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ABSTRACT

Direct Linearization of Continuous

and Hybrid Dynamical Systems. (December 2007)

Julie Marie Jones Parish, B.S., Texas A&M University

Chair of Advisory Committee: Dr. John E. Hurtado

Linearized equations of motion are important in engineering applications, especially

with respect to stability analysis and control design. Traditionally, the full, nonlinear

equations are formed and then linearized about the desired equilibrium configuration

using methods such as Taylor series expansions.

However, it has been shown that the quadratic form of the Lagrangian func-

tion can be used to directly linearize the equations of motion for discrete dynamical

systems. Here, this development is extended to directly generate linearized equa-

tions of motion for both continuous and hybrid dynamical systems, where a hybrid

system is described with both discrete and continuous generalized coordinates. The

results presented require only velocity level kinematics to form the Lagrangian and

find equilibrium configuration(s) for the system. A set of partial derivatives of the

Lagrangian are then computed and used to directly construct the linearized equa-

tions of motion about the equilibrium configuration of interest. This study shows

that the entire nonlinear equations of motion do not have to be generated in order

to construct the linearized equations of motion. Several examples are presented to

illustrate application of these results to both continuous and hybrid system problems.
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CHAPTER I

INTRODUCTION

Linearized equations of motion do not embody the full nature of a dynamical system,

but they are useful for studying the behavior of a system and designing feedback

controls. The most common method to produce linearized equations is to reduce the

fully nonlinear equations of motion, the motivation being that one is likely interested

in the nonlinear equations anyway. This approach is called an indirect approach

because the path to the linearized equations starts from a first principle of motion

(i.e., Newton’s law or Lagrange’s fundamental equation) and passes through the fully

nonlinear equations. Alternatively, a direct approach to linearization would produce

the desired equations directly from a first principle of motion.

Several texts present a method for direct linearization of equations of motion for

systems described only by discrete generalized coordinates [1][2]. What is missing,

however, is a method to handle a large class of systems that include an elastic domain,

such as a bendable arm. The elastic part of such a system is typically described with

continuous, or infinite-dimensional coordinates.

In this thesis, a method for directly constructing linearized equations of motion

for continuous and hybrid dynamical systems is developed. A hybrid system is a sys-

tem described by a combination of discrete and continuous coordinates. Attention is

given to systems composed of single or multiple elastic domains, the distinction being

the number of independent infinite-dimensional coordinates necessary to describe the

system configuration. This method builds on concepts utilized in direct linearization

for discrete systems as well as formulations of Lagrange’s equations for continuous

The journal model is IEEE Transactions on Automatic Control.
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and hybrid systems and only requires the kinetic and potential energy functions for

the system of interest [3]. Given these functional expressions, the equilibrium con-

figuration(s) about which the equations of motion are to be linearized can be found.

The method identifies partial derivatives of the Lagrangian that contribute to the lin-

earized equations of motion. When evaluated at an equilibrium configuration, these

partial derivatives are the coefficients for the directly-generated linearized equations

of motion.

The thesis begins with a brief review of direct linearization derived for Lagrange’s

equations for discrete systems. Direct linearization of continuous and hybrid systems

is then explored, as well as approaches for determining equilibrium solutions for con-

tinuous and hybrid dynamical systems. The procedure is presented using Einstein

summation convention for brevity, and numerous examples are presented throughout

this thesis to help clarify the main ideas and methodology.
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CHAPTER II

BACKGROUND

The ideas upon which the research in this thesis is based are over 200 years old [4].

The primary building block, Lagrange’s Equations, will be reviewed first, followed by

a brief overview of equilibrium for dynamic systems. These results are utilized in the

existing direct linearization method for discrete systems, which will be discussed in

detail and later applied to an example in this chapter.

A. Lagrange’s Equations

The principles behind Lagrangian mechanics are powerful because they allow one to

“develop a universal form of the differential equations of motion, as a function of

the system kinetic energy and unspecified generalized coordinates” [5]. In Newtonian

mechanics, the traditional alternative to the Lagrangian approach, the sum of the

forces is equated to the time rate change of the momentum along the coordinate axes.

These expressions are then used to solve for the governing equations and constraint

forces. However, in Lagrangian mechanics, the full equations of motion are derived in

a more straightforward manner using partial differentials of a single scalar function.

Furthermore, the Lagrangian approach uses velocity-level, as opposed to acceleration-

level, kinematics. In this section, the formulation of Lagrange’s equations for finite-

dimensional systems will be presented.

1. Generalized Coordinates

The scope of the developments in this thesis is restricted to holonomic systems, or

systems that can be described with a minimal set of independent coordinates called

generalized coordinates. The number of coordinates in the minimal set, n, is equal to
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the number of degrees of freedom of the system of interest. Given an arbitrary choice

of coordinates that exceed the number in the minimal set, holonomic constraints can

be used to solve for the excess coordinates as a function of the minimal set of coor-

dinates. There are an infinite number of choices for these independent coordinates,

but one will find that certain selections will often result in more elegant results for

the equations of motion.

2. D’Alembert’s Principle

Given a set of independent generalized coordinates, {q1, q2, . . . , qn}, the position vec-

tor, ri(q1, q2, . . . , qn, t) = ri(qi, t) for the ith particle in a system of N particles can be

constructed. Virtual displacements, δr, are instantaneous differential displacements,

and can be written in the following form.

δri =
∂ri

∂qk

δqk =
∂ṙi

∂q̇k

δqk = τ ikδqk (2.1)

The vector τ ik is called the Lagrangian vector [6]. The virtual displacements can also

be used to define the virtual work of the ith particle [5].

δWi ≡ Fi · δri (2.2)

Here, the total forces, Fi, are the sum of the holonomic constraint forces, fci
, and the

given forces, fi. The constraint forces are normal to the plane that contains the virtual

displacements, so the dot product f ci
· δri is zero. Summing over the N particles, we

then have the total virtual work.

δW =
N∑

i=1

Fi · δri =
N∑

i=1

fi · δri (2.3)
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Now consider the dot product between Newton’s second law, Fi = mir̈i, and an

arbitrary virtual displacement. This is the general form of d’Alembert’s equations.

δW =
N∑

i=1

Fi · δri =
N∑

i=1

mir̈i · δri

=
N∑

i=1

mir̈i ·
n∑

k=1

τ ikδqk =
n∑

k=1

N∑
i=1

fi · τ ikδqk (2.4)

≡
n∑

k=1

Qkδqk (2.5)

Here, Qk ≡
∑N

i=1 fi · τ ik are called the generalized forces. We can then write the

following.
n∑

k=1

(
N∑

i=1

mir̈i · τ ik −Qk

)
δqk = 0 (2.6)

For holonomic systems, the variations δqk are arbitrary and independent, and Eq. (2.5)

can be written as follows.
N∑

i=1

mir̈i · τ ik = Qk (2.7)

This version of d’Alembert’s principle is also called the “fundamental equation” [4].

3. The Time Rate Change of the Lagrangian Vectors

Consider again the Lagrangian vectors, τ ik . The time rate change of these vectors

can be written in the following manner.

d

dt

(
∂ṙi

∂q̇k

)
=

d

dt
τ ik =

d

dt

(
∂ri

∂qk

)
=

∂

∂qk

(
dri

dt

)
=

∂ṙi

∂qk

(2.8)

Using “cancelation of the overdots,” we can then write the following [4].

d

dt

(
∂ṙi

∂q̇k

)
− ∂(ṙi)

∂qk

= 0 (2.9)
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This result can now be combined with the definition of kinetic energy to arrive at

Lagrange’s equations.

4. Lagrange’s Equations

The kinetic energy is defined as follows.

T =
1

2

N∑
i=1

miṙi · ṙi (2.10)

Consider the partial derivative of the kinetic energy with respect to the generalized

coordinates and velocities.

∂T

∂q̇k

=
N∑

i=1

miṙi · ∂ṙi

∂q̇k

(2.11)

∂T

∂qk

=
N∑

i=1

miṙi · ∂ṙi

∂qk

(2.12)

Expanding the left hand side of d’Alembert’s principle, Eq. (2.7), we can write the

following.

N∑
i=1

mir̈i · τ ik =
N∑

i=1

mi
dṙi

dt
· ∂ṙi

∂q̇k

=
d

dt

(
N∑

i=1

miṙi · ∂ṙi

∂q̇k

)
−

N∑
i=1

miṙi · d

dt

(
∂ṙi

∂q̇k

)

=
d

dt

(
N∑

i=1

miṙi · ∂ṙi

∂q̇k

)
−

N∑
i=1

miṙi · ∂ṙi

∂qk

= Qk (2.13)

Substituting the expressions from Eqs. (2.11) and (2.12) into the above result, we

arrive at Lagrange’s equations.

d

dt

(
∂T

∂q̇k

)
− ∂T

∂qk

= Qk (2.14)

This result is a valid form of Lagrange’s equations, but a different form of Eq. (2.14)

is desired for the direct linearization development. This motivates a second look at

the generalized forces on the right hand side of the equation.
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5. The Lagrangian Function

The generalized forces, Qk, can be divided into potential forces, Qkp , and non-

potential forces, Qknp , the difference being that the former are derivable from a scalar

potential function, V (t, qk).

Qkp = fip · τ ik = −∇V · ∂ri

∂qk

= −∂V

∂r
· ∂ri

∂qk

= −∂V

∂qk

(2.15)

A new function called the Lagrangian, L = T − V , can now be defined and used to

construct the familiar form of Lagrange’s Equations.

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk

= Qknp (2.16)

The application of this equation results in n governing equations of motion for

the n generalized coordinates. This formulation of Lagrange’s Equations for finite-

dimensional systems may also be developed through the extended Hamilton’s princi-

ple. Using this approach and applying calculus of variations, Lee and Junkins extend

the ideas to systems with both finite- and infinite-dimensional generalized coordinates

[3].

B. Equilibrium Properties

A dynamic system is said to be in a state of equilibrium when all the generalized

velocities and accelerations are zero. Consider the following system.

ẋ = f(x, t) (2.17)

Because all generalized velocities and accelerations are zero, the left hand side of

this equation is zero. An equilibrium point, x∗ is then defined when the following is
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satisfied for all time t.

f(x∗, t) ≡ 0 (2.18)

When we apply these equilibrium properties in conjunction with Lagrange’s Equa-

tions, the resulting equation provides a more direct way to calculate the equilibrium

configuration(s) for the class of systems of interest. These equations will be presented

in this thesis with their respective class of systems.

C. Direct Linearization of Discrete Systems

In this section, an existing method for directly linearizing equations of motion for

discrete systems is reviewed and illustrated in a two degree of freedom example. The

goal of direct linearization is to produce linearized equations of motion from a first

principle of motion. Throughout this thesis, Lagrange’s equations are taken as the

starting point.

Recall that the Lagrangian energy approach uses partial derivatives of the La-

grangian function, L, to generate the governing equations of motion of a system,

d/dt(∂L/∂q̇i) − ∂L/∂qi = Qi. Here, L = T − V where T and V are the kinetic and

potential energy respectively, qi are the generalized coordinates, q̇i are the generalized

velocities, and Qi are the generalized nonconservative forces. The kinetic energy can

be partitioned into terms that are quadratic in the generalized velocities, T2, linear

in the generalized velocities, T1, or with no dependence on the generalized velocities,

T0. The dynamic potential, which has no dependence on the generalized velocities,

can then be defined as U = V − T0. The kinetic energy function can then be written

as T = T2 + T1 + T0, and the Lagrangian can be written as L = T2 + T1 − U .



9

1. Equilibrium Configuration Solutions

After applying the equilibrium properties to Lagrange’s equations, the equilibrium

configurations are identified from the following equation.

∂U

∂qi

= 0 (2.19)

This equation allows one to solve for an equilibrium configuration, a step necessary

regardless of the linearization method employed. Note that, in general, there may

be several solutions to this equation, and therefore several possible equilibrium con-

figurations. If this is the case, one “target” equilibrium configuration of interest can

be chosen for linearization purposes. Throughout this thesis, it is assumed that a

single equilibrium configuration of interest is chosen even if several are found. If de-

sired, one could apply the results presented in this thesis to each of the equilibrium

configurations separately.

2. Direct Linearization

Perhaps the most important aspect of the direct linearization approach is the quadratic

Taylor series expansion of the Lagrangian function about the chosen equilibrium con-

figuration, q∗, determined from Eq. (2.19) [1][2]. With no loss of generality, we use

a change of variables, qnew = qoriginal − q∗, to write the Taylor series expansion for

perturbations from the equilibrium state.

L(q, q̇) = L
∣∣∣
(eq)

+
∂L

∂qi

∣∣∣
(eq)

qi +
∂L

∂q̇i

∣∣∣
(eq)

q̇i +
1

2

∂2L

∂qi∂qj

∣∣∣
(eq)

qiqj

+
1

2

∂2L

∂q̇i∂q̇j

∣∣∣
(eq)

q̇iq̇j +
∂2L

∂qi∂q̇j

∣∣∣
(eq)

qiq̇j + . . . (2.20)

The above equation involves partial derivatives of L evaluated at equilibrium, so
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the dynamic potential is studied within the same context.

U(q) = U
∣∣∣
(eq)

+
∂U

∂qi

∣∣∣
(eq)

qi +
1

2

∂2U

∂qi∂qj

∣∣∣
(eq)

qiqj + . . . (2.21)

The first term is constant and has no effect on the equations of motion. The second

term is identically zero. Consequently, a second order approximation of U contains a

single term.

U(q) ≈ 1

2

∂2U

∂qi∂qj

∣∣∣
(eq)

qiqj (2.22)

The partial derivatives of T can be studied in a similar manner and coefficients eval-

uated about an equilibrium point can be defined and used to write the Lagrangian in

quadratic form.

mij =
∂2T2

∂q̇i∂q̇j

∣∣∣
(eq)

; fij =
∂2T1

∂qi∂q̇j

∣∣∣
(eq)

; kij =
∂2U

∂qi∂qj

∣∣∣
(eq)

(2.23)

L∗(q, q̇) =
1

2
mij q̇iq̇j + fijqiq̇j − 1

2
kijqiqj (2.24)

Applying Lagrange’s equations to L∗ yields the linearized equations of motion for

perturbations about the equilibrium point.

mij q̈j + fjiq̇j − fij q̇j + kijqj = Qi (2.25)

One should note that, given the potential and kinetic energy of a discrete dynamical

system, only a select number of partial derivatives must be computed a priori to form

the linearized equations of motion. There is no need to first construct and then reduce

the full nonlinear equations of motion.

3. Example: Rotating Hub with Two-Link Rigid Arm

As an example, consider the two degree of freedom discrete problem of a massless

hub of radius R with two identical linked rigid arms of length l. A point mass, m,
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is attached to the end of the second arm. The hub rotates at a constant angular

velocity, Ω. A spring of stiffness k attaches the first arm to the hub and a second

identical spring attaches the second arm to the first. The angular displacement for

each arm is φ1 and φ2, respectively, where each angle is measured relative to the

position of the inboard body when the associated spring is undeformed. Figure (1)

shows an illustration of this system.

Fig. 1. Rotating Two-Link Arm Structure

The portions T2 and T1 of the kinetic energy are as follows.

T2 =
1

2
m

(
2l2φ̇2

1 + l2φ̇2
2 + l2φ̇1

(
φ̇1 + φ̇2

)
cos φ2

)
(2.26)

T1 =
1

2
m

(
4l2Ωφ̇1 + 2l2Ωφ̇2 + 2RlΩφ̇1 cos φ1 + l2Ω

(
2φ̇1 + φ̇2

)
cos φ2

+ RlΩ
(
φ̇1 + φ̇2

)
cos (φ1 + φ2)

)
(2.27)

The dynamic potential is constructed from T0 and the potential energy.

U =
1

2
k(φ2

1 + φ2
2)−

1

2
m

(
2l2Ω2 + R2Ω2 + 2RlΩ2 cos φ1 + l2Ω2 cos φ2

+ RlΩ2 cos (φ1 + φ2)
)

(2.28)

Using Eq. (2.19), an equilibrium solution φ1 = φ2 = 0 is found, and the following
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partial derivatives from Eq. (2.23) can be evaluated.

m11 = 3ml2 ; m12 = m21 = 1
2
ml2 ; m22 = ml2

k11 = k + 3
2
mRlΩ2 ; k12 = k21 = 1

2
mRlΩ2 ; k22 = k + 1

2
ml(R + l)Ω2

f11 = f12 = f21 = f22 = 0

(2.29)

Substituting these coefficients into Eq. (2.25) directly produces the linearized equa-

tions of motion.

3ml2φ̈1 +
1

2
ml2φ̈2 +

(
k +

3

2
mRlΩ2

)
φ1 +

1

2
mRlΩ2φ2 = 0 (2.30)

1

2
ml2φ̈1 + ml2φ̈2 +

1

2
mRlΩ2φ1 +

(
k +

1

2
ml(R + l)Ω2

)
φ2 = 0 (2.31)

Again note that the linearized equations of motion were found directly; the full non-

linear governing equations were never constructed.
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CHAPTER III

DIRECT LINEARIZATION OF DISCRETE RHEONOMIC SYSTEMS

In this chapter, the existing direct linearization results for discrete systems are ex-

tended to include rheonomic systems, or systems that have explicit time dependence.

The addition of this system characteristic affects the formulation of equilibrium con-

figurations as well as the directly linearized equations of motion. Note that the results

are also valid for schleronomic systems which have no time dependence; terms related

to explicit time dependence are zero for such systems.

A. The Kinetic Energy Function for Rheonomic Systems

The finite-dimensional direct linearization method can be generalized to include rheo-

nomic systems. In order to construct the kinetic energy function for rheonomic sys-

tems, let us first define the position vector as an explicit function of generalized

coordinates, q(t), and time.

r = r(q, t) (3.1)

We then have the following form for the velocity vector.

ṙ =
∂r

∂qi

dqi

dt
+

∂r

∂t
=

∂r

∂qi

q̇i +
∂r

∂t
= τ iq̇i + τ 0 (3.2)

Here, τ i and τ 0 are known as the Lagrangian vectors. The kinetic energy is then

constructed as follows.

T =
1

2
m (ṙ · ṙ) =

1

2
m (τ i · τ j q̇iq̇j + 2τ i · τ 0q̇i + τ 0 · τ 0) (3.3)

Recall that this function can be divided into three categories, T2, T1, and T0. Terms

that are quadratic in the generalized velocities are collected in T2, terms linear in the
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generalized velocities comprise T1, and terms independent of the generalized velocities

are included in T0.

T2 =
1

2
m (τ i · τ j q̇iq̇j) ; T1 = m (τ i · τ 0q̇i) ; T0 =

1

2
m (τ 0 · τ 0) (3.4)

Note that the T1 and T0 terms contain components that are consistent only with

rheonomic systems. That is, T1 and T0 do not exist for systems that are schleronomic.

With this form for the kinetic energy, we can subtract the potential energy, V , to

form Lagrangian, L = L(q̇, q, t).

B. Equilibrium Configuration Solutions

Let U = V − T0 be the dynamic potential. Assuming only potential forces act on

the system, the equilibrium configuration for the system is that which satisfies the

following for all time t.

∂2T1

∂t∂q̇i

+
∂U

∂qi

= 0 (3.5)

Here, partial differentiation with respect to time indicates explicit differentiation

only. That is, if f = f(yi(x, t), x, t), then ∂f/∂t = ∂f/∂t only, and ∂f/∂t 6=
(∂f/∂yi)(∂yi/∂t) + ∂f/∂t. For clarity, we adopt the Junkins and Kim notation

df/dt =(∂f/∂yi)(∂yi/∂t) +∂f/∂t, though this is technically also a partial deriva-

tive because both x and t are independent variables [7][8].

C. Direct Linearization

A change of variables is again chosen to simplify our development. We then apply

Lagrange’s equations to a quadratic Taylor series expansion of the Lagrangian in the



15

generalized coordinates and velocities, and the following equations of motion result.

mij q̈i + (ṁij + fij − fji)q̇i + (ḟij + kij)qi = Qi (3.6)

Here, mij, fij, and kij are defined as before but may now also explicitly depend on

time. Here and throughout this thesis, an overdot on the linearization coefficients

is used only for notational compactness and indicates explicit partial differentiation

with respect to time, ∂/∂t. However, overdots on all other kinematic coordinates

denote total time derivatives, q̇i = dqi/dt.

D. Example: Accelerating, Rotating Rigid Arm

Consider the following simple example of a rheonomic system. A rigid arm of length

l with a tip mass, m, is attached by a spring of stiffness k to an infinitesimally small

hub with a prescribed angular velocity of θ̇ = Ωt. The angular displacement of the

arm, φ, is measured with respect to a frame rotating with the hub as shown in Figure

(2). The kinetic and potential energies for this system are the following.

Fig. 2. Rotating One-Link Structure
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T =
1

2
ml2

(
θ̇ + φ̇

)2

; V =
1

2
kφ2 (3.7)

The equilibrium configuration can then be found for the system.

∂2T1

∂t∂q̇i

+
∂U

∂qi

= ml2Ω + kφ = 0 ⇒ φ∗ = −ml2Ω

k
(3.8)

A change of variables is employed such that q = φ− φ∗.

T =
1

2
ml2

(
θ̇ + q̇

)2

; V =
1

2
k (q + φ∗)2 (3.9)

The nonzero coefficients and resulting equation of motion about the equilibrium point

are then the following.

mij = ml2 ; kij = k (3.10)

ml2q̈ + kq = 0 (3.11)

If desired, the change in variables can be reversed to obtain the equation of motion

in terms of φ and its derivatives.

ml2φ̈ + kφ + ml2Ω = 0 (3.12)

Note that incorrect equations would have resulted, regardless of the linearization

method utilized, if the equilibrium condition had not been redefined to include rheo-

nomic systems.
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CHAPTER IV

DIRECT LINEARIZATION OF CONTINUOUS SYSTEMS

In this chapter, the direct linearization method is extended to infinite-dimensional

systems. Lee and Junkins formulated a Lagrangian approach to produce the gov-

erning equations of motion for continuous and hybrid dynamical systems [3]. Here,

the class of systems of interest are assumed to have a Lagrangian that can be writ-

ten in the general form L = L(wi, ẇi,w
′
i,w

′′
i , xi, t), where the strain energy terms,

w′
i(xi, t),w

′′
i (xi, t), belong only to the potential energy function. A hat over the

Lagrangian indicates terms in the integrand. Note that the overdot represents the

operator d/dt acting on the variable, whereas the prime represents the operator d/dx

acting on the variable. The Lagrangian is constructed with the infinite-dimensional

coordinate(s) wi(xi, t), its derivatives, boundary terms (LB), and boundary condi-

tions, where i = 1 for the single-body case (a), and i = 1, . . . , n, for the n > 1

multi-body case (b).

(a) L =

∫ l

l0

L̂dx + LB ; LB = LB(w(l), ẇ(l),w′(l), ẇ′(l), t)

L̂ = T̂ − V̂ = L̂(w, ẇ,w′,w′′, x, t) (4.1)

(b) L =
n∑

i=1

∫ li

l0i

L̂idxi + LB ; LB = LB(w(l), ẇ(l),w′(l), ẇ′(l), t)

L̂i = T̂ i − V̂ i = L̂(wi, ẇi,wi
′,wi

′′,w(l), ẇ(l),w′(l), ẇ′(l), xi, t) (4.2)

This distinction is necessary because boundary terms associated to multiple elastic

domains must be accounted for in the multi-body Lagrangian. The underlined terms

represent a vector of boundary terms, i.e., w(l) = wi(li). For these boundary terms,

li indicates a location at which wi is evaluated, and the repeated index does not

indicate summation. Also note the shorthand notation w(l) = w(l, t), etc. Lagrange’s
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equations for continuous systems are then the following [7].

(a)
d

dt

(
∂L̂

∂ẇ

)
− ∂L̂

∂w
+

d

dx

(
∂L̂

∂w′

)
− d2

dx2

(
∂L̂

∂w′′

)
= f̂T (4.3)

(b)
d

dt

(
∂L̂i

∂ẇi

)
− ∂L̂i

∂wi

+
d

dxi

(
∂L̂i

∂w′
i

)
− d2

dx2
i

(
∂L̂i

∂w′′
i

)
= f̂ iT (4.4)

Here, f̂ iT is the nonconservative generalized force density vector related to wi, whereas

f iT
1 and f iT

2 below are respectively the nonconservative force and torque vectors applied

at the boundary, li.

When considering systems with an elastic domain, boundary conditions must be

taken into account.

(a)

{
∂L̂

∂w′ −
d

dx

(
∂L̂

∂w′′

)}
δw

∣∣∣
l

l0
+

{
∂LB

∂w(l)
− d

dt

(
∂LB

∂ẇ(l)

)}
δw(l) (4.5)

+ fT
1 δw(l) = 0 (4.6)

∂L̂

∂w′′ δw
′
∣∣∣
l

l0
+

{
∂LB

∂w′(l)
− d

dt

(
∂LB

∂ẇ′(l)

)}
δw′(l) + fT

2 δw′(l) = 0 (4.7)

(b)

{
∂L̂i

∂w′
i

− d

dxi

(
∂L̂i

∂w′′
i

)}
δwi

∣∣∣
li

l0i

+

{
∂L

∂wi(li)
− d

dt

(
∂L

∂ẇi(li)

)}
δwi(li)

+ f iT
1 δwi(li) = 0 (4.8)

∂L̂i

∂w′′
i

δw′
i

∣∣∣
li

l0i

+

{
∂L

∂w′
i(li)

− d

dt

(
∂L

∂ẇ′
i(li)

)}
δw′

i(li) + f iT
2 δw′

i(li) = 0 (4.9)

Note that we can again partition the kinetic energy in terms of the order of the

generalized velocities, ẇi.

L̂ = T̂ − V̂ = T̂2 + T̂1 + T̂0 − V̂ = T̂2 + T̂1 − Û

LB = T2B + T1B + T0B − VB = T2B + T1B − UB (4.10)

This notation allows the equilibrium configuration solutions to be clearly defined.
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A. Equilibrium Configuration Solutions

In order to evaluate the partial derivatives at the equilibrium configuration, an under-

standing of equilibrium solutions for continuous systems must be formed. Equations

for describing these configurations are obtained in the same manner as those for a

discrete system. Applying equilibrium properties to Lagrange’s Equations, Eqs. (4.3)

and (4.4), one can define equilibrium configurations using the following equations.

(a)
∂

∂t

(
∂T̂1

∂ẇ

)
+

∂Û

∂w
− d

dx

(
∂Û

∂w′

)
+

d2

dx2

(
∂Û

∂w′′

)
= 0 (4.11)

(b)
∂

∂t

(
∂T̂ i

1

∂ẇi

)
+

∂Û i

∂wi

− d

dx

(
∂Û i

∂w′
i

)
+

d2

dx2

(
∂Û i

∂w′′
i

)
= 0 (4.12)

Even at equilibrium we must consider both geometric and natural boundary condi-

tions. The spatial boundary conditions simplify to the following at equlibrium.

(a)

{
∂

∂x

(
∂Û

∂w′′

)
− ∂Û

∂w′

}
δw

∣∣∣
l

l0
+

{
∂2UB

∂t∂ẇ(l)
− ∂UB

∂w(l)

}
δw(l) = 0 (4.13)

− ∂Û

∂w′′ δw
′
∣∣∣
l

l0
+

{
∂2UB

∂t∂ẇ′(l)
− ∂UB

∂w′(l)

}
δw′(l) = 0 (4.14)

(b)

{
∂

∂xi

(
∂Û i

∂wi
′′

)
− ∂Û i

∂wi
′

}
δwi

∣∣∣
li

l0i

+

{
∂2U

∂t∂ẇi(li)
− ∂U

∂wi(li)

}
δwi(li) = 0 (4.15)

− ∂Û i

∂wi
′′ δwi

′
∣∣∣
li

l0i

+

{
∂2U

∂t∂ẇi
′(li)

− ∂U

∂w′
i(li)

}
δw′

i(li) = 0 (4.16)

In order to find an equilibrium solution for a continuous system with a single [multiple]

elastic domain[s], the set of equations resulting from applying Eq. (4.11) [Eq. (4.12)]

must be solved using the boundary conditions from Eqs. (4.13) and (4.14) [Eqs. (4.15)

and (4.16)]. Recall that several equilibrium configurations which satisfy these equa-

tions may exist. In the following development, it is assumed that a single “target”

equilibrium configuration is chosen about which to linearize the equations of motion.
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B. Direct Linearization: Single Elastic Body

Consider only the continuous Lagrangian, L̂. The quadratic Taylor series form of

this function, L̂∗, can be formed in the same manner as L∗ for discrete systems:

the Lagrangian is expressed in terms of partial derivatives evaluated at the target

equilibrium configuration, and only terms of second order and lower are retained.

Lagrange’s equations are then applied to L̂∗ to construct the equations of motion. A

change of variables is again chosen for simplification such that wnew = woriginal−w∗,

where w∗ is the equilibrium solution. If this expression is differentiated with respect to

x, the result reveals that w′,w′′, etc. are also equal to zero at equilibrium. This change

of variables will eventually result in linearized equations of motion that describe the

departure motion from the target equilibrium, or the motion of the system relative

to this equilibrium configuration. Expanding L̂ using a Taylor series expansion gives

the following.

L̂(w, ẇ,w′,w′′, x, t) = L̂|(eq) +
∂L̂

∂w

∣∣∣
(eq)

w +
∂L̂

∂ẇ

∣∣∣
(eq)

ẇ +
∂L̂

∂w′

∣∣∣
(eq)

w′ +
∂L̂

∂w′′

∣∣∣
(eq)

w′′

+
1

2

∂2L̂

∂w2

∣∣∣
(eq)

w2 +
∂2L̂

∂w∂ẇ

∣∣∣
(eq)

wẇ +
∂2L̂

∂w∂w′

∣∣∣
(eq)

ww′

+
∂2L̂

∂w∂w′′

∣∣∣
(eq)

ww′′ +
1

2

∂2L̂

∂ẇ2

∣∣∣
(eq)

ẇ2 +
∂2L̂

∂ẇ∂w′

∣∣∣
(eq)

ẇw′

+
∂2L̂

∂ẇ∂w′′

∣∣∣
(eq)

ẇw′′ +
1

2

∂2L̂

∂(w′)2

∣∣∣
(eq)

(w′)2

+
∂2L̂

∂w′∂w′′

∣∣∣
(eq)

w′w′′ +
1

2

∂2L̂

∂(w′′)2

∣∣∣
(eq)

(w′′)2 + . . . (4.17)



21

Key coefficients in the above expansion can be defined.

L0 = L̂|(eq) ; L1 = ∂L̂
∂w

∣∣∣
(eq)

; L2 = ∂L̂
∂ẇ

∣∣∣
(eq)

L3 = ∂L̂
∂w′

∣∣∣
(eq)

; L4 = ∂L̂
∂w′′

∣∣∣
(eq)

; L5 = ∂2L̂
∂w2

∣∣∣
(eq)

L6 = ∂2L̂
∂w∂ẇ

∣∣∣
(eq)

; L7 = ∂2L̂
∂w∂w′

∣∣∣
(eq)

; L8 = ∂2L̂
∂w∂w′′

∣∣∣
(eq)

L9 = ∂2L̂
∂ẇ2

∣∣∣
(eq)

; L10 = ∂2L̂
∂ẇ∂w′

∣∣∣
(eq)

; L11 = ∂2L̂
∂ẇ∂w′′

∣∣∣
(eq)

L12 = ∂2L̂
∂(w′)2

∣∣∣
(eq)

; L13 = ∂2L̂
∂w′∂w′′

∣∣∣
(eq)

; L14 = ∂2L̂
∂(w′′)2

∣∣∣
(eq)

(4.18)

The quadratic Taylor series version of L̂ is formed by neglecting terms higher than

second order.

L̂∗ = L0 + L1w + L2ẇ + L3w
′ + L4w

′′ +
1

2
L5w

2 + L6wẇ

+ L7ww′ + L8ww′′ +
1

2
L9ẇ

2 + L10ẇw′

+ L11ẇw′′ +
1

2
L12(w

′)2 + L13w
′w′′ +

1

2
L14(w

′′)2 (4.19)

The generalized velocity, ẇ, is assumed to be found only in the kinetic energy, whereas

the strain energy variables, w′ and w′′, are assumed to be found only in the potential

energy; thus coefficients involving both, L10 and L11, are zero. Applying Lagrange’s

equations (4.3) to L̂∗, the continuous system linearized equation of motion is obtained.

d

dt
(L2 + L6w + L9ẇ)− (L1 + L5w + L6ẇ + L7w

′ + L8w
′′)

+
d

dx
(L3 + L7w + L12w

′ + L13w
′′)

− d2

dx2
(L4 + L8w + L13w

′ + L14w
′′) = 0 (4.20)
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Performing the implied partial derivatives gives the explicit linearized equation of

motion.

L9ẅ + L̇9ẇ − (L5 + L̇6 + L′7 + L′′8)w − (2L′8 − L′12 + L′′13)w
′

− (2L8 − L12 + L′13 + L′′14)w
′′ − 2L′14w

′′′ − L14w
′′′′ = f̂ (4.21)

By simply computing the partial derivatives associated with eight coefficients (L5, L6,

L7, L8, L9, L12, L13, and L14) and substituting the results into the above equation,

the linearized equation of motion for this class of continuous systems is directly con-

structed. That is, we can form the linearized equations directly from the Lagrangian

with the above expression and an equilibrium configuration. The overdot and the

prime over the linearization coefficients indicate explicit partial differentiation by t

and x respectively. Note that the coefficient L0 does not contribute when Lagrange’s

Equations are applied. Also, terms involving L1, L2, L3, and L4 sum to zero due to

the equilibrium condition resulting from Lagrange’s Equation.

C. Direct Linearization: Multiple Elastic Bodies

An analogous treatment can be constructed for the multiple deformable domains.

However, for this class of systems it is assumed that the domains can interact at

the boundaries, so the contribution of boundary terms, w(l), ẇ(l),w′(l), ẇ′(l), must

also be taken to account. Note that the change of variables also affects these terms.

The contributing coefficients from the resulting linearized equations of motion are the
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following.

Li
1 = ∂2L̂i

∂w2
i

∣∣∣
(eq)

; Li
2 = ∂2L̂i

∂wi∂ẇi

∣∣∣
(eq)

; Li
3 = ∂2L̂i

∂wi∂w′i

∣∣∣
(eq)

Li
4 = ∂2L̂i

∂wi∂w′′i

∣∣∣
(eq)

; Li
5 = ∂2L̂i

∂ẇ2
i

∣∣∣
(eq)

; Li
6 = ∂2L̂i

∂(w′)2

∣∣∣
(eq)

Li
7 = ∂2L̂i

∂w′i∂w′′i

∣∣∣
(eq)

; Li
8 = ∂2L̂i

∂(w′′i )2

∣∣∣
(eq)

; Lij
9 = ∂2L̂i

∂(wi)∂wj(lj)

∣∣∣
(eq)

Lij
10 = ∂2L̂i

∂(wi)∂ẇj(lj)

∣∣∣
(eq)

; Lij
11 = ∂2L̂i

∂(wi)∂w′j(lj)

∣∣∣
(eq)

; Lij
12 = ∂2L̂i

∂(wi)∂ẇ′j(lj)

∣∣∣
(eq)

Lij
13 = ∂2L̂i

∂(ẇi)∂wj(lj)

∣∣∣
(eq)

; Lij
14 = ∂2L̂i

∂(ẇi)∂ẇj(lj)

∣∣∣
(eq)

; Lij
15 = ∂2L̂i

∂(ẇi)∂w′j(lj)

∣∣∣
(eq)

Lij
16 = ∂2L̂i

∂(ẇi)∂ẇ′j(lj)

∣∣∣
(eq)

; Lij
17 = ∂2L̂i

∂(w′i)∂wj(lj)

∣∣∣
(eq)

; Lij
18 = ∂2L̂i

∂(w′i)∂ẇj(lj)

∣∣∣
(eq)

Lij
19 = ∂2L̂i

∂(w′i)∂w′j(lj)

∣∣∣
(eq)

; Lij
20 = ∂2L̂i

∂(w′i)∂ẇ′j(lj)

∣∣∣
(eq)

; Lij
21 = ∂2L̂i

∂(w′′i)∂wj(lj)

∣∣∣
(eq)

Lij
22 = ∂2L̂i

∂(w′′i)∂ẇj(lj)

∣∣∣
(eq)

; Lij
23 = ∂2L̂i

∂(w′′i)∂w′j(lj)

∣∣∣
(eq)

; Lij
24 = ∂2L̂i

∂(w′′i)∂ẇ′j(lj)

∣∣∣
(eq)

(4.22)

A linearized equation of motion is then constructed for each of the i = 1, . . . , n elastic

domains.

Li
5ẅi + L̇i

5ẇi − (Li
1 + L̇i

2 + Li
3

′
+ Li

4

′′
)wi − (2Li

4

′ − Li
6

′
+ Li

7

′′
)w′

i

− (2Li
4 − Li

6 + Li
7

′
+ Li

8

′′
)w′′

i − 2Li
8

′
w′′′

i − Li
8w

′′′′
i

− (Lij
9 − L̇ij

13 − Lij
17

′
+ Lij

21

′′
)wj(lj)− (Lij

10 − Lij
13 − L̇ij

14 − Lij
18

′
+ Lij

22

′′
)ẇj(lj)

− (Lij
11 − L̇ij

15 − Lij
19

′
+ Lij

23

′′
)w′

j(lj)− (Lij
12 − Lij

15 − L̇ij
16 − Lij

20

′
+ Lij

24

′′
)ẇ′

j(lj)

+ Lij
14ẅj(lj) + Lij

16ẅ
′
j(lj) = f̂ i (4.23)

The interactions between the multiple bodies have clearly complicated the lin-

earization process, but this direct result still provides a more straightforward means

of generating the desired equations.
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D. Example: Rotating Hub with Flexible T-shaped Arm

Figure (3) illustrates a three-beam system, where two beams are connected perpen-

dicularly to the end of the first in a “T” shape. The system is rotating at a prescribed

constant angular velocity, Ω, and the material properties, ρi, Ei, and Ii, and lengths,

li, of the two perpendicular beams are identical.

Fig. 3. Rotating Three-Beam “T” Structure
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The Lagrangian for the system is first constructed and is as follows.

L =
1

2
ρ1

∫ l1

0

(
w2

1Ω
2 + ẇ2

1 + 2ẇ1x1Ω + x2
1Ω

2
)
dx1

+
1

2
ρ2

∫ l2

0

(
[w1(l1)]

2 Ω2 + 2ẇ1(l1)l1Ω + l21Ω
2 + [ẇ1(l1)]

2 + w2
2 (Ω + α̇)2

+ ẇ2
2 + x2

2 (Ω + α̇)2 + 2ẇ2x2 (Ω + α̇)− 2w1(l1)Ωw2 (Ω + α̇) sin α

+ 2w1(l1)Ω (ẇ2 + x2 (Ω + α̇)) cos α− 2 (ẇ1(l1) + l1Ω)w2 (Ω + α̇) cos α

− 2 (ẇ1(l1) + l1Ω) (ẇ2 + (Ω + α̇)) sin α

)
dx2

+
1

2
ρ3

∫ l3

0

(
[w1(l1)]

2 Ω2 + 2ẇ1(l1)l1Ω + l21Ω
2 + [ẇ1(l1)]

2 + w2
3 (Ω + α̇)2

+ ẇ2
3 + x2

3 (Ω + α̇)2 + 2ẇ3x3 (Ω + α̇) + 2w1(l1)Ωw3 (Ω + α̇) sin α

− 2w1(l1)Ω (ẇ3 + x3 (Ω + α̇)) cos α + 2 (ẇ1(l1) + l1Ω)w3 (Ω + α̇) cos α

+ 2 (ẇ1(l1) + l1Ω) (ẇ3 + (Ω + α̇)) sin α

)
dx3

− 1

2

3∑
i=1

(∫ li

0

EiIi

(
∂2wi

∂x2
i

)2

dxi

)
(4.24)

Here, α = w′
1(l1) for clarity. The equilibrium solution is computed by applying

Eqs. (4.11) with (4.15) and (4.16) to each elastic domain to obtain the following

partial differential equations and boundary conditions.
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• First Beam:

ρ1w1Ω
2 − E1I1w

′′′′
1 = 0

w1(0) = 0 ; w′
1(0) = 0

E1I1w
′′′
1 (l1) + ρ2

(
w1(l1)l2Ω

2 − Ω2 sin α
∫ l2

0
w2dx2 + 1

2
l22Ω

2 cos α
)

+ρ3

(
w1(l1)l3Ω

2 + Ω2 sin α
∫ l3

0
w3dx3 − 1

2
l23Ω

2 cos α
)

= 0

E1I1w
′′
1(l1) + ρ2

(
w1(l1)Ω

2 cos α
∫ l2
0

w2dx2 + 1
2
w1(l1)l

2
2Ω

2 sin α

−l1Ω
2 sin α

∫ l2
0

w2dx2 + 1
2
l1l

2
2Ω

2 cos α

)

+ρ3

(
− w1(l1)Ω

2 cos α
∫ l3

0
w3dx3 − 1

2
w1(l1)l

2
3Ω

2 sin α

+l1Ω
2 sin α

∫ l3
0

w3dx3 − 1
2
l1l

2
3Ω

2 cos α

)
= 0

(4.25)

• Second Beam:

ρ2w2Ω
2 − ρ2l1Ω

2 cos α− ρ2w1(l1)Ω
2 sin α− E2I2w

′′′′
2 = 0

w2(0) = 0 ; w′
2(0) = 0 ; w′′

2(l2) = 0 ; w′′′
2 (l2) = 0

ρ3w3Ω
2 + ρ3l1Ω

2 cos α + ρ3w1(l1)Ω
2 sin α− E3I2w

′′′′
3 = 0

(4.26)

• Third Beam:

w3(0) = 0 ; w′
3(0) = 0 ; w′′

3(l3) = 0 ; w′′′
3 (l3) = 0 (4.27)

One equilibrium solution is given by w1 = w′
1 = w′′

1 = w′′′
1 = w′′′′

1 = 0. That is, the

first beam is undeformed. This leaves the following equations, which must be solved

to completely specify the equilibrium configuration.

ρ2w2Ω
2 − ρ2l1Ω

2 − E2I2w
′′′′
2 = 0 ; ρ3w3Ω

2 + ρ3l1Ω
2 − E3I2w

′′′′
3 = 0 (4.28)

These linear, fourth-order equations can be solved by assuming a homogeneous and a

particular solution before solving for the particular solution and the coefficients of the
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homogenous solution [9]. For the second and third beams, the particular solutions are

w2p = l1 and w3p = −l1, respectively. The subscript ip indicates a particular solution.

Note that these solutions suggest axis-symmetry in the system and are dependent on

the length of the first beam. Next, a homogeneous solution can be found by assuming

a solution of the form w(x) = c1 sin(βx) + c2 cos(βx) + c3 cosh(βx) + c4 sinh(βx) and

using the four boundary conditions to determine the constants ci and di for second

and third beams.



0 1 1 0

1 0 0 1

− sin(βl2) − cos(βl2) cosh(βl2) sinh(βl2)

− cos(βl2) sin(βl2) sinh(βl2) cosh(βl2)







c1

c2

c3

c4




=




−l1

0

0

0




(4.29)




0 1 1 0

1 0 0 1

− sin(βl3) − cos(βl3) cosh(βl3) sinh(βl3)

− cos(βl3) sin(βl3) sinh(βl3) sinh(βl3)







d1

d2

d3

d4




=




l1

0

0

0




(4.30)

Each row of the matrix equations represents a boundary condition. The variable β

is defined as β4 ≡ Ω2ρi/EiIi. This boundary value problem is nonhomogeneous, so

it has a unique solution only if the determinant of the related homogeneous problem

is nonzero [9]. That is, the value of βilj cannot be an eigenvalue of the homogeneous

problem if one wishes to find a unique solution. Otherwise, there are an infinite

number of solutions to the homogenous problem. Assuming that each βilj is not an

eigenvalue of the homogeneous problem, both of the remaining beams have a unique

solution.

By defining the coefficients for the solution to be c1, c2, c3, and c4 for the second

beam and d1, d2, d3, and d4 for the third beam, the following solutions for w2 and
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w3 at the specified equilibrium configuration can be constructed.

w∗
2(x2) = c1 sin(βx2) + c2 cos(βx2) + c3 cosh(βx2) + c4 sinh(βx2) + l1 (4.31)

w∗
3(x3) = d1 sin(βx3) + d2 cos(βx3) + d3 cosh(βx3) + d4 sinh(βx3)− l1 (4.32)

Here, w∗
i indicates the equilibrium solution for wi. The direct linearization method

can now be applied by calculating the partial derivative coefficients for each elastic

domain. The following nonzero coefficients for each of the three beams can then be

computed.

• First Beam:

L1
1 = ρ1Ω

2 ; L1
5 = ρ1 ; L1

8 = −E1I1 (4.33)

• Second Beam:

L2
1 = ρ2Ω

2 ; L2
5 = ρ2 ; L2

8 = −E2I2 ; L21
10 = −ρ2Ω

L21
12 = −ρ2l1Ω + 2Ωρ2w

∗
2 ; L21

13 = ρ2Ω ; L21
15 = −ρ2l1Ω ; L21

16 = ρ2x2

(4.34)

• Third Beam:

L3
1 = ρ3Ω

2 ; L3
5 = ρ3 ; L3

8 = −E3I3 ; L31
10 = ρ3Ω

L31
12 = ρ3l1Ω + 2ρ3Ωw∗

3 ; L31
13 = −ρ3Ω ; L31

15 = ρ3l1Ω ; L31
16 = ρ3x3

(4.35)

These coefficients can be directly substituted into Eq. (4.23) to find the three equa-

tions of motion. The equations of motion are then the following.

ρ1ẅ1 − ρ1Ω
2w1 + E1I1w

′′′′
1 = 0 (4.36)

ρ2ẅ2 − ρ2Ω
2w2 + E2I2w

′′′′
2 + 2ρ2Ωẇ1(l1)− 2ρ2Ωw∗

2ẇ
′(l1) + ρ2x2ẅ

′(l1) = 0 (4.37)

ρ3ẅ3 − ρ3Ω
2w3 + E3I3w

′′′′
3 − 2ρ3Ωẇ1(l1)− 2ρ3Ωw∗

3ẇ
′(l1) + ρ3x3ẅ

′(l1) = 0 (4.38)

In addition to highlighting the interaction between the multiple elastic domains, this



29

example showcases how the direct linearization method presented here can reduce

the effort required to obtain the linearized equations of motion for more complex

continuous systems. The alternative would require one to first generate the complete

set of nonlinear equations of motion for the system and then linearize, which can be

difficult and prone to error.
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CHAPTER V

DIRECT LINEARIZATION OF HYBRID SYSTEMS

The Lee and Junkins extension of Lagrange’s equations to hybrid systems now follows

[3]. First note that the Lagrangian is constructed in three parts grouped by the

type(s) of coordinates present (finite, infinite, and/or boundary). Here, the class of

systems of interest are assumed to have a Lagrangian with the general form L =

L(qi, q̇i,wj, ẇj,w
′
j,w

′′
j , xj, t), and the strain energy terms, w′

j(x, t),w′′
j (x, t), again

belong only to the potential energy function.

(a) L = LD +

∫ l

l0

L̂dx + LB Single Elastic Domain (5.1)

(b) L = LD + LB Multiple Elastic Domains (5.2)

Unlike in the discrete and continuous cases, equations of motion for the hybrid case

are governed by two distinct expressions. Whereas one expression involves the full

hybrid Lagrangian, L, the other uses only the integrand, L̂. The components of the

full hybrid Lagrangian are defined using the following notation and argument lists.

LD = TD − VD = LD(q, q̇, t) Discrete Lagrangian

L̂ = T̂ − V̂ = L̂(q, q̇,w, ẇ,w′,w′′, x, t) Single Elastic Domain

Continuous Lagrangian

L̂i = T̂ i − V̂ i = Multiple Elastic Domain

L̂(wi, ẇi,wi
′,wi

′′,w(l), ẇ(l),w′(l), ẇ′(l), xi, t) Continuous Lagrangian

LB = TB − VB = LB(q, q̇,w(l), ẇ(l),w′(l), ẇ′(l), t) Single Elastic Domain

Boundary Lagrangian

LB = LB(q, q̇,w(l), ẇ(l),w′(l), ẇ′(l), t) +
n∑

i=1

∫ li

l0i

L̂idxi Multiple Elastic Domains

Boundary Lagrangian
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The first expression of Lagrange’s equations for hybrid systems is the following.

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi

= Qi (5.3)

This expression is very similar to the familiar discrete case version of Lagrange’s

equations. Likewise, the second expression is akin to the continuous case of Lagrange’s

equations.

(a)
d

dt

(
∂L̂

∂ẇ

)
− ∂L̂

∂w
+

d

dx

(
∂L̂

∂w′

)
− d2

dx2

(
∂L̂

∂w′′

)
= f̂T (5.4)

(b)
d

dt

(
∂L̂i

∂ẇi

)
− ∂L̂i

∂wi

+
d

dxi

(
∂L̂i

∂w′
i

)
− d2

dx2
i

(
∂L̂i

∂w′′
i

)
= f̂ iT (5.5)

Again, boundary conditions must be considered.

(a)

{
∂L̂

∂w′ −
d

dx

(
∂L̂

∂w′′

)}
δw

∣∣∣
l

l0
+

{
∂LB

∂w(l)
− d

dt

(
∂LB

∂ẇ(l)

)}
δw(l)

+ fT
1 δw(l) = 0 (5.6)

∂L̂

∂w′′ δw
′
∣∣∣
l

l0
+

{
∂LB

∂w′(l)
− d

dt

(
∂LB

∂ẇ′(l)

)}
δw′(l) + fT

2 δw′(l) = 0 (5.7)

(b)

{
∂L̂i

∂w′
i

− d

dxi

(
∂L̂i

∂w′′
i

)}
δwi

∣∣∣
li

l0i

+

{
∂LB

∂wi(li)
− d

dt

(
∂LB

∂ẇi(li)

)}
δwi(li)

+ f iT
1 δwi(li) = 0 (5.8)

∂L̂i

∂w′′
i

δw′
i

∣∣∣
li

l0i

+

{
∂LB

∂w′
i(li)

− d

dt

(
∂LB

∂ẇ′
i(li)

)}
δw′

i(li) + f iT
2 δw′

i(li) = 0 (5.9)

Note the distinction here between systems with a single elastic domain (a) or multiple

elastic domains (b). The applicable form of this second expression, Eq. (5.4) or (5.5)

and the related boundary conditions, together with Eq. (5.3) are Lagrange’s equations

for a hybrid system.
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A. Equilibrium Configuration Solutions

For the hybrid class of systems, the equilibrium results from both expressions of

Lagrange’s equations must be considered. Again the Lagrangian, L, is partitioned

into kinetic and potential energy components T2, T1, T0, and V , with the dynamic

potential defined as U = V − T0. Likewise, the continuous part of the Lagrangian, L̂,

and boundary part of the Lagrangian, LB, can be expressed in the same manner. We

can then write the equilibrium conditions as follows.

∂2T1

∂t∂q̇i

+
∂U
∂qi

= 0 (5.10)

(a)
∂

∂t

(
∂T̂1

∂ẇ

)
+

∂Û

∂w
− d

dx

(
∂Û

∂w′

)
+

d2

dx2

(
∂Û

∂w′′

)
= 0 (5.11)

(b)
∂

∂t

(
∂T̂ i

1

∂ẇi

)
+

∂Û i

∂wi

− d

dx

(
∂Û i

∂w′
i

)
+

d2

dx2

(
∂Û i

∂w′′
i

)
= 0 (5.12)

The partial differential equations also have additional boundary equations that must

be satisfied.

(a)

{
d

dx

(
∂Û

∂w′′

)
− ∂Û

∂w′

}
δw

∣∣∣
l

l0
+

{
∂2UB

∂t∂ẇ(l)
− ∂UB

∂w(l)

}
δw(l) = 0 (5.13)

− ∂Û

∂w′′ δw
′
∣∣∣
l

l0
+

{
∂2UB

∂t∂ẇ′(l)
− ∂UB

∂w′(l)

}
δw′(l) = 0 (5.14)

(b)

{
d

dxi

(
∂Û i

∂wi
′′

)
− ∂Û i

∂wi
′

}
δwi

∣∣∣
li

l0i

+

{
∂2UB

∂t∂ẇi(li)
− ∂UB

∂wi(li)

}
δwi(li) = 0 (5.15)

− ∂Û i

∂wi
′′ δwi

′
∣∣∣
li

l0i

+

{
∂2UB

∂t∂ẇi
′(li)

− ∂UB

∂w′
i(li)

}
δw′

i(li) = 0 (5.16)

Both expressions of the equilibrium equations, Eq. (5.10) and Eq. (5.11) or (5.12),

must be satisfied simultaneously in order to find an equilibrium configuration. If

several solutions exist, one must choose a target equilibrium configuration about
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which to linearize the equations of motion.

B. Direct Linearization: Single Elastic Body

As one might expect, the direct linearization method for hybrid systems must be

developed in a hybrid manner. First, Lagrange’s Equations for infinite-dimensional

systems will be considered, Eq. (5.4). Taking a second order Taylor series expansion,

additional contributing terms must be added to Eq. (4.17) to account for the presence

of finite-dimensional coordinates. The coefficients for the resulting set of terms will

be defined as follows, renumbered for clarity.

L1 = ∂2L̂
∂w2

∣∣∣
(eq)

; L2 = ∂2L̂
∂w∂ẇ

∣∣∣
(eq)

; L3 = ∂2L̂
∂w∂w′

∣∣∣
(eq)

L4 = ∂2L̂
∂w∂w′′

∣∣∣
(eq)

; L5 = ∂2L̂
∂ẇ2

∣∣∣
(eq)

; L6 = ∂2L̂
∂(w′)2

∣∣∣
(eq)

L7 = ∂2L̂
∂w′∂w′′

∣∣∣
(eq)

; L8 = ∂2L̂
∂(w′′)2

∣∣∣
(eq)

; Li
9 = ∂2L̂

∂qi∂w

∣∣∣
(eq)

Li
10 = ∂2L̂

∂qi∂ẇ

∣∣∣
(eq)

; Li
11 = ∂2L̂

∂qi∂w′

∣∣∣
(eq)

; Li
12 = ∂2L̂

∂qi∂w′′

∣∣∣
(eq)

Li
13 = ∂2L̂

∂q̇i∂w

∣∣∣
(eq)

; Li
14 = ∂2L̂

∂q̇i∂ẇ

∣∣∣
(eq)

(5.17)

Applying Lagrange’s equations (5.4) to the resulting Taylor series yields the following

linearized equation.

L5ẅ + L̇5ẇ − (L1 + L̇2 + L3
′ + L4

′′)w − (2L4
′ − L6

′ + L7
′′)w′

− (2L4 − L6 + L7
′ + L8

′′)w′′ − 2L8
′w′′′ − L8w

′′′′

+ (Li
10 − Li

13 + ˙Li
14)q̇i − (Li

9 − ˙Li
10 − Li

11

′
+ Li

12

′′
)qi = f̂ (5.18)

Again, thinking in terms of a hybrid approach, we now consider the expression of

Lagrange’s equations akin to those for discrete systems, Eq. (5.3). As before, we

construct a Taylor series using the following coefficients. Those that are eventually
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found to be non-contributing are omitted for brevity.

Lij
1 = ∂2L

∂qj∂qi

∣∣∣
(eq)

; Lij
2 = ∂2L

∂qj∂q̇i

∣∣∣
(eq)

; Lij
3 = ∂2L

∂q̇j∂q̇i

∣∣∣
(eq)

Li
4 = ∂2L

∂w∂q̇i

∣∣∣
(eq)

; Li
5 = ∂2L

∂w∂qi

∣∣∣
(eq)

; Li
6 = ∂2L

∂ẇ∂q̇i

∣∣∣
(eq)

Li
7 = ∂2L

∂ẇ∂qi

∣∣∣
(eq)

; Li
8 = ∂2L

∂w′∂qi

∣∣∣
(eq)

; Li
9 = ∂2L

∂w′′∂qi

∣∣∣
(eq)

Li
10 = ∂2L

∂w(l)∂q̇i

∣∣∣
(eq)

; Li
11 = ∂2L

∂w(l)∂qi

∣∣∣
(eq)

; Li
12 = ∂2L

∂ẇ(l)∂q̇i

∣∣∣
(eq)

Li
13 = ∂2L

∂ẇ(l)∂q̇i

∣∣∣
(eq)

; Li
14 = ∂2L

∂w′(l)∂q̇i

∣∣∣
(eq)

; Li
15 = ∂2L

∂w′(l)∂qi

∣∣∣
(eq)

Li
16 = ∂2L

∂ẇ′(l)∂q̇i

∣∣∣
(eq)

; Li
17 = ∂2L

∂ẇ′(l)∂qi

∣∣∣
(eq)

(5.19)

The following linearized equations of motion result when Lagrange’s equations (5.3)

are applied.

(L̇ij
2 − Lij

1 )qj + (L̇ij
3 + Lij

2 − Lji
2 )q̇j + (Lij

3 )q̈j + (L̇i
4 − Li

5)w + (L̇i
6 + Li

4 − Li
7)ẇ

+ (Li
6)ẅ − (Li

8)w
′ − (Li

9)w
′′ + (L̇i

10 − Li
11)w(l) + (L̇i

12 + Li
10 − Li

13)ẇ(l)

+ (L̇i
14 − Li

15)w
′(l) + (L̇i

16 + Li
14 − Li

17)ẇ
′(l) + (Li

12)ẅ(l) + (Li
16)ẅ

′(l) = Qi

(5.20)

Eqs. (5.18) and (5.20) together are the linearized equations of motion for a hybrid

system. Note that coefficients containing an integral operator also act on the suc-

ceeding variable if the related partial differentiation occurs in the integrand. This

concept is applied in the example at the end of the chapter.

C. Direct Linearization: Multiple Elastic Bodies

It is straightforward to extend these results to hybrid systems with multiple elastic

domains. Lagrange’s Equations for infinite-dimensional systems with multiple elastic

domains will now be considered, Eq. (5.5). Again, terms must be added to the Taylor

series expansion to account for the presence of finite-dimensional coordinates. The
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coefficients for these terms can be defined as follows.

Li
1 = ∂2L̂i

∂w2
i

∣∣∣
(eq)

; Li
2 = ∂2L̂i

∂wi∂ẇi

∣∣∣
(eq)

; Li
3 = ∂2L̂i

∂wi∂w′i

∣∣∣
(eq)

Li
4 = ∂2L̂i

∂wi∂w′′i

∣∣∣
(eq)

; Li
5 = ∂2L̂i

∂ẇ2
i

∣∣∣
(eq)

; Li
6 = ∂2L̂i

∂(w′)2

∣∣∣
(eq)

Li
7 = ∂2L̂i

∂w′i∂w′′i

∣∣∣
(eq)

; Li
8 = ∂2L̂i

∂(w′′i )2

∣∣∣
(eq)

; Lij
9 = ∂2L̂i

∂(wi)∂wj(lj)

∣∣∣
(eq)

Lij
10 = ∂2L̂i

∂(wi)∂ẇj(lj)

∣∣∣
(eq)

; Lij
11 = ∂2L̂i

∂(wi)∂w′j(lj)

∣∣∣
(eq)

; Lij
12 = ∂2L̂i

∂(wi)∂ẇ′j(lj)

∣∣∣
(eq)

Lij
13 = ∂2L̂i

∂(ẇi)∂wj(lj)

∣∣∣
(eq)

; Lij
14 = ∂2L̂i

∂(ẇi)∂ẇj(lj)

∣∣∣
(eq)

; Lij
15 = ∂2L̂i

∂(ẇi)∂w′j(lj)

∣∣∣
(eq)

Lij
16 = ∂2L̂i

∂(ẇi)∂ẇ′j(lj)

∣∣∣
(eq)

; Lij
17 = ∂2L̂i

∂(w′i)∂wj(lj)

∣∣∣
(eq)

; Lij
18 = ∂2L̂i

∂(w′i)∂ẇj(lj)

∣∣∣
(eq)

Lij
19 = ∂2L̂i

∂(w′i)∂w′j(lj)

∣∣∣
(eq)

; Lij
20 = ∂2L̂i

∂(w′i)∂ẇ′j(lj)

∣∣∣
(eq)

; Lij
21 = ∂2L̂i

∂(w′′i)∂wj(lj)

∣∣∣
(eq)

Lij
22 = ∂2L̂i

∂(w′′i)∂ẇj(lj)

∣∣∣
(eq)

; Lij
23 = ∂2L̂i

∂(w′′i)∂w′j(lj)

∣∣∣
(eq)

; Lij
24 = ∂2L̂i

∂(w′′i)∂ẇ′j(lj)

∣∣∣
(eq)

Lki
25 = ∂2L̂

∂qk∂wi

∣∣∣
(eq)

; Lki
26 = ∂2L̂

∂qk∂ẇi

∣∣∣
(eq)

; Lki
27 = ∂2L̂

∂qk∂w′i

∣∣∣
(eq)

Lki
28 = ∂2L̂

∂qk∂w′′i

∣∣∣
(eq)

; Lki
29 = ∂2L̂

∂q̇k∂wi

∣∣∣
(eq)

; Lki
30 = ∂2L̂

∂q̇k∂ẇi

∣∣∣
(eq)

(5.21)

When Lagrange’s equations (5.5) are applied, the following governing equations of

motion result.

Li
5ẅi + L̇i

5ẇi − (Li
1 + L̇i

2 + Li
3

′
+ Li

4

′′
)wi − (2Li

4

′ − Li
6

′
+ Li

7

′′
)w′

i

− (2Li
4 − Li

6 + Li
7

′
+ Li

8

′′
)w′′

i − 2Li
8

′
w′′′

i − Li
8w

′′′′
i

− (Lij
9 − L̇ij

13 − Lij
17

′
+ Lij

21

′′
)wj(lj)− (Lij

10 − Lij
13 − L̇ij

14 − Lij
18

′
+ Lij

22

′′
)ẇj(lj)

− (Lij
11 − L̇ij

15 − Lij
19

′
+ Lij

23

′′
)w′

j(lj)− (Lij
12 − Lij

15 − L̇ij
16 − Lij

20

′
+ Lij

24

′′
)ẇ′

j(lj)

+ Lij
14ẅj(lj) + Lij

16ẅ
′
j(lj) + (Lki

28 − Lki
29 + ˙Lki

30)q̇k

− (Lki
25 − ˙Lki

26 − Lki
27

′
+ Lki

28

′′
)qk = f̂ i (5.22)

The expression of Lagrange’s equations similar to those for discrete systems, Eq. (5.3),

must also be examined. We again construct a Taylor series and apply Lagrange’s
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equations, resulting in the following contributing coefficients.

Lij
1 = ∂2L

∂qj∂qi

∣∣∣
(eq)

; Lij
2 = ∂2L

∂qj∂q̇i

∣∣∣
(eq)

; Lij
3 = ∂2L

∂q̇j∂q̇i

∣∣∣
(eq)

Lik
4 = ∂2L

∂wk∂q̇i

∣∣∣
(eq)

; Lik
5 = ∂2L

∂wk∂qi

∣∣∣
(eq)

; Lik
6 = ∂2L

∂ẇk∂q̇i

∣∣∣
(eq)

Lik
7 = ∂2L

∂ẇk∂qi

∣∣∣
(eq)

; Lik
8 = ∂2L

∂w′k∂qi

∣∣∣
(eq)

; Lik
9 = ∂2L

∂wk
′′∂qi

∣∣∣
(eq)

Lim
10 = ∂2L

∂wm(lm)∂q̇i

∣∣∣
(eq)

; Lim
11 = ∂2L

∂wm(lm)∂qi

∣∣∣
(eq)

; Lim
12 = ∂2L

∂ẇm(lm)∂q̇i

∣∣∣
(eq)

Lim
13 = ∂2L

∂ẇm(lm)∂q̇i

∣∣∣
(eq)

; Lim
14 = ∂2L

∂w′m(lm)∂q̇i

∣∣∣
(eq)

; Lim
15 = ∂2L

∂wm
′(lm)∂qi

∣∣∣
(eq)

Lim
16 = ∂2L

∂ẇ′m(lm)∂q̇i

∣∣∣
(eq)

; Lim
17 = ∂2L

∂ẇ′m(lm)∂qi

∣∣∣
(eq)

(5.23)

The following linearized equations of motion result when Lagrange’s equations (5.3)

are applied.

(L̇ij
2 − Lij

1 )qj + (L̇ij
3 + Lij

2 − Lji
2 )q̇j + (Lij

3 )q̈j + (L̇ik
4 − Lik

5 )wk

+ (L̇ik
6 + Lik

4 − Lik
7 )ẇk + (Lik

6 )ẅk − (Lik
8 )w′

k − (Lik
9 )w′′

k + ( ˙Lim
10 − Lim

11 )wm(lm)

+ ( ˙Lim
12 + Lim

10 − Lim
13 )ẇm(lm) + ( ˙Lim

14 − Lim
15 )w′

m(lm) + ( ˙Lim
16 + Lim

14 − Lim
17 )ẇ′

m(lm)

+ (Lim
12 )ẅm(lm) + (Lim

16 )ẅ′
m(lm) = Qi (5.24)

Again, note that coefficients containing an integral operator act on the succeeding

variable. Together, Eqs. (5.22) and (5.24) are the linearized equations of motion for

a hybrid system with multiple elastic domains.

D. Example: Rotating Hub with Flexible Arm

Consider a simple hybrid system with a flexible beam fixed to a rotating hub with

radius R and inertia Ihub driven by a control torque u as shown in Figure (4). The

angular position of the hub is described by the discrete generalized coordinate θ(t).

The beam position is described with the coordinates x and w(x, t).
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Fig. 4. Rotating Hybrid Structure

The Lagrangian for this system is constructed from the kinetic and potential

energy functions.

L =
1

2
Ihubθ

2 +
1

2
ρ

∫ l

0

(
ẇ2 + (R + x)2θ̇2 + 2(R + x)ẇθ̇ + w2θ̇2

)
dx− 1

2

∫ l

0

EI (w′′)2
dx

(5.25)

The equilibrium equations can be determined by applying Eq. (5.10) and Eq. (5.11)

with (5.13) and (5.14) to the proceeding equation.

∂U/∂θ = 0 (Satisfied for all values of θ) (5.26)

EIw′′′′ = 0 ; w(0) = 0 ; w′(0) = 0 ; w′′(l) = 0 ; w′′′(l) = 0

A solution to the infinite dimensional partial differential equation can be found by

assuming a solution of the form w(x) = c1x
3 + c2x

2 + c3x + c4 and using the four

boundary conditions to determine the constants ci.




1 1 1 1

3 2 1 0

6l 2 0 0

6 0 0 0







c1

c2

c3

c4




=




0

0

0

0




(5.27)
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Each row of the matrix equation represents a boundary condition. Here, equation

(5.27) is satisfied with ci = 0. Using this equilibrium configuration, we can find the

nonzero direct linearization coefficients.

L1 = ρθ̇2 ; L5 = ρ ; L8 = −EI ; L14 = ρ(R + x) (5.28)

L3 = Ihub +
1

2
ρ

∫ l

0

(
2(R + x)2

)
dx ; L6 =

1

2

∫ l

0

(2(R + x)) dx (5.29)

The coefficients L3 and L6 are examples of partial differentiation in the integrand.

When placed in the directly linearized equations, the integrals in these coefficients

will also act on the variable succeeding the coefficients as shown below. Substituting

all of the coefficients into Eqs. (5.18) and (5.20), we have the following linearized

equations of motion.

ρẅ + EIw′′′′ + ρ(R + x)θ̈ = 0 (5.30)

Ihubθ̈ + ρ

∫ l

0

(
(R + x)ẅ + (R + x)2θ̈

)
dx = 0 (5.31)

If one were to find the equations of motion by applying Lagrange’s equations directly

to the full Lagrangian, the same equations would actually result. That is, the full

nonlinear equations of motion for this system were, in fact, already linear. This

example then provides a nice “sanity check” for our results.
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CHAPTER VI

DISCUSSION

The direct linearization method presented shows how the linearized equations of mo-

tion for continuous and hybrid systems can be constructed in a straightforward man-

ner. The development first utilizes a quadratic Taylor series expansion of the La-

grangian. Partial differentiation of the resulting expression via Lagrange’s equations

is then used to identify a contributing set of partial derivative coefficients. These

terms are important for directly constructing the linearized equations describing the

departure motion from the target equilibrium configuration. Note that the result

of this development, not the development itself, is direct linearization. That is, de-

pending on the number and types of dependent variables present, one of these four

equations/equation sets, Eq. (4.21), (4.23), (5.18) and (5.20), or (5.22) and (5.24),

is employed to directly construct the equations of motion for a continuous or hybrid

system.

Because the method relies on partial derivatives, it is a prime application can-

didate for software programs that utilize processes such as operator overloading and

automatic differentiation. The Object Oriented Coordinate Embedding Algorithm

(OCEA) program is one such software implementation [10]. A software solution could

provide a means for automatically generating the partial derivative coefficients and

resulting linearized equations of motion from a given Lagrangian function and target

equilibrium configuration. Moreover, the development presented in this thesis could

be further generalized to allow for the automatic generation of equations of motion

with quadratic, cubic, and even higher-order terms. That is, it could be extended to

find the equations of motion of a higher-order about a point of interest.

One idea central to linearization, whether direct or indirect, is the calculation of
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equilibrium configuration solutions. It is noted that systems with continuous general-

ized coordinates may have an infinite number of possible equilibrium solutions or have

an eigenvalue-related constraint for finding a unique solution. Numerical approaches

are also viable methods for calculating equilibrium configurations, regardless of the

linearization method utilized. However, the generation of the linearized equations of

motion are not limited to motion about an equilibrium configuration. As an alter-

native, one might be interested in departure motion from a reference trajectory and

could use these developments to directly construct the linearized equations of motion

to approximate this departure motion.

Thus far, the direct linearization approach has only been discussed within the

Lagrangian framework. In the Lagrangian view, the governing equations are the

result of the Euler-Lagrange differential operator acting on a first principle function.

But the governing equations for a finite-dimensional system may be generated by

other operators acting on other first principle functions: for example, an appropriate

operator acting on the Hamiltonian function; or an appropriate operator acting on the

Gibbsian-Appellian function. A full discussion of these functions is outside the scope

of this thesis. However, a brief digression to look at the linearization of Hamilton’s

equations is of interest.

The Hamiltonian, H(qi, pi, t), is a scalar function closely related to the La-

grangian [4]. Whereas the Lagrangian is explicitly a function of the generalized

velocities, coordinates, and time, the Hamiltonian is a function of a variable set

consisting of the conjugate momenta, pi(qi, q̇i, t), the generalized coordinates, qi(t),

and time, t. Hamilton’s equations are similar to Lagrange’s equations in that they

both employ partial derivatives of their respective scalar functions with respect to the

dependent variables in their argument lists. Rather than produce i = 1, . . . , n second-

order differential governing equations, Hamilton’s equations are used to construct 2n
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first-order differential governing equations of the following form.

q̇i =
∂H

∂pi

; ṗi = −∂H

∂qi

+ Qi (6.1)

This partial differential form allows us to follow the direct linearization development

previously discussed: perform a Taylor series expansion about the equilibrium point,

retain terms second order or lower, and then apply Hamilton’s equations to produce

the directly linearized equations of motion. The contributing terms and resulting

equations of motion follow.

H ij
1 =

∂2H

∂qiqj

; H ij
2 =

∂2H

∂pipj

; H ij
3 =

∂2H

∂qipj

(6.2)

ṗi = −H ij
1 qj −H ij

3 pj ; q̇i = H ij
2 pj + H ij

3 qj (6.3)

Here, ∂U/∂qi = 0 again defines the equilibrium point.

That this result is derived from a non-Lagrangian framework begs the question:

can one construct a generalized framework for understanding linearization outside of

classical mechanics? This idea encompasses developing a mathematical process that

could be applied to any system whose evolution is captured by a differential operator

acting on a nonlinear function of system variables. An encouraging response to this

question is that the governing equations for simple electrical circuits can be generated

using Lagrangian and Hamiltonian methods [11].

One final question that arises is this: how does one know that this method gen-

erates the correct linearized equations of motion? That is, are the directly linearized

equations of motion the same that one would obtain by first forming the full nonlinear

equations of motion and then linearizing them with a Taylor series expansion that

retains terms first order and lower? The answer is yes, and the reason traces back

to partial derivatives. The commutative property of partial derivatives allows one to
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either first apply the ‘dynamic’ differential operator and then linearize via a Taylor

series expansion, or first take a Taylor series expansion, instead retaining second order

terms, and then apply the operator. Both operations involve partial differentiation

at their core, and a change of variables eases comparison between the two methods.

In fact, one can arrive at the final results presented in this thesis by first applying

Lagrange’s equations and then linearizing about the equilibrium, but as previously

noted, this approach can be a long, arduous process. This verification is left to the

reader, should he decide to get direct ly involved.
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