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ABSTRACT 

 

Hypersonic Nonequilibrium Flow Simulation Over a Blunt  

Body Using BGK Method. (December 2007) 

Sunny Jain, B.Tech., Indian Institute of Technology, Bombay 

Chair of Advisory Committee: Dr. Sharath Girimaji 

 

There has been a continuous effort to unveil the physics of hypersonic flows both 

experimentally and numerically, in order to achieve an efficient hypersonic vehicle 

design. With the advent of the high speed computers, a lot of focus has been given on 

research pertaining to numerical approach to understand this physics. The features of 

such flows are quite different from those of subsonic, transonic and supersonic ones and 

thus normal CFD methodologies fail to capture the high speed flows efficiently. Such 

calculations are made even more challenging by the presence of nonequilibrium 

thermodynamic and chemical effects. Thus further research in the field of 

nonequilibrium thermodynamics is required for the accurate prediction of such high 

enthalpy flows.  

The objective of this thesis is to develop improved computational tools for 

hypersonic aerodynamics accounting for non-equilibrium effects. A survey of the 

fundamental theory and mathematical modeling pertaining to modeling high temperature 

flow physics is presented. The computational approaches and numerical methods 

pertaining to high speed flows are discussed.  

In the first part of this work, the fundamental theory and mathematical modeling 
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pertaining to modeling high temperature flow physics is presented. Continuum based 

approach (Navier Stokes) and Boltzmann equation based approach (Gas Kinetic) are 

discussed. It is shown mathematically that unlike the most popular continuum based 

methods, Gas Kinetic method presented in this work satisfies the entropy condition.  

In the second part of this work, the computational approaches and numerical 

methods pertaining to high speed flows is discussed. In the continuum methods, the 

Steger Warming schemes and Roe’s scheme are discussed. The kinetic approach 

discussed is the Boltzmann equation with Bhatnagar Gross Krook (BGK) collision 

operator.  

In the third part, the results from new computational fluid dynamics code developed 

are presented. A range of validation and verification test cases are presented. A 

comparison of the two common reconstruction techniques: Green Gauss gradient method 

and MUSCL scheme are discussed. Two of the most common failings of continuum 

based methods: excessive numerical dissipation and carbuncle phenomenon techniques, 

are investigated. It is found that for the blunt body problem, Boltzmann BGK method is 

free of these failings. 
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CHAPTER I 

INTRODUCTION 

 

The feasibility of hypersonic flight depends, to a large extent, on our ability to 

understand and predict high temperature gas effects on aerodynamics. Key aerodynamic 

features of hypersonic flows are generally different from those of sub- and super-sonic 

flows. Over the last several decades, there have been various efforts, both computational 

and experimental, to unveil hypersonic flow physics. Unlike other flow regimes, 

hypersonic flight conditions are virtually impossible to replicate in ground-based 

experiments. Therefore computational fluid dynamics (CFD) can be expected to play a 

crucial role in the design and development of future hypersonic vehicles.  

While CFD methods are mature and sophisticated for subsonic and even supersonic 

flows, it is quite inadequate in its current form for hypersonic flows. This is due to the 

fact that computer models of the interaction between high-temperature gas effects and 

aerodynamics, in general, and turbulence, in particular, are very poor. High temperature 

gas effects can be categorized into two parts: non-equilibrium thermodynamics and 

air-chemistry effects. The objective of this thesis is to develop improved computational 

tools for hypersonic aerodynamics accounting for non-equilibrium effects.  

Shocks occur in compressible flows and are characterized by rapid spatial variations 

(perhaps can be treated as a discontinuity) in velocity, pressure and temperature. 

Upstream of the shock, the Mach number is high. The upstream kinetic energy is 

converted in the shock to internal energy. Therefore, downstream of the shock, the  

This thesis follows the format of International Journal of Numerical Methods in Fluids. 
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velocity is much lower and pressure and temperature are much higher. 

The downstream-to-upstream ratio of thermodynamic variables indicates the shock 

strength. In hypersonic flows, the shocks are much stronger than in supersonic flows. 

The resulting high temperatures trigger non-equilibrium effects downstream of the shock. 

Such a high temperature region can be seen in figure 1.1. 

 

 

 

Fig 1.1 Flow field around a space shuttle reentering the earth’s atmosphere. The high 

temperature region is where nonequilibrium of the flow occurs 

 

 

Internal energy of a gas molecule comprises of translational, rotational, vibrational 

and electronic forms. These modes can be shown graphically in figure. 1.2. In a gas at 

High Temperature Region 
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thermodynamic equilibrium, the total internal energy is partitioned equally between the 

active forms. At high temperatures, all energy forms maybe active. As a volume of gas 

passes through a shock, the various energy forms must transition from upstream 

equilibrium condition to downstream equilibrium conditions. Molecular collision brings 

about this transfer. However, different energy forms equilibrate at different rates. The 

rate of relaxation from upstream to downstream conditions for the different energy forms 

are as follows: 

 

( ) ( ) ( ) ( )trans rot vib elecτ τ τ τ< < <  

 

In low strength shock typical of low mach numbers, the flow transit time is larger 

than the time taken for equilibration of various forms of energy from upstream 

conditions to downstream distributions. As a result, in low-strength shocks, the gas on 

either side of a shock can be considered to be in equilibrium and equipartition principle 

is valid on the high temperature side as well. 

 In strong shocks that occur at high Mach numbers, the flow transit time may be 

smaller than equilibrium relaxation time. In such a case, the energy form not in 

equilibrium must be treated appropriately in CFD computations. In this thesis, we will 

consider hypersonic flow regime in which translational and rotational modes can be 

reasonably taken to be in equilibrium and electronic form is not active. Thus we will 

only consider vibrational non-equilibrium. 
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Fig 1.2 The energy levels in different modes of excitations 

 

 

Overall, it is widely accepted that the problems of hypersonic aerodynamics are 

characterized not only by exchange of mass, momentum and energy of the fluid flow and 

its environment, but also by the different internal exchanges of masses and energy (due 

to chemical reactions and excitation of vibrational DOFs resp.). The effect of 

nonequilibrium on the physics and computational approach is shown graphically in 

figure. 1.3 . 

 

Rotation Vibration Electronic

Modes of Energy

Translation 
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Fig. 1.3 Schematic chart for the effects of nonequilibrium 

Impact of Hypersonic nonequilibrium 
on flow solution approach

Nonequilibrium
Modeling

Chemical Vibrational

Transport Coefficients 
Modeling Computational Issues

1.) Grid Generation
2.) Numerical 
Integration Schemes
2.) Stability
3.) Shock Capturing

Impact of Hypersonic nonequilibrium 
on flow solution approach

Nonequilibrium
Modeling

Chemical Vibrational

Transport Coefficients 
Modeling Computational Issues

1.) Grid Generation
2.) Numerical 
Integration Schemes
2.) Stability
3.) Shock Capturing



 

 

6

1.1 Computational Approaches 

The experimental modeling of hypersonic vibrational and chemical nonequilibrium 

flows presents a lot of challenges. The problems arising with the wind tunnels such as 

HEG (Eitelberg 1994), F4 (Eitelberg et al 1992) and LENS (Holden 1993) are widely 

known. Thus for such flows, using a computational approach becomes much more 

attractive.  

These approaches are broadly divided into two categories: 

(a) Models based on continuum or macroscopic approaches which were proposed during 

the 1960’s and 1970’s [2]   

(b) Models based on kinetic or microscopic approaches using Boltzmann equation, 

which have been pursued during the last decade (eg. [3])  

Simulation of flows with both continuum and non-continuum regions using a hybrid 

approach is an area of current research. The use of information preserving methods is 

one such methodology on such problems [61]. A different approach allowing 

communication between a standard Navier Stokes (NS) code and Direct Simulation 

Monte Carlo (DSMC) code is also being developed [6].  

In this study both the approaches are considered. One of the objectives of this work 

is to compare the capabilities of BGK method with that of conventional Navier Stokes 

based methods for the high Mach number regime. 

 

1.2 Outline  

The thesis is divided into three parts: 

Part A: Fundamental Theory and Mathematical Models 

The Navier Stokes equations and the one equation Spalart Allmaras model are 

described in the second chapter. The third chapter discusses the Boltzmann Gas Kinetic 

Schemes and the assumptions made in deriving it. The fourth chapter corresponds to the 
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mathematical models given in literature to numerically simulate the vibrational 

nonequilibrium effects, chemical nonequilibrium effects and the high temperature effects 

on the transport coefficients.  

Part B: Numerical Methodology 

The fifth chapter discusses the numerical methodologies used to implement Navier 

Stokes model, Boltzmann Gas Kinetic model and Spalart Allmaras turbulence model. 

The sixth chapter presents reconstruction schemes required for increasing the accuracy 

of the solvers. Chapter VII presents the CFD techniques: grid generation issues and 

numerical integration schemes required to solve the Navier Stokes equations for 

hypersonic flows.  

Part C: Results and Conclusions 

The results obtained from the Computational Fluid Dynamics (CFD) code are 

presented in chapter VIII. The code is validated against standard test cases followed by 

the results for nonequilibrium flow over blunt body. Finally, the conclusions and scope 

for future work are presented in chapter IX 
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CHAPTER II 

NAVIER STOKES EQUATIONS 

 

2.1 Navier Stokes Equations 

The Navier Stokes equations describe the viscous fluid motion by solving for the density, 

velocity and energy of the fluid particle. For a single species flow, these equations can be 

represented in 2D as shown in equations  and:  

 

                         

( ) ( ) 0v vG G H HQ
t x y

∂ − ∂ −∂
+ + =

∂ ∂ ∂
              (2.1)

      

where 

 

                           
}{ TQ u v Eρ ρ ρ=

.
                  (2.2)

      

The inviscid matrix G and viscous flow matrix Gv are shown in eq.  

 

                     

2

( )

u
u p

G
uv

E p u

ρ

ρ
ρ

⎧ ⎫
⎪ ⎪+⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪+⎩ ⎭

, 

0

xx
v

xy

xx xy

G

u v q

τ
τ

τ τ

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪+ −⎩ ⎭

    (2.3) 

 

Expressions for matrix H and viscous matrix Hv are obtained by the cyclic 

arrangement of the velocity and spatial components. The other variables used in the 

literature are expressed in equations  through  
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21

2VE C T uρ ρ= +
r

                     
   (2.4) 

 

                   

' ' 2,
3

ji k
ij ij

j i k

uu u
x x x

τ µ δ λ λ µ
⎛ ⎞∂∂ ∂

= + + = −⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
               (2.5) 

 

                               q Tκ= − ∇
r                            (2.6) 

                              P RTρ=                              (2.7) 

 

In the finite volume method, the integral form of Navier Stokes equation is more 

applicable and is represented as in equations  and  

 

                             . 0
V S

QdV F dS
t
∂

+ =
∂ ∫ ∫

r
                    (2.8) 

 

                               F Gi Hj= +
r r

                         (2.9) 

 
where S and V is the boundary and volume, which for 2D case is parameter and the area 

of the cell.  

 

2.2 Turbulence Modeling 

Most practical engineering problems involving fluid flows are turbulent in nature. At a 

very basic level, turbulence can be interpreted as a collection of eddies or vortices, of 

different sizes and strengths, giving the flow a random appearance. Turbulence often 

originates as instability of laminar flows when the Reynolds number becomes too high. 

The instabilities are related to interaction between viscous terms and nonlinear inertia 
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terms in the equations of motion, the mechanism for which is complicated. It is very 

difficult to give a precise definition of turbulence. However, one can enlist some of the 

characteristics exhibited by turbulent flows [82]:  

 

1.) Irregularity: Due to the randomness of the flow, it is impossible to use deterministic 

approach to turbulence problems and one has to rely on statistical methods. 

2.) Diffusivity: Turbulence amplifies the diffusivity and hence enhances the mixing of 

flows as well as increases the heat transfer rates. 

3.) Three-dimensional vorticity fluctuations: Turbulence is rotational and three 

dimensional and is characterized by high levels of fluctuating vorticity. Therefore 

vorticity dynamics plays an important role in the description of turbulent flows.  

4.) Dissipation:  Turbulent flows are always dissipative and the dissipation occurs at 

the smaller scales or smaller eddies. Therefore turbulence requires a continuous 

supply of energy for sustenance.  

5.) Large Reynolds Number: As mentioned before, turbulence always occurs at high 

Reynolds numbers.  

 

The prediction of turbulence computationally becomes a challenging task because of 

the presence of wide range of scales. To incorporate the physics of such a wide spectrum, 

one needs to solve the fluid flow governing equations on very large grids. One also 

requires an exceptionally accurate discretization method so that both large and small 

scale aspects of turbulence can be captured. Such an approach is called the Direct 

Numerical Simulation (DNS) of turbulence. Although DNS has been used to give 

accurate prediction of turbulence in the past, it still needs tremendous amount of 

computing resources. Hence, it is not feasible for most of the practical problems. 
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In an attempt to alleviate the computational burden, the approach of Large Eddy 

Simulation (LES) is used. In this approach, the large energy containing scales of 

turbulence are resolved or explicitly calculated, whereas the small scales of turbulence 

which are more universal in nature are modeled. Although LES is more feasible 

compared to DNS, both LES and DNS require enormous computing resources. With the 

increase in computing power, it is expected that these approaches will gain even more 

popularity.   

 

2.3 Statistical Turbulence Models 

Currently, the most popular approaches for turbulence modeling are the statistical 

turbulence models. In this approach, the flow quantities are broken down into a mean 

and a fluctuating part. The equations are then averaged over time thus resulting in a set 

of mean flow equations. Statistics of the fluctuating field influence the mean flow 

evolution. Based on the type of averaging method, two kinds of averaged equations can 

be obtained. These are discussed in the next two sections. 

 

2.4 Reynolds Averaged Flow Equations 

2.4.1 Reynolds Averaging 

The Reynolds Averaging method was introduced by Reynolds (1895). Here averaging 

can represent ensemble, time or space average. Let F(t) be the instantaneous value of a 

flow variable. The Reynolds average is defined as the following ensemble average: 
  

 ( )

1

1( ) ( ),
N

n
N

n
F t F t

N =

< > ≡ ∑  (2.9) 
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where F(n)(t) is the measurement on the nth realization. This type of averaging is most 

general, but the experiment has to be replicated N times, where N should be very large.  

 In simulation of statistically homogenous flow in a cubic domain of side L, the 

above average can be approximated using the spatial averages, which are defined as  
  

 1 2 33
0 0 0

1( ) ( , )
L L L

LF t F x t dx dx dx
L

< > ≡ ∫ ∫ ∫  (2.10) 

   
The most commonly used definition is the time averaging. This technique is 

applicable for statistically stationary flows. The average over a time interval T is defined 

as 
  

 1( , ) ( , ') '
t T

T
t

F x t F x t dt
T

+

< > ≡ ∫  (2.11) 

 
As T →∞ the time average approaches the ensemble average. 

Thus any of the flow variables, for example, the velocity field can be broken down 

into its average and fluctuating components. 

 

 ( , ) ( ) '( , )i i iu x t U x u x t= +  

 

where '( , )iu x t  is the fluctuation and Ui(x,t) is the averaged part which can be defined 

using any of the above definitions given in equations ,  and .  

 

2.4.2 Reynolds Averaged Navier Stokes Equations (RANS) 

The Navier Stokes Equations for unsteady incompressible flows are given as 
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0

( )

i

i

j i jii

j i j

u
x

u uu p
t x x x

τ
ρ ρ

∂
=

∂

∂ ∂∂ ∂
+ = − +

∂ ∂ ∂ ∂

 (2.12) 

 

where ui, xi are velocity and position, t is time, p is pressure, ρ is density and ijτ is 

viscous stress and is given in terms of strain rate tensor as: 

 

 ji
ij

j i

uu
x x

τ µ
⎛ ⎞∂∂

= +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
 

 
Averaging these equations leads to the Reynolds Averaged Navier Stokes:  

 

 ' '

0

( ) ( )
,

i

i

j i ji j ii

j i j

u
x

u u u uu p
t x x x

τ ρ
ρ ρ

∂
=

∂

∂ ∂ −∂ ∂
+ = − +

∂ ∂ ∂ ∂

 (2.13) 

 

where ji
ij

j i

uu
x x

τ µ
⎛ ⎞∂∂

= +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
. 

The only unknown quantity in the above equations is the correlation 

term ' 'turb
ij j iu uτ ρ= − . This term is known as the Reynolds stress tensor. Therefore the 

turbulence is introduced in the mean flow equations by the presence of this new term. It 

can be seen that turb
ijτ  is a symmetric tensor and introduces six new components in the 

system. The number of equations are, however still the same. Thus the system is not 

closed and the correlation terms need to be modeled. 
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2.5 Favre-Averaged Navier Stokes Equations 

2.5.1 Favre Averaging 

In compressible flows, the density and temperature fluctuations are significant and 

should be taken into account. Therefore, applying the Reynolds Averaging technique to 

the compressible Navier-Stokes (NS) equations produces many new correlation terms 

such as ' 'iuρ  and ' 'iTρ  etc. An alternative way to average the compressible NS 

equations is the Favre averaging, suggested by Favre (1965).  

 

The Favre Average for a quantity ui can be given as 

 

 

( )

1

( )

1

( )
N

n
i

i N n
i N

nN

n

u
uu

ρ
ρ
ρ ρ

=

=

< >
≡ =

< >

∑

∑
%  (2.14) 

 
Similar to the Reynolds Averaging, the Favre average can be can be approximated 

using spatial and time averages defined as: 

 

Spatial averaging for statistically homogeneous flows:  

 

1 2 3
0 0 0

1 2 3
0 0 0

L L L

i
i L

i L L L
L

u dx dx dx
uu

dx dx dx

ρ
ρ
ρ

ρ

< >
≡ =

< >

∫ ∫ ∫

∫ ∫ ∫
%  

 

Time averaging for statistically stationary flows: 
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'

'

t T

i
i T t

i t T
T

t

u dt
uu

dt

ρ
ρ
ρ

ρ

+

+

< >
≡ =

< >

∫

∫
%  

 

One can break down the instantaneous velocity component into its Favre Averaged part 

and the fluctuating part, i.e, ''
i i iu u u= +% .  If both sides are scaled with density and 

Reynolds averaging is done, the following can be obtained 

 

 ''
i i iu u uρ ρ ρ= +%  

i.e.,                            '' 0iuρ =  

 

where the Reynolds average F< >  is denoted by F .  

