro-parameters. He,
however, also identifies two special conditions for the possibility of meaningful aggregation,
which are the micro-homogeneity and the compositional stability conditions. While the micro-
homogeneity condition means that each of the micro-parameters is equal across all individual
units, the compositional stability means that the ratios of micro-variables over macro-variables
are constant over time (Monteforte, 2004). If one of these conditions is satisfied, then the
aggregated macro-model is considered as a legitimate representative of the underlying

disaggregated micro-model.
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Theil’s aggregation theory can be understood as follows. For a given T time period,
each individual unit has its own linear behavioral relationship. That is, for each individual micro-

unit (n=1L,....,N ), an endogenous variable y  linearly depends on K exogenous variables
) naeeees Xy, | With corresponding micro-parameters B, =[ B, ,...... B, |'. These relationships

can be represented by following set of micro-equations.

(1) y,= X, B, +u, ,vn=1...,N.

To study the general tendency of phenomena which are common to most of all n=1,....,N

individual micro-unit behaviors, it is postulated that the relation between the aggregated

dependent variable Y and aggregated predetermined variables X =[ X,,....,X,] can be

represented in the same linear form of micro-equations as the following macro-equation (2). And

macro-parameters f=[ f,......, 5, ]' are estimated by the least-squares estimation method (4).

2) Y=XF+U where
3 Y=Yy,  and X=Xx.

@) f=(X'X)'XY

Theil studies this estimator’s properties, especially in the context of the relationship between
macro-parameters and micro-parameters. When micro-variables are represented by macro-
variables through aggregation functions (3), the correct specification of the aggregated relation

becomes following equation (5).

N
CERENAR XIS I
Note that the true aggregated equation (5) has the K- N explanatory variables, so it contains as
detailed information as a set of individual micro-relations as a whole, except the loss of
information due to using aggregated dependent variable. Note also that the aggregation function
(3) defined as the simple sum can be generalized to the weighted average as (3') Y'=>W"y,

and X'=Y>W’x . When the weighted average is used, the true aggregated relation can be

written as follows (5').

n=1 n=1 n=1 n=1

N N N w? N N N
(5) Y'(znz;wnyyn): ;Wny(xnﬁn +un)=Z(Wn*xn{W“x ﬁnj +>Wu )=3x"8"+3u,".

n



31

Since equation (5')is fully equivalent to (5), the following discussion can be applied, mutatis
mutandis, to the macro-parameters in the macro-equation by using (2') Y'= X'S'+U' (Theil,

1954). Especially equation (5') is equivalent to (5), when we use the same weighting schemes
for Y and X by W) =W. Theil defines linear aggregation of economic relations as simple

summation, simple average, and fixed weights average aggregations. The micro-homogeneity
condition can be understood immediately as follows. When all micro-parameters are equal

across all individual units, we can write §, =, Vn=1,....,N in the set of micro-equations (1).

This implies that the macro-equation has a natural meaning such that all macro-parameters are

equivalent to the common micro-parameters, because the true aggregate relation becomes (5").

This micro-homogeneity condition, however, might be a too restrictive condition to use for
practical purposes, because it requires the complete knowledge of all micro-parameters. In this
respect, we do not assume any restrictions on micro-parameters for each individual micro-unit in
this study.

Using the true aggregated equation (5), the macro-parameter estimator can be written as follows.

(6) /Af =(X'X)"'X'Y , by the true aggregation (5) Y = Z X, B, +2un

:i(xvx)ilxvxnﬂn+(X’X)71X’iun :

To interpret this result, Theil postulates the following set of auxiliary equations (7), where

exogenous micro-variables X are assumed to be linearly related with macro-variables X . When
we assume that auxiliary-disturbances v, are independent of exogenous macro-variables X and
they have zero means, we can consistently estimate the coefficient A by the least-squares
method (8). Note that in this study, COV( )=0 is used to represent an independent relation, which

is equivalent to no correlation under normal distribution with linearity.

(7 x,= XA +v,

or [ Xln’xz,n"“’XKn]: [ Xl’ ij...
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or xkn=(ZK:Xjajk,n}rvk,n:Xkakk’n+(ZK:XJ.ajk_n]+vk‘n ,Vk=1,...,K,vn=1..,N.
(8) A =(X'X)"X'x , where
E(A) = A +E[(X'X)" X'Vn] , by assumptions of Cov(v,,X)=0and E(v,)=0
= A ,vn=1...,N.

Note that equations (3) and (7) imply that the sum of coefficients becomes a K - K unit matrix
and the sum of disturbances becomes a T -K zero matrix for the set of auxiliary equations.
Because the coefficient A sums to 1 across micro-units, it can be used as the weighting scheme.

(10) ia =1, and zN:vn =000, , because X (zixnj:i(x A +V )= Xiﬁ +ivﬁ .

n=1 n=l
Using the result (9) as well as the assumption of the correct specification of micro-equations,

y,= X, B, +Uu, , which implies that micro-disturbances u _ are independent with exogenous
macro-variables X and have zero means, Theil interprets the macro-parameter estimator f as a

consistent estimator forz A B, asin (12).

(11) B =D (X' X)"X'x, B, +(X'X)" XD u, by using result (8) A =(X'X)"X'x,

i&ﬂﬁ(x'xy‘x'iun.

(12) E(3) iE[A]ﬁn+E[(x'X)‘x'iun} , by using result (9) E(A J=A

=1

zN: A B+ E[(X "X)'X 'ZNZUH} , by assumptions ofCov(un, X )=0 and E(un)=0

=2A .

Defining macro-parameters as mathematical expectation of its least-squares estimator, Theil
(1954) concludes that macro-parameters generally depend upon complicated combinations of
corresponding and non-corresponding micro-parameters as in (13). He then further decomposes
corresponding micro-parameters into simple sum (if c=1) or simple average (if c=1/N) of
corresponding micro-parameters and a deviation term from it. He labels the sum of this deviation

term and the non-corresponding micro-parameters as the aggregation bias as in (14).
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3 | 0 a,-c -« 0 a 0 - a
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ﬁK 00 - c 0 0 By, —C An Ao 0 IBK.n

Note that Theil defines the true macro-parameters as either a simple sum of micro-parameters by
using ¢ =1 (Theil, 1954) or a simple average of micro-parameters by using c=1/N (Theil,
1971). This choice of a constant ¢ is arbitrary because it is not related to the weighting schemes

used in the aggregation function of (3) or (3'), so it is not related to the correct specification of
aggregated relation (5). For example, when we choose to use the same weighting schemes for
Y and X by W) =W "in (3'), the correct specification of aggregated relation (5') become

exactly equivalent to (5), we can see that the choice of ¢ does not depend on weighting schemes
used in aggregation function and thus true macro-parameters defined based on the choice of ¢
do not depend on the correct specification of aggregated relation.

Theil’s conclusion summarized above has negative implications for the aggregate
approach. Few economists will or can meaningfully interpret macro-parameters as complicated
mixtures of heterogeneous components. However, meaningful aggregation can be possible based
on a special case considered in Theil’s discussions, which is the compositional stability condition.
When each of macro-variable is composed of micro-variables of a homogeneous group with a
constant compositional factor over time, the ratios of micro-variables over macro-variables

becomes constant over time and the set of auxiliary equations (7) becomes equation (7") .
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a,, O 0
' O a22‘n O
(7) [Xln’XZH,.HﬁxKn]: [Xlﬂxzﬂ'..ﬂxK] M M
0 0 A
:[X1a1]_naxza22_n7.”3XKaKKyn] ,Vn=1, ..... ,N
or X, =X, 8, ,Vk=1,....K,Vn=1...,N

This in turn implies that macro-parameters depend upon only the corresponding micro-

parameters as in (13"), thus aggregated macro-parameters in macro-equations meaningfully and

legitimately represent underlying homogeneous micro-parameters in micro-equations.

ﬁl all,n 0 0 ﬂl,n ZN:a”_n ﬂ]vn
3 n| 0 a e 0 i
13y E| 72 |=X| . P ﬁf-“ =| Ya, B,| ,vk=1...,K
o 0 0 .. a N
ﬂK KK,n ﬂK,n ZaKK nﬁK_"
or E(ﬁA’k)=ZN:akkyn,Bkvn ,Vk=1...,K.

The homogeneity of micro-variables within a specific group is identified by the implied
condition that micro-variables within the subset move absolutely synchronously and so have a
correlation of one. By using the aggregation method that micro-variables are grouped and
represented by macro-variables based on the condition that each macro-variable is composed of

grouped micro-variables with a constant compositional factor a,, , over time, (a) each macro-

variable obtains a meaningful interpretation, since each macro-variable is composed of
corresponding homogenous set of micro-variables measured by perfect correlation of one, and
(b) each macro-parameter obtains a meaningful interpretation, since each macro-parameter is
composed of only the corresponding homogeneous set of micro-parameters, not the non-
corresponding micro-parameters. Note that this interpretation does not involve arbitrary choice
of simple sum (if ¢ =1) or simple average (if c=1/N).

This form of the compositional stability condition, however, requires a very strict
condition that the variation in micro-variables within a group is strictly restricted by the equation
of (7" x,,=X,a,,,Vk=L....,K andVn=1,...,N , without allowing any deviations from it.

kk,n 2

Obviously this condition is too restrictive to apply with real world data. In practice, the
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homogeneous group of micro-variables can only be identified through the certain group of
micro-variables that are highly, but not perfectly, correlated, with the possibility that the
aggregation bias in the aggregate model can be small as the specification error. In this respect,
the strict form of compositional stability condition needs to be generalized for empirical
applications. The strict proportionality condition for the postulated set of equations of micro-
variables over macro-variables can be generalized for the less restrictive condition to obtain
meaningful macro-parameters, which depend upon only the corresponding micro-parameters.

When we decompose the set of auxiliary equations X, = X A +Vv into X, = X H_ +d_ as in
(7'") and replace assumptions Cov(Vv,, X )=0 and E(v,)=0 with conditions Cov(d,,X)=0 and
E( d, )=O as in (8'), we obtain the same legitimate aggregation result as in (12'), by again using
assumptions Cov(u,,X)=0 and E(u,)=0 . Note that the conditions Cov(u,,X)=0 and
E(u,)=0 are based on the assumptions Cov(u,,x,)=0 and E(u,)=0, which are in turn from the
background assumption of the correct specification of micro-equations (1) y, = X S, +u, . Note
again that in this study, COV( )=0 is used to represent an independent relation, which is

equivalent to no correlation under normal distribution with linearity.

(7" x= XA +v.=XH, +d,

_ aZl,n azz.n e aZK,n
OI’[XIH,XZ’“,---,XK”]— [XI,XZ,"',XK] : : .. : +[Vlyn7'”,VK_n]
aKl,n aKZ,n aKK,n
alln 0 0 0 alz,n 1K,n
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@) H, =(X'X)"X'x, , where
E(H,) = H,+E[x'x)"x"d,] , by assumption of Cov(d , X )=0 and E(d_ )=0
=H, ,vn=1,...,N.
(A1) B=(X'X)"X'Y ,by(S)YzzN:xn ﬂn+zN:un

DXX)TXX B A(XX)TX DU, by (8) H =(X'X)"X'x.

ZN:HnﬂnJr(X’X)“X'ZN:un.

(12 E(B) = gE[Hn]ﬁﬁE[(X'X)‘X'guJ , by assumption of Cov(d,,X)=0andE(d,)=0
= iHn B+ E[(X'X)l X'iun} , by assumption of Cov(u,, X )=0and E(u, )=0
=2 H, 4
B a, 0 0 A, | ga”nﬁln |
or E 3 =i X 0 ’B:“ - %azz:n B,

~ N ‘
ﬂK 0 0 e Qg ﬂK,n zaKK,nﬂK,n

This generalized form of the compositional stability requires the condition of
Cov(d,,X)=0 in the set of equations x, = X H, +d, . Hausman (1978) shows that this type of
no regressor-error correlation condition can be empirically studied by using a statistical test of
H,:7,=0in X, = XH_+IV-y +¢", where IV are Instrumental Variables such that IV is
closely correlated with regressor X (the relevance condition of IV ) and independent of error
d, (the validity condition of 1V ). Based on this Hausman type misspecification testing method,
we can empirically test the generalized form of the compositional stability condition, if we can

find appropriate instrumental variables.

In terms of identifying the homogeneous group of micro-variables, it is also possible to
generalize the strict requirement that micro-variables of all items within the subset move
absolutely synchronously and have a correlation of one. The main feature of the compositional

stability condition is that each macro-variable is composed of grouped micro-variables with a
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“stable” compositional factor over time, so the ratios of micro-variables over macro-variables are
“near” constant with a certain stability over time. In this respect, the compositional stability
condition can be generalized to require a less strict requirement. We can use the conditions that
micro-variables within group are highly correlated but micro-variables across groups are only
weakly correlated over time, instead of the strict requirement that micro-variables within group
are perfectly correlated with correlation of one. Not only the degree of co-movement, but also
the way to measure the co-movement can be generalized. While the strict form of the
compositional stability condition requires that micro-variables within the subset move absolutely
synchronously, the generalized form of the compositional stability condition can allow the
possible lead and lag dependencies among micro-variables within a group, as long as micro-
variables within the group are highly correlated but micro-variables across groups are only
weakly correlated. While the standard static correlation only measures synchronous or
contemporaneous co-movements between variables and requires an independence assumption
over time, there are several alternative measurements of dependency allowing for possible leads
and/or lags in dependency among the time-series data in a dynamic setting. Two of these are the
co-integration and the cross correlation. Co-integration is designed to measure long-run co-
movements, so it can be too restrictive to use for identifying mid-run or short-run or
contemporaneous dependency patterns. The cross-correlation with some leads and lags can
capture mid-run or short-run dependency by varying lead and lag parameters, but the choice of
lead and lag parameters can be somewhat arbitrary. In this respect, we propose to use the
standard static correlation as well as the dynamic correlation defined in (15) and (16) to measure
the high co-movements of micro-variables within a group and near independences of micro-
variables across groups.

(15) pxy(ﬂ)=L(/1) for frequency A where — 7 <A<7

J,.C,,(2)d4

[,S,(4)dA-[,S (4)dA

for frequency band A =[4,4,) where 0< 4 <A <7,

(16) p,,(A)= ]

where x and y are two zero-mean real stochastic processes, S (1) and S (1) are the spectral
density functions, and ny(/l) is the co-spectrum of X and Y.

The dynamic correlation, proposed from the frequency domain approach, has useful properties

such as: (a) The dynamic correlation measures different degrees of co-movement which varies
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between -1 and 1 just as standard static correlation. (b) The dynamic correlation over the entire
frequency band is identical to static correlation after suitable pre-filtering and it is also related to
stochastic co-integration. (¢) The dynamic correlation can be decomposed by frequency and
frequency band, where the low or high frequency band in spectral domain have implication for
the long-run or short-run in time domain respectively (Croux, Forni, and Reichlin, 2001).

This generalization of the compositional stability condition in terms of not only the
degree of co-movement but also the way to measure the co-movement makes it possible to
approximate the condition of Cov(d,, X )=0 and E(d,)=0 by the condition of Cov(d,.d, )<&,
vk # k' where §is a small value. This approximate condition in turn implies a block-diagonal
pattern of the covariance or correlation matrix among micro-variables as in (17). The correlation

is measured by static correlation Corr(y) or dynamic correlation DynCorr(y), where y is
defined as follows. We first transpose x,= X A +V, into X' = A'X"+Vv,", ¥n=1,..,N . By
expanding to incorporate all K - N micro-variables, we can write X, = X A +V, as the matrix
form y= L-N+0v. Based on the logic of decomposition of set of auxiliary equations to derive
generalized compositional stability condition, we decompose y= L-N+ov into
BDiag(L)-N+d as in (18), where the dimension of y, v and d are (KN xT), and L is of
dimension (KN xK), N is of dimension (K xT), and BDiag(L ) denotes a block diagonal

matrix of L. The equation (7") is recalled to clarify the relationship, where Diag (A1 ) denotes

a diagonal matrix of A,.

(17) Z=Corr(y) or DynCorr(y)

le 212 e ZlK
Z21 Z2" e Z2K oy o1 .
=| . —_— : , by compositional stability assumption of Cov( d,, dk,)S o)
_EKI 2KZ e ZKK
_211 0 0 1 Peiz 7 P
O Z ce 0 21 1 e 2N
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(18) x = A'X"+v'
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(7") x,= X A +v =X -Diag(A )+d =XH, +d,

11,n alZ,n 1K,n
_ azl,n azz.n aZK,n
OI’[XIH,XZ’“,---,XK”]— [XI,XZ,"',XK] : : .. : +[Vlyn7'”,VK_n]
_aKl,n 8sn aKK,n_
fa,, 0 0 |
— 0 azz.n 0
_[Xlaxz""’XK] . . .. . +[d1,n’dz,n:"'sdk,n]’
0 0 Ay

jzk

K K K
where [d , d, , -, dK,n]=[Zkaa,»,,n+V1_n: ;Xjajz,n+V2_n,-~~, 2 Xa,,+v,.,1,vn=1L..,N.
1# 1#

Note that the equivalence between x = X A +v and y=L-N+0o through x'= A'X"+v'
implies the equivalence between x = X -Diag(A )+d =X H, +d and y=BDiag(L)-N+d .
Given that the strict form of compositional stability condition x = X - Diag (A1) implies the
block diagonal structure in the standard correlation matrix X=Corr(y), we can infer the
approximate form of compositional stability condition x, = X Diag(A )+d, = X H_+d, with
Cov(dk,dk‘)ﬁd , Vk #k' by identifying the approximate block diagonal structure in static or
dynamic correlation matrix X = Corr(y) or DynCorr(y). Note that the generalized form of the
stability condition Cov(d ,X)=0 and E(d, )=0 is approximated by the condition of
Cov(d,,d,)<5, Vk =k' in the equation x, = X A +v, =X -Diag(A )+d,=XH, +d_.

This approximate form of the compositional stability condition can also be used to
search for a specific homogeneous group to define an interpretable macro-variable, which is
composed of highly correlated micro-variables with stable compositional factor. In this case, we
can use an index k as micro-variables’ group index that should be empirically identified, instead
of using k as an index for pre-determined classes of exogenous variables. The problem of
forming suitable partitions before conducting any empirical test to justify those classifications
has relied on researchers’ intuition rather than empirical data patterns. For example from demand
analysis, intuitive partitions are formed based on several reference variables such as animal
origin, product quality etc., which hopefully proxy consumers’ unobservable marginal utility

structures. This intuition-based approach has an ambiguous aspect, since alternative choices of

reference variables may result in several different classifications. More fundamentally, such
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intuitive partitions based on the subjective reasoning are only a small set of possible partitions
among an extremely large number of possible partitions. Thus when classification is empirically
rejected, it can be simply because of researchers’ unsuccessful identification of the partition
itself, not because of non-existence of legitimate classification itself. Given the empirical
implausibility of attempting all possible partitions, it is better to pursue inductive partitions
related with legitimate aggregation conditions based on the data pattern itself. The approximate
form of the compositional stability condition can be used for searching for a specific
homogeneous group, which is composed of highly correlated micro-variables with a stable
compositional factor, so it allows us to define an interpretable macro-variable based on empirical
data patterns. For this purpose, we choose to use the modified k-nearest neighbor algorithm
based on Wise’s pseudo-color map code in this study. This algorithm keeps track of changes of
correlation matrix, when it reorders the variables in the correlation matrix to sort highly
correlated variables near each other along the main diagonal. On the other hand, other standard
clustering methods, such as hierarchical algorithm and k-mean algorithm, use the correlation
matrix as only an initial input of similarity measures and thus it is not easy to keep track of
changes of correlation matrix (Xu and Wunsch, 2005). For example, based on the same
correlation matrix from macro-economic data used in preliminary study, the modified k-nearest
neighbor algorithm, which returns an intuitively interpretable reordered final correlation matrix
as a final result, provides a meaningful clustering result, whereas the hierarchical algorithm,
which returns a not-easy-to-interpret dendogram as a final result, only provides an ambiguous
final clustering result based on either the intuitive reasoning or the correlation matrix.

Theil reaches his generally negative conclusion for aggregation based on two kinds of

main assumptions. One is Cov(u,, X )=0and E(u,)=0, which is related with the background
assumption of correctly specified micro-equations. The other is Cov(v,, X )=0and E(v,)=0,

which is the primary assumption that makes it possible to relate the macro-parameters to the
micro-parameters. By replacing these primary assumptions with the testable condition of
Cov(d,,X)=0 and E(d,)=0, we reach a generalized form of the compositional stability
condition for the positive possibility of legitimate aggregation. This generalized condition is,
however, involved with the difficult search for instrumental variables in a Hausman-type

misspecification test in the set of equations x, = X H_ +d_ . When appropriate instrumental

variables are not available, we can use the approximate form of the compositional stability
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condition based on the empirically identifiable pattern of Cov(d d )£5 through the implied

k2 k'
block-diagonal pattern in a static or dynamic correlation matrix among micro-variables. This
approximate form of the compositional stability condition can also be used for searching specific

homogeneous groups of original variables to form an initial partitioning.

Index Number Theory

Heretofore, we have explored the possibility for legitimate aggregation in generalized
forms of the compositional stability condition based on Theil’s aggregation theory. Given that
Theil’s theory is valid for the weighted average aggregation, mutatis mutandis, as mentioned in

(5"), one of the remaining issues is how to decide the weighting schemes in aggregating micro-

variables into macro-variables. This issue has been studied under the Index number theory,
which is based on distinct features of economic phenomena, especially in the area of micro-
economic. All economic transactions on N commodities reveal dual pairs of information of

prices p = [ PP,y pN] and quantities q = [ql,qz,---,qN] such that total sum of each product of

individual price and quantity equals the total value (V ) of N commodities. There have been
many different index formulas suggested to represent these dual pairs of individual information

by a pair of aggregate price index P and aggregate quantity index Q such that the product of

the price index and the quantity index equals the total value of N commodities. In this context,

the index number problem can be understood to find P and Q for given p, q and V as in (19)

(19 p-g'=2p0=2V,=V=P-Q

However, it turns out that it is mathematically impossible to determine functional forms of

aggregate price and quantity variables, when (a) both the price p and quantity q vector are
regarded as independent variables and (b) aggregate price P and quantity Q variables have a

positivity property (Eichhorn, 1978). Many distinct index formulas suggested are based on the

some variants of equation (19) as explained below as (19'),(19'"), or (19'") i.e. instead of

decomposing total value level into price and quantity level, the alternative forms of the
decomposition of total value change over time into the product of the price change component
and the quantity change component, which uses the relative price and relative quantity to define
the aggregate index (Diewert, 2001). Many different index formulas can be understood based on

five different approaches, which are fixed basket, differential, economic, stochastic and
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axiomatic approaches. Note that if the price index is determined, then the quantity index may be
implicitly decided using the product rule (V' /V ®=P-Q), or vice versa. Thus discussions can

be focused on the price index.
The fixed basket approach tries to decompose total value ratio over time into aggregate

price and quantity components as in (19'). The price index is defined as the value ratio for the
price changes to purchase a fixed reference basket of quantities m(q) as in (20). Different price

indexes can be derived, depending on how one chooses the fixed basket as a common reference

commodity bundle m(q) representing the two periods. Choosing m(q) =q° or m(q) =q' results
in the Laspeyres or Paasche index, respectively. Choosing annual base year quantities for m(q)
results in the Lowe index, which is used by many statistical institutes to produce monthly data in

timely fashion. If we choose the geometric average of m(q) =+/q°-q' for the reference basket

or take the geometric average of the Laspeyres or Paasche indexes /P . .. - P » WE get the
Walsh or Fisher index, respectively (Diewert, 2001).

2P0, v 2.p,-m(q) V'
19" & =—=P-Q (20) P=ft—— and Q= /P

xpq, VY 2 p; - m(a) v

In the Divisia differential approach, the observed price, quantity, and value are regarded
as continuous functions of (continuous) time. By taking differentials with respect to time, the
logarithmic rate of changes of total value is decomposed into logarithmic rate of changes of price
and quantity as in (19'") . This approach treats price and quantity indexes symmetrically.
Different price indices can be derived, depending on how one makes discrete approximations to
the continuous time index (21). If we take the arithmetic average of (Sn0 + Sn')/ 2 for numerical
approximation or assume the most regular path of monotone paths or constant growth rate paths

for line integrals in the absence of additional information, we get the Tornquivist-Theil price

index (Hillinger, 2002).

(19") P-4 =3 p, (10,1 =2V, =V (1) = P1)-Q()

v oV N OV ov ov
3N dp +3 N dq =dv = N dp+ L g

Hop, P Ea TN TR T R™
ﬁiqnpn dpn +i pnqn dq" Ed_vzgd_P+2d_Q

=\ P, CEAY q, \Y V P \Y, Q
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= ¥sdlnp, +Ysding =dInV=dnP+dInQ,

because Q, =S—;/nand P, =S—;/n from i p, (g, )=V (®),s, E%E pnqn/g p.g, .,
Qz%andP =%from V(t)=P(t)-Q(t), and d—zzzdlnz )

1) lns—;(z InR)=[,35,(2) Wdr and 1ng—:)(z nQ)=[, ¥s,(7) %dr

In the economic approach, observed quantity is regarded as the solution of an
individual’s optimization decision, given price data. This approach explicitly uses functional
relations between quantity and price by assuming that the consumer (producer) is maximizing a
utility (production) function subject to a budget constraint or minimizing cost function subject to
a given utility (output) level as in (19''"). The price index or cost of living index is defined as the
ratio of minimum cost for the price changes to achieving the common reference utility
(production) level representing two periods as in (22). Different price indices can be derived,
depending on how one chooses both the reference utility (production) level and the functional

form of utility (production) function u(-), the cost function C(-) or Mckenzie expenditure

function M() (Balk, 2005). If we choose the geometric average of u(q)=+/u’u' for the

reference utility level and the translog functional form for the quadratic approximation to

arbitrary cost function C(p,u), economic price index or cost of living index becomes the
Tornquivist-Theil price index (Diewert, 2001).
(19" p(t)-a)” =M (p(),q(t),t)=C(p(t),u(a,t),t)=Min{ p-q" [u(a,t) 2 u(a(t),t)}
=V(O)=P(@®)-Q).

@2 p=ClRU@) g =V1/P :

c(p'u(@) v
Note that the economic approach has a similar idea with the fixed basket approach in using
common reference vector representing standard of living in two periods. While the fixed basket
approach uses common reference commodity bundles to represent the two periods, the economic
approach uses common reference utility (production) level to represent the two periods. The
economic approach can also be understood in the connection to the Divisia differential approach

by using differential property of the Mckenzie-expenditure function as in (23) (Balk, 2005).
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(23) <dV =>—dp, +>—dgq, > Zq dp, +Zp da, —<Z—dp Z—dq dM>
=l apn =l aqn ap

because Q, =ﬂ and p, =ﬂ using i p,(t)g, )=V ()
op aq el

n n

oM M :
and g, =—~and p, =g "ine p(t)-a()” =M (p(),q(t).t)

In the stochastic approach, each of the observed N price relatives or some
transformation of price relatives is regarded as an estimate of a common inflation rate with an
idiosyncratic error term as in (24), whose variability decreases as the representative value share
increases, i.e. as the commodity becomes more important in the budget. This approach can be
used to derive a standard error of the index number. Different price indices can be derived by

applying Generalized Least Squares method, depending on how the functions f() and m()
are chosen as in (25). The choice of natural logarithm for f() and the arithmetic average for

m(s,) = (Sno +s, )/ 2 results in the Tornquivist-Theil price index (Selvanathana and Prasada Rao,

1994).

pl
24) f| =
(24) [po

n

]Zf(P)+€n ,Vn=1,....,N , where SH~(O,O-—] .

m(s, )
(25) m(sn)f(g—iJz m(s,) f(P)+m(s,)e, ,Vn=1,...,N, where \m(s,)z, ~(0,07)

ZM m(s,) f( o
S (mes))

n:l

SO l?(P) J Z f[ Sl j m(s, ) , using restriction of Zm(s )=1.

There have been many index number formulas suggested, so it is useful to be able to
evaluate various index number formulas in terms of their mathematical properties. In the
axiomatic approach, it is attempted to determine whether a formula is consistent with reasonable
properties. For example, good index number formulas should be invariant to changes in
commodity ordering and measurement unit (Invariance test) and should become reciprocal to
changes in time ordering (Time reversal test). A good price (or quantity) index should also be

proportional to current period price (or quantity) vector p' (orq') and inverse proportional to

base period price (or quantity) vector p° (orq’) (Homogeneity tests). Note that properties
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derived from or imposed on the price index can be transferred to quantity index by using the
product rule, and vice versa. The difficulty in this axiomatic approach is the fact that there is no
universal agreement on what the best set of reasonable axioms is (Diewert, 2004). For example,
The Walsh index is considered as a good index based on the time reversal test and invariance test
within the average basket approach. The Fisher index is considered as a good index from the

axiomatic approach in the framework of P(p‘,p',q°,q') based on list of 20 properties. The

Tornqvist-Theil index is regarded as a good index from the axiomatic approach in the framework

of P(p'/p’,v’,v") based on a similar list of properties.

We choose to use the Tornqvist-Theil index in this study, although it has been argued
that the Tornqvist-Theil, Walsh, and Fisher indexes are approximately equivalent as the class of
superlative indexes. The preference toward the Tornqvist-Theil index, rather than the Fisher
index, is due to following facts: (a) Although almost all of index number formulas suggested can
be derived from any of five approaches by making different choices, the Tornqvist-Theil index is
easily justified from any of four approaches, because it can be derived from almost all of
approaches to index number theory with a reasonable choice within each approach. (b) Unlike
the Fisher index, the Tornqvist-Theil index does not invoke the problematic assumption of a
homothetic or linear homogeneous utility function.

The class of superlative indexes and their relations with the homothetic assumption can
be understood as follows. If we assume the utility (production) function is linearly homogeneous
in quantities, then the cost function can be decomposed into a utility (production) level times a
unit cost function, which is linearly homogeneous in prices (26). In this case, the cost of living
index becomes a unit cost ratio which is independent of the reference quantity vector and the
(implicit) quantity index becomes a utility ratio which is also independent of the reference price
vector (27).

(26) C(p.u(@))=c(p)-u(q).
where c(p) is linearly homogeneous unit cost function and C(-) is cost function,

when u(q) is linearly homogeneous utility (or production) function

(7) p = ClPU@) _cp)-u@ _cp) g2V /P:C(po‘)-u(q;) C(p) _u(@)
C(p’.u(@) c(p)-u@ c(p’) Vel e u@)/ e(p”) u(@’)

Using the fact that any arbitrary (twice continuously differentiable) linear homogeneous function

can be approximated to the second order by the quadratic mean of order r function or the
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flexible function (28), Diewert uses flexible functional form for approximating the linearly
homogenous utility (production) or unit cost function to define second-order approximate
indexes for price and quantity index. Note that the utility (production) function determines the

unit cost function, and vice versa, due to the duality theorem.

N /r

(28) c(p) or u(q)= ff(z):[izam_n-zm”z-zn” ,where r£0,a,_ =«

nm

and z = p or g for unit cost and utility functions respectively.

Diewert argues that all of approximate indexes or superlative indexes, depending on the choice
of value r, approximate each other to the second order, either when it is estimated at the point

where prices and quantities are equal over time ( p'=p’and q'=q") or when prices and
quantities move exactly proportionally (p' = - p"andq' =¢-q", Vi, >0). After showing that

the superlative index become the Walsh index or the Fisher index when r=1 or r=2
respectively and as r tends to 0, a limiting case of superlative index become the Tornqvist-Theil
index, Diewert argues that the standard superlative indexes such as the Tornqvist-Theil (r — 0),
Walsh (r=1), Fisher (r =2) indexes and other infinite number of higher order r superlative
indexes will all give the same answer to a reasonably high degree of approximation and
concludes that the choice among superlative indexes does not matter much in empirical
applications.

Diewert’s conclusion is based on the homothetic utility function and proportionality
assumptions. It is interesting that these two assumptions are related with two approaches for
legitimate aggregation condition. In economics, especially micro-economics, legitimate
aggregation conditions or valid classification conditions have been studied or identified based on
either pattern of variables or pattern of preference (or technology). While the homothetic
condition of preference (or technology) patterns is related with the separability condition, the
proportionality condition of variable patterns is related with the Hick-Leontief composite
commodity theorem. In terms of preference (or technology) pattern, it is argued that there can be
group demand functions, when a structural property of preference (or technology) reveals a
pattern such that the marginal rate of substitution of all pairs of items within the subset is
homogenous of degree zero in the quantities of items within the subset and is also independent of
the quantities of all items outside the subset. While both conditions are required for homothetic
separability, the latter condition is required for weak separability. Although the weakly separable

condition implies only quantity aggregates not price aggregates, both of which are required for
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conducting consistent two-stage budgeting (Shumway and Davis, 2001). However, the
homothetic assumption might be problematic due to its implication of unrealistic unitary income
elasticities. The separability assumption implies rather strong condition, is difficult to test
powerfully, and requires group price indexes that depend on the parameters of the individual
utility (production) function (Lewbel, 1996). Separability condition is tested by estimating
models for individual goods without imposing separability, and then testing whether the required
elasticity restrictions such that the ratio of compensated cross-price elasticities of two
commodities within the same group with respect to a third commodity in another group is equal
to the ratio of their expenditure elasticities are satisfied. The problem is that without separability,
each demand equation must include all the related individual prices. Even when enough degrees
of freedom are available to estimate these models, the multicollinearity among the prices as well
as the relatively complicated cross equation parameter restrictions causes the resulting tests to
have little or no power. In a Monte Carlo study Barnett and Choi (1989) find that all of the
standard tests fail to reject separability much of the time, even with data constructed from utility
functions that are far from separable. Even though this “difficulty to reject” may be one reason
why separability is so commonly assumed in practice, separability is often empirically rejected
(see Diewert and Wales, 1995, for example). Although progress has been made in relaxing its
restrictions (see Blundell and Robin, 1995 and Blackorby et al., 1995, for examples), even weak
forms of separability impose very strong elasticity equality restrictions among every good in
every group.

While the homothetic assumption is not easy to empirically test as discussed above, it
can also be problematic in the context of index number theory, since it is challenged by the
recent findings of index number theories. For example, Hill (2006) shows that although
Diewert’s approximation result is mathematically valid and has convenient implications for
practical purposes, superlative indexes with higher order values of r do not necessarily
empirically approximate the standard superlative indexes very closely, using two sets of
empirical data. Hillinger (2002) further demonstrates that the Fisher index is not a quadratic
approximation to the true index in the general non-homothetic case, while Tornqvist-Theil index
is very accurate, using simulation data set generated by the simple non-homothetic form of the
Stone/Geary utility function. Hillinger’s simulation result is consistent with Samuelson and
Swamy (1974, page 585)’s conclusion that “it is evident that the ideal (Fisher) index cannot give

high-powered approximation to the true index in the general non-homothetic case.” In general,
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the difficulties in empirical applications of the separability condition can be understood as the
separability concept requires the complete knowledge of all micro-parameters. Similarly, the
micro-homogeneity condition also requires a similar degree of information of all micro-
parameters to check the equality of micro-parameters across all individual units. This
requirement of the complete knowledge of all micro-parameters, which for instance is not easy
to be estimated consistently due to multicollinearity problem, can be too restrictive to use for
practical purposes. For this reasons, we do not assume any restrictions on micro-parameters
based on either the micro-homogeneity condition for each individual micro-unit or the
homothetic or weakly separability condition for the utility (production) function in this study.
While the homothetic and separability conditions and the related micro-homogeneity
condition are based the complete knowledge of all micro-parameters, the Hicks or Leontief
composite commodity theorem, Lewbel’s generalized composite commodity theorem and the
compositional stability condition are based on patterns of micro-variables within the subset
category without requiring any knowledge of micro-parameters. The Hicks or Leontief
composite commodity theorem is based on patterns of the prices or quantities of all items within
the subset category respectively. It is argued that there can be composite commodities, when the
ratios of the prices (quantities) of individual commodities to composite commodity price
(quantity) are strictly equal to constant proportional factors. A more formal argument of Hicks’
composite commodity theorem can be summarized as follows. If all the prices of commodities

within group A (pA) move in exact proportion to a certain common representative price (PA)
with fixed vector of constant (,u) , in other words, the variation in the price vector within group
is restricted by the equation of p, = - P,, even though P, and p, may vary in an arbitrary,

then (a) an aggregated macro-utility function defined over composite commodity can be derived

from disaggregated micro-utility functions as U, Q,.9,)= mqax{ U(a,,q,) | «-a,<(v./P.)}

which has similar properties corresponding to micro-utility functions such as continuity,
monotonicity, and quasi-concavity in its arguments, (b) the corresponding property of the
continuity from above in both micro- utility and macro-utility functions guarantee the existence
of solutions to both micro-optimization and corresponding macro-optimization problems, and
(c) the optimization problem based on disaggregated micro-utility functions as

YP%X{U(QA,QB)| p.a,+ quBSy} is equivalent to the optimization problem based on
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aggregated macro-utility function as réla}qx{ UF(QA, qB) |PQ,+p.0. <Y } in terms of equivalence

with adjustment by constant proportional factor (,u) between micro-optimization solution of
(0;,9;) and macro-optimization solution of (Q.,q;) where Q. =p-q,=y./P, . Thus the
composite commodity can be defined as either the weighted average of micro-commodities with
the vector of proportional factors as weighting scheme or the real expenditure for group
commodities deflated by the representative group price index. While the formal proofs for Hicks
composite commodity theorem in the consumer context and its application in the producer
context can be found in Diewert (1978), this result of Hicks composite commodity theorem can
be intuitively understood based on the relationship
of p,-q,= (,u- P)-q.=P, -(/1 -q,)=Y, =P, -Q, . Similarly the Leontief-composite commodity

theorem can also be understood by starting with quantity-proportionality q, = (l/ y)-Q instead

A

of price-proportionality p, = x- P, and the intuitive relationship of p,-q, =y, =P, -Q, through

P, =P (/) Q) =( (V) p, ) Q=P -Q,.

We can see that the condition of Hicks-Leontief composite commodity theorem
p,=u-P, and/or q, =(1/ 1#)-Q, is equivalent to the strict form of compositional stability
condition (7') X, =X, & Vk=1,....,K and Vn=1,...,N , where either price variables or

Ko 2
quantity variables are generalized to any explanatory or right-hand side variables. Given the
equivalence between the conditions of Hick-Leontief composite commodity theorem and the
strict form of the compositional stability condition, the generalized form of the compositional
stability condition can be regarded as a generalization of the conditions of Hick-Leontief
composite commodity theorem. In this respect, the generalized form of the compositional
stability condition can be compared with Lewbel’s generalized composite commodity theorem,
which can be regarded as the alternative generalization of Hick composite commodity theorem.
The generalized form of compositional stability condition allows some deviations from the strict
form of compositional stability condition, as long as such deviation does not cause inconsistency

for estimating H_in X, = X H_+d_ . While this generalization maintained non-randomness of
proportionality factors a, , Vk=1,...,K and Vn=1,...,N , Lewbel (1996) argues that the

differences of the prices of individual commodities and composite commodity price can be
allowed to vary as long as these differences are independent of composite commodity price or

general rate of inflation of the group. This generalized composite theorem is based on the idea
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that the differences between individual commodity prices and the aggregate commodity price
can be regarded as the aggregation errors and the estimated aggregated parameters can be
consistent if these aggregation errors are well behaved so that they can be either included in the
intercept term or absorbed into the error term. Lewbel’s generalized composite commodity
theorem can be understood in the context of Theil’s aggregation theory and the compositional
stability condition. While Lewbel’s theorem requires that macro-variables X be independent of

d =™, which is defined by further decomposing x, = X A +v, intox, = X +d}™™ rather than
X,= X H,_ +d . Or if we assume that either the proportionality factor a,, , =1 or the constant

¢ =1 in (14) which implies a priori condition that the true macro-parameter is a simple sum of
the corresponding micro-parameters, then we can obtain Lewbel’s consistent aggregation
condition from the Theil’s aggregation theory framework. This further decomposition as in (7'"")
makes it possible for us to easily define d'** =x — X and allows us to avoid difficulty

involved in searching for instrumental variables in empirically testing the compositional stability

condition of Cov(d,,X)=0 inx, = X H, +d,.

(7n|) Xn: X An_i_vn ,VI’]:I, ..... ,N,
1 0 0 ann_l 0 0 0 a,, 1K,n
0 0 azzn_l 0 a,, 0 By,
where A =l . . |+ . E . S L c :
O 0 e 1 0 0 e aKK,n _1 aKl,n aKZ,n 0
SO Xk,n:X+Xk(akk,n_1)+ZK:X1aJk.n:x+dkL'er‘\NbEI ﬂVk:L """ 7K Vn:l’ """ ’N *

jk
Lewbel’s theorem, however, has following ambiguities: One ambiguity in Lewbel’s
theorem is how to deal with fact that the Hick-Leontief composite commodity theorem is based

on non-randomness of proportionality factors a,, ,. Lewbel deals with this difficulty either (a)

By restricting his generalized theorem into log-linear model which should absorb non-random

part of d5™ =X, (a,, -1+ X X a,,+V,, into an intercept term in macro-parameter vector of

S or (b) By allowing the differences of the prices of individual commodities to the composite
commodity price to vary and be absorbed into the random error term. If the first assumption is
taken, the macro-model should always have a significant intercept term, which is a complicated
mixture of heterogeneous components and thus is difficult to be meaningfully interpreted. If the

second assumption is taken, the intuitive rationale of a constant or stable budget constraint
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condition within each commodity group for the Hick-Leontief composite commodity theorem is
lost. Another ambiguity in Lewbel’s theorem is that it has the same arbitrariness for the choice of
constant ¢ =1 as in Theil’s case discussed above (14), because there is no reason not to choose

c=1/N, for example. There are no a priori reasons that the ratio of observed micro-variables to

true macro-variable should be restricted to one. Note that the differences are transformed into
ratios in Lewbel’s log-linear model. It is convenient either to define aggregation bias as the
difference between micro-variables and macro-variables or to avoid the difficulty involved in
searching for instrumental variables in empirically testing the compositional stability condition.
However, it is restrictive because it implies that the true macro-parameters should be a simple
sum of micro-parameters. There is no a prior reason that the true macro-parameters can not be a
simple average of micro-parameters, for example. The other ambiguity in Lewbel’s theorem is in
interpretation of empirically test result of no correlation or no cointegration as independence
condition between a pair of two variables, where one is the composite commodity price or the
general rate of inflation of the group and the other is the difference between individual
commodity prices and the aggregate commodity price or the aggregation bias. Lewbel’s theorem
is applied for empirical study based on the following basic logic: (a) If two variables are
stationary, then a correlation test is conducted, (b) If both variables are nonstationary, a
cointegration test is conducted, (c) If one is stationary but the other is nonstationary, then no test
is conducted with conclusion that they are not cointegrated because the stationary series can not
be cointegrated with the non-stationary series by the algebra of cointegration. If two variables
are uncorrelated or not cointegrated, then they are interpreted as independent. Lewbel’s
empirical testing strategy has following difficulties: (a) Correlation and cointegration are
designed for testing linear dependencies. Thus even if independence is not rejected by these two
tests, it is still possible that there remains some non-linear dependency, (b) Cointegration is
designed for testing dependencies in the long-run. Thus even if cointegration is rejected by either
empirical cointegration test or the algebra of cointegration, it is still possible that there remain
some mid/short-run and/or contemporaneous dependencies, (c) When micro-variables are
nonstationary, it is conceivable that the macro-variable, which is required to be representative of
micro-variables and thus closely related to micro-variables, is also nonstationary such that

d'™™ =x — X is stationary. In this case, an empirical testing strategy based on cointegration

might have a tendency to accept the independent condition of Lewbel’s theorem by construction.
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Compared with the Lewbel’s consistent aggregation condition, the generalized form of
the compositional stability condition maintains (a) The non-randomness of proportionality
factors and thus the intuitive rationale of Hick-Leontief composite commodity theorem and (b) It
does not have a priori restrictions for true macro-parameters such as simple sum or simple
average of micro-parameters in the context of Theil’s aggregation theory. (c) It does not invoke
ambiguities involving the use of correlation or cointegration test results as an independence test,
as in empirical application of Lewbel’s theorem, although empirical application of it requires a
difficult search for instrumental variables in Hausman type misspecification test of

Cov(d,,X)=0 in x,= X H,+d, . In this respect, based on the generalized form of the

compositional stability condition among disaggregated micro-variables, we can rely on index
number theory to decide the proper weighting schemes in aggregation of micro-variables into

macro-variables when we have dual pairs of information.

Principal Component Method

The index number approach for deciding weighting schemes in aggregating micro-
variables into macro-variables has the advantage that the resulting index number formula does
not require parameter estimates. The index number approach, however, requires dual pairs of
information and these dual pairs are not always available in all areas of study. For example, even
though there exist some efforts to use the Tornqvist-Theil index to obtain monetary aggregates
(Barnett, 1984), it is not easy to get this kind of dual pairs in other macro-economic areas. An
alternative way to get weighting schemes for dimensional reduction without invoking parameter
estimates is to use the multivariate statistical method of principal component analysis.

Principal component analysis has been a major statistical tool to condense large
dimensional data into a small number of aggregate variables with as little loss of information as
possible in the mean squared error sense. It seeks to reduce the dimension of the data by finding
a few linear combinations or principal components of original variables that successively have
maximum variance, subject to the restriction that successive principal component are
uncorrelated with previous principal components as in (29)

(29) PC, =W, 7 , where W, = argmaxVar{W - } stW -W'™ =1
and W, = | W, , W, -, W, W, |, vk =1,2,---,K,--,KN,

where y is KN xT matrix defined as in (15).
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It has been demonstrated that solving such a successive maximizing problem is equivalent to
applying the approximations to the second-order summary matrix X of data such as a covariance
or correlation matrix, which is decomposed by the singular value decomposition theorem. There
are several useful properties in this method. (a) When we get as many principal components as
the number of the original variables, the total variation of original variables is equal to the total
variation of principal components, which is equal to the sum of the eigen-values of the
covariance matrix.
(30)PC,, =Ql, 7 , where = Q,, -A,, -Ql, ,

A,, =diag(4,4

o, Agyeeey A, JWhere 4, are descending ordered eigen-values,

25"

Q,, =diag(e.e,,---,e,,--,e, ) where e are (KNx1) corresponding eigen-vectors,
and iVar(PCk)z %ﬂk =Trace(A, )=Trace(2)= iVar( ).
k=1 k=1 k=1

(b) The first K principal components can explain most of variance of the original variables so
that the rest can be disregarded with minimum loss of information, when the last K-N - K
eigen-values are insignificant, i.e. 4, >4, >---> A4, >> 4, >---> 4, . When this is the case, the

cumulative proportion of the variance explained by the first K principal components can be

calculated by Z::l A /Trace(E) .
B1)PC=Q"y,where ford, >4, >--->A, >4, >->1
2=Qu Ay Qu=Q-A-Q +£~Q-A-Q",

A =diag(4,4,,---,4 ) where A are descending order eigen-values,

KN 2

Q =diag (el,ez,---,eK) where e, are (KNx1) corresponding eigen-vectors,

And EVar(PCk )/iVar(;(k)zi/lk/Trace(z):Trace(A)/Trace(Z).

The possibility of the dimensional reduction can be understood as follows using
2=Qu Ay Qyu=Q-A-Q" +&~Q-A-Q". The first equality of = Q,, -A,, -Q,, Is an
application of the singular value decomposition theorem to the positive matrix of second-order
data summary matrix ¥ such as the covariance or correlation matrix just as in (30). The second

equality Q,, - A, -Qr, =Q-A-Q" + & represents the following further matrix decomposition of

the resulting first decomposed matrix by the singular value decomposition theorem. When the

last K-N—-K eigen-values are insignificant, ie. 4, >4, >--->A4 >4, >--->1 the

KN 2
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corresponding & matrix can not be too large to ignore. The third equality
Q-A-Q" +&~Q-A-Q' represents this approximation where the amount of information loss is
represented by the & matrix. The degree of dimensional reduction from K-N to K depends on
the eigen-value structure of A4, > A, >---> 4, >> 4, >---> 4, i.e. how insignificant of the last
K-N—-K eigen-values, where the last insignificant K-N —K eigen-values guarantee the
amount of information loss & to be small.
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s-le e e 100 a0 0 e, e e, el e
B B £ By 0 A frea Sea 7 e e 7 o
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(c) The subspace spanned by the first K eigen-vectors has the smallest mean square deviation
from original data matrix among all subspaces of dimension of K . (d) If the sample size T is
large, then sample eigen-values are consistent estimates of the population eigen-values and
sample eigen-vectors and principal components are consistent estimates of orthogonal
transformations of their population counterparts, when variable number M (= K-N in our
study) is fixes. Heaton and Solo (2006) also show that in a large-M and large-T framework,
this conclusion is still valid by showing that the convergence rate is JT , which is independent

of M . They emphasize that (a) There is no requirement of growing gaps between eigen-values

and (b) Increasing variable numbers M does not imply improving estimates.
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When we impose certain structure on & by assuming Cov(e¢,,&,)=0, VN#n' as in

(32), we find that principal components analysis is equivalent with factor analysis, which is
another popular multivariate statistical method of factor analysis and whose framework will be
summarized in (33) in the connection to the (32).

(32) 2=Q-A-Q +e=Q-A-Q +¥=L-LU' +¥

e, e, - £ &, v &, & v &
€, : e, 82:K 21 0 L0 e e e e, &, 52 EZ:K Ep gz;KN
Pl 0 . 0lle. N e e L
T L T 1 N DA
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Factor analysis model is closely related with Theil’s aggregation theory. When we use
index k and K as micro-variables’ group index and total number of groups that should be
empirically identified, we see that factors F and residuals ¢ are equivalent to macro-variables
N and disturbances v by comparing (33) and (18). This is a reason to keep notation K-N =M
for the number of original variables and to use the same notation for original data matrix y and
factor loadings L as defined in (18). They are actually the same matrix. We also see that, except

for COV( gn,gn‘)zo which will be generalized, the equivalence of assumptions between the two
methods, because the assumptions of Cov(s,F)=0 and E(g)=0 in factor analysis are

equivalent to the primary conditions of COV(Vn,X)=0 and E(Vn)=0 in Theil’s aggregation
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theory, given the assumptions of E(F)z 0 and COV(F)= | can be interpreted as normalizing
assumptions. The reason to use different notation for factors F and macro-variables & for the
same matrix is to emphasize that factor analysis and Theil’s aggregation theory have been
developed separately. However, they are closely related with each other and we will show that
the possible condition of getting interpretable principal components is also closely related with
the compositional stability condition in aggregation theory.
B3)y=L-F+e¢,

with assumptions of Cov(s,F)=0,E(¢)=0,

Cov(F)=E(F-F")=1,E(F)=0, and Cov(¢)=E(s-")=¥ where W is diagonal matrix,

so thatCov(y)=2=L-E(FF")-U' +E(se" )+ L-E(F&" )+ E(sF")- U =L-LU' +¥.
(18) y=L-X+v,

with assumptions of Cov(v,N)=0 and E(v)=0,

where ¥ andvare KN xT matrix and L is KN x K and & is K xT matrix.

Factor analysis is based on the idea that when there are co-movements among original
variables, it is conceivable that this co-movement is due to their partial dependences on the
common latent components such that common factors can capture all the dependence among
variables, leaving no cross correlations in the residuals. Standard factor analysis is explicitly
based on this structural assumption so that the data admit a factor structure or a common-
idiosyncratic decomposition among original variables. While factor analysis based on the
maximum likelihood estimation method or state space method requires parameter estimation,
principal component analysis based on the singular value decomposition theorem has the
advantage that it does not require such parameter estimation. In this respect, the possibility of

relaxing the assumption of COV( gn,gn.)zo ,VN#nN' and of connecting principal component

analysis to factor analysis has been studied. Chamberlain and Rothchild (1983) and Connor and
Korajczyk (1986) introduce the approximate factor model to allow a non-diagonal covariance

matrix such that Cov(e,,¢,)<d where & is a small value and show that the principal

component method is equivalent to factor analysis when the number of variables M increases to
infinity. Note that the standard and approximate factor model also assumes that factors affect
individual variables at contemporaneous time only. To relax this rather strong assumption for

time-series data, the distributed lag effect of factors on individual variables is also introduced. In
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this dynamic setting, two approaches, commonly called as the dynamic factor model, are
suggested to generalize the standard covariance or correlation matrix. While Forni et al (2000)
use the spectral density matrix in a frequency-domain framework, Stock and Watson (2002) use
cross-covariance matrix, which includes auto-covariance matrix in a time-domain framework.
Since both approaches apply the singular value decomposition theorem to their generalized
covariance or correlation matrix to derive eigen-vectors as weighting schemes, the dynamic
factor model can be understood as the generalized approximate factor model based on the
generalized principal component method. Forni and Lippi (2001), similar to Chamberlain and
Rothchild (1983) but in the dynamic setting, shows that K -factor representation exists iff the
first K eigen-values of the spectral density matrix are unbounded, while other eigen-values are
bounded as the number of variables M increases to infinity. Stock and Watson (2002) also
shows that principal component of the covariance matrix converge in probability to the true
factors up to a sign change. In terms of bounding condition of cross-correlation of residuals

Cov( gn,gn,)<5 for the equivalence of principal component method to factor analysis method,

Heaton and Solo (2006) shows that while the condition of Chamberlain and Rothchild (1983) or
Forni and Lippi (2001) is the bounding condition of maximum eigen-value of residual
covariance matrix in the static or dynamic setting respectively, the condition of Stock and
Waston (2002), Bai and Ng (2002) and Bai (2003) is the bounding condition of maximum row
sum of residual covariance matrix. They also demonstrate that these bounding conditions can be
allowed to relaxed, provided that the growth rate of maximum eigen-value is M, where
0<a <1 and the growth rate of maximum row sum is strictly less than M , where M is the
number of original variables. Given that the maximum eigen-value is always less than or equal to
the maximum row sum of residuals, this means that the sample principal components estimator
converge to latent population factors, as long as the number of strongly correlated residuals
grows at a rate strictly less than the number of original variables, although the higher is the
growth rate, the slower is the convergent rate. Based on these result, we can interpret principal
component analysis as one factoring method of the covariance or correlation matrix for the factor
analysis model in general conditions.

However, as Heaton and Solo (2006) emphasize, not only the number of variables but
also the data structure itself should be the primary issue in using principal component analysis.

The importance of the data structure can be understood based on following two extreme cases,
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whose principal components are expressed in simple and extreme forms (Johnson and Wichern,
1988).

012 0 v 0 1 O T 0 0'2 po—z po-z 1 p P
(34) 20: : : .. : or E E ',. S (35) ZH = . . .. . or : .

When the original variables are perfectly uncorrelated with each other, so the covariance
or correlation matrix is the diagonal matrix X° as in (34), eigen-values and eigen-vector become
all equal as in (34') and thus the corresponding eigen-vector as a weighting scheme results in just
the original set of variables. So there is nothing to gain by using principal component method in

terms of dimensional reduction.

(1 0 - 00 - 0] [tiO0;0:i0:---i0][1 O -~ 0 0 - 0][1 0 -0 0 0'
01 00 -0/ |0i1i---i0i0:---:i0ll0 1 - 0 0 -~ 0 01 =00 -0
(34') : [ : s . T A [ . [ S R R
00 0 0(=(0:0 0 0-(0 0 0 040 0 - | 1 0 0
0 0 0 0 (0:0 01 01(0 0 0 1 0[{0 0 - 0 1 - 0
060 - 00 - 1] |[0:0:-:0:0 Lo 16 0 - 0 0 - 1]]0 0 00 1_

When original variables are equally correlated with each other, so covariance or

correlation matrix has the specific structure " as in (35), (a) The first eigen-value
becomes 4, =1—(M —1)p= Mp +(1— p) with eigen-vector € = ll/«/M , l/«/M TN 1/«/M J and
the remaining eigen-values become A4, =4, =---4, =1— p with some convenient choice for

eigen-vectors as in(35'), (b) The first principal component becomes proportional to the simple

sum of the original variables with proportional factor of 1/ 7'M | and (c) The first principal

component explains the total variation of original variables by the following proportion:

Yﬂar(PC‘) = f‘ = A :i:Mpﬁ-(l—p):ijl—pzp. When the equal
Zkzlvar(lk) 2k=l ﬂ'k Mp +M (1 - p) M M M

correlation p is close to 1 or the variable number M is large, the first principal component

explains almost all the variation of original variables. So the first principal component is the

perfect representative aggregate in terms of dimensional reduction purpose.
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These two extreme cases imply that not only the number of variables but also the data
structure itself should be the primary issue to be considered in using principal component
approach. For example, when we add a sufficient number of idiosyncratic variables which are
not correlated with each other as well as with previously formed homogeneous groups of
variables, i.e. add variables with data structure of X° to the variables with data structure of =",
we can create a situation where more data, through the increasing number of variables, might be
undesirable, because the average common component will become smaller and/or the residual
cross-correlation will eventually become larger. This implication is consistent with the Boivin
and Ng (2003)’s simulation and empirical results that expanding the dataset by adding more
variables without considering data structure can be not always desirable in terms of forecasting
performance of dynamic factor model.

It have been demonstrated that the approximate factor model, especially the dynamic
factor model can improve forecasting performance in many economic areas (see Bai, 2003 and
references in there for examples). Although it might be not important to obtain interpretable
principal components for forecasting purposes, interpretation of principal components has been
major issue in the multivariate statistical analysis. Traditional approaches for the interpretation
of extracted principal components use either factor loading of components for original variables
or correlation between original variables and components. The extracted principal components
are interpreted based on the original variables with high loadings or high correlation values.
Although large loadings and large correlations often go together, this is not necessarily true (Al-
Kandari and Jolliffe, 2001).

Choosing a subset of the original variables that best approximate the information in the

extracted principal components and using such a subset to interpret the extracted principal
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components is another way of interpretation, which dates back at least to Jolliffe (1972). In this
respect, Al-Kandari and Jolliffe (2001, 2005) review various methods, including McCabe
(1984)’s principal variables approach as well as traditional procedures, for choosing subsets of
original variables to approximate and interpret the extracted principal components, using real
data sets from various areas as well as simulation data sets that are generated such that the
variables are allocated to a few clusters with various strengths of correlations between clusters
and different factor loading structures at each level of correlation between clusters. After
evaluating various procedures in terms of various efficiency criteria, they conclude that (a) The
traditional procedure in interpreting a principal component in terms of only those variables that
have high loadings in the component is not always successful in retaining the best variables for
the purpose of reducing the dimensionality, or aiding interpretation of the component of interest.
(b) The method for retaining the best subsets is often the cluster criterion, which is mainly based
on allocating the original variables to clusters using the average-linkage method and then
retaining one variable from each cluster. Although they choose an original variable rather than a
principal component to represent each cluster and their results can vary depending on the choice
of different clustering algorithms, their results imply that we need to use some grouping method
before extracting principal components, rather than using traditional method based on factor
loadings after extracting principal components from the entire dataset.

The fundamental motive of seeking interpretable principal components can be
understood by the following explanation of Johnson and Wichern (1988) with some modification
of sentence orders for clarification. “A principal component analysis is concerned with
explaining the variance-covariance structure through a few linear combinations of the original
variables. Its general objectives are (1) data reduction, and (2) interpretation. ... Analyses of
principal components are more of a means to an end ... because they frequently serve as
intermediate steps in much larger investigations. For example, principal components may be
inputs to a multiple regression. ... The essential purpose of factor analysis is to describe, if
possible, the covariance relationships among many variables in terms of a few underlying, but
unobservable, random quantities called factors. ... Factor analysis can be considered as an
extension of principal component analysis. Both can be viewed as attempts to approximate the
covariance matrix. However, the approximation based on the factor analysis model is more
claborate. ... Basically the factor model is motivated by the following argument. Suppose

variables can be grouped by their correlations. That is, all variables within a particular group are
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highly correlated among themselves but have relatively small correlations with variables in a
different group. It is conceivable that each group of variables represents a single underlying
construct, or factor, that is responsible for the observed correlations. ... For example,
correlations from the group of test scores in classics, french, english, mathematics, and music
collected by Spearman suggested an underlying intelligence factor. A second group of variables,
representing physical-fitness scores, if available, might correspond to another factor. It is this
type of structure that factor analysis seeks to confirm. The primary question in factor analysis is
whether the data are consistent with a prescribed structure (Johnson and Wichern, 1988, page
340 and 378-379).” Given that modern origins of principal component and factor analysis lie in
the early twentieth-century attempts of Karl Pearson, Charles Spearman and others to define and
measure intelligence for the subsequence structural analysis, the fundamental purpose is to get
the interpretable common latent factors among original variables by using dimensional reduction
method of principal component estimator. And its possible condition can be the special type of
correlation structure such that all variables within a particular group are highly correlated among
themselves but have relatively small correlations with variables in different groups.

This special structure of covariance or correlation can be also understood as the
approximate combinations of the two extreme correlation structures discussed in (34) and (35). If
variables can be grouped based on their correlations such that variables in different groups have
the first extreme type of perfectly uncorrelated structure X°and variables within a particular
group have the second extreme type of equally correlated structure =" as in (36), then it is
possible to extract the almost perfect representatives and the meaningfully interpretable
aggregates by applying principal component method to each of homogeneous group separately,

rather than applying it to the entire group of heterogeneous variables as in (37).

0 - 0 5.0 0
o0 0 %, - 0
(36) = =Corr(y) or DynCorr(y)= . A o s
0 0 - 3% 0 0 - %,
1 P 0 P 1 Pz 7 P
1 - N 1 .. .
whereZ ="' . . 'l?k and X, = pk:’ A pk’: , Vk=1,.....,K .

Pc P 1 Pint Pina 1
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Zl Lll O e 0 I:1 d1
ZZ 0 LZZ e 0 FZ dZ

G| =| . 7 . U TH] T or p=L, -Fo+d Vk=1... K.
ZK 0 O e LKK I:K dK

Obviously these two extreme types and the combinations of them are too strong for the real
world data. However, it is conceivable that this combination of two extreme types of correlation
structures can be approximated by the special type of structure mentioned above. If the original
variables can be grouped into this kind of special data pattern empirically, principal components
applied to each homogeneous group separately can be an almost perfect representative in terms
of dimensional reduction purpose. This implies for the principal component approach that when
the approximate block diagonal structure in static or dynamic correlation matrix is identified,

estimating the principal components from each homogenous group of variables y, =L, -F +d,,
Vk=1,....,K can be better than estimating those from the entire data set y =L-F + ¢ to attain

the dimensional reduction purpose with less information loss as well as to obtain the
meaningfully interpretable aggregate variables. The near homogeneity of original variables
within a specific group makes it possible to provide a meaningful interpretation to this near
perfect representative aggregate. Since the main difficulty of interpreting principal components
is due to the fact that each of principal components is a linear combination of “all” original
variables, using cluster method to define homogeneous subset of variables before extracting
principal components is an intuitive solution to achieve interpretable principal components.

The subsequent analyses of studying relationship among aggregate variables also can be
justified to understand the relationship among disaggregate variables, since (a) The estimated
principal components extracted from each homogenous group of variables can be legitimate
representative for the disaggregate variable, and (b) The special type of a block diagonal
correlation structure derived from statistical dimensional reduction methods is equivalent to the
approximate form of the compositional stability condition obtained from Theil’s aggregation

theory. To clarify this relationship, the equations (7'"), (18), and (33) are recalled.
33)y=L-F+e,
with assumptions of Cov(s,F)=0,E(g)=0
Cov(F)=E(F-F")=1,E(F)=0, and Cov(s)=E(s-£")=¥ where W is diagonal matrix,
so thatCov(y)===L-E(FF")-U' +E(se” )+ L-E(F&" )+ E(sF")- U =L-L' +¥.
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(18) y=L-X+v,
with assumptions of Cov(v,X)=0 and E(v)=0,
where y andvare KN xT matrix and L is KN x K and & is K xT matrix.

or y=L-N+v=BDiag(L)-N+d

Zl Ll] Ll" LlK xl Ul 11 0 O NI dl

ZZ L21 LZZ LZK NZ 2 0 22 O NZ d2
or = . . + . = e

Xk LKI LKz LKK NK Uy 0 0 LKK NK dK

a, O 0

0 a,, - 0
Or[xlnﬁxz.n"”’XKn]:[Xlaxza"'aXK] : I’ .. : +[d1.n’d2,n"”’dk,n]'

0 0 a

Given that the factors F and residuals ¢ are equivalent to macro-variables X and disturbances
v respectively in (33) and (18), the equivalence between X = X A +v, and y =L-X+v
implies the equivalence between x, = X - Diag(A )+d, = X H, +d, and y=BDiag(L)-X+d in
the equation (18) and (7'") , where Diag (A1 ) denotes a diagonal matrix of A and
BDiag (L) denotes a block diagonal matrix of L. The strict form of compositional stability
condition X = X -Diag(An) implies the block diagonal structure in standard correlation matrix
Y =Corr(y). This suggests that by identifying the approximate block diagonal structure in static
or dynamic correlation matrix £ = Corr(y) or DynCorr(y), we can infer the approximate form
of compositional stability condition x, = X Diag(A,)+d, =X H, +d, with Cov(d,,d,)<s ,
vk =K', which is equivalent to y, =L, -F +d,, Vk=1,....,K in terms of the factor analysis

framework.

Based on the special block diagonal correlation matrix, an interpretable principal
component can be obtained by applying principal component approach onto each of homogenous
group of variables. Given the equivalence between the principal component approach and the
factor analysis method, which in turn is equivalent to the auxiliary equations in the Theil’s

aggregation theory framework, the approximate form of the compositional stability condition
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provides not only the possibility of obtaining common principal component or macro-variable as
the representative aggregate of homogeneous micro-variables but also the possibility of getting
interpretable macro-parameters as the representative aggregate of corresponding micro-
parameters for the subsequence analysis. In this respect, we can rely on the principal component
method to decide the proper weighting schemes in aggregation of micro-variables into macro-
variables with as little loss of information as possible in the mean squared error sense, when we
do not have dual pairs of information, which the index number theory is based on to derive the

proper weighting schemes in aggregating variables.

Summary and Proposed Method

At the beginning of this study, we suggest to interpret theory as an inductive causal
averaging procedure to deal with two methodological issues of how to infer the causal structure
from empirical regularities and how to incorporate the large information set into empirical model.
When we follow an inductive causal averaging procedure that concentrates only on similar
tendencies to highlight a few common factors by ignoring many more individual differences and
idiosyncrasies, we need to identify empirically justifiable conditions that allow us to legitimately
define common tendencies and individual idiosyncrasies. Based on the generalized condition for
the consistent aggregation, we propose one possible methodological procedure to consistently
address the two related issues of causal inference and actual aggregation procedures for the full
use of research potentials brought by high dimensional data.

To address the issue of how to infer the causal structure from empirical regularities, the
graphical causal models, which are empirically implemented by using either PC algorithm or
GES algorithm, can be used to inductively infer causal structure from non-temporal and non-
experimental data. However, the (probabilistic) stability condition for the graphical causal
models can be violated for high dimensional data, when close co-movements and thus near
deterministic relations exist among variables in high dimensional data. One possible way to
address this issue is using aggregation methods to infer causal relationship among disaggregate
variables based on aggregated variables. The aggregation method is also helpful to address
another issue of how to incorporate the large information set into empirical model, given that
econometric considerations, such as degrees-of-freedom and multicollinearity, require the
economy of parameters in empirical models. The weighting schemes to aggregate disaggregate

micro-variables into aggregate macro-variable can be empirically decided, based on either index
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number theory or principal component approach. However, the actual aggregation procedures or
decisions on weighting schemes require the legitimate classifications or sufficient conditions for
the interpretable and consistent aggregation. In this respect, identifying legitimate aggregation
conditions is the main topic to be discussed for both causal inference and actual aggregation.

We studied possible legitimate conditions for the interpretable and consistent
aggregation based on both aggregation theory framework and statistical dimensional reduction
methods with minimizing any deductive assumptions such as micro-homogeneity of micro-
parameters, separability, and homogeneity of utility (production) function. From both the
aggregation theory and the statistical dimensional reduction methods, we identify the same
generalized forms of the compositional stability condition. When generalized forms of the
compositional stability condition can be identified in data set by grouping micro-variables based
on their correlation or covariance matrix, there exist not only the possibility of obtaining
interpretable common factors or macro-variables as the representative aggregate of
homogeneous micro-variables but also the possibility of getting interpretable macro-parameters
as the representative aggregate of corresponding micro-parameters for the subsequence analysis.
This means that when the micro-variables can be legitimately grouped and represented by
macro-variables, it is possible to use aggregation methods to capture micro-relations through
macro-relations as the legitimate representatives, where micro-relation or macro-relation can be
causal relations. In this respect, we argue that the (probabilistic) stability condition for an
“inductive causal” procedure requires the compositional stability condition for an “inductive
averaging” procedure.

More specific procedure we propose is as follows; (a) Both standard static correlation
matrix and dynamic correlation matrix over identified frequency band are used to measure co-
movement among original variables. Based on these similarity measure of disaggregate micro-
variables, the modified k-nearest neighbor algorithm is used to sort the variables such that the
highly correlated variables are near each other along the main diagonal in reordered correlation
matrix. The block-diagonal pattern of reordered or sorted static and dynamic correlation matrixes
are used to identify homogeneous group of variables, based the approximate form of the
compositional stability condition. (b) Based on identified classifications of original variables,
index number theory or statistical dimensional reduction methods are used for actual aggregation
procedure to decide weighting schemes for aggregating disaggregated micro-variables into

representative macro-variables within each identified group. When we have dual pairs of price
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and quantity or analogues information, we can use the index number theory to decide the
weighting schemes. When such dual pairs of data are not available, principal component method
applied onto each of groups is used as the best dimensional reduction method with as little loss
of information as possible in the mean squared error sense. (c) The identified classification and
aggregation of micro-variables into macro-variables can be tested, as long as appropriate

instrumental variables can be identified. The Hausman type misspecification test of H :y, =0
in x,= XH, +1V-y +¢&", where x and X are micro- and macro-variables respectively and
IV are Instrumental Variables such that IV is closely correlated with X and independent of d _,

provides statistical test framework for the generalized form of the compositional stability

condition of independence between d, and X in the set of equations X = X H, +d, . (d) Given

the observed phenomena of close co-movements and thus near deterministic relations among
variables in high dimensional data, it is conceivable and oftentimes observed that the
(probabilistic) stability condition for the graphical causal models is violated for using high
dimensional data in empirical study. When this is the case, based on the compositional stability
condition, it is still possible to infer causal structures among micro-variables through
relationships among representative aggregated macro-variables. It is possible because micro-
relations including causal relationships can be legitimately captured by the macro-relations
incorporated by the aggregation methods as long as the compositional stability conditions hold
among micro-variables. The PC algorithm or GES algorithm is used to infer causal structures
among macro-variables as the legitimate representative causal relationships among micro-
variables are used for the subsequent analysis.

The inductively inferred causal structures is crucial for subsequent empirical studies,
since causal structures are underdetermined by empirical-statistical properties (induction
problem) and theory often-times does not provide sufficient or conclusive information for this
induction problem. Subsequent analyses are sensitive to the causal structure in the form of pre-
classification of dependent and independent variables and other forms of identification problem.
The empirically justifiable classification and aggregation are also important for the full use of
research potentials brought by high dimensional data in the subsequent empirical studies, given
that econometric considerations, such as degrees-of-freedom and multicollinearity, require the
economy of parameters in empirical models. Note that inductive properties are emphasized in

every sequence of the proposed method, since any types of deductive properties can bring
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subjectivities or ambiguities into the empirical results. While theory as the inductive causal
averaging procedure can allow some deductive elements in its developments, empirical
methodologies need to be based more on inductive properties to maintain their objectivity. The
remaining subjectivities in our proposed method are left as further research issues, with the hope
that the remaining subjectivities bring fewer ambiguities relative to previously used methods.
The proposed method is illustrated with the applications for retail checkout scanner data and

macro-economic time series panel data as examples of two sets of high dimensional data.
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CHAPTER 11
USE OF HIGH DIMENSIONAL PANEL DATA IN MICRO-ECONOMETRICS

The study of consumer behavior has a long history and is one of the most studied areas
in economics. The demand analysis has significantly advanced from both theoretical and
empirical perspectives. However, there remain three methodological issues in applying the
micro-economic consumer theory for empirical study of consumer behavior, especially using the
retail checkout scanner data. When to understand and measure responsiveness of consumer
behavior to changes of exogenous variables can be considered as one of the main objectives of
the study of consumer behavior, the empirical measure of responsiveness of consumer behavior
to changes in exogenous variables relies on three specification choices in an empirical model.
First, given that there are full spectrums of direct, inverse, and mixed demand systems and the
general relationship between elasticity and flexibility is not yet established, the measure depends
on the relative predeterminess among the price and quantity variables represented by dependent
and explanatory variables in an empirical model of a specific commodity. Second, given that
small departures from valid classification and/or aggregation can result in large mistakes in
empirical results, the measure depends on the classification and aggregation to define price and
quantity variables themselves. For example, the decision on classification and aggregation can
substantially affect the conclusions about elasticity estimates in multi-stage budgeting approach
because cross-price elasticity or cross-quantity flexibility between products in different groups is
likely to be small by construction. Third, given that the different assumptions used to
parameterize functional relationships have different implications, the measure depends on the
functional form to relate dependent variable with explanatory variables. For example, there are
four combinations of constant or variation assumptions for the income (or scale) coefficient and
Slutsky (or Antonelli) coefficient in the differential functional form approach as captured in
Rotterdam, LA/AIDS, CBS, NBR specifications.

In this chapter, we propose an inductive empirical method to address these three
methodological issues in the study of consumer behavior based on the discussion on the causality
and aggregation issues in chapter II. The way to incorporate theoretical implications into
empirical model specifications through the functional forms and the way to compare different
specifications of direct, inverse, and mixed demand functions are the additional issues to be

addressed. More specifically, first, the specification choice issue among direct, inverse, and
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mixed demand functions is addressed by using the inductively inferred causal information based
on the graphical causal models. Second, the classification and aggregation issue are addressed by
the compositional stability conditions and index number theory. Third, the functional form issue
is addressed by the synthetic model approach based on the differential functional form
framework. And the comparison of alternative specifications is conducted in terms of model
selection framework. The proposed method is illustrated with the applications for soft drink

products using retail checkout scanner data.

Theoretical Considerations

Causality in Study of Consumer Behavior

One of the main objectives of the study of consumer behavior is to understand and
measure responsiveness of consumer behavior to changes in exogenous variables.
Responsiveness is measured by elasticities or flexibilities, where the elasticity (or flexibility) is
defined by the percentage change in quantity demanded (or willingness to pay) resulting from a
1-percent increase in an exogenous variable. Elasticities are directly measured based on the
direct demand function, expressing quantities as a function of price. On the other hand,
flexibilities are directly measured based on the inverse demand function, expressing
(normalized) prices as a function of quantities. Given that the general relationship between
elasticity and flexibility is not yet established, the empirical measure of responsiveness of
consumer behavior to changes in an exogenous variable relies on the relative predeterminess
among the price and quantity variables represented by dependent and explanatory variables in an
empirical model of a particular commodity. In many empirical studies of consumer behavior, the
choice of individual direct or inverse demand function is usually based on researchers’ intuition
about product properties or market characteristics of a specific commodity. A typical argument
for predeterminess of price relies on price-taking agent assumption, short-run fixity in prices, or
administratively setting of price in publicly offered goods. A typical argument for
predeterminess of quantity relies on fixed biological lags in production and non-storable fixed
supply of commodities in agricultural commodities, or Bertrand type strategic pricing rules of
suppliers in differentiated good.

In general, the choice of quantity-dependent demand function relies on the elastic
supply condition and the choice of price-dependent demand function relies on the inelastic

supply condition. In this respect, the choice issue of direct or inverse demand function can be
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addressed by using the full simultaneous equations approach, where demand and supply
equations are simultaneously estimated and each is identified by the appropriate instrumental
variables such as demand and supply shifters. However, this approach is rarely pursued in
empirical work, due to major difficulties to find appropriate instrumental variables needed to
identify demand and supply equations of all the related commodities. Furthermore as Thurman
(1986) argues, the practical equivalence of the two demand specifications of direct or inverse
demand function in a simultaneous equations model does not carry over to models which are not
fully simultaneous. In particular, he argues that the choice of dependent variable is crucial to
econometric estimation and to economic interpretation in models where demand adjusts to
current shocks but supply does not.

Instead of using full simultaneous equations approach, the system-wise approach has
been widely used to study interrelationship among related commodities demanded. However,
given that most empirical specification of demand systems constitute a monotone set of either
direct or inverse demand equations, the commonly used (monotonic) system-wise approach has
some limitations, since it might be too restrictive to assume a priori that all of related goods have
the same characteristics. Depending on the market characteristics of a particular commodity,
some demand functions need to be specified as quantity-dependent and others as price-dependent.
In this respective, the mixed demand system, expressing demand relationships as a function of
mixed set of prices and quantities can be used to provide a flexible way to incorporate the
possible combination of quantity-dependent and price-dependent specifications within a system.
It is also argued that the mixed demand system also provide the possibility of sidestepping the
estimation of both demand and supply functions in a full simultaneous equation framework
(Moschini and Vissa, 1993).

The mixed demand function is first proposed in the context of studying market
equilibrium with some rationed commodities (Samuelson, 1965). It was then theoretically
elaborated by in the context of demand theory by showing the equivalence between the
compensated mixed demand function and the compensated rationed demand function (Chavas,
1984). While it has been empirically used in a Rotterdam functional form (Moschini and Vissa,
1993), it is also extended to a generalized Rotterdam functional form (Matsuda, 2004). The
mixed demand function not only provides an alternative way to study interrelationship among
related commodities demanded without sacrificing the theory of consumer behavior, but also

makes it possible to derive some relationships between elasticity and flexibility by extending
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arguments of Moschini and Vissa (1993). Given that the relationship between elasticity and
flexibility is not yet established in general, these relationships can be helpful to understand
different implications of direct, inverse, and mixed demand systems.

The three specifications of direct, inverse, and mixed demand functions are rarely
discussed in one place, so it is worthwhile to summarize these in terms of the properties of each

demand system. Let the set of commodities of interest AU B = {1,---, m,m+1,---,N } be divided
into quantity-dependent A = {1, e-,m }and price-dependent B = { m+1,---,N } commodity groups.
The subscripts (n,n")e AUB,(i,j)e A, and (k,r,s)e B are used to denote whole and each

group of commodities respectively. Total expenditure and the normalized prices can be
represented by y=P-Q=P,-Q,+P,-Q, and 7, =p,/y respectively. The superscript C is
used for compensation and D, | , and M are used for direct, inverse, and mixed demand
systems respectively. Following functions play a crucial role in consumer theory as Chavas
(1984) summarizes.

+ The direct utility function U (q) , which is continuous, increasing and quasi-concave in (.
+ The indirect utility function V (p, y), which is continuous, decreasing and quasi-convex in p .
- The cost or expenditure function C( p, u), which is continuous, increasing in U,
and increasing, linear homogenous and concave in p.
- The distance or transformation function D(q, u), which is continuous, increasing in U,
and increasing, linear homogenous and concave in (.
- The restricted or rationed cost function C* (p s g u), which is continuous, increasing in u,
increasing and concave in p,, decreasing and convex in ¢, , linear homogenous in p, .

Note that these functions have the duality relationships, so it is possible to construct any one of
the four functions from any other function.

These functions and their properties are used to derive direct, inverse, and mixed
demand functions and their properties.
C(z,V)=1-V(z,1)and D(q,U)=1-U(q)
implying that the indirect and direct utility function can be obtained by inverting the cost
function and distance function respectively. Each direct, inverse, and mixed demand system can

be derived as follows.
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V(z.1)=Max{U(a)| 7-q=1} or V(p,y)=Max{U(q) | p-a =y |,

where the solution q( z,1)orq( p,1) is the vector of uncompensated direct demand functions.
‘U(g)=Min{V(z,1)|z-q=1},

where the solution z( g,1)is the vector of uncompensated (normalized) inverse demand functions.

V*(p,. 0. y)=Max{U(d,.q,)-V(Pp,. P y) | PO, + P =Y |
or V*(z,,0,.1)=Max{u(a,,q.)-V(7,.7,)| 7,0, + 7.0, =1},

where two solutions q,( p,.d,,y )=0,(7,,q,,1) and 7,(7,,q,,1)-y=p,(p,.q,,y) are the

uncompensated quantity-dependent and price-dependent mixed demand functions respectively.
+C(7,u)=Min{z-q|U(q)=u forC(p,u)=Min{p-q|U(a)=u},

where the solution q°( 7z,u) org°( p,u)is the vector of compensated direct demand functions.
-D(q,u)=Min{z-q |V(r)=u},

where the solution ﬂ“( g, u) is the vector of compensated (normalized) inverse demand functions.
+C"(p,.0,.u)=Min{p, -0, |U(g,.q,)=u},

where solution q°( p,,q,,u )is the vector of compensated rationed demand, which is equal to the

compensated quantity-dependent mixed demand. The negative of the compensated shadow or
virtual prices is — (6CR / 6qk): [ON (pA, qB,u), which are the compensated price-dependent mixed

demand functions (Chavas, 1984). Thus mixed cost function can be defined as follows.

n oc* N oc*
.Cc™ =p -0° c .0 = . - .
(. Gou)= P, - 0:(p. G, u)+ 5 (P, Goou) 0, =2 p, (api}k%( aqquk

which implies following derivative properties of mixed demand functions

oc" oCt  n op, . N op;
. = + —_— =Qq. + —_—
apj apj somel apj d. =4, s:Z:mH apj .
oc"  aCt . op: v, ope v, ope
: = +Y —0+pP =-P+ 2 —0+pP =2 —
6qk aqk Rt 6qk qs pk pk s:Z:rrHI aqk qs pk s:Z:mH aqk qs

Note that no disequilibrium occurs in mixed demand, because the prices of commodities in fixed
supply adjust at the shadow prices to clear market, while some markets do not clear in rationed

demand (Moschini and Vissa, 1993).
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It have been demonstrated, based on the envelope theorem, that the following Roy,
Wold, Hotelling-Shephard, Shephard-Hanoch, and Samuelson theorems are useful to derive each
of direct, inverse, and mixed demand functions respectively.
oV /or, ou /o
/ (Roy) 7,(0.1)= (%,

-q (7,1 $(au/eq )-q.
q,(7.1)= Soviom.) = 3(0u/aq,)-q,

(Wold)

o MZ

g ( p, u) = % (Hotelling-Shephard) - 7 ( g,u ) = %q,u) (Shephard-Hanoch)
% and pf(pA,qB’U)=—2§

i k

(Samuelson’s envelope theorems)

“0°(p,,0s,U) =

Note that the inverse demand functions can also be derived from the optimization problem for

N N
direct demand functions of Max{U(q)|anqn :y} = Mzix{u(q)+/1-[y—2pnqn} , which
¢ n=t 4 n=l

L . ouU .. . .
implies relations of —=A-p, as first order conditions. From this result and using the result

n

A= iS;J /ylmphedby Z— q, —Zﬁ p,q, =4 Zp g, =A-y, we can get following

n'

relation of the unnormalized and normalized inverse demand  functions

u U u
aqn aqn aQr\ 1 ’
p, = " | wau y=p, (q,y)Zﬂ'n(Q)' y . The last equality holds by the Wold’s
nvz:lan,q”'
ou /aq,

theorem 7, (q,1) = . We can see that the unnormalized inverse demand function
is linear homogeneous in y, which implies that flexibility defined from either unnormalized or

normalized inverse demand function has the same implication. This implication is explained as

y)1
apn(qaj
np oy g _ y)y Q. _op,(@l) g, oz(a) g,

ag, pfay)  ag, p[q le - o, p,(@1) o, 7,(a)
y)y

From an empirical perspective, consumer theory is considered as properties of the

demand system of equations such as homogeneity, symmetry, negativity, adding-up, and relation
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of compensated and uncompensated demand functions (Barten, 1993). The first three properties
for direct, inverse, and mixed demand functions can be derived from the properties of cost,
distance, and restricted cost functions using Hotelling-Shephard, Shephard-Hanoch, and
Samuelson’s envelope theorems respectively. The Euler and Young theorem are used to derive

properties of homogeneity and symmetry. While the Euler’s theorem states that when f(z)is r-th

degree homogenous in z, then g(z)=6f(z)/éz, is (r-1)-th degree homogenous in z and

a9(z)
oz,

n

of(z)  of(z)

o on where z=(z,,--+,2,,---,z, ). The adding-up property of direct, inverse, and

z, =(r—1)-g(z), the Young’s theorem states that when f(z)is continuous function in z,

i
n'=l

then

mixed demand functions can be derived from the budgetary identity equation or budgetary share
equations. The main issue has been to derive relation of compensated and uncompensated
demand functions. The Slutsky equation for direct demand is derived from the identity between
compensated and uncompensated direct demands q°(p,u)=q(p,y)=q[p,C(p,u)]. The Antonelli
equation for inverse demand is derived from (normalized) inverse demand and direct utility
function 7, = f"(q)z f"(k -q*)z g"(k, q*) and u =U(q)=U(k ~q*)=U*(k, q*) in terms of
scale parameters q =Kk -q" wherek is scalar and qis reference vector. The decomposition for
mixed demand is derived from two identity equations between compensated and uncompensated

mixed demands qic(pA’qB’u)Eqi [pA’qB’CM(pA’qB’u)] and pi(pA’qB’u)E pk[pA’qB’CM (pA’qB’u)]'

The resulting theoretical implications can be summarized as follows, where ¢, 5(2&&)
’ P. 4,

and ¢, E(%l] denote price and expenditure elasticities from direct demand,

@ qn

f . z(g”" q“‘j:[ap” q"'j and f z(aﬂ” LJ denote quantity and scale flexibilities from
’ U 7

aqn’ pn ' ak 7[
(%&J N
o9, a,) 7 " ap, p )

g = [%lj , and f, z[%lJ denote price and/or quantity and expenditure elasticities from

k

n

inverse demand, and ¢ = %P , fk_sz(%&J > Oy
©oop g aq, Py ’

mixed demand. The derivations of all theoretical properties or restrictions used for direct,

inverse, and mixed demand system are explained in Appendix A. Since it is useful to express
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theoretical properties as elasticity or flexibility forms as well as derivative properties, especially

for the differential demand systems, theoretical properties are summarized in both derivative and

elasticity (or flexibility) forms.

Theoretical implications for direct demand systems

(a) Homogeneity:

(b) Symmetry:

(c) Slutsky equation:

(d) Adding-up:

i%pn;o or igv:n':()

= apn =l

aq, _ aq, or We, =W.eé, .
o, o, | |
oq° g, +%qn' or &, =g, +&W,
o, op, o

isnwn =1 or i‘g =

Theoretical implications for inverse demand systems

(a) Homogeneity:

(b) Symmetry:

(c) Antonelli equation:

(d) Adding-up:

N O

> q,=0 or i ff =0

n'=1 aqn n'=1 ’

Om, _0m, orw,f° =w f:
aqn’ aqn ’ .
dﬂ-: = aﬂ." - aﬂ." ﬂ-n' or fncn' = fn N fn .Wn'
iwnfnz—l orifnnzfn

Theoretical implications for mixed demand systems

(a) Homogeneity:

(b) Symmetry:

or Yw.e, =0.
n'=1
ore, =& . —EW,.
N
or YWe  =-W,.
n=1 ’
N c
orw f° =0.
n'=1 ’

., =0 and

ilg%pjzo or _Zmlsifj:O or ijwi-s
i j=1 j=1
m apE —n° W c _1 W Nt —
Z P, =P, oer“ =1or 2w, P =W,.
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° o
ai:i orW -& =W &,
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(c) Slutsky equation:

oq° oq, 0q.| . & Op; oq; _ oq aq{ N Op; }
— Ay 0 qj+ Z_fqr R — =TT Z_'qr ,
>, o, ay{ i op, } oo, dp, oy [ oa,

j s

d, op, oy| " “mop, oo, oq, oy |“moa,

& =z +é [wj 3w pf‘jJ or g, =& —& [wj + 3w, p;,jJ,

@, =q.+a] $w 1] or 0., =0, e[S w 1]

i =p,, + fk[wj + 3w pf’jJ or p,, =pS, - fk[wj 3w, prJ, and
foo=f,, + szw -t ] or f =f 1, [z Wt

(d) Adding-up: YWz, + Sw, f, =1, Ywe’, =0 and Ewg’, =-w,,

k=m+1 i

or & :—ijgi,j and f, :I—ij P, -

=

The choice of direct or inverse demand function is not trivial in empirical modeling to
measure consumers’ responsiveness, since it has been demonstrated that the flexibility (or
elasticity) matrix has not the simple matrix inversion relation with the elasticity (or flexibility)
matrix estimated from the direct (or inverse) demand functions (for example, Schultz, 1938,
Houck, 1966, and Huang, 1996). From an econometrical perspective, the reason why an inverse
relationship between elasticities and flexibilities does not hold can be understood by a following
simple illustration of single demand equations with only one independent variable. For

simplification, let p, and g, denote logarithmic transformation of price and quantity variables,
so that o and f are the price elasticity and quantity flexibility respectively as in (a)

g,= ap +u’ and p,= £, +u’ and assume that direct least squares estimates are used as in

. >pd__ Cov(p,q,) > Ypa._ Cov(p,q,)
b - l!2: t t d — 112_ t t
®) @ ©p) var(p) / (Za,)  Vvar(g,)

relationships between elasticity and flexibility as follows: (c) o}ﬁz R, ., where R, is the

. We can derive two kinds of

squared sample correlation of p and q. This relationship is based on the following relationship

COV(pt’qx):[COV(pnq!)}[ Cov(p,,q,) }zzl}l.Rz

Var(p,) var(q,) | | Var(p Var(q,)

between estimators ¢ and S . a =
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(Schultz, 1938). (d) a- ,B <1, where equality hold if and only if A p+4,q=0 for real scalars

A,and 4_, which is due to Cauchy-Schwarz inequality of (p’-q)2 S(p'-p)(q'-q) for real column
vector p and q (Huang, 1996). We can see that even in this simplest setting, the inverse
relationship between two direct least squares estimates of & and ,B does not hold in general. It
holds only extremely special cases, where the squared sample correlation (R, ) is 1 as in (c) or
price is exactly proportional to quantity ( p, = (— A, / lp)- g, =A4-0)asin (d).

Given the fact that the general relationship between elasticity and flexibility is not yet
well established, it is also worthwhile to derive some functional relationships among direct,
inverse, and mixed demand systems. The relationships between elasticity and flexibility can be
derived based on the mixed demand framework by extending the argument of Moschini and
Vissa (1993). While they use a set of identity equations relating direct function to mixed function,
there is another set of identity equations relating inverse function to mixed function. Using both
sets of identity, we can also derive some relationship between direct and inverse demand, based

on the mixed demand framework. Following notation is introduced. E,, Elei_iJ, = Elgk’SJ,

s =le J ., Eg, s[gk"ij , EP=[g], and E? =[g,]| are submatrices from direct demand,

..
lfi,iJ’

inverse demand, andE,’, = [giwiJ, R = [f“J, Qs ElqiﬁkJ, R, ElpmJ, EY =[g], andF" =[f ]

E; E
F.. F, . [fMJ, F.. Elfika, F,, E[fk,,iJ’ F. =[f], andF! =[f ]| are submatrices from

are submatrices from mixed demand. As Moschini and Vissa (1993) demonstrated, the direct

demand system is related to the mixed demand system through the identities

a°[p.. ¥ (p.. .. ¥). )= " (p.. 0. y) and q°[p,. p!(p..q..Y). y]=a"" . By applying a similar

logic, the inverse demand system is related to the mixed demand system through the following
identities p,[q? (p,.d,¥)0.y]=p, and pila}(p..d,,¥)a..y]= P (p,.0,.y) which are
implied by 7\[q)(7,.0,,1).0,.1]=7, and m[q)(z,.q,.1).0,.1]=7)(7,.q,.1) through

mla) (7. a0, y=7,y and m[a)(z,.0.,1.0,,1]-y=7(7,.q,,1)-y . From the
resulting two kinds of relationships, other implied relationships can also be derived among direct,
inverse, and mixed demand systems. Note that these relationships are based on the partitioning
quantity-dependent and price-dependent groups of commodities or the legitimate mixed demand
system. Note also that the scale flexibility is defined as responsiveness of (normalized) inverse

demand with respect to scale parameter not with respect to expenditure variable. Derivations of
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following relationships are explained in Appendix B. The resulting relationships among direct,
inverse, and mixed demand functions are summarized as follows:

Theoretical relation of direct elasticities to mixed elasticities.

E. =En-Qu-(F2) 'Rl En=(F1)
En=Qu-(Fa)’ En=—(F2) P
EY=E)-Qu-(Fx)'F E;=—(F)'F".

Theoretical relation of inverse flexibilities to mixed elasticities,
Fu=(E2) Foo = — P2 (EL) QL
F =—(EL)'Qu Fo =P (EL)'

F, =Rowsum|(E2)"i-(E4)'Q4]  F.=Rowsum[py (EX) iRy — P (EL) Q).

AA

Theoretical relation of mixed elasticities to direct elasticities

EL=EL-EL(EZ)'EX Fo =(E3)".
Qu=ExEs)", Py =—(E2) E2,
E) =E;-E(E2) E?, F =—(E5)'E.

Theoretical relations of mixed elasticities to inverse flexibilities
Ex =(Fy)' For = F — Fa(F.)'Fa
P =Fa(Fy)" Qu=—(F.) Fa
E" =—Rowsum|(F,,)"] FY =1 -Rowsum[F.(F.)'].

Theoretical relation of direct elasticities to inverse flexibilities
E5=(FL) +(FL)'FL - [Fe - FLEL) R RURL) B2 =[Fs —FL(FFL]
E5,=—(F.) 'Fu-[FL - FL(FL) 'FL ] es, =-[F, - Fu(FL) FL] Fu(FL)'
E2 =—Rowsun|(FL )" +(FL)'Fi -[Fs —FL(FL) FL] FL(FL) - (FL) Fo - [F — FL(FL) 'R |
£ = —Rowsum|-[F2, - £ (FL ) L] FL(RL) [ — FL(EL) R

Theoretical relation of inverse flexibilities to direct elasticities
Fl =[5 —E2(ES) L] F.=(E2) +(E2) EalEL ~ES(ES) 'ES] B (ES)'

FL=—[En—Ea(ES) Bl EL(ES) FL=—(E3) Ex[EL -EL(ES) EL]
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F, ~Rowsun{E2 - E5(E2) 2] i-[E% -2 (E2) B ELEL) ]
F. —Rowsun}-(E2)'E2[E2 - EA(E2) 'ER] H(E2) + (B2) 'EclEn - EA(E) ‘ER] ER(ER) |

Heretofore, the full modeling spectrums of monotone set of direct or inverse demand
functions as well as mixed demand functions are explained and their relationships are derived
based on the mixed demand system. Although the mixed demand system provides a plausible
way to sidestep the estimation of both demand and supply functions in a full simultaneous
equation framework, the choice among three specifications for demand system remains open
issue. When the choice among them only relies on a subjective reasoning of product property or
market characteristics of a specific commodity rather than empirical evidence, the coexistence
of alternative specifications can even result in ambiguities. For example as Thurman (1986)
mentioned, both direct (Wohlgenant and Hahn, 1982) and inverse (Shonkwiler and Taylor,
1984) demand functions are used for poultry market data.

Given that theory does not provide enough information for this choice and the full
simultaneous equations approach has some ambiguities in choosing appropriate instrumental
variables, the graphical causal models discussed in previous chapter provide an alternative
approach for the choice of empirical modeling among direct, inverse, and mixed demand
systems. The specification choice is closely related with the identification issue of the local
causal structure between price and quantity for a specific commodity. When we choose either
quantity-dependent or price-dependent specification, we implicitly assume a local causal
structure, since the direct (or inverse) demand function is implied by the causal structure that
price (or quantity) variable causes quantity (or price) variable. The empirically derived causal
structures through the proposed methods of DAG can be used to decide dependent and
explanatory variable for a specific commodity demand function within the demand system.
Stockton, Capps, and Bessler (2005) use this approach for meat demand study and named this
approach as a Causally-Identified Demand System (CIDS). The (probabilistic) stability
condition of the graphical causal model, however, can be violated in using a high dimensional
data as discussed in chapter 11, given the observation that many variables in retail scanner data
move very closely. The compositional stability condition is proposed to address this issue in
using the graphical causal model, since the compositional stability condition makes it possible
to capture disaggregated micro-relations by the aggregated macro-relations as the legitimate

representatives.
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Aggregation in Study of Consumer Behavior

The legitimate condition of classification and the appropriate way of aggregation,
which are related with the (probabilistic) stability condition of the graphical causal model, have
also been major issues in the context of the more general econometric considerations in
empirical studies especially in using a high dimensional data set. The availability of scanner data
makes it possible to define finer variables based on thousands of individual products at the store
level on daily frequencies. However, econometric considerations such as the degrees-of-freedom
and multicollinearity require classification and aggregation procedures for economy of
parameters in empirical study. While classification and aggregation issues are involved with
multi-dimensions such as commodity-wise, agent-wise or spatial, and temporal or time
dimensions, the main focus in empirical studies has been on the commodity-wise dimension.
Even though the level of classification and aggregation and the choice of a specific category
have been often based on convenience for addressing specific research objectives rather than on
the empirical evidence (Shumway and Davis, 2001 and reference in there), it has been argued
that small departures from valid classification and/or aggregation can result in large mistakes in
elasticity/flexibility and welfare estimates (Lewbel, 1996). For example, the decision on
classification and aggregation can substantially affect the conclusions about elasticity estimates
in multi-stage budgeting approach, because cross-price elasticity or cross-quantity flexibility
between products in different groups is likely to be small by construction itself (Rubinfeld, 2000).

The classification and aggregation issues have been addressed by using homothetic or
weak separability condition or generalized composite commodity condition in the context of
quantity-dependent specification of demand function. However, there are some difficulties or
ambiguities in using their conditions in empirical studies as discussed in chapter II. We propose
to use the generalized form of the compositional stability condition derived from the Theil’s
aggregation theory to address classification and aggregation issue in more general context of all
possible direct, inverse, and mixed demand functions. The Tornqvist-Theil index, based on the
discussion of the index number theory in chapter II, is mainly used for the actual aggregation or
the decision of weighting schemes for aggregating disaggregated micro-variables within each of
the identified homogenous groups into representative macro-variables. The compositional

stability condition of Cov(d ,X)=0 in x,= X H, +d, are empirically tested by using a
Hausman type misspecification test of H, :y =0in X = XH_+1IV-y +&"  where x_ are

disaggregated micro-variables of either price or quantity of a specific group and X are
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corresponding aggregated macro-variables of either price or quantity of a specific group. The
IV are Instrumental Variable such that IV is closely correlated with regressor X (relevance

condition of IV ) and independent of errord, (validity condition of IV ). In this study, we use

the total expenditure variable, which is calculated by aggregating the price and quantity macro-
variables within the demand system, as the instrumental variable based on the following
reasoning. Given that the total expenditure is closely related with the aggregated price and
quantity variables as in estimated aggregated demand systems, the relevance condition can holds.
The validity condition of the total expenditure variable as an instrumental variable can also hold.
Such possibility exists, since either each of the idiosyncratic variations of disaggregated price or
quantity variable can cancel each other in calculating the total expenditure variable or the
idiosyncratic variation of individual price or quantity variable, which is not captured by the
common variation of representative macro-variables of a specific group, does not have
dependencies on the total expenditure variable, which captures the common variation of an entire
group of commodities within the demand system through group-representative price and quantity
macro-variables.

The problem of forming suitable partitions before conducting any empirical test to
justify those classifications has relied on researchers’ intuition rather than empirical data patterns.
The intuitive partitions based on the subjective reasoning are only a small set of possible
partitions among an extremely large number of possible partitions. Thus when classification is
empirically rejected, it might be simply because of researchers’ unsuccessful identification of the
partition itself, not because of non-existence of legitimate classification itself. Given the
empirical implausibility of attempting all possible partitions, it can be helpful to pursue inductive
partitions related with legitimate aggregation conditions based on the data pattern itself. The
approximate form of the compositional stability condition is used to search for a specific
homogeneous group. The homogeneous grouping or partitioning of related commodities is
identified by the block-diagonal pattern of static and dynamic correlation matrix of price and
quantity variables, based on the modified k-nearest neighbor algorithm.

The compositional stability condition as the consistent aggregation condition is closely
related with the (probabilistic) stability condition as the fundamental condition for the graphical
causal models. When generalized forms of the compositional stability condition can be identified
in data set through grouping micro-variables based on their correlation or covariance matrix,

there exist not only the possibility of obtaining interpretable aggregate indexes or macro-
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variables as the representative aggregate of homogeneous disaggregate micro-variables, but also
the possibility of obtaining interpretable macro-parameters as the representative aggregate of
corresponding micro-parameters for subsequent analysis. This implies that when the micro-
variables can be legitimately grouped and represented by macro-variables, it is possible to use
aggregation methods to capture (causal) relationships among disaggregated variables through

(causal) relationships among aggregated variables as the legitimate representatives.

Functional Form in Study of Consumer Behavior

While it is possible to define aggregated variables based on the consistent aggregation
condition and to choose among direct, inverse, and mixed demand systems based on the
graphical causal models, there remains another issue of deciding functional form to relate the
dependent variable with explanatory variables in an empirical model. This issue has been a
frequently discussed topic in empirical demand literatures. Many useful functional forms have
been proposed and used for the direct and inverse demand functions. Several functional forms of
direct demand system have been converted for use in inverse demand systems and vice versa,
based on the polar relations between both specifications. However, when we want to compare
direct, inverse, and mixed demand systems in the similar functional form specifications, the
possible use of mixed demand system impose some limitations for considering possible range of
functional forms. It is because the mixed demand system requires consistent and simultaneous
specifications for both direct and indirect utility functions and the commonly used flexible
functional forms, such as those underlying the translog and almost ideal systems, do not have a
closed form dual representation for both direct and indirect utility functions. As Moschini and
Vissa (1993) emphasize, an appropriate approach for a flexible demand system of mixed demand
functions is to approximate each demand function directly by a differential Rotterdam demand
system and to impose the theoretical restrictions.

The Rotterdam demand system has been a commonly used functional form for both
direct and inverse demand systems, since it is regarded as flexible in that it provides a first-order
approximation to an arbitrary demand system in either parameter or variable space. Another
commonly used functional form is the Almost Ideal Demand Systems (AIDS) or the Linear
Approximate Almost Ideal Demand Systems (LA/AIDS). While these two demand systems are
common in demand system estimation in agricultural economics, especially for using scanner

data, the assumptions used to parameterize these two systems have different implications. While
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the Rotterdam parameterization assumes that both the income (or scale) coefficient and the
compensated price (or quantity) coefficient in the direct (or inverse) demand system are constant
parameters, the LA/AIDS parameterization assumes that both the income (or scale) coefficient
and the Slutsky (or Antonelli) coefficient in the direct (or inverse) demand system are variational
parameters dependent on the budget shares. Two more logically possible combinations of
constant/variational parameterization for the income (or scale) coefficient and the Slutsky (or
Antonelli) coefficient are also used for both direct and inverse systems. While Keller and van
Driel (1985) of Dutch Central Bureau of Statistics (CBS) introduce variational income (or scale)
coefficient with constant Slutsky (or Antonelli) coefficient by reparameterizing the Rotterdam
specification, Neves (1987) of Netherlands National Bureau of Research (NBR) introduce
income (or scale) coefficient with wvariational Slutsky (or Antonelli) coefficient by
reparameterizing the differential AIDS specification. Given that economic theory does not
provide sufficient information for this issue, the use of intuitive reasoning rather than empirical
evidence can result in coexistence of alternative specifications and thus generate ambiguities,
since elasticities (or flexibilities) are sensitive to the functional form specification. Even though
this general finding that elasticities (or flexibilities) are sensitive to the functional form
specification makes this issue of functional form specification non trivial, empirical comparisons
among alternative specification have been rarely done. The main difficulties are the alternative
specifications are non-nested relative to each other and the non-nested hypotheses testing
approach oftentimes does not provide a conclusive answer for this problem in general situations.
An alternative method for this problem is using the principle of artificial nesting. In this
respective, it has been demonstrated that the Rotterdam, the differential AIDS, and two hybrid
demand specifications of CBS and NBR can be nested within a synthetic direct (Barten, 1993)
and inverse (Brown, Lee, and Seal, 1995) demand system. It has been argued that these two
synthetic direct and inverse demand systems can be considered as demand systems in their own
right, beyond an artificial composite of known models. For example, Matsuda (2005) shows that
one of the nesting coefficients in the inverse synthetic model of Brown, Lee, and Seal (1995)
implies the transformation parameter of the Box-Cox scale curves. Using a similar idea based on
the Box-Cox scale curves, Matsuda (2004) proposes a mixed demand specification, nesting
Rotterdam and CBS specifications.

When we want to compare direct, inverse, and mixed demand systems, we need

parameterize three demand systems in the similar degrees of flexibility in functional form
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specifications, when the flexibility means the capability of the empirical model to allow the
possible combinations of constant/variational parameterization for the income (or scale)
coefficient and the Slutsky (or Antonelli) coefficient. Given that the synthetic differential
demand model exists for the direct and inverse demand system, the synthetic differential demand
model is proposed for the mixed demand system based on the similar logic to derive synthetic
demand model in direct and inverse demand systems. Furthermore Eales, Durham, and Wessells
(1997) show that synthetic direct and inverse demand systems can be reparameterized to have
common differential AIDS dependent variables, which makes it possible to compare direct and
inverse demand functions. By extending the common logic of these approaches, a similar
synthetic functional form for a mixed demand system can be specified in the common
differential AIDS dependent variables, which makes it possible to compare direct, inverse, and
mixed demand systems in the model selection frameworks. Rotterdam type and AIDS type
dependent variable synthetic models can be directly derived from Rotterdam specification as
explained below, which make it possible to derive synthetic mixed demand functions.
Derivations of direct, inverse, mixed demand functions are explained in Appendix C. The
original functional form and the Rotterdam type and AIDS type dependent variable synthetic
model specifications can be summarized as follows.

The differential family of four direct demand systems can be summarized and nested in
either Rotterdam or AIDS dependent variable forms of synthetic direct demand systems. If the

expenditure coefficient is defined as a, = [ann] or c = [ann —Wn] and the Slutsky coefficient
is defined as a, , = angnc,an orC, .= [annfn, -W, (Wn, -0, )J, then both are nested by synthetic
parameters of C, = [ann —6?]°Wn] and C, = lwng:‘n, -0’w, (Wn, -0, . )J respectively.
Rotterdam : wdlng, =[we JdInQ+ ZN:,[anj’n‘]d Inp, or

wdlng, =[a JdInQ+ i[an,n']d Inp, or

dw =[a —w ]JdInQ+ i[a ~w,(w, -5, Jdmnp, .
Differential AIDS: dw, =[w.e, —w, JdInQ+ ZN; [anj’n, -W, (Wn, - 5n,n')]d Inp, or

w,dlng, =[c, +w, JdInQ+ i[c +w,(w, -5, Jdinp, or

dw =[c JdInQ+ i[c]d Inp, .
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CBS: w,.d 1{%} ~[c,dmQ+3a, Inp, or

w,ding, =[c, +w, ]JdInQ+ i[a]d Inp, or
dw, =[c JdInQ + z[a ~w,(w, -5, Jdnp,.
NBR: (dw, +w,dnQ)=[a JdInQ+ z [c..JdInp, or
w,dlng, =[a JdInQ+ i[c +w,(w, -5, Jdinp, or
dw =[a, -w [dInQ+ i[c]d Inp, .
Synthetic: w.dlng, =[C, +6°w, JdInQ+ z [c..+6°w (w, -5, )dInp, or
o[, -1 Q-+ $[c.. ~(1-0 o, -5, Jon..
The Rotterdam type dependent variable synthetic forms can be derived as follows.
wdlng, = [ann —0°W, +6°w. ]d InQ + ZN%[WS -0’w, (Wn‘ — 6n‘n,)+ 0w, (Wn‘ — 5)]d Inp,,

which can be transformed into AIDS type dependent variable synthetic forms as follows.
dw, =(w,dIng,)+wdInp, —w [dInQ+dInP]
=(wdIng,)+ wn[ i@’n‘d In pn‘]— w,dInQ - wn[ iwﬂ.d In pn.]

=(w,dIng,)-w,dInQ- wn[ >(w, -4, Jdn pn.]

dw, =[we, — 0w, —(1-0° W, [ InQ+ X [w,z:, — 0w, (w, -5, )-(1-0° W, (w, -5, JJdnp, .

Theoretical restrictions can be imposed by using following relations

(a) Homogeneity: ZNan_n, =0,
(b) Symmetry: C.=C..,
(c) Adding-up: $C =1-0° .

Because: (a) ZN:‘,CM. = %[W g —07w (Wn, —5n_n.)]: ZN:jann“Vn, —6°w, ZN:‘,[WH. —5nyn,] , which, by

n=n,n'

N

Swel, =0, is >C =—92°wanwn.—iéﬂyn.J}e;’wn[l—l]:o. (b) Usingw,s°, =W, &° . we

n'~“n.n?
n'=l =1

Can Compare Cﬂ,ﬂ‘ = anrf,n’ - HZOWFI (Wn’ - 5n,n’) With Cn‘.n = Wn'gr?’,n - HZOWH‘(WH - 5[’\',“) as WHWH' _Wn5n,n’
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with W.w, —w &

0,.,» Which is equal because W 6, . =W, 0J, . (c) Usingiwngn =1 and iwﬂ =1,
iCn =3 [ann —Qown]z ( iwﬂgn)—ﬁf’( iwﬂ) can be written as iCn =1-6°".

1 n=1

The elasticities are calculated as follows

(a) Expenditure elasticity: & =—46°,

n,n'

C,.
(b) Compensated elasticity: &l =—"+0; (Wn. -0, n,), and
W .

n

C..
(c) Uncompensated elasticity: ¢, . = {$ +0; (Wn‘ -9, n)} - {CH[W”' J + Qlown,} .
: W, ' W,

n n

Because: (a) C, =w,¢, —0°w,, (b) C,  =wWe —6'wW (Wn. —5n_n,), and (c) ¢,, =¢., —&W,"

The differential family of four inverse demand systems can be summarized and nested
in either Rotterdam or AIDS dependent variable forms of synthetic inverse demand systems. If

the scale coefficient is defined as b, =[w_f ] or d_=[w f +w_] and the Antonelli coefficient
is defined as b, = [Wn fnfn,J ord = an fr —w (Wn, -0, . )J, then both of them are nested by
synthetic parameters of D, = [Wn f +0 Wn] and D, . = lwn ff. —0w (Wn, -0, )J respectively.
Rotterdam: wdlnz, =[w,f JdInQ+ i [Wn fnfn,]d Inq, or

wdlnz =[b Jd an+i[bn)n,]d Inq, or

dw =[b +w [dInQ+ i[b ~w,(w, -5, JdIng, .
Differential AIDS: dw, =[w, f +w JdInQ+ ZN?‘,[Wn fr.—w (Wn‘ - 5n'n.)]d Inq, or

wdlnz, =[d —w JdInQ+ i:[dnyn, +Wn(wn, —5ﬂwn,)]d Inq, or

dw,=[d,JinQ+X[d, Jng, .

CBS: w.d ln(%jz[dn]d an+ZN_‘,[bnyn,]lnqn, or
wdlnz, =[d —w |d an+ZN7:[bn'n,]d Inq, or

dw, =[d, JinQ+3[d,, Jng, .
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NBR: (dw, +wdInQ)=[b,JdInQ + i:[dm.]d Inp, or
wdlnz, =[b [dInQ+ ZN:j[dn‘n‘ +W, (Wn, —é}’n.)]d Inq, or

dw, =[b, +w,J4nQ+>[c, Jnp, .

Synthetic: wdlnz, = [ D, -6'w, ]d an+i[Dm, +0,w, (wn‘ —5M.)]d Inq, or

dw, =[D, +(1-0' W, JdnQ+3[D,, ~(1-0 W, (w, -5, g, .
The Rotterdam type dependent variables synthetic forms can be derived as follows.
wdlnz, =[w, f, +0'w —0'w, [dInQ + ZN;[Wn fr. —0)w, (Wn‘ - 5M,)+ o,w, (Wn‘ - 6M,)]d Inq, ,

which can be transformed into AIDS type dependent variables synthetic forms as follows.
dw =wdIlnp +wdIng —wdIny

—w[dinp,-dIny]+wdIng,

=(w,dInz )+wdIng, +(wdIinQ-wdnQ)

=(wdlnz,)+ Wn[ i&n_n.d In qn‘]+ wdInQ - Wn[ iwn‘d In qn,]

=(w,dInz,)+w,dInQ- wn[ > (w, -5, lnqn,]

dw, =[w,f, +0'w, + (10 W, JdInQ+ S [w, 1, — 0w, (w, -5, )-(1-6 W, (w, -5, Jld Ing,

Theoretical restrictions can be imposed by using following relations

(a) Homogeneity: i D, =0,
(b) symmetry Dn.n' = Dn',n >
(¢) Adding-up: YD =-1+6' .

Because: (a) >.D,, =>[w,f’, —6w,(w, -5, Z%W" fo —0w 3w, -5, ], which, by

N N

>w fe =0, is ¥D,  =-0w, sz - Z5n,n-J= —0'w,[1-1]=0. (b) Usingw, f* =w,f° . we
can compare D, . =w f° —HZ'WH(WH, —5m,) with D, =w, f° —HZ'WH,(Wn _5”) as WW, —WJ, .

with W w —w &, which is equal because W o, . =W 0, . (c) Using by iwﬂ f,=—1 and

iwﬂ =1, iDn i[wn f, +91'Wn]:(iwn fn)+¢91'(ZWn) can be written as iDn =—1+6'

n=I n=I 1 o
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The elasticities are calculated as follows

(a) Scale flexibility: f = D, -0,
w

n

D,
(b) Compensated flexibility: =+, (w, -5, ,), and

n

w

n

D,.
(c) Uncompensated flexibility: f = { “ 46, (Wn, -0, n)} + { D, [ﬂj -0 Wn} .
: W :

because (a) D, =w, f +6'w ,(b) D, =w, f° -6 w (Wn, —5”,), and (c) f, ="1° +fw,
The differential family of mixed demand systems can be derived and nested in either

Rotterdam or AIDS dependent variable forms of analogous synthetic mixed demand systems.

The expenditure coefficients of group A and B are defined as ¢, = [Wigi -0" Wi] and
B, E[Wk f, —HIMWk] and the Slutsky coefficients are defined as o, Elwigifj -0"w (Wj - 5”)J,
B =lw 0w (w -5, )], -7, =wp, +0'ww |, and g, =|wa;, —0'ww,|.
Rotterdam:
wdlng, = [Wigi] -dIny
+g [Wigifj —-We, ( i W, - pﬁ_j)]-dln P,

k=m+1

+ i [Wiqic.s_wigi'( i errcs)]dlnqs

wdinp, =[wf]-diny
+§[Wkpf,j —w 1, ( b erf,j)]-dln P,

j=1

+ i [kakfs—kak'( i W,frfs)]'dlnqs

Synthetic:
\/vld lnqi = [ai +61Mwi]'d Iny

m

+Z[ & +02M\Ni( j_d.j)_(ai +01M\Ni)'( i ~ 7 _ezMWer)
= remel

-dnp,

o 3o r 0w —(ararw)( 3 5. 10w -5,) Jdamg,
wdlnp, =[4 +6"w,]-dIny

+§[ i _HzMWij _(IBk +91ka)'( ﬁ:l_yr.j _ezMWer)]"d In p;

* %‘ [ B+ 0w, (Ws _5“)_ (ﬂk + QIMWk)’( r:imﬂﬂ,,s +0'w, (WS —5”)) ]-d Inq,

s=m+1

or



dw, = [ai +(01M —1)Wi]~dln)7

+i[ a,, +(02M —1)\Ni(Wj —é’u)—(oci +6?1Mwi)~( i ~7.; —HzMWer)]-d In p,
+ ﬁ: [gi.s +92MWiWs _(ai +91Mwi)'( i B, +92er(ws _5r.s))]'dlnqs
dw, =[ 8, + (0" -1, ]-dIny

+i[ 7 —(6’2“” +1)\Nij —(ﬁk +9|ka)-( i Ve, —ezerwj)]-dln p,

+i .

[ﬂk,s + HzMWkWs +(1_92M )Wkgk,s _(ﬂk +0, Wk)( ﬁ:

s 1 r 1

B +6"w,(w, - 5))] dling,
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where two synthetic forms of mixed demand function can be derived as follows by applying

similar logics used to derive two synthetic forms of direct and inverse demand functions.
wdlng =[we —6"W, +6"w,]-dIny
+ zm: [Wi‘gic,j -0, (Wi =, )+ 0w, (Wj =9, )] din P;

+i[_(wigi _elMWi +91MW-)( i W, - pl'c] +92MWer _ezMWer)

< dlnp,
+ Z [war, -6 ww, +6"ww,]-dIng,
+ ﬁ:l [_ (we, —60'w, +6’,Mwi)-( ﬁjlwr f°, —02er(Ws _5r,s)+ gzMW,(WS _5“5))].(1 Ing,

\/vld Ing, :[ai +HIMWi]'dll’l)_/

+i[ a,+0w(w, -5, )-(a +91MWi)'( i ~7. —HZMWer) -dInp,
o3 [0 vormu (e sl 3 5, +0rmn -5, |amg

dw, =wdIng, +wdInp, —w/[dIny]
=wdIng +wdinp,—w[dIny—dInP, +dInP,]
=wdIng +wdinp,—w[dIny+dnP,]
=(wdlng)+wdInp -wdIny-wdInP,

=<Widlﬂqi>+Wi[i5i<jdln pj}—widlny—wi[iwjdln pj}

=<w|d1nq|>—w|d1n7—§jwl(wj ~5 Hinp,

$[a, + (0 ~wlw, -5 )~ (e + o) $ -7, -02ww )} anp,

r 1

[ g.. +0"ww, (e, +0MWI)-( 2:: B..+6"w(w, —ém))]-d Inq,

s=m+1 r 1
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w,dIn p, :[Wk f.—0"w, +61ka]-d1n7

+ZI [Wk P+ ww, —HZMWkWJ.] -dlnp,
+i[—(wk f —0"w, +91ka)-(i w.p;, +6'ww —QZMWer)]-d In p,
j=1 =m+1 ’

+ i w, £’ —492“”Wk(ws —6k,5)+ Hzka(Ws —5k,s)] -dIngq,

s=m-+l

3 wf —6'w (Ws -0, )+ 0,'w. (Ws -0, ))] dlnq,

=m+1

+ i [_(Wk fk _elMWk +91ka)'(

wdlnp, =[4 +6"w,]-dIny

+Ji[ =7k _HzMWij _(ﬂk +91MW|<)'( ﬁ:mﬂ_}/r,j —HZMWer)]-d In pj

r

N

+3 [ B +0"w (w, -5 )~ (B +91ka)-( > B+ 0w (w, —5“5)) ]d Ing,

dw, =w,dInp, +w,dIng, —w,[dIny]
=wdInp, +wdIng —w[dny-dInP, +dInP,]
=wdinp, +wdIng —w[dIny+dInP,]
=(wdInp,)+wdlng -wdIny-wdInP,

=(wdnp,) +wk[§5“d In qs]— w,d In y—wk[gwjd In pj}
=(wdlnp,)-wd lny—éwkwjd Inp, +§Wk5md Ingq,
dw, =[ 8, +(0" ~1jw,]-dIny
+ﬁ[ —7, — (@ + ww, — (8, + HIMWK)~( ﬁm“—yu —HZMWer)]d In p,
+ 3 [ﬁ +0rww, +(1-6 w5, - (B, + elek)~( > B0 (- 5{,5))} ding,
Theoretical restrictions can be imposed by using following relations

iws) and

s=m+1

s

(a) Homogeneity: a,, =06 Wi(l - ﬁwjj =0, Wi(

_Zniij. =—Wr[1+6?2“”_§mjwj}=—w,[l+6’z“” (1— EN;W)]

s=m-+1

(b) symmetry ai,i = aj,i > ﬂr,s = ﬂs.r > and 7!’,] = gjvf ?

(¢) Adding-up: Sa,+ Y8 =1-0",
Ya,, = HzMwi[l—in) =9;”wi( ZW) and
=1 j=1 k=m-+1

9. :—w[l+9j”iwj} =—W,[1+€2M (1— iw)]

=1 s=m+1
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Because: (a) Ya, | = i[wigfj -0"w, (WJ. -9, j)]: Wizm:gfj —HZMWi[zm‘, W, 35 J} , which, by
j=1 j=1 ’ ’ =1 j=1 =

iwi ¢/, =0 and i@71:1 , 1s iai'jz |:ZW —1} [1 iw} HMW[ ZW] and

j=1 s=m-+1

zm;yr | = f;[—wr p; —492“”W,WJ.]=—§;Wr p; —HZMWerjo , which, by >w - P, =W, , is equal to
j=1 j=1 : j=1 : j=1 j=1 ’

%yuz—w HMwZW ——W|:1+9MZW}=—W[1+9M(1— Zw)] (b)Using W, - &, =W, - &,

J.i2
we can compare &, =We&/, —HZMWi(WJ. —5”.) with o, =W.¢;, —¢9ZMWJ,(Wi —5“) as WW, —W3,

with. WW, =W, , which is equal because W5, , =wW,5,,. Using W, - f° =w_ - f’ , we can

Ja? s

compare S =wf° -6'w (WS _5r,s) with g =w,f° -6'w, (Wr —5“) as Ww, —Wo  with

r

WW, —W.J,  , which is equal because W,0,, =W,0, . Using —W, - p;, =W, -Q;

ss,r

W¢€ can compare

j.r?

Vo, = [W p; | +9MWWJ withg, =wq —0'ww, as —ww, with. —w W, , which is equal. (c)
ia + Z,Bk LZW&‘ —0MWJ LZ 6, J I;Wg + Z kJ QMI;W + ZWJ which, by
i=l k=m+1 k=m+1 k=m-+1

N
Ywe + 2w, f, =1, can be written as Za + Z S, =1-0". Other two restrictions can be also

i=1 k=m+1 k=m+1
derived by using symmetry relationships of ¢, , =¢«,, and g,, =7,,.

The elasticities are calculated as follows

(a) Expenditure elasticities: &=—+6" and f =+0",
i Wk
“ e, c ai j M c ﬁk.s M
(b) Compensated elasticities: &, =—++0, (W]. -0, j), f = + 6, (WS -0, S),
1w : T, ‘
c 7/ N c gi,s
pkj__v:;J HZMWj’and qisE W +02MW5’
k i
(c) Uncompensated elasticities:
_a. ) 1 [ _ [ N ) i
&= L_,_gzM (Wj _5“‘) - ﬁ+01M:|' Wi+ 2 W, ’[_&_HzMWiJ
L Wi ) _Wi k=m-+1 Wk

r=m+l

f = &+92M(WS—§KS) - ﬂ+91Mi|' i Wr'(&-’-ezM(Ws_é‘r,S)J
W, W,
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P, :{—&—Hywj}—{ﬂﬁtw]{wj + 3 W, -[—h—@”wjﬂ
? Wk Wk r=m+l Wr

qis :|:&+92Mwsj|_|:ﬁ+elwlj|[ i Wr (&_'-QZM (WS _§r S)J:| .
: Wi Wi r=m+l Wr ’

Because: (a) ¢, E[Wigi—HIMWi] and p, E[Wk f, —HIMWK] , b) Elvvigfj —(92“"Wi( j—é'”)J ,

:Bk,s = [Wk fkc,s _HzMWk (Ws _5&5)] s Vi = ka p:; +02MWijJ’ and gi,s = lWiqic,s _HZMWiWsJ > and (C)

& =gifj—£ile+ i wop | fo=1F— fkl i w-fol B, =0 fkle+ i Wropf,jJ, and

k=m+1 r=m+l r=m+l

., =0, —g,[ i w, - ffsJ-

r=m+1
The synthetic parameters for direct, inverse, and mixed demand functions can be

summarized as in Table 3.1. The value of 0 and 1 for 6, captures constant and variational
expenditure or scale coefficients and the value of 0 and 1 for 6, captures constant and variational

Slutsky and Antonelli coefficients respectively, where the variations rely on the budget share
values. Even though it is difficult to directly compare each of four types of specifications, it is
possible to indirectly compare each of them to a synthetic model, because the synthetic model

nests all four specifications. The joint tests for combinations of possible values of 6, and &, can

be used to compare among the synthetic model itself and four nesting types of models within

each of direct, inverse, and mixed demand systems respectively.

Table 3.1. Synthetic Parameters for Three Specifications

Direct Inverse Mixed
Model 07 0.° 0, 0, 0, 0"
Rotterdam 0 0 0 0 0 0
LA/AIDS 1 1 1 1 1 1
NBR 0 1 0 1 0 1
CBS 1 0 1 0 1 0

* Restrictions of synthetic parameters to nest popular functional forms for three specifications.
** Refer to synthetic demand equation. For example, synthetic parameters in the direct demand system corresponds to parameters in

aw-{C-{1-g Q3 {C, {1-@wlw -3, Jitng,

Model Comparison Method
While the issue of an appropriate functional form within each of direct, inverse, and

mixed demand systems respectively can be addressed through synthetic approaches, it is not easy
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to nest all three specifications of direct, inverse, and mixed demand systems in composite model.
The main difficulties to compare different specifications in terms of price-dependent and/or
quantity-dependent modeling across direct, inverse, and mixed demand systems are again the
alternative specifications are non-nested relative to each other and non-nested hypotheses testing
approach oftentimes does not provide definite answer for this problem. The Likelihood
Dominance Criterion, introduced by Pollak and Wales (1991), provides alternative method to
rank competing models as long as the competing specifications have the common dependent
variables. Unlike the non-nesting test procedures and artificial nesting approach, the model
selection criterion does not require actually estimating the composite model. Saha, Shumway,
and Talpaz (1994) demonstrated that the likelihood dominance criterion outperformed some
widely used non-nested testing procedures such as Davidson-MacKinnon J test and Cox test in

selecting the true model, using Monte Carlo evidence. Let H and H, denote two non-nesting
hypotheses, which are nested in composite hypothesis H, andn ,n,,n and L ,L, , L, are

corresponding number of independent parameters and log-likelihood values with assumption of

n <n,. Let C(v,7) denote the critical values of the chi-square distribution with v degrees-of-

freedom at some fixed significant level 7. The model selection approach can be summarized as
follow based on the Pollak and Wales (1991).
When the standard likelihood ratio test procedure is used to compare two hypotheses

with the composite, the hypothesis H, will not be rejected iff 2L, —2L <C(n, —n,z) or
L. <L +(1/2)-C(n,—n,,z) and H, will be rejected iff C(n,-n,z)<2L 2L or
L, +(1/2)-C(n. —n,,7)< L, . This test procedure can be understood based on the intuitive
reasoning that the additional parameters in composite model can be accepted, only when they
increase likelihood function values. Testing separately the restrictions on the composite
corresponding to the two non-nesting hypotheses can result in one of four possible outcomes:
(a) reject H, and acceptH, ,

iff C(n.-n,7)<2L, -2L, and 2L, 2L, <C(n. —n,,7)

or L +(1/2)-C(n. —n,, 7)< L. <L, +(1/2)-C(n. —n,,7) .
(b) reject H, and accept H,,

iff C(n. —n,,7)<2L. —2L, and 2L, -2L,<C(n, -n,7)

or L, +(1/2)-C(n. —n,,7)< L, <L, +(1/2)-C(n. —n,,7) .
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(c) reject both H, andH,,

iff C(n.—n,,7)<2L, -2L and C(n. -n,,7)<2L. —2L,

or both L, +(1/2)-C(n. —n,,z) and L, +(1/2)-C(n. —n,,z) are less than L.
(d) accept both H andH,,

iff 2L, —2L, <C(n, —n,,z) and 2L, -2L, <C(n. —n,,7)

or both L, +(1/2)-C(n. —n,,z) and L, +(1/2)-C(n. —n,,7) are greater than L.

According to the dominance ordering, unlike non-nesting testing procedure which may
result in accepting or rejecting both hypotheses, when the likelihood ratio test accepts one
hypothesis and reject the other, the decision of accepting one hypothesis and rejecting the other
can be determined without actually estimating or even specifying a particular composite,
although the determination require specifying the number of independent parameters of the

composite or the composite parameteric size n.. Ordering dominance among competing non-
nesting hypotheses can result in one of three possible outcomes:
(a)H, dominatesH ,

iff L +(1/2)-C(n. —n,z)<L,+(1/2)-C(n. —n,,z) and L, <L, when n, =n,,

because reject H, and accept H, , iffL, +(1/2)-C(n. —n,,z)< L. <L, +(1/2)-C(n, —n,,7)
(b) H, dominates H,,

iff L, +(1/2)-C(n. —=n,, 7)< L, +(1/2)-C(n. —=n,,z) and L, < L, when n, =n,,

because reject H, and accept H,, iff L, +(1/2)-C(n, —n,,z)< L. <L, +(1/2)-C(n. - n,,z).
(c) H,is indifferent toH,,

iff L, +(1/2)-C(n, —=n,,7)=L, +(1/2)-C(n. =n,,7) and L, =L, when n, =n,,

based on the above two possible outcomes.
Note that if L, +(1/2)-C(n_—n,,z) is very close to L, +(1/2)-C(n_ —n,,z), then the likelihood
ratio test will probably either accept or reject both hypotheses. In this respective, the significance
level to determine the critical value should not be interpreted as the significance level of the
dominance ordering per se, but as the significance level of the fictive likelihood ratio test.

The dependence of the dominance ordering on the composite parametric size is

disturbing in the general case of n # n,, since specifying it may be fairy arbitrary and different

composite sizes may imply a different ordering. This difficulty can be mitigated by using the
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likelihood dominance criterion, based on the proposition that (1/2)-[C(n. —n,,7)-C(n. —n,,7)]
is a monotonically decreasing function of n_, if the significance level 7 is less than 0.40 and a
range of composite parametric sizes is such that from one parameter more than the larger
hypotheses to one parameter more than the sum of the number of parameters in the two
hypotheses (n, +1<n. <n +n,+1). This proposition implies that forn, +1<n_<n +n, +1,
[C(n, +1,7)-C(n, +1,7)]<[C(n, =n,,z)-C(n, —n,,7)]<[C(n, +n, +1,7)-C(1,7)]. The use of
Likelihood Dominance Criterion among competing non-nesting hypotheses can result in one of
three possible outcomes:
(a)H, is preferred toH

iff (1/2)-[c(n, —=n, +1,7)-C(1,z)]<L,-L, or L <L, for n, =n,

because (1/2)-[C(n. —n,,z)-C(n. —n,,7)]<(1/2)-[C(n, —=n, +1,7)-C(1,7)]< L, - L,
(b) H, is preferred toH, ,

iff L, —L, <(1/2)-[c(n, +1,z)-C(n, +1,7)] or L, <L, for n, =n,

because L, - L, <(1/2)-[C(n, +1,z)-C(n, +1,7)]< (1/2)-[C(n. =n,,z)-C(n. = n,,7)]
(c) Indecisive between H, and H,,

iff (1/2)-[C(n, +1,7)-C(n, +1,7)]< L, - L, < (1/2)-[C(n, —=n, +1,7)-C(1,7)]

or L, =L, for n, =n,

because based on the above two possible outcomes and the relationship of

[C(n, +1,7)-C(n, +1,7)] < [C(ne = Nny,7)=C(ne =Ny, 7)] < [C(n, =0, +1,2) - C(1,7)).

Note that to narrow this indecisive range, the significant level z be adjustably selected and/or the
composite parametric size n. can be determined directly from the significance tables for the chi-
square distribution for given n ,n,and L ,L,.

It can be seen that the likelihood dominance criterion has similar implication with the
two common model selection criteria of Akaike Information criterion (Akaike, 1973) and
Schwarz information criterion (Schwarz, 1978). The Akaike and Schwarz model selection rules
of choosing the largest value of L, —n, and L —(logT/2)-n, can be understood as pair-wise
comparison rules for L,—L in terms of relative penalty functions (n,—n) and
(logT / 2)- ( n, — nl) respectively. These two relative penalty functions have similar implications

as the likelilhood dominance criterion, since as Pollak and Wales (1991) argued that
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(1/2)-[c(n. =n,,z)-C(n. —n,,z)] converges to (1/2)-(n,—n) as n, —c based on the
asymptotic normality property as a function of degrees-of-freedom of the chi-squared
distribution. Based on this argument, it can be argued that the use of three model selection rules
can result in one of three possible outcomes:

(a)H, is preferred toH

iff (1/2)-(n, —n,)< L, — L, for likelihood dominance criterion of n. — o

or (logT/2)-(n, —n,)< L, — L, for Schwarz model selection rule

or (n,—n;)<L, - L, for Akaike model selection rule.

(b) H, is preferred toH, ,

iff L, —L, <(1/2)-(n, —n,) for likelihood dominance criterion of n, — o

or L, —L, <(logT/2)-(n, —n,) for Schwarz model selection rule

or L, —L, <(n, —n,) for Akaike model selection rule.

(c) Indecisive between H, and H,,

iff L, — L, =(1/2)-(n, —n,) for likelihood dominance criterion of n. — o

or L, —L, =(logT/2)-(n, —n,) for Schwarz model selection rule

or L, —L, =(n, —n,) for Akaike model selection rule.

Note that non-nesting hypotheses and composite hypothesis should involve the same
dependent variables for the above discussions. While Rotterdam-type synthetic models have
different dependent variables across direct, inverse, and mixed demand systems, AIDS-type
synthetic models have the common dependent variables across direct, inverse, and mixed
demand systems. If the hypotheses involve different dependent variables but are functionally
related, then the likelihood function must be adjusted by including the appropriate Jacobian bias
term. To avoid difficulties involved this adjustment, the model selection approach is used for

synthetic models of AIDS-type dependent variables for the comparison across direct, inverse,

and mixed demand systems.

Summary and Proposed Method
There are significant advances in the study of demand from both theoretical and
empirical perspective. In the theoretical perspective, the full modeling spectrums of monotone

set of direct or inverse demand functions as well as mixed demand functions are developed.



98

While these theoretical advances bring modeling flexibility to the study of consumer behavior,
they also bring forth the local identification issue of choosing one empirical model among three
possible specifications of the direct, inverse, and mixed demand systems. Given that there is an
empirical difficulty in studying all possible combinations for the mixed demand system as well
as the direct and inverse demand systems, graphical causal models provide an inductive way to
infer local causal structure among price and quantity variables for a particular commodity. After
the local identification issue is guided by the graphical causal models, the model selection
approaches, such as the likelihood dominance criterion, provide empirical method of comparing
empirical demand model specifications. The AIDS type dependent variable synthetic functional
forms for the direct, inverse, and mixed demand systems provide a flexible and comparable
functional form to connect the graphical causal model and the model selection approaches, thus
minimizing the effects of the chosen functional forms for three specifications. Note that the
direct and inverse demand systems can be always used for comparison purposes, regardless of
the identified causal structures from the graphical causal model. On the other hand, the identified
causal structures from the graphical causal model provide inductive information for the possible
combination of price and quantity dependent specifications for the mixed demand system. This
inductive information based on the graphical causal models provides empirical guidance for the
local identification issue, given that the researchers’ intuition for this issue does not always
provide objective specifications.

Recent advances in data processing capabilities have brought the possibility of analyzing
larger number of detailed variables. The retail checkout scanner data have brought forth research
potentials for significant advances in the micro-economic analysis of consumer behavior. Given
the observation that many variables in this high dimensional data move very closely, the
compositional stability condition, as a consistent aggregation condition, provides an inductive
way to pursue the possibility of obtaining not only (a) interpretable aggregate indexes or macro-
variables as the representative aggregate of homogeneous disaggregate micro-variables but also
(b) interpretable macro-parameters as the representative aggregate of corresponding micro-
parameters for the subsequence analysis. This implies that when the micro-variables can be
legitimately grouped and represented by macro-variables, it is possible to use aggregation
methods (a) to incorporate broad range of information into the empirical demand models, while
minimizing econometric issues such as the multicollinearity and degrees of freedom and (b) to

capture (causal) relationships among disaggregated variables through (causal) relationships
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among aggregated variables as the legitimate representatives. This compositional stability
condition is used (a) to provide an inductive way of forming suitable partitions before
conducting any empirical test to justify those classifications based on the empirical data patterns
rather than on researchers’ intuition and (b) to address the possible violation of the (probabilistic)
stability condition to use the graphical causal models for the high dimensional data. Note that it
is conceivable and oftentimes observed that the (probabilistic) stability condition for the
graphical causal models is violated for using high dimensional data in empirical study, given the
observation that there exist close co-movements and thus near deterministic relations among
variables in high dimensional data.

More specific procedures we propose are as follows: (a) Both standard static correlation
matrix and dynamic correlation matrix over identified frequency bands are used to measure co-
movement among original variables. Based on these similarity measures of disaggregate micro-
variables, the modified k-nearest neighbor algorithm is used to sort the variables such that the
highly correlated variables are near each other along the main diagonal in reordered correlation
matrix. The block-diagonal pattern of reordered or sorted static and dynamic correlation matrixes
are used to identify homogeneous groups of variables, based the approximate form of the
compositional stability condition. (b) Based on identified classifications of original variables,
index number theory is used for actual aggregation procedure to decide weighting schemes or
aggregating disaggregated micro-variables into representative macro-variables within each
identified group. (c) The identified classification and aggregation of micro-variables into macro-

variables can be tested, as long as appropriate instrumental variables can be identified. The
Hausman type misspecification test of H, :y =0 in the equation X, = XH_+IV.y +¢ ",
where X, and X are micro- and macro-variables respectively and IV are Instrumental
Variables such that IV is closely correlated with X and independent of d_, provides statistical
test framework for the generalized form of the compositional stability condition of independence
between d, and X in the set of equations X, = X H, +d . (d) Based on the implication that

identified compositional stability condition in the data makes it possible to infer causal structures
among micro-variables through relationships among representative aggregated macro-variables.
PC algorithm or GES algorithm are used to infer causal structures among macro-variables as the
legitimate representative causal relationships among micro-variables are used for the subsequent

analysis. (e) Based on the local causal structure between price and quantity variables for a
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particular commodity, the AIDS type dependent variable synthetic functional forms for the direct,
inverse, and mixed demand systems are estimated. (f) The Rotterdam, AIDS, NBR, and CBS
type constant and/or variational parameterizations and synthetic model are statistically compared
and the parameterizations for expenditure (scale) elasticities (flexibilities) and Slutsky
(Antonelli) coefficients are chosen within each of direct, inverse, and mixed specifications.
Based on the chosen parameterization, the direct, inverse, and mixed demand system are
compared based on the model selection approaches, such as the Akaike Information, Schwarz
information criterion, and the likelihood dominance criterion. Note that inductive properties are
emphasized in every sequence of the proposed method, since some types of deductive properties
can bring subjectivities or ambiguities into the empirical results. The remaining subjectivities in
our proposed method are left as further research issues, with the hope that the remaining
subjectivities bring fewer ambiguities relative to the previously used methods. The proposed
method is illustrated with the applications for retail checkout scanner data as an example of the

high dimensional data.

Empirical Analysis and Results

The proposed methodological procedure is illustrated with the soft drink products with
size of 6/12 oz sold at Dominick’s Finer Foods (DFF). Given that some types of deductive
properties can bring subjectivities or ambiguities into the empirical results, inductive properties
are emphasized. First, the data used for this study are described. Second, the common frequency
bands for the estimated spectrum of variables are identified and the static and dynamic
correlations among variables are measured and sorted for the classification. Third, based on the
block diagonal pattern of the sorted correlation matrixes, the variables are classified and
classified groups are interpreted, where variables within each of groups closely co-moves. Fourth,
based on the classified groups, the index number theory is used to represent disaggregate
variables by aggregate variables. And the compositional stability condition is empirically tested
and the test results are compared with Lewbel’s composite commodity conditions. Fifth, the
local causal structure among price and quantity variables for each of aggregate commodities is
inferred by the graphical causal model. Sixth, based on the local causal structure used for
identification, the direct, inverse, and mixed demand systems are estimated based on the

synthetic demand system approach. The estimated results of three specifications of demand
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system are related and compared. The empirical results are summarized and additional issues to

be studied are discussed.

Data Description

The data set consists of weekly observations on 23 soft drink products with size of 6/12
oz sold at Dominick’s Finer Foods (DFF) from 09:14:1989 through 09:22:1993 with the sample
size 210. All the data are from the Dominick’s database, which is publicly available from the
University of Chicago Graduate School of Business (http://www.chicagogsb.edu/). The
Dominick’s Finer Foods (DFF) is the second largest supermarket chain in the Chicago
metropolitan area with about 25% market share. Each soft drink used for this study is a specific
soft drink of 6/12 oz size such as Coca-cola classic, Pepsi-cola cans, Seven-up diet can. The
brand-level categories include Coke, Pepsi, Seven-up, Mountain Dew, Sprite, Rite-Cola, Dr.
Pepper, A&W, Canada Dry, Sunkist, and Lipton Brisk. The size of 6/12 oz is chosen due to the
data availability and identified homogeneity within this size of soft drinks in the preliminary
study.

Although the original data set is the store level weekly retail scanner data for the specific
items represented by UPC code, the aggregated chain level data is used for this study. In order to
characterize the chain level characteristics, the store level data are aggregated across stores by
using the simple sum and unit value for quantity and price variables, where unit value is total
sale revenue divided by the total quantity sold. The reasons for this is the commodity-wise
aggregation is the main issue to be addressed in this study and the aggregation across consumers
or regions brings forth more difficult issues, which can be addressed only with additional
information such as demographical and economical information. Another practical reason for
this is that there are many missing observations in the original data set due to different data
collection period or other reasons. Aggregation based on the unit value approach is one way to
deal with this missing observation problem, whereas the use of other index formulas brings forth
the difficult issue of how to handle a zero price or quantity in the data set.

For the purpose of estimating differential demand systems, the differential terms for
price and quantity variables are approximated by the finite first differences
(dlnp =Inp, ~Inp

and dInqg, ~Inq,, ~Inq, ) and the market share terms are replaced by

nt-1

their moving average (W, = (Wn’t +W, )/ 2). The market share changes dw are approximated by
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using the log differential property (dw=w-dInw= (l/ 2)- (WN +W ) (ln w, —Inw, )), since

dw has a limited range of (— 1, 1), whereas dw=w-dInw has a range of (— oo,oo) (Barten,

1993). The list of variables and detailed descriptions are given in Appendix D.

Classification and Aggregation

One of objectives of this study is to propose an inductive procedure for the construction
of appropriate groupings of variables. An inductive property is emphasized due to the empirical
implausibility of attempting all possible partitions before conducting any empirical test to justify
those classifications. In this respect, it can be better to pursue inductive classifications related
with legitimate aggregation conditions, which is based on the empirical data pattern itself rather
than researchers’ subjective intuition. Based on the compositional stability conditions, our
inductive procedure is based on the idea that homogeneity or similarity of a group of variables
can be identified through their dynamic movements. When the original disaggregate variables
within a group have similar dynamic movements so that they co-move with each other very
closely, their high co-movements suggest their underlying similarity.

Both the standard static correlation matrix and the dynamic correlation matrix over
identified frequency bands are used to measure co-movement among the original variables. For
the dynamic correlation over frequency band, several different frequency bands are chosen as the

non-overlapping bands or regions approximately centered at peak A so that
{ A= lﬂi,/lj)u[— A ,—/”Li):O SA<A <A <rx } , where the frequency A, is specified as
{ 4, =27-kK/T:k=1,--,(T/2) } and T is the sample size (Rodrigues, 1999). Note that if the
frequency of a cycle is 1, the period of the cycle is 2z/4 . Thus, a frequency of A =27-k/T
corresponds to a period of 27/4, =T/k. We choose common frequency bands to measure co-

movement among variables with possible leads and lags, based on the estimated spectrums of
variables, which capture dynamics of variables in terms of their cyclic properties with long or
short run trends (Hamilton, 1994). The estimated spectrums of price and quantity variables are
presented in Figure 3.1. The x-axis is the frequency in terms of k and the y-axis is the estimated

spectrum.
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* The full description of variables is provided in the Appendix D.
* The top 23 variables are the price variables and the bottom 23 variables are the quantity variables.
* The x- axis is the frequency in terms of k and the y-axis is the estimated spectrum.

Figure 3.1. Estimated Spectrums of Price and Quantity Variables

The top 23 variables are the price variables and the bottom 23 variables are the quantity variables.
The full description of variables is provided in the Appendix D. Although there are some degrees
of differences, the common frequency bands can be identified across price and quantity variables
and thus among 23 commodities. We use three frequency bands: 0-62, 63-90, and 90-104.5 in
terms of k . These correspond to a period more than 3.37 weeks (frequency Band 01), a period of
3.32 to 2.32 weeks (frequency Band 02), a period of less than 2.30 weeks (frequency Band 03)
respectively. These ranges approximately correspond to 1 month, a half month, and less that a
half month period ranges.

Based on these homogeneity or similarity measure of disaggregate micro-variables, the
modified k-nearest neighbor algorithm is used to sort or reordered the variables such that the
highly correlated variables are near each other along the main diagonal in the reordered
correlation matrix. The block-diagonal pattern of sorted static and dynamic correlation matrixes

are used to identify homogeneous group of variables, based on the approximate form of the
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compositional stability condition. The final results of the sorted static correlation matrix and
dynamic correlation matrixes for different frequency bands are presented in Figure 3.2. The
black/white color scheme is used to represent the absolute value of measured correlations, where
the darkest black represents the correlation of 1 and the brightest white represents the correlation
of 0. The full description of variables is provided in the Appendix D, where the variables are in
the same order. More detailed information of measured correlation for the standard static
correlation coefficient for the price variables (lower triangular matrix) and quantity variables
(upper triangular matrix) is presented in Table 3.2.

The homogeneity within the group is identified based on the high co-movements of price
and/or quantity variables in terms of measured pair-wise static and dynamic correlations among
variables. For example in the static correlation of price and quantity variables, the correlations
among pair of products within the identified group are larger than 0.954 and 0.948 respectively.
Although the correlations of pair-wise variables across different groups show somewhat different
degrees of correlation over the different frequency bands, the common groups of variables are
identified over all the different frequency bands. It is also noticed that both price and quantity
variables show similar correlation patterns. Based on the sorted static and dynamic correlation
matrixes of price and quantity variables over the different frequency bands, the following six

groups of soft drink products are identified as homogeneous groups.

Group 6: The Sunkist and Canada Dry product group (Product of 1 to 4)

Group 1: The Coca-Cola and Sprite product group (Products of 5 to 8)

Group 2: The Pepsi-Cola and Mountain Dew product group (Product of 9 to 13)
Group 3: The Seven-Up and Dr Pepper product group (Products of 14 to 17)
Group 5: The A&W and Rite-Cola product group (Products of 18 to 21)

Group 4: The Lipton Brisk product group (Products of 22 to 23)

The group of 1 and 2 are discriminated by their relatively different relationship with
group 5, given that the variables in group 1 have higher correlation with the variables in group 5.
The group of 2 and 3 are discriminated by their relatively different relationship with group 4,
given that the variables in group 2 have higher correlation with the variables in group 4. The
group of 5 and 4 are discriminated by their relatively different relationship with group 2, given

that the variables in group 4 have higher correlation with the variables in group 2.
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* The black/white color scheme is used to represent the absolute value of measured correlation, where
the darkest black represents the correlation of 1 and the brightest white represents the correlation of 0.
* See Appendix D for the description of variables, where variables are in the same order.

Figure 3.2. Sorted Static and Dynamic Correlation Matrix
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Table 3.2. Sorted Static Correlation Matrix

Vad o ValeNames  dn0) dn02) dn@3) dn) dn05) dn06) dhOT) 08 dn®) dn(0) dbil) b2 dn( dn(4) dn(s) dbe) dw1) du18) dn(19) dbQD) ) dn2) dn)
O | SukisSrawbery | 100D 0968 OS89 0955 028 021 0269 02 0280 07 0280 0289 0269 0260 020 030 0297 02 0090 0T 0189 0196 017
0| SwkisOmge | 09 L0 OS5 098 020 0297 02 032 0308 033 031 036 029 02§ 03T 03 03 0T 00 025 0N0 07 020
03 | CrdDnGheer | 0998 0999 1000 094 026 0290 0267 0N 0304 0300 0306 031 0295 028 030 037 O34 029 023 020 04 028 026
O | CodDnGrdle | 098 0999 L0 1000 028 0277 05 0280 0303 0300 038 032 0294 0260 05 O3 0307 020 0206 0X5 0197 020 08
05 Se | 029 020 0287 090 [ L000 O97 0968 09T 07 070 070 04 078 068 06 067 085 050 038 0% 055 057 050
06 | CoeClsic | 0292 0295 0300 0304 0955 L0 OS98 0995 0750 05T 076 0M9 074 06T 06T O6% 062 052 08 039 0557 053 048
0| CoDit | 091 025 0300 03¢ 054 0999 000 0995 078 076 075 0% 07 0661 066 067 062 050 05H 0568 0355 0506 0440
08 | CokeDieCaffenefiee | 0293 0206 0301 0305 0954 0998 099 1000 0750 0755 070 07 OD4 06 0665 067 069 058 058 0365 039 0509 047
0 Pos | 03 0314 039 03 074 0% 07% 01 L0009 0% 099 095 067 068 0660 066 0453 0465 091 041 0S5 0482
0| P 039 032 036 038 074 075 0% 075 0% L0007 0% OS2 0% 06 060 066 048 0466 042 04T 0313 0467
| PesDieCafleneFee | 022 034 039 031 070 078 07 075 0% 0999 1000 0997 0%l 0610 067 0655 066l 049 0459 04 048 0S4 0460
0| PesiCfineiee | 020 036 030 033 070 070 070 0750 0S5 099 0999 LO0D O%81 065 069 066 0T 048 045 04K 0461 0309 0458
B MowDew | 025 038 032 034 0M6 075 075 073 09% 0981 01 0% 100 06 065 066 0667 0419 042 050 048 0S% 0488
B Selp [ 039 030 035 039 062 068 06M 060 06l 064 06 0% 06 | L0009 0% 0SS 047 047 00 046t 0399 0316
51 SeeUpDie | 020 035 039 030 068 065 060 06 060 062 060 0% 06 O%98  LO0 00 0% 0458 049 081 049 035 03U
0 | DepperSugafiee | 0206 039 035 037 060 064 060 0% 068 060 069 0% 06 095 096 LU0 OS5 0453 048 048 049 034 0296
T0 Dgyer 005 038 03 036 069 0650 068 0% 06 065 06H 086 06 095 096 0999 L0004 049 04 048 0365 03U
B AGWDR {020 028 020 028 050 05 050 0S8 04T 045 4B 045 051 0S8 05 05 0S¢ | 1000 090 097 0% 074 070
19 ARV {02 020 020 025 0S% OS5 059 04T 0476 04 04% 0510 036 07 05 05T 00D L0 0959 09 0755 07
0| RieCoRDit | 020 028 020 02 060l 0% 05 O 048 0486 043 048 0316 03 05T 059 034 090 09 L00 099 074 070
) | RieColRedRashery | 0204 0230 0200 0255 08 059 05T OST6 0416 04 04T 04M 0315 0% 05 050 0346 0994 09 0% L0 0750 0707
0| LpoBrisk | 026 020 024 02¢ OB 056 05H 0S8 0% 059 05T 0560 03 039 035 04 0406 0T 0T 0747 0790 L0004
B | LpoisDie | 028 023 026 027 08 054 059 05 037 052 0550 O3 057 03 0390 05 042 078 074 07 0% 099 L0

* The lower triangular is for the static correlation coefficients of price variables and the upper triangular is for the static correlation coefficients of quantity variables

* The shaded areas represent the identified groups.
* See Appendix D for the description of variables, where variables are in the same order.

901
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Note that the ordering of variables and groups, which is listed in Appendix D, correspond to the
ordering in correlation matrix. The numbering for each of the groups follows the different
ordering for the consistency in notations for the subsequent analyses.

The above classification results can be interpreted as follows: (a) The products of group
1 and 2 correspond to the products of Coca-Cola company (Coca-Cola and Sprite) and Pepsi
company (Pepsi-Cola and Mountain Dew) respectively. (b) The products of group 3 and 5
correspond to the products of competing companies (Seven-Up and Dr Pepper) and following
companies (A&W and Rite-Cola) respectively, given that the Coca-Cola and Pepsi companies
can be interpreted as the market leaders. (¢) The products of group 6 and 4 correspond to the
products of different substitutive groups for the carbonate soft drink products. The Sunkist and
Canada Dry brands are identified as a homogenous group, although they represent two different
types of substitute for the carbonate soft drink products. The Lipton Brisk product group shows
different relationships across other groups and thus it is identified distinct group, although this
group is closely related with group 5.

The resulting classification based on the inductive procedure can be compared with other
standard classifications, which rely on the researchers’ intuitive choices, for the soft drink
products in the literature. For example, one standard classifications scheme for the soft drink
products is based on intuitive choices among possible combinations of assumed multi-stage
budgeting structures as follows: (a) All soft drinks are classified as the branded, private label,
and all-other products and (b) The branded soft drinks are classified as Cola and Clear sub-
segments. (¢) The Cola sub-segment consists of Coke, Pepsi, RC Cola and Dr Pepper. On the
other hand, the Clear sub-segment consists of Sprite, 7-Up and Mt. Dew (Dhar, Chavas, and
Gould, 2003). Comparing with this and other deductive classification, the inductive classification
of this study has following distinctive features: (a) The Cola and Clear sub-segments are not
identified. (i) Sprite and Mountain Dew brands belong in their companies’ brands, Coca-Cola
and Pepsi-Cola respectively. (ii) The Seven-Up brand forms a distinct group with the Dr Pepper
brand. (iii) The Rite-Cola brand forms a distinct group with the A&W brand. (b) The substitutive
products for the carbonate soft drink products are classified as two distinctive groups, where one
group consists of Sunkist and Canada Dry brands and the other group consists of Lipton Brisk
product. (c) Diet or caffeine free products do not form distinctive groups. Note that Dhar, Chavas,
and Gould (2003) find that classifications based on the Cola and Clear sub-segments are

empirically rejected. In this respect, it can be argued that the classification inductively identified
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from the data itself in this study provides another plausible classification scheme for soft drink
products.

The consistent aggregation condition can be empirically tested, where the classification
is based on the sorted correlation matrices and the aggregation is based on the index number
theory. Note that different index number formulas are used for actual aggregation procedure to
decide weighting schemes for aggregating disaggregated original variables into representative
aggregate variables within each identified group. It is for the robustness check of test results,
given that the test is actually a joint test for both classification and aggregation. The following
different index number formulas are used: Tornqvist-Theil (dd), Fisher (ff), Paasche (pp),
Laspeyres (11), Fisher with chain (fc), Paasche with chain (pc), Laspeyres with chain (Ic), Unit
value (uv), Quantity share weighted index (qw), and Expenditure share weighted index (ew). The
Tornqvist-Theil index is primary used in this study. The preference toward the Tornqvist-Theil
index, especially rather than the Fisher index, is due to facts that unlike the Fisher index, the
Tornqvist-Theil index does not invoke the problematic assumption of a homothetic or linear
homogeneous utility function as discussed in chapter II. Two types of consistent aggregation
conditions are empirically tested and compared. Note that both tests are conducted for both price
and quantity variables due to our interest in the alternative specification among direct, inverse,
and mixed demand system.

First, the compositional stability condition of Cov(d ,X)=0 in x = X H_+d_ is

empirically tested by using Hausman type misspecification test of H, :y =0 in

X,= XH, +IV-y +&", where x, are disaggregated micro-variables of a specific group and

X are corresponding aggregated macro-variables of a specific group. The IV is an Instrumental
Variable such that IV is closely correlated with regressor X (relevance condition of IV ) and

independent of error d_(validity condition of IV ). In this study, we choose to use the total

expenditure variable, which is calculated by aggregating the price and quantity macro-variables,
as the instrumental variable based on the following reasoning: (a) Given that the total
expenditure is closely related with the aggregated price and quantity variables as in estimated
aggregated demand systems, the relevance condition holds. (b) The validity condition of total
expenditure variable as instrumental variable can also hold, either when each of the idiosyncratic
variations of disaggregated price or quantity variable are canceled each other in calculating total

expenditure, or when the idiosyncratic variation of individual price or quantity variable, which is
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not captured by the common variation of representative macro-variables of a specific group, does
not have dependencies on the total expenditure variable, which captures the common variation of
an entire group of commodities within the demand system through group-representative price
and quantity macro-variables.

The empirical results of the compositional stability condition are presented in Table 3.3.
The empirical test results of the compositional stability condition can be summarized as follows,
given that a high p-value across almost all test implies a high probability of H :y, =01in
Xx,= XH, +IV-y, +¢" , which in turn implies that Cov(d,,X)=0 in x,= X H, +d, : (a) The
possible bias due to classification and aggregation for price variable can be ignored and thus the
use of aggregate price variable for representing each group can be justified, when price variables
are used as explanatory variables. (b) The possible bias due to classification and aggregation for
quantity variable can be ignored and thus the use of aggregate quantity variable for representing
each group can be justified, when quantity variables are used as explanatory variables. (¢) The
classification itself, which is inductively identified, can be empirically justified in terms of both
price and quantity variables, given that the results are robust with respect to different index
number formulas for aggregation.

For the comparison with the empirical finding for the Clear soft drink group in Dhar,
Chavas, and Gould (2003), the Sprite, Mt. Dew, 7-up, and 7-up diet are tested as a one

homogeneous group based on the compositional stability condition. The p-values for H, :y, =0

are 0.0018 (Sprite), 0.0001 (Mt. Dew), 0.00027 (7-up), and 0.0029 (7-up diet) in terms of the
price variables and 0.000 for all the products in terms of quantity variables, when the Tornqvist-
Theil index is used for price and quantity aggregates. This result is consistent with the empirical
rejection of homogeneity of Sprite, Mt Dew, and 7-up products in Dhar, Chavas, and Gould
(2003) and thus provides additional evidence for the non-existence of the Clear sub-group.
Second, Lewbel’s generalized compositional commodity condition for differential

demand system is tested based on the correlation test of HO:Corr(dnLeW“',X):O , where
d*™ =x, — X . The empirical results of the unit root test (UR-test) for micro- and macro-

variables imply stationarity of transformed variables in differential demand system, where unit
root test results for disaggregate variables are in the column vector and those for aggregate
variables are in the row vector under the heads of UR-Test for each group (Table 3.5). These

results of unit root test are robust with respect to other specifications in unit root test. These
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results are consistent with the observation in the demand literature that the differential demand
system has been considered as appropriate specification to deal with the possible non-stationarity
problems.

The empirical results of the generalized compositional commodity condition are
presented in Table 3.4. The empirical test results for Lewbel’s generalized compositional
commodity condition can be summarized as follows, given that high p-value implies high

probability of HO:COrr(dn“W"e',X)zo where d™™ =x — X : (a) The possible bias due to

classification and aggregation for price variable can be ignored and thus the use of aggregate
price variable for representing each group can be justified, when price variables are used as
explanatory variables. (b) The possible bias due to classification and aggregation for quantity
variable can not be ignored and thus the use of aggregate quantity variable for representing each
group can not be justified, when quantity variables are used as explanatory variables. (c¢) The test
results are ambiguous for classification itself. The classification itself can be empirically justified
in terms of price variables but it can not be justified in terms of quantity variables.

The different implications from the two test approaches of the compositional stability
condition and Lewbel’s generalized compositional commodity condition for quantity variables
can be explained based on the interpretation of the Lewbel’s condition in the context of Theil’s
aggregation theory. As discussed, the ambiguity exists in the arbitrary choice on the
proportionality factors ¢ =1 in relationship between micro-variables and macro-variable for each
group X = XC, +¢,. The choice of c=1 is restrictive in the context of Theil’s aggregation
theory, because it implies that the true macro-parameters should be a simple sum of micro-
parameters. However, there is no a prior reason that the true macro-parameters can not be a
simple average of micro-parameters ( c=1/N ), for example. On the other hand, the
compositional stability condition considers these proportional factors to be the empirically
estimated, without imposing any numerical restrictions except their stability. When a high
probability of the proportionality factor c=1 in X = X, +¢, is empirically found, the same
test results for the consistent aggregation condition are expected from the two test approaches.
On the other hand, the low p-value of H, :c =1 can explain the different results from the two
test approaches. The empirical test results of H :c, =1 in X, = X C, +¢&, are presented in Table

3.5. In general, high p-values are found for price variables, which can explain the same

implications of two test approaches. On the other hand, low p-values are found for quantity



Table 3.3. Test for Compositional Stability Condition

Price variables Quantity variables
Var.#  Variable Names dd ff p I fc pe le wooqw o oew dd ff p 1 fe pe le woooqw o ew
01 SunkistStrawberry | 0.146 0070 0.153 0070 0.149 0205 0178 0.152 0.064 0048 [ 0014 0012 0013 0012 0012 0012 0012 0015 0012 0031
02 SunkistOrange 0.077 0207 0.174 0595 0076 0063 0.142 0172 0761 0778 ] 0.689 0.692 0.688 0.704 0.688 0.686 0.691 0.688 0.696 0.730
03 CnadaDryGinger | 0.050 0.113  0.113  0.052 0048 0.081 0057 0111 0.022 0020 [ 0700 0.695 0.695 0699 0.698 0.704 0.695 0.699 0.709 0.898
04 CandaDryGngrAle | 0296 0427 0375 0805 0289 0254 0314 0378 0659 0638 | 0549 0537 0549 0540 0536 0543 0533 0545 0538 0379
05 Sprite 0468 0542 0990 0.143 0535 0597 0156 0993 0.145 0.190 [ 0256 0241 0.131 0414 0296 0.156 0443 0.133 0.139 0.665
06 CokeClassic 0577 0645 0552 0137 0673 0695 0587 0585 0011 015510927 0935 0877 0805 0951 0894 0909 0878 0.893 0.560
07 CokeDiet 0672 0738 0500 0247 0765 00644 0496 0535 0213 0269 ] 0.781 0.795 0992 0.651 0.822 0737 0879 0991 0759 0402
08 | CokeDictCaffeineFree | 0.978 0977 0382 0.898 0959 0513 0323 0418 0990 0961 | 0913 0912 0821 0946 0911 0961 0764 0818 0945 0893
09 Pepsi 0218 0264 0937 0.119 0267 0815 0194 0933 0.127 0.165 [ 0.082 0080 0.100 0076 0.092 0.09 0.080 0.099 0077 0.020
10 PepsiDiet 0628 0.606 0627 0.032 0673 0827 0892 0652 0175 0.81 {0206 0219 0250 0175 0222 0252 0170 0245 0292 0.041
11| PepsiDietCaffeineFree | 0.713  0.786 0356 0825 0715 0511 0352 0362 0752 0832 {0735 0716 0718 0766 0730 0713 0791 0709 0.663 0.653
12 PepsiCaffeineFree | 0275 0333 0.164 0.186 0289 0275 0067 0.164 0160 0.198 | 0.148 0153 0.165 0.132 0156 0.169 0.124 0177 0.183 0.066
13 MountainDew 0.051 0113 0.190 0020 0066 0.87 0019 0216 0012 0017 0624 0594 0487 0745 0599 0467 0758 0484 0552 0.680
14 Seven-Up 0.057 0.039 0071 0033 0054 0015 0027 0064 0041 0047 {0206 0260 0205 0211 0202 0.127 0271 023 0217 0.131
15 Seven-UpDiet 0152 0165 0123 0233 0153 0225 0.149 0112 0271 0244 1 0.088 0.065 0090 0.085 009 0093 0.08 0.092 0084 0.048
16 | DrPepperSugarFree | 0.147  0.169 0132 0235 0.140 0.069 0058 0128 0235 0261 [ 059 0.641 0587 0600 0588 0550 0.630 0605 0.603 0392
17 DrPepper 0.069 0.085 0.066 0.I54 0065 0031 0026 0059 0.156 0.168 [ 0986 0984 0997 0971 0986 0972 0998 0997 0977 0.661
18 A&W Diet 0.029 0.035 0042 0040 0027 0011 0046 0042 0035 0061 0019 0017 0018 0017 0008 0.026 002 0018 0017 0014
19 A&W 0.019 0022 0028 0025 0017 0005 002 0028 0023 0056 ] 0.066 0049 0060 0.064 0062 0075 0053 0064 0058 0.039
20 RiteColaDiet 0.064 0051 0054 0069 0062 0075 0042 0052 0068 0.196 0022 0018 0023 0024 0013 0025 0027 0025 0025 0.064
21 | RiteColaRedRasberry | 0206 0.129  0.186 0.074 0202 0367 0.156 0.190 0.106 0.151 [ 0015 0.014 0015 0013 0013 0015 0011 0015 0013 0013
n LiptonBrisk 0795 0717 0897 0583 0795 0681 0763 0898 0562 0555 {0039 0033 0052 0034 0034 0033 0035 0033 0033 0046
23 LiptonBriskDiet | 0.398 0426 0329 0576 0403 0386 0350 0332 0554 0548 | 0.105 0.092 0.138 0.090 0.094 0094 0097 009 0092 0.127

* Aggregate variables are calculated based on different index number formulas.
For example, dd represents aggregation based on Tornqvist-Theil Index number. See the discussion part in the text for detail pp.108.

* All the values are the p-values for y ., -0 in x = x H_+1v ., +¢ ", Where |v is the total expenditure variable as the instrumental variable.
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Table 3.4. Test for Lewbel’s Composite Commodity Condition

Price variables Quantity variables
Var.#  Variable Names dd ff pp Il fe pe le wooqwew  dd ff p 1l fe pe le wooqw o ew
01 SunkistStrawberry | 0458 0559 0.550 0572 0457 0441 0478 0550 0494 0495 [ 0.197 0202 0203 0202 0.9 0194 0199 0203 0203 0.019
02 SunkistOrange 0126 0.087 0077 0.098 0126 0028 0.126 0.077 0.00 0.100 ] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
03 CnadaDryGinger | 0.070 0264 0269 0305 0.070 0.094 0071 0269 0200 0200 [ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
04 CandaDryGngrAle ] 0.807 0.908 0900 0909 0.807 0796 0831 0900 0963 0963 ] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0000 0.000
05 Sprite 0.748 0670 0209 0595 0659 0483 0774 0212 0614 0610 ] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
06 CokeClassic 0854 0.804 0206 0547 0754 0433 0378 0204 0552 055110005 0006 0036 0.000 0007 0014 0004 0036 0036 0959
07 CokeDiet 0740 0.699 0177 0797 0.654 0382 0305 0176 0802 0.802 ] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
08 | CokeDietCaffeineFree | 0.694 0.658 0.175 0930 0.619 0368 0303 0.174 0934 0934 | 0.038 0.038 0.038 0.036 0038 0046 0030 0038 0.038 0.000
09 Pepsi 0.072 0094 0352 0076 0090 0333 0067 0370 0079 0.079 ] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
10 PepsiDiet 0.688 0659 0951 0.603 0706 099 099 0920 0.783 0.783 ] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
11 | PepsiDietCaffeineFree | 0.334 0391 0361 0175 0366 0392 0132 0344 0.146 0.146 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
12 PepsiCaffeineFree | 0.127 0159  0.188 0.044 0.149 0207 0037 0.178 0.037 0037 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
13 MountainDew 0225 0203 0367 0.144 0251 0394 0123 035 033 0.133 10000 0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
14 Seven-Up 0112 0113 0085 015 0112 0108 0122 0088 0152 015210732 0726 0739 0712 0732 0733 0730 0737 0737 0.888
15 Seven-UpDiet 0976 0966 0990 0947 0976 0978 0979 0998 0935 0934 10727 0720 0734 0706 0727 0729 0725 0732 0732 0578
16 | DrPepperSugarFree | 0.559 0543 0542 0542 0559 0561 0555 0536 0584 0585  0.000 0.000 0.000 0.000 0000 0.000 0.000 0000 0.000 0.001
17 DrPepper 0.066 0.067 0069 0.065 0066 0067 0065 0067 0064 0.064 ]0.000 0000 0.000 0.000 0.000 0.000 0.000 0.000 0000 0.010
18 A&W Diet 0972 0967 0931 0968 0974 0825 0904 0931 0.888 0.889 ] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
19 A&W 0.678 0.660 0633 0662 0680 0559 0788 0633 0613 0.614 ] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
20 RiteColaDiet 0725 0856 0864 0888 0.724 0869 0632 0864 0822 0823 ]0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
21 | RiteColaRedRasberry | 0.800 0.862 0.988 0753 0799 0944 0709 0988 0.743 0.743 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
n LiptonBrisk 0268 0204 0191 0220 0269 0239 0306 0191 0226 0226 ] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
23 LiptonBriskDiet | 0.196 0243 0273 0218 0.196 0217 0.8 0273 0224 0224 [ 0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

* Aggregate variables are calculated based on different index number formulas.
For example, dd represents aggregation based on Tornqvist-Theil Index number. See the discussion part in the text for detail pp.108.

* All the values are the p-values for H_ ;Corr( dre X ):0 where g et = x X .
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Table 3.5. Tests for the Unit Root and the Proportionality Factors

Price Variables

dd ff pp I fo pe I w qw ew  Quantity Variables  dd ff p I fo pc Ie uw qw ew
dinP06 | UR-Test | -11.55 -11.54 -11.55 -11.54 -11.55 -11.53 -11.57 -11.55 -11.54 -11.54 | dinQ06 | UR-Test | -10.95 -10.95 -10.95 -10.95 -1095 -10.95 -10.95 -1095 -10.95 -10.93
din(p 01) [ -11.61 | 057 067 066 050 0.58 0.34 044 065 0.52 0.51 | din(q_01)| -11.13 | 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.00
din(p 02) | -11.52 | 093 0.78 0.76 0.55 0.95 0.72 0.77 0.77 0.67 0.68 | din(q 02)| -10.99 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
din(p 03)| -11.54 | 027 0.35 0.68 0.46 0.26 0.40 0.26 0.68 0.78 0.79 | din(q 03)| -10.88 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
din(p 04) | -11.51 0.43 0.14 0.18 0.11 043 0.47 0.41 0.18 0.12 0.13 | din(q 04)] -10.79 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dinP01 | UR-Test | -11.10  -11.09 -1098 -11.14 -11.09 -13.81 -10.72 -10.98 -11.14 -11.14 | dInQO1 | UR-Test | -10.86 -10.85 -10.84 -10.87 -1085 -10.76 -1090 -10.84 -10.84 -10.88
din(p 05) | -10.69 | 086 084 031 0.35 079 093 077 031 036 036 |dln(q05)] -1020 [ 0.00 000 000 000 000 000 000 000 000 0.0
din(p_06) | -11.15 | 0.53 0.54 0.08 0.85 047 0.26 0.16 0.08 0.82 0.82 | din(q_06)| -10.89 | 0.02 0.03 0.10 0.00 0.03 0.02 0.04 0.10 0.10 0.81
din(p 07)| -11.16 | 0.67 0.66 0.10 0.37 0.59 0.30 0.20 0.10 0.37 0.37 | din(q 07)| -10.90 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
din(p 08) | -11.04 | 094 092 0.15 0.19 0.83 0.40 035 0.15 020  0.19 |dln(q08)] -1090 [ 031 032 030 031 032 043 0.18 029 029 0.0
dinP02 | UR-Test | -13.19 -13.19 -13.11 -1145 -13.17 -13.10 -1320 -13.11 -1146 -1146 | dInQ02 | UR-Test | -10.38 -10.38 -1037 -10.39 -1038 -10.37 -1038 -10.37 -1037 -10.39
din(p 09)| -11.59 | 0.34 0.47 0.94 0.29 0.42 0.94 0.12 0.92 0.30 0.31 | din(q 09)| -10.28 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
din(p_10) | -1143 | 072 0.78 062 021 080 0.2 0.78 059 029 0.28 | din(q_10)| -1043 | 0.00 000 000 000 000 000 000 000 000 0.0
din(p_11) | -13.10 | 0.53 0.55 0.30 0.72 0.52 0.31 0.25 0.29 0.64 0.64 | din(q_11)| -10.36 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
din(p_12)| -13.11 0.16 0.18 0.12 0.15 0.17 0.12 0.04 0.11 0.13 0.13 | din(q 12)| -10.37 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
din(p 13) | -12.51 0.28 0.41 0.51 0.20 0.33 0.55 0.16 0.48 0.18 0.17 | din(q 13)] -14.34 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dinP03 | UR-Test | -11.25 -11.26 -1126 -11.26 -1125 -11.27 -1122 -11.26 -1126 -11.26 | dInQ03 | UR-Test | -13.53 -13.52 -1353 -13.52 -1353 -13.53 -1352 -13.53 -1353 -13.47
din(p_14) | -1127 | 025 0.28 027 030 026 033 0.13 028 029 0.27 | din(q_14)| -13.39 | 046 046 047 045 042 046 048 050 050 053
din(p_15) | -11.25 | 0.85 0.75 0.82 0.73 0.85 0.88 0.92 0.82 0.75 0.75 | din(q_15)| -13.38 | 0.80 0.80 0.80 0.82 0.80 0.81 0.80 0.80 0.80 0.93
din(p 16)| -11.17 | 0.84 0.88 0.86 0.91 0.84 0.97 0.65 0.85 0.98 0.98 | din(q 16)| -13.54 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
din(p 17)| -11.26 | 006 006 006 007 006  0.09 0.03 006 007 0.06 | din(q_17)] -13.69 | 0.00 000 000 000 000 000 000 000 000 00!
dinP05 | UR-Test | -11.92 -11.93 -1193 -11.94 -1192 -11.87 -11.94 -11.93 -11.93 -11.93 | dInQ05 | UR-Test | -1045 -1045 -1045 -1045 -1045 -1044 -1046 -1045 -1045 -10.47
din(p_18) | -11.91 0.81 0.69 0.80 0.62 0.80 0.91 0.70 0.80 0.71 0.71 | din(q_18)| -10.30 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
din(p_19) | -11.99 | 064  0.72 0.63 0.78 064 047 082 063 074 074 |din(q_19)] -1145 [ 0.00 000 000 000 000 000 000 000 000 0.0
din(p 20) [ -11.90 | 0.83 0.98 0.90 0.98 0.83 0.88 0.75 0.90 0.90 0.90 | din(q 20)| -1047 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
din(p 21)| -9.86 0.74 0.69 0.56 0.85 0.75 0.53 0.85 0.56 0.88 0.88 | din(q 21)| -10.26 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
dinP04 | UR-Test | -12.63 -12.63 -12.63 -12.64 -12.63 -12.64 -1262 -12.63 -12.64 -12.64 | dnQ04 | UR-Test| -11.69 -11.69 -11.69 -11.69 -11.69 -11.69 -11.69 -11.69 -11.69 -11.71
din(p 22) | -12.63 | 0.04 0.03 0.03 0.02 0.04 0.05 0.06 0.03 0.01 0.07 | din(q 22)| -11.77 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
din(p 23) | -12.64 | 0.04 0.05 0.07 0.02 0.04 0.06 0.04 0.07 0.01 0.07 | din(q 23)] -15.05 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

* Aggregate variables are calculated based on different index number formulas.

For example, dd represents aggregation based on Tornqvist-Theil Index number. See the discussion part in the text for detail pp.108.
* Unit Root test (UR-Test) is based on no constant and no trend with BIC lag length selection specification, where critical values are -2.58 (1%), -1.95 (5%), -1.62 (10%).
The column vector of UR-Test is for disaggregate variables and row vector of UR-Test is for aggregate variables.
c, =1 in x L=

* All other values are the p-values for H |

X
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variables, which can explain the different implications of two test approaches of the

compositional stability condition and Lewbel’s generalized compositional commodity condition.

Causality for Identification

In consumer behavior study, the demand theory provides the full modeling spectrums of
monotone set of direct or inverse demand functions and mixed demand functions with their
properties such as homogeneity, symmetry, negativity, adding-up, and relation of compensated
and uncompensated demand functions. The choice among direct, inverse, and mixed
specifications has been usually based on the researchers’ intuition about product properties or
market characteristics of a specific commodity. However, given that (a) the choice of
specifications is not trivial in empirical modeling to measure consumers’ responsiveness. (b)
some types of deductive properties can bring subjectivities or ambiguities into the empirical
results, it is better to pursue an inductive procedure for this identification issue.

The specification choice is closely related with the identification issue of the local causal
structure between price and quantity for a specific commodity. When we choose either quantity-
dependent or price-dependent specification, we implicitly assume a local causal structure, since
the direct (or inverse) demand function is implied by the causal structure that price (or quantity)
variable causes quantity (or price) variable. Here we use graphical causal models to inductively
derive this local causal structure. This empirically derived causal structure through the proposed
methods of DAG can be used to decide dependent and explanatory variable for a specific
commodity demand function within the demand system. Note that in the preliminary study for
causal structures in the disaggregated original level data set, some causal relationships between

price p, and quantity g, for the same commodity are statistically broken. It is because high
correlation between p, and p, can induce P(pl \ pz,q])z P(p] | pz) through P(p1 | pz)zl, when
the other commodity’s price p, has a high co-movement with p,. Given the observation that

many variables in soft drink products move very closely as empirically measured in aggregation
section, the (probabilistic) stability condition of the graphical causal model is violated and thus
DAG method can not be used for disaggregate level data set. Note that this problem is similar to
the multicollinearity problem, which makes it difficult to obtain precise estimates of the separate
effects of the variables in the regression method.

The compositional stability condition provides the possibility to address this issue in

using the graphical causal model. The use of aggregate variables to infer causal relationships
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among observed disaggregate variables can be justified based on the compositional stability
condition discussed in the aggregation theory. The identified block diagonal pattern of
correlation matrixes and the empirically tested compositional stability condition discussed in
aggregation section imply that the observed disaggregate variables meet the condition of
compositional stability condition. This condition in turn implies that there exists not only the
possibility of obtaining interpretable macro-variables as the representative aggregate of
homogeneous disaggregate micro-variables, but also the possibility of getting interpretable
macro-parameters as the representative aggregate of corresponding micro-parameters for the
subsequence analysis. This means that when the disaggregate variables can be legitimately
grouped and represented by aggregate variables, it is possible to use aggregate variables to
capture (causal) relationships among disaggregate variables through (causal) relationships
among aggregate variables as the legitimate representatives as long as the compositional stability
conditions hold among disaggregate variables. Based on the identified compositional stability
condition discussed in aggregation section, (causal) relationships among disaggregate micro-
variables through relationships among representative aggregated macro-variables are inferred.
The PC algorithm or GES algorithm is used to infer local causal structures among macro-
variables as the legitimate representative causal relationships among micro-variables. The
empirical results are presented in Figure 3.3. and 3.4.

Before interpreting local causal information between price and quantity for each product
for the full use of theoretical information from the demand theory, the reason to restrict causal
information to local one need to be discussed. We do not pursue structural equation models
approach based on the full causal structures identified from two resulting causal structures of PC
and GES algorithms, since (a) One of main objectives of this study is to propose inductive
methods to infer local causal structure between price and quantity for the full use of theoretical
development in three possible specifications of direct, inverse, and mixed demand functions.
And thus the issues to be addressed in this study are restricted to ones related with this objective.
(b) There remain several undecided causal directions in both results and such directions can not
be decided without additional causal information. The undirected edges in the result of the GES
algorithms represent the limitations to identify causal directions based on the statistical
observations only (observational equivalence). On the other hand, the bi-directed edges in the
result of PC algorithm imply the existence of unobserved factors. The capability of identifying

unobserved factors between two variables, based on the tetrad relationship among partial
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correlations, is one advantage of the PC algorithm relative to the GES algorithm. On the other
hand, given the Markov condition (causal sufficiency and acyclic assumptions), the GES
algorithm has following advantages relative to the PC algorithm (i) The GES algorithm does not
require the choice of the significant level. This is advantage, given that the result of PC
algorithm oftentimes is sensitive to the choice of the significant level. (ii) The GES algorithm
oftentimes provides finer results than the PC algorithm. The difference is due to the fact that the
GES algorithm is based on the numerical scores on the overall hypothetic causal structures,
whereas the PC algorithm is based on the categorical decision on individual edges and such
categorical decisions can be sensitive to the chosen significant level. In our results, the GES
algorithm provides all the edges (skeleton) identified by the PC algorithm with additional edges.
Sometimes these additional edges are important to decide the causal directions among variables.

For example of the empirical results for soft drink data, the edge P01—-QO02 is crucial to orient
Q01— P01 in the GES algorithm, because this orientation is based on the unshielded collider
pattern of Q01 — P01« Q02 . In the PC algorithm, the edge P01—-QO02 is statistically removed

and this categorical decision can be sensitive to the specified significant level. Similar patterns

such as P02 - P06 for Q02 — P02 «— P06 and Q02— P03 for Q02 — P03 <— Q03 can be used

to explain the different implications for local causal structure between price and quantity
between PC and GES algorithms. In this respect, the results of the PC algorithm need to be
carefully used for the choice of the significant level. In fact, the local causal structure between
price and quantity variables inferred by the PC algorithm is not robust to the change of the
significant level. In this study, the final result of PC algorithm is based on the significant level of
0.1, which is recommended for sample size of 100-300 (Spirtes et al., 2000).

For the full use of theoretical information from the demand theory, all we need is the
local causal structures between price and quantity variables for each commodity. This local
information provides the possibility to inductively address the choice issue among three possible
specifications of direct, inverse, and mixed demand functions. The local causal structures
between price and quantity variables among six aggregated commodity groups identified by PC
algorithm implies the mixed demand system, where quantity dependent specifications are
suggested for aggregate commodities of groups of 01, 02, 03, and 04 and price dependent
specifications are suggested for aggregate commodities of groups of 05 and 06. On the other
hand, the local causal structure identified by GES algorithm implies the inverse demand system,

where price dependent specifications are suggested for all the aggregate commodities.
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* P and Q denotes representative price and quantity indices for each group defended as
Group 01: Coca-Cola and Sprite, Group 02: Pepsi-Cola and Mountain Dew, Group 03: Seven-Up and Dr Pepper,
Group 04: Lipton Brisk., Group 05: A&W and Rite-Cola, Group 06: Sunkist and Canada Dry, and E denote total expenditure variable.
* The result of PC algorithm is based on the significant level of 0.1, which is recommended for sample size of 100-300 (Spirtes et al., 2000).

Figure 3.3. Causal Structure Inferred by PC Algorithm Figure 3.4. Causal Structure Inferred by GES Algorithm
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Given that the direct demand system or quantity dependent specification is oftentimes used in
empirical models, the possibility of the price dependent or mixed demand specification implied
from the GES algorithm and the PC algorithm results need to be interpreted. One possible
interpretation is that (a) The soft drinks are differentiated products, where the differentiated
products are defined as the products differentiated by taste, packing and brand-base
advertisement to influence consumers’ perception of different brands, and (b) The retail prices
for differentiated products can be determined by strategic pricing rules of firms incorporating
supply and demand characteristics for these products (Dhar, Chavas, and Gould, 2003).

Note that Dhar, Chavas, and Gould (2003) use the reduced form specification for price
and expenditure equations to deal with possible endogeneity problem in price and expenditure
variables. Based on the Durbin, Wu, and Hausman test, they empirically found price and
expenditure endogeneity problem. While price endogeneity problem can be addressed by the
price dependent specification, the expenditure endogeneity problem is not fully addressed in this
study. The reason for this is that (a) The instrumental variables in the expenditure equation need
to be exogenous. To identify the exogeneity of those instrumental variables, we need additional
causal information, which requires more information of additional variables. Or exogeneity of
instrumental variables is assumed as like the exogeneity of expenditure variables is assumed. In
addition, (b) Developing fully structural models, where price and expenditure equations are
specified in the analytical and estimable forms with flexible demand specifications, results in
econometric models, which is difficult to work with either analytically or empirically due to its
highly non-linearity (Dhar, Chavas, and Gould, 2003). However, the main reason why we do not
pursue instrumental variable approach is the same reason why we do not pursue structural
equation models approach based on the full causal structures identified: one of main objectives
of this study is to propose inductive methods for the full use of theoretical development in three
possible specifications of direct, inverse, and mixed demand functions. And thus the issues to be

addressed in this study are restricted to ones related with this objective.

Direct, Inverse, and Mixed Demand Systems

Heretofore, the consistent aggregation condition of the compositional stability condition
is used to define variables and the empirically derived causal structure through DAG on the
aggregated variables is used to decide dependent and explanatory variable for a specific

commodity demand function within the demand system. There remains another issue of deciding
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functional form to relate dependent variable with explanatory variables for the empirical study of
consumer behavior. Another objective in this study is to propose flexible and comparable
functional forms for the direct, inverse, and mixed demand system.

When we want to compare direct, inverse, and mixed demand systems, we need
parameterize direct, inverse, and mixed demand systems in the similar degrees of flexibility in
functional form specifications, when the flexibility means the capability of empirical model to
allow the possible combinations of constant/variational parameterization for income (or scale)
coefficient and Slutsky (or Antonelli) coefficient. While the Rotterdam type parameterization
assumes that both income (or scale) coefficient and compensated price (or quantity) coefficient
in direct (or inverse) demand system are constant parameters, the LA/AIDS parameterization
assumes that both income (or scale) coefficient and Slutsky (or Antonelli) coefficient in direct
(or inverse) demand system are variational parameters dependent on the budget shares. For both
direct and inverse systems, the synthetic approach in differential family provides the flexible
way of parameterization to incorporate the logically possible combinations of constant and/or
variational parameterization for income (or scale) coefficient and Slutsky (or Antonelli)
coefficient. Based on the similar logic to derive synthetic demand model in direct and inverse
demand systems, the synthetic differential demand model is proposed for the mixed demand
system. When we want to compare direct, inverse, and mixed demand systems, the Likelihood
Dominance Criterion, introduced by Pollak and Wales (1991), provides plausible method to rank
competing models as long as the competing specifications have the common dependent variables.
If the hypotheses involve different dependent variables but are functionally related, then the
likelihood function must be adjusted by including the appropriate Jacobian bias term. To avoid
difficulties involved with this adjustment, the synthetic direct and inverse demand systems are
reparameterized to have common differential AIDS dependent variables, given that the
Rotterdam type dependent variable of synthetic models have different dependent variables
among direct, inverse, and mixed demand function. Rotterdam type and AIDS type dependent
variable synthetic models can be directly derived from the Rotterdam specification without
requiring consistent and simultaneous specifications for both direct and indirect utility functions.
By extending the common logic of these approaches, a similar synthetic functional form for the
mixed demand system is specified in the common differential AIDS dependent variables.

The synthetic models of direct, inverse, and mixed demand systems of the common

differential AIDS type dependent variable are proposed for the flexible and comparable
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functional form for the direct, inverse, and mixed demand system, which makes it possible to
compare direct, inverse, and mixed demand systems in model selection frameworks. The direct
demand system is estimated for the comparison purpose with the inverse and mixed demand
systems, which are chosen based on the local causal structure of the GES and PC algorithms
respectively. The estimated parameters in all three direct, inverse, and mixed synthetic demand
systems of the common differential AIDS type dependent variable are presented in Table 3.6. All
three types of demand systems are estimated by the nonlinear seemingly unrelated regression
estimation method with allowing autoregressive errors (SHAZAM). The first order
autocorrelation is used with the restriction that the autocorrelation coefficients are constrained to
be the same in all equations. The homogeneity, symmetry, and adding-up properties are used for
the economy of parameters in empirical models. One equation is dropped in estimation step and
recovered by using homogeneity, symmetry, and adding-up conditions for the direct and inverse
demand. Since the adding-up condition in direct or inverse demand makes the demand system
singular. On the other hand, for the mixed demand, the adding-up condition holds only at a point
and thus does not induce the singularity in the resulting system. All the equations are used in
estimation for the mixed demand. The number of independent parameters in all the demand
system is 23, which include the two synthetic parameters and one autocorrelation correction term.

For the comparison of different parameterization assumptions of the constant and/or
variation for the income (or scale) coefficient and Slutsky (or Antonelli) coefficient within each
of direct, inverse, and mixed demand system, the Wald statistic, which is distributed chi-square
with the same degrees of freedom as the number of restrictions, is used. For the comparison of
competing models of three different specifications of the direct, inverse, and mixed demand
system, three model selection rules, the Akaike Information, Schwarz information criterion, and
the Pollak and Wales’ likelihood dominance criterion, are used. The results of the model
selection rules can be interpreted as the ranking among the competing models, rather than the
rejection or accepting one of the competing models. Given that all three competing models have
the same number of independent parameters, all three model selection rules are used based on
the comparison of the estimated log-likelihood function values such as the higher log-likelihood
value, the higher ranking among competing models. The empirical results of these comparison

statistics are presented in Table 3.7.



Table 3.6. Parameter Estimates

Direct Model Inverse Model Mixed Model
Coefficient Estimate Std. Error  t-Statistic  p-value Coefficient Estimate  Std. Error t-Statistic  p-value Coefficient Estimate Std. Error  t-Statistic = p-value
thl 1.3852 0.0338 41.0025 0.0000 thl 0.9609 0.0084 113.9911 0.0000 thl 0.1086 0.0502 2.1641 0.0305
th2 4.7255 0.1193 39.6028 0.0000 th2 0.1852 0.0068 27.0705 0.0000 th2 -0.1618 0.0464 -3.4893 0.0005
c01 -0.1119 0.0110 -10.2124 0.0000 do1 -0.0144 0.0027 -5.3288 0.0000 a0l 0.2790 0.0183 15.2047 0.0000
c02 -0.0813 0.0114 -7.1276 0.0000 do2 -0.0102 0.0030 -3.4277 0.0006 a02 0.3470 0.0200 17.3620 0.0000
c03 -0.0771 0.0086 -8.9905 0.0000 do3 -0.0104 0.0023 -4.5423 0.0000 a03 0.2233 0.0165 13.5553 0.0000
c04 -0.0363 0.0021 -17.0796 0.0000 do4 -0.0072 0.0007 -10.2280 0.0000 a04 0.0280 0.0060 4.6852 0.0000
c05 -0.0700 0.0070 -9.9813 0.0000 dos -0.0085 0.0019 -4.5498 0.0000 bo5 -0.0010 0.0047 -0.2020 0.8399
c06* -0.0086 0.0071 -1.2171 0.2236 doe6* 0.0116 0.0041 2.8590 0.0043 b0o6* 0.0150 0.0031 4.9234 0.0000
cll 0.1552 0.0486 3.1933 0.0014 di1 -0.0046 0.0024 -1.9450 0.0518 all -1.1976 0.0683 -17.5455 0.0000
cl2 0.0393 0.0319 1.2314 0.2182 di2 -0.0019 0.0013 -1.4661 0.1426 al2 0.6802 0.0566 12.0154 0.0000
cl3 -0.0851 0.0289 -2.9473 0.0032 d13 0.0002 0.0013 0.1935 0.8465 al3 0.4324 0.0504 8.5805 0.0000
cl4a -0.0083 0.0108 -0.7693 0.4417 di14 0.0002 0.0005 0.4582 0.6468 alg* 0.0759 0.0259 2.9288 0.0034
cl5 -0.0626 0.0241 -2.5933 0.0095 dis -0.0003 0.0012 -0.2691 0.7879 a22 -1.2570 0.0726 -17.3187 0.0000
clée* -0.0385 0.0209 -1.8430 0.0653 dle6* 0.0064 0.0012 5.5284 0.0000 a23 0.4667 0.0583 8.0043 0.0000
c22 0.0690 0.0466 1.4810 0.1386 d22 -0.0019 0.0024 -0.8231 0.4105 a24%* 0.1007 0.0279 3.6095 0.0003
c23 -0.0027 0.0276 -0.0965 0.9232 d23 -0.0034 0.0012 -2.8513 0.0044 a33 -0.9733 0.0751 -12.9635 0.0000
c24 -0.0375 0.0111 -3.3800 0.0007 d24 0.0006 0.0005 1.2309 0.2183 a34* 0.0678 0.0232 2.9224 0.0035
c25 -0.0464 0.0256 -1.8114 0.0701 d25 -0.0005 0.0012 -0.3980 0.6906 ad44* -0.2708 0.0253 -10.7210 0.0000
c26* -0.0218 0.0208 -1.0484 0.2944 d26* 0.0071 0.0013 5.4636 0.0000 b55 -0.0374 0.0075 -5.0124 0.0000
c33 0.1427 0.0435 3.2816 0.0010 d33 -0.0003 0.0022 -0.1390 0.8894 b56 0.0071 0.0021 3.4392 0.0006
c34 -0.0133 0.0095 -1.3949 0.1631 d34 0.0005 0.0004 1.0416 0.2976 b66 -0.0383 0.0066 -5.8044 0.0000
c35 -0.0224 0.0209 -1.0699 0.2847 d3s -0.0025 0.0011 -2.2266 0.0260 r51 -0.0079 0.0085 -0.9321 0.3513
c36%* -0.0192 0.0215 -0.8928 0.3720 d3e6* 0.0055 0.0011 4.8862 0.0000 r52 -0.0393 0.0103 -3.7990 0.0002
c44 0.1097 0.0156 7.0345 0.0000 d44 -0.0052 0.0010 -4.9888 0.0000 r53 -0.0331 0.0107 -3.0846 0.0020
c45 -0.0322 0.0132 -2.4347 0.0149 d4s 0.0017 0.0007 2.5608 0.0104 r54%* -0.0156 0.0056 -2.7905 0.0053
c46%* -0.0183 0.0065 -2.8149 0.0049 d46* 0.0022 0.0004 5.5577 0.0000 r61 -0.0137 0.0077 -1.7791 0.0752
c55 0.1622 0.0391 4.1501 0.0000 d5s 0.0005 0.0018 0.2620 0.7933 162 -0.0215 0.0085 -2.5286 0.0115
c56%* 0.0014 0.0224 0.0644 0.9487 ds6* 0.0011 0.0011 0.9812 0.3265 r63 -0.0394 0.0092 -4.2923 0.0000
c66* 0.0964 0.0340 2.8321 0.0046 d66* -0.0224 0.0035 -6.4711 0.0000 r64* -0.0092 0.0035 -2.6017 0.0093
rho -0.3569 0.0303 -11.7773 0.0000 rho -0.3614 0.0296 -12.2266 0.0000 rho -0.3660 0.0278 -13.1655 0.0000

+ Each number represent each group defended as Group01: Coca-Cola and Sprite, Group02: Pepsi-Cola and Mountain Dew, Group03: Seven-Up and Dr Pepper, Group04: Lipton Brisk.,

Group05: A&W and Rite-Cola, and Group06: Sunkist and Canada Dry. For example, c12 corresponds to parameter in quantity equation of group01 w.r.t. group02 price variable in

dw =[G, ~(1-¢ W]inQ+3{c, ~(1-hylw, o, Jainp,
* Coefficients with * mark are derived based on the adding-up and homogeneity conditions.
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Table 3.7. Comparison Statistics for Three Specifications

Direct Inverse Mixed
Restrictions on

Synthetic parameters Wald statistic p-value Wald statistic p-value Wald statistic p-value
th1 =0 1681.2049 0.0000 12993.9780 0.0000 4.6833 0.0305
th2=0 1568.3829 0.0000 732.8099 0.0000 12.1754 0.0005
thl =1 129.9852 0.0000 21.5216 0.0000 315.5424 0.0000
th2=1 974.8223 0.0000 14180.2140 0.0000 628.0337 0.0000
thl =0&th2=0 3032.4904 0.0000 13000.9610 0.0000 12.6597 0.0018
thl=1&th2=1 1059.2406 0.0000 14640.0880 0.0000 3708.4420 0.0000
thl =0 &th2=1 2485.3570 0.0000 34603.8330 0.0000 1267.3297 0.0000
thl =1&th2=0 1642.1024 0.0000 847.4041 0.0000 967.7887 0.0000
Log-Likelihood ~ Paramter Number Log-Likelihood ~ Paramter Number Log-Likelihood ~ Paramter Number
Synthetic model 1332.2280 23 2698.7700 23 1269.1490 23

Within each of direct, inverse, and mixed demand system, all the nested Rotterdam,
LA/AIDS, NBR, and CBS specifications, which assume the fixed restriction on the synthetic
parameters, are strongly rejected. This test results imply that none of the four nested models is
adequate and the synthetic model is a statistically better specification. In this respect, the same
synthetic functional form of the common differential AIDS type dependent variable is used for
the comparison across the direct, inverse, and mixed demand system. The estimated log-
likelihood values suggest that the inverse demand specification strongly dominates both the
direct and the mixed demand specifications and the direct demand specification statistically
dominates the mixed demand specifications. Note that this ordering of the statistical dominance
is interpreted as the ranking among the competing models rather than the rejection one of the
competing models.

The compensated and uncompensated elasticities/flexibilities estimates with their
standard errors and corresponding p-values for the direct, inverse, and mixed demand systems
are presented in Table 3.8. In the results of direct demand system, the own elasticities are all
negative and statistically significant. The expenditure elasticities are close to unity, as expected
for the normal goods. The soft drinks are net and gross p-substitutes for each other, given that

c,D D D

& &

54 2 “a59 “s540

negative estimates &7, &

T and &, are insignificant, where &’ and ¢, denote the
compensated and uncompensated elasticities in the direct demand system. In the results of
inverse demand system, the own flexibilities are all negative and statistically significant. The
scale flexibilities are close to unity in absolute values, as expected for the normal goods. The soft

drinks are gross q-substitutes for each other. Note that the compensated flexibilities in inverse
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demand system are imperfect measures of the interaction of goods in their satisfaction of wants,

since the dominating complementarity f’ >0 does not come from the preference structures but

from the adding-up or homogeneity condition Y., f° =0 together with the negativity condition

n'=l “n,n'

f°. <0 (Barten and Bettendorf, 1989). Note that the magnitudes of the compensated cross

flexibilities are relatively small. In the results of mixed demand system, the own elasticities
and/or flexibilities are all negative and statistically significant. The expenditure elasticities are

close to unity, as expected for the normal goods. The soft drinks are net and gross substitutes

c,M f M
6,5 2 5,6 7

each other, given that negative estimate p,’) is insignificant. The exceptions are ", f

and f"

.5 » Whose magnitudes are relatively small compared to other estimates. Note that the
substitutability of the mixed compensated elasticities need not be equivalent to either p-
substitutability in terms of the direct system, nor g-substitutability in terms of the inverse system,

where the dq,/0p, >0 means p-substitutability in terms of the direct system and the
0p,/0q, <0 g- substitutability in terms of the inverse system (Moschini and Vissa, 1993). Note

also that the expenditure elasticities for quantity dependent group (group 01-04) measure
percentage changes in consumption with respect to one percent increase in total expenditure as in
the direct demand system, whereas the expenditure elasticities for price dependent group (group
05-06) measure percentage changes in willingness to pay with respect to one percent increase in
total expenditure. On the other hand, the scale flexibilities measure percentage changes in
normalized price with respect to one percent increase in the proportionate increase in
consumption. For example, for group 05 (A&W and Rite Cola), the percentage increase in
consumption with respect to one percent increase in total expenditure is 0.749 estimated in the
direct demand system, the percentage increase in willingness to pay with respect to one percent
increase in total expenditure is 0.100 estimated in the mixed demand system, and the percentage
decrease in normalized price with respect to one percent increase in the proportionate increase in

consumption is 1.038 estimated in the inverse demand system.



Table 3.8. Elasticities/Flexibilities Estimates

Direct Compensated

Inverse Compensated

Mixed Compensated

PO1 P02 P03 P04 P05 P06 note QO1 Q02 Q03 Q04 Q05 Q06 Group PO1 P02 P03 P04 Q05 Q06 Group
QO01]-2.871 1.468 0.596 0.193 0.289 0.313| GroupOl PO1]-0.152 0.045 0.037 0.010 0.019 0.041 | GroupOl QO01]-4.291 2459 1.561 0.272 -0.047 -0.066 | GroupOl
0.149 0.112 0.104 0.040 0.087 0.075 Coke 0.006 0.004 0.004 0.002 0.004 0.004 Coke 0.257 0.210 0.186 0.095 0.031 0.028 Coke
0.000 0.000 0.000 0.000 0.001 0.000 Sprite 0.000 0.000 0.000 0.000 0.000 0.000 Sprite 0.000 0.000 0.000 0.004 0.134 0.018 Sprite
Q021 1.424 -3.156 0.900 0.090 0.354 0.376 Group02 PO2| 0.043 -0.140 0.023 0.011 0.019 0.043 Group02 Q02| 2.385 -4.372 1.635 0.352 -0.158 -0.092 Group02
0.109 0.134 0.094 0.039 0.091 0.072 Pepsi 0.004 0.006 0.004 0.002 0.004 0.005 Pepsi 0.204 0.264 0.208 0.100 0.037 0.030 Pepsi
0.000 0.000 0.000 0.020 0.000 0.000 | Mt. Dew 0.000 0.000 0.000 0.000 0.000 0.000 | Mt. Dew 0.000 0.000 0.000 0.000 0.000 0.002 ] Mt. Dew
Q03| 0.841 1.310 -3.075 0.155 0.403 0.354| Group03 PO3| 0.052 0.034 -0.151 0.011 0.007 0.046 | Group03 Q03| 2.203 2.380 -4.928 0.345 -0.190 -0.220 ] Group03
0.147 0.137 0.194 0.049 0.108 0.110 7-up 0.006 0.006 0.009 0.002 0.006 0.006 7-up 0.263 0.303 0.394 0.121 0.055 0.048 7-up
0.000 0.000 0.000 0.002 0.000 0.001 | Dr Pepper 0.000 0.000 0.000 0.000 0.198 0.000 | Dr Pepper 0.000 0.000 0.000 0.004 0.001 0.000 | Dr Pepper
Q04| 1.108 0.533 0.629 -2.189 -0.160 0.068 | Group04 P04] 0.055 0.065 0.045 -0.286 0.056 0.064| Group04 Q04| 1.555 2.078 1.399 -5.555 -0.347 -0.209 ] Group04
0.228 0.228 0.200 0.266 0.275 0.135 Lipton 0.011 0.010 0.009 0.018 0.014 0.008 Lipton 0.546 0.589 0.490 0.526 0.118 0.074 Lipton
0.000 0.020 0.002 0.000 0.561 0.616 Brisk 0.000 0.000 0.000 0.000 0.000 0.000 Brisk 0.004 0.000 0.004 0.000 0.003 0.005 Brisk
QO05] 0.714 0.902 0.705 -0.069 -2.731 0.467 Group05 PO5S| 0.047 0.048 0.013 0.024 -0.161 0.028 Group05 PO5| 0.028 0.312 0.270 0.135 -0.196 0.049 Group05
0.214 0.232 0.189 0.118 0.324 0.203 A&W 0.010 0.010 0.010 0.006 0.014 0.010 A&W 0.079 0.097 0.100 0.051 0.035 0.017 A&W
0.001 0.000 0.000 0.561 0.000 0.022 | Rite Cola 0.000 0.000 0.198 0.000 0.000 0.006 | Rite Cola 0.725 0.001 0.007 0.008 0.000 0.003 | Rite Cola
Q06| 0.883 1.097 0.709 0.034 0.535 -3.269 | Group06 PO6] 0.117 0.126 0.093 0.032 0.032 -0.400 | Group06 P06 0.098 0.179 0.378 0.088 0.056 -0.252| Group06
0.212 0.211 0.220 0.067 0.233 0.313 Sunkist 0.012 0.013 0.011 0.004 0.012 0.034 Sunkist 0.083 0.092 0.096 0.037 0.019 0.032 Sunkist
0.000 0.000 0.001 0.616 0.022 0.000 | Canada Dry 0.000 0.000 0.000 0.000 0.006 0.000 |Canada Dry 0.236 0.052 0.000 0.018 0.003 0.000 | Canada Dry
Direct Uncompensated Inverse Uncompensated Mixed Uncompensated
PO1 P02 P03 P04 POS5 P06 Expenditure QO1 Q02 QO3 Q04 Q05 Qo6 Scale PO1 P02 PO3 PO4 QOS5 Q06 Expenditure
QO01]1-3.135 1.196 0.409 0.147 0.182 0.219 0.973 PO1|-0.427 -0.239 -0.159 -0.038 -0.092 -0.056 -1.014 QO1]-4.614 2.083 1.267 0.191 -0.028 -0.044 1.136
0.150 0.111 0.104 0.040 0.087 0.075 0.020 0.006 0.004 0.004 0.002 0.004 0.004 0.006 0.260 0.208 0.186 0.096 0.031 0.028 0.038
0.000 0.000 0.000 0.000 0.036 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.046 0.363 0.110 0.000
Q02| 1.126 -3.462 0.689 0.038 0.234 0.271 1.095 P02]-0.227 -0.420 -0.168 -0.036 -0.091 -0.053 -0.997 Q02| 2.002 -4.819 1.287 0.257 -0.136 -0.067 1.348
0.109 0.133 0.094 0.039 0.091 0.073 0.018 0.004 0.005 0.004 0.002 0.004 0.005 0.006 0.203 0.263 0.209 0.097 0.036 0.030 0.042
0.000 0.000 0.000 0.322 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.025 0.000
Q03| 0.574 1.034 -3.264 0.108 0.295 0.260 0.985 P03 -0.224 -0.250 -0.347 -0.037 -0.104 -0.051 -1.015 Q03| 1.843 1.959 -5.256 0.255 -0.169 -0.196 1.269
0.146 0.137 0.193 0.050 0.109 0.110 0.028 0.006 0.005 0.009 0.002 0.006 0.006 0.008 0.263 0.302 0.398 0.121 0.055 0.048 0.066
0.000 0.000 0.000 0.029 0.007 0.018 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.035 0.002 0.000 0.000
Q041 0.939 0.359 0.509 -2.219 -0.228 0.008 0.621 P04 -0.247 -0.247 -0.169 -0.339 -0.066 -0.043 -1.113 Q04| 1.357 1.846 1.218 -5.604 -0.336 -0.196 0.699
0.228 0.227 0.200 0.266 0.275 0.136 0.035 0.010 0.009 0.009 0.019 0.014 0.008 0.013 0.548 0.578 0.487 0.533 0.118 0.074 0.113
0.000 0.114 0.011 0.000 0.407 0.952 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.001 0.012 0.000 0.004 0.008 0.000
QO05] 0.511 0.692 0.561 -0.104 -2.814 0.395 0.749 P05]-0.234 -0.243 -0.187 -0.025 -0.275 -0.072 -1.038 P05]-0.001 0.278 0.244 0.127 -0.194 0.051 0.100
0.213 0.231 0.189 0.119 0.325 0.204 0.055 0.011 0.009 0.010 0.006 0.014 0.010 0.015 0.079 0.095 0.100 0.051 0.034 0.017 0.028
0.017 0.003 0.003 0.378 0.000 0.053 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.993 0.004 0.015 0.012 0.000 0.002 0.000
Q06| 0.532 0.734 0.460 -0.028 0.392 -3.393 1.295 P06 -0.111 -0.109 -0.069 -0.008 -0.061 -0.481 -0.840 P06 0.023 0.091 0.310 0.069 0.060 -0.247 0.265
0.211 0.210 0.220 0.067 0.233 0.314 0.069 0.015 0.016 0.013 0.004 0.012 0.035 0.041 0.085 0.094 0.097 0.037 0.019 0.031 0.045
0.012 0.000 0.036 0.677 0.092 0.000 0.000 0.000 0.000 0.000 0.057 0.000 0.000 0.000 0.787 0.331 0.001 0.058 0.002 0.000 0.000

* P and Q denotes representative price and quantity indices for each group defended as Group 01: Coca-Cola and Sprite, Group 02: Pepsi-Cola and Mountain Dew, Group 03: Seven-Up and
Dr Pepper, Group 04: Lipton Brisk., Group 05: A&W and Rite-Cola, Group 06: Sunkist and Canada Dry, and E denote total expenditure variable
* In each cell, the first element is the estimates, the second is the standard error, and the third is the associated p-value.
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The convenient and familiar forms of comparison are possible across the direct, inverse,
and mixed demand systems in terms of one of three possible forms: the elasticities in the form of
direct demand system, the flexibilities in the form of inverse demand system, and the elasticities
in the form of mixed demand system. These results are retrieved based on the derived
relationships among elasticities and/or flexibilities across the direct, inverse, and mixed demand
systems. The relationships across the direct, inverse, and mixed demand system in terms of
uncompensated elasticities/flexibilities retrieved from the direct, inverse, and mixed demand
system are presented in Table 3.9. The tables in diagonal positions are replicated from the
estimated ones and the own and expenditure/scale elasticities/flexibilities are summarized in the
tables at the bottom positions. The own elasticities and/or flexibilities are all negative and the
soft drinks are gross substitutes each other, given that the insignificance estimates imply the

insignificant corresponding retrieved ones. For example, the insignificant estimate &, in the
direct demand system implies the corresponding insignificant retrieved one p;, in the mixed

demand form retrieved from the direct system estimates. In general, the expenditure elasticities
and scale flexibilities are close to unity, as expected for the normal goods. Recall that the
expenditure elasticities for the direct demand system and for the quantity dependent variables
group in the mixed demand system, the expenditure elasticities for the price dependent variables
group in the mixed demand system, and the scale flexibility for the inverse demand system
measure different responses of consumers with respect to the changes in different variables as
discussed.

The magnitudes of consumers’ response measured in three different specifications are
different in general and some differences are not trivial. For the group 05 (A&W and Rite Cola)
as an example, (a) The percentage increase in consumption with respect to one percent increase
in total expenditure measured in the direct, inverse, and mixed demand systems are 0.749, 0.785,
and 0.847 represented in the direct demand form. (b) The percentage decrease in normalized
price with respect to one percent increase in the proportionate increase in each consumption
measured in the direct, inverse, and mixed demand systems are 1.056, 1.038, and 0.818
represented in the inverse demand form. (¢) The percentage increase in willingness to pay with
respect to one percent increase in total expenditure measured in the direct, inverse, and mixed
demand systems are 0.325, 0.194, and 0.100 represented in the mixed demand form. (d) The
percentage decrease in consumption with respect to one percent increase in its own price

measured in the direct, inverse, and mixed demand systems are 2.814, 5.132, and 5.494



Table 3.9. Elasticities/Flexibilities Comparisons

Direct Form Estimated from Direct Model

Inverse Form Retrieved from Direct Model

Mixed Form Retrieved from Direct Model

P01 P02 P03 P04 P05 P06 Expenditure Q01 Q02 Qo3 Q04 Q05 Q06 Scale P01 P02 P03 P04 Q05 Q06 Expenditure
Q01 -3.135 1.196 0.409 0.147 0.182 0.219 0.973 P01 -0.460 -0.230 -0.133 -0.037 -0.069 -0.066 -0.995 Qo1 -3.058 1.301 0.484 0.137 -0.075 -0.073 1.124
Q02 1126 -3.462 0.689 0.038 0.234 0.271 1.095 P02 0215 -0438  -0.146  -0.025  -0.073  -0.069 -0.965 Q02 1224 3329 0.785 0.026  -0.096  -0.091 1.285
Q03 0.574 1034 -3264 0.108 0.295 0.260 0.985 P03 <0.187 0220  -0.405  -0.031 -0.080  -0.070 -0.993 Q03 0.682 1181 -3.157 0.094  -0.117  -0.090 1.189
Q04 0.939 0.359 0.509 22219 -0.228 0.008 0.621 P04 -0.254 -0.198 -0.158 -0.477 -0.017 -0.047 -1.151 Q04 0.894 0.297 0.460 -2.210 0.082 0.007 0.550
Q05 0.511 0.692 0.561 <0.104 2814 0.395 0.749 P05 <0187 -0212  -0.152  -0.003  -0.413  -0.089 -1.056 P05 0.207 0.281 0222 -0.039  -0.361 -0.042 0.325
Q06 0.532 0.734 0460  -0.028 0392 -3393 1.295 P06 <0163  -0.184  -0.124  -0.012  -0.085  -0.339 -0.907 P06 0.181 0.249 0.161 0013 -0.042  -0.300 0.419
Direct Form Retrieved from Inverse Model Inverse Form Estimated from Inverse Model Mixed Form Retrieved from Inverse Model
POl P02 P03 P04 P05 P06 Expenditure Q01 Q02 Q03 Q04 Q05 Q06 Scale POl P02 P03 P04 Q05 Q06 Expenditure
Q01 -3.841 1.327 0.731 0.173 0.502 0.135 0.972 P01 0427 0239  -0.159  -0.038  -0.092  -0.056 -1.014 Qo1 -3.687 1.476 0.891 0.163  -0.102  -0.077 1.157
Q02 1.261 -4.139 1.086 0.144 0.477 0.106 1.065 P02 -0.227 -0.420 -0.168 -0.036 -0.091 -0.053 -0.997 Qo2 1.403 -4.000 1.236 0.134 -0.097 -0.063 1.226
Q03 1.029 1.604  -4.684 0.159 0.849 0.061 0.981 P03 0224 0250  -0347  -0.037  -0.104  -0.051 -1.015 Q03 1.262 1.834 4424 0.144 0169  -0.053 1.185
Q04 1.080 0.967 0.709 -3.244 -0.174 0.010 0.652 P04 -0.247 -0.247 -0.169 -0.339 -0.066 -0.043 -1.112 Q04 1.036 0.923 0.657 -3.241 0.034 0.001 0.625
Q05 1.292 1.292 1.523 -0.081 -5.132 0.322 0.785 P05 -0.234 -0.243 -0.187 -0.025 -0.275 -0.072 -1.038 P0OS 0.262 0.260 0.301 -0.017 -0.197 -0.029 0.194
Q06 0.274 0.224 0.048  -0.029 0.304  -2.185 1.363 P06 -0.111 -0.109  -0.069  -0.008  -0.061 -0.481 -0.840 P06 0.162 0.139 0.064 0016  -0.027  -0.462 0.651
Direct Form Retrieved from Mixed Model Inverse Form Retrieved from Mixed Model Mixed Form Estimated from Mixed Model
P01 P02 P03 P04 P05 P06 Expenditure Q01 Q02 Q03 Q04 Q05 Q06 Scale P01 P02 P03 P04 Q05 Q06 Expenditure
Q01 -4.619 2.002 1.146 0.148 0.215 0.223 1.055 P01 -0.405 -0.256 -0.168 -0.033 -0.086 -0.075 -1.022 Q01 -4.614 2.083 1.267 0.191 -0.028 -0.044 1.136
Q02 1993 -5.092 0.946 0.119 0.837 0.442 1.147 P02 0246 -0393  -0.163  -0.034  -0.100  -0.076 -1.012 Q02 2002 -4819 1.287 0257 -0.136  -0.067 1.348
Q03 1.820 1.533 -5.867 0.032 1.191 1.036 0.875 P03 -0.245 -0.248 -0.318 -0.034 -0.106 -0.097 -1.048 Q03 1.843 1.959 -5.256 0.255 -0.169 -0.196 1.269
Q04 1.330 1.148 0325 -5.958 2.108 1.224 0.164 P04 0232 0245  -0.164  -0205  -0.137  -0.099 -1.082 Q04 1.357 1.846 1218 -5.604  -0336  -0.196 0.699
Q05 0.022 1.632 1.688 0.778 -5.49%4 -1.123 0.847 P05 -0.157 -0.201 -0.144 -0.044 -0.265 -0.007 -0.818 P05 -0.001 0.278 0.244 0.127 -0.194 0.051 0.100
Q06 0.098 0.763 1.662 0.468 -1.332 -4.314 1.277 P06 -0.124 -0.136 -0.129 -0.029 0.007 -0.293 -0.703 P06 0.023 0.091 0.310 0.069 0.060 -0.247 0.265
Comparison of Own/Expenditure Elasticities in Ordinary Form Comparison of Own/Scale Flexibilities in Inverse Form Comparison of Own/Expenditure Elasticities in Mixed Form
Own Direct  Inverse  Mixed Direct  Inverse  Mixed Expenditure Own  Direct  Inverse  Mixed Direct  Inverse  Mixed Sclae Own  Direct  Inverse  Mixed Direct  Inverse  Mixed Expenditure
Q01 -3.135 -3.841 -4.619 0.973 0972 1.055] Coke, Sprite P01 -0.460 -0.427 -0.405 -0.995 -1.014 -1.022] Coke, Sprite Qo1 -3.058 -3.687 -4.614 1.124 1.157 1.136 | Coke, Sprite
Q02 3462 4139 -5.092 1.095 1.065 1.147 | Pepsi, Mt. Dew P02 <0438  -0420  -0393| -0.965  -0.997  -1.012 | Pepsi, Mt. Dew Q02 23329 -4.000 @ -4.819 1.285 1.226 1.348 | Pepsi, Mt. Dew
Q03 -3.264 -4.684 -5.867 0.985 0.981 0.875 | 7-up, Dr Pepper P03 -0.405 -0.347 -0.318 -0.993 -1.015 -1.048 | 7-up, Dr Pepper Qo3 -3.157 -4.424 -5.256 1.189 1.185 1.269 | 7-up, Dr Pepper
Q04 22219 -3.244 -5.958 0.621 0.652 0.164| Lipton Brisk P04 -0.477 -0.339 -0.205 -1.151 -1.112 -1.082 | Lipton Brisk Q04 -2.210 -3.241 -5.604 0.550 0.625 0.699 | Lipton Brisk
Q05 2814 5132 5494 0.749 0.785 0.847 |A&W, Rite Cola P05 0413 0275  -0265] -1.056  -1.038  -0.818 |A&W, Rite Cola P05 -0.361 0197 -0.194 0.325 0.194 0.100 |A&W, Rite Cola
Q06 23393 2085 4314 1.295 1.363 1.277 | Sunkist,Canada P06 <0339 -0481 -0.293] -0.907  -0.840  -0.703 | Sunkist,Canada P06 <0300 -0.462  -0.247 0.419 0.651 0.265 | Sunkist,Canada

* P and Q denotes representative price and quantity indices for each group defended as Group01: Coca-Cola and Sprite, Group02: Pepsi-Cola and Mountain Dew, Group03: Seven-Up and
Dr Pepper, Group04: Lipton Brisk., Group05: A&W and Rite-Cola, Group06: Sunkist and Canada Dry.

9Cl
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represented in the direct demand form. (¢) The percentage decrease in normalized price with
respect to one percent increase in its own consumption measured in the direct, inverse, and
mixed demand systems are 0.413, 0.275, and 0.265 represented in the inverse demand form. (f)
The percentage decrease in willingness to pay with respect to one percent increase in its own
consumption measured in the direct, inverse, and mixed demand systems are 0.361, 0.197, and
0.194 represented in the mixed demand form. Recall that these relationships are based on the
partitioning quantity-dependent and price-dependent groups of commodities or the legitimate
mixed demand system, which is identified by the PC algorithm.

Given the observation that the magnitudes of consumers’ response measured in three
different specifications are different in general, interpretation of the overall empirical results is
not easy. However, one plausible comparison among three different demand systems of direct,
inverse, and mixed demand systems is possible based on the model selection approach. Given
that all three competing models have the same number of independent parameters (23), all three
model selection rules, the Akaike Information, Schwarz information criterion, and the Pollak and
Wales’ likelihood dominance criterion, are used based on the comparison of the estimated log-
likelihood function values, such as the higher log-likelihood value, the higher ranking among
competing models. The estimated log-likelihood values suggest that the inverse demand
specification (2698.77) strongly dominate both direct and mixed demand specifications and the
direct demand specification (1332.23) statistically dominates the mixed demand specifications
(1269.15). Additional empirical result that might lead one to prefer the inverse demand system is
that the overall standard errors for the flexibility estimates of the inverse demand system are
smaller than the overall standard errors for the elasticity estimates of the direct and mixed
demand system. For example, the simple average of standard errors for the inverse, direct, and
mixed uncompensated flexibility/elasticity estimates are 0.009, 0.159, and 0.164 respectively.
These empirical evidences are consistent with the local causal structure inductively inferred by
the GES algorithm. It can be also argued that the information inferred by the PC algorithm is
also useful, given the observations that (i) The comparisons of three different specifications in
three different forms are possible due to the reasonable partitioning of quantity-dependent and
price-dependent groups of commodities or legitimate mixed demand system, which is identified
by the PC algorithm. (ii) The magnitudes of consumers’ response measured in three different
specifications do not deviate too far with each other and thus provide plausible bounds in all the

three different forms, although they are different in general and some differences are not trivial.
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In this respect, another possible approach to interpret the overall empirical results is to pursue the
model averaging method rather than model selection method taken in this study, given that the
model selection ordering of the statistical dominance need to be interpreted as the ranking among
the competing models, rather than the rejection one of the competing models and accepting the
other. The overall results imply that the graphical causal model method can provide reliable and
helpful guidelines for the local identification issue of the choice among the direct, inverse, and

mixed demand systems.

Summary and Discussion

The proposed methodological procedure to address three methodological issues in the
study of consumer behavior is illustrated by using retail checkout scanner data of soft drinks
products. The three methodological issues are the aggregation, causal identification, and
functional form issues. For the aggregation issue to incorporate broad information into empirical
model, the compositional stability condition is used. The legitimate classification is inductively
identified among soft drinks products and the empirical evidence with comparison of Lewbel’s
consistent aggregation condition is provided. The following six groups are used for subsequent
analyses: Coca-Cola and Sprite product group, Pepsi-Cola and Mountain Dew product group,
Seven-Up and Dr Pepper product group, Lipton Brisk product group, A&W and Rite-Cola
product group, and Sunkist and Canada Dry product group. For the local (causal) identification
issue between price and quantity variables or the model specification issue among three possible
specifications of the direct, inverse, and mixed demand systems, the graphical causal model and
model selection methods are used. To connect these two methods with minimizing the effect of
parameterization assumptions, the AIDS type dependent variable form synthetic models are use
for all the three demand systems of the direct, inverse, and mixed demand systems. The GES
algorithm result implies the inverse demand specification, whereas the PC algorithm result
suggests the mixed demand system. Based on these inductively inferred local causal structures
between price and quantity variables of a particular product, the inverse and mixed demand
systems are estimated as well as the direct demand system for comparison purpose. In all three
demand systems, four nested parameterizations of Rotterdam, LA/AIDS, NBR, and CBS are
statistically rejected and thus the synthetic differential functional forms are used for three
demand systems. Based on the classification of the price dependent variable group (the A&W
and Rite-Cola and the Sunkist and Canada Dry product groups) and the quantity dependent
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variable group (all other three groups) in the mixed demand system, which is identified by the
PC algorithm, the estimated elasticities and flexibilities of three specifications are compared in
the direct, inverse, and mixed demand system forms. Based on the model selection approach of
the Akaike Information, Schwarz information criterion, and the Pollak and Wales’ likelihood
dominance criterion, the competing three demand systems are compared. Statistical evidences
imply that the data support the inverse demand system, which is identified by the GES algorithm.
Overall empirical evidences suggest that the graphical causal model provide helpful and reliable
information for the identification issues in the study of consumer behavior.

As future research directions, several methodological issues to be studied can be
suggested. A first issue is how to fully use the overall empirical findings. The model averaging
approach, rather than model selection approach used in this study, can provide more precise
understanding of consumer behavior. One possible approach for the model averaging method is
to use the relative log-likelihood values of the direct, inverse, and mixed demand systems. The
main issue is how to decide relative weights among competing models. A second issue is how to
fully use the causal information inferred by the graphical causal models. Although only the local
causal structure between the price and quantity variables are used in this study, other causal
information can provide the possibility of a more full understanding of the interactions in the
market, which in turn allow a more precise measurements of consumer behavior. The main issue
is how to combine the full causal information into the theoretical properties of demand functions
with maintaining flexibility and estimable functional form specification. A third issue is how to
decide the boundary of the variables included in the empirical models. For example, there can be
latent causal structures or interactions with other (size) commodities, although the size of 6/12 oz
is used to decide which commodities are included in the study. The causal structure identified by
the PC algorithm suggests that there may be latent causal variables among the price variables.
The main issue is how to satisfy or how to relax the causal sufficiency conditions in the analysis,
especially in the GES algorithm with discriminating the possible cyclic phenomenon. A fourth
issue is how to incorporate the possible dynamic interactions and non-linearity in consumer
behavior. Although the differential functional form approach provides useful framework to deal
with the possible non-stationarity of variables, incorporating the possible lagged interaction and
structural change in consumer behavior can provide more precise understanding of consumer
behavior. The main issue is how to capture the possible dynamic interactions and non-linearity

phenomena without sacrificing the theoretical properties of demand functions with maintaining
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flexibility and estimable functional form specification. A fifth issue is how to study consumer
behavior at the original disaggregate level beyond the aggregated level used in this study, given
that close co-movement among variables implies that the (probabilistic) stability condition is
violated and multicollinearity problem is severe. One possible way is to use the mixed estimator.
The main issue is how to combine aggregate level information into the mixed estimator to study
disaggregate level. Although there remain other methodological issues to be addressed in
empirical study, this study provides one plausible inductive procedure for the understanding of
consumer behavior, while minimizing the deductive properties or ambiguities. The remaining
subjectivities in our proposed method are left as further research topics, with the hope that the

remaining subjectivities bring fewer ambiguities relative to the previously used methods.



131

CHAPTER IV
USE OF HIGH DIMENSIONAL PANEL DATA IN MACRO-ECONOMETRICS

Understanding how monetary policy affects overall economic activity has been the
primary topic for theoretical and empirical studies in macro-economics for a long time. In this
respect, the macro-econometrics has significantly advanced from methodological and empirical
perspectives. In addition, recently available high dimensional macro-economic panel data has
brought forth potential for significant advances in the macro-econometric study of monetary
policy effect. However, there remain two methodological issues for the full realization of the
research potential brought by these advances. One is the identification problem of how to infer
the underlying causal structure from the data, given that the causal structure is generally
underdetermined by the statistical properties of the data (induction problem) and theory does not
provide sufficient causal information. While there have been many approaches to study the
monetary policy transmission mechanism, the structural vector autoregressive (VAR) framework
is widely used since Sims (1980) introduced the VAR approach as an alternative to structural
equation model (SEM) approach. Although the structural VAR framework provides the
possibility of inferring causal information from statistical properties of the data without
pretending to have too much a priori theory and/or without demanding too much information
from the data, how to inductively infer the causal structure to relate empirical regularities
captured in reduced form model to theoretical properties represented by the structural form
model remains an open methodological issue. The other methodological issue to be addressed is
how to incorporate an available large information set into an empirical model, given that
econometric considerations such as degrees-of-freedom and multicollinearity require the
economy of parameters in empirical models. This information problem is important, since
misspecification problems can exist due to the small information set incorporated in empirical
macro-econometric model, given the observation that monetary authorities monitor a large
number of economic variables and there can be many possible channels through which the
monetary policy affects the economy.

In this chapter we propose inductive empirical methods to address these two
methodological issues in the study of monetary policy effects based on the discussions on the
causality and aggregation issues chapter II. A method to infer the causal structures for the study

of the monetary policy transmission mechanism and a method to incorporate a broad range of
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information into the empirical macro-model are main issues to be addressed. More specifically,
first, the SEM and VAR approaches are compared in terms of the identification problem. The
relative advantage of the VAR approach beyond the recursive Wold causal chain system and the
possibility of an inductive inference of the causal structures are discussed. Second, the possible
misspecification problems due to the small information set incorporated in standard VAR
approach is discussed in the context of the monetary transmission mechanism literature. The
possibility both to incorporate high dimensional macro-economic panel data into a standard
VAR model and to infer a structural interpretation for this large information set is discussed
based on the factor augmented vector autoregressive (FAVAR) framework and the
compositional stability conditions. Third, an identification issue in the FAVAR model is
addressed by using inductively inferred causal information based on the graphical causal models.
The proposed methods are illustrated with the applications for the study of the monetary policy

effects using macro-economic panel data.

Theoretical Considerations

Causality in Study of Monetary Policy Effect

Empirical studies in economics have been developed along two distinctive
interpretations of the relative roles of deduction and induction. One approach emphasizes
deduction and interprets econometrics as an instrument of empirical application of economic
theory. The other approach emphasizes induction and interprets statistical method as an
instrument for the empirical discovery of economic relationships. While the first interpretation
leads to empirical studies which aim to measure the strength of causal relationships deductively
derived from a priori theory, the second interpretation leads to empirical studies which aim to
inductively infer the causal structure itself with a minimum of a priori restrictions. The extreme
arguments of these two approaches sometimes even bring the tension between economists who
devoted to develop formalized theory without measurement and those devoted to develop
measurement without theory. Macro-econometrics is an area where this kind of tension has been
clearly observed. Given that identifying a system of equations means determining the causal
structure, the different interpretations of the relative roles of deduction and induction in inferring
the causal or structural information from the observationally equivalent statistical properties of
data or the reduced form information is the main issue in the debate between the Cowles

Commission and the National Bureau of Economic Research (Koopmans, 1949). “The
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development of methods for causal inference in macro-econometrics has been fragile with a
tension between a deductive approach and an inductive approach. The first conceives of causes
as something that economic theory must provide and that statistical method must measure. The
second considers economic theory a not very reliable source of causal knowledge and opens the
possibility of inferring causes form statistical properties of the data without pretending to have
too much a priori theory. The first conception was advocated by some exponents of the Cowles
Commission during 1950s and is fashionable among the calibration approach to econometrics.
The second conception was formalized by Granger’s (1969) test of causality and by Sims’
(1980) vector autoregressive models, methods which are still very popular in nowadays
econometrics (Moneta, 2007).”

In general, the first deductive approach is incorporated in the structural equation model
(SEM) framework, whereas the second inductive approach is incorporated in the vector
autoregressive (VAR) framework. Two distinctive econometric approaches can be summarized
and compared in the context of the required causal information for identification. The structural
equation model (SEM) for M endogenous variables Y and K predetermined variables X can be
written as follows, where predetermined variables means exogenous, lagged exogenous, and
lagged endogenous variables.
- The structural form SEM:
Y a+ X B=¢ or Y ==X Ba" +&]a, where Cov(s, )=X
- The reduced form SEM:
Y = X TI+u where I1=-fa" and u] =&, thus Cov(u,)=% = (05" )TZ(a")

The observational equivalence or under-identification in SEM can be intuitively
understood by simply counting parameters in the structure and reduced forms. Since the
structural form has M x M parameters in coefficient matrix «, K x M parameters in coefficient

matrix 4, and M -(M +1)/2 parameters in covariance matrix £ and the reduced form has

K x M parameters in coefficient matrix IT, and M -(M +1)/2 parameters in covariance matrix

3, SEM has M? excessive number of parameters to be specified. When the normalization such
that one endogenous variable in each equation has a coefficient of one are used (M restrictions),

there remain M (M —1) undetermined excessive parameters. When the additional assumption
that Cov(gt)=2 is a diagonal matrix is also introduced ( M -(M —1)/2 restrictions), there

remain M -(M —1)/2 undetermined excessive parameters which should be resolved through
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non-sample information. This implies that many different structural models, which correspond to
different M -(M —1)/2 restrictions, can have the same reduced form.

The approach to this identification problem in SEM framework can be understood as
follows. The main issue is how to specify the undetermined excessive parameters ina and f .
Mathematically the reduced form SEM can be transformed into the structural form SEM for a

single jth equation with following matrix partition. The M endogenous variable matrix Y is
partitioned into the normalized jth endogenous variable y, with a coefficient of one, M,
endogenous variables Y/ included in the j th equation, and M  endogenous variables Y™
excluded from the jth equation. The K exogenous variable matrix X' is partitioned into K,
exogenous variables X[ included in the j th equation and K  exogenous variables X'
excluded from the j th equation.

- The general reduced form SEM for the jth equation with suitable matrix partition:

IT

T - IT.
v vl xr]-[ﬂ; ! H—;]+[ujuju;1

- The corresponding structural form SEM for the jth equation with normalization:

1 — 1 1

z. II. II

[y, v 7 e, |=[x; xrlLi m n—] e e e
-q, C= g -a,

r-Na -Ma .
R (R | ] B |
7 -a, -a; B,

- The specific reduced form SEM with exclusion assumptions of &, =0 and S =0:

i

.
y, =Y o, + X B +v, =Y XT]{ﬂ'}rvj =W -5, +V,

J
The exclusion assumptions of @ =0 and £ =0 transform the general reduced form into the
specific reduced form, which can be used for system estimation by two-stage or three-stage least

square methods. The required exclusion assumptions of ;=0 and g =0 implies that

7, —Il,a, =p, and 7, —IT,a, = 0. Since the system of equations 7, =1\, is K, equations in
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M, unknowns, the solution of ¢, exists if there were at least as many equations as unknowns
(order condition) and is unique if rankl_;z; IT, J: rankl_lT; J= M, (rank condition). Intuitively the
order condition (K, > M) can be understood as the condition that the number of exogenous
variables excluded from a single jth equation must be at least as large as the number of
endogenous variables included in a single jth equation. With the rank condition, the algebraic
identification conditions through the exclusion assumptions in both @, =0 and £, =0 can be
understood as the condition that the simultaneous relationships of the j th endogenous variable
and other endogenous variables included in the j th equation are discriminated by the exogenous
variables, which are not in the jth equation but in other equations for endogenous variables
included in the jth equation, as the specific shifters or additional causal determinants. For
example, the demand (supply) shifters allow identifying supply (demand) equation. In this
respect, the SEM approach to the identification problem can be understood as one that looks for
additional causal determinants that discriminate among simultaneous relationships.

The vector autoregressive (VAR) approach can be understood as follows. Note that
initially the VAR approach is proposed to pursue the absolutely inductive method without using
any deductive structural information (at least in the estimation step) and aims to study how
various shocks would affect the variables of the system, minimizing the structural concept itself.
Such objective, however, faces a difficult issue that the residual terms in a reduced form VAR
are not in general independent, so that a shock to one becomes a shock to others depending on
the correlation structure among them. Orthogonalization takes into account this co-movement of
the residual terms in the reduced form VAR and makes it possible to interpret the innovations in
structural form VAR as fundamental structural shocks. Henceforth the statistical properties of
economic time series are summarized by the reduced form VAR and the causal structures are
imposed in the structural form VAR based on either the theoretical implications or institutional
knowledge.

- The structural form VAR for N x1 vector of variables Z, :

AZ -AZ —--AZ =g orZ =N"'AZ +-+A'AZ  +A"g, where Cov(g,)=Q

- The reduced form VAR:

Z,=BZ,  +-+B.Z , +u where B, =A"A and U =A% thus Cov(u)=Q=A"0Q(A")
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- Derivation of vector moving average (VMA) form or impulse response function (IRF) by either

solving analytically or recursively backwards using lag operator L:

Z =B -LZ +---+B,-L"Z +u, Z=BZ_ +--+B.,Z_, +u,
(1-BL----=B,L*)-Z,=u, or  =B(BZ_+---+B,_Z_ +u,)+-+BZ , +u,
Zt :(I - BIL_"'_ BPLP)il'.JIt :(BIBIZIfZ +“.+ BprleK7P71)+“‘+ BPZKfF’ +(uK + Blu‘fl)

Z =u+Cu_+---+Cu,_ or Z =A"g+CA e ++CA e .

The observational equivalence or under-identification in VAR framework can be
intuitively understood by simply counting parameters in the structure and reduced forms. Since
the structural form has N* parameters in coefficient matrix A , PxN® parameters in the
sequence of coefficient matrix {A,---,AP}, and N -(N +1)/2 parameters in covariance matrix

Cov(s,)=Q and the reduced form has P-N” parameters in the sequence of coefficient matrix

{ B, -, BP} and N - (N + 1)/ 2 parameters in covariance matrix Cov(ul ) =0 . The VAR approach
has N’ excessive number of parameters. When the normalization such that one endogenous
variable in each equation has a coefficient of one are used ( N restrictions), there remain
N(N —1) undetermined excessive parameters. When the additional assumption that Cov(g, )= Q
is diagonal matrix is also introduced ( N -(N —1)/2 restrictions), there remain N -(N —1)/2
undetermined excessive parameters which should be resolved through non-sample information.
This implies that many different structural models, which correspond to different N -(N - 1)/ 2
restrictions, can have the same reduced form.

The approach to this identification problem in VAR framework can be understood based
on the following simple two-variable VAR example. The main issue is how to specify A
coefficient matrix, which relates the structural and reduced form VAR specifications and

controls how the endogenous variables are linked to each other contemporaneously.

- The structural form VAR with normalization on diagonal elements in A, :

Loal| 120 _ela) a7 |2, |e & (l_|o: on|_|on O
21 ’ 2 = Z 21 22 : 2 + 2 Where COV 2 = 2 2 = 2
aO 1 ZI P! aP ap thp et el O-Zl 622 0 O-ZZ

- Derivation of structural form VAR with normalization on diagonal elements in Cov(g, )= D

of 0|11 a1z} elfo) 0 )ia, ay)|Z,) o, 0 |]e
0 oifla ]|z ] #Hl o oy]|a a||z,| [0 o)f|e

D

M'u



r - 12 __-1 1 1n__-1 12 __-1 1 1__-1
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21 __-1 -1 2 | 21 __-1 2 __-1 2 2 -1

_ao 0, 0, Zz p=l ap 0, ap 0, Zt—p €0,

[ Al 12 Zl o All Alz Zl 1 1 1 0
A; Alz}[ ;}ZZ{ . 22}{ Izp}{g;} where Cov {g;} :{ }:I
_AJ AJ Zt et Ap Ap Zt—p & &, 1

- Derivation of the reduced form VAR with normalization of Cov(s, )

S
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O
I
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=.gf S
_th_ p:I_Bp Bp_ thp utz_

u' [ A2 A2 . 1" 12! " A
where Cov, { ‘2} = ! 7‘;}=Q={A; A;} {A; A;}
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137

First, it can be assumed that Cov(g, )=Q is diagonal matrix Cov(g,)=Q =D, which can be

justified based on the argument that the innovations in structural form VAR are to be

independent with each other, so that they can be interpreted as the fundamental structural shocks.

Second, for recovering structural parameters from the estimated reduced form parameters, it is

convenient to transform the normalization on diagonal elements in A, into the normalization on

diagonal elements in Cov(g,)=Q =D such that (a) Cov(¢,)=D =1, (b) The absolute value of

diagonal elements in A are the inverse of the standard deviations of the structural shocks, and

(c) The impulse responses with respect to structural innovation equal to its unity shock is

equivalent to the impulse response with respect to structural innovation equal to its standard

deviation shock. Third, since the reduced form VAR system is a system of seemingly unrelated

regressions with usually the same regressor in each equation, applying the ordinary least squares

method on each equation is equivalent with applying the generalized least square method or the

maximum likelihood method with the assumption of normal distribution. The covariance of the

estimated reduced form VAR Cov(ut)zfl can be obtained with the appropriate choice of lag

length, which allows assuming that structural and reduced form innovations are white noise.

Fourth, based on the system of equations Q:A['(AO")T , the unknown elements in A

coefficient matrix can be solved or recovered in terms of the estimated elements of Cov(u, )= Q

covariance matrix. Given that there exists the solution for the system of equations if there were
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at least as many equations as unknowns, N -(N —1)/2 restrictions in A need to be imposed for
the existence of the solution of A in Q= ,%’I(AU’I)T , since there are N -(N +1)/2 equations

in Cov(u[)zfz and N’ unknown parameters in A . Note that restrictions on the dynamic
structure in the sequence of coefficient matrices {A,---,A} are not required for the

identification.

There exists certain degree of corresponding relationship between SEM and VAR
approaches in some special circumstance, although the VAR approach is proposed as an
alternative to the SEM approach. When it is assumed (endogenous) variables have the special
causal structure of the Wold causal chain or recursive system, where the first variable causes
second variable and first and second variables cause third variable and so on, the assumed
recursive causal structure among (endogenous) variables provides enough restrictions for the

identification problem through the triangular restrictions on A in VAR approach (N -(N - 1)/ 2
restrictions) and « in SEM approach (M - (M —1)/2 restrictions) with the conformable diagonal
covariance matrix. In this case, the SEM approach to the identification problem depends only on
restrictions on & without requiring restrictions on £, as the VAR approach to the identification
problem does not require restrictions on the sequence of coefficient matrix {A,---, A } In fact,

when the fully recursive causal model is assumed among (endogenous) variables, the SEM and
VAR approaches to identification problem become almost equivalent beside the required block
recursive assumption for discriminating endogenous and predetermined variables. This
relationship between SEM and VAR approaches can be understood as follows.

- Derivation of the SEM framework from the VAR model in structural form:

r o X'

Z-AZ —---AZ . =¢,b tionof A =| * forz =| '
A) t A1 t-1 AP t-P gt Yy assumpton o P |:ﬁp ap:| or t |:th:|

L, of|X'| | O0]]X. L0 X, g

ﬂO 0{0 Yt' ﬂl al Yt—l' ﬂP aP thp' - gth
FOXI'—FIXH'—..._r‘PXFPIZgtxv
aOYI’_alYI*I'_.“_aPYt—P'+IBOXt'_ﬂIX17]'_“._ﬂPXt—P':gty'
The first equation become X,'= &' by the assumptions of I, =l andI", =---=T, =0. On the

other hand, the second equation can be written as the structural form of SEM, Y a + X[ =¢/,

where predetermined variables denote exogenous, lagged exogenous, and lagged endogenous
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variables. Note that the distinction among endogenous and predetermined variables is

incorporated by block triangular restrictions on A as well as the sequence of coefficient matrix
{A,- -, AP} with the conformable block diagonal covariance matrix. Note also that although the

SEM is usually formulated so that every parameter has an economic interpretation in the
structural form of SEM (Y a+ XS =¢), based on the same logic of expressing VAR(2)

. Zt A Az ZH ‘91
Z =AZ_+AZ_ +¢ as the canonical form of VAR(1) T ol + 0 or

t-2
Z,=AZ  +¢ , the dynamic form of SEM (aOYt'—pZZapYFp#,BOXt'—pZZ,BPXFp'=ety') can be

written as Y a + X f+Y ® =g, which can be transformed into the final form of a dynamic
SEM as follows.
- The structural form of a dynamic SEM:
Yia+ X/ p+Y ®@=¢ orY =-X/pa” -Y ®a' +& a”
- The reduced form of a dynamic SEM:
Y' =XTI+Y A+u],where[l=-fa"',A=—®a " ,and U =¢a”
- Derivation of the final form of a dynamic SEM by solving recursively backwards:
Y =XTI+Y A+u’
= XTI +(XLH +Y A+ UL)A-‘F u’
= (X/T1+ X[, TA)+ YA + (U] A+u))
Y = :Z::) XIOAN +YA + gulsﬁ orY' = g XA + gulsAs by assumption of [imA =0

Y =3 XTIA =X Iy A = XTI(1 —A)" by using 34 =(1-A)",
s=0 5=0 s=0

Y,
OX

t—s,k

e » and sz =[H(I —A)fl] . are named as the impact

k

where " =[11] ., = [HAS]

multipliers, the dynamic multipliers, and the long-run or equilibrium multipliers respectively
(Green, 2000). Note that the final form of a dynamic SEM can be interpreted as the analogue
correspondence to the vector moving average (VMA) form or impulse response function (IRF)
in VAR approach, except the conceptual difference between altering an entire time path of
exogenous variable and giving a single shock to (exogenous) innovations. In this respect, it can

be argued that there exists a correspondence relationship between SEM and VAR approaches,
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when the full recursive Wold causal chain structure is assumed in addition to the required block
recursive assumption for discriminating endogenous and predetermined variables.

Even the restrictions of I', = | and I', =---=I", =0 can be relaxed to condition of lower

triangular matrix of I’} so that the entire coefficient matrix A becomes lower triangular, since it

0

is demonstrated that the recursive Wold causal chain structure in the VAR approach can provide
partial identification for a certain specific purpose of study, i.e. the understanding of (monetary)
policy effects. This argument can be understood as follows with the assumption that all variables

Z, can be partitioned into variables X, and variables Y, , where X, come before the policy

variable S, and Y, come after the policy variable S, in causal order.

t

- The structural form VAR:

AZ-AZ,—-AZ,=¢,Vp=12,P,
A0 0 Al al A X,
by assumptionof A =| A" a7 0 |and A =|A' a’ A”|forZ =|S,
Aﬁ;l asz Ai} A;l aZZ A;3 Y‘
Ao 0 [x] A e AT[XL] A AT [

)

A a0 s || AT ar AT S, men A e AT S ||
A e ALY (A e ALY A e A e

where a” is a scalar, and A' and A’ are lower triangular matrices, thus A is lower triangular,

w

whose diagonal elements are not necessarily equal to one by using a normalization of

Cov(g[)z Q=1. Note that A", which is analogous to T, is not identity matrix | but lower

triangular matrix.

- The corresponding policy reaction function:

X, X, Xt
(A" of|s |-[A" a" A]|s.|--[A" af A]|s. |=e
Yt YH thL
XH XH—
So=—@" ) AX +@)[A @ A|s, [+o+@) A A]| s |+(@))'e
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The policy in period t is determined by (a) a policy reaction rule which depends only on the
contemporaneous X, but not Y,, (b) all the lagged variables in the VAR system, and (c) a policy
shocks in &

- The reduced form VAR:

Z,=BZ, +-+BZ  +u where B,=A'A and u =As, thus Cov(u)=Q=A"Q (A")".
When a normalization of Cov(gl): Q=1 isused, A can be obtained by applying the Cholesky
decomposition rule of lower triangular matrix for the symmetric positive definite covariance
matrix as A~ =chol (fl), instead of solving the system of equations Q = A" (A)’I)T .

- The vector moving average (VMA) form or impulse response function (IRF):

Z =u+Cu_ +---+Cu_ orZ =Ag+CA'c ++CA e .

When the policy variable is the jth element in Z , the impulse response with respect to the

policy shock is the jth columns of the sequence {A)’I,Cl&",---,CxA)"} with the assumption

that the jth element in u, unity and all other elements zero. Given that the inverse of lower

triangular ( A ) is also lower triangular ( A ), (a) the policy shock in period t (&°) has a
contemporaneous effect only on Y, but not X, . Thus the partitioning of all variables Z, into
variables X, and variables Y, is important for impulse response function of entire variables with
respect to the policy variable innovation shock &’ . However, (b) for the study of (monetary)
policy effects, the orderings within X, and Y, blocks do not matter for the impulse response
function of any variable with respect to &’ . Note that all other elements in u, are assumed to be
zero, except | th element in u, (Christiano, Eichenbaum, and Evans, 1999). This implies that the
identification problem to decide causal ordering among variables Z in the recursive assumption

can be reduced into the partial identification problem to decide which variables come before and
after the policy instrument variable in contemporaneous time, since the ordering within those
blocks can be unimportant for specific object of study: understanding effects of (monetary)
policy shocks.

Note that when the policy variable is assumed to be in either the first or the last causal
order, the identification problem becomes trivial for specific object of study: understanding
effects of (monetary) policy shocks. The typical identification assumption in much of Sims’

earlier work (for example, Sims, 1980) is that the monetary policy variable is unaffected by
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contemporaneous innovations in other variables. In latter work by Sims and others, the monetary
policy variable is assumed to be potentially affected by contemporaneous macro-economic
variables instead. This ordering change of monetary policy variable from first to last can be
understood by the change of variable choice to represent monetary policy variable from the
money aggregate to the federal fund rate. This change to represent monetary policy instrument is
based on following arguments among others. (a) A policy variable should be able to predict
macro-economic variables and it is found that the federal funds rate produces better forecasts of
output, employment and consumption than monetary aggregates such as M1 and M2. (b) While
the expansionary monetary policy shock is expected to increase output and decrease money
stock and interest rate, the positive shock to M1 leads to decrease output and increase federal
funds rate in typical VAR of the U.S. economy. The estimates of policy reaction based on
federal funds rate functions produce reasonable responses to inflation and unemployment shocks.
(c) It is observed that the federal funds rate was raised at all cyclical peaks (NBER) and at most
of the Romer dates (see Bernake and Blinder, 1992 and Eichenbaum, 1992 for examples).

Even for the general purposes, the entire causal ordering among variables of Z, in the

full recursive system can be unimportant in a certain circumstance. When the covariance matrix

of the estimated residuals is almost an identity or diagonal matrix and the assumption of the full
recursive system is used, the relationship of Cov(u‘):fl ~l=A" (AO’I)T implies that (a) There

is only one lower triangular matrix returned by a Choleski decomposition. (b) A" is not only
lower triangular but also diagonal, which in turn suggest that neither the ordering in full

recursive assumption nor the identification itself is important. When Afl is diagonal matrix, the

relationship of U = A &, implies that reduced and structural form shocks are proportional with

each other.

The full recursive Wold causal chain structure, which makes the close correspondence of
SEM and VAR approaches for a specific purpose, is very restrictive assumption to represent the
real causal structures. Note that when the empirical study aims to understand impulse responses
with respect to not only policy variable but also other structural shocks and when the covariance
matrix of the estimated residuals is not a diagonal matrix, the entire causal ordering among

variables Z in the full recursive assumption is important for the result in impulse response
functions. There are N! or M ! possible causal orders in VAR or SEM approach respectively

and the results in both approaches are sensitive to the specific causal ordering among
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(endogenous) variables. In more general circumstances where non-recursive causal structures
exist, the correspondence of SEM and VAR approaches is no longer valid, since the block
recursive Wold causal chain structure, which discriminates endogenous and predetermined
variables, does not by itself guarantee identification in the SEM approach. The order and rank
conditions in the SEM approach to the identification problem requires: (a) Discriminating
endogenous and exogenous variables such that a sufficient number of exogenous variables are

identified relative to endogenous variables and (b) Imposing restrictions on not only o, =0 but
also /=0 such that rank|_7z; Hsz rank[H’;J: M, for unique solution of ¢, . In this respect,

the SEM approach requires: (a) The causal information to discriminate endogenous and
exogenous variables, (b) The causal information among endogenous variables (restrictions on
a ), and (c) The very specific causal information between endogenous and exogenous variables

(restrictions on £ ) to discriminate the simultaneous relationships of the jth endogenous variable
and other endogenous variables included in the j th equation by using the exogenous variables,
which are not in the j th equation but in other equations for endogenous variables included in
the j th equation, as the specific shifters or additional causal determinants.

Sims (1980) argues that the restrictions used in usual SEM approach are neither credible
nor required. The restrictions used in usual SEM framework are incredible in a sense that they
are imposed simply because they are required to attain identification, given that theories are too
heterogeneous to provide a conclusive causal structure or the overall theories do not provide
sufficient information to identify causal structure. Even though the exogenous variables, defined
as variables determined outside the model by assuming all exogenous variables are uncorrelated,
provide general bounds of causal information in SEM framework, some variables are assumed as
exogenous simply because seriously explaining them would require additional extensive
modeling effort in areas away from the main interests of the model-builders. In this respect, the
causal information to discriminate endogenous and exogenous variables assumed in usual SEM
framework is incredible, given that the presence or absence of exogeneity cannot be inferred
from the data and hence is not testable, as many economists using the SEM framework admit.
The very specific causal information between endogenous and exogenous variables used in usual

SEM framework (restrictions on g relative to the restrictions on « ) is also incredible. For

example for identifying this type of restrictions, based on the typical distinction between nature

and tastes in micro-economics, although it is usually assumed that the weather affects supply
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and not much demand, whereas the demographic structure of the population affects demand but
not much supply, consumers’ demand decisions can still rely on information of supply shift
variables such as weather and firms’ hiring decisions can still depend on forecasts of the demand
shift variables such as demographic variable, especially under the rational expectation hypothesis.

All the restrictions used in usual SEM framework are not required for forecasting and/or
policy analysis in a sense that the SEM approach requires too much causal information and an
alternative approach is possible for forecasting and/or policy analysis. While the causal
information should be very specific to meet the order and rank conditions in the SEM framework,
the causal information for identification in the VAR framework, as an alternative to the SEM
framework, is less demanding. Unlike the SEM approach, the VAR approach to the
identification problem does not require: (a) The causal information to discriminate endogenous
and exogenous variables, since all the variables in the VAR framework are considered as
endogenous and treated symmetrically and (b) The causal information on the dynamic structure

in the sequence of coefficient matrices {Al,---,Ap}, which is analogous to the very specific

causal information between endogenous and exogenous variables used in usual SEM framework

(restrictions on f relative to the restrictions on « ). The causal information required for
identification in the VAR framework is only for the contemporaneous coefficient matrix A ,

which controls how variables are causally linked to each other contemporaneously and relates
the structural and reduced form VAR specifications. This advantage of the VAR framework, as
an alternative to the SEM framework, increases the possibility of incorporating inductively
inferred causal information from statistical properties of the data into the econometric model
without pretending to have too much a priori theory and/or without demanding too much
information from the data. However, given that the reduced form VAR can only be interpreted as
the descriptive statistical models, which summarizes observational equivalent statistical
properties of data just like correlation in dynamic setting, it is still impossible to use this
descriptive statistical model to study effects on variables in the model with respect to
economically meaningful structural shock. In this respect, how to determine the causal structure
to relate empirical regularities captured in reduced form model to theoretical properties
represented by the structural form model remains an important methodological issue to be
addressed. Note that even when the covariance matrix of the estimated residuals in the reduced

form VAR is almost an identity or diagonal matrix, without the assumption of the full recursive
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causal structure, the relationship of Cov(u )=Q=~ 1 = AOA(A)’I)T implies that there can be many

A" matrices whose columns are orthonormal (orthogonal matrices)

The identification problem can be understood in the more general context of the
induction problem, where the causal structure is in general underdetermined by the statistical
properties of the data. A simple but fundamental version of this induction problem is that
correlation does not imply causation. In this respect, several inductive approaches to infer causal
structures from data are proposed. Among them, the probabilistic approach is widely discussed,
especially in the context of the VAR approach. In the probabilistic approach, Suppes (1970)
defines causality such that (a) An event A causes prima facie an event B if the conditional
probability of B given A is greater than B alone (prima facie causality) and (b) A occurs before

B (temporal order condition). The condition of P(B|A)>P(B) without temporal order

condition is not enough to incorporate asymmetry of causality, since P(B | A)> P(B)

implies P(A| B)> P(A), given that P(B|A)>P(B) = Pg?’A?) > P(B) j% > P(B)

= P(A | B)> P(A) . This problem occurs due to the symmetrical property
P(A,B)=P(B|A)P(A)=P(A|B)P(B) in the conditional probability, just as the correlation has
the symmetrical property. Note that it can be understood that the identification problem in
system of equations are due to analogous symmetrical property of reduced form equations for the

structural equations. Beside the statistical property, the temporal order is the additionally

required condition that allows incorporating the asymmetry of causality, since

P(B.,|A)>P(B,,) does notimply P(A,[B)>P(A,).

Based on the similar logic that: (a) A cause makes an effect more likely and (b) A cause
occurs before an effect, Granger (1980) defines causality such that a (time-series) variable A
causes B, if the probability of B conditional on its own past history and the past history of A

does not equal the probability of B conditional on its own past history alone

P(y‘ |{yt7p}z:l,{x‘7p}P I );t P(y‘ |{y!7p}z=1, IH). However, this causality concept, based on the

pot? tel
incremental predictability with the temporal order condition, is still not enough to identify the
contemporaneous causal structure, which is required for the identification in the VAR approach.

The relationship between Granger causality of Yy, < X, and structural contemporaneous
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causality of y, <« X_can be understood by using the following simple two-variable structural and

reduced form VAR example.

- Structural form VAR focusing on structural causality test of y, < X :
12 11 12 21 21 22 X
yl = a'0 XI + a'l y(*] + a'l XI*I + gly and X! = a'0 y( + a'] y!*l + a'l X(*] + 8!

- Reduced form VAR focusing on Granger-causality test of y, < X :

a12a21 +all a12a22 +a12 allgx +8y
y, = [—f_la'zaz‘l Y. + —;—la‘zaz‘l X, + —1"_ ia‘zaz‘l or y =b'y_ +b’x_ +u’
0 70 0 70 0 70

There are all four logically possible relations between b and a): (a) b” #0 ifa’ #0 and
a’=-a’/a’, (b) b®=0if a’=0 and a° =0, (c) b*#0 if a°=0 and a” =0, and (d)
b* =0 if either a’#0 and a’ =-a°/a” or a’#0 and a”=a"=0. The corresponding
relationship between the two causality concepts can exist as in cases (a) and (b), but the possible
non-corresponding relationship as in cases of (c) and (d) can not be excluded. There is no
systematic relationship between Granger-causality of y < X_ and structural-causality of
y, < X, . Since structural-causality a,” neither implies nor is implied by Granger-causality b, it
can be argued that a Granger causality test in a reduced form VAR is not enough to identify the
contemporaneous causal structure in a structural form VAR. Note also that given that b” =0
implies a’a” +a° =0 not @’ =a,° =0, it can be argued that Granger causality does not imply
strict exogeneity, whereas strict exogeneity implies Granger causality, sincea,’ = a,° = 0 implies

b?=0. Note also that the restriction a’ =0 implies u’=¢’, thus hypothesized shock in

impulse response function has a clear interpretable meaning in the structural VAR approach
(Hoover, 2006).

Not only does Granger-causality not provide enough causal information to solve the
induction problem, Granger-causality concept itself has some problems as a legitimate causal

definition. Among them, two issues can be understood by following two examples.

21 o b 0][z,] [u zl o b o][z,] [u
(a) | 2 =pz 0 b* 0|z |+]u (b)| Z; =pz b b* b || Z2, |+|u
Z[} 0 b;z b;? Z:ﬁp u: Z[3 b;l b;z b;? Z:ﬁp u:

Granger-causality test is sensitive for information set 1, as in above example (a). b’ # 0 implies

Z!«Z! ,b’#0 implies Z' < Z , and b’ =0 implies Z'« Z' . However, excluding

t-s 2 t-s
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3
t-s 2

common cause Z’ from information set | _, can mislead one to concludeZ < Z’_, since Z,

has information of Z’ which does have information about Z'. Granger-causality concept does
not guarantee transitivity of causality as in above example (b). b # 0 implies Z <~ Z’, and
b #0 implies Z} <~ Z, but b’ =0 implies Z <~ Z, . In this respect, it is conceivable that the

omitted variable problem can occur in a small information set and the violation of transitivity
can occur in a larger variable set. The variable selection approaches based on regression methods
with several diagnostics or inclusion/deletion criteria have the similar issue. (a) When the small
explanatory variable set is initially assumed and then subsequently expanded into larger selected
variable set (Bottom-up approach), the omitted variable (especially common cause variable)
problem in the initial (or subsequent) small model can mislead the subsequent procedures. For

example, if true causal structure is y, <~ W, — x| but the initial small model y, =a X + & omits
the common cause variableW, , then hypothetic test of H :a, =0 can be rejected. (b) When the

large explanatory variable set is initially assumed and then subsequently reduced into smaller
selected variable set (Top-down approach), the included variable (especially common effect
variable) problem in initial (or subsequent) large model can mislead the subsequent procedures.

For example, if true causal structure is Yy, >W, <~ x but the initial large model

y,=ax +pBW +>ax+¢ includes the common effect variable W

t

, then the hypothetic test of
H,:a, =0 can be rejected. In this respect, it can be argued that the variable selection approach

and the Granger’s causality test have the same difficulty to decide the appropriate explanatory
variable or information set. Given that asymmetry and transitivity (if cause and effect relation is
effective) are two intuitive properties of the causality concept, the prima facie causality based on
the conditional probability has difficulty to incorporate asymmetry and Granger’s definition
based on the incremental predictability has an ambiguity with respect to transitivity. The causal
concept based on the temporal order does not provide enough information for the
contemporaneous causal structures, which is required for the identification in the VAR
approaches.

We propose to use the graphical causal models as an alternative inductive method of
inferring contemporaneous causal relationships from non-temporal and non-experimental data in
this study. The graphical causal models have been developed by mathematically connecting

probabilistic structures to graphical concepts, which effectively and efficiently capture all the
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probabilistic structures. The graphical causal model or directed acyclic graph (DAG) approaches
are based on several mathematical propositions. Let A, B, and C denote three disjoint subsets
of variables, called vertices or nodes. When it is assumed that the cyclic or feedback causal
structure does not exist (causal acyclic condition) and all the causally relevant variables can be
measured (causal sufficiency condition), the probability distribution follows the Markov
condition such that every variable is independent of all its causal nondescendants, conditional on
its direct cause. This implies that (a) An effect is independent of its indirect causes conditional
on its direct causes (causal chains of A—C — B or A« C « B) and (b) The effect variables
are independent conditional on their common causes (causal fork of A<« C — B). Note that two
nodes A and B in both causal chain and fork are unconditionally or marginally dependent on
each other, but conditionally independent given C . This observation provides a causal
interpretation for a simple but fundamental version of induction problem that (unconditional)
correlation does not imply causation. In the statistical literature, the other logically possible
causal structure except cyclical structure among three nodes is known as the selection bias,
where observation on a common consequence of two marginally independent causes tends to
make those two causes dependent conditional on common effect. This selection bias occurs
because information about one of two causes tends to make the other more or less likely, given
that the consequence is observed (unshielded-collider of A— C «— B ). Note that this causal
structure of the unshielded-collider provides an “empirical clue” to address induction problem
that correlation does not imply causation, since the combinational statistical information of
marginal correlation (unconditionally independence of A and B ) and partial correlation
(conditional dependence of A and B given C ) make it possible to infer the causal structure of
the unshielded-collider, which is discriminated from the observational equivalent causal
structures of causal chain and fork. Note also that acyclic condition allows excluding possible
cyclic structures and sufficiency condition allows including the causal fork structure.

In graphical causal models, it is also assumed that all the marginal and conditional
probabilistic structures are invariant to the changes of their numerical or parametric values
(probabilistic stability condition). This implies (a) All the observed (un)conditional probabilistic
structures are due to the underlying causal structures, not their special numerical values in
probabilistic structures. (b) No (in)dependencies in probability structures can be destroyed or
induced by changing probabilistic parameter values. (c) It is possible to effectively and

efficiently encode (un)conditional (in)dependencies structures into graphical model without
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numerical probabilities. Thus, with the Markov condition, (d) It is possible to infer the
underlying causal structures from the observed marginal and conditional probabilistic structures,
where the observation is done through the statistical decisions based on either the Neyman-
Pearson type statistical test (conditional independence test approach) or the Bayesian
information criterion (goodness-of-fit scoring approach). To empirically infer the marginal and
conditional probabilistic structures, two distinctive approaches have been proposed. While the
accessible explanation is provided in chapter II, the conditional independence test approach is
explained in Spirtes et al. (2000), the goodness-of-fit (Bayesian) scoring approach is explained in
Chickering (2003), and more theoretical and conceptual aspects of graphical causal models are
explained by Pearl (2000). While the PC algorithm incorporates the conditional independence
test approach, GES algorithm take the goodness-of-fit Bayesian scoring approach. The PC
algorithm is discussed in Spirtes et al. (2000) and the GES algorithm is originated from Meek
(1997) and its optimality is proved by Chickering (2003). Spirtes et al (2000) also provide
several algorithms in their operational software “Tetrad”, which can be used to implement the
PC and GES algorithms.

The observed equivalence between the causal chain and the causal fork, which is again a
simple version of induction problem that correlation does not imply causation, can not be
discriminated based only on statistical observations without using non-observational extra causal
information or manipulative (randomized) experimentation. However, the graph theory provides
“logical clues” to partially address the observational equivalence problem. After the maximum
information of unconditional and conditional probabilistic structures from data is obtain, (a) All
the discriminative information between the true statistical relationships and spurious correlations
among variables without causal orientations are summarized into the graph with undirected
edges, named as the skeleton, and (b) All the information to discriminate the unshielded-collider
structure from the observational equivalent causal structures of causal chain and fork are
summarized into the partially oriented graph, named as the partially directed acyclic graph
(PDAG) with causal orientations from independent causes to the common effect. By logically
deciding causal directions for the remaining undirected edges in PDAG, the completed partially
directed acyclic graph (completed PDAG or essential graph), which is maximally oriented
PDAG, can be further inferred. The logical inferences about causal directions are based on the
idea that orienting the remaining undirected edges in PDAG does not result in the causal

structure which is inconsistent with the statistical observations, as long as the logically decided
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orientations do not create either the empirically unsupported new unshielded-collider structure or
the cyclic causal structure excluded by the acyclic assumption.

The graphical causal models or DAG approaches have several features and assumptions.
To infer causal relationship between two variables A and B, the DAG use the criterion whether a
third variable C exhibits a specific pattern of dependency with A and B. In this respect, the DAG
approach can be compared with the SEM approach, where the simultaneous relationships of

the j th endogenous variable ( A) and other endogenous variables included in the j th equation

( B) are discriminated (identification or induction problem) by the assumed exogenous variables

(C ) excluded from the j th equation as the additional third causal determinants or specific
shifters for behavioral equations of other endogenous variables included in the j th equation.

However, methods to address this induction problem are quite different. In the SEM approach,
the selection of exogenous variables is usually considered as maintained assumptions derived
from the theory rather than something to be learned form data itself. Even when the hypothetical
test approach based on regression framework is implemented, (a) The non-nested hypothetical
test approaches oftentimes have a power problem related with the statistical hypotheses test, so
that they have generally little power to discriminate competing specifications or causal
hypotheses. (b) The nesting of hypothetical tests based on variable selection methods also faces
issues, since the top-down or bottom-up approach have difficulties in dealing with common
effect variables or common cause variables of dependent and explanatory variables respectively
as mentioned above. In the DAG approach, all marginal and conditional probabilistic structures
among all the relevant combinations of variables are efficiently checked in search procedures to
obtain the maximum information of specific pattern of dependencies among variables, where
relevant search spaces are logically decided based on the graph theory. In this respect, the graph
theory not only provides logical orientation rules to partially discriminate observationally
equivalent causal structures but also allows the full use of the maximum information of
unconditional and conditional probabilistic structures from the data. Note that checking or
searching all the relevant (un)conditional probabilistic structures among all the possible
combinations of variables becomes infeasible without systematically and efficiently defining the
relevant or entire search space.

The graph theory used in the DAG approach is based on some assumptions as discussed
earlier. The acyclic assumption and the causal sufficiency assumption are required for the

Markov conditions. While Richardson and Spirtes (1999) develop the Cyclic Causal Discovery
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(CCD) algorithm to allow cyclic possibility and Spirtes et al. (2000) develop the Fast Causal
Inference (FCI) algorithm to relax sufficient condition, these developments are not incorporated
in this study, since it is still ambiguous how to distinguish between feedback and latent
phenomena (Moneta and Spirtes, 2006). We hope that it is not too harmful to take the acyclic
and sufficiency assumptions, given observation that these two assumptions are common to
almost all the empirical models. Given the fact that while the Markov condition suggests the
logical implication from the underlying causal structures to probabilistic dependency patterns,
the stability condition, with the Markov condition, suggests the logical implication from
probabilistic dependency patterns to the underlying causal structures, it can be argued that the
stability condition, with the Markov condition, makes it possible to inductively infer the causal
structures from the data. In this respect, the stability condition needs to be discussed more to use
the graphical causal model in empirical study. There can be two circumstances where the
stability condition can be violated, as discussed in the Tetrad II manual. One possible
circumstance is that there may exists strict equality among products of parameters, so that a
spurious (in)dependence in probability distribution can be destroyed or induced by changing
underlying parameter values. The other possible circumstance is that there may exist
deterministic or near deterministic relationships among variables so that any of the statistically
observed (un)conditional probabilistic structures are due to not only the underlying causal
structures but also their special numerical values. For the first case, it has been demonstrated that
the strict equalities among products of parameters have very little possibility or Lebesgue
measure of zero in any probability space in which parameters vary independently from one
another. According to Tetrad II manual, the Tetrad program should not be used for the following
cases or these second cases should be practically addressed in empirical study, where (a) There
are deterministic relationships among variables or (b) There are conditional probabilities very
close to 1 in the discrete case or (c) There are correlations very close to 1 in the linear case.
These restrictions for using the Tetrad program can be understood based on the following

reasoning. If P(A|B)~1, then P(A|B,C)=P(A|B) can be hold for any set of variable C ,

regardless of the causal structures among them. So it is not possible to infer reliable causal
structure from the probabilistic dependency pattern. Note that this problem is similar to the
multicollinearity problem, which makes it difficult to obtain precise estimates of the separate
effects of the variables in the regression method. Given the observation that many variables in

high dimensional data set oftentimes move very closely, the direct use of the graphical causal
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model for the high dimensional data set can be problematic, since the stability condition can be
violated in its applications for high dimensional data sets. One possible way to address this
problematic situation is to use aggregation method. However, before using an aggregation
method, the legitimate aggregation condition should be empirically identified to consistently
infer causal structures among disaggregated variables by the aggregated variables as the

legitimate representatives. This issue is the next topic to be discussed.

Aggregation in Study of Monetary Policy Effect

To promote sustainable growth and stabilize inflation have been considered as main goal
of macro-economic policy. While fiscal and monetary policy have been considered as two
primary policy instruments to attain that goal, it is observed that monetary policy has become
more emphasized than the fiscal policy, since (a) fiscal policy brings not only doubts that the tax
and spending decisions can not be made in timely way, but also concerns that using fiscal policy
in inappropriate ways can result in the possible persistent budget deficits, (b) it is observed that
the monetary policy effects do exist over the short and mid run period, despite of the argument
that the monetary policy has neutral effects on economic activity in the long run. In this respect,
the understanding of how monetary policy affects the economic activity has been the primary
topic for theoretical and empirical studies in macro-economics for a long time. While there have
been many approaches to study the monetary policy transmission mechanism, the structural
vector autoregressive (VAR) framework is widely used, since it does not require the excessive
and incredible identifying restrictions in the structural equation model (SEM) framework. Sims
(1980) introduces VAR approach as an alternative to SEM approach and Sims (1992) and
Bernake and Blinder (1992) use these models to identify and measure the effect of monetary
policy on macro-economic variables. However, beside the causal identification issue previously
discussed, the relatively small information set incorporated in the standard low dimensional
VAR model may imply potential problems in the empirical understanding of the monetary policy
transmission mechanism based on the small number of variable VAR model, given the
observation that (a) monetary authorities monitor a large number of economic variables and (b)
there can be many possible channels through which the monetary policy affect the economy.
Accordingly, there are research interests in moving beyond the low dimensional VAR.

First, when the central bank and the private sector have additional information not

incorporated in the model, the policy innovations measured by reduced form VAR residuals of
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policy reaction functions is likely to be contaminated and the measured responses of economic
variables to the monetary policy innovations is also likely to be misleading. The possibility that
there can be missing elements in the policy reaction functions can be understood by using
following example of the “price puzzle”. The price puzzle is counter-intuitive impulse responses
result that contractionary shocks to monetary policy lead to persistent price increases in a VAR

of output, prices, money, interest rate and perhaps some more variables. When the policy rule i,

(the federal fund rate, for example) is represented as the function of the inflation expectations
E, (ﬂ'm), the effect of other variables g(X '[), and the policy shock &’ but the expected inflation
is actually some function of not only some variables |, included in VAR but also some other
variables W, omitted in the VAR, the VAR residual for policy variable u’ is actually some
function of not only the policy shock & but also omitted variables 7Z'IW(|1,WI), which have
information about the expected inflation. If these omitted variables dominate the policy shock,
then a primary component of the monetary policy shocks measured from the reduced form VAR
residual is actually the omitted information about the expected inflation, which can lead to high
future inflation.

- The underlying policy reaction function:

i, =BE(z,,)+g(X")+e by assumption of E (7, )=zl )+z"(I,W,)

i, =Ax()+9(X")+ Bz (1,W,)+e

- The measured policy innovations:

i, =Ax(1,)+g(X")+us where uf =gz"(1,W,)+s".

One possible solution to this price puzzle would be to include the omitted information about the
expected inflation in VAR, which makes 7" (I ,W,) term vanished. A large number of possible
variables are studied and it is demonstrated that broad commodity price indices and some of
financial data seems to be successful, whereas individual commodity prices have very small
effects (Sims, 1992). However, there is difficulty in this approach to address the price puzzle.
Although additional variables W, , which represent the omitted information about the expected
inflation in VAR to solve the price puzzle, must have incremental predictive power for future
inflation over the Q , it is not easy to find the empirical support for this argument. For example,

Hansen (2004) compares several commodity price indices and other indicators and finds very

little correlation between the ability to forecast inflation and to solve the price puzzle.
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Second, when there are additional channels not incorporated in the VAR model, the
measured responses of economic variables to monetary policy shocks can be misleading. The
possibility that there can be missing elements in monetary transmission mechanisms or channels
not captured in the VAR model is based on the observation that macro-economic responses to
policy-induced interest rate changes are considerably larger than those implied by the
conventional estimates of the interest rate elasticities of consumption and investment (Bernanke
and Gertler, 1995). The theoretical descriptions of the monetary transmission mechanism are
based on the following arguments that (a) The monetary policy affects the short and long term
nominal as well as real interest rates. Short-term nominal and real interest rates are assumed to
move in the same directions by the nominal rigidities of general price level. On the other hand,
short-term and long-term interest rates are also assumed to move in the same directions by the
rational expectation hypothesis of the term structure, which states that the long-term interest rate
is an average of expected future short-term interest rates. Thus, hereafter interest rates (i) denote
all the general interest rates. (b) The size of economy (Y ) can be measured by the expenditure
method, which states that the market value of final goods and services or the sum of value added
at every stage of production within a country in a given period of time can be measured by

planned investment (1), consumer spending (C ), government spending (g ) and net exports

(NX ). There are several monetary policy transmission channels described in the literatures
including one based on the traditional macro-economic models (Mishkin, 1995).

In the traditional ISLM macro-models, the monetary transmission mechanism can be
described as follows. (a) The general interest rate (i) moves in the same direction as the required
rate of return (cost of capital r) or the discount rate (r'). While investment spending is affected
through the influence on the required rate of return of investments (cost of capital r ), consumer
spending is affected through the relative price of current and future consumption (discount rate
r'). Both investment and consumer spending are also affected by the lending and borrowing
activities. (b) The relative attractiveness of domestic currency to foreign currency due to
domestic interest rate change affects the relative value of domestic currency to foreign currency
E (exchange rate). The exchange rate affects the relative price competitiveness of domestic
goods to foreign goods, which influence the net export. The exchange rate also affects the
domestic debt burden denominated in foreign currency (Mishkin, 1995).

Descriptions of (other) asset market channels are based on the following several

alternative propositions, where (other) assets markets are represented by the financial assets
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prices (P, ) and physical assets prices ( P, ). While the common stocks usually represent financial

assets or wealth, the residential housing and durable goods represent physical asset or real capital.
(a) The contractionary monetary policy decreases money supply and increases interest rate.
Decreased money supply induces public to spend less, decreasing the demand for financial and
physical assets. Increased interest rates makes bonds more attractive relative to other assets,
decreasing financial and physical assets prices. (b) Based on the Tobin’s q theory of investment,

where q is defined as the ratio of market value of asset to the replacement cost of capital, it is
argued that when asset price is decreased and thus  is decreased, spending on asset become

expensive relative to asset market value and thus investment spending on asset decreased. Just
like firms’ decisions about business investment, consumers’ decisions about residential housing
and durable goods are considered as investment decisions. (c¢) Based on the Modigliani’s life
cycle model, it is argued that the consumption spending is also determined by the lifetime
resources of consumers, which consist of human capital, real capital, and financial wealth.
Decreased asset price reduces lifetime resources, which leads to decline in consumption
(Mishkin, 2001).

Descriptions of the bank credit channel are based on how bank assess borrowers,
especially borrowers’ balance sheets ( BS ). The contractionary monetary policy deteriorates not
only the borrowers’ debt service burden or cash-flows (CF ) by raising interest rate but also the
borrowers’ collateral value (CV ) by decreasing asset prices. The deteriorated balance sheet
makes banks’ willingness to lend decreased, which implies a decrease in the bank dependent
borrowers’ investment or consumption. More detailed descriptions are pursued. In the bank side,
it is argued that the small banks’ willingness to lend is restricted more than the large banks, since
small banks are not able to substitute deposits funding with other sources of funds. In the firm
side, it is argued that and the small or medium size firms more depend on banks than the large
firms for external funds, since small firms can not directly access the credit markets such as
stock and bond market. This implies that the monetary policy affects the overall economy
through its effects on the small banks or firms. Note that size is used for proxy variable for this
argument. On the consumer side, given that financial assets are considered more liquid than
physical assets, the change in liquidity affects the willingness to hold non-liquid assets. For
example, decreased stock price induced by monetary policy makes consumers’ financial position
less secure, reducing consumers’ expenditure on physical assets, which in turn implies decreased

willingness to lend and borrow (Bernanke and Gertler, 1995).
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The monetary transmission mechanisms described above can be summarized for the

contractional monetary policy (MP) as follows:

MP=>iT=r&r 1 =1 &Cl=Y1{
MP=>iT= E* = NX{ =Y/
MP=>iT= P &P | => (Tobin’s ¢ and/or Wealth) ¥ =1 &Cl{=Y{
MP => i T=>(CF and/or P, &P,=>CV )J => BS | =>Credit! =1 & C Il =Y {

The existence of additional channels other than the narrow interest rate channel implies
that the standard small number of variable VAR model based on the traditional [ISLM macro-
model can underestimate the monetary policy effects, since the stock and house market, for
example, suggest possible amplified indirect monetary effects more than direct interest rate
effects. However, the theoretical and empirical descriptions and understandings of monetary
transmission mechanism are still incomplete, thus they can not provide clear guidelines for the
choice of variables to enter the VAR system. For example, (a) The change in interest rates
induced by monetary policy can affect the overall economic activity through the expectations
such as inflationary expectations and confidence about the future outlook of the economy.
However, the direction in which such effects work can vary from time to time and is hard to
predict. (b) The relative importance and their total effect of different transmission mechanisms or
channels depends on the different structures and the nature of the economy such as the history of
business cycles, differences in depth and diversity of financial markets, different nature and size
of firms and/or consumers and their financial structures, the elasticity of demand for exports and
imports, relative openness of the economy, relative amount of national debt denominated in
foreign currency, and so on. Some of these issues can only be address based on the detailed
micro-level data, rather than aggregate data (see Juks, 2004 and references in there).

Third, besides the potential problems due to possible omitted variables in both
measuring policy shocks in monetary policy reaction functions and fully capturing monetary
transmission mechanism channels, there is a more fundamental issue for choosing variable in
empirical models. Watson (2000, page 88) argues “The main problem to be solved when
constructing a small model is to choose the correct variables to include in the equation. This is
the familiar problem of variable selection in regression analysis. Economic theory is of some
help, but it usually suggests large categories of variables (money, interest rates, wages, stock

prices, etc.), and the choice of a specific subset of variables then becomes a statistical problem.
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The large-model approach is again guided by economic theory for choosing categories of
variables, and the statistical problem then becomes how to combine the information in this large
collection of variables”. The variable selection approach based on regression method can be
problematic, since (a) The top-down or bottom-up approach has some difficulties to deal with
common effect variables or common cause variables of dependent and explanatory variables
respectively as discussed in the context of causality issues and (b) The variable selection
approach requires an unrealistic assumption that the very specific observable measures precisely
corresponds to some theoretical constructs. The observed variables may be subject to a variety of
errors such as (a) The observed variables are likely to be contaminated by measurement errors.
Most macroeconomic data may be subject to multiple rounds of revisions and are never free of
measurement error. For example, various biases are involved in the measurement of inflation
such as the inherent difficulty of full adjustment for quality improvement and (b) There is a
conceptual ambiguity in linking each theoretical variable to a specific observed variable. The
choice of a specific data series to represent a general economic concept is often arbitrary to some
degree and thus a specific measured variable is likely not to correspond to a theoretical variable.
For example, output in the theoretical model may correspond more closely to a latent measure of
economic activity than to a specific data series such as real GDP. Considering only the common
components of observed variables is one way to eliminate measurement errors and treating
theoretical variables as unobserved in empirical analysis is one way to acknowledge these
underlying problems (Bernanke, Boivin, and Eliasz, 2005). In this respect, an alternative
approach to variable selection methods is to use statistical dimensional reduction methods such
as factor and principal component analyses, which treat theoretical constructs as unobserved
factors revealing their information by their multiple observable indicators. In addition, factors or
principal components can be used to combine the information in large collection of variables into
empirical models.

As an alternative to the SEM approach, which requires a large number of identifying
restrictions for system estimation by two- or three- stage least square methods for either
forecasting or policy analysis, the VAR approach requires one to identify the contemporaneous
coefficient matrix only in order to infer the structural economic shocks from the reduced form
innovations. However, the inference based on the VAR approach can be misleading, unless the
reduced form innovations span the space of the structural shocks or the VAR model does not

have an omitted variable problem. The main issue to address this possible misspecification
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problem is how to increase the amount of information in the VAR model so that the reduced
form innovations span the space of the structural economic shocks, given that econometric
considerations such as degrees-of-freedom and multicollinearity require the economy of
parameters in empirical models. In this respect as well as the related problems of the observable
measurements with respect to theoretical constructs, the statistical factor model is proposed to
span the space of structural shocks, when there can be hundreds of economic variables that
potentially contain information about the underlying shocks. Two approaches, commonly named
as the dynamic factor model, are suggested to generalize the standard static factor models based
on the static covariance or correlation matrix to incorporate the possible distributed lag effect of
factors on observed variables. While Forni et al (2000) use the spectral density matrix in a
frequency-domain framework, Stock and Watson (2002) use cross-covariance matrix, which
includes auto-covariance matrix in a time-domain framework. Since both approaches apply the
singular value decomposition theorem to their generalized covariance or correlation matrix to
derive eigen-vectors as weighting schemes, the dynamic factor model can be understood as the
generalized approximate factor model based on generalized principal component methods. The
dynamic factor model approach is based on the propositions that (a) There are small numbers of
unobserved common dynamic factors that produce the observed co-movement of economic time
series, (b) These common dynamic factors are driven by the underlying common structural
economic shocks, (¢) these underlying structural shocks are only revealed by distilling the small
numbers of common sources of co-movement from a very large number of observed variables.
These plausible propositions of dynamic factor models, with the observed co-movement of many
economic time series variables, have motivated recent advances in VAR modeling on how to
best integrate this factor method into VAR and SVAR analysis for either forecasting or policy
analysis (Stock and Watson, 2005).

For the forecasting purpose, Stock and Watson (2002) propose to use an approximate
dynamic factor model, where the information of a large numbers of time series variables is
summarized by relatively small number of estimated factors, called diffusion indexes. They
show using forecasting simulations that forecasts based on estimated factors outperform
univariate autoregressive models, small number of variable VAR models and leading indicator

models. Let y,_, be the variable to be forecast based on the number N, of variables X, through

the number N, of latent factors F, . Their approach can be understood as follows: If

t
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where E(e, |{Y..X.,F.} )=0.1f

s+12 s s )s=—w

V., =p8-X +¢, and X, =AF +u,, then Y_ =aF +e

t+l 2

y,,, 1s the variable to be forecast based on the vector of variables X, but the comovement among

variables X, can be summarized by a small number of latent factors F,, then a three step process
can be used for forecasting vy, : (a) Estimate latent factors F. from the observed variables X,

(b) Estimate coefficients & in Y, =aF +¢_, , and (c) Forecast Y, , based on Y, = &F, . Note

t+l 2

that they found that only a few observed variables have predictive power, since most of § in
Y., =p- X, +¢&,, are zero. However, all the observed variables turn out to have predictive power
through representative common factors, since all of the elements of £ in factor model are non

zero in general, even though each of them is small. This means that much more information can

be incorporated for analysis by using the dynamic factor model approach. The f in factor
model are derived as follows. When X, = AF, + u, can be written as E( F X, ) =y - X, (regression

of F, onto X, is linear), then Y, = oF +e, implies that E( Yoo X[)z a- E( F | X[)z a-y-X,

andf=a-y.

Bernanke, Boivin, and Eliasz (2005) extend this dynamic factor model for the structural
VAR approach and propose to use factor-augmented vector autoregressive models (FAVARs)
based on the idea that if large amounts of information about the economy can be effectively
incorporated in the model by a small number of estimated factors, then augmenting standard
VARs with estimated factors can be natural way to incorporate large information set into the

structural VAR model. Note that when the number of factors N_ is much smaller than the

number of observed variables N, , the amount of information incorporated in the model

drastically increases by using FAVAR framework. Incorporating similar amount of information
by directly using observed variables without factor framework would be both inefficient due to
possible multicollinearity problem and impractical due to the degree of freedom problem. Their

F F
approach can be understood as follows: { ‘} = CD(L)-[ ”} +v,, where X, =A, -F+A -y +e.

t -1

When the information structure is assumed such that the central bank and the econometrician

observe only the policy instrument (nominal interest rate) Yy, with a large set of noisy
macroeconomic indicators X, but the comovement among variables X, can be summarized by a

small number of latent factors F, , a three step process can be used to study monetary policy
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effect: (a) Estimate latent factors Ift from the observed variables X, , (b) Estimate impulse
response functions of factor augmented VAR, and (¢) Obtain impulse response functions of

individual macroeconomic indicators based on X, =A, -F + A -y, +¢ . Note that assuming a

full recursive causal structure among factors and policy variable, they use a Cholesky
identification scheme where the policy variable, federal fund rate, is ordered last. Note also that

they construct factors from the observed variables’ information space not spanned by policy

variable é(Xt)—ﬁ- y,, where C(Xt) denote principal components of entire observed variables
X, and t;-yI is obtained through a multiple regression of é(X‘)z é-(f(Xf'°W[)+6-y‘ + e, when

é(X sov ) denote principal components of slow-moving observed variables only. This is based on

¢
the assumption of block recursive causal structure among observed variables such that observed
variables are divided into slow-moving and fast-moving variables, where the slow moving
variables such as real variables are assumed not to respond to policy shock and fast moving
variables such as financial asset prices are allowed to respond to a policy shock in
contemporaneous time.

Although it is demonstrated that the dynamic factor models are useful approach to
incorporate a broad range of information in empirical macroeconomic modeling for either
forecasting or policy analysis, it is also observed that there remain several issues to be addresses
as Bernanke, Boivin, and Eliasz (2005) discussed. First, there is some ambiguity in the choice of

observed variables X, . For example, Boivin and Ng (2003) using simulation and empirical data

demonstrated that expanding the dataset by adding more variables without considering data
structure can be not always desirable in the context of forecasting. They show that it is possible
to forecast equally well and perhaps marginally better by pre-screening observed variables into
smaller dataset, although their pre-screening method is considered as a largely ad hoc procedure.

Second, there is some ambiguity in choosing the number of factors F, . Although some

t

(information) criteria are proposed to determine the number of factors present in the data set X,

(see Stock and Watson, 2002 and Bai and Ng, 2002, for examples), it is argued that these criteria
do not necessarily address the question of how many factors should be included in the VAR. For
example, Stock and Watson (2005, page 33) argue that “for the purposes of forecasting, it may
suffice to use a small number of dynamic factors but for the purpose of structural VAR modeling

the dimension of the space of dynamic factor innovations appears to be larger.” Third, although
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the large amounts of information can be effectively incorporated by a small number of estimated
factors to improve forecasting performances or empirical plausibility of structural analysis, there

is difficulty to provide economic interpretations for the estimated factors F . Given that

structural VAR is widely used to study the monetary policy transmission mechanisms, it is not
enough to mitigate some puzzles such as price puzzles by augmenting estimated factors when the
estimated factors can not be economically interpreted. Stock and Watson (2005, page 33)
suggest possible economic interpretations for the estimated factors based on the relative size of
factor loadings and variance decomposition and argue that “additional dynamic factors account
for additional movements of the remaining series, which are mainly financial series such as
interest rates, stock returns, and exchange rates”. Given that these financial series are the
possible monetary transmission mechanism channels identified in the literature as discussed, it
can be argued that incorporating additional dynamic factors is important for the structural
understanding of the monetary transmission mechanisms. However, it is still not easy to provide
clear economic interpretations for the estimated factors, when the estimated factors are linear
combinations of the entire data set. Fourth, there remains an ambiguity to use the full recursive
contemporaneous causal structure among factors and policy variable. The estimated factors are
independent with each other by construction so that the covariance matrix of the estimated
residuals of FAVAR is almost diagonal matrix and thus the reduced and structural form shocks
are proportional with each other when a Cholesky identification scheme is used. However, given
that the estimated factors are linear combinations of the entire data set of observed variables, it is
not easy to connect the estimated factors to the underlying structural shocks except the policy
variable shock. Bernanke, Boivin, and Eliasz (2005) eschew such difficult issue on how to
decide the causal orderings among the estimated factors by using the fact that the orderings
within the before or after policy variable block are not important to understand the monetary
policy effects when the full recursive causal structure is assumed. In their identification scheme,
the policy variable federal fund rate is ordered last so that all the estimated factors are in the
higher order placed block. Note that how to construct factors from the observed variables’
information space not spanned by policy variable in the first step also depends on the specific
identifying assumption used in the second step. Bernanke, Boivin, and Eliasz (2005) use the
block recursive assumption of slow variables’ block and fast variables’ block in the first step and
the full recursive in the second step. Given that the full recursive causal structure is considered

as a very restrictive assumption to represent the causal structure in the real data, other general
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1dentification schemes need to be considered in the FAVAR model. However, there is some
ambiguity to use other general identification schemes in FAVAR model, since more general
identification schemes would require that the estimated factors to be identified as specific
economic concepts.

All the issues discussed above for using FAVAR model are related with the data

structure of observed variables X, and interpretation of estimated factors F and these two

issues are related each other. The intuitively suggested (Bernake et al., 2005) approach is
extracting principal components from blocks of data corresponding to different dimensions of

the economy. Mathematically this approach can be explained as follows:

F] E KT TA 0 o 0 0]TF ]
R F. X! 0 A - 0 0 F

S CD(L)- : |+V,, where Yol=l o Lo N Y I Y
F FX X/ 0 0 - A 0 ||F~
LY. | LYo | XS] _0 0 --- 0 AKf_ E |

If we assume that each block of observed data X/ is explained by only the corresponding one
factor F* (V k=1,---,K ) and each of the variables in the entire data set X, is affected each

other only through the corresponding factors, then each of estimated factors can be interpreted
based on the assumed group of observed variables and the contemporaneous causal structures
among the estimated factors can be meaningfully imposed. This approach is empirically used in
Belviso and Milani (2005), where two types of deductive assumptions are used. In their
empirical study, the classification of observed variables and the contemporaneous causal
structure are chosen based on researchers’ subjective intuition. Their classification will be
discussed in the below empirical section, when our inductive classification is discussed along
with another subjective classification of Leeper, Sims, and Zha (1996). Their identification
scheme is based on the full recursive restriction where the different causal orderings are tried.
Although the results of Belviso and Milani (2005) are generally successful and they call their
method as the structural FAVAR (SFAVAR), the deductive approach for aggregation and
causality issues can result in ambiguity in empirical studies, given that theory does not provide
definitive or sufficient information for these two issues.

The possibility of inductively inferring data structure from observed variables X, and

obtaining interpretable estimated factors F, from the observational data is discussed from the
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aggregation theory and statistical dimensional reduction methods in chapter II. The main result
can be summarized as follows. If the observed data has the special data structure of X = A’ -F",
then the correlation matrix of observed data set X, have the special block diagonal structure ="

such that variables within each block are highly correlated but variables across blocks are nearly
uncorrelated. Thus, if we can identify an approximate block diagonal structure £" in the
correlation matrix of observed data set X, , then we can inductively infer empirical classification
in the form of X =A‘-F“+e€'. Given that the standard static correlation Corr(X) only

measures synchronous or contemporaneous co-movement among variables, the dynamic

correlation DynCorr(X) is also used to measure co-movement among observed variables.

2 =Corr(X) or DynCorr(X)

S0 e 0 1 p e p)
=3" = O 2:; 0 , where X! =| P 1 P
e s N
S0 0] 1 s P
~3M = 0 i‘” 0 , where 3" = 'Dk:'” 1 ::'pk':ZN,szl, ..... K.
0 0 - 2. | Pent Pz 1

The dynamic correlation is proposed from the frequency domain framework and defined as

L(ﬂ) for the frequency A and p, (A)= I, C”(/I)dﬂ
5,(4)-5,(2) v (LS. (a)da-g, s, (4)da

the frequency band A = [/11,/12) where —7<A<7,0< A4 <A, <7, X and Yy are two zero-mean

follows: p,, (1)= or

real stochastic processes, S (4)and S (1)are the spectral density functions of x and y, and
ny(/l) is the co-spectrum. The dynamic correlation has useful properties such as: (a) The

dynamic correlation measures different degrees of co-movement which varies between -1 and 1
just as standard static correlation. (b) The dynamic correlation over the entire frequency band is
identical to static correlation after suitable pre-filtering and it is also related to stochastic co-
integration. (c) The dynamic correlation can be decomposed by frequency and frequency band,
where the low or high frequency band in spectral domain have implication for the long-run or

short-run in time domain respectively (Croux, Forni, and Reichlin, 2001). Note that Forni et al
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(2000) also propose the dynamic factor model based on the spectral density matrix in a
frequency-domain framework due to the similar issue of standard correlation or covariance
matrix. We use the standard static correlation as well as the dynamic correlation defined to
measure the close co-movements of disaggregated variables within a group and near
independences of disaggregated variables across groups.

The use of aggregate variables or estimated factors to study dynamic relationships and to
infer causal relationships among observed disaggregate variables can be theoretically justified
based on the compositional stability condition derived from the aggregation theory as discussed
in chapter II. The identified block diagonal pattern of correlation matrixes implies that the
observed disaggregate variables approximately satisfy the consistent aggregation condition of
compositional stability condition. This condition in turn implies that there exists not only the
possibility of obtaining interpretable macro-variables as the representative aggregate of
homogeneous disaggregate micro-variables, but also the possibility of yielding interpretable
macro-parameters as the representative aggregate of corresponding micro-parameters for the
subsequent analysis. This means that when the disaggregate variables can be legitimately
grouped and represented by aggregate variables, it is possible to use aggregate variables to
capture (causal) relationship among disaggregate variables through the (causal) relationship
among aggregate variables as the legitimate representatives as long as the compositional stability
conditions hold among disaggregate variables. Moreover, given that the VAR approach is
proposed and used as an inductive method as an alternative to the deductive SEM approach, it is
better to pursue inductive methods, where the classification/aggregation and causality issues are
addressed based on the inductively inferred information from the data itself, rather than based on

the maintained assumptions derived from deduction and/or researchers’ intuition.

Summary and Proposed Method

There are significant advances in macro-econometric study from the methodological and
empirical perspective. In methodological perspective, the vector autoregressive (VAR) model
approach is proposed and used as an alternative to the structural equation model (SEM) approach.
Given that the SEM approach requires too much causal information for the identification
problem, the VAR approach provide the possibility of inferring causal information from
statistical properties of the data without pretending to have too much a priori theory and/or

without demanding too much information from the data. Given that such possibility to
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inductively infer the causal structure of the VAR approach, compared to the SEM approach, is
not fully used within the full recursive causal assumption, the use of the graphical causal model
approach is proposed to address the remaining issue of how to inductively infer the causal
structure to relate empirical regularities captured in reduced form model to theoretical properties
represented by the structural form model. On the other hand, recent advances in data processing
capabilities have brought the possibility of analyzing larger number of detailed variables. The
macro-economic panel data have brought forth research potentials for significant advances in the
macro-economic analysis of monetary policy effects. The factor augmented VAR (FAVAR)
approach is proposed to use such research potentials and to address informational issue in the
small size VAR approach. For the full use of the inductive possibility of structural understanding
of macro-economy, the use of the approximate form of the compositional stability condition is
proposed. This method provides inductive classification of macro-economic panel data and thus
makes it possible to obtain meaningfully interpretable estimated factors, which in turn allow the
use of the graphical causal model for the FAVAR approach.

Given the observation that many variables in this high dimensional data move very
closely, the compositional stability condition as the consistent aggregation condition provides an
inductive way to pursue the possibility of obtaining not only (a) interpretable aggregate macro-
variables as the representative aggregate of homogeneous disaggregate micro-variables but also
(b) interpretable macro-parameters as the representative aggregate of corresponding micro-
parameters for the subsequence analysis. This implies that when the micro-variables can be
legitimately grouped and represented by macro-variables, it is possible to use aggregation
methods (a) to incorporate broad range of information into the empirical models with
minimizing econometric issues such as the multicollinearity and degrees of freedom, (b) to
capture (causal) relationships among disaggregated variables through (causal) relationships
among aggregated variables as the legitimate representatives. This compositional stability
condition is used (a) to provide an inductive way of forming suitable partitions before
conducting any empirical test to justify those classifications based on the empirical data patterns
rather than on researchers’ intuition and (b) to address the possible violation of the (probabilistic)
stability condition to use the graphical causal models for the high dimensional data. Note that it
is conceivable and oftentimes observed that the (probabilistic) stability condition for the

graphical causal models is violated for using high dimensional data in empirical study, given the
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observation that there exist close co-movements and thus near deterministic relations among
variables in high dimensional data.

More specific procedure we propose is as follows: (a) Both standard static correlation
matrix and dynamic correlation matrix over identified frequency band are used to measure co-
movement among original variables. Based on these similarity measure of disaggregate micro-
variables, the modified k-nearest neighbor algorithm is used to sort the variables such that the
highly correlated variables are near each other along the main diagonal in reordered correlation
matrix. The block-diagonal pattern of reordered or sorted static and dynamic correlation matrixes
are used to identify homogeneous group of variables, based the approximate form of the
compositional stability condition. (b) Based on identified classifications of original variables, the
statistical dimensional reduction method are used for actual aggregation procedure to decide
weighting schemes for aggregating disaggregated micro-variables into representative macro-
variables within each identified group. The principal component method applied onto each of
groups is used as the best dimensional reduction method with as little loss of information as
possible in the mean squared error sense. (¢) Given that the inference based on the small size
VAR can be misleading unless the reduced form innovations span the space of the structural
shocks or the VAR model does not have the omitted variables problem, the estimated factors are
augmented in the VAR (FAVAR) framework to increase the amount of information in the
empirical model so that the reduced form residuals span the space of the structural economic
shocks. (d) Based on the residuals of reduced form FAVAR, the contemporaneous causal
structure among innovations is inferred by the graphical causal model. The identified
compositional stability condition in the data makes it possible to infer causal structures among
micro-variables through relationships among representative aggregated macro-variables. The PC
algorithm or GES algorithm is used to infer causal structures among macro-variables as the
legitimate representative causal relationships among micro-variables for the subsequent analysis.
(e) Based on the contemporaneous causal structure used for identification of FAVAR, structural
relationships of the macro-economy are studied in the two types of the moving average
representations. The impulse response functions of all the observed variables with respect to
shocks in the monetary policy variable as well as each of the estimated factors are estimated and
interpreted. The forecast error variance in each factor is decomposed into the parts attributable to
each of a set of innovations processes in the FAVAR. Note that inductive properties are

emphasized in every sequence of the proposed method, since any types of deductive properties
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can bring subjectivities or ambiguities into the empirical results. The proposed method is
illustrated with the applications for retail checkout scanner data as an example of the high

dimensional data.

Empirical Analysis and Results

The proposed methodological procedure is illustrated with U.S. macro-economic panel
data. Given that the vector autoregressive (VAR) model approach is proposed and used as an
alternative to the deductive structural equation model (SEM) approach, inductive properties are
emphasized in every step of empirical procedures. First, the data used for this study are
described. Second, based on the identified common frequency for the estimated spectrum of
variables in the data set, static and dynamic correlations among variables are measured. Third,
based on the block diagonal pattern of the correlation matrixes identified by the modified k-
nearest neighbor algorithm, the variables are classified and classified groups are interpreted,
where variables within each group move together closely. Fourth, based on the classified groups,
the latent factors are estimated and augmented in the VAR (FAVAR) framework. Based on the
residuals of reduced form FAVAR, the contemporaneous causal structure among innovations is
inferred by the graphical causal model. Fifth, based on the causal structure used for identification,
the impulse response functions with respect to shocks in the monetary policy variable as well as
each of the estimated factors are estimated and interpreted. The forecast error variance in each
factor is decomposed into the parts attributable to each of a set of innovations processes in the

FAVAR. The empirical results are summarized and further issues to be studied are discussed.

Data Description

The data set consists of monthly observations on 103 U.S. macro-economic time series
panel data from 1959:1 through 2003:12 with the sample size of 526. All the data are from the
data set used in Stock and Watson (2005). According to these authors, all series are from the
Global Insights Basic Economics Database, the Conference Boards’ indicators Database, and
their own calculations. The data represent a broad range of macro-economic activity. Stock and
Watson intuitively grouped the time series variables in the data set as following categories: 1.
Real output and income, 2. Employment and hours, 3. Real retail, manufacturing and trade sales,

3. Consumption, 4. Housing starts and sales, 5. Real inventories, 6. Orders, 7. Stock prices, 8.
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Exchange rates, 9. Interest rates, 10. Spreads, 11. Money aggregates, 12. Price indexes, and 13.
Miscellaneous.

The data are transformed in four ways. First, many of the series are seasonally adjusted
by the reporting agency. Second, the series are transformed by taking logarithms and/or
differencing so that the transformed series are approximately stationary. In general, the first
difference of logarithms (growth rates) is used for real variables, the second difference of
logarithms (changes in growth rates) is used for price series, and the first differences are used for
nominal interest rates. Third, outliers contained in some of the transformed series are identified
as absolute median deviations larger than 6 times the inter quartile range and adjusted by
replacing those observations with the one-sided median value of the preceding 5 observations.
Fourth, the series are demeaned and standardized (Stock and Watson, 2005). The list of variables
with detailed descriptions and their transformations are given in Appendix E. The grouping and

ordering of the variables are based on the empirical results of this study.

Classification and Aggregation

One of objectives of this study is to propose an inductive procedure for the construction
of appropriate grouping of variables. Given that theory does not provide sufficient and
conclusive information for classification, an inductive property is emphasized due to the
empirical implausibility of attempting all possible partitions. In this respect, it is better to pursue
inductive classifications related with legitimate aggregation conditions, which is based on the
empirical data pattern itself rather than researchers’ subjective intuition. Based on the
compositional stability conditions derived from the aggregation theory, our inductive procedure
is based on the idea that homogeneity or similarity of group of variables can be identified
through their dynamic movements. When original disaggregate variables within a group have the
similar dynamic movements so that they co-move each other very closely, their high co-
movements reveal their underlying similarity.

Given that the standard static correlation only measures synchronous or
contemporaneous co-movements between variables and it is desirable to allow possible leads
and/or lags in dependency among the time-series data in dynamic setting, both the standard static
correlation matrix and the dynamic correlation matrices estimated over identified frequency
bands are used to measure co-movement among the original variables. For the dynamic

correlations, several different frequency bands are chosen as the non-overlapping bands or
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regions, based on the estimated spectrums of all the time series variables in the data. They

approximately centered at peak 4, so that { A= lﬂ,l,/ij )u [— A=A, ): 0<A <A <A <7 }, where

the frequency A, is specified as { 4, =27-k/T:k=1,---,(T/2)} and T is the sample size

(Rodrigues, 1999). Note that if the frequency of a cycle is A, the period of the cycle is 27/ .

Thus, a frequency of 4, =27-k/T corresponds to a period of 27/, =T /k. We choose common

frequency bands to measure co-movement among variables with possible leads and lags, based

on the estimated spectrums of variables, which capture dynamics of variables in terms of their

cyclic properties with long or short run trends (Hamilton, 1994). The estimated spectrums of all

the time series variables are presented in Figure 4.1.
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* See Appendix E for the description of variables, where variables are in the same order.
* The x- axis is the frequency in terms of k and the y-axis is the estimated spectrum.

Figure 4.1. Estimated Spectrums of Macroeconomic Variables
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The x-axis is the frequency in terms of k and the y-axis is the estimated spectrum. We use five
frequency bands: 0-30, 31-80, 81-160, 161-220, and 221-263 in terms of k , which correspond to
period more than 17.53 months (frequency Band 01), period of 16.97 to 6.58 months (frequency
Band 02), period of 6.49 to 3.29 months (frequency Band 03), period of 3.27 to 2.39 months
(frequency Band 04), and period less than 2.38 months (frequency Band 05) ranges respectively.
These ranges approximately correspond to 2.5 year and 12, 6, and 3 months and short period
ranges, where the 2.5 year is known as a business cycle frequency, given dates of the economic
recessions (Hamilton, 1994).

Based on the similarity measures of disaggregate micro-variables, the modified k-nearest
neighbor algorithm is used to sort or reordered the variables such that the highly correlated
variables are near each other along the main diagonal in the final correlation matrix. The final
result of the sorted static correlation matrix and dynamic correlation matrixes for different
frequency bands are presented in Figure 4.2. The black/white color scheme is used to represent
the absolute value of measured correlations, where the darkest black represents the correlation of
1 and the brightest white represents the correlation of 0. The sorted static correlation matrix with
the color scheme is presented the Appendix F. Note that the frequency Band 00 is the entire
frequency region. It is demonstrated that dynamic correlation over entire frequency band is
equivalent to the static correlation of pre-filtered data, where the following two-sided filter is
_A -4 ns sinkA, —sin kA4,

used: A (L)
T = kz

(L" + L’k), where L is lag operator and A=A, UA .

This dynamic correlation of the entire frequency band represents the idea, similar to that used in
correlations of band-pass filtered data, that the synchronic cyclical components of variables can
be measured by looking at the correlation over the extracted cycles from the variables (Croux,
Forni, and Reichlin, 2001).

The main feature of the compositional stability condition is that each aggregate variable
is composed of grouped disaggregate variables with a “stable” compositional factor over time, so
the ratios of disaggregate variables over aggregate variables are near constant and stable over
time. In this respect, when we can identify that the correlation matrixes of observed data set X,
have the special block diagonal structure such that variables within each block are highly
correlated but variables across blocks are nearly uncorrelated, we can inductively infer an

empirical classification and thus we can use the block form of factor model of X =A', -F' +¢|
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Figure 4.2. Sorted Static and Dynamic Correlation Matrix of Macroeconomic Variables
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where i=1,---,1 is the classified group index. When data reveals this special block diagonal

structure, extracting the estimated factors from each block of variables, rather than obtaining the
estimated factors from the entire data set, can provide better representative aggregates with clear
interpretations for each aggregate variables based on the grouped disaggregate variables. In
Figure 4.2 of the sorted static and dynamic correlation matrixes, we can identify that this special
block diagonal structure commonly exists over all the different frequency bands and static
correlation matrix, although the correlations of pair-wise variables across different groups show
somewhat different degrees of correlation over the different frequency bands.

Based on the sorted static correlation matrix and the dynamic correlation matrixes over
the different frequency bands, the following groups of macro-economic variables are identified
as homogeneous groups, which are commonly identified in both the static correlation matrix and

the dynamic correlation matrix over the different ranges of frequency bands.

Exchange Rate Variable Group: Variables of 001 to 005.

Several foreign exchange rates for different countries such as Canada, Japan

with average foreign exchange rate
Stock Market Variable Group: Variables of 006 to 009

Several S&P composite stock price indexes with S&P composite,

stock price-earning ratio, and consumer expectation index variables
Money Aggregate Variable Group: Variables of 010 to 016

Several monetary stock indexes such as M1, M2, M3

with money supply and several deposits, bank reserves variables
Price Variable Group: Variables of 017 to 028

Several consumer and producer price indexes

with spot market price and sensitive materials price indexes
Interest Rate Variable Group: Variables of 029 to 036

Several interest rates of different maturities

with several bond yields and commercial paper rate
Spread Variable Group: Variables of 037 to 044

Several spread between federal fund rates

with interest rates variables of different maturities included above group
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Housing Market Variable Group: Variables of 045 to 054

Several variables on housing starts and houses permitted

of total and different regions such as northeast, south areas.
NAPM Variable Group: Variables of 055 to 061

Several National Association of Purchasing Management

(NAPM) indexes such as production, new order indexes.
Employment Variable Group: Variables of 062 to 075

Several employment on non-farm payrolls of total

and different areas with employed labor force variables.
Output Variable Group: Variables of 076 to 089

Several industrial production indexes of total and different areas

with personal income variables and capacity utilization variable.
Consumption/Investment Variable Group: Variables of 090 to 096

Several Manufacturers’ new order of different sectors

and sales of different sectors with consumption variables
Unemployment Variable Group: Variables of 097 to 102

Several unemployment variables of different durations

with total unemployment rate variable.
Federal Funds Rate Variable: Variable 103

the effective federal funds rate.

The complete variable names and their detailed description for each group is given in
Appendix E, where variables are grouped and in the same order in the sorted correlation matrix.
While this classification result has its own interpretations for each group of variables in terms of
corresponding macro-economic theoretical variables, this classification is the inductive one
using the empirical data itself based on the following observed patterns. First, the different
degrees of correlation across identified groups are observed. The correlations across group in the
long run period ranges (frequency bands 01 and 02) are relatively high, compared with those in
the short run period ranges (frequency bands 04 and 05). This correlation pattern across different
groups can be interpreted based on the fact that each frequency band represents a different cyclic
period. As the dynamic correlation matrix is based on the more long run range of period, it

measures more long run relationships among variables. And the relationships among variables
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generally increase as they are measured in the longer period range, when there are certain
stability or equilibrium relationships among variables. In this respect, the close co-movement
among variables is expected more in the long run range period dynamic correlation matrix than
in the short run range one. Second, although the correlations of pair-wise variables across
different groups show somewhat different degrees of correlation over the different frequency
bands, the common groups of variables are identified over all the different frequency bands. The
Exchange Rate, Stock Market, Money Aggregate, Price, Interest Rate, Spread, and
Unemployment variable groups are distinct homogenous groups. The money group variables are
homogenous especially in the frequency bands of 02 and 03, although they are somewhat
separated as the monetary aggregate variables and the reserve variables. The price group
variables are homogenous especially in the frequency bands of 01, 02, and 03, although they are
somewhat separated as the CPI variables and the PPI and commodity price variables. Third, the
degrees of correlations among the variables in the NAPM, employment, output, and
consumption/investment groups are high, especially when dynamic correlations are measured in
longer period range (frequency bands 01 and 02) rather than shorter period range (frequency
bands 04 and 05). The Housing Market group and NAPM group variables are discriminated by
their relatively different relationships with variables in the Employment and Output groups,
given that the variables in NAPM group have higher correlation with the wvariables in
Employment and Output groups. The NAPM group and Employment group variables are
discriminated by their relatively different relationships with variables in the Housing Market and
Output groups, given that the variables in NAPM group have higher correlation with the
variables in Housing Market group, whereas the variables Employment have higher correlation
with the variables in Output groups. The Employment group and Output group variables are
discriminated by their relatively different relationships with variables in the NAPM and
Consumption/Investment groups, given that the variables in Employment group have higher
correlation with the variables in NAPM (and Housing Market) group, whereas the variables
Output have higher correlation with the variables in Consumption/Investment groups. The
Output group and Consumption/Investment group variables are discriminated by their relatively
different relationships with variables in the Employment (and NAPM) group, given that the
variables in Output group have higher correlation with the variables in Employment (and

NAPM) group.
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This classification result can be interpreted in the context of monetary policy
transmission mechanism literature. In demand side of economy, overall size of economy (output
group) consists of consumption and investment (consumption/investment group). On the other
hand, total labor force can be divided into employment and unemployment components. The
money and price groups represent two important components affecting real economic activities.
The interest rate group of variables corresponds to narrow interest rate channel of the monetary
transmission channel. The exchange rate group of variables can be understood based on the
traditional ISLM macro-models for the open economy. The stock market and housing market
groups can approximately represent the corresponding asset market channels in the transmission
mechanisms, given that stock and house represent financial and physical assets respectively. The
NAPM or spread groups can approximately represent the expectation channel suggested in some
monetary transmission mechanism literature.

The resulting classification based on the inductive procedure can be compared with other
deductive classifications, which rely on the researchers’ intuitive choices. For example, Leeper,
Sims, and Zha (1996) implicitly classify macro-economic variables into real gross domestic
product, real private non-residential fixed investment, and real residential fixed investment with
some selected variables such as unemployment, several monetary aggregates, several interest
rates, several price indexes, exchange rate in their Bayesian structural VAR model. Their
classification has some distinctive features. (a) The real product group consists of total industrial
production, employment, retail sales, personal consumption, and NAPM indexes. (b) The non-
residential investment group consists of several variables related with industrial structures,
equipment component and manufacturers’ shipments to capital goods industries. (c¢) The
residential investment group consists of variables related with housing starts and construction.
(d) They individually select several similar variables. For example, M1 and total reserve
variables are selected individually, not aggregated. Note that their aggregation is based on the
Chow-Lin procedure, where national income and product accounts quarterly series are combined
with each group of monthly time series variables. For another example, Belviso and Milani
(2005) explicitly classify macro-economic variables into real activity, inflation, interest rates,
financial market, money, credit, expectation groups for their structural factor augmented VAR
model (SFAVR). In their classification, (a) The real activity group consists of almost all the
variables except variables included in other groups. (b) The expectation group consists of NAPM

group variables and spread group variables. (c¢) The financial market represents the stock market.
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Comparing with two classifications mentioned above and other implicitly suggested
deductive classifications, an inductive classification of this study has following distinctive
features: (a) The house, consumption/investment, employment, unemployment, and production
groups are separately identified. This separation can be observed in other empirical studies. For
example, Leeper, Sims, and Zha (1996) separate real activity group of variables into real gross
domestic product, real private non-residential fixed investment, and real residential fixed
investment groups of variables in their empirical study. The non-residential investment group
variables approximately correspond to the invest component of consumption/investment group
variables. On the other hand, the residential investment group variables approximately
correspond to the house group variables. The consumption or sale related variables are classified
as consumption/investment group with investment related variables. The employment group is
separated from the output group, since the employment group shows higher degrees of
correlation with NAPM and housing market groups than the output group as discussed. (b) The
spread group is separated from the NAPM group. Although Belviso and Milani (2005) identify
these two groups as one homogeneous group, their explanations for their expectation group
provide clues for interpret this empirically found separation. The NAPM surveys indexes are
relatively more related with expectations about real activity such as production, employment,
inventories, and new orders. On the other hand, the interest rate spreads are relatively more
related with expectations about the future short-term rates and future inflations. Note that Leeper,
Sims, and Zha (1996) include NAPM group variables into the real gross domestic product group

variables.

Causality for Identification

Based on the classification results, a five step procedure is used to study monetary policy
effects. First, the latent factors are estimated from the observed variables based on the principal
component method. Given that dynamic factor approach is based on the proposition that the
observed co-movements of variables are produced by the underlying common dynamic factors,
which are in turn driven by underlying common structural economic shocks, the block diagonal
pattern of static and dynamic correlation matrixes imply that (i) Co-movements among variables
exist within blocks rather than across blocks. (ii) As common sources of comovement, there can
be each of dynamic factors common for each specific block rather than for the entire data set.

(ii1) The underlying structural economic shocks can be revealed by estimating each of common
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sources of comovement from each block rather than from the entire data set. Based on these

reasoning, it can be better to estimate each latent factor from each block rather than to estimate
factors from the entire data set. And thus each latent factor If[i is estimated from each block of
variables in the block form of factor model framework of X =A' -F'+¢€/, wherei=1---,1 is

index for the classified groups. Second, estimate reduced form VAR augmented with estimated

factors (FAVAR) and obtain the covariance among innovations from the estimated reduced form
FAVAR Cov(ut)z Q. Given the monthly data is used, 13 lags are used to incorporate sufficient
dynamics into model following Bernanke, Boivin, and Eliasz (2005). Third, based on the system

of equations Q:A\;'(A)")T , the unknown elements in A coefficient matrix are solved or
recovered in terms of the estimated elements of Cov(u, )= Q covariance matrix. Since there are

N -(N +1)/2 equations in Cov(ut)zfl and N” unknown parameters in A , at least N -(N —1)/2
restrictions in A need to be imposed for the existence of a solution for A . The
contemporaneous coefficient matrix A, , which relates the structural and reduced form VAR

specifications, specifies how variables are causally linked to each other contemporaneously.

The causal information (in the form of restriction on A matrix) required for

identification in the FAVAR framework can be inductively inferred from data based on the
graphical causal models or the DAG approach. The use of aggregate variables or estimated
factors to study dynamic relationships and to infer causal relationships among observed
disaggregate variables can be justified based on the compositional stability condition derived
from the aggregation theory. The identified block diagonal pattern of correlation matrixes
discussed in aggregation section implies that the observed disaggregate variables approximately
satisfy the consistent aggregation condition of compositional stability condition. This condition
in turn implies that there exists not only the possibility of obtaining interpretable macro-variables
as the representative aggregate of homogeneous disaggregate micro-variables but also the
possibility of getting interpretable macro-parameters as the representative aggregate of
corresponding micro-parameters for the subsequence analysis. This means that when the
disaggregate variables can be legitimately grouped and represented by aggregate variables, it is
possible to use aggregate variables to capture (causal) relationship among disaggregate variables
through (causal) relationship among aggregate variables as the legitimate representatives as long

as the compositional stability conditions hold among disaggregate variables. Note that in the
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preliminary study for causal structures in the disaggregated original level data set, many
reasonable causal relationships among disaggregate micro-variables are not statistically observed.

It is because high correlation among X and X, can induce P(Xl | X,, X3)= P(Xl | Xz) through
P(X1 \ xz)zl regardless of the causal structures among them. So it is not possible to infer reliable

causal structure from the probabilistic dependency pattern. The (probabilistic) stability condition
of the graphical causal model is violated and thus DAG method can not be legitimately used for
disaggregate level data set. Note that this problem is similar to the multicollinearity problem,
which makes it difficult to obtain precise estimates of the separate effects of the variables in the
regression method. The GES algorithm is used to infer contemporaneous causal structures
among innovations of FAVAR as the legitimate representative causal relationships among
observed disaggregate variables. Note that the PC algorithm results in several undecided causal
orientations in the similar non-spurious statistical dependencies (skeleton) with the GES
algorithm and thus only the result of GES algorithm is used in this study. The inductively
inferred contemporaneous causal structure by the GES algorithm is presented in Figure 4.3. The
covariance\correlation matrix among innovations of reduced Form FAVAR is presented in Table
4.1.

The contemporaneous causal structure, which is inductively inferred by the GES
algorithm without any deductive information, can be interpreted as follows. (a) There is
observational equivalence between stock market innovations and NAPM innovations. This
means that the causal direction can not be decided based on statistical observations only or either
direction between them is statistically equivalent (Chi-Square(59) value is 68 with the significant
level of 0.2082 for the likelihood ratio test of both over-identifications). Empirical results based
on the causal direction from stock to NAPM are presented, given that the empirical results for
the subsequent analyses including impulse responses are not sensitive to either orientation. (b)
There are several first causes (causal roots) and last effects (causal sinks). The federal fund rate
variable and monetary aggregate and exchange rate factors turn out to be causal root innovations.
On the other hand, the price, unemployment and housing factors turn out to be causal sink
innovations. Note that the observed policy variable represented by the federal fund rate is not
causally ordered last, as Bernanke, Boivin, and Eliasz (2005) assumed. This result is also found

in the contemporaneous causal structure inferred by the PC algorithm.
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Figure 4.3. Contemporaneous Causal Structure Inferred by GES Algorithm

Table 4.1. Covariance\Correlation Matrix among Innovations of Reduced Form FAVAR

ExRate  Stock Money Price Interest ~ Spread  House ~ NAPM Emp Output ~ Cons/Inv  UnEmp FFR

ExRate | 0.31773 -0.02079 -0.02540 -0.11210 0.19158 -0.01092 -0.07857 0.03551 -0.00131 0.07946 0.07082 -0.02903 0.06757
Stock |-0.00731 0.38890 -0.02901 -0.12784 -0.13024 -0.04496 0.03959 0.15225 0.03544 0.02279 0.16917 0.04482 -0.02200
Money |-0.00550 -0.00694 0.14735 -0.02526 -0.10232 -0.11504 0.10809 -0.00558 0.01903 -0.01099 -0.07206 -0.00771 0.00281
Price |-0.02635 -0.03325 -0.00404 0.17390 0.06807 0.08844 0.02109 -0.01037 -0.01320 -0.04479 -0.07110 0.05640 -0.03041
Interest | 0.05789 -0.04355 -0.02106 0.01522 0.28743 0.28539 -0.02222 0.24185 0.08712 0.09416 0.09840 -0.07446 0.45529
Spread [-0.00145 -0.00662 -0.01043 0.00871 0.03614 0.05579 0.00024 0.16497 0.01408 0.03802 0.04701 0.01771 -0.40940
House |-0.00707 0.00394 0.00662 0.00140 -0.00190 0.00001 0.02547 0.05888 0.23645 0.16068 0.22311 0.03414 0.02908
NAPM | 0.00358 0.01697 -0.00038 -0.00077 0.02318 0.00696 0.00168 0.03195 0.18262 0.25212 0.26275 0.01497 0.06110
Emp [-0.00027 0.00820 0.00271 -0.00204 0.01732 0.00123 0.01399 0.01210 0.13752 0.50298 0.34197 -0.18065 0.08344
Output | 0.02277 0.00723 -0.00215 -0.00949 0.02566 0.00456 0.01303 0.02291 0.09482 0.25843 0.54527 -0.12593 0.00666
Cons/Inv | 0.02000 0.05286 -0.01386 -0.01486 0.02644 0.00556 0.01784 0.02353 0.06354 0.13890 0.25109 -0.05235 0.01925
UnEmp [-0.00700 0.01196 -0.00127 0.01006 -0.01707 0.00179 0.00233 0.00114 -0.02865 -0.02738 -0.01122 0.18295 -0.09804
FFR 0.02356 -0.00849 0.00067 -0.00784 0.15099 -0.05982 0.00287 0.00676 0.01914 0.00209 0.00597 -0.02594 0.38262

* The lower triangular is for covariance values and the upper triangular is for correlation values.

* See Appendix E for the description of representative aggregated variables, where variables are in the same order.
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The entire causal structure can be understood as three parts for a convenient explanation.
The first part is the real economy sector, which consists of consumption/investment, output,
employment, unemployment, and house factors. The second part is money/interest sector, which
consists of federal fund rate, monetary aggregate, interest rate spread, and interest rate factors.
The third part consists of exchange rate, price, stock, and NAPM factors. In the real economy
component, the contemporaneous causal order is consumption/inventory, output/production,
employment, and unemployment factors. The housing factor is directly affected by the monetary
aggregate, employment, and consumption/investment factors. In the money/interest component,
the federal fund rate and monetary aggregates affect interest rates either directly or through
interest rate spread. Interest rate factor is also affected by the exchange rate factor. In the third
component, the influences of the money/interest part, summarized by interest rate factor, on the
price factor are transmitted by the NAPM and financial market (stock) factors. The price factor is
also affected by the exchange rate factor. On the other hand, the effects of the monetary policy,
summarized by interest rate factor, on the real economy part, more directly
consumption/investment and output factors, are transmitted by the NAPM and financial market
(stock) factors. In this respect, it can be argued that the monetary transmission mechanisms
identified in this causal structure are interest rate, financial market (stock), and expectation
(NAPM) channels. The financial market (stock) and expectation (NAPM) factors turn out to be
crucial channels to transmit the causal influences from money/interest part into the rest parts of
the overall economy. Note that all the causal interpretations are based on the contemporaneous

causal structure among innovations from a reduced form FAVAR.

Empirical Results of the Structural FAVAR
Based on the identified structural coefficient matrix A] , the estimated impulse response

functions of FAVAR are used to study the responses of the system to particular initial shocks.

The impulse response functions of individual macroeconomic indicators are obtained by using
the impulse responses of FAVAR and the estimated coefficient of /A\if based on the
relationship X = A', - F'+e, . The resulting impulse response functions describe the effects of

variables to one standard deviation shock to the federal fund rate variable and each of the
estimated factors. The impulse response functions of all the variables with respect to a initial

shock in the federal fund rate are presented in Figure 4.4.
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Figure 4.4. Impulse Responses to Federal Fund Rate Shock
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For comparison purpose, the impulse responses obtained from the ungrouped FAVAR,
which follows the methods of Bernanke, Boivin, and Eliasz (2005), are also presented. As
discussed previously, their methods are based on the estimated factors from the entire data set
(ungrouped FAVAR) and the assumed full recursive restrictions. On the other hand, the method
used in this study is based on the estimated factors from the inductively classified groups of
variables (grouped FAVAR) and inductively inferred causal structures. The results of the
ungrouped FAVAR are used as the baseline with which our result is compared, since the
FAVAR methods and empirical results of Bernanke, Boivin, and Eliasz (2005) are generally
accepted as the benchmark for the study of the monetary policy effects (see Stock and Watson,
2005 for example).Both ungrouped and grouped FAVAR models result in similar impulse
responses with respect to federal fund rate shock, except the grouped FAVAR model generally
has smaller magnitude of responses than the ungrouped FAVAR. (a) The exchange rates
appreciate and eventually fall. (b) The stock markets, money aggregates decline. (¢) Given that
the price puzzle found in the literature remains beyond several years, the price puzzle is
considerably reduced and prices eventually go down. The different movement among CPI, PPI,
and spot market price index and sensitive material price index can be explained by the fact that
the posted prices (CPI) adjust more slowly to the production cost shock induced by the federal
fund rate shock. (d) The interest rates increase, whereas the interest rate spreads, housing market,
and NAPM decline. (e) The real activity measures (employments, output, and
consumption/investment group variables) decline and eventually return toward zero (long-run
money neutrality). (f) The inventory and unemployment variables increase. The counter-intuitive
results such as increase stock market and decrease exchange rates, found in another ungrouped
FAVAR model applied to U.K data (Lagana and Mountford, 2005), are not found in our impulse
responses. Given that these results appear to be sensible measures of the effect of monetary
policy, the similar results obtained from the grouped FAVAR with graphical causal model
approach used in this study may well be interpreted as an empirically plausible specification.

Compared to the usual small size VAR approach, the FAVAR approach has an
advantage to obtain impulse responses for a large number of variables, that is, for any variables
included in the data set. However, in the previous applied (ungrouped) FAVAR approaches, the
latent factors are estimated from the entire data set and thus the estimated factors are linear
combinations of all the variables in the data set. In this case, the advantage of the FAVAR model

is restricted to study of impulse responses with respect to a shock of the observed (policy)
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variable, since it is not easy to provide economic interpretations for the impulse responses with
respect to a shock of each of augmented factors, except the observed policy variable. Note also
that it is not easy to provide clear economic meanings for the estimated factors and thus not easy
to use other general identification schemes, except the full recursive one with the first or last
ordered policy variable. Note that when the policy variable is in the middle of the causal order,
even the full recursive assumption itself is not easy to use in the previous used (ungrouped)
FAVAR approaches. Compared to the ungrouped FAVAR approach, the grouped FAVAR
framework with compositional stability condition introduced in this study makes it possible to
obtain meaningful factors and thus meaningful additional impulse responses with respect to
shock of each of augmented factors as well as the observed (policy) variable. These additional
impulse responses from the grouped FAVAR provide more structural information and allow the
additional comprehensive checks on the empirical plausibility of the grouped FAVAR with a
DAG specification.

The additional impulse responses of selected variables with respect to shocks in each of
augmented factors are presented in Figure 4.5. to 4.16. For the interpretation of the results, it is
convenient to describe the results based on the two general observations: (i) The movements of
the real activity measures (employment, output, and consumption/investment variables) are
generally in opposite direction to the movements of the inventory and unemployment variables.
And thus these two opposite movements of variables for the real economy part are described by
the movement of the real economy. (ii) The movements of the federal fund rate and interest rates
are generally in opposite direction to the movements of the monetary aggregate variables, except
for the housing market and unemployment shocks, which will be mentioned separately. And thus
these two opposite movements of variables for the monetary economy part are described by the
movement of the general interest rate. Based on these two general observations, (i) The
movement of the general interest rate can be understood as the result of the monetary policy in
the context of the relative movements of the real economy and the prices variables. For example,
high inflation or excessive boom can induce contractionary monetary policy. (i) The movements
of the exchange rates and two asset markets of stock and housing markets and two types of
expectations of the NAPM indices and interest rate spreads can be interpreted as the monetary
policy transmission mechanisms channels based on the movement of the general interest rate, as
well as the relative movements of the real economy and the prices variables. For example, high

interest rates, induced by contractionary monetary policy, can decrease asset prices to stabilize
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Figure 4.5. Impulse Responses to Exchange Rate Factor Shock
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Figure 4.6. Impulse Responses to Stock Factor Shock
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Figure 4.8. Impulse Responses to Price Factor Shock
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Figure 4.9. Impulse Responses to Interest Factor Shock
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Figure 4.10. Impulse Responses to Spread Factor Shock
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Figure 4.11. Impulse Responses to House Factor Shock
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Figure 4.12. Impulse Responses to NAPM Factor Shock
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Figure 4.14. Impulse Responses to Output Factor Shock
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Figure 4.15. Impulse Responses to Consumption/Investment Factor Shock
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Figure 4.16. Impulse Responses to Unemployment Factor Shock
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the high inflation or excessive boom economy. Note that the above descriptions only provide one
possible convenient interpretation to check the empirical plausibility of model and thus they are
understood in such a limited context. We do not have sufficient information on the complete
causal structures among variables of the overall economy over the full dynamics interactions
beyond contemporaneous time. The main advantage of VAR approach is that it does not require
the kinds of the complex and full structural causal information. All we need for the identification
problem in the VAR approach is the contemporaneous causal relationship among innovations,
which can be inductively identified by the graphical causal model approach of the GES
algorithm.

The contemporaneous causal relationships among innovations, however, do not provide
sufficient information on the complete and fully dynamic causal structures among variables of
overall economy. For example, the above description implicitly involves feedback causal
structure beyond contemporaneous time: overall economic conditions at time t—1or t —
monetary policy at time t — movements of the monetary policy channels at time tort+1 —
overall economic conditions at time t+1 or t+2 . For another caveat, the monetary policy
channels of exchange rates, asset market, and expectations can be affected not only by the policy
induced interest rates but also by the overall economic conditions as well as expectations. In fact,
the general interest rates itself can be affected not only by the policy induced interest rates but
also by the overall economic conditions as well as expectations. In this respect, the descriptions
of the resulting impulse responses offered below are restricted to association without causal
directions among variables.

General descriptions for the additional impulse responses are as follows: (a) For the
exchange rate shock (Figure 4.5), the general interest rate slightly decreases with the decreased
real economy and the decreased price variables. The stock market and NAPM variables decrease,
whereas the house and spread variables slightly increase. (b) For the stock market shock (Figure
4.6), the general interest rate slightly increases with the increased real economy and the slightly
decreased price variables. The exchange rates and NAPM variables increase, whereas the house
and spread variables decrease. (c) For the money aggregates shock (Figure 4.7), the general
interest rate drops initially but increases after some delay with the slightly increased real
economy and the increased price variables. The exchange rate, house, NAPM variables slightly
increase, whereas spread and stock market decreases after small jump. (d) For the prices shock

(Figure 4.8), the general interest rate increases with the decreased real economy. The exchange
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rate, the stock market, spread, house, NAPM variables decrease. (¢) For the interest rates shock
(Figure 4.9), the general interest rate increases with the decreased real economy and the
decreased price variables. The exchange rate increases, whereas the stock, house, and NAPM
variables decrease. (f) For the interest rates spread shock (Figure 4.10), the general interest rate
increases with the slightly increased real economy and the increased price variables. The
exchange rate increases, whereas the stock, house, and NAPM variables decrease. (g) For the
house market shock (Figure 4.11), the general interest rate increases with the slightly increased
real economy and the increased price variables. The monetary aggregate and exchange rates
variables slightly increase, whereas the stock, spread, and NAPM variables decrease. (h) For the
NAPM shock (Figure 4.12), the general interest rate slightly increases with the slightly increased
real economy and the increased price variables. The exchange rates slightly increases, whereas
the stock, spread, house decrease. (i) For the employment shock (Figure 4.13), the general
interest rate slightly increases with the slightly increased real economy and the decreased price
variables. The exchange rates, house, NAPM variables shortly increase and return to normal,
whereas the stock market slightly increases. (j) For the output shock (Figure 4.14), the general
interest rate decreases with the slightly increased real economy and the decreased price variables.
The exchange rates, spread, house, NAPM, and stock market slightly increase. (k) For the
consumption/investments shock (Figure 4.15), the general interest rate increases with the slightly
increased real economy and the increased price variables. The exchange rate, spread, NAPM
variables slightly increase, whereas stock market and house slightly decrease after short jump. (1)
For the unemployment shock (Figure 4.16), the general interest rate initially drops but slightly
increases after short delay with the slightly increased real economy and the increased price
variables. The monetary aggregates increase. Note that all the impulse response functions trace
the effect to one time shock under the condition that all other innovations remain unchanged and
thus the resulting impulse responses need to be interpreted under such cetris paribus condition.
For example, an output innovation shock (technological advance for example), not followed by
adverse movements of fundamentals of overall economy, can induce the slightly increased real
economy and the decreased price variables and thus the stable general interest rate.

To study overall relationships among factors, the one-step forecast error variance in each
factor is decomposed into the parts attributable to each of a set of innovations processes in the

FAVAR. The results of forecast error variance decomposition are presented in Table 4.2.



Table 4.2. Forecast Error Variance Decomposition

period ~ Money FFR Interest Spread ExRate Stock NAPM House Cons/Inv Output Emp UnEmp Price Real  Channel
Money | 0 [ 100.000 1  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 | 63186 1 7123 3 523 5 7919 2 1612 8 2035 7 273 6 0721 11 6363 4 0898 10 0355 13 0493 12 1372 9| 8109 14999
12 52650 1 6883 3 5577 5 8175 2 3191 7 2814 9 3997 6 2253 10 6604 4 2047 11 1255 13 1652 12 2900 8| 11558 20432
36 | 46183 1 7300 3 5738 9256 2 4398 8 3324 7 4636 6 2564 11 6972 4 2266 10  1.695 13 2463 12 3203 9| 13397 24178
FFR | 0 0.000 100.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 2373 08 6772 1 331 6 5097 2 3781 4 4l01 3 3395 5 3050 7 1480 10 1369 11 2046 9 1329 12 0926 13| 6324 19425
12 6680 3 54635 1 4475 6 7453 2 3898 8 4843 5 SM10 4 3913 7 1383 12 2150 10 2766 9 1663 11 1031 13| 7962 25218
36 6741 3 4728 1 5374 5 7690 2 5165 6 4867 7 5893 4 4081 8 2102 13 2659 10 3417 9 2547 11 2208 12| 10725 27.695
Interest | 0 0417 5 20058 3 5082 1 26353 2 2340 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  28.693
6 0741 12 14247 3 41019 1 17584 2 4642 5 3292 7 2364 9 4278 6 5512 4 1643 11 2377 8 0509 13 1793 10| 10041 32.160
12 4653 6 13841 3 35100 1 17400 2 4914 5 4408 7 282 9 3958 8 4941 4 1905 12 2118 10 2074 11 1864 13| 11039 33502
36 5740 5 13480 3 29871 1 15663 2 553 6 4295 8 3337 10 4535 7 5973 4 2350 13 3042 11 2432 12 3749 9| 13796 33364
Spread | 0 1297 3 16739 2 0.000 81963 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 1224 5 5250 1 058 9 37472 2 L1038 7 L040 6 2039 3 1839 4 0192 13 0658 § 0563 10 0300 12 0527 11| L1715 5957
12 2134 6 48825 1 0697 12 26158 2 1922 7 5759 3 5610 4 4335 5 1557 8 087 11 0924 9 0476 13 0816 10| 3744  17.626
36 8122 4 36834 1 L1173 11 16887 2 3942 7 7763 5 6831 6 9656 3 3049 8§ 138310 2560 9 1001 12 0800 13] 7992 28191
ExRate | 0 0.000 0.000 0.000 0.000 100.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 1439 8 3225 3 1662 7 0687 11 79912 1 2432 5 0730 10 1431 9 2594 4 0573 12 1677 6 0412 13 3226 2| 525 5.280
12 2029 10 3238 4 2533 7 2469 8§ 70048 1 4981 2 1389 11 2244 9 2953 6 0916 12 3109 5 0681 13 3311 3| 7658 11083
36 330 7 4875 3 4380 4 2849 9 61312 1 5803 2 2004 11 2833 10 309 8 152 12 3354 6 1093 13 3463 5| 9062 1359
Stock | 0 0007 6 0336 4 082 2 0442 3 0039 5 98323 1  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0481
6 182 5 178 7 3412 2 27 4 1539 8 79436 1 3279 3 0722 11 0913 10 0530 12 0360 13 1500 9 1832 6| 3303 8.327
12 5087 2 2730 6 361 4 3012 5 2475 8 67561 1 4186 3 2640 7 2007 11 2059 10 0693 13 1856 12 2082 9| 6616 12313
36 5290 2 438 4 4707 3 3266 7 3133 8 59311 1 437205 3023 9 2840 10 2191 12 1681 13 2222 11 3575 6| 893 13795
NAPM | 0 0024 7 1160 5 2940 3 1524 4 0135 6 3437 2 90779 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5.096
6 0943 11 0817 13 1637 7 7203 4 089 12 17465 2 53013 1 7501 3 4927 5 1054 9 1241 8 2253 6 0987 10| 9476  33.127
12 3159 9 5537 6 L75T 11 6814 4 3548 7 18757 2 38047 1 8388 3 3530 8 1207 13 1592 12 5812 5 1852 10| 12140 37507
36 3814 8 16024 3 208 11 6506 4 5954 7 18756 2 26829 1 6157 5 2981 9 1231 13 1386 12 6028 6 2277 10| 11626 37372
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Table 4.2. (Continued)

period ~ Money FFR Interest Spread ExRate Stock NAPM House Cons/Inv QOutput Emp UnEmp Price Real  Channel
House | 0 1357 40003 9 0007 7 0003 8  0.000 0.161 6 0360 5 90951 1 4310 2 0539 4 2308 3 0.000 0.000 1.157 0.525
6 4183 6 5287 3 13423 2 0244 13 0405 12 1006 9 4704 5 59815 1 1900 8 2827 7 0300 10 5230 4 0476 1| 10458 6.358
2 3215 6 12288 3 10070 4 0214 13 3098 7 1605 10 12874 2 43708 1 2525 8 L7329 0395 12 7345 5 0931 11| 11997 17791
3] 2640 8 24014 1 5833 6 0206 13 11984 4 9588 5 1471 3 22193 2 1764 9 LI 1T 0369 12 4976 7 LI40 10] 8220 36258
Cons/lav | 0 0000 8§ 003 6 0086 4 0045 5 0004 7 3100 3 5340 2 0.000 9139 1 0.000 0.000 0.000 0.000 0.000 §.489
6 Lm 12 345 6 L1871 3d6l 5 3084 7 3792 4 5083 2 1762 9 68659 1 4052 3 1078 13 1605 10 2250 8| 6736 16852
2 189 10 4309 4 1617 12 3076 8 3232 7 386 5 5913 2 2449 9 60990 1 5748 3 1556 13 1836 11 3520 6| 9140 18565
36| 29010 5055 4 2627 11 3350 8§ 3880 7 4847 5 5847 2 3331 9 543 1 57303 U810 13 1948 12 4369 6] 9531 21255
QOutput | 0 0000 9 0049 7 0124 5 0064 6 0006 8 1260 4 5302 3 0.000 24197 2 68997 1 0.000 0.000 0.000 24197 6.632
6 1828 10 2078 8 122412 433 5 0290 13 10251 3 9519 4 3611 6 16493 2 44519 1 2666 7 1306 11 1893 9 20465  27.9%
2 3005 9 6091 5 1812 398 7 0658 13 10160 3 8888 4 4135 6 14260 2 38719 1 3098 8 2614 10 2519 U] 19971 27803
36| 4400 8 8205 5 250 11 3931 7 1695 13 10320 3 9399 4 5381 6 12744 2 3B2% 1 2924 9 2710 2513 12] 18379 30725
Emp | 0 0.000 0012 8 0031 6 0016 7 0000 9 0319 5 1341 4 0000 6121 3 17455 2 74702 1 0.000 0.000 8357 1.678
6 0941 11 1102 10 1846 9 3865 7 0741 13 12436 2 5760 4 4664 6  SI00 5 10446 3 S0.ASL 1 0869 12 2078 8| 16416 27467
2 2230 11 6418 4 1839 12 381 9 1222 13 15016 2 4768 7 4273 § 4786 6 8686 3 38930 I 4888 5 3083 10| 18360  29.140
36 | 3339 11 14012 2 2080 12 3910 9 1958 13 12282 3 5415 7 S748 5 4269 § 7822 4 30055 1 5435 6 3569 10| 17525 29312
UnEmp | 0 0.000 0.000 0.001 7 0001 8  0.000 0010 6 0044 5 0.000 0200 4 0570 3 2438 2 96737 1 0.000 3.207 0.055
6 0546 12 0948 10 3882 4 2082 6 0517 13 3652 5 1555 7 0872 11 SM68 2 1350 9 4950 3 73070 1 1446 8| 11469 8.638
2] 1604 11 3486 7 4375 5 3529 6 0640 13 7887 2 175210 1250 12 5TM7 3 2730 8 5226 4 59249 1 254 9| 13674 15058
] 3381 9 797 2 4IS1 6 3623 8 ISSS 13 7949 3 3634 7 3370 10 5.004 4 333 1 4574 5 48439 1 2926 12] 13001 20131
Price | 0 0.000 0006 6 0014 4 0007 5 12600 3 1667 2 0.000 0.000 0.000 0.000 0.000 0.000 97.046 1] 0,000 2.934
6 1780 8 3123 3 1209 10 1952 6 5820 2 2856 4 1970 S 0670 11 178 7 1581 9 0430 12 0173 13 76587 1| 3971 13270
2 3410 6 3825 4 1909 9 4171 3 6029 2 3463 5 2041 8 L6312 2127 7 188 10 0677 13 L1680 11 67156 | 6343 17356
| 4042 05 4296 3 2245 9 4233 4 714402 3795 6 2485 8 LIS 12 3009 7 2014 10 1088 13 1888 [1 61946 1] 8099 19373

* Each cell in the table contains the percentage of the forecast error accounted for by each innovation with relative ranking at each period.

* The Real column is the sum of Consumption/Investment, Output, Employment, and Unemployment factors except own factor.

* The Channel column is the sum of Spread, Exchange Rate, Stock, NAPM, and House factors except own factor.
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The table gives the percentage of the forecast error uncertainty explained by each of innovations
with the relative ranking at period of 0, 6, 12, and 36 months. It is helpful to understand the
estimated factors or innovations as following several categories: the real economy category
consists of the consumption/investment, output, employment, and unemployment innovations
and the monetary policy transmission channel category consists of the interest, spread, exchange
rate, stock, NAPM, and house market innovations. The remaining innovations are from the
money and price factors with the federal fund rate variable. The last two columns in the Table
4.2 are the sum (except own contribution) of attributable parts of the real economy and channel
except interest rate factors. In general, the percentage of the forecast error uncertainty explained
by each of innovations is not much different each other and thus there is no dominant innovation
for explaining each of the forecast error uncertainty of all the factors. Given this general
observation, the relative importance of each innovation is not interpreted easily. The overall
results, however, can be interpreted as follows. The overall contribution of the monetary policy
transmission channel except interest rate channel is approximately 20 %. This result suggests the
importance of incorporating this set of variables into the empirical model in addition to the
interest rate channel. The overall contribution of the real economy category factors is
approximately 10 %. Especially their overall contributions for the money, price, and interest rate
factors and federal fund rate variable are 13.40, 8.10, 13.80, and 10.73 %. Given that the money
and interest rate innovations explain the price forecast error about 4.04 and 2.25 % and the price
and interest rate innovations explain the money forecast error about 3.20 and 5.74 %, this result
suggests that a dichotomy between the real and nominal variables is not observed.

Other individual results can be described based on the 6 and 36 month horizons as
representing the short run and long run relationships except own contributions. The own
contribution for each of factors are in the diagonal positions in the table. (a) For the money
aggregate factor, the spread (7.92), federal fund rate (7.12), consumption/investment (6.36), and
interest rate (5.21) innovations appear to be important in the short run and the spread (9.26),
federal fund rate (7.30), consumption/investment (6.97), and interest rate (5.74) innovations
appear to be important in the long run. (b) For the federal fund rate, the spread (5.10), stock
market (4.10), exchange rate (3.78), NAPM (3.40), and money (2.37) innovations appear to be
important in the short run and the spread (7.69), money (6.74), NAPM (5.89), interest rate (5.37),
and exchange rate (5.17) innovations appear to be important in the long run. (¢) For interest rate

factor, the spread (17.58), federal fund rate (14.25), consumption/investment (5.51) innovations
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appear to be important in the short run and the spread (15.66), federal fund rate (13.48),
consumption/investment (5.97), money (5.74), and exchange rate (5.53) innovations appear to be
important in the long run. (d) For interest rate spread factor, the federal fund rate (52.53) and
NAPM (2.04) innovations appear to be important in the short run and the federal fund rate
(36.83), housing market (9.66), money (8.12), stock market (7.76), and NAPM (6.83)
innovations appear to be important in the long run. (e) For the exchange rate factor, the price
(3.226) and federal fund rate (3.225) innovations appear to be important in the short run and the
stock market (5.88), federal fund rate (4.88), interest rate (4.38), and price (3.46) innovations
appear to be important in the long run. (f) For the stock market factor, the interest rate (3.47) and
NAPM (3.28) innovations appear to be important in the short run and the money (5.30), interest
rate (4.71), federal fund rate (4.38), and NAPM (4.37) innovations appear to be important in the
long run. (g) For the NAPM indices factor, the stock market (17.47), house market (7.50), spread
(7.26), and consumption/investment (4.93) innovations appear to be important in the short run
and the stock market (18.76), federal fund rate (16.02), spread (6.51), house market (6.16), and
unemployment (6.03) innovations appear to be important in the long run. (h) For the housing
market factor, the interest rate (13.42), federal fund rate (5.29), unemployment (5.23), NAPM
(4.70), and money (4.18) innovations appear to be important in the short run and the federal fund
rate (24.01), NAPM (14.47), exchange rate (11.98), stock market (9.59), and interest rate (5.53)
innovations appear to be important in the long run. (i) For the consumption/investment factor,
the NAPM (5.05), output (4.05), stock market (3.79), spread (3.16), and federal fund rate (3.15)
innovations appear to be important at the short run and the NAPM (5.85), output (5.77), federal
fund rate (5.06), stock market (4.85), and price (4.369) innovations appear to be important in the
long run. (j) For the output factor, the consumption/investment (16.49), stock market (10.25),
NAPM (9.52), spread (4.32), and housing market (3.61) innovations appear to be important in
the short run and the consumption/investment (12.74), stock market (10.32), NAPM (9.40),
federal fund rate (8.23), and housing market (5.30) innovations appear to be important in the
long run. (k) For the employment factor, the stock market (12.44), output (10.45), NAPM (5.76),
consumption/investment (5.10), and housing market (4.66) innovations appear to be important in
the short run and the federal fund rate (14.01), stock market (12.28), output (7.82), housing
market (5.75), unemployment (5.44), NAPM (5.41), and consumption/investment (4.27)
innovations appear to be important in the long run. (I) For the unemployment factor, the

consumption/investment (5.17), employment (4.95), interest rate (3.88), and stock market (3.65)
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innovations appear to be important in the short run and the federal fund rate (7.97), stock market
(7.95), consumption/investment (5.09), employment (4.57), and interest rate (4.15) innovations
appear to be important in the long run. (m) For the price factor, the exchange rate (5.82), federal
fund rate (3.12), and stock market (2.86) innovations appear to be important in the short run and
the exchange rate (7.14), federal fund rate (4.30), spread (4.23), money (4.04), and stock market
(3.80) innovations appear to be important in the long run.

Given that there is no dominant innovation to explain each of the forecast error variance,
the overall results can be summarized as follows. The federal fund rate innovation is important
for each forecast error uncertainty of almost all the factors, whereas the spread, money, NAPM,
interest rate innovations are important to explain the forecast error variance of the federal fund
rate variable. The stock market innovation is important for each forecast error uncertainty of the
channel and real category factors, whereas the money, interest rate, federal fund rate, and NAPM
innovations are important to explain the forecast error variance of the stock market factor. The
consumption/investment innovation is important for each forecast error uncertainty of the real
category factors, whereas the NAPM, output, federal fund rate, stock market, and price
innovations are important to explain the forecast error variance of the consumption/investment

factor.

Summary and Discussion

The proposed methodological procedure to address two methodological issues in the
study of monetary policy effect is illustrated by using macro-economic panel data of time series
variables. The two methodological issues are the informational issue and the causal identification
issue. For the informational issue to incorporate broad information into empirical model, the
aggregation method based on the compositional stability condition is used. The legitimate
classification is inductively identified among macro-economic variables and the empirical
evidence is provided based on the approximate form of the compositional stability condition.
The following groups with the Federal Funds Rate variable are used for subsequent analyses:
Exchange Rate, Stock Market, Money Aggregate, Price, Interest Rate, Spread of interest rate,
Housing Market, NAPM indices, Employment, Output, Consumption/Investment,
Unemployment groups.

Given that the disaggregate original variables approximately satisfy the consistent

aggregation condition of compositional stability condition, the use of aggregated variables and
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their relationships can be justified as legitimate representatives of disaggregate variables and
their relationships for the following subsequent analyses. The estimated latent factors for each
classified group are used in the factor augmented vector autoregressive (FAVAR) framework.
As the homogeneity of variables in each group allows meaningful interpretations of each
estimated factor, the contemporaneous causal structure among innovations of FAVAR is
inductively inferred by using the GES algorithm. Based on the identified casual structure by the
graphical causal model, the impulse response functions with respect to a shock in each of the
estimated factors as well as the monetary policy variable are estimated. While the estimated
impulse response functions of FAVAR are used to study the responses of the system to particular
initial shocks, to study overall relationships among factors, the forecast error variance in each
factor is decomposed into the parts attributable to each of a set of innovations processes in the
FAVAR. The empirical results suggest the importance of incorporating a broad range of
information into an empirical model. The empirical findings imply that the informational issue in
the small size VAR can explain the so called the price puzzle phenomenon and the monetary
policy transmission channels such as stock market, spread of interest rate and NAPM indices in
addition to the interest rate channel are important to understand the overall macro-economy.
Compared to the previously used ungrouped FAVAR with the recursive assumption or
deductively grouped FAVAR with the recursive assumption, the empirically grouped FAVAR
with inductively inferred causal structure used in this study is more consistent with the fact that
the VAR approach emphasizes the inductively inferred information from the data itself rather
than the deductively maintained information from the researchers’ intuition.

As future research directions, several methodological issues to be studied can be
suggested. A first issue is how to incorporate the non-stationarity in the original data and capture
the possible co-integration relationships into the grouped FAVAR framework. The dynamic
correlation and the principal component methods used in this study are based on the stationarity
condition, which require transformations of the original data. The main issue is to find inductive
classification and aggregation methods, which allow the possible non-stationarity of the original
data. A second issue is how to incorporate the possible non-linearity such as structural changes.
While the observed co-movements among macro-economic time series variables provide
empirical foundation for the proposed non-parametric methods of classification and aggregation,
the non-linearity phenomenon is oftentimes observed in macro-economic time series variables.

One possible approach is to use the state space framework with the Gibbs sampler method in the
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Bayesian perspective (Kim and Nelson, 1997). The main issue is how to inductively decide the
parametric value, given that the state space framework is the full parametric approach. For
example, the parameter value to capture the distributed lag effect of factors on the individual
variables is not easily identified. A third issue is how to decide the boundary of the variables
included in the entire data set. While the issue of what variables are included in a particular
group can be inductively addressed by the proposed classification methods, the issue of what
variables should be included in the entire data set can only be addressed based on the
researchers’ intuition or the theory. This issue is related with the causal sufficiency issue in the
graphical causal models. The main issue is how to satisfy or how to relax the causal sufficiency
conditions in the analysis, especially in the GES algorithm with discriminating the possible
cyclic phenomenon. A fourth issue is how to decide the number of classified groups and
estimated factors for each group. For an example of the number of classified groups, the
empirical testing of the compositional stability condition, illustrated in the micro-econometric
analysis in chapter III, requires the identification of instrumental variables. One possible way to
pursue is to use the graphical causal model to identify instrumental variables, as Chalak and
White (2006) propose. The main issue is how to use causal structure among observed variables
to identify the validity condition of the instrumental variables, which involve the unobserved
causal factors. A fifth issue is how to study the complete causal structures among variables over
the full dynamic interactions beyond contemporaneous time. While the VAR framework only
require the contemporaneous causal structure among innovations, identifying the complete
causal structure such as feedback phenomena over full dynamic period can allow more precise
understanding of macro-economic phenomena. One possible way is to apply the graphical causal
model onto the dynamically separate variables based on the possible lag. For example, the N

vector of time series variables with P lag of X, X _,---, X _, can be separately defined and then

the graphical causal model is applied for this extended N -P dimensional data set. The full
dynamic causal information can be incorporated into the VAR framework or the final form of
dynamic SEM framework. The main issue is how to handle the complexity in the extended
N -P dimensional data. A sixth issue is how to study macro-economic phenomena at the
original disaggregate level beyond the aggregate level used in this study, given that close co-
movement among variables implies that the (probabilistic) stability condition is violated and
multicollinearity problem is severe. While this issue is partially addressed based on the factor

analysis framework, alternative approach is to use the mixed estimator. The main issue is how to
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combine aggregate level information into the mixed estimator to study disaggregate level.
Although there remain many other methodological issues to be addressed in empirical study, this
study provides one plausible inductive procedure for the understanding of macro-economic
structure, while minimizing the deductive properties or ambiguities. The remaining subjectivities
in our proposed method are left as further research topics, with the hope that the remaining

subjectivities bring fewer ambiguities relative to the previously used methods.
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CHAPTER V
CONCLUSION

Economic studies have experienced significant advances in the theoretical,
methodological, and empirical perspectives. From the empirical perspective, recent advances in
data processing capabilities have brought the possibility of analyzing a large number of detailed
variables. In many areas of economics, high dimensional panel data are now available. For
example, retail checkout scanner data are available for thousand of products at firm, regional and
national levels at various frequencies. And central banks and statistical institutes produce a large
number of macro-economic time series data. These data have brought forth research potentials
for significant advances in the micro-econometric analysis of consumer behavior and the macro-
econometric study of monetary policy effects. From the methodological perspective, empirical
studies in economics have been developed to unify the theoretical-quantitative approach with the
empirical-statistical approach. For this purpose, the structural equation model (SEM) approach
has been proposed and used in economics. However, instead of using the full simultaneous
equation approach, several alternative theoretical and methodological approaches have been
proposed and used widely for several areas in economics. These phenomena are due to the fact
that: (a) the instrumental variables needed to identify each equation in the SEM framework are
not easy to find and/or (b) the restrictions for identification problem in the usual SEM approach
are argued as neither credible nor required (Sims, 1980). In the study of the consumer behavior,
the system-wise approach has been widely used to study interrelationships among related
commodities demanded. Within this framework, full spectrums of direct, inverse, and mixed
demand system of equations have been developed from the theoretical perspective of consumer
behavior. On the other hand, in the study of the macro-economy, the structural vector
autoregressive (VAR) model approach is widely used to study the effects of structural economic
shocks. From the methodological perspective, the VAR framework provides the possibility of
inferring causal information from statistical properties of the data without pretending to have too
much a priori theory and/or without demanding too much information from the data.

The availability of high dimensional data, however, raises several methodological
issues for the full realization of the research potentials brought by the large information set. This
study pursued one plausible procedure to address two methodological issues of how to infer the

causal structure from empirical regularities and how to incorporate the large information set into
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empirical model. To address the issue of how to infer the causal structure from empirical
regularities, the graphical causal models are proposed as one plausible method to inductively
infer causal structure from non-temporal and non-experimental data. However, the (probabilistic)
stability condition for the graphical causal models can be violated for high dimensional data,
when close co-movements and thus near deterministic relations exist among variables in high
dimensional data. Aggregation methods are proposed as one possible way to address this issue,
allowing one to infer causal relationship among disaggregated variables based on aggregated
variables. The aggregation methods have been demonstrated to be helpful to address issue of
how to incorporate a large information set into an empirical model, given that econometric
considerations, such as degrees-of-freedom and multicollinearity, require an economy of
parameters in empirical models. The weighting schemes to aggregate disaggregate micro-
variables into aggregate macro-variable can be empirically decided, based on either index
number theory or principal component approach. However, the actual aggregation procedures or
decisions on weighting schemes require the legitimate classifications or sufficient conditions for
the interpretable and consistent aggregation. In this respect, identifying legitimate aggregation
conditions is found to be a primary consideration for both causal inference and actual
aggregation.

We interpret theory as an inductive causal averaging procedure to deal with
methodological issues at the beginning of this study. When we follow an inductive causal
averaging procedure that concentrates only on similar tendencies to highlight a few common
factors by ignoring many more individual differences and idiosyncrasies, we need to identify
empirically justifiable conditions that allow us to legitimately define common tendencies and
individual idiosyncrasies. We studied possible legitimate conditions for the interpretable and
consistent aggregation based on both aggregation theory framework and statistical dimensional
reduction methods with minimizing any deductive assumptions such as micro-homogeneity of
micro-parameters, separability, and homogeneity of utility (production) function. From both the
aggregation theory and the statistical dimensional reduction methods, we identify the similar
generalized forms of the compositional stability condition. Based on the generalized condition
for the consistent aggregation, we propose one possible methodological procedure to consistently
address the two related issues of causal inference and actual aggregation procedures for the full

use of research potentials brought by high dimensional data.
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Given the observation that many variables in this high dimensional data move very
closely, the compositional stability condition as the consistent aggregation condition provides an
inductive way to pursue the possibility of obtaining not only (a) interpretable aggregate macro-
variables as the representative aggregate of homogeneous disaggregate micro-variables but also
(b) interpretable macro-parameters as the representative aggregate of corresponding micro-
parameters for the subsequence analysis. This implies that when the micro-variables can be
legitimately grouped and represented by macro-variables, it is possible to use aggregation
methods (a) to incorporate broad range of information into the empirical models with
minimizing econometric issues such as the multicollinearity and degrees of freedom, (b) to
capture (causal) relationships among disaggregated variables through (causal) relationships
among aggregated variables as the legitimate representatives. This compositional stability
condition is used (a) to provide an inductive way of forming suitable partitions before
conducting any empirical test to justify those classifications based on the empirical data patterns
rather than on researchers’ intuition and (b) to address the possible violation of the (probabilistic)
stability condition to use the graphical causal models for the high dimensional data. Note that it
is conceivable and oftentimes observed that the (probabilistic) stability condition for the
graphical causal models is violated for using high dimensional data in empirical study, given the
observation that there exist close co-movements and thus near deterministic relations among
variables in high dimensional data. In this respect, we argue that the (probabilistic) stability
condition for an “inductive causal” procedure requires the compositional stability condition for
an “inductive averaging” procedure.

For the micro-econometric analysis of the consumer behavior, following methodological
procedure is proposed and illustrated in chapter III: (a) Both a standard static correlation matrix
and dynamic correlation matrices over identified frequency bands are used to measure co-
movement among original variables. Based on these similarity measures of disaggregate micro-
variables, the modified k-nearest neighbor algorithm is used to sort the variables such that the
highly correlated variables are near each other along the main diagonal in the reordered
correlation matrices. The block-diagonal pattern of reordered or sorted static and dynamic
correlation matrices are used to identify homogeneous groups of variables based the approximate
form of the compositional stability condition. (b) Based on identified classifications of the
original variables, index number theory is used for the actual aggregation procedure. The

Tornqvist-Theil index is the primary method to decide weighting schemes on aggregating
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disaggregated micro-variables into representative macro-variables within each identified group.
(c) The identified classification and aggregation of micro-variables into macro-variables can be

tested, as long as appropriate instrumental variables can be identified. A Hausman type
misspecification test of H, :y =0 in the equationXx = XH_+1V -y +& ", where x and X
are micro- and macro-variables respectively and IV are Instrumental Variables such that IV is

closely correlated with X and independent of d_, provides a statistical test framework for the
generalized form of the compositional stability condition of independence between d, and X in
the set of equations X, = X H, +d, . (d) Given the observed phenomena of close co-movements

and thus near deterministic relations among variables in high dimensional data, it is conceivable
and oftentimes observed that the (probabilistic) stability condition for the graphical causal
models is violated for using high dimensional data in empirical study. When this is the case, it is
still possible to infer causal structures among micro-variables through relationships among
representative aggregated macro-variables as long as the compositional stability conditions hold
among micro-variables. PC algorithm or GES algorithm are used to infer causal structures
among macro-variables as the legitimate representative causal relationships among micro-
variables are used for the subsequent analysis. (¢) Based on the local causal structure between
price and quantity variables for a particular commodity, the AIDS type dependent variable
synthetic functional forms for the direct, inverse, and mixed demand systems are estimated. (f)
The Rotterdam, AIDS, NBR, and CBS type constant and/or variational parameterizations and
synthetic model are statistically compared and the parameterizations for expenditure (scale)
elasticities (flexibilities) and Slutsky (Antonelli) coefficients are chosen within each of direct,
inverse, and mixed specifications. Based on the chosen parameterization, the direct, inverse, and
mixed demand system are compared based on the model selection approaches, such as the
Akaike information, Schwarz information, and the likelihood dominance criteria.

As future research directions for the micro-econometric analysis of the high dimensional
data, several methodological issues can be suggested. A first issue is how to fully use the overall
empirical findings. The model averaging approach, rather than model selection approach used in
this study, can provide more precise understanding of consumer behavior. One possible approach
for the model averaging method is to use the relative log-likelihood values of the direct, inverse,
and mixed demand systems. The main issue is how to decide relative weights among competing

models. A second issue is how to fully use the causal information inferred by the graphical
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causal models. Although only the local causal structure between the price and quantity variables
are used in this study, other causal information can provide the possibility of a more complete
understanding of the interactions in the market, which in turn allow a more precise
measurements of consumer behavior. The main issue is how to combine the full causal
information into the theoretical properties of demand functions while maintaining flexible and
estimable functional form specification. A third issue is how to decide the boundary of the
variables included in the empirical models. For example, there can be latent causal structures or
interactions with other (size) commodities, although the size of 6/12 oz is used to decide what
commodities are included in the study. The causal structure identified by the PC algorithm
suggests that there may be latent causal variables among the price variables. The main issue is
how to satisfy or how to relax the causal sufficiency conditions in the analysis, especially in the
GES algorithm with discriminating the possible cyclic phenomenon. A fourth issue is how to
incorporate the possible dynamic interactions and non-linearity in consumer behavior. Although
the differential functional form approach provides a useful framework to deal with the possible
non-stationarity of variables, incorporating the possible lagged interaction and structural change
can provide more precise understanding of consumer behavior. The main issue is how to capture
the possible dynamic interactions and non-linearity phenomena without sacrificing the
theoretical properties of demand functions, while maintaining flexible and estimable functional
form specification. A fifth issue is how to study consumer behavior at the original disaggregate
level beyond the aggregated level used in this study, given that close co-movement among
variables implies that the (probabilistic) stability condition is violated and multicollinearity
problem is severe. One possible way is to use the mixed estimator. The main issue is how to
combine aggregate level information into the mixed estimator to study disaggregate level.

For the macro-econometric analysis of the macro-economy, following methodological
procedure is proposed and illustrated in chapter I'V: (a) Both a standard static correlation matrix
and dynamic correlation matrices over identified frequency bands are used to measure co-
movement among original variables. Based on these similarity measures of disaggregate micro-
variables, the modified k-nearest neighbor algorithm is used to sort the variables such that the
highly correlated variables are near each other along the main diagonal in reordered correlation
matrix. The block-diagonal pattern of reordered or sorted static and dynamic correlation matrixes
are used to identify homogeneous group of variables, based the approximate form of the

compositional stability condition. (b) Based on identified classifications of original variables, the
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statistical dimensional reduction method are used for actual aggregation procedure to decide
weighting schemes for aggregating disaggregated micro-variables into representative macro-
variables within each identified group. The principal component method applied onto each of
groups is used as the best dimensional reduction method with as little loss of information as
possible in the mean squared error sense. (c) Given that the inference based on the small size
VAR can be misleading unless the reduced form innovations span the space of the structural
shocks or the VAR model does not have the omitted variables problem, the estimated factors are
augmented in the VAR (FAVAR) framework to increase the amount of information in the
empirical model so that the reduced form residuals span the space of the structural economic
shocks. (d) Based on the residuals of reduced form FAVAR, the contemporaneous causal
structure among innovations is inferred by the graphical causal model. The identified
compositional stability condition in the data makes it possible to infer causal structures among
micro-variables through relationships among representative aggregated macro-variables. The PC
algorithm or GES algorithm is used to infer causal structures among macro-variables as the
legitimate representative causal relationships among micro-variables for the subsequent analysis.
(e) Based on the contemporaneous causal structure used for identification of FAVAR, structural
relationships of the macro-economy are studied in the two types of the moving average
representations. The impulse response functions of all the observed variables with respect to
shocks in the monetary policy variable as well as each of the estimated factors are estimated and
interpreted. The forecast error variance in each factor is decomposed into the parts attributable to
each of a set of innovations processes in the FAVAR.

As future research directions for the macro-econometric analysis of the high dimensional
data, several methodological issues are suggested. A first issue is how to incorporate the non-
stationarity in the original data and capture the possible co-integration relationships into the
grouped FAVAR framework. The dynamic correlation and the principal component methods
used in this study are based on the stationarity condition, which require transformations of the
original data. The main issue is to find inductive classification and aggregation methods, which
allow the possible non-stationarity of the original data. A second issue is how to incorporate the
possible non-linearity such as structural changes. While the observed co-movements among
macro-economic time series variables provide empirical foundation for the proposed non-
parametric methods of classification and aggregation, the non-linearity phenomenon is

oftentimes observed in macro-economic time series variables. One possible approach is to use
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the state space framework with the Gibbs sampler method in the Bayesian perspective (Kim and
Nelson, 1997). The main issue is how to inductively decide the parametric value, given that the
state space framework is the full parametric approach. For example, the parameter value to
capture the distributed lag effect of factors on the individual variables is not easily identified. A
third issue is how to decide the boundary of the variables included in the entire data set. While
the issue of what variables are included in a particular group can be inductively addressed by the
proposed classification methods, the issue of what variables should be included in the entire data
set can only be addressed based on the researchers’ intuition or the theory. This issue is related
with the causal sufficiency issue in the graphical causal models. The main issue is how to satisfy
or how to relax the causal sufficiency conditions in the analysis, especially in the GES algorithm
with discriminating the possible cyclic phenomenon. A fourth issue is how to decide the number
of classified groups and estimated factors for each group. For an example of the number of
classified groups, the empirical testing of the compositional stability condition, illustrated in the
micro-econometric analysis in chapter III, requires the identification of instrumental variables.
One possible way to pursue is to use the graphical causal model to identify instrumental
variables, as Chalak and White (2006) propose. The main issue is how to use causal structure
among observed variables to identify the validity condition of the instrumental variables, which
involve the unobserved causal factors. A fifth issue is how to study the complete causal
structures among variables over the full dynamic interactions beyond contemporaneous time.
While the VAR framework only requires the contemporaneous causal structure among
innovations, identifying the complete causal structure such as feedback phenomena over full
dynamic period can allow more precise understanding of macro-economic phenomena. One
possible way is to apply the graphical causal model onto the dynamically separate variables
based on the possible lag. For example, the N vector of time series variables with P lag

of X,, X_,,-:-, X_, can be separately defined and then the graphical causal model is applied for

p
this extended N-P dimensional data set. The full dynamic causal information can be
incorporated into the VAR framework or the final form of dynamic SEM framework. The main
issue is how to handle the complexity in the extended N -P dimensional data. A sixth issue is
how to study macro-economic phenomena at the original disaggregate level beyond the
aggregate level used in this study, given that close co-movement among variables implies that

the (probabilistic) stability condition is violated and multicollinearity problem is severe. While

this issue is partially addressed based on the factor analysis framework, alternative approach is to
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use the mixed estimator. The main issue is how to combine aggregate level information into the
mixed estimator to study disaggregate level.

In summary, this study provides one plausible inductive procedure for the full realization
of the recently available high dimensional data, while minimizing the use of deductive or
subjective assumptions. Although there remain other methodological issues to be addressed in
empirical studies, inductive properties are emphasized in every sequence of the proposed method,
since any types of subjective properties can bring ambiguities into the empirical results. While
theory as the inductive causal averaging procedure can allow some deductive elements in its
developments, empirical methodologies need to be based more on inductive properties to
maintain their objectivity. The remaining subjectivities in our proposed method are left as further
research topics, with the hope that the remaining subjectivities bring fewer ambiguities relative

to the previously used methods.
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APPENDIX A
PROPERTIES OF THREE DEMAND SYSTEMS

Direct Demand System

Theoretical implications for direct demand systems can be derived from properties of
cost functions as follows:
(a) Homogeneity: the linear homogeneity of cost function in prices implies the zero-degree

homogeneity of compensated demand in prices by Hotelling-Shephard lemma

N OQ°
%pp’u)z q;(p’ u), which in turn implies that Z% p, = 0~qn°(p,u) =0 by Euler’s theorem.
1 a, aq;, P, _
By multiplying . to Zap p, =0, we get Z . q =0 or Zs =0 or anenn 0.

(b) Symmetry: the continuity of cost function implies the symmetry by Young’s theorem

oc = oc , which in turn implies that %:
apnapn' apn'apn

%. By multiplying ( P, yp Jboth side of

n' n

%:%, we get (—p"q” j(a&&J = (—p”'q”' I%&J orw.e =W & .
op,  0p, y \op, q, y Aop, q, ' ‘

(c) Slutsky equation: By differentiating identity of q°(p,u)=q(p,y)=a[p,C(p,u)], we get

a, _ 94, 00, € _ 9, g M o gy multiplying [p"
o, dp, oCap, op, Oy op, o q

%=%+%qn. to get the Slutsky equation in elasticity form, we obtain

n' apn ay

25 Py :(%&H@qn L)(q_n&qn,H% pnj [6% yj[ pnvqnvjor £o—e 4EwW,
apn' qn apn' qn ay qn y qn apn' qn 8y qn y ' '

ore =&  —&W

n,n n,n n 'n'*

] to both side of

n

(d) Adding-up: (d1) > e,w, =1 or (d2) Se, . =—e, or (d3) Sw,e,, = -w,

(dl1) by differentiating yzi P, ‘qn(p, y) with respect to (hereafter, w.r.t.) y, we have

oy _y, 04, 300,y (qn ] d
Dovp Gy L) hp lori=Yew, .
y =Py m(ay qn] y ) TE
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n-'n'?

(d2) using the homogeneity condition ienﬁn, =0 in the Slutsky equation &, . =¢, . +& W, , we

N N N

get Yol =>¢ . +e, =0o0r Y&  =—¢,.
n'=l n=l n=l

(d3) using the symmetry condition W &' . =W, g, = with the Slutsky equation ¢, . =¢&  +&W,,

we get W, (8 , +8an,)=Wn. (8” +8n.Wn) or we, =W, (8” +&,.W, —ann). By summing up

n.n

N N N
this relation, we get ZW Ep = Wn,(z g, tE W — angn) . Using above two adding-up
n=1 ’ n=1 n=1

n~n,n'

n

N N N N
conditions, we get YW g, . =W, KZ g, &, )— (Z:ann )J: w [0-1]=-w, or Ywe =-w,.
n=1 =1 =1 n=1 ’

2

(e) Negativity: the concavity of cost function implies <0, which by Hotelling-Shephard

a, < P, to both side of a, <0, we get%&

n n n n n

lemma in turn implie <0,

C
so &,,<0.

Inverse Demand System

Theoretical implications for inverse demand systems can be derived from properties of
distance functions as follows:
(a) Homogeneity: the linear homogeneity of distance function in quantities implies the zero-

degree homogeneity of compensated demand in quantities by Shephard-Hanoch lemma

D 0 v O
olg.u’) (sc;u ) =z° (q, u’ ) , which in turn implies that 87[” *(g,u)=0 by Euler’s theorem.
n'=1 qn
By multiplyin I P 3 f< 20 or iWn £ o
n n'=l aq 7[ n'=l1 ! n'=1

(b) Symmetry: the continuity of distance function implies the symmetry by Young’s theorem

0D _ 9D \hich in tum implies that 2% = 9%

aqnaqn' aqn‘aqn

. By multiplying q, -, both side of

n' n

¢ ¢ or: q, or,
87[“ a We get (ﬂ. q { 7[” q_nj:(ﬂ-n'qn‘ {i qn J orWn fnfn’ = Wn’ fn":,n °

aq., aq aq aq, w

n n n n'

n' ﬂ-n
(c) Antonelli equation: Using q =Kk - q~ wherek is scalar and q"is reference vector, we can define

u=U(q):U(k-q‘)=U’(k,q*) and 7, = £"(q)= f"(k-q‘)zg"(k, q*). First, by taking total
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differentiating tou =U *(k, q*) , we getdu= Z  0U” oka, —dk +Z - 0U_ o,

—dq, . Let du=0 to
~ ok, ok v ok, aq,

compensate and using q=k-q° , we get 0= i% qa. dk+sz dq. , so

$ U gk =—(iﬂk-dq;,j which s [z i J k=—z, -k by

n aqn' " aqn‘ n' " n " n

Wold’s lemma z,(q,1)= V)% Thys we get & =-r, . Second, by taking total
z(au/aq )-q, Ao,

:

differentiating to 7, =g"(k, q*) , we get dz, =
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agn(ka q*)dq* +Mdk which is
0 ok
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d n * n * 4

7[*" _% (k’ q )+ 2 (k’ q ) dk* , which in turn equal to dﬁf _om 0o, 7, by using first
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n=1 aqn ﬂ.n

n

equalto 0= Zf W, +W, or —w, _Zf W,

n=1

(d2) wusing the homogeneity condition ZN‘,fnfn. =0 in the Antonelli equation of

n,n'
n'=1

foo=f = w., weget X' =>f - i =>f  ~f =0or >f =f . This
relation can also be derived by using 7, = f"(q): f"(k -q ) g"(k, ) By definition of scale

q
oo _ag'(kg) K _09"(k,g) _ gt (k-q') kg,
flexibility f = x 7 (k’q*),and using x —nzl ok *

and q=k-q°, we
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of'(k-q)okg, K -
kg, ok f'(k-q’) = aq. " f(q)
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gt f =09 (ka) ';
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Naf”(q) o N O (q) qg. N N
further get f, = — . —=>f orf =>f
n'=1 8qn f q) n'=1 aqn T, ( q) =l =l

(d3) By summing up above first adding-up condition of —w,, =i f,.w, and using second

N
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Mz

we get —

N
n b
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ﬁMz
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or—lziwn f
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n

(e) Negativity: the concavity of distance function implies

c c

0 0
G, to both side of il <0, we get a”” 9. <0,
Vs

n I'l n n n

so f° <0.

Mixed Demand System
Theoretical implications for mixed demand systems can be derived from properties of
restricted or rationed cost functions as follows:

(a) Homogeneity: the linear homogeneity of rationed cost function in prices p, by Samuelson’s

R

envelope theorems implies that q°(p,,q,.u)= is zero-homogeneous in price p, and

R

is linear homogenous in price p, . By Euler’s theorem, we get

pkc(pAanﬂu)z_

k

iaq . =1-p; = p,. By multiplying 1 to Z o, p,=0, we get
= op. g = .0p,

i i
i %’ Py =0or Y& i =0 and by using identity p; = p, for iapk P, =P,
= ap] of = - = ap, J
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(b) Symmetry: the continuity of rationed cost function implies the symmetry by Young’s

oc* ocC" oCF oCF oC* oC* L L
theorem = , = , and = , which in turn implies that
op,op;  Ip;op, 09,04, 09,00, op,cq,  0q,0p,
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o, dp, 0q, aq, op, o, y y

q. °p; q. )Y aq; p. c ¢
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y y Aop; q y op, a, y aq, p, y Ada, p,
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y Adp p, y Aaq, q,

foo=w - ff

s,k ?
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k
(c) Slutsky equation: By differentiate identities of both qf(pA,qB,u)z q, [pA,qB,CM (pA,qB,u)],
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T _E s P g $ Pg and
r:erlapj

derivative properties of mixed demand functions

i ap] r=m+l ap]
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s
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(d) Adding-up: (d1) Swe, + 3w, f, =1 and (d2) Swe' =0 and Swq’, = —w,
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i“i,j

qr} which is ' =f + fkl,

or (d3) & =3¢, and (d4) f,=1-3p, .

N

>p,(p,.0,Y)0, =y wrt Yy , we get

k=m+1

P 0 Y 1 which equal to z[ﬂJ(fMj 5 (ﬁj[%ij .
y oy LY !

(d1) By differentiating 3 p,q,(p,.q,.y)+

m aq N
Z pi —+ Z
i=1 ay k=m+1

0 uq ) =iy Aoy p,
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(d2) By differentiating ipiqi(pA,qB,y)+ipk(pA,qB,y)qkzy wrt. p, we get

k=m-+1

P, .ﬂJrqj + i %.qk =0 or i P, ﬂ(&)+ i %-qk(&j:—qj[&j, which is equal
4 apj KEme apj o1 op. \ Yy k=m+1 8pj y y

- j
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W, =-W, smce%}wg —%‘,Wg =0 using symmetry W, -&, =W, - &,

i“i,j i it
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(d4) By using Slutsky equation p,, =p,; + fk(WJ. + 2 W-p ), we can write ; p,, =1 as
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(e) Negativity: the concavity w.r.t. p, and convexity w.r.t. g, of the rationed cost function

0 Cz <0 and 0 Cz >0, which in turn imply that ais 0 and aﬂﬁ 0 respectively by
op, aq, P, aq,

implie

OC* oCR
and pS(p,,Q,.u)=— .
=~ and p(p,.0, )=~

Samuelson’s envelope theorems of q°(p,,q,,u)=
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APPENDIX B
RELATIONS AMONG THREE DEMAND SYSTEMS

Retrieval of Direct Elasticities from Mixed Elasticities

Direct demand system is related to mixed demand system by using following identities:
a2 [P P (pa 0o V) y]=0 (pasdany) and ag[p,.py (p,.0asy)y)=a . From identity of
9°[p.. 0¥ (p,.9..Y).y]=0" (p..0..y) , (a) by differentiating identity w.rt. Vg, , we get

vy vey _vay Vq;’:Vq:”[Vpé”

, which can be  written as
VF)B qu VqB va qu qu

(&&J{&%J{Eﬁ} or ES =QY-(F2)", (b) by differentiating w.r.t. Vp, , we
vp. q,) (va, a, \ Ve, p,

o YOi VO, VpS VA o Va, Ve VG, Vg

which, using
Vp, Vp, Vp, Vp Vp, Vp

A VpB VpA va qu

vee  va' (vp' )
. qA:qA(pBJ,

Va,

A A A

A va qu qu VpA

can be written as Zq“ _Ya, —{Vq“ (Vpa ] }VpB or E, =E —Qu -(Fss )Py through the

relation of (&&J = (Vq“ P J —(Vq“ % j(VpB % ) (VpB &), and (c) by differentiating
VpA qA VpA qA VqB qA VqB pB VpA pB

Ve, Ve, VG, _Vay o Var _Va, Ve Ve

, which, using
Vp, Vy Vy Vy Vy Vy Vp, Vy

w.rt. Vy, we also get

va, _Va. [ VP, again, can be written as VqA:VqA _| YO, | VP, VP, or

Vp,  VQ, VA, Vy Vy | VG, \ VG, Vy

2 -1 -l (R ) tnough (T | (Y ) (TaE TR G (Y,
Vy q, Vy q, Va, a4, A\ V@, P, Vy P,

From identities of qg[pA,pg"(pA,qB,y), y]z@ , (a) by differentiating w.rt. Vq,, we get

VO YPo _yop Y9 | VP | hich equal to | YO Pe | [ YPe Qo | o Eo _(FH ) (1)
Vp, V@, vp, Va, Vp, q, vV, p,

Ve, , Vag Ve VAo Vag Vpg

Vp, Vp Vp Vp

B A

by differentiating w.r.t. Vp,, we get , which, using

A A B A
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V0o _ | VP: , can be written as VG, __[VP. | VP, or E;’A:—(FB“; )fl P,. through
vp vq, Vp Vg, ) Vp,

B A

(m&jz—[VLLJ [VL&J , and (c) by differentiating w.rt. Vy , we get
Vo, G Va, p, VP, Pe

VG VP, +VQB =0 or VG =—VqB VP, , which, using E: Vbs again, can be

Vp, Vy Wy Vy  Vp, Vy Vp, Vg,

written  as VG, _ [ VP | VP, or E2=—(F/ )’1 F.," through the relation of
Vy Vo, ) vy

S5
vya.) (va, p) vy p,

Retrieval of Inverse Flexibilities from Mixed Elasticities

Inverse demand system is related to mixed demand system by using following identities:

p.la¥ (p,.a.¥) 0. y]=P, and pi[a(p,.0s.Y) 0, Y]= PY (pa.0s.y) which are implied by

| M

7 [a" (z..9,.1.9,.1]=7, and z.[9" (z,.q,.1).0,.1]= 7" (,.q,.1) through the relationships of

ﬂL[qL" (ﬂA,qB,l),qB,l]-yzzr_A-y and ﬁg[q;" (ﬁA,qB,l),qB,l]-yzﬁQ" (74,95,1)-y . From identities of

pj\[q;“\"(pA,qB,y),qB,y]Ep_A , (a) by differentiating w.rt. Vp, , we get EEZI or
Va, Vp,
E = [—qu J , which equals to {—Vp" &J z(—vn’* q—AJ = (_VqA &j or F,, Z(EXAA )i1 , (b)
VqA va qu pA qu ”A VpA qA
I M I v I | M
by differentiating w.r.t. Vq,, we get VP, VG, + VP, =0 or P. _ _Vp. VG, , which, using
Va, Vo, Va, Vg,  Va, Vg,
E= V& , can be written as Vb, = va, | Va, or
Va, Vp, VaQ, Vp. ) VG,
(—Vp’* q—BJz(—VﬁA q—BJ:—(VqA &j (VqA q—BJ , which in turn equal to F, =—(Ex\)4QX"B.
qu pA VqB ”A VpA qA VqB qA

From identity of p![q¥ (p,.0s.Y).0s.Y]= P (p,.0s.Y), (a) by differentiating identity w.r.t. Vp,

we get VP, VG, :VpB or VpB:VpB va, which can be written as
Va, Ve, Vb, va, Vp,\Vp,

A
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[m&HE&H&&Im&J or F. —PY(E)", (b) by differentiating
Va, p, va, 7, vVp, P, A VP, 4,

vp! vg" vp. vp¥ vp' VvpY Vp' vag“
W.r.t. qu , we get P. VO, + Ps — Pe or Pe _ P _ P, VA,

which, using

va, Vg, Va, VG, V4, V4, VA, VG,
VPy _ VP [Vq“ J , can be written as Py _ VP, —[VpB [VqA j }Vq“ or
va,  Vp,\Vp, Vg, Vg, [ VP.(VP.) |VG,

[V_péq_BJ _ (V_ﬂq_j _ (VLQ_J_(VLP_IVLP_j (VLQ_J  which in turn oqual
va, p,) (Va, z,) \va, p,) (Vp, p, \Vp, a,) | Va, g,

to Fl =F —P"(E")'QY. From the relation f, =z f  or F' =RowSum(F! ) of inverse
demand function, we get F'=RowSum(F.:F!) and F.'=RowSum(F.:F.) . Using
F. =(E")" and F, =—(E")'Q" . we can write F!=RowSum|(E")"i-(E")'Q"]. Using
Fo.=Pu(EL) and F.=Fu —PI(EL)"Qx , we can write
F. = Rowsum[P! (E" ) iFY —P¥(EY)' QY] .

AA AB

Retrieval of Mixed Elasticities from Direct Elasticities

Theoretical relationships of mixed elasticities to direct elasticities can be derived as
follows. From E_, =(FB“;' )7' , we get F2 =(E§B)" . From E; =Q, -(FB“; )fl , we get
QL =E.F: =E;, (E;’B )71 using F =(E§B )71 . From E_, =—(FB“;' )7' PY , we get
P =-FuEg =—(EL)'ES using Fy =(E2)". From EJ =E}-Q)-(Fu) P,

EA’\WA = E/?A + Q/’:‘B : (FBhE/sl )7l Pslﬁ = E/SA - [E/?B (EEC:B )71]' [EEC:B]' [(EECS)B )71 EECS)A] = E:)A - E/(\)B (EE(:B )71 EE?A llSiIlg

FB’: = (EECS)B )7l ’ QXAB = E/C:B(EECS)B )71 ’ and PBh: = _(EE(!)B )71 EECS)A' From E/c: =E, - QM : (FB’: )71 FBM , wWe get

A AB

we get

Er =E0+QY-(Fy) 'R e -[ES(ES) | [ES ) [ES ) ES]=EL —ES(ES)'EC  using
FB’: :(Efcs)a)i1 5 Q;’:AB:E/C:Ex(EEcs)Ex)i1 ’ and PBh: :_(E;)B)il EECS)A . From EE(: :_(FBZ;I )7l FBM , WC get

F'=—FrES =—(E2 ) 'E? using FY =(ES)".

BB
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Retrieval of Mixed Elasticities from Inverse Flexibilities

Theoretical relationships of mixed elasticities to inverse flexibilities can be derived as

follows. From F. =(E")", we get E" =(F.)". From F! =P"(E")", we get P" =F'E"

BA T AA

=F.(F.)" using E® =(F.)". From F. =—(E")'Q", we get Q" =—E"F. =—(FL)'FJ

AA AB AA" AB

using E}, =(FA'A)71 . From F_, =F_, —P. (Ei"A)le:”B , we also get F, =F, +P., (E ) Q

—FL - [RLFL) FIFLFIRL) FL] = Rl —FL(FL) 'Fy using EX =(FL)', PY =FL(F.)",

and Q" =—(F.)'F! . From the relation & ——ig” and f, =1—i p., of mixed demand
j=1

j=1

functions, we get E" = —RowSum(E" ) and F =1 —RowSum(P" ). Using E =(F.)", we can

AA

AA

write  E) = —ROWSum[(FA'A)A] . Using P'=F.(F')" , we can write

FY=1- RowSum[FB'A(FI )l] :

AA

Retrieval of Direct Elasticities from Inverse Flexibilities

Theoretical relationships of direct elasticities to inverse flexibilities can be derived as
follows. From ES, = (F." )71, we get E, [F' ~-F.(F.)'F! ]ﬁl using FY =F! —F.(F.)'F..
From ES =Q" -(FY)", we get ES =—(F,,)"F, -[FB'B - FB'A(FA'A )'EL ] using Q1 =—(F.)'F.,
and Fo=F,— FB'A(FA'A )71 F.. . From Eo = —(FB“;' )7' P , we get

= _[FBIB - FBIA (FAIA )71 FAIB ]7] FBIA (FAIA )71 using Fahﬁlz| = FBIB - FBIA(F/-\IA)71 FAIB and PB’: = FBIA(FAA) From

ES =EN-QL-(FA)'PY . we get ES=(FL) +(FL)'FL-[Fu —Fa(FL) Ryl FL(FL)

AA AA
uSing EXAA ( ) Q ( ) FAIB > FB’: = FBIB - FBIA(F ) AIB > and I:)B,\/:I = FBIA(FAA) From the
relation ¢, = —ZN;gM‘ or EJ= —ROWSum(EﬁVN) of direct demand function, we can write

n

E° =—RowSum(E° :E ) and E? =—RowSum(EC E2 ). Using above relationships relating
FL) FL]'FL(FL)" and
EEB = _(FAIA )il FAIB ) [FBIB - FBIA(FAIA )7l FAIB ]4 and E;)A = _[FBIB - FBIA(FAIA )7] FAIB }1 FBIA(FAIA )7l and

E,. :[FB'B—FB'A(FA'A)’l FA'J], we can relate expenditure elasticity to flexibilities as follows

elasticity to flexibility — Ef, = (F' )71 + (FA'A )71 F '[FB'B - FBA(

AA
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E° _—ROWSum< [ F.(F.) AJ Fu(FL) i=(FL) FA'B'[FJB—FBL\(FA'A)_I FA'BH
R FL RLRL) R, - LR RLT).

and E; = —RowSum<— [FB'B -

Retrieval of Inverse Flexibilities from Direct Elasticities

Theoretical relationships of inverse flexibilities to direct elasticities can be derived as

follows. From F.=(E")" , we gt F,= [EEA ~ES(ES)'ES ]ﬁl using

AA

E =E; —EL(ES)'EL : From Fu. =Py (EN)" ; we get

1

FAIB = _[E/C:A - E:B (E:B )7l EBOA]i E. (EO )7l USil’lg P’: :_(E;a)?] E;)A and E/’A\AA = EEA - ESB(E;JB)" E;)A .

AB BB B

From  FL=-(EL)'Q% . we get Fi=—(E2)'E[Es~ES(EL)'ESL]"  using

AA

EM =E% -E%(ES)'ES and Q" =ES(ES)' . From F.L=FY -PY(E")'Q" , we get

AA AB 2

Fy=(E) +(ES) EalEs —ES(ES) 'EL ] EL(ES)" using F = (ES)", Py =—(ES)'ES

BA %

EY=E° -E°(ES)'ES , and Q" =ES(EL)' . From the relation fzzf or
F! =RowSum(F.,) of inverse demand function, we can write F, =RowSum(F, :F.) and
F! =RowSum(F.‘F.) . Using above relations of elasticity to flexibility
F,=[Es - Es(E2) €S , F, =-[Es - Ex(Es) Eo ER (ES) ,

Fl =—(E5) EoEs B (BS) "B ] and FL = (ES)' +(ES) EQ[ES ~ ES(ES ) EQ] 'EQ(ES)

BA

we can relate scale flexibility of inverse demand to elasticities of direct demand as follows
F! =Rowsun|ES, —E5,(E2) B2 ] - [ES, - B2 (B2 ) 'ES ] ES (B2 and

F' =Rowsunl-(E5 ) 'E2[ES, — B9 (B2 ) ‘B2 (B2 +(E2) "ESER — B2 (B2 ES S (2 ) |
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APPENDIX C
DIFFERENTIAL FAMILY OF THREE DEMAND SYSTEMS

For specifications of differential family of demand system, the log differential property

of dz=z-dInz or dlnz =dz/z is frequently used for any variable z. For example, by taking

total differentiate of identity y = i p.g,,we get dy = i p,dg, + iqndpn , which can be written as

(yd In y)z i pn(qnd In qn)+ iqn( p,dIn pn) by log differential property and represented as

n=|

n=1

dlnysi( P.9 Jdlnq +Z[ Jdlnp or dlny= delnq +delnp =dInQ+dInP.
y y

Similarly by taking total differentiate of identity yzi pg + i pg. , we get
dysi p,dq, Jriqidpi + ipkqu + iqkdpk , which, using dz=z-dIlnz , can be written as

(ydny)=3p(qding)+>a(pdinp)+ X p,(qdIng)+ >q,(pdlnp,) and represented as

diny= Z( P4 Jd Inq, -I—i[ P, jd Inp + Z [pqu Jd Ing, + Z [pqu Jd In p, by multiplying
y y y

k=m-+1 k=m+1 y

k=m+1

1 ordlny= delnq +delnp + Z‘,Wdlnqk + deln p, by budget share definition or
y

diny=dInQ, +dInP, +dInQ, +dInP, =[dInQ, +dInQ, +dInP,]+dInP, =dIny+d InP, .

pnqﬂ

For another example, by taking total differentiate of identity w, =
y

, we get
dw, :&dqn +idpn Pl —n dy , which, using the log differential property dz=z-d1Inz, can be
y y y’

written as dw, = ( P9, Jd Inq, +(q P, Jd Inp, ( p"?" . y)d Iny and, by budget share definition,
y y y

can be also represented as dw, =wdIlng +wdInp —wdIlny , which can be either
dw, =wdIng, +wdInz, or dw, =w,dIng, +w,dInp, —w [dInQ+dInP]. The Kronecker

delta 6, ,=1 for n=n" and 6, ,=0 for n#n' is also frequently used. For example,

N N
Z .Z,,—Z,can be written as ZWZ —Zé‘nn N Z(Wn‘—§m,)-zn..

n'=



236

Rotterdam Functional Form
Specification of the Rotterdam direct demand systems can be derived as follows. By

taking total differentiation of the uncompensated direct demand q, =q,(y,p,,--, p,), we get

aa, —dy + Z p By using log differential property dz =z-dInz, This equation can be

d
Y%y

88?1 ydIny+ Z p d1n p,, which, by multiplyin

written as ¢,dInq, =

P,
y

( PG, Jd Inq, —( P.g, J(%ljd Iny+ i( J( o9, P, jd In p,. or, by budget share definition,
y y oy =y A 9R, 4,

n

wdlng, =wedlny+ ZW g,,d1Inp . By using Slutsky relation of W e,  =Wer  —Weg W, into

n~n,n'

N
this equation, we have wdIngq =w e dlny+ Z[ En —annwn,}i In p,,, which can be written as

n-n,n'

wdlng =we, ([dlny - ZN:Wn‘d Inp, J+ ZW e dlnp, or, by using

identitydlny=dInQ+dInP, wdlng, =we¢, - dan+ZW5

n—n,n'

-dlnp, .

Specification of the Rotterdam inverse demand systems can be derived as follows. By

taking total differentiation of the compensated inverse demand 7, =7, (u,q],---,qN) , we get

dz, = oz, du+ i%dqn.. By using aaﬁ" du= (aln” jZ w,d Inq, derived below, we also get
n'=1 . u

ou olnk
Olnz N O
dz, =7, a1 k" >w.d lnqn,+zadq By log differential property, this equation can be
n n'=l n'=1 o

6ln7ir( jd InQ+ Z q dlInq,, which, by multiplying q, to both sides,

written as 7,dInz, = ﬁn(

Ink aq

n

can be represented by (7,9, )dInz, = (ﬂnqn{aaln “ )d InQ+ i(? qn‘an(a G jd Inq, or
v n' 7Z.n

Olnr,
Olnk

n o nn'

wdlnz, =w,f dan+ZW f° dlng, . The relation of 6672'” du= ( jZW dlIng, can be
u

which can be

n 2

derived as follows. First, by differentiating u=U(q), we get du= ZN:aaTudq

written as udInu zi%qn'd Ing, by log differential property and represented by
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dlnu:i o a, dlng, or dlnu:i olnu dlng, . Second, by differentiating
=l oq, U =1\ dInq

n' n'

u :U(q):U (k -q ) w.r.t. k, we get du = ;ai: ala(:j” dk = ;aq “dk , which can be written as

udInu = ié’_u ‘kd Ink =ia—u dInk by log differential property and represented by

n=l aqﬂ n=l 6qn
dinu=3 Y% |gink = z 81““ dink or 910U i Onu | Third, %o du can be
i 0g, u dink ™i{ dlnq, ou
written as ﬂn(éln ﬂ“j dlnu by log differential property and represented by
olnk 5IHV
Olnk
dlnu . . . . .
or,  (olnz, ( Alnqn,) ’ using above two results. Finally, by using following relation
o (6lnk )z. ialn%lnq nq,
u g, ] [ omy
— qn' — . qn' — aqn . . qn' — 8qn u — alnqn
of Wn._[pn,] y —[ﬂ'n, y] y i@ y y “|woUq || =omu based on Wold
wog, =g, u = 0lng,
u
q.. or olnr }
theorem 7 = n , we get —2du=r w,d In
& Y WEET A (alnk 2 W, ding,
o,

Specification of the Rotterdam mixed demand systems can be derived as follows. By
taking total differentiation of uncompensated mixed demand g, = g,(y, p,,-*, P, 0,0, )» We

get dg, = zcjl' dy+Z—dp + Z —dq By log differential property, this equation can be
s=m+l q

aq, Y

written as .dIng, =—ydIn y+2—p dinp, + Z —q dInq, , which, by multiplying —, is
y

s=m+1

equal to

(ﬂJd Ing :(%J(%ljd 1ny+(%Ji 29 P 1o p, +( P J > (aq 9 jd Ing, or
y y 8y q; y )i ap, q, y Jsm 8q o

wdlng =wedlny+w, igi dlnp, +w, i g,.dIngq, . By using Slutsky decomposition relations
=1 s=m+l
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N
> W frfs) into this equation, we can get

=m+l

of ¢ ,=¢, —e(W+ZW pkj) and g, =0, - (

k=m+1

Wid 1nqi :Wigid lny+Wiilgicj _gi(wj + i W, - p;f ,)‘b In p;, +Ww i lqics _gi(i W, - frcs) ll’lqs or
=R KEmel : el AL =~ ;
wdIng, =Wiei[dlny—ivvjdlnpj}+i[vvﬁé,- —Wiei(i W, - pi,j)]-dlnpj ) [Wiq; —Wiei(i err:)-dlnqs or

wdIng, =(we)- dlny+2[w$”—w¢9£2 W, - ka)J dinp,+ 3 [wq —vvigi(ﬁjmwrfrfs)'dlnqs. By

s=m+1

taking total differentiation of uncompensated mixed demand p, = pk(y, Py pm,qm+1a“'aqw)’

we get dp, = ;;k dy+za—dp + Z —kdq By log differential property, this equation becomes

P,

pdinp, = ydlny+i
oy

s 9
s=m+1

(pqujdlnpi:(pquj(apk del y{pq JZ N +(qujZ(8pk q, Jdl n.
y y Ny p y J'app y J=mi 0a, P,
or wdlnp, =w, fkdlny+wki p.dInp, +w, i f.dIng, . By using Slutsky decomposition

N
IRA frfs) into this equation, we

=m-+1

relations of p,, =p;, — f (W + Z W, - p; )and fo.=1 - fk(

r=m+l

get Wkdlnpk=Wkfkdlny+vvkj§j,[p;j (W + ZW p; )J dinp, +w, Z [fc —f(ZW fe ) -dIng, or

s=m+1

wdlinp, :vkak[dlny—_mzlv%dlan}_mzl[wkp;l —V\/kfk~(§lwpf )] dinp, + Z [wf - (wa )] dlng, or

2w’ )Jdlnq

=m+1

wdlnp, =(w,f )- dlny+zlw P, —wf, - (pr”)J dinp, + > lwfc —w, f, (

s=m+1

Differential LA/AIDS Functional Form
Originally the LA/AIDS direct demand systems can be derived by using following
specification of cost function: y= C(u, P) = exp[a(P)+ ub(P)] or

Iny=InC(u,P)=a(P)+ub(P)  where a(p)=a0+ian In pn+%ii7/m, Inp Inp, and

b(p)zﬂoﬁ p.” . By taking differentiation, we get slln;: =a, + i;/nyn, Inp, +p, -ub(P) ,
n=1 n n'=1

n

which, by using both log differential property and Hotelling-Shephard lemma 6C/dp, =q, , can
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be written as L P |_[GP ] o, + i;/n Jnp. .+ 4 InQ , where
o, € y =

ub(P) =lny- a(P) ~Iny-InP=InQ is derived by using a linear approximation of
a(p)z iwﬁ, Inp, =InP. This level version of LA/AIDS W, =, + f, InQ + i;/m, In p, canbe
written differential version of LA/AIDS dw =4 dInQ + i V..dlnp, .

Based on the similar logical procedure, the LA/AIDS inverse demand systems can be

derived by using following specification of distance function: 1= D(u,q)=exp[a(q)+ ub(q)] or

Inl1=0=InD(u,q)=a(g)+ub(q) where a(q)=a0+ianlnqn+%ii7mn,lnqnlnqn, and

b(q)= ﬂolﬁ[qnﬂ" . By taking differentiation, we get Slln(? =
n=l n

an + T\‘Z}/n.n’ lnqn' +ﬂn Ub(q)a Wthh,

n

by log differential property and Shephard-Hanoch lemma 0D/dq, =7, , can be written as

[%%} ZLHHanj =a, + i?ﬂ,w Inq, + 4, InQ, where ub(q): a(q)z InQ is derived by using

z

a linear approximation of a(q)z w,.Inq,=InQ . This level version of LA/AIDS

o

W =a,+ 6 InQ+ i}/n'n, Inq, can be written differential version of LA/AIDS

dw, = ,dInQ+ 3, dng, .

CBS Functional Form

Originally the CBS direct demand systems can be derived by subtracting w.dInQ from

both side of Rotterdam models to introduce variational expenditure elasticity into Rotterdam

specification as follows: w dIng, —w dInQ=w e dInQ + iw g dlnp,—wdInQ, which

n—n,n

‘3 j =[w,e, ~w,JdInQ+ 2wl dinp, .

can be represented by w d ln[

Similarly the CBS inverse demand systems can be derived by adding w,d InQ to both

side of Rotterdam models to introduce variational scale flexibility as follows:

wdlnz, +w dinQ=w, fndan+ZN:Wn fr.dlng, +w dInQ which can be represented by
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{Wnd ln( Ip:)“ ] } =[w f, +w [dInQ+ ZN;[Wn fnfn,]d Inq, , by using the relation of dlnz, +dInQ

=[dinp, —dInY]+dInQ =dIn pn—[dlnY—dan]:dlnpn—dlnP:dln(%J.

NBR Functional Form

Originally the NBR direct demand systems can be derived by addingw d InQ to both

side of LA/AIDS models to introduce constant expenditure elasticity into LA/AIDS specification

as follows: dw, +w dInQ=[w e, —w [dInQ + i[wng:_n, —-W, (Wn. -0, . )]d Inp,+wdInQ or

{dw, +w dInQ}=[w e JdInQ + i[Wg ~w,(w, -5, Jdnp, .

Similarly the NBR inverse demand systems can be derived by subtractingw,d InQ from

both side of LA/AIDS models to introduce constant scale flexibility into LA/AIDS specification

as follows: dw —w dInQ=[w f, +w, ]JdInQ+ ZN_:[Wn fr. —w, (Wn‘ -0, . )]d Ing, —w dInQ or

{dw, —w,dInQ }=[w, f JdInQ + ZN:)[Wn fo —w,(w, -5, )ding, .

Relation among Four Functional Forms
Since mathematical equivalences between Rotterdam and CBS and between LA/AIDS
and NBR are obvious, it is enough to show relationships between Rotterdam and differential

version of LA/AIDS to connect all four differential family functional forms.

In direct demand functions, using dw, = <Wnd In qn> +wdinp —w[dnQ+dInP],

Rotterdam can be written as differential version of LA/AIDS dw, =4 dInQ + ij/n.n‘d Inp,

n“n,n

through dw, = <wngnd InQ+ iw g dln pn‘> + wnLiémd In pn,]— wdinQ-w, Liwn‘d In pn,] by
using parameterization of B =[ws —w, ] and Vo = angnfn, A (Wn, _5n,n~)J and by using

wdling, = <de> ~wdinp +w[dnQ+dInP], LA/AIDS can be written as Rotterdam via

wdlng, = <[ann ~w, JdInQ+ i[wngj_n. ~w,(w, -5, )Jdn pn,> - WnLNZﬁn,n‘d In pn,]+ wdinQ+w, iwﬂ,d Inp, -
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In inverse demand functions, using dw, = <Wnd In 72'n> +wding, +wdinQ-wdInQ,

Rotterdam can be written as differential version of LA/AIDS dw, = £ dInQ + i}/mn.d Inq,

through dw, = <[w f JdinQ+ ZNjwn fe.din qn,> W, [ﬁ; 5,.d1ng, ]+ wdInQ-w, LZN;Wn,d In qn,] by
putting B.=w f +w] and Vow = [Wn £ —w, (Wn. - 5n_n‘)J and using
wdlnz, = <dwn> —wdilng, —wdIinQ+w,dInQ, LA/AIDS can be written as Rotterdam via

wdlnz, =<[W f, +vvn]d an+lN27[vvn fr —Wn<Wn, -0, . )]d lnqn,> _WnLi@,nvd lnqn,]—vvnd an+WniWn,d Ing, .



242

APPENDIX D
DATA DESCRIPTION*

Var. # Description of Variables Brand Categry UPC Code
001 SUNKIST STRAWBERRY SUNKIST 4640010041
002 SUNKIST ORANGE SUNKIST 4640014021
003 CANADA DRY GINGER ALE CANADA DRY 1690000013
004 CANADA DRY GINGER ALE CANADA DRY 1690000083
005 SPRITE SPRITE 4900000132
006 COCA-COLA CLASSIC COKE 4900000634
007 COKE DIET COKE 4900000658
008 COKE DIET CAFFEINE FREE COKE 4900000929
009 PEPSI-COLA PEPSI 1200000013
010 PEPSI-DIET PEPSI 1200000050
011 DIET PEPSI CAFFEINE FREE PEPSI 1200000494
012 CAFFEINE FREE PEPSI PEPSI 1200000490
013 MOUNTAIN DEW MOUNTAIN DEW 1200000085
014 SEVEN-UP SEVEN-UP 7800000038
015 SEVEN-UP DIET SEVEN-UP 7800000079
016 DR PEPPER SUGAR FREE DR PEPPER 5490000030
017 DR PEPPER DR PEPPER 5490000029
018 A & W DIET ROOT BEER A&W 7020200006
019 A & W ROOT BEER A&W 7020200005
020 DIET RITE COLA RITE COLA 2950005254
021 DIET RITE RED RASPBERRY  RITE COLA 2950085254
022 LIPTON BRISK ICED TEA LIPTON 4100000814
023 LIPTON DIET BRISK TEA LIPTON 4100010728

* All the products are size of 6/12 oz.
* The classification and ordering of variables are based on the result of empirical analysis
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APPENDIX E
DATA DESCRIPTION®

Var. # Variable Name Descriptions T Code Slow

Exchange Rate Variable Group (ExRate)
001 |EX rate: Canada FOREIGN EXCHANGE RATE: CANADA (CANADIAN $ PER U.S.5)

002 Exrate: UK FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER POUND)
003 Ex rate: Switz FOREIGN EXCHANGE RATE: SWITZERLAND (SWISS FRANC PER U.S$)
004 Exrate: avg UNITED STATES;EFFECTIVE EXCHANGE RATE(MERM)(INDEX NO.)

wn wn wn wn | wn
=1 -

005 Ex rate: Japan FOREIGN EXCHANGE RATE: JAPAN (YEN PER U.S$)
Stock Market Variable Group (Stock)

006 Consumerexpect U, OF MICH. INDEX OF CONSUMER EXPECTATIONS(BCD-83) ) 0
007 S&P PE ratio S&P'S COMPOSITE COMMON STOCK: PRICE-EARNINGS RATIO (%NSA) 5 0
008  S&P: indust S&P'S COMMON STOCK PRICE INDEX: INDUSTRIALS (1941-43=10) 5 0
009 S&P 500 S&P'S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43=10) 5 0

Money Aggregate Variable Group (Money)

010 M2 rea MONEY SUPPLY - M2IN 199 DOLLARS (BC) 500
0 M2 MONEY STOCK:MY(MI+O'NITE RPSEUROSGP&B/D MMMFS&SAV&SM TIME DEP(BILS, 500
02 M3 MONEY STOCK: M3(M24LG TIME DEP,TERM RPS&INST ONLY MMMFS)(BILSSA) 500
03 M MONEY STOCK: MI(CURR TRAV.CKSDEM DEPOTHER CK'ABLE DEP)BILSSA) 500
014 MB MONETARY BASE, ADJ FOR RESERVE REQUIREMENT CHANGES(MILSSA) 50
015 Reserves o DEPOSITORY INST RESERVESTOTALADJ FOR RESERVE REQ CHOS(MILSSA) 500
016 Reservestonbor ~ DEPOSITORY INST RESERVESNONBORROWED,ADI RES REQ CHGS(MILSSA) 50

Price Variable Group (Price)

017 CPl-U:exsheber ~ CPL-U:ALL ITEMS LESS SHELTER (82-84=1005A)

018 CPL-U: comm. CPL-U: COMMODITIES (82-84=1008A)

019 CPL-U: ex med CPL-U: ALL ITEMS LESS MEDICAL CARE (82-84=100.5A)
020 CPLU:al CPL-U: ALL ITEMS (82-84=100SA)

021 |CPL-U: transp CPL-U: TRANSPORTATION (82-84=1008A)

022 CPLU: ex food CPL-U: ALL ITEMS LESS FOOD (82-84=1008A)

oN o o o o o

* In the transformation code (T-code), the following numbers are used for each transformation: 1: no transformation. 2: first
difference, 4: logarithm, 5:first difference of logarithm, and 6: second difference of logarithm.
* In the block recursive assumption (Slow), the number of 1 denotes the assumed slow-moving variables.
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Var. # Variable Name Descriptions T Code Slow
023 PPLint mat'ls PRODUCER PRICE INDEXINTERMED MAT.SUPPLIES & COMPONENTS(82=1008A) 6 0
(24 PPI cons gds PRODUCER PRICE INDEXFINISHED CONSUMER GOODS (82<100SA) 6 0
025 PPI fin gds PRODUCER PRICE INDEX: FINISHED GOODS (82=100SA) 6 0
(26 PPLerudemat’ls  PRODUCER PRICE INDEX.CRUDE MATERIALS (82=100SA) 6 0
027 Commod: spot price  SPOT MARKET PRICE INDEXBLS & CRB: ALL COMMODITIES(1967=100) 6 0
028 Sensmatsprice  INDEX OF SENSITIVE MATERIALS PRICES (1990=100)(BCI-99A) 6 0

Interest Rate Variable Group (Interest)
029 Baa bond BOND YIELD: MOODY'S BAA CORPORATE (% PER ANNUM) 2 0
030 Aaabond BOND YIELD: MOODY'S AAA CORPORATE (% PER ANNUM) 2 0
031" 10 yr T-bond INTEREST RATE: U.S.TREASURY CONST MATURITIES,10-YR (% PER ANNNSA) 2 0
032 5 yr T-bond INTEREST RATE: U.S.TREASURY CONST MATURITIESS-YR. (% PER ANNNSA) 2 0
033 1yr T-bond INTEREST RATE: U.S.TREASURY CONST MATURITIES,I-YR.(% PER ANNNSA) 2 0
034 6 mo T-bil INTEREST RATE: U.S.TREASURY BILLSSEC MKT,6-MO.(% PER ANNNSA) 2 0
035 3mo T-bil INTEREST RATE: U.S.TREASURY BILLSSEC MKT,3-MO.(% PER ANNNSA) 2 0
036 Commpaper Cromercial Paper Rate (AC) 2 0
Spread Variable Group (Spread)
037 |CP-FF spread epd0-fyff | 0
038 |3 mo-FF spread fygm3-fyff | 0
039 |6 mo-FF spread fygmo-fyff | 0
(40 |1 yr-FF spread fyotl-fyff | 0
041 |5 yr-FFspread fyotS-fyff | 0
(42 10yr-FF spread fyotl0-fyff | 0
(43 | Aaa-FF spread fyaaac-fyff | 0
044 Baa-FF spread fybaac-fyff | 0
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Var. # Variable Name Descriptions T Code Slow

Housing Market Variable Group (House)
(45 HStarts: NE HOUSING STARTSNORTHEAST (THOUS.U.)S.A. 4 0
(M6 BP:NE HOUSES AUTHORIZED BY BUILD. PERMITSNORTHEAST(THOU.U.)S.A 4 0
(47 HStarts: MW HOUSING STARTSMIDWEST(THOUS.U)SA. 4 0
(48 BP:MW HOUSES AUTHORIZED BY BUILD. PERMITSMIDWEST(THOU.U.)S.A. 4 0
(49 BP: West HOUSES AUTHORIZED BY BUILD. PERMITS:WEST(THOU.U.)S.A. 4 0
050  HStarts: West HOUSING STARTS:WEST (THOUS.U.)S.A. 4 0
051 HStarts: Total HOUSING STARTS:NONFARM(1947-58),TOTAL FARM&NONFARM(1959-) THOUS.,SA 4 0
052 BP: total HOUSING AUTHORIZED: TOTAL NEW PRIV HOUSING UNITS (THOUS.SAAR) 4 0
053 HStarts: South HOUSING STARTS.SOUTH (THOUS.U.)S.A. 4 0
054 BP: South HOUSES AUTHORIZED BY BUILD. PERMITSSOUTH(THOU.U.)SA. 4 0

NAPM Variable Group (NAPM)
055 NAPMecomprice ~ NAPM COMMODITY PRICES INDEX (PERCENT) | 0
056 NAPM Invent NAPM INVENTORIES INDEX (PERCENT) | 0
057 NAPM vendor del ~ NAPM VENDOR DELIVERIES INDEX (PERCENT) | 0
058 NAPM empl NAPM EMPLOYMENT INDEX (PERCENT) | |
09 PMI PURCHASING MANAGERS' INDEX (SA) | 0
060 NAPM prodn NAPM PRODUCTION INDEX (PERCENT) | |
061 NAPMnewords ~ NAPMNEW ORDERS INDEX (PERCENT) | 0

Employment Variable Group (Emp)
062 Emp CPS total CIVILIAN LABOR FORCE: EMPLOYED, TOTAL (THOUS.SA) 5 |
063 Emp CPS nonag CIVILIAN LABOR FORCE: EMPLOYED, NONAGRIC.INDUSTRIES (THOUS. SA) 5 |
064 Emp-hrs nonag Employee hours in nonag, establishments (AR, bil. hours) 5 1
065 Emp: const EMPLOYEES ON NONFARM PAYROLLS - CONSTRUCTION 5 |
066 Emp: reta EMPLOYEES ON NONFARM PAYROLLS - RETAIL TRADE 5 |
067  Emp: TTU EMPLOYEES ON NONFARM PAYROLLS - TRADE, TRANSPORTATION, AND UTILITIES 5 |
068 Emp:services EMPLOYEES ON NONFARM PAYROLLS - SERVICE-PROVIDING 5 |
069 Emp: total EMPLOYEES ON NONFARM PAYROLLS - TOTAL PRIVATE 5 |
070 Emp: gds prod EMPLOYEES ON NONFARM PAYROLLS - GOODS-PRODUCING 5 |
071 Emp: mfg EMPLOYEES ON NONFARM PAYROLLS - MANUFACTURING 5 |
072 Emp: dole gds EMPLOYEES ON NONFARM PAYROLLS - DURABLE GOODS 5 |
073 Emp: nondbles EMPLOYEES ON NONFARM PAYROLLS - NONDURABLE GOODS 5 |
074 Emp: wholesale EMPLOYEES ON NONFARM PAYROLLS - WHOLESALE TRADE 5 |
075 Emp: FIRE EMPLOYEES ON NONFARM PAYROLLS - FINANCIAL ACTIVITIES 5 |
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Var. # Variable Name Descriptions T Code Slow

Output Variable Group (Output)

076 | IPnondble mats INDUSTRIAL PRODUCTION INDEX - NONDURABLE GOODS MATERIALS 5 1
077 TPhus eqpt INDUSTRIAL PRODUCTION INDEX - BUSINESS EQUIPMENT 5 |
078 |IP: dble mats INDUSTRIAL PRODUCTION INDEX - DURABLE GOODS MATERIALS 5 1
079 IP: matls INDUSTRIAL PRODUCTION INDEX - MATERIALS 5 |
080 |IP: total INDUSTRIAL PRODUCTION INDEX - TOTAL INDEX 5 |
081 |IP: mfg INDUSTRIAL PRODUCTION INDEX - MANUFACTURING (SIC) 5 |
082 Caputl Capactty Utiization (Mfg) 2 1
083 IP: products INDUSTRIAL PRODUCTION INDEX - PRODUCTS, TOTAL 5 1
084 |IP: final prod INDUSTRIAL PRODUCTION INDEX - FINAL PRODUCTS 5 |
085 IP: cons gds INDUSTRIAL PRODUCTION INDEX - CONSUMER GOODS 5 |
086 1P cons dble INDUSTRIAL PRODUCTION INDEX - DURABLE CONSUMER GOODS 5 1
087 IPrcons nondble INDUSTRIAL PRODUCTION INDEX - NONDURABLE CONSUMER GOODS 5 |
088 PI Personal income (AR, bil. chai 2000 ) 5 1
089 PTless transfers Personal income fess transfer payments (AR, bil chain 2000 §) 5 1

Consumption/Investment Variable Group (Cons/Inv)

090 Orders: cap gds Mifrs' new orders, nondefense capital goods (mil. chain 1982 ) 5 0
091 Orders: dble gds Mfts' new orders, durable goods industries (bil. chain 2000 §) 5 0
092 Orders: cons gds Mirs' new orders, consumer goods and materials (bi. chain 1982 ) 5 0
093 M&T sales Manufacturing and trade sales (mil. Chain 199 §) 5 |
094 M&T invent/sales ~ Ratio, mfg. and trade mventories to sales (based on chain 2000 §) ) 0
095 Retal sales Sales of retai stores (mil. Chain 2000 §) 5 |

5 |

09  Consumption Real Consumption (AC) A0m224/gmdc
Unemployment Variable Group (Unemp)

097 Usal UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS & OVER (%,54) 2 1
098 U <5wks UNEMPLOY.BY DURATION: PERSONS UNEMPL.LESS THAN § WKS (THOUS.SA) 5 1
09 U:meanduraton  UNEMPLOY.BY DURATION: AVERAGE(MEAN)DURATION IN WEEKS (SA) 2 |
100 U27+wks UNEMPLOY.BY DURATION: PERSONS UNEMPL.27 WKS +(THOUS,SA) 5 1
100U 15+ wks UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 WKS +(THOUS.SA) 5 |
102 U15-26wks UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 TO 26 WKS (THOUS.SA) 5 |

Federal Funds Rate Variable (FFR)
103 FedFunds INTEREST RATE: FEDERAL FUNDS (EFFECTIVE) (% PER ANNUMNSA) ) 0




APPENDIX F
STANDARD STATIC CORRELATION MATRIX
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