 

2.5.2 Favre Averaged Navier Stokes Equations (FANS) 

The compressible Navier Stokes Equations can be written as 

 

 

( ) 0

( )( ) ,

i

i

j i jii

j i j

u
t x

u uu p
t x x x

ρρ

ρ τρ

∂∂
+ =

∂ ∂
∂ ∂∂ ∂

+ = − +
∂ ∂ ∂ ∂

 

 
( ( / 2)) ( )( ( / 2)) j i i j i iji i

j j j

u h u u q ue u u
t x x x

ρ τρ ∂ + ∂ ∂∂ +
+ = − +

∂ ∂ ∂ ∂
 (2.15) 

 
where, 
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 12 2 ,
3

k k
ij ij ij ij ij

k k

u us s
x x

τ µ λ δ µ δ
⎛ ⎞∂ ∂

= + = −⎜ ⎟∂ ∂⎝ ⎠
 

 1
2

ji
ij

j i

uus
x x

⎛ ⎞∂∂
= +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 

 , / ,v pe C T h e p C T p RTρ ρ= = + = =  

 , Pr
Pr

P
j

j j

CT hq
x x

µµκ
κ

∂ ∂
= − = − =

∂ ∂
 

 

For the averaging of equations, the above variables are decomposed as follows: 

 

 
''

'
i i iu u u
ρ ρ ρ
= +
= +

%
 

 
'

''

p p p

h h h

= +

= +%
 

 
'

''
''

j j j

e e e
T T T
q q q

= +

= +

= +

%

%  

 

Substituting these values followed by averaging the resulting equations, one can get 

Favre Averaged Navier Stokes (FANS) equations: 
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'' ''

'' '''' ''

'' '' '' '' '' '' '' ''

( ) 0

( ) ( )( ) ,

( ( / 2) / 2)( ( / 2) / 2)

( / 2) ( (

i

i

j i ji j ii

j i j

j i i j i ii i i i

j

j j ji i j i i i ij i

j

u
t x

u u u uu p
t x x x

u h u u u u ue u u u u
t x

q u h u u u u u u u
x

ρρ

ρ τ ρρ

ρ ρρ ρ

ρ τ ρ τ ρ

∂∂
+ =

∂ ∂

∂ ∂ −∂ ∂
+ = − +

∂ ∂ ∂ ∂

∂ + +∂ + +
+ =

∂ ∂

∂ − − + − ∂ −
+

∂

%

% %%

%% % % %% % %

% '' ))j

jx∂

 (2.16) 

 
where, 

 

 , , ,v p j
j

Tp RT e C T h C T q
x

ρ κ ∂
= = = = −

∂

%
%% % %%  

 

There are 26 unknowns introduced due to averaging whereas the number of 

equations is still 5. Therefore, the unknown terms need to be modeled in order to close 

the terms. It is remarkable that Reynolds averaging of the compressible NS equations 

would have led to an even higher number of new correlations. This explains the 

popularity of Favre averages for compressible flows. 

 

2.6 Eddy Viscosity 

The RANS momentum equation for incompressible flow derived in previous section can 

be written as 

 

 
' '( ) ( )j i ji j ii

j i j

u u u uu p
t x x x

τ ρ
ρ ρ

∂ ∂ −∂ ∂
+ = − +

∂ ∂ ∂ ∂
 (2.17) 
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The viscous stress is given as 

 

ji
ij

j i

uu
x x

τ µ
⎛ ⎞∂∂

= +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
 

 

An analogy can be drawn between the correlation term ' '
j iu uρ  and the viscous 

stress term to get the following expression for the correlation term: 

 

 ' ' jturb turb i
ij j i

j i

uuu u
x x

τ ρ µ
⎛ ⎞∂∂

= = +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
 (2.18) 

 

Therefore the total stress term can be denoted as total viscous turb
ij ij ijτ τ τ= + . 

Thus, the RANS equations for incompressible flows become exactly the same as 

Navier Stokes equations for laminar flows by just replacing the viscosity by effective 

viscosity given as eff turbµ µ µ= + . Therefore, if eddy viscosity turbµ  is known, the 

RANS system of equations is closed and can be solved using the same methodology as 

for laminar Navier Stokes Equations. 

 In case of Favre averaged equations for compressible flows, making such a 

substitution for viscosity does not lead to the recovery of laminar compressible NS 

equations. However, the above analogy can still be applied for FANS equations if 

following assumptions are made: 

a) Turbulent kinetic energy is negligible compared to the mean enthalpy, i.e. 

 

 '' ''1
2 i ik u u eρ ρ ρ= << %  

 



 

 

19

This assumption is reasonable for all flows below the hypersonic regime. Even in 

hypersonic regime, this assumption holds well if the flow is continuously contracting 

and the free stream flow had negligible turbulent kinetic energy.   

b) The molecular diffusion '' ''
ji iuτ and turbulent transport '' '' ''1

2 j i iu u uρ are neglected in the 

energy equation. The molecular diffusion can be safely neglected since it is small when 

compared to the following term: 
 

 '' '' ''
ji i ji iu uτ τ<  

 
On the other hand the turbulent transport would be negligible if assumption (a) holds 
true. 
c) It is also assumed that the heat flux term can be represented as 
 

 '' ''

Pr

turb
turb
j j turb

j

hq u h
x

µρ ∂
= = −

∂

%
 

 
where Prturb is the turbulent Prandtl number.  
d) The Favre averaged Reynolds Stress tensor can be represented as 
 

 '' '' 1 22
3 3

turb turb k
ij j i ij ij ij

k

uu u s k
x

τ ρ µ δ ρ δ
⎛ ⎞∂

= − = − −⎜ ⎟∂⎝ ⎠
 

 

The term 2 / 3ijkρ δ  can be ignored on the basis of assumption (a). 

Thus after making the above assumptions the Navier Stokes Equations can be 

recovered from FANS equation by making the following substitutions: 
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Pr Pr Pr

eff turb

eff turb

turb

µ µ µ

µ µ µ

= +

⎛ ⎞ = +⎜ ⎟
⎝ ⎠

 

 

2.7 Classification of Turbulence Models 

The objective of turbulence models is to provide closure for the RANS or FANS 

equations. Depending on the number of differential equations needed for closure, the 

turbulence models can be classified as 

(a) Zero Equation or Algebraic Models 

(b) One Equation Models 

(c) Two Equation Models 

(d) Stress Equation Models 

 

The models (a)-(c) are based on the eddy viscosity approximation discussed in the 

last section. However the models of class (d) solve the Reynolds Stress terms directly by 

solving the corresponding evolution equation (wherein the higher order terms are 

required to be modeled). Currently the one equation and two equation models are 

popular approaches for engineering problems involving turbulence.  In this study, the 

turbulence model discussed belongs to the category (b), i.e. one equation model. 

 

2.8 Spalart-Allmaras Turbulence Model 

The Spalart-Allmaras model [83] is a one equation model for turbulent viscosity for 

incompressible as well as compressible flows. This model was first developed in 1992 

and uses Baldwin and Barth’s [84] model as a framework. The key modification made in 

Spalart-Allmaras (SA) model is the approach used for determining the near wall 

semi-local term. Its formulation and coefficients were defined using dimensional 
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analysis, Galilean invariance, and selected empirical results. The empirical results used 

were the 2-D mixing layers, wakes and flat plate boundary layer flows.  

One of the objectives of this model was to improve upon the predictions obtained 

with zero equation or algebraic mixing length models in order to develop a local model 

for complex flows. It also provides a simpler alternative to two equation turbulence 

models. 

The model uses distance from the nearest wall in its formulation and has provision 

of including a smooth laminar to turbulent transition assuming that the transition point is 

known.  

 

 

2.9 Incompressible Model 

The eddy viscosity function tν  is given in terms of eddy viscosity variable ν%  and the 

wall function 1vf  as 

  

 1( )t vv fν χ= %  (2.19) 

 

where /χ ν ν= % . 

The function 1vf  is formulated such that away from the wall boundaries, its value 

becomes one.  
 

 
3

1 3 3
1

( )
( )v

v

f
C

χχ
χ

=
+

 (2.20) 

 
where Cv1 = 7.1 is a constant. 
 

The convective transport equation of the eddy viscosity is modeled as 



 

 

22

 

 ( , , ) ( , ) ( ) ( )prod dest trip T dif
D b S v d b v d b d b v
Dt
ν
= − + +

%
% % %  (2.21) 

 

The terms on the RHS are as follows: 

1) Production Term ( , , )prodb S v d  

The eddy viscosity production term is related to the vorticity. This choice allows 

good modeling of the near wall flows but is not consistent with the homogeneous 

turbulence behavior. The production term is defined as 

 

1 2

22 2

[1 ( )] ,

( )

prod b t

v

b c f S

S S f
k d

χ ν

ν χ

= −

= +

% %

%
 

 

Here, S is the magnitude of the mean vorticity and fv2 is another damping function 

defined as  

 

 2
1

( ) 1
1 ( )v

v

f
f
χχ

χ χ
= −

+
 

 
k is the von Karman’s constant and its value is 0.41, 

cb1 is calibration constant with value 0.1355 

ft2 is related to transition modeling. 

 

2) Destruction Term ( , )destb v d  

In a boundary layer, the blocking effect of a wall is felt at a distance through the 

pressure term, which acts as the main destruction term for the Reynolds shear stress. 
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Therefore the wall distance d appears directly in the expression for destruction term, 

which is given as 

 

21
1 22

2 2

[ ( ) ( )]( ) ,b
dest w w t

cb c f r f
k d

r
Sk d

νχ

ν

= −

=

%

%
%

 

 

The role of the function fw is to provide with a better calibration in the outer region 

of boundary layer, and is defined as 

 

 

1
6 6

3
6 6

3

6
2

1( ) ( ) ,
( )

( ) ( )

w
w

w

w

cf r g r
g r c

g r r c r r

⎡ ⎤+
= ⎢ ⎥+⎣ ⎦

= + −

 

 
Here, cw2 = 0.2, cw3 = 2.0 and cw1 is given as 

 

 1 2
1 2

1b b
w

c cc
k σ

+
= +  

 

3) Trip term ( )trip Tb d  

The transition to turbulence is achieved due to the presence of two terms. The first 

term is the function 2 ( )tf χ  used in the expressions for production and destruction 

terms. The function of this term is to restrict the eddy viscosity in the regions 

where / 2v ν<% . Therefore if eddy viscosity is initialized to a small value in some region, 

turbulence will not develop. The second term used for transition is the source term or the 

trip term defined as 
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2

1

2
2 2 2

1 2 2

,

exp( [ ])

trip t

t
t t t t t t

b f u

wf c g c d g d
u

= ∆

= − +
∆

 

 

Here, u∆  is the norm of difference between the velocities at the transition point and the 

field point being considered, 

tx∆ is the grid spacing along the wall at the location of the trip, 

tω is the vorticity at the wall at the transition point,  

ct1 and ct2 are two calibration constants with ct1 = 1, ct2 = 2 

and gt is given as 

 

 min 0.1,t
t t

ug
xω

⎛ ⎞∆
= ⎜ ⎟∆⎝ ⎠

 

 
Near the transition point, the trip term produces a positive peak in the eddy viscosity 

production overcoming the limit imposed by the function ft2 on the eddy viscosity 

increase. Therefore, the turbulent region spreads from the transition point by means of 

the convective terms. Once steady state is reached, turbulent flow is obtained in the 

region downstream of the transition point while the upstream region remains laminar. 

However, one needs to know the transition point beforehand. 

 

4.) Diffusion terms ( )difb v%  

The diffusion term is expressed as 

 



 

 

25

2
2

1( ) [ .(( ) ) ( ) ]dif bb v cν ν ν ν
σ

= ∇ + ∇ + ∇% % %%  

 

For numerical efficiency, these terms are rearranged as  

 

22 2 2

22 2

1( ) .[( ) ] ( )( )

1 .[( ) ]

b b b
dif

b b

c c cb v

c c

ν ν ν ν ν ν
σ σ σ

ν ν ν ν
σ σ

+
= ∇ + ∇ − ∇ − ∇ ∇

+
≈ ∇ + ∇ − ∇

% % % %%

% % %

 

 

The term 2 ( )( )bc ν ν
σ

∇ ∇ %  is small and can be neglected.  

The alternate form avoids discretization of the term 2( )ν∇ % , which does not easily 

results in positive discrete operators. 

The constant σ has value 2/3, and cb2 = 0.622. 

 

2.10 Compressible Model 

The formulation for compressible model is almost the same as the incompressible one 

except for a few modifications to account for the change in density. The expression of 

eddy viscosity function is modified to the following 

 

 1( )t vv fρν χ= %  (2.21) 

 

where ρ  is the local mean density. 

The convective transport equation of the eddy viscosity is modified to give the 

following equation: 
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 '( , , ) ( , ) ( ) ( )prod dest trip T dif
D b S v d b v d b d b v
Dt
νρ ρ ρ ρ= − + +
%

% % %  (2.22) 

 
The definitions of production, destruction and trip term are the same as for the 

incompressible model. However, the diffusion term is defined as 

 

2
2

1( ) [ .(( ) ) ( ) ]dif bb v cµ ρν ν ρ ν
σ

= ∇ + ∇ + ∇% % %%  

 

To avoid discretization of 2( )ν∇ % , the above expression is rearranged to give 

 

2
2

1( ) [ .(( ) ) { .( ) }]dif bb v cµ ρν ν ρ ν ν ρν ν
σ

= ∇ + ∇ + ∇ ∇ − ∇% % % % % %%  

 

In this thesis work, we use the compressible SA model. Its numerical 

implementation is described next. 

 

2.11 Advantages and Disadvantages of Spalart-Allmaras Model 

The following advantages can be listed for the Spalart-Allmaras model: 

 

1.) It does not require a finer grid near wall as required for the two-equation models. 

2.) It is computationally inexpensive as well as simpler compared to the two-equation 

models since only one extra equation needs to be solved. 

3.) It is applicable to free shear flows as well as viscous flows past solid bodies. 

4.) Gives very good predictions in 2-D mixing layers, wake flows, flat plate boundary 

layer, wake region and shows improvements in the prediction of flows with adverse 

pressure gradient compared to the two equation models.  
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Some of the drawbacks of the model are: 

 

1.) The model does not give very accurate predictions for jet flows. 

2.) The model only predicts the turbulent shear term ( ' 'u vρ ) but cannot predict the 

turbulent kinetic energy. 

3.) It is generally inadequate for more complex flows. 
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CHAPTER III 

BOLTZMANN GAS KINETIC SCHEMES 

 

3.1 Boltzmann Equation 

In the continuum formulation leading to the Navier-Stokes equations, the constitutive 

relations between viscous stress and velocity gradients and heat flux and temperature 

gradient are taken as assumptions that can be verified by experiment. However, another 

logical approach to predict the fluid flow would be by following the dynamical 

trajectories of individual molecules from given initial conditions. This is only feasible in 

rarefied medium especially in the free molecular regime. Direct Simulation Monte 

Carlo(DSMC) is a well developed tool for such rarefied gas flows. For the problems of 

our present interest, any significant volume of gas will contain molecules of the order of 

Avogadro number, making the latter approach impossible to solve computationally.  

 Another approach would be to concentrate on the distribution function where 

statistically averaged quantities are of interest rather than dealing with individual 

particles. Thus we require an equation which describes the rate of change with respect to 

position and time of the distribution function. The Boltzmann Equation provides us with 

such a relation and it represents the time evolution of distribution function f(ci,xi,t) in one 

particle phase space. To derive this equation we start with the more general Liouville 

Equation. A summary of the derivation is shown in the figure. 3.1. 

The Boltzmann equation in the final form can be written as 

 

( ) ( )

( ) ( ) ( ) ( )

1

1

1 1 1 1
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2 / 2 ' ' 2
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, ;
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k k

X X X X

f q c t
f q c t c

t q

f q c f q z f q c f q z gd d d d z
π π

ψ ψ ψ ε
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+∞

−∞

⎡ ⎤∂∂ ⎣ ⎦⎡ ⎤ + =⎣ ⎦∂ ∂

⎡ ⎤−⎣ ⎦

∑

∫ ∫ ∫  
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Fig 3.1 Summary of steps involved in derivation of Boltzmann equation 

 

 

Here, ( )1
, ;Xf q c t represents the distribution function such that the quantity 

( )1
, ;Xf q c t dqdc  represents the expected number of molecules in volume element dq in 

physical space and dc in velocity space; q = (q1, q2, q3) is the position vector; and c = (c1, 

c2, c3) is the velocity vector. 

The quantities on the right hand side of Boltzmann equation represent the 

parameters involved in binary collision of any two molecules in the system. These 

parameters are depicted in figure 3.2. 
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Fig 3.2 Parameters used to describe a binary collision 

 

 

The terms in the final form of Boltzmann equation can be interpreted as follows: 

 

1
3

1

[ ( , ; )]X
k

k k

f q c t
c

q=

∂

∂∑ dqdc : Represents the net flux of molecules that are in the velocity 

range dVc across the six surfaces of dVx. Therefore this term represents the convective 

flux in the physical space. 

The integration term on the RHS represents the rate of increase of the number of 

molecules of class c resulting from collisions.  
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As shown in figure 3.1, the Boltzmann Equation is only applicable to cases which 

satisfy the Boltzmann gas limit (BGL), which is a set of following assumptions ([70] ): 

 

1.) Dilute Gas Assumption :  

The density is sufficiently low so that only binary collisions between the constituent 

molecules need to be considered. 

2.) Slow Spatial dependence of the gas properties 

Due to this assumption, the collisions can be thought of as being localized in the 

physical space. 

3.) Interparticle potential is sufficiently short range 

As a consequence of this assumption, two molecules only interact with each other when 

the distance between the molecules is equal to the sum of their radii. This effect is shown 

in the figure 3.3, where the long range forces are zero for distances greater than d. 

Therefore, the consequence of the first assumption is further reinforced and collisions 

involving three or more molecules can be safely neglected.  
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Fig 3.3 Interparticle forces 

 

 

3.2 Modeling the Collision Term 

As shown in last section, the classical Boltzmann equation is a nonlinear 

integral-differential equation and is difficult to solve. Thus in order to use the Boltzmann 

kinetic based approach for fluid flow simulations, the complicated collision term needs 

to be modeled with a simpler expression without sacrificing the  accuracy of the 

method. One can find a few models developed on this idea in the literature: Chapman 

Enskog method, model equation method, moment methods, Monte Carlo Methods, and 

the BGK method.  

In the BGK method, the basic idea is to find a simplified collision term which 

emulates the following properties of the actual collision term: 

 

(a) The approximate collision term should satisfy the compatibility conditions. 

r

d

Repulsion 

Attraction 

Rigid elastic sphere 

Sutherland model

True representation
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This property follows from the properties of elastic collisions of molecules. In a system 

of N molecules, the collision is a process internal to the system and should not affect the 

total mass, momentum and energy of the system.  

 

(b) It should satisfy the entropy condition. 

This follows from the second law of thermodynamics and the approximate collision term 

should not violate it. 

One of the important consequences of the collision term is that it should bring the 

nonequilibrium distribution function closer to the equilibrium function. Also, it is 

reasonable to assume that the rate at which the nonequilibrium distribution function 

approaches equilibrium is proportional to the difference between them. Thus a simple 

expression which emulates the above properties is: 

 

Collision term = 
1 1

( )eq
X XK f f−  

 

This was the basic idea used by P.L. Bhatnagar, E. P. Gross and M. Krook in their 

1954 paper [71]. Thus the BGK - Boltzmann equation is 

 

              

eq

j
i

f f f fc
t x τ

∂ ∂ −
+ =

∂ ∂
         (3.1) 

 

The constant τ  is called the relaxation time and represents the average time 

between two consecutive collisions for a molecule in the system. Thus during a time dt, 

a fraction of /dt τ  of molecules in a given small volume undergoes collision. This 

quantity is constant with respect to the particle velocities but can be a function of the 

local state of the particles and hence vary in time and space. 
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3.2.1 Compatibility Conditions 

The BGK model should satisfy the properties (a) and (b) listed above. The compatibility 

conditions [70] can be expressed as: 

 

 
2 2 2

1 1 1
0,

eq
eqf f c dc or f c dc f c dc

c c c
τ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∫ ∫ ∫
r r r           (3.2) 

 
Writing the individual components of the compatibility conditions in the second 

form, we can see that  

 

 eqf dc fdcρ = =∫ ∫                         (3.3) 

  

 eqc f cdc fcdcρ = =∫ ∫
r r r                       (3.4) 

 

 
2

2 2

2
eque f c dc fc dcρ ρ+ = =∫ ∫                  (3.5)  

 

This is a consequence of the fact that internal collisions do not affect the overall 

density, momentum and energy of a system of N molecules. Therefore, the approximate 

BGK model satisfies the compatibility conditions.  

 

3.2.2 Entropy Condition 

For a system of N molecules going from nonequilibrium to equilibrium state through the 

internal process of collisions, the entropy should increase. Thus the BGK collision term 

should result in positive entropy production, which ensures that the solution obtained is 
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physical. An example of an unphysical solution is the presence of expansion shocks. 

These are typically obtained in high Mach number flows which occur in the cases we are 

interested in.   

The original Boltzmann equations satisfy the H-theorem [72] and therefore the BGK 

model should also satisfy it. The H-theorem has been described as the bridge connecting 

equilibrium thermodynamics with non-equilibrium statistical mechanics. It states that the 

H-function defined by lnH f fd= Ξ∫  monotonically decreases with time as a 

homogenous gas in statistical non-equilibrium evolves to equilibrium. A more generic 

form of the theorem is: 

 

 0i

i

HH
t x

∂∂
+ ≤

∂ ∂
                           (3.6) 

 
A detailed proof showing that the BGK collision term satisfies eq. (3.6) can be 

found in [73]. A simpler and more intuitive approach will be considered in this thesis. 

 

It should be noted that the entropy is S = -kH, with k being the Boltzmann constant. 

Thus, to show that the entropy increases, one needs to show that H decreases as the 

system of molecules at distribution f goes towards the equilibrium. It can be written: 

  

 
ln ln

( ) ln (ln( / ))

eq eq

eq eq eq

H f f d f fd

f f f d f f f d

∆ = Ξ − Ξ

= − Ξ + Ξ

∫ ∫
∫ ∫

   

ln( / )

( / 1)

eq

eq

f f f d

f f f d

= Ξ

≤ − Ξ

∫
∫

 

( ) 0eqf f d= − Ξ =∫         
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Thus H decreases with time for the system considered here. It should also be noted 

that f →feq monotonically, implying H decreases monotonically with time. Thus the 

H-theorem is satisfied and this will ensure that the system will approach to a state with 

larger entropy. Hence the formation of unphysical rarefaction shocks is prevented. 

 

3.3 Moments of Boltzmann BGK Equation 

In this section, the moments of the Boltzmann BGK equation are evaluated. It will be 

later shown that these moment equations represent the Navier-Stokes equations if 

appropriate assumptions are made.  

 

The first moment of the BGK equation can be written as 

 

Q(ci) = m:        ( )
eq

i j c
j

f f f fQ c c dV
t x τ

∞

−∞

⎡ ⎤∂ ∂ −
+ =⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
∫                  (3.7) 

 

The RHS will vanish as a consequence of the compatibility condition. Therefore we 

get 

 

 

0

j c
j

j
c

j

c j c

j

f fm c dV
t x

mc fmf dV
t x

mfdV mfc dV

t x

∞

−∞

∞

−∞

∞ ∞

−∞ −∞

⎡ ⎤∂ ∂
+⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
⎡ ⎤∂∂

= +⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦

⎡ ⎤∂ ∂⎢ ⎥= + =
⎢ ⎥∂ ∂
⎢ ⎥⎣ ⎦

∫

∫

∫ ∫
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i.e.,        
( )

0j

j

c
t x

ρρ ∂∂
+ =

∂ ∂
 

 

The second moment can be calculated as follows: 

 

Q(ci) = mc         i

0

i j c
j

i ji
c

j

i c i j c

j

f fmc c dV
t x

mc c fmc f dV
t x

mc fdV mfc c dV

t x

∞

−∞

∞

−∞

∞ ∞

−∞ −∞

⎡ ⎤∂ ∂
+⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
⎡ ⎤∂∂

= +⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦

⎡ ⎤∂ ∂⎢ ⎥= + =
⎢ ⎥∂ ∂
⎢ ⎥⎣ ⎦

∫

∫

∫ ∫

              

(3.8) 

  

i.e.,      0
i j ci

j

mfc c dVc
t x
ρ

∞

−∞
∂∂

+ =
∂ ∂

∫                        (3.9) 

 

The second term on the LHS of the last equation is an unknown quantity. However, 

it can be simplified in terms of known quantities as follows: 

 

 ( )( )i j i i j j i j i j j i i jc c C c C c C C C c C c c c= + + = + + +  
 

where i i iC c c= −  is defined as the peculiar velocity. 

 

Therefore, we have 
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i j c i j i j j i i j c

i j c i j j i c i j c

mfc c dV mf C C C c C c c c dV

mfC C dV mf C c C c dV mf c c dV

∞ ∞

−∞ −∞

∞ ∞ ∞

−∞ −∞ −∞

⎡ ⎤= + + +⎣ ⎦

⎡ ⎤= + + +⎣ ⎦

∫ ∫
∫ ∫ ∫

 

 

The second term on the RHS vanishes because of the compatibility conditions. Thus, 

we can write 

 

 i j c i j c i jmfc c dV mfC C dV c cρ
∞ ∞

−∞ −∞
= +∫ ∫  

 

Defining pressure as  

 

[ ] 2 2 2 2
1 1 2 2 3 3 1 2 3

1 1 1 1
3 3 3 3i i c

p C C f C C C C C C dV C C C Cρ ρ ρ ρ
∞

−∞
⎡ ⎤≡ = + + = + + =⎣ ⎦∫   

(3.10) 

 

and the stress tensor as ij i j ijC C pτ ρ δ⎡ ⎤= − −⎣ ⎦ , we can write  

 

 i j c ij

j j j

mfc c dV p
x x x

τ
∞

−∞
∂ ∂∂

= −
∂ ∂ ∂

∫ , 

 

This gives the equation 

 

 i j iji

j i j

c cc p
t x x x

ρ τρ ∂ ∂∂ ∂
+ = − +

∂ ∂ ∂ ∂
 

 

The third moment of the BGK equation can be obtained as follows,  
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Q(ci) = mc2/2    

2

2 2

1
2

1 0
2

j c
j

c j c

j

f fmc c dV
t x

mc fdV mfc c dV

t x

∞

−∞

∞ ∞

−∞ −∞

⎡ ⎤∂ ∂
+⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
⎡ ⎤∂ ∂⎢ ⎥= + =
⎢ ⎥∂ ∂
⎢ ⎥⎣ ⎦

∫

∫ ∫
 

 

Using 2 2 2  i i ic c c C cρ ρ ρ ρ= = +  and 21
2tre e Cρ= = , we can write the first term 

of LHS as 

 

 
22

1( )1 2
2

ic
e cmnc fdV

t t

ρ∞

−∞
∂ +∂

=
∂ ∂

∫                     (3.11) 

 

In the second term, we have the quantity 2
jc c . This term can be expressed as 

 

 

( )( )( )
( )( )

2

2

2 2

2 2 2

2 2 2

2

2

( 2

2

)

j i i j i i i i j j

i i j j

j j j i i j

j j i i j

i j i j

c c c c c c C c C c C

c C c C c C

c c c C C C cc c C C C

c c C C C c C C

c C

= = + + +

= + + +

= + + + + +

= + + +  
 

The highlighted terms vanish because of the properties of random variables Ci. 

 

Therefore, we can write 
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2 2 2 2

2 2 2

1 1 1 1( )
2 2 2 2

1 1 1( ) ( )
2 2 2

j j j i i j

j j i ij ij

c c c c C C C c C C

c c C C C c p

ρ ρ ρ ρ ρ

ρ ρ ρ δ τ

= + + +

= + + + −
 

 

i.e.,             

2 2 2
2

2 2

1 1 1( ) ( )
2 2 2

1 1( )
2 2

j j i ij ij
j c

j j

j j
j i ij

j j j j

c c C C C c pmnfc c dV

x x

c e c C C c p c
x x x x

ρ ρ ρ δ τ

ρ ρ ρ τ

∞

−∞

⎡ ⎤∂ + + + −∂ ⎢ ⎥⎣ ⎦=
∂ ∂

⎡ ⎤ ⎡ ⎤∂ + ∂⎢ ⎥ ⎢ ⎥ ⎡ ⎤ ⎡ ⎤∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦= + + −
∂ ∂ ∂ ∂

∫
(3.12) 

 

Defining 21
2j j cq C C fdVρ

∞

−∞

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∫ , we can write the second moment of the BGK 

equation in the final form as 

 

 

2 21 1( ) ( )
2 2j

j i ijj

j j j j

e c c e c c p cq
t x x x x

ρ ρ ρ ρ τ
⎡ ⎤ ⎡ ⎤∂ + ∂ +⎢ ⎥ ⎢ ⎥ ⎡ ⎤ ⎡ ⎤∂ ∂∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦+ = − − +

∂ ∂ ∂ ∂ ∂
    (3.13) 

 

3.4 Deriving Navier Stokes Equations 

In the above three relations, the unknowns are p, ijτ and qj. From the above relations we 

find that pressure is related to energy as 

 

2 / 3trp e RTρ= =                         (3.14) 

 

Therefore, how accurately the equations obtained represent the true physics will 



 

 

41

depend on the choice of ijτ  and qj. In the case of Navier-Stokes equations, these 

unknowns are expressed as linear functions of the velocity and temperature gradients. 

The value of the corresponding constants is determined experimentally. However, such a 

linear relationship only holds for low Knudsen number or continuum cases where the 

higher order terms can be neglected. Therefore to simulate high Knudsen number flows 

we need to take into account higher order terms. 

 To show that the BGK moment equations actually recover the Navier Stoke 

equations in low Knudsen number regions, the Chapman-Enskog expansion of the BGK 

equation needs to be considered. Before starting the calculations, we first normalize the 

BGK equation using the following scaling parameters: 

 

Characteristic length:                 L 

Reference speed:                    cr 

Characteristic time:                 1/ cr 

Reference number density:            nr 

Reference f:                        cr-3 

Reference v:                       vr 

 

The scaled equation can be written as 

 

 0( )j
j

nf nfc nv f f
t x

ξ
⎡ ⎤∂ ∂

+ = −⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦

% %% % % %% % %
% %

                     (3.15) 
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where 3,         r r
r

r r r

c tc x c vf fc t x c v
Lv L L c v

ξ = = = = = =% % % % %  

 

It can be shown that ξ  ~ Knudsen number ( r

L
λ ). Since we are working in the 

continuum regime for this derivation, we haveξ  << 1. Then from the above equation we 

can see that 0f%  is very close to f% . This allows us to expand the distribution function 

around the equilibrium distribution as: 

 
2

0 1 0 2 0

2
0 1 2  (1 )

f f f f

f

ξφ ξ φ

ξφ ξ φ

= + + +

= + + +

% % % % K

% K
 

 

Here 1 2, , ...φ φ  are unknown quantities which are to be determined in terms of mean 

flow quantities. 

Substituting this expansion in the normalized Boltzmann equation and by comparing 

the coefficients of ξ  we get 

 

00 0
1j

j

nf nfc nv f
t x

φ
⎡ ⎤∂ ∂

+ = −⎢ ⎥
∂ ∂⎢ ⎥⎣ ⎦

% %% % %% % %
% %

                     (3.16) 

 

The normalized equilibrium distribution function being a Maxwellian can be expressed 

as  
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%3/ 2 2
0

1 1( ) exp[ ( ) ]
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( , , )
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ii

i i

i i

f c c
T T
function T c c

T T x t c c x t

π
= − −

=

= =

% %
% %

% % %

% % % %%

                 (3.17) 

 

Therefore, we can calculate the terms in the LHS of the above equation using the 

following relations:  
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              (3.18) 

 
where  
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( ) ( )
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i
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            (3.19) 

 

The time derivatives n
t
∂
∂
%

%
, 

% jc
t

∂
∂%

 and 
�T
t

∂
∂%

 can be found by making use of the 

continuity, momentum and energy equations: 

 

Continuity Equation:     
( ) ( )

0 =-  j j

j j

c ncn
t x t x

ρρ ∂ ∂∂ ∂
+ = ⇒

∂ ∂ ∂ ∂

%%%

% %
             (3.20) 
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Momentum Equation: 
 

  i j ij iji i i
j

j i j j i j

c cc c cp pn nc
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ρ τ τρ ∂ ∂ ∂∂ ∂ ∂∂ ∂
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     (3.21) 

 

Energy Equation:  
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   (3.22) 

 

The expressions for normalized stress tensor and heat flux can be obtained as 

follows 
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                 (3.23) 

 

2
1 0

2
1 0

1 (1 )
2

1
2

j i c

i c

q n C C f dV

n C C f dV

ξφ

ξ ξφ

∞

−∞

∞

−∞

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

∫

∫

%% % %% %

%% % %%

                   (3.24) 

 

Since we are interested in finding the coefficients of ξ  in (3.15), we can neglect 

ijτ%  and jq%  from (3.21) and (3.22), since these are first order in ξ . Therefore the time 

derivative terms can be written as 
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( )
=- j

j

ncn
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                           (3.25) 

3 3
2 2

j
j

j j

cT Tn c n p
t x x

∂∂ ∂
≈ − −
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%% %
%% % %

% % %
  

 

Making the substitutions of the above derivates in (3.16), we can derive 1φ  as  

 

 

%
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�
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1 1 1 2=-  +   
3

j ji
i i i

ji i j i j i
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(3.26) 

 

The normalized pressure can be obtained from the normalized equation of state: 

 
kp RT nm T nkT p nT
m

ρ= = = ⇒ = %% %
 

 

Substituting the above in (3.26), we get 
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The expression can be written in dimensional form to give: 
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2
2

1
1 5 ln( ) 1= - ( )

2 2 3
i

j i j ij
i j

cmC T mC C C C
v kT x kT x

ξφ δ
⎡ ⎤⎡ ⎤ ∂∂

− ⋅ + −⎢ ⎥⎢ ⎥ ∂ ∂⎢ ⎥⎣ ⎦⎣ ⎦
          (3.28) 

 

Substituting the above value in expressions for ijτ%  and qj, we get 
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∫                    (3.30) 

 

Therefore by comparison with the expressions for stress tensor and heat flux in 

Navier Stokes equation, we can write 

 

                   
5
2

nkT

k nkTK
m

µ
ν

ν

=

=
                          (3.31) 
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Thus, the BGK Boltzmann moment equations represent the Navier Stokes equation 

in low Knudsen number or continuum regime, if (3.31) holds true.  
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CHAPTER IV 

HIGH TEMPERATURE FLOWS: MATHEMATICAL 

FORMULATIONS AND MODELS 

 

4.1 Variables and Their Dependencies 

The various laws governing a high enthalpy flow and their interrelations are shown in 

the figure 4.1. The various blocks can be explained as follows: 

 

4.1.1 Conservation of Mass 

At very high temperatures dissociation and chemical reactions between air components 

set in. Thus conservation of mass equation needs to be written for each of the species 

and will have a contribution from the kinetics of reactions. The total density needs to be 

calculated by adding the individual densities. The total density is used in calculation of 

pressure in the equation of state. 

 

4.1.2 Conservation of Momentum 

Throughout this work, it is assumed that momentum conservation equation can be 

adequately represented by the Navier Stokes equation. The high temperature flow 

physics affects the momentum equation via pressure and body force effects. Due to the 

high enthalpy of the flow, the viscosity coefficient is no longer constant and becomes a 

function of temperature.  

 

4.1.3 Conservation of Energy 

The total energy is conserved even as there is an active exchange between various 

modes:: translational-rotational, vibrational and chemical. The translational, rotational 
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energies are obtained using the temperature, while the chemical energy is dependent on 

the free energies of each of the species. However, we need to model the excited 

vibrational energy mode, which is done by writing an evolution equation for it. This will 

be discussed in the next section. 

It is shown in figure 4.1 that all the three conservation laws are coupled through two 

parameters: pressure and temperature. Comparing to compressible flows, nonequilibrium 

flows have even more couplings due to temperature dependence of various transport and 

chemical rate coefficients. The presence of numerous species and the enhanced 

couplings due to temperature is what makes solving nonequilibrium flows expensive. 

 

4.2 Physics of Vibrational Nonequilibrium 

Vibrational excitation and relaxation processes take place by molecular collisions and 

radiative interactions. A molecule in ground state must experience a large number of 

collisions to become vibrationally excited. Such a process is represented as 

 

A(n) ↔ A(n+1)  
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Fig 4.1 Various processes and their interrelations for the case of hypersonic flows
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Fig 4.2 Vibrational excitation of molecule A through single quantum transition 

 

 

Figure 4.2 shows that a molecule in nth vibrational state goes to (n+1)th vibrational state 

(due to either collision or radiative process). The actual number of collisions required 

depends on factors such as type of molecule and relative kinetic energies of colliding 

particles. As the temperature of the gas is increased the molecular collisions become 

more violent and the molecule undergoes vibrational and chemical changes. The amount 

of time taken for these changes depends on the collision frequency Z, where  

/Z p T= .    

p is the pressure and T is the temperature. Therefore to study the nonequilibrium region, 

additional techniques need to be developed that take into account the time required for 

molecular collisions.  

 

4.3 Harmonic and Anharmonic Oscillators 

A molecule is modeled as a harmonic oscillator if the spacings between all the energy 

levels are assumed to be equal. Physically, such vibrations can be represented as the 

motion of two masses attached to a spring, which can only take equally spaced potential 

energy values. Such a representation is shown in figure 4.3. 

 

ε n-1 

ε n 

ε n+1 
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Fig 4.3 Vibrational energy levels for Harmonic Oscillator [87] 

 

 

The energy levels for such harmonic oscillator are given as  

 

( 1/ 2) , 0,1, 2,3....
=frequency,

h=Planck's Constant

nE n h nν
ν

= + =

(4.1) 

 

This model is the foundation for the understanding of complex modes of vibration in 

larger molecules, the motion of atoms in a solid lattice, the theory of heat capacity, etc. 

However it should be noted that in real systems, although the molecules behave as 

harmonic oscillator for lower energy levels, they deviate from such behavior at higher 

quantum number. 

Thus to more accurately predict such exchanges at higher energy levels, anharmonic 
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oscillator model is used. As it can be seen in figure 4.4 the energy levels are no longer 

equispaced and become more closely packed for higher energy levels.  

 

 

 

Fig 4.4 Vibrational energy levels for Anharmonic Oscillator [7] 

 

 

The energy of such a system is found by one of the models which gives an 

expression of energy for the vth vibrational (third order approximating formula), and is 

given as 

 

           
2 3( 1/ 2) ( 1/ 2) ( 1/ 2) 1,2,....i

e e e e ei x i y i i
hc
ε ω ω ω= − − − + − =        (4.2) 

 

This formula is discussed in greater details in section 4.6.1.  

 

4.4 Vibrational Energy Transfer Modes 

If the flow is assumed to be in electronic and rotational equilibrium, then vibrational 
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energy exchange is found to occur through three modes: 

4.4.1 Vibrational Translational EnergyTransfer 

Here, a molecule upon collision with another will gain or lose vibrational energy which 

then reappears as a decrease or increase in translational kinetic energy of the molecules. 

This process is represented as 

 

V-T Transfer: ( ) ( ) ( 1) ( )A n A n A n A n KE+ ↔ ± + m   

 

Such a mechanism holds for both harmonic as well as anharmonic oscillators. 

4.4.2 Vibrational-Vibrational-Translational Transfer 

In this case, a molecule loses a vibrational quantum. A part of this energy is gained by 

another molecule to achieve higher vibrational state and rest is released and translational 

kinetic energy. 

 

V-V-T Transfer: A(n) + A(n) ↔ A(n+1) + A(n-1) + KE 

 

Such a mechanism only holds for anharmonic oscillators. 

4.4.3 Vibrational-Vibrational Transfer 

In previous case, unequal spacing between the vibrational energy levels cause some 

energy to be released as translational energy. However, if the energy levels are assumed 

to be equally spaced, the energy is contained on the vibrational mode and constitutes the 

vibrational-vibrational transfer.  

 

V-V Transfer: A(n) + A(n) ↔ A(n+1) + A(n-1) 

 

This kind of mechanism can only occur for harmonic oscillators. 
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4.5 Vibrational Population Distribution 

The population distribution for a diatomic species for the different vibrational energy 

levels varies from case to case. Broadly two different types of population distribution are 

found: for cooling relaxation cases or expanding flows, and for post shock flows.  

 

 

 

Fig 4.5 Nonequilibrium vibrational population distribution (expanding flows) 
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Fig 4.6 Nonequilibrium vibrational population distribution (post shock flows) 

 

 

For expanding flows the distribution consists of the three regions as shown in the 

figure 4.5. Region 1 corresponds to the low vibrational levels in which V-V-T exchange 

rates are much greater than the V-T rates. The near resonant V-V-T exchanges pump 

vibrational quanta upward toward regions 2 and 3. 

In region 2 the V-T transition rates also become important because the equilibrium 

rates are of the same magnitude or greater than the V-V-T exchange rates. In this region 

the V-V-T exchange rates still influence the distribution by tending to pump vibrational 

quanta upward. However the V-T rates then act to transfer the energy to translation. The 

V-T rates which increase with quantum number limit the overpopulation caused by the 

V-V-T exchange rates. This region is characterized by a nearly constant slope of the 

number densities. This region is often responsible for much of the acceleration in 

relaxation rates in expansion because the anharmonic V-T rates can be much greater than 
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those assumed by Landau Teller model. 

In region 3, the V-T rates become much greater the V-V exchange rates as well as 

the V-T rates at lower levels. Unlike region 2, vibrational quanta are not being pumped 

into this region and are only being lost to translation mode through V-T transfer. Thus 

region 3 reaches equilibrium much faster than the remainder of the vibrational levels. 

Hence the distribution in this region corresponds to the Boltzmann distribution at local 

translational temperature. 

For the case of post shock flows, figure 4.6 shows that the V-T rates dominate the 

V-V-T transition rates for all levels. The distribution is similar to the distribution of 

region 3 for expanding flows. 

 

4.6 Modeling Vibrational Energy Evolution 

To write the vibrational rate equation, we need to write the net rate of change of 

population of ith level. This can be written as 

 

                          , ,
i

j i j i j i
j i j i

d k k
dt
ρ ρ ρ

≠ ≠

= −∑ ∑ ,                    (4.3) 

 

where ρm represents the number of molecules in mth vibrational level, and km,n represents 

the vibrational rate constant for transition from mth energy level to nth energy level. This 

equation is called the master equation for vibrational relaxation. The first term on the 

RHS represents the number of molecules jumping to ith level from all other energy levels, 

while the second term represents the number of molecules leaving the ith level.  

 Corresponding equation for the rate of change of total energy of molecules in ith 

level can be written as 
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,
, ,

v i
j i j j i j i i

j i j i

de
k k

dt
ρ ε ρ ε

≠ ≠

= −∑ ∑
.                (4.4)

 

 

Based on this equation, we can write vibrational rate equation for the total vibrational 

energy ev as 

 

                   ,
, ,

v iv
j i j j i j i i

i i j i i j i

dede k k
dt dt

ρ ε ρ ε
≠ ≠

= = −∑ ∑∑ ∑∑ ,            (4.5) 

 

where εn represents the energy of nth vibrational level, and ρn represents the density of nth 

vibrational level. 

Further modeling of terms appearing in the above equation to obtain complete 

expression of the vibration rate equation is required. The three important approaches in 

this context are discussed below. 

4.6.1 Multiquantum Transition Approach 

In this approach we model the molecule as an Anharmonic oscillator. The vibrational 

energy for ith level is represented using a result from quantum mechanics known as the 

third order approximating formula, as shown in [7] and [8], 

 

            
2 3( 1/ 2) ( 1/ 2) ( 1/ 2) 1,2,....i

e e e e ei x i y i i
hc
ε ω ω ω= − − − + − =       (4.6) 

 

Here, h is the Planck’s constant; c is the speed of light; and ωe , ωexe and ωeye are the 

spectroscopic constants.  

 Therefore, in this case there is no need of a separate vibrational rate equation as the 

vibrational energy at any moment can be found by adding the energies of individual 

vibrational levels. Thus,  
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*

0

( )( )
( )

v
v

vib v
v

te t
t

ρ ε
ρ=

=∑ ,                       (4.7) 

where ρv is found using the master equation 

 

                             , ,
i

j i j i j i
j i j i

d k k
dt
ρ ρ ρ

≠ ≠

= −∑ ∑ .                 (4.8) 

 

A common approach is to assume only single quantum transitions, used in [9], for 

which the above expression becomes  

 

                        
1, , 1 1, , 1

i
i i j i i i i i j i i i

d k k k k
dt
ρ ρ ρ ρ ρ+ + − −= − + −

            (4.9)
 

 

One of the problems faced is the accurate prediction for the transfer rates kij . There 

are three major approaches in literature [10] upon which the models for the transfer rates 

are based on: 

(i) Fully quantum calculations 

(ii) Classical, quasiclassical and semiclassical numerical trajectory calculations 

(iii) Analytic methods  

 

While models based on (i) are extremely computationally expensive and those based 

on (ii) are applicable to very limited cases, most commonly used models are based on (iii) 

analytical approach. Most of these analytical models such as the Schwartz, Slawsky, 

Herzfeld (SSH) theory, Rapp–Englander–Golden model, Sharma–Brau theory 

etc.[11]-[14] are based on first-order perturbation theory (FOPT), and therefore, cannot 

be applied at high collision energies, high-quantum numbers, and for multiquantum 
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processes. However, an exception is the nonperturbative forced harmonic oscillator 

(FHO) model [15]–[18] which takes into account the coupling of many vibrational states 

during collisions and is, therefore, applicable for such conditions.  

 

The Multi Quantum or master equation model is the most accurate models available 

to simulate the vibrational energy transfer rate. However, computational requirements 

for such a model make it unpractical for fairly complicated problems. Joysula et al. [7] 

solved the master equations assuming double quantum transitions only. It was found that 

the results had only a minor deviation from the single quantum transition results. Thus in 

most of the works based on anharmonic oscillator models, the single quantum transition 

assumption has been made which has given results in good agreement with experimental 

results. However, even the single quantum transition models turn out to be very 

expensive and make them unsuitable for use for complex geometries. 

 

4.6.2 Landau- Teller Approach 

To reduce the complexities and the number of equations involved in the multi quantum 

transition approach, simplifying assumptions are made to get an easy to use and 

inexpensive model. An outline of the important steps in the derivation of this model 

along with the implications of the assumptions made, are shown in figure 4.7: 
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Fig 4.7 Overview of derivation for Landau Teller model 

 

 

Thus we get the final expression as  

 

                               
*

1

n
v vs vs

s s

de e e
dt τ=

−
=

< >∑                      (4.10) 

 

where *
vse  is the value of ev at equilibrium and is given as 

 

                            
, /

/
1s

eq s
v s h kT

h kTe RT
e ν

ν
=

−                     (4.11) 

, ,
v

j i j j i j i i
i j i i j i

de k N k N
dt

ε ε
≠ ≠

= −∑∑ ∑∑

Single Quantum 
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1

n
v vs vs

s s

de e e
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−
=

< >∑
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and sτ is the vibrational relaxation time. Physically the expression for vibrational rate can 

be understood as follows: suppose we instantaneously excite the vibrational mode above 

its equilibrium value, i.e. for t = 0 

 

0

eq
vib vibe e>

 
 

Due to molecular collisions, the excited particles will exchange this excessive 

vibrational energy with the translational and rotational energies of the gas and after a 

period of time evib will decrease and approach its equilibrium value. However, as the 

vibrational energy decreases, it reappears in the form of translational energy and thus T 

increases. And thus the equilibrium value of vibrational energy will also increase. Thus 

at large times evib and eq
vibe  will approach the same value asymptotically.  

As discussed in previous section, vibrational nonequilibrium occurs due to the 

presence of very high temperatures in the flow. For example in the case of shock wave in 

hypersonic flows, as p and T are suddenly changed, the equilibrium vibrational and 

chemical properties will change. The fluid element will start to seek these new 

equilibrium properties which require collisions between molecules and hence time. 

However by this time, the flow has covered a certain distance behind the shock and 

hence we get a region of vibrational nonequilibrium.  

The relaxation time τ  is a function of both local pressure and temperature. One of 

the most commonly used model for τ  is the Millikan and White [19] formula. The 

following assumptions are made: 

(i) The system consists of diatomic oscillators only 

(ii) Only one type of collision is allowed (V-T transitions) 
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(iii) Vibration-vibration energy transfer is not important 

However, this approach can be used for some special complicated cases also. Using 

experimental data and curve fitting, the expression obtained is 

 
1 1

3 4exp[ ( 0.015 ) 18.42]vs s sp A Tτ µ−= − − , 

 

where vsτ  is the relaxation time for species ‘s’; p is the pressure; and As and µs are the 

constants specific to the species. The constant As has the expression 

 
1 2

3 3
sA µ θ∝ , 

 

where µ  is the reduced mass of the colliding pair, and θ  is the characteristic 

temperature of the oscillator. Values for some common species are given in [19]. This 

model has been found to be accurate for the following ranges of the above parameters: 

 

0 0 0 01.75 127; 310 3395 ;280 8000K T Kµ θ< < < < < <  

 

For a mixture of species, the molar averaged Landau - Teller relaxation time is 

defined as  

 

1 s

v vss

X
τ τ=∑

 

 

where Xs is the molar fraction of species ‘s’. Landau Teller model is computationally 
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much easier to implement compared to the other models. It also happens to be 

computationally inexpensive. However, some issues of accuracy exist due to the 

simplifying assumptions made. 

As seen earlier, V-V-T transfers gain importance for lower energy levels in the case 

of expanding flows while V-T transfers dominate for all energy levels for compressing 

flows. Since this model only assumes only V-T transfers, it has been found to give 

accurate results for post shock flows. However, for expanding flows, the V-V-T transfers 

result in an increase in population of mid and upper quantum levels. An over population 

of these states implies higher V-T rates, since V-T transfers dominate the upper energy 

levels. Landau-Teller model fails to capture this phenomenon as it neglects the V-V-T 

transfers and hence predicts slower V-T rates.  

The vibrational population distribution was assumed to follow Boltzmann 

distribution for all the levels for the derivation of this model. However, the Boltzmann 

distribution exist only for lower quantum levels and thus the transition rate constants ki,i-1 

become non-linear for higher levels. This results in a further deviation between the real 

and predicted values of V-T transfer rate, Landau Teller model predicting the smaller 

rates. These limitations of Landau Teller model were studied and discussed in [58] by 

comparison of computational results with experimental data. 

  

4.6.3 Ruffin’s Model 

Ruffin developed a simplified relaxation model with an objective to improve the 

accuracy of Landau Teller model by increasing its range of applicability, while at the 

same time ensuring it is not as expensive as master equation model. An outline of the 

important steps in the derivation of this model along with the implications of the 

assumptions made, are shown in figure 4.8 below: 
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Fig 4.8 Overview of derivation for Ruffin’s model 

 

 

In the above relation, the LHS represents evolution of vibrational energy of mth species. 

 The term on the RHS, 
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e eTφ
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< >
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collision of the mth species with species s. Thus adding up the contributions due to all the 

species, we get the evolution equation for ( )v me . The basic idea behind this model is to 

increase the L-T energy transfer rate by a factor of φ(Tvib) for the cases when the 

predicted rate is slower compared to real case. However, the definition ensures that this 

factor remains nearly 1 for regions such as post shock flows. This happens mainly for the 

temperature range given by Tvib/T < 1. 

To capture the physics of the process more accurately, Ruffin defines three different 

effective vibrational temperatures for the different ranges of quantum numbers. The 

choice of this effective vibrational temperature is such that it captures the dominant 

, ,
v

j i j j i j i i
i j i i j i

de k N k N
dt

ε ε
≠ ≠

= −∑∑ ∑∑

Single Quantum Jumps

Anharmonic Oscillator

*
'

,
,

( ) ( ) ( )( )v m vs m vs m
m s vib

s LT m s

d e e eT
dt

φ
τ
−

=
< >∑

=> Simplification of 
Master Equation  

=> Non-linear εv 

Ф(T’vib) : deviation from L-T model 



 

 

66

physics for that particular range.  

 

The first such range is defined as *
1ν ν≤ , where 

*
1ν = minimum ν  for which 1, , 1, ,( ) ( )VT VV

v v m s v v m sK K+ +>   

Thus for this limit, the V-V-T transfers have more dominance and the distribution is 

approximated by Treanor Distribution. For the case of compression or post shock flows, 

V-T transfer dominates for all quantum levels and hence *
1ν = 0. 

The second range is given as *
2ν ν> , where the most rapid anharmonic V-T rates 

dominate, where *
2ν = minimum ν  for which both of these conditions hold: 

 

 
3

1, , 1, ,

1, , 1,0 ,

( ) 1 10 ( )

( ) 10( 1)( )

VT VV
v v m s v v m s

VT VT
v v m s m s

K K

K Kν
+ +

+

> ×

> +
 

  

The third range, * *
1 2ν ν ν< ≤ , is characterized by V-T transition rates and the 

distribution can be approximated by Boltzmann distribution at effective vibrational 

temperature.  

Expressions for *
1ν  and *

2ν  are obtained using curve fit methods. Data for these 

curves are available in [58] and [59] for combinations on N2, CO2, CO, Ar. It should be 

noted that a common value of *
1ν  as well as *

2ν  is used when a mixture of species is 

present. This common value is the molar fraction weighted average of individual species 

combination values. 

 

* *
1 1 , , ,( ) ( )m m s m s m s

s s

W Wν ν=∑ ∑  
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* *
2 2 , , ,( ) ( )m m s m s m s

s s
W Wν ν=∑ ∑

               (4.12)
 

 

Thus the rate acceleration factor φm,s(Tvib) is defined as  

 

                     

max

, , 1
0

1 ( 1) ( ) ( )
( )m s v v m s v m

vib m

E F N
e

ν

ν

φ ν
ρ +

=

= + ∆∑
,          (4.13)

 

 
where population distribution can be expressed as   
 

                     
'( ) [( ) / ]exp v

v m m vib
vib

N N Q v
T
θ⎡ ⎤⎛ ⎞

= −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦                 (4.14) 

 
and  
 

                         

max

'
0

exp
v

v
v

vib
v vib

Q
T
θν

=

⎛ ⎞
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⎝ ⎠
∑

 .                     (4.15)
 

 

The effective vibrational temperature for level ν  can be defined as 
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4.6.4 Comparison of the Three Vibrational Models 

Ruffin [58] has shown the comparison between the three approaches to model the 

vibrational energy transfer rate (figure 4.9). In this figure, Y-axis (φ) represents how 

much the Ruffin’s simplified anharmonic model and other models deviate from each 

other:  

 

Model

Landau Teller

( / )
( / )

de dt
de dt

φ =
 

 

The value of φ is 1 for Landau Teller model by definition.  

It can be seen in the figure that for heating environments (Tvib/T<1), φ is not very 

different from unity. Thus the temperatures in the range 1000 K < T < 5000 K, the 

Landau–Teller relaxation model is a reasonable approximation for relaxations in heating 

environments such as those in postshock flows. In cooling relaxations though, Tvib/T > 1, 

Landau Teller model predicts slower V-T transfer rates compared to anharmonic models. 

This deviation becomes prominent for Tvib/T > 2.5. 

 

However using the Ruffin’s simplified relaxation model, the predictions for φ are in 

good agreement with the master equation results for cases where V-T energy transfer 

rates dominate [60]. For extreme cases of thermal nonequilibrium(Tvib/T > 4.5), the V-V 

energy transfer becomes significant. Thus the predicted energy transfer rate of the 

anharmonic relaxation model is too low, but it is still more accurate than values from 

Landau Teller model. Another advantage of using Ruffin’s model is that it is 

computationally very inexpensive compared to the full master equation model. For 

example, although L-T model takes only 1 s for this simulation, Ruffin’s simplified 

anharmonic model takes almost 4 s on the same. It should be noted that full master 
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equation model would take almost 1500 s on the Cray Y-MP computer.  

 

 

  
Fig 4.9 Comparison of the three models [58] 

 

 

4.7 Chemical Models 

For quasi-steady state flows, the reaction rate constant is modeled using the Arrhenius 

equation in the form: 

 

                      
( ) exp( / )n

f eff f eff d effk T C T Tθ=
,                 (4.17) 
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where Teff = Ttranslational . However for the cases when the thermodynamic state of the gas 

is undergoing such rapid changes that the internal energy state does not satisfy the 

quasi-steady state condition, the above equation cannot be used for Teff = Ttranslational. 

Thus, a model is needed which reflects the physics of nonequilibrium flows.  

 

The main problem consists in determining the influence of molecular vibrational 

distribution on the rate of dissociation and recombination. The secondary objective is to 

quantify the influence of recombination and dissociation on the vibrational energy 

distribution. There are two main approaches found in literature: 

(1) Physicochemical studies which allow the construction of interaction models 

based on a specific and detailed approach of dissociative collisions and the 

determination of statistical properties such as dissociation constants, vibrational 

energy lost per dissociation etc ([35]-[39]). These models are difficult to 

implement computationally, but are physically more realistic in spite of frequent 

restrictive assumptions. 

(2) Semi-empirical approach for building models leading to simple relations which 

gives rate constants as a function of vibrational temperature ([23],[40],[41]). 

These models are more attractive and useful for hypersonic flows. 

 

For the present study, we consider models based on approach (2). To understand 

these couplings, it is important to understand the primary coupling (vibration-chemistry) 

and secondary coupling (chemistry-vibration) separately. Basic steps for the derivation 

of the most general vibration-chemistry coupling model will be shown. This will be 

followed by the determination of models which are simpler than the general model. 
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4.7.1 Vibration –Chemistry Coupling 

Consider the following reactions: 

 

( ) ( )AB v C AC w B+ +� ��� ��  

AB C AC B+ +� ��� ��  

 

The latter reaction represents the summation of the former reaction for different 

combinations of v and w. Thus, we can write 

 

               
( ) ( ) ( ) ( )AB

AB C AB d AC B AC d
c c c f v k v c c f w k w
t

∂
= −

∂ ∑ ∑
,         (4.18) 

 

where 
max max

0 0
( ) ( , ) , ( ) ( , )

w v

d d
w v

k v k v w k w k w v
= =

= =∑ ∑
.
 

k(v,w) represents the rate constant of the reaction in which a v-excited AB molecule 

decomposes, and an AC molecule excited in the w-th state is formed. fi(v) represents the 

population distribution function of the discrete vibrational states v of molecule i 

However, we can also write  

 

                     
AB

AB C f AC B b
c c c k c c k
t

∂
= −

∂                         (4.19) 

 

Thus comparing the above two equations, we can obtain expression for the bulk rate 

constants kf and kb, if we know the distribution functions fi(v). Thus, 
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( ) ( )f AB dk f v k v=∑  

                           
( ) ( )b AC dk f w k w=∑

                      (4.20) 

 

4.7.2 Chemistry-Vibration Coupling 

Consider collision of molecule AB in vth vibrational state with another molecule C. This 

can be represented by the reaction shown above: 

 

( ) ( )AB v C AC w B+ +� ��� �� . 

 

The total vibrational energy content of species AB is diminished by an amount that is 

equal to the vibrational energy content of AB(v), represented as , ( )vib AB vε . However, 

some energy also appears due to the formation of AB(w), which is represented as 

, ( )vib AB wε . Thus the rate at which vibrational energy for molecule AB is produced and the 

rate at which it is lost are given as 

 

max

, , , ,
0

( ) ( ) ( )
v

d
va AB va AB va AB AB vib AB

v f

k vG f v v
k

ω ω ε
=

≡ ∑& &  

         

max max

, , , ,
0 0

( , )( ) ( )
v w

app AB app AB app AB vib AB AC
v w b

k w vG v f w
k

ω ω ε
= =

≡ ∑ ∑& &

        (4.21)
 

 

where the subscripts va and app represent the vanishing and appearing energies. Thus, in 

general, the evolution equation of vibrational energy for molecule i will have an extra 

term QC-V given as  
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, , , , ,( )C V i app ij app ij va ij va ij

j

Q G Gω ω− = −∑ & &

              (4.22) 

 

4.7.3 Coupled Vibrational-Chemistry-Vibrational(CVCV) Modeling 

Based on above concepts, the CVCV model is derived after making the following 

assumptions: 

1.) All vibrational states of a molecular species Xi are populated according to a 

Boltzmann distribution characterized by a vibrational temperature Tvib,i . 

2.) The molecule Xi is an rotationless harmonic oscillator 

Thus the relation for the rate constant k(v,d) can be written as  

 

, ,( , ) exp[( ( ) / )(1/ 1/ )] ( )E
vib i i vib ik v d k v T U v Aε ε α= Λ ℜ + ≤  

, ,( , ) exp[ ( ) / / ] ( )E
vib i i i vib ik v d k v U A T v Aε α ε α= Λ ℜ + ℜ >  

 

where, 

 

         

,
* *

, , ,

exp( / ) ( )
exp( / ) ( ) ( ) ( )

i

i

D
vib i
DA A

vib i i vib i i vib i i

A RT Q T
A RT Q U Q T Q Tα α

α
α

−
Λ =

− − + −             (4.23) 

 

Di and A represent the dissociation energy of molecule Xi and activation energy of the 

reaction respectively. ( )vibQ Tϒ  denotes the partition function given as 

 

                       ,

1 exp( / )( )
1 exp( / )vib

vib i

TQ T
T

ϒ − −ϒ ℜ
=

− −Θ ℜ                   (4.24) 
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Ui is taken to be a measure of the extent to which the upper vibrational levels are more 

reactive due to a cross section enlargement at higher excitation. 

The other models can be derived from this general model by setting the different 

parameters particular values. One such model given by Treanor and Marrone assumes 

that only dissociation reaction takes place. This is the case when A = Di and α = 1 in the 

above formulation, and is called preferential coupled vibration-dissociation-vibration 

(CVDV) model [23]. Neglecting the effects of the dissociation reactions on the 

vibrational energy exchange (QC-V = 0) leads us to preferential coupled 

vibration-dissociation (CVD) model.  

Making the assumption that dissociation occurs only from the last bound quantum 

state, we obtain the ladder model [24]. The formula for rate constant becomes 

 

                   

[ ]1 1( , ) ( ) exp[ ( )]
[ ]eff eq

vib
d v d v

v vib v

Z Tk T T k T
T T Z T

ε= −
,        (4.25) 

 

where Zvib is the vibrational partition function and εv is the energy of quantum level v. 

Assuming Ui = ∞, for the above methods, we get the non-preferential CVDV [22] and 

CVD [21] models. Thus dissociation is assumed to occur from all vibrationally excited 

states with equal probability. For the CVD model, the rate constant is given as [20] 

 

        

1 exp( / / ) exp( / ) 1( , ) ( )
exp( / / ) 1 exp( / ) 1eff eq

d v d v
d v d

d v

T T T T Tk T T k T
T T T T

θθ
θ θ θ

− − + −
=

− − −        (4.26)
 

 

The above models are complex and not easy to implement in CFD codes. Thus a 

much simpler empirical formula was given by Park [3] where Teff is modeled as  
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                                eff vT TT=
.                       (4.27) 

 

Therefore, the rate constant can be modeled as 

 

                       
( ) exp( / )

eff

n
d d eff d eff d effk k T C T Tθ= =

             (4.28) 

 

This approach is named as the Park’s two temperature model [20]. Currently, this is 

the most commonly used model for hypersonic simulations. The various models and the 

corresponding assumptions are shown in figure 4.10. 

 

4.8 Transport Models 

The accurate prediction of mixture viscosity, thermal conductivity and diffusion 

coefficient is a critical component in the computation of hypersonic viscous flows. 

Prediction of these parameters in hypersonic nonequilibrium flows becomes a big 

challenge as they deviate from the values for thermally and calorifically perfect gases. 

We still do not have well established models for such cases. The early research in this 

field focused on the determination of single or binary gas mixture properties based on 

kinetic theory [26]-[29]. However, the subsequent work focused on curve fits or 

approximations to obtain mixture viscosity, thermal conductivity and diffusion 

coefficient of multi component gas mixtures [30]-[34]. Using the first approach of 

models based on exact kinetic theory for the determination of transport properties can 

make the problem CPU intensive. Thus curve fitting methods are preferred for 

simulation of hypersonic flows.  
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Fig 4.10 Classification of the chemistry models 

 

 

For a single species, the viscosity and thermal conductivity are given to a good 

approximation by the following formulas,  
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And 

  

                        
,

15
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i
tr i

i

R calK
M cm K
µ

=
− −

,                    (4.30) 

                   

,
int,

5
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p ii ii
i

i i

CD calK R
M R cm K
µ ρ

µ
⎛ ⎞⎛ ⎞

= −⎜ ⎟⎜ ⎟ − −⎝ ⎠⎝ ⎠            (4.31)
 

 

where Ktr,i  is the translational component of the thermal conductivity and Kint,i is the 

component of thermal conductivity resulting from the diffusion of internal excitation 

energy of the molecules, Mi is the molecular weight in gm/gm-mole, R is the universal 

gas constant, Dii is the component of self diffusion, and iiΩ  is average collision 

cross-in range of sections for the molecules within an Armstrong. The self diffusion 

component is the reciprocal Schmidt number and is related to the collision cross sections 

through the relation: 

 

                       

3 2
3

(1,1)

/
2.6280 10

sec
i

ii
ii

T M cmD
p

−= ×
Ω                 (4.32)

 

 

The complication in the above relations arises due to the presence of the term iiΩ , 

which brings an uncertainty in the determination of transport properties. The expression 

for iiΩ  further complicates the above relations. Thus it is computationally practical to 

find the transport properties as a polynomial of temperature T. This polynomial is found 

by curve fitting on experimental data. 

Thus the expressions for the transport properties are found as, 

 



 

 

78

3 2[ (ln ) (ln ) ln ] ,
sec

i i i i iE A T B T C T D
i

gme T
cm

µ µ µ µ µµ + + +=
−        

 

3 2
, , , , ,[ (ln ) (ln ) ln ]

, , int, ,
sec

K K K K Kf i f i f i f i f iE A T B T C T D
f i tr i i

calK K K e T
cm

+ + +
= + =

−          
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                 (4.33) 

 

The values of the curve fit coefficients are given in [20]. The values obtained from 

the tables from the mentioned reference are for a p = 1 atm and thus needs to be 

corrected depending on the pressure. This is done using the relation: 
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The problem becomes more complex when a mixture of different species is present 

in the flow. For such cases, the standard approaches are  

 

(a) Wilke’s mixing formula  

In this method, kinetic theory with some simplifying assumptions is used to compute the 

mixture transport properties. Using this method, the mixture viscosity is expressed as 

[29] 
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                      (4.34) 

 

Similarly, the mixture thermal conductivity becomes, 
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                    (4.35) 

 

Here, фi is defined as  
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                  (4.36) 
 

The multicompoment diffusion coefficient Dm is related to the binary diffusion 

coefficients Dij for the diffusion of the species i into j by means of the expression 

 

                            

1 i
im
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D

D
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∑
,                           (4.37) 

 

where χ  is the species mole fraction and M is the molecular mass. 

 

(b) Collision Integrals 

This is the most rigorous method of obtaining the mixture properties and uses an 
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approximation to Chapman-Enskog formula [20]. The total mixture viscosity under this 

formulation is given as 
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Defining (2)

1
ij

ij

µ =
∆

, the formula for the total viscosity can be rewritten as 
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where (2)
ij∆  is defined as 
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Curve fits for ijµ  for 11 species air are available in [42]. The mixture translation 

thermal conductivity thus becomes 
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where  
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The mixture internal thermal conductivity can be written as  
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where Scij is the Schmidt number, the curve fits for which can be found in [42]. 

 

(c) Species Summation 

In this method, the mixture viscosity/thermal conductivity is obtained by computing the 

sum of the products of species mole fraction with each species’ viscosities/conductivities. 

It is assumed that there is no interaction between the various species. Thus the mixture 

viscosity is given as 
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µ χ µ −
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And the mixture thermal conductivity becomes 
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CHAPTER V 

NUMERICAL METHODS: NS, BGK AND SA MODELS 

 

In this chapter, the numerical methods pertaining to Navier Stokes(NS) method, 

Boltzmann BGK method and Spalart Allmaras(SA) turbulence model are discussed. 

 

5.1 Navier Stokes Equations 

The analytical solution of the Navier-Stokes equations is practically impossible to solve 

for most of the practical flow problems barring a very few simple flows. Iterative 

numerical methods have been used to solve these equations. A wide range of numerical 

techniques are available to solve such kind of equations. Such techniques can be broadly 

classified into the following groups based on the discretization method: 

 

1. Finite Difference schemes [62, 63, and 64]: In this approach, the solution domain is 

represented by a structured array of discrete nodes. The Navier Stokes equations are 

written in terms of the nodal values by replacing the derivatives with their finite 

difference approximations, obtained through Taylor series expansion about the nodal 

values. Although the method tends to be very accurate, problems occur due to the finite 

difference representation of the derivatives when discontinuities are present in the 

solution. Additionally, the advantage of higher accuracy is lost when solving for 

complex geometries. For such cases, the solution domain has to be mapped from 

physical space to the computational space using Jacobians.  

 

2. Finite Volume Schemes [65, 66]: In this approach, the solution domain is divided into 

small control volumes termed as cells. The integral form of Navier Stokes is solved for 
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each of these cells. This is done by keeping an account of the net flux passing through 

each cell and updating the cell properties based on this residual or net flux. A steady state 

is achieved when the net flux passing through each cell becomes almost zero. The flux 

passing through a cell interface is calculated based on the properties of the cells sharing 

a common interface boundary.  

The advantage of Finite Volume method over the finite difference method is in its 

ability to handle the discontinuities in the flow field. Since the Navier Stokes equations 

are solved in their integral form, it becomes easier to treat the derivatives which 

otherwise are theoretically infinite. Another main advantage of the Finite Volume 

methodology is the conservative nature of the approach. Since the flux being added into 

one cell will be deducted from one of the neighboring cells, the scheme remains 

conservative over the whole solution domain. Treatment of complex geometries becomes 

simpler using this approach. However, extending the accuracy of the scheme to higher 

orders is not straightforward and one needs to implement reconstruction schemes.  

 

3. Finite Element Schemes [67]: In this approach, the solution domain is broken down 

into subdomains which are termed as elements. These elements can be of arbitrary shape 

and sizes. Unlike the Finite Volume scheme where the flow properties are assumed to be 

constant or vary linearly in the cells, in Finite Element methodologies the solution is 

assumed to take some particular functional form within an element. Therefore the 

solutions obtained from Navier Stokes equations lie in such a functional domain. Finite 

element methods have been used successfully to solve incompressible as well as 

compressible flow problems. One of the major disadvantages of using these methods is 

the computational cost. Since the Finite Element methods involve matrix inversions, the 

solvers are much slower in terms of computational time when compared to FDM and 

FVM solvers and needs parallelization to be used for practical purposes.   
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After comparing the pros and cons of the three methodologies listed above, it was 

decided to go ahead with the Finite Volume methodology.  

 

5.2 Finite Volume Methods  

As discussed in previous section, the first step for this approach is to subdivide the 

computational domain into finite volumes. This can be done in many ways, but it must 

be ensured that the volumes should fill the entire domain without overlapping. In the 

node centered approach there is one node in each volume and the flow properties are 

solved for at this node. The node in most cases coincides with the centroid of the volume. 

The volumes can have any polygon shape (triangles, quadrilaterals) in 2D and 

polyhedral shapes (tetrahedrons, hexahedrons, prisms etc.) in 3D. For this study, 

structured 2D grids are used and therefore the cells are almost rectangular.  

 The second step involves discretization of the integral form of Navier Stokes 

equations for application to finite volume cells. In finite volume, the cell centre flow 

properties are assumed to represent the cell average value as shown in equation (5.1), 

i.e., 

 

                            1 ( , , )ctr
r

Q Q x y z dV
V

= ∫                    (5.1) 

 
where Vr is the volume of rth cell. 

 Also, the fluxes are assumed to be uniform along each cell interface. Using these 

two assumptions one can simplify the integral form of Navier Stokes equation to the 

equation represented in equation. 
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1
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t
n n
ctr ctr k k k
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Q Q F n dS dt
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+
+ = − ∑∫               (5.2) 

 

 

 
Fig 5.1 Fluxes across the edges of a cell 

 

 

For 2D, the fluxes across the edges of a cell are shown in fig 5.1. Thus, knowing the 

solution in the domain at time step n, the solution at time step n+1 can be determined by 

calculating the fluxes across all the boundary interfaces. The fluxes are calculated using 

flux solvers and are represented as a function of the properties of the cells sharing the 

interface on which flux is being solved. It should be noted that for second order accurate 

flux calculation, the flux can be a function of flow properties at three or more cells 

surrounding the interface. Details of such calculations will be discussed in the chapter 

VI. 
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Fig 5.2 Flux across a cell interface 

 

 

The flux along the common edge shown in figure 5.2 can be represented 

mathematically as 

 

F = F(QL,QR)    (5.3) 

 

The simplest form of flux solver is to obtain flux at the interface by averaging the 

fluxes at the neighboring cell centers. However such an approach leads to poor accuracy 

and completely fails when shocks [68] are present in the flow. An ideal solver should 

have low level of dissipation to handle the discontinuities in the flow. This is because a 

high dissipation leads to smearing of discontinuities such as shocks or contact 

discontinuities. On the other hand, low levels of dissipation can lead to generation of 

noise such as spurious oscillations in the solution. Hence most of the present flux solvers 

try to vary the dissipation levels with the flow parameters. Thus dissipation levels are 

lowered in the smooth regions of the flow whereas in the regions of discontinuities the 

dissipation levels can be very high.  

 It should be remembered that the flux term shown above has both inviscid and 

viscous fluxes. The methods for calculation of the inviscid fluxes are discussed in the 

next section. Numerical techniques to integrate the term on the RHS of equation (5.2) 

are presented in chapter VII.  

QL QR 
F 
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5.3 Inviscid Fluxes 

The flux solvers discussed in this section belong to the wave approach category of flux 

calculation methods [69]. These wave based methods can be further categorized into two 

classes: the Flux Vector Splitting method and Flux Difference Splitting method. Two 

schemes, each of them belonging to one of these two classes, have been implemented in 

this study. 

 

5.3.1 Steger Warming Schemes 

Steger and Warming (55) proposed the first flux vector splitting scheme, based on wave 

speed splitting. The flux vector can be split as 

 

                      F(U) = F+(U) + F-(U)                           (5.4) 

 

where the characteristic values of df+/du are all nonnegative and the characteristic values 

of df-/du are all nonpositive. In standard notation,  

 

                       0, 0dF dF
dU dU

+ −

≥ ≤
             

               (5.5) 

 
Therefore the flux is split on the basis of the direction in which it is traveling. The 

flux can be written in terms of the characteristic diagonal matrix as 

 

                  1dFF U AU Q Q U
dU

−= = = Λ
,
                         (5.6) 

 
where 
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1

2 1 2 3

3

0 0
0 0 , , ,
0 0

u a u u a
λ

λ λ λ λ
λ

Λ = = − = = +  .            (5.7) 

 

Q is the eigen matrix corresponding to eigenvalues of A = dF/dU 

 

Thus the split equation can also be written as 

 

                 1 1( )F U Q Q Q Q+ − − −= Λ + Λ                             (5.8) 

 

where +Λ  and −Λ  are based on eigenvalues split as λ λ λ+ −= + . One of many such 

possible splits was proposed in [55]:  
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2
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i i i i
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−

= = +

= = −
                         (5.9) 

 
Thus using the above values, F+ and F- come out to be 

For 1M ≤ − : 

 

F+ = 0 

F- = F 

 

For 1 0M− < ≤ : 
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(5.10) 

 

For 0 1:M< ≤  
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(5.11) 

 

For 1M > : 

 

F+ = F, 

F- = 0 

 

Therefore, for supersonic right running flows, all of the waves are right running and 

the flux vector splitting correctly attributes all of the flux to right running waves and 

none to left running waves. Similarly, for supersonic left running flows all of the waves 

are left running and the flux vector splitting correctly attributes all of the flux to left 

running waves and none to right running waves. For subsonic flows, waves are both left 

and right running, and the flux vector splitting correctly attributes some to left and some 

to right running waves, although it should be noted that the exact physical proportions 
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may not be correct. Thus the flux in figure 5.2 can be given as 

 

( , ) ( ) ,

( ) ,

( , ),

L R L edge

R edge

L R edge

F U U F U u a

F U u a

F U U a u a

= ≥

= ≤ −

= − < <

 

  

5.3.2 Roe’s Scheme 

Suppose the flow properties are assumed to be constant along the cell. Therefore one can 

pose a Riemann problem at the interface as shown in the figure (5.3). Therefore, the flux 

on the edge can be given as  

 

                      1/ 2 1/ 2
ˆ ( ( , ))n
i RIEMANN iF F u x t+ +=                       (5.12) 

 

where 1/ 2( ( , ))RIEMANN iF u x t+  is found using the Roe’s scheme. 
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Fig. 5.3 Piecewise-constant reconstruction (Riemann problem) 

 

 

It should be noted that the Riemann solution assumes that the waves from the 

different cell edges do not interact during a single time step. Since the CFL condition is 

applied at the beginning of the time step, it is usually advisable to leave a safety margin 

by choosing CFL number less than one.  

Due to the nonlinear nature of the Flux vector, finding the exact solution to the 

Riemann problem can be very expensive. Also, since the flow properties are constant 

over the whole cell, it does not really make sense to solve the Riemann problem exactly 

as the initial conditions are approximate. Therefore in Roe’s scheme, simplifying 

assumptions are made to solve an approximate Riemann problem [53]. 

One of the most important assumptions is the linearization of Flux vector, which can 

be represented as follows: 

 

Xi-1/2 Xi+1/2 Xi+3/2 

U

x
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                       ( ) ( ) ( )L RL LF U F U A U U= + −                    (5.13) 

 
Solving the approximate value of ARL the flux at the interface can be found as 

 

         
3

1/ 2 1 1/ 2 1/ 2 1/ 2
1

1 1ˆ ( ( ) ( )) ( ) | | ( )
2 2

n n n n n n
i i i i j i j i j

j
F F U F U R vλ+ + + + +

=

= + − ∆∑         (5.14) 

 

Here, 1/ 2
n
iλ +  are the jth eigenvalues corresponding to ARL; 1/ 2

n
iR +  is the jth right 

eigenvector corresponding to ARL; and 1/ 2
n
iv +∆  is the jump (left to right) in the jth 

characteristic variable. Derivation of the parameters in the RHS of equation above is 

tedious and can be found in [69].  

 

5.4 Boundary Conditions 

The boundary conditions are the constraints applied to the boundaries and play an 

important role in determining the solution of the domain. For finite volume methods, use 

of ghost cells is very popular. The center of the ghost cell is the mirror image of the 

boundary cell about the boundary edge/surface in 2D/3D. A typical ghost cell is shown 

in figure 5.4. 
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Fig.5.4 Layout of the ghost cell 

 

 

For the inflow ghost cells, the flow properties are initialized according to the inflow 

conditions specified and these values are kept constant throughout the simulation. This is 

because the inflow conditions used are supersonic and thus the solution should not affect 

the supersonic inflow values. Similarly properties at the outflow ghost cells are set to be 

equal to the adjacent internal cell.  

For the inviscid walls, all the flow properties at the ghost cell are set as those of the 

adjacent internal cell except for the velocities. The velocity at the ghost cell is set as the 

mirror image of the velocity of the internal cell about the boundary interface. 

Mathematically, this means that the component of velocity along the boundary remains 

constant whereas the velocity along the normal reverses direction. Therefore the velocity 

at the ghost cell can be expressed as 

d 

d 

A 

A’ 
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Fig 5.5 Boundary condition for inviscid wall 

 

 

                   ( . ) ( . )ghost cell w w cell w wu u n n u t t= − +
r r r                      (5.15) 

 

where nw and tw are the unit vectors along the normal and tangential directions to the 

boundary as shown in figure 5.5. It should be noted that the symmetry boundary 

conditions are also calculated using the same formula. 

For viscous walls, both the normal as well as tangential components need to be 

reversed. Thus it is easy to see that the ghost cell velocity will be given as 

 

                   ( . ) ( . )ghost cell w w cell w wu u n n u t t= − −
r r r                      (5.16) 

 

Since in both kinds of wall boundary conditions we have copied the temperatures 

ghostur  
wn  

cellur  

wt  
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from the internal cell to the ghost cells, it follows that all the walls are assumed to be 

adiabatic for this study. 
 
5.5 BGK Boltzmann Equation 

The exact solution of the BGK Boltzmann equation at a cell interface xj+1/2 at time t can 

be written as 

 

      

/ ( ') /
1/ 2 0 1/ 2

0

1( , , , , ) ( ) ( ', ', , , ) '
t

t t t
j jf x t u v e f x ut e g x t u v dtτ τξ ξ

τ
− − −

+ += − + ∫       (5.17) 

 

where 1/ 2' ( ')jx x u t t+= − −  represents the particle trajectory and f0 is the initial gas 

distribution function f at the beginning of each time step (t=0). Assuming cell interface 

as the origin, we can set xj+1/2 = 0 without any loss of generality. 

The gas distribution function f0 which is given at the beginning of each time step can 

be written in the neighborhood of a cell interface as  

 

                     0

[1 ] ( ), 0
[1 ] ( ), 0

l l l l l

r r r r r

g a x g a u A x
f

g a x g a u A x
τ

τ

⎧ + − + ≤⎪= ⎨
+ − + ≥⎪⎩

              

(5.18) 

 

The first part of the expression represents the equilibrium part of the distribution 

function. The quantities gl and gr are the Maxwellian distributions at the left and right of 

a cell interface. The slopes al and ar represent the spatial derivative of a Maxwellian and 

are calculated using the slopes of the conservative variables.  

The second term which is first order in τ  represents the nonequilibrium part of 

distribution function and is obtained from the Chapman-Enskog expansion of the BGK 
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model. Detailed formulation on the calculation of coefficients (al, Al, ar, Ar) can be found 

in [74].  

It should be noted that for flow simulations where the cell size cannot properly 

resolve the viscous flow structure, the nonequilibrium part vanishes. An example where 

this term becomes significant would be the region inside a shock. Therefore, if the cell 

size is fine enough to resolve the physical shock structure, the distribution will deviate 

from the Maxwellian because of the presence of this nonequilibrium term.  

The second term in equation (5.17) can be evaluated using the following expression 

for g: 

 

              0[1 (1 [ ]) [ ]) ]l rg g H x a x H x a x At= + − + +                 (5.19) 

 
where H[x] is the Heaviside function defined as  

 

 
0, 0,

[ ]
1, 0.

x
H x

x
<⎧

= ⎨ ≥⎩  
 
g0 is the local Maxwellian distribution function located at the cell interface. As a 

consequence of the above relation it can be seen that g has different slopes for x<0 and 

x>0. The details for the calculation of la , ra  and A  can be found in [74]. 

Making the substitutions from eq (5.18) and eq (5.19) into eq (5.17) we get the 

expression for f as: 
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Thus the flux along x-direction can be found by integrating the above f to give: 
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(5.21)

 

 

The same procedure can be repeated to calculate the flux along y-direction. 

 

5.6 Collision Time 

As derived in section 4.4, the final expression for τ  comes out to be 

 

/ Pτ µ=  

 

This formula works well for cases when cell size is much smaller than the dissipative 

length scale determined by the physical viscosity. However, in cases of shocks where the 

cell sizes are usually not enough to resolve the wave structure and thus the physical 

structure has to be replaced by a numerical one. Since the shock thickness is determined 

by the viscosity, the effective viscosity should also be changed to account for this new 

shock thickness. The additional dissipation is provided by the following term: 
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p

ρ λ ρ λµτ
ρ λ ρ λ

−
= + ∆

+
 

 
It can be seen that in the smooth regions the second term on the RHS vanishes. 

However, the term will have a significant value at the interface of a discontinuity such as 

a shock. 

It should be noted that the ratio of average collision time τ  and the numerical time 

step t∆  has a significant effect on the stability of the BGK method. For the cases when 

/ tτ ∆  >> 1, there are effectively no collisions taking place for any particular iteration i. 

Since viscous effects are a direct consequence of the collision between molecules, the 

effective viscosity for the whole domain will decrease. Therefore there is a higher 

chance of the solver becoming unstable since less amount of dissipation is available to 

handle the discontinuities. It is therefore important to keep the ratio / tτ ∆  < 1. In Euler 

cases, this ratio is maintained around 0.01-0.05 by defining the collision time as 

 

1
| / / |
| / / |

l l r r
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−
= ∆ + ∆

+
 

  

5.7 Spalart Allmaras Model 

The compressible Spalart Allmaras model is given as 

 

'( , , ) ( , ) ( ) ( )prod dest trip T dif
D b S v d b v d b d b v
Dt
νρ ρ ρ ρ= − + +
%

% % %  

 

Using the discretizations discussed in chapter II for the terms on the RHS, the 

implicit backward Euler solution procedure [85] can be used to ensure a positive 

turbulence field at each update. However, such a method requires expensive inversion of 
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a large sparse matrix in 2-D or 3-D. Therefore an approximate factorization of the 

implicit operator is required although the unconditional positivity is lost. Thus a small 

timestep is required so that factorization error does not ruin the positivity of the solution. 

For 2-D, the conventional ADI method can be used. The equation can be written as 

 

 n n[ I M ][ I M ][ I (P D)] v (M +M +P D)]vt t t tξ η ξ ηρ ρ ρ−∆ −∆ −∆ − ∆ = ∆ −     (5.22) 

 

where Mξ and Mη  are finite differences in the ξ and η  coordinate directions 

respectively, while Mξ and Mη  are the corresponding implicit operators. For an 

unsteady problem, the Alternating Direction Implicit (ADI) method can have 

convergence problems and requires several sub-iterations for every timestep. A more 

efficient factorization is suggested in [83]. However, for steady state problems, such 

subiterations are not required and the conventional ADI method can be applied. 

It should be noted that although the turbulence equations are solved implicitly, the 

mean flow equations can still be updated using explicit method. Such an approach is 

discussed in [86]. 

 

5.8 Boundary and Initial Conditions 

The eddy viscosity variable ν%  is put to zero on the no slip boundary. On the inlet 

boundary /10ν ν<%  is suggested in literature [83]. However, in case of a steady state 

flow over smooth flat plate with no shocks present, there is no instability to induce 

turbulence in the flow. Therefore, ν%  of the order of 10ν  has to be used to see 

turbulence effects. 

On the extrapolation boundaries like supersonic outflows, the Neumann condition is 

used, i.e.,  
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A uniform initial condition equal to the freestream value can be given.  
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CHAPTER VI 

RECONSTRUCTION AND LIMITERS 

 

6.1 Introduction 

The discussion of the last chapter assumed that the flux solver is of first order accuracy. 

To increase the accuracy to higher orders, reconstruction schemes are used. The 

reconstruction can be achieved in two steps: interpolation and limiting. In the 

interpolation step, the value of the flow variables is found at particular locations such as 

a cell interface or a vertex using the values of flow properties in the surrounding cells. In 

the limiter step the reconstructed values are recalculated to prevent oscillations to 

develop in the solution. These reconstructed values are then used as input to the flux 

solver. In an alternate postprocessing form, the reconstruction can also be applied to the 

calculated flux instead of applying them to the flow properties in the preprocessing form. 

However, only the former approach will be discussed here. 

 

6.2 Linear Interpolation 

In the previous chapter, it was assumed that the value at the cell center is constant 

throughout the cell region, the constant value being the value at the cell center. Thus the 

flowfield was approximated as a series of piecewise constant states. Such an approach is 

also known as Gudonov’s first order scheme [75]. Thus the flow conditions to the 

immediate left and right of the cell interface are given as 

1/ 2 1/ 2 1,L R
i i i iQ Q Q Q+ + += =  
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Fig 6.1 Left and right states of Q 

 

 

The locations of these variables are depicted in figure 6.1. 

Such a scheme tends to be inaccurate and causes smearing of flow features, 

especially shocks and discontinuities. One of the simplest methods of increasing this 

accuracy is to assume to flow property to vary linearly across a cell region. Thus we can 

define the interface values as
                           

 1/ 2 1/ 2

1/ 2 1 1 1/ 2

.( )

.( )

L
i i L i i

R
i i R i i

Q Q S x x

Q Q S x x
+ +

+ + + +

= + −

= − −
 (6.1) 

 
 The values of SL and SR depend on the choice of reconstruction method and the 

choice of limiter. Logically the simplest choice of SL and SR would be  

 
1

L i

R i

S Q

S Q +

= ∇

= ∇

r

r  (6.2) 

 
 The methods discussed in the coming sections are based on the above idea. Since 

information of nodes i or i+1 or both may be required for calculation of the slopes SL 

and SR, the stencil for the scheme will have 3 or more points. Therefore it is possible to 

increase the accuracy to higher orders by appropriately choosing these slopes.  

 

Two of the popular linear interpolations schemes are discussed here. 

iQ  1iQ +

1/ 2
L
iQ +  1/ 2

R
iQ +

i i+1 
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6.2.1 MUSCL Based Scheme 

The Monotone Upstream-centered Schemes for Conservation Laws (MUSCL) [68] 

based scheme is the most commonly used method for interpolation on structured grids. 

The left and right state values are calculated using the following relation 

 

 
1/ 2

1/ 2 1 1 1

1 [(1 ) (1 ) ]
4
1 [(1 ) (1 ) ]
4

L
i i i i

R
i i i i

Q Q

Q Q

κ κ

κ κ

− +
+

+ −
+ + + +

= + − ∆ + + ∆

= − − ∆ + + ∆
 (6.3) 

 

here 1 1,i i i i i iQ Q Q Q− +
− +∆ = − ∆ = −  and κ  is a parameter which blends the upstream 

and downstream information. The constraint of κ is 
 

1 1κ− ≤ ≤  

 

For the special case 1κ = − , the MUSCL scheme reverts to fully one sided scheme. 

In this study the fully one sided scheme was implemented.  

 

However the formulation given above is applicable to uniform grids only. For 

non-uniform grids, a modified MUSCL scheme [76] can be used: 

 

 
1/ 2 1

1/ 2 1 2 1

1 ( )( )
2
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L
i i L i i

R
i i R i i

Q Q r U U

Q Q r U U

ψ
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= − −
 (6.4) 

 
where  
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1 1

1 2 1

,i i i i
L R

i i i i

Q Q Q Qb cr r
Q Q a Q Q a

+ +

− + +

− −
= =

− −                (6.5)
 

 1 1 2 1|| || , || || , || ||i i i i i ia r r b r r c r r+ − + += − = − = −
r r r r r r  

 

Even though this method is applicable for non-uniform grids, it still assumes that the 

mesh on which the flow is being solved is orthogonal. Therefore MUSCL scheme cannot 

be applied to unstructured grids in the above two forms, (6.3) and (6.4). 

 

6.2.2 Green Gauss Reconstruction 

The Green Gauss reconstruction is based on the following exact integral relation: 

 

' '

ud undS
Ω ∂Ω

∇ Ω =∫ ∫
r

 
 

where 
Ω: volume for 3D/ area for 2D 
S: area for 3D/ perimeter for 2D 

u: Vx, Vy, ρ , P or T 

nr : the normal to cell face/edge 
 

These quantities are depicted in figure 6.2. Assuming that u varies linearly, the 

above relation can be approximated for as 

 

 0
1 ( )
2

N

i i i
i

ud u u n dS∇ Ω = +∑ r  (6.6) 
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Fig 6.2 Gradient at vertex 0 using values of immediate neighbors 1,2, and 3 

 

 

Therefore after calculating the gradient, the value at the interface can be 

reconstructed as 
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 It can be seen that unlike MUSCL scheme, we cannot control the proportion of 

upstream and downstream information to be used in reconstruction.  

 

6.3 Limiters 

The methods discussed above work well if the flow properties vary smoothly in the 

domain. However in presence of discontinuities or strong variation in properties, the 

above methods can result in oscillatory solutions and instability. This is because at such 

extreme conditions the value of the gradient calculated can be unusually high.  

0

1

23

4

5



 

 

107

Therefore limiters are used to limit the reconstructed values by scaling the value of the 

gradient. An ideal limiter should reduce the interpolation to first order Gudonov scheme 

in regions of severe discontinuities, and should have no effect in the smooth regions.  

For this study, the Total Variation Diminishing (TVD) Reconstruction Schemes are 

discussed.  

 

6.4 TVD Schemes 

Ideally the solution should be free of any sort of numerical oscillations. A scheme 

satisfying the monotonicity condition as well as the entropy condition will give such a 

solution. However, it is very difficult to devise higher order monotone schemes. 

Therefore the schemes are tested against a less severe condition which ensures 

oscillation free solutions. One such condition is the based on the Total Variation (TV) of 

the solution. Examples of monotonic and non-monotonic solutions are shown in figure 

6.3. 

 

 

 
Fig 6.3 Example of monotonic and non-monotonic solution 

Non-Monotonic Solution

Monotonic Solution

x 

u 
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TV is defined as 

                   

 uTV dx
xΩ

∂
=

∂∫  (6.8) 

               
 

which for discrete solution translates to 

 

 1( ) | |
N

i i
i

TV u u u+= −∑  (6.9)
                

 
 A numerical scheme is TVD if it satisfies the following condition: 

1( ) ( )n nTV u TV u+ ≤ . 

The useful property of TVD schemes is that the solutions are monotonicity 

preserving. However, these schemes do not satisfy the entropy condition.  

 

An example is shown here of how a limiter works. In the first step of reconstruction, 

the solution can be represented as shown in the fig 6.4. 
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Fig 6.4 Solution without use of limiter 

 

 

In this example, it can be seen that as we go across from cells 3 to 4, the values vary 

as u= uR2, uL3, uR3, uR4. It can be clearly seen that such a distribution is not monotonic. 

The function of the limiter is to ensure the TVD condition and thus ensure monotonicity. 

Thus after the second step of applying the limiter, the solution shown in the above 

example may typically look like the solution shown in fig 6.5. 
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Fig 6.5 Solution after using limiter 

 

 

Such a solution is monotonic locally at every interface. In the next two sections, 

description of two limiters used to ensure TVD conditions are given.  

 

6.4.1 MinMod Limiter 

Consider the interpolation step as given below 

 

 1/ 2 1/ 2( ) .( )L
i i i i i iQ Q r Q x xφ+ += + ∇ −

r r  (6.10)  

 

The effect of the limiter is introduced through the variableφ . It can be seen that 

limiter has no effect if the function 1φ = . For this case, Minmod limiter function [68] is 

defined as  
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( ) (1, )r m rφ =  
 

where r is defined as /r + −= ∆ ∆  and the function m is based on the minimum-modulus 

(minmod) function given as 
 

 ( , ) ( , ) ( ) max{0,min[| |, . ( )]}m x y m y x sign x x y sign x= =  (6.11) 

 
 This function returns 0 if x and y have different signs or the value of the argument 

with the smallest modulus. 

 The minmod limiter is popular for flow problems in which strong shocks are present. 

One of the disadvantages of this limiter is that it is not differentiable.  

 

6.4.2 Van Albada Limiter 

Using non-differentiable limiters can result in very slow convergence to a steady state 

solution. This is because such limiters can cause temporal oscillations due to which the 

residues never fall to the machine precision levels.  

 The Van Albada limiter [77] is a differentiable one. It is defined as  

 

 
2

2( )
1

r rr
r

φ +
=

+
 (6.12)

                
 
This limiter is good for steady state smooth flows. However, one of the disadvantages is 

that it can not be applied to unsteady flows. 
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CHAPTER VII 

NUMERICAL ISSUES 

 

7.1 Introduction 

As mentioned in [43], a very common joke shared amongst CFD practitioners correctly 

describes a perceived problem with numerical predictions: “Everyone believes 

experimental results except the person who performed the experiment, and no one 

believes numerical results except the person who performed the prediction.” Nowhere is 

this statement more true (and more of a problem) than in hypersonic flow simulation.  

The following complex features of hypersonic flows are what make their CFD 

analysis a challenging task: 

(a) Presence of vibrational, chemical nonequilibrium 

(b) Thin shock layers (high compression) 

(c) Entropy layers caused by highly swept and curved shock waves  

(d) Viscous/inviscid interactions  

(e) Real gas effects, including dissociation, ionization (high temperatures)  

(f) Rarefaction (high altitudes) 

In the next few sections, some of the common practices in CFD used to counter some 

of the above mentioned problems will be discussed. The main steps involved in 

developing a CFD solver are discussed in the next section. 

 

7.2 CFD Solver for Nonequilibrium Flow 

The general governing equation for single species flow in vibrational nonequilibrium can 

be written as 
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Where, 
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The inviscid and viscous flow matrices are written as 
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The general flowchart showing the important steps in the CFD methods used for 

solving the above equations can be depicted in fig. 7.1.  

 

 

 
Fig 7.1 Basic Steps for a general CFD solver 

Grid Generation 
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Post Processing of data 
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The presence of complex hypersonic flow features makes the above steps (specially 

the process of grid generation, calculation of residual fluxes using differencing scheme 

and updation of matrices using integration schemes) a challenging task. The approaches 

found in literature for these steps will be presented in the next few sections. 

 

7.3 Grid Generation 

Grid generation has made great strides over the past decades and a number of 

commercially available programs are available that do a reasonably good job of creating 

grids around complex geometries. However, many of these softwares fail when creating 

grids for CFD analysis of hypersonic flows due to its difficult requirements. Grid 

generation for complex geometries can take anywhere from weeks to months even after 

using these commercial softwares. 

Grids can be categorized as body fitted and non body fitted. The body fitted grids 

can be further categorized as structured and unstructured grids, while the non body fitted 

grids found in literature are the Cartesian grids. 

Most industry still relies on body fitted grids for the grid generation process. For 

such grids, surface geometry definition and grid generation are still considered to be the 

biggest bottlenecks in the CFD process. However, unstructured grids are gaining 

popularity over structured grids as the process is more or less automated and requires 

much less human hours. They also offer geometric flexibility and efficient refinement 

capabilities which are not available in structured grids. 

However even for unstructured grid generation, an initial explicit generation of 

surface grid is required which calls for a high level of expertise and has been one of the 

least automated steps in the numerical simulation process. 

The requirement of surface grids is removed when using the non body fitted 

Cartesian grids. In this case the surface grid is obtained as a byproduct when the whole 
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grid has been generated. Such grid also helps to get rid of highly skewed cells that are 

sometimes obtained on the boundaries using the former approach. They also remove the 

need for transformation from physical to computational space.  

However, such grids can cause timestep restriction, especially when the Cartesian 

grids intersect with the solid body giving rise to arbitrarily small cut cells. For steady 

state calculations, local time stepping can be used to avoid this limitation. 

The quality of grids can have significant effects on the hypersonic flow solutions. 

One of the factors is the orientation of the grid relative to a shock. The numerical 

schemes need to address how to handle shocks with the grid in different orientations to 

the shock (discussed by Kim et al. [44]). Mesh refinement is required in regions of high 

flow gradients, which can be challenging without the knowledge of where all of those 

regions are located a priori. Adaptive mesh refinement methods such as that given by 

Pirzadeh (2001) have proven useful for improving the grid in regions of high flow 

gradients. 

Near the surface of geometry, grid resolution can be crucial to the 

aerothermodynamic predictions being made. Papadopoulos et al. [45] showed that, “a 

computational mesh and a level of convergence which result in accurate surface-pressure 

and shear stress values do not guarantee accurate heat-transfer values.” It was also found 

that accurate predictions require careful monitoring of both the cell Reynolds number 

and the temperature jump near the wall. The cell Reynolds number is given by 

 

Re wall wall
cell

wall

a yρ
µ

∆
=

 

 

where, Recell is the cell Reynolds number,  

ρwall is the density at the wall,  
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αwall is the speed of sound at the wall,  

∆y is the y-step size of the cell,  

and µwall is the viscosity at the wall. 

This parameter helps to ensure that the initial grid spacing near the wall is small 

enough to accurately deal with the viscous and heat-transfer effects that are present at the 

surface.  

 

7.4 Time Integration Schemes 

In order to obtain a steady state solution of hypersonic flows, the marching of unsteady 

solutions in an explicit manner is widely used. However, when chemical reactions are 

taking place, this approach creates a problem. This is due to the presence of the source 

terms that represent the production of species from finite rate chemical reactions, which 

causes stiffness in the system of equations. 

Therefore a small CFL number is required which further results in limiting the 

timestep for the simulation. Thus the rate of convergence of the solution is affected. The 

problems listed here as well as the approaches used to avoid them are shown in fig. 7.2. 

These approaches are: 

(a) Sequential Method: In this method, the chemical equations are uncoupled from 

rest of the fluid dynamics equations and are solved sequentially [47]. 

(b) Point Implicit Method: For this approach, the chemical source terms are treated 

implicitly at the time step n+1 while evaluating the convective terms effectively 

[48]. 

(c) Implicit Method: The whole system of governing equations is solved implicitly 

in a coupled manner [49], [50].  

(d) Semi Implicit Method: This method is a combination of implicit as well as 

explicit schemes [51]. 



 

 

118

 

The implicit schemes, although computationally slower, had been very popular till 

recent times. The Implicit methods can be further categorized as Alternating Direction 

Implicit (ADI) and Lower-Upper (LU) methods.  

The ADI method has been a popular one, but its inefficiency in 3D calculations and 

the requirement of matrix inversion makes it unattractive for nonequilibrium flow 

simulations. The LU schemes are found to be much more efficient and are gaining 

popularity. The 

 

 

 

Fig 7.2 Timestepping limitations and the methods to eliminate it 

 

 

The LU schemes can be further categorized into two methods [52]: LU-SSOR 
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(symmetric successive over relaxation) and LU-SW (Steger Warming). While the 

LU-SSOR gives a simpler implicit operator with less temporal damping [52], the 

LU-SW converges faster but requires more computations for each iteration. The 

comparison of LU and ADI methods is shown in fig 7.3. 

 

 

 
Fig 7.3 Comparison of different Implicit methods 

 

 

7.5 Spatial Differencing Schemes 

A variety of important numerical schemes have been developed over the years 

specifically to deal with the shocks that are formed at supersonic and hypersonic speeds. 
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A majority of these methods fall into the “shock capturing” approach, where the 

equations of fluid motion are solved to determine shock locations and strengths. One of 

the first approaches of this kind was the explicit method of Lax & Wendroff (1960) and 

the predictor-corrector scheme of MacCormack (1969).  

A second method for predicting shocks is “shock fitting” approach, which was 

proposed by Moretti (1974). In this method, the Rankine-Hugoniot shock relations are 

used to determine shock jump conditions once the position of the shock is known. Most 

of the algorithms developed over the years belong to the shock capturing category. 

 It is very well known that shocks cause instabilities in numerical methods and the 

scheme should have the capability to take care of them. This is done either through 

explicit addition of numerical dissipation or through some sort of upwind differencing. 

However, the method of addition of numerical dissipation needed to dampen the shock 

leads to inaccurate predictions of viscous phenomenon such as vortical flows or 

boundary layers. 

Therefore upwind schemes are preferred for eliminating the problem of shock 

instabilities. Gudonov’s exact Reimann solver was the first scheme which was able to 

capture shock waves without inducing spurious oscillations. Although Reimann Solvers 

were widely used due to their robustness and high resolution of shock waves, they were 

computationally very expensive. 

Approximate Reimann Solvers were developed in order to make the above approach 

more practical. The flux difference schemes based on this method are Roe’s scheme [53], 

Osher’s scheme and the HLL scheme [54].  

Another approach, known as the flux vector splitting method, is used for upwinding. 

The popular schemes that fall under this category are Steger-Warming [55], Van Leer [56] 

and Advection Upstream Splitting Method (AUSM) by Liou & Steffen [57].  

The categorization of these upwind schemes and some advantages and 
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disadvantages are shown in the fig. 7.4. 

 

 

 

 

Fig 7.4 Classification of upwind schemes 
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CHAPTER VIII 

RESULTS 

The results obtained from the computational code for five test cases are presented in this 

chapter. The test cases and their intended purposes are shown in table 8.1.  

 

 

Test Case Purpose 

Geometric Conservation Law 

Test 

Verification of conservation of mass momentum 

and energy of the domain. 

Shock tube test Comparison of shock capturing capabilities of 

BGK and Steger Warming, Roe’s scheme 

Viscous flow over flat plate Testing capability of BGK in capturing the viscous 

effects 

Nonequilibrium hypersonic 

over blunt body using SW 

Comparison of performance of Green Gauss and 

MUSCL reconstruction scheme for supersonic 

flows 

Nonequilibrium hypersonic 

over blunt body using SW, BGK

Comparison of performance of SW and BGK 

schemes for nonequilibrium flows. 

 

Table 8.1 The test cases and their objectives 

 

 

8.1 Geometric Conservation Law Test 

By the way of its construction, the Finite Volume methodology ensures that CFD codes 

observe the Geometric Conservation Law (GCL). This is a necessary condition to 
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maintain the integrity of the physical conservation laws. In this test case, it is verified 

whether the present Finite Volume implementation ensures GCL or not. 

 

The geometry for the test case consists of a simple channel grid shown in fig 8.1. 

There are 100 cells along the x-direction and 50 cells along the y-direction. The ratio of 

specific heats is assumed to be constant at 1.4. At the start of the simulation, random 

velocities are assigned where the magnitudes of the velocities are less than the free 

stream velocity. The inflow is maintained at Mach 3. Since the inflow is supersonic, the 

inflow remains constant throughout the simulation. The wall boundaries are assumed to 

be adiabatic and frictionless.  

 

 

 

Fig 8.1 Mesh for the channel flow 

 

 

Since the inflow boundary conditions are unchanged, physically the whole domain 

should have identical values with the inflow when convergence is reached. However, a 

code not satisfying GCL would incorrectly introduce perturbations into the solution and 

will be expected to gain or lose total mass. 
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The test case was run for Steger Warming, Roe’s scheme and BGK scheme. The 

mass leakage in all the three cases turned out to be of the order of 10-16. The order of 

error is acceptable since it is close to the machine precision. Therefore, it can be 

concluded that the current formulation satisfies the GCL.  

 

8.2 Shock Tube Problem 

Using the 1-D shock tube problem, we can compare the ability of different schemes in 

resolving shocks, contact discontinuity and expansion fans. The two dimensional shock 

tube considered in the present simulation has 100 cells along x-direction from x=0 to 

x=1, and 50 cells along y-direction from y=0 to y=0.5. Symmetrical initial and boundary 

conditions along the y-direction allows the code to effectively solve a 1-D problem.  

Initially a diaphragm exists at x=0.5 m inside the shock tube. Conditions on the left 

of the diaphragm are specified to be 

 

3 21 / , 0 / , 100,000 /L L Lkg m u m s p N mρ = = =  

 

At the right of the diaphragm, the tube was filled initially with gas at a lower 

pressure and density 

 

3 20.01 / , 0 / , 1,000 /R R Rkg m u m s p N mρ = = =  

 

For the present test case, calorifically perfect gas was chosen. The simulation was 

started with the removal of the imaginary diaphragm. The results have been presented in 

figure. 8.2 and figure 8.3 for time t = 6.4 * 10-6 s. For this study, the temporal as well as 

the spatial order is 1. The schemes tested were Steger Warming, Roe’s Scheme and BGK 
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scheme.  

 

 

 
Fig 8.2 Pressure profiles along the shock tube 
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Fig 8.3 Velocity profiles along the shock tube 

 

 

From the results, it is evident that the Steger-Warming and Roe’s schemes do not 

give smooth shock profile and suffer from kinks in the solution. The Gas Kinetic or 

BGK method on the other hand does not produce in any such kinks. The reason for 

superior results from BGK scheme can be attributed to the difference in construction of 

these three schemes. The Steger-Warming and Roe’s scheme belong to the class of Wave 

based approaches. In such an approach, both fluxes as well as waves are modeled, 

specially the interaction between the various families of waves. For Euler equations, the 

wave speeds are found to be 

 1 2 3 4{ } { }i i i i i u a u u u aλ λ λ λ λ= = − +  

where i is the index of the cell. We can have situations where the wave velocities on the 

neighboring cells have different directions. There are two possibilities: 
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Compressive sonic points 

 

 
Expansive sonic points 

Fig 8.4 Compressive and expansive sonic points 

 

 

The expansive shock shown in figure 8.4 is not physically present since it violates the 

entropy condition [69]. However, numerical solvers are approximations of the exact 

solutions and are solved for finite dx and dt. They can permit such unphysical 

phenomenon in the solution. Therefore, both Steger Warming and Roe’s schemes allow 

expansion shocks in the solution and give rise to the unphysical kinks shown in the 

solution. 

To order to avoid such spurious phenomenon in the solution, the entropy fix methods 

are applied to modify these schemes. The basic idea behind such a fix is to increase the 

artificial viscosity in regions where expansion shocks can occur. Therefore, the 

expansion shock gets smeared and is no longer strong enough to have an effect on the 

final solution. However, such fixes can be highly grid dependent. Also, incorrect 

λL<0 λR>0

Cell i Cell i+1 

λL>0 λR<0

Cell i Cell i+1 
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solutions can be easily overlooked until they are compared with data from experiments 

or from more accurate simulation results.  

The BGK method, on the other hand, does not suffer from expansion shocks. The 

approach here is not wave-based but Boltzmann Equation-based. It has already been 

shown that the Boltzmann equation with BGK collision model satisfies the entropy 

condition. Therefore, we do not observe any kinks for the BGK scheme. 

 

8.3 Viscous Flow over Flat Plate: BGK Scheme 

In this section, the results from supersonic viscous flow over a flat plate are presented. 

The Crocco-Busemann relationship [78] was verified and the results were also compared 

with the exact numerical laminar-flow computations by van Driest [79]. For his 

computations, van Driest used the Crocco method [79] to solve the simultaneous 

differential equations of momentum and energy involved in such flows. Prandtl number 

for the flow is 0.71 and Sutherland law for viscosity was used to take into account the 

variation with respect to temperature.  

The fluid medium was taken to be air. The inflow Mach number was taken to be 3.0 

with a free stream temperature of 300 K and density of 1.19 kg/m3. The wall was 

assumed to be adiabatic.  
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Fig 8.6 Van Driest profile using BGK scheme. 

 

 

Although the results agree well with the Crocco-Busemann curve (figure. 8.5), there 

is some error for temperature when comparing with the Van Driest profile as seen in 

figure. 8.6. The maximum error occurs at the origin and is smaller than 7 %. Since the 

methods used by Van Driest is very different from the one used in the present case, some 

error can be expected. Although 7 % error is not very big, it can be further reduced by 

making the current approach more similar to approach used by Van Driest in terms of 

calculation of viscosity and heat transfer coefficient. However such an attempt resulted 

in affecting the stability of the BGK solver and further analysis would be required in 

order to reduce this error. 
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8.4 Reconstruction Schemes: Green Gauss and MUSCL Scheme 

As discussed in Chapter VI, accuracy of the Finite Volume schemes can be increased to 

higher orders using reconstruction schemes. In this study, the two popular approaches, 

namely Green Gauss Reconstruction and MUSCL scheme are investigated and compared 

using Steger-Warming scheme.  

Inviscid flow of N2 past a flat ended cylinder of nose radius 1.0, placed in a 

hypersonic uniform stream, is considered. The stream is assumed to be in thermal 

nonequilibrium. A description of computational mesh along with the freestream 

conditions is tabulated in the figure 8.7: 

 

 

Gas M∞ T∞(K) p∞(Pa) 

Nitrogen 6.5 300 50 

 

 

Fig 8.7 Computational mesh for the blunt body problem 
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The reasons for choosing to study a blunt body problem are: 

(a) Since the nose of hypersonic vehicles has a blunt shape, the results from a blunt body 

flow provides us with a preliminary picture of actual flight cases.  

(b) The bow shock obtained is not attached to the body and thus the effects of shock 

boundary layer interaction need not be considered. 
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Fig 8.8 Normalized temperature profiles along stagnation line 
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Fig 8.9 Contour plot for the translational temperature using Green Gauss scheme 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8.10 Contour plot for the translational temperature using MUSCL scheme 

2669.54
2511.53
2353.51
2195.5
2037.48
1879.46
1721.45
1563.43
1405.42
1247.4
1089.39
931.371
773.355
615.339
457.324

Translational Temperature (K) Contour (Green Gauss Reconstruction) 

2612.04
2457.92
2303.81
2149.69
1995.57
1841.46
1687.34
1533.23
1379.11
1224.99
1070.88
916.76
762.644
608.527
454.411



 

 

134

From the results (figures 8.8, 8.9 and 8.10), it is concluded that the MUSCL scheme 

is superior compared to the Green Gauss reconstruction scheme. The profile for 

vibrational temperature obtained using the Green Gauss method is underpredicted and 

suffers from oscillations. Similar oscillations are also observed in the contour plot for 

translational temperature.  

The Green Gauss reconstruction scheme, by virtue of its construction, is supposed to 

provide superior results compared to the MUSCL scheme for non-orthogonal grids. 

Therefore the former approach is more popular for unstructured grid solver. Since, the 

grid for the current problem is structured and almost orthogonal, it is expected that the 

results obtained would not be superior to those obtained from the MUSCL scheme. 

However, it was unexpected to see the results being inferior and oscillatory when 

compared to the MUSCL Scheme. 

To find the possible reasons for the above observation, Green Gauss gradient 

calculation has to be given a closer look. For a cell with N sides, the gradient is defined 

as   

 

N

i i i
i

ud u n dS∇ Ω =∑ r

 

 

Therefore, the calculation of gradient uses information from all of the surrounding 

neighbors. The reconstructed values therefore, have contribution from all the neighbors. 

Hence the flux being calculated is influenced by cells in upstream as well as downstream 

of the flow. Since in a supersonic flow the information travels only in one direction, the 

use of Green Gauss scheme affects the upwinding of the Steger Warming scheme and 

causes numerical oscillations in the solution. The MUSCL scheme, on the other hand, 

uses one-sided information for the construction of gradients and thus maintains the 
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upwinding nature of the scheme. Therefore, in solving high Mach number flows on 

structured meshes, MUSCL scheme has clear advantages.  

 

8.5 Nonequilibrium Hypersonic Flow over Blunt Body 

In this section, the performances of the continuum based schemes (Steger Warming and 

Roe’s scheme) and the Boltzmann based schemes (BGK scheme) are compared for 

hypersonic nonequilibrium flows. The test case used for this purpose is the blunt body 

problem. The reasons for selecting such a test case were discussed in previous section. 

The test case also provides the opportunity to test the BGK scheme for any possible 

failure because of the carbuncle phenomenon (described later in the section).  

The grid and flow details are exactly the same as previous test case. The initial 

condition in the domain is assumed to be the same as the free stream condition. The flux 

is calculated using Steger Warming, Roe’s Scheme and BGK scheme. Second order 

accuracy is obtained using the MUSCL scheme along with the Minmod limiter. 

Iterations are carried out until steady state is reached. The vibrational nonequilibrium 

physics is modeled using the Landau Teller method. The expression for the vibrational 

relaxation time proposed by Millikan and White [19] is used. The specific heat ratio is 

varied with temperature using the relation:  

 

(7 / 2)
(5 / 2)

vib

vib

RT e
RT e

γ +
=
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Fig 8.11 Contour plot for the translational temperature using Roe’s scheme  
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Fig 8.12 Contour plot for the Mach number using Roe’s scheme  
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Fig 8.13 Contour plot for the translational temperature using Steger Warming  
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Fig 8.14 Contour plot for the vibrational temperature using Steger Warming  

 

Translational Temperature (K) Contour (BGK Scheme) 

Fig 8.15 Contour plot for the translational temperature using BGK’s scheme 
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Vibrational Temperature (K) Contour (BGK Scheme) 
Fig 8.16 Contour plot for the vibrational temperature using BGK’s scheme 

 

 

From the contour plots in figures 8.11 and 8.12, it can be clearly seen that the 

expected bow shape of the shock is not retrieved using Roe’s scheme. Thus Roe’s 

scheme fails to produce correct results for the blunt body flow. The phenomenon 

observed in the plot is called the carbuncle solution. By definition, the carbuncle solution 

is characterized by a stable solution that includes a recirculating pointed region ahead of 

the stagnation point. The phenomenon was first reported in 1988 by Peery and Imlay 

[80]. The onset of such a solution is thought to be associated with an unfavorable 

coupling between the normal and transverse directions across the shock wave. In order 

to get rid of such spurious solutions, entropy fixes are applied. As pointed out in the 

previous section, such fixes increase the artificial dissipation in order to smear the 

expansion shocks.  
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However as seen in figures 8.13 and 8.14, the Steger-Warming scheme, which 

belongs to the Flux Vector Splitting (FVS) family, does not suffer from the carbuncle 

phenomenon. One of the main reasons is that FVS schemes, due to their dissipative 

nature, dampen the transverse perturbations in the planar shock problem. It should be 

noted that the scheme is able to capture the bow shock correctly, even though the 

solution for 1-D shock tube problem suffered from kinks. This is because solutions 

which look physically correct can be obtained even if entropy condition is violated. 

Therefore for the present case, results besides the contour plots are needed to ensure the 

reliability of these results. 

From figures 8.15 and 8.16 it can be said that the BGK scheme is able to capture the 

bow shock accurately, and the contour plots also appear admissible. Comparing to the 

shock profile obtained from Steger Warming scheme, it is observed that BGK produces 

similar profiles close to the stagnation line. However as we move away from the line of 

symmetry, slight perturbations can be seen in the profile obtained from the Steger 

Warming scheme. These perturbations can be attributed to the loss of shock-grid 

alignment as one move away from the center line. Surprisingly, the BGK scheme was 

not affected by this misalignment. Although, the most probable cause seems to be the 

excessive dissipation of Steger Warming scheme, it is difficult to point out the exact 

mechanism for the cause. 

The vibrational temperature contour plots (figure 8.14 and figure 8.16) for both the 

BGK and the Steger Warming appear to be physically correct. From the contour plots, 

the mechanism for the onset of vibrational nonequilibrium in the flow can be studied. 

Downstream of the bow shock, there is a sudden rise in the translational temperature, 

which can be attributed to the abrupt rise in pressure (which in turn can be attributed to 

the sudden compression of the flow). However, there is no such mechanism available for 

the vibrational temperature to change abruptly. Since the translational and vibrational 



 

 

142

temperatures are no longer equal, the source term in the vibrational temperature gets 

activated. 

  

 ( ) ( )eq
v v tr v vibde e T e T

dt τ
−

=
 

 
Since the source term is positive, it contributes to an increase in vibrational energy 

and thus the vibrational temperature. It should be noted that the source term is not large 

enough to produce a sudden jump in the vibrational energy across the shock.  

The variation of the two temperatures along the stagnation line is shown in figure 

8.17. The stagnation line is along the x-axis from x = -3 to x = -1. Comparisons are made 

against Giordano et al.[81], who uses a finite volume central difference scheme. The 

dissipation is provided using an adaptive dissipation model which in turn uses a blend of 

second and fourth order differences. Landau Teller model is used to account for 

vibrational energy. 
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Fig 8.17 Normalized temperature profiles along stagnation line 
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As can be seen in figure 8.17, the temperature profile is almost identical for 

Giordano, Steger Warming and BGK scheme. The shock standoff positions obtained are 

different for the all the three cases. However the error in shock position is still less than 2 

%. Such small differences can be expected when different schemes are used for a shock 

simulation. There is a small dip in the temperature profile just ahead of the shock in case 

of BGK scheme. The cause for this numerical oscillation will be discussed in a later 

section.  

In the vibrational temperature profile (figure 8.17), it can be observed that the 

profile obtained from Steger Warming scheme is closer to the one obtained by Giordano 

et. al. However both SW and Giordano results are far from the more accurate results 

obtained by Josyula[9] for the same test case. In his computation, Josyula uses the 

Multiquantum transition (MQT) approach to account for the vibrational nonequilibrium. 

It has been discussed in previous chapter that the MQT approach is an almost exact 

calculation to account for vibrational nonequilibrium and thus the predictions can be 

expected to be much closer to real flows. Therefore, a more informative comparison 

would be the one shown in figure 8.18, where the vibrational temperature profiles are 

compared with the profile obtained by Josyula. 

From figure 8.16, it can be concluded that when compared to results obtained by 

Josyula, at the stagnation point the Steger Warming scheme underpredicts the vibrational 

temperature by 27.5 %, whereas the BGK scheme underpredicts by 16.2 %. Since the 

Landau Teller model has been used by both Steger Warming and BGK schemes, some 

errors are expected. However BGK scheme does show an improvement of almost 11 % 

when compared to Steger Warming scheme.  

The Steger Warming scheme shows yet another discrepancy for the vibrational 

temperature profile at x = -1.0.  The profile almost becomes parallel to the x-axis at this 

point. This implies that the vibrational temperature obtained by SW becomes constant 
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very near to the stagnation point. This is not the case with the results obtained by Josyula 

[9], where vibrational temperature keeps increasing even at the stagnation point. The 

reason for this drop is again the high inherent dissipation present in the Steger Warming 

scheme. The BGK scheme, on the other hand, does not show such a drop in slope and 

thus once again outperforms the Steger Warming scheme.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

146

CHAPTER IX 

CONCLUSIONS AND SCOPE FOR FUTURE WORK 

 

9.1 Conclusions 

After a detailed literature survey and observations from the numerical results obtained 

for various test cases, the following conclusions have been made.  

 

(a) To account for vibrational nonequilibrium the Multiquantum transition or vibrational 

kinetics method is the more accurate compared to Landau Teller model and Ruffin’s 

model. However, due to its high computational demands, the Landau Teller(L-T) model 

is more popular because of its simplicity and ease of implementation. The L-T model is 

especially more popular for blunt body problems. This is because for flow over blunt 

body undergoes compression. For such a case the V-T transfer dominates all the 

vibrational energy levels. Hence even though the L-T model takes into account only the 

V-T transfer (neglecting the V-V-T transfer), reasonable predictions can be expected 

from it.  

(b) To take into account another effect of nonequilibrium: on the chemical reaction rate 

constants, the main approaches found in literature are those based on physiochemical 

models and on semi empirical models. The most popular model used currently is the 

Park’s two temperature model, which is simple and easy to implement in CFD codes. 

(c) As in chemical models, two approaches can be used to model transport coefficient: 

kinetic theory and curve fit based models. It was found that the curve fit models are 

preferred for hypersonic flow simulations. 

(d) From the results of shock tube problem, it can be concluded that the Boltzmann BGK 

method has a clear advantage over the continuum based Steger Warming and Roe’s 



 

 

147

schemes. The Steger Warming scheme, belonging to the Flux Vector Splitting class, and 

Roe’s scheme, belonging to the Flux Difference Splitting class, may allow entropy 

violating solutions and is the reason for the inaccurate results obtained. The Boltzmann 

BGK always satisfies the entropy condition and hence accurately captures the shock. 

(e) The Green Gauss reconstruction scheme performs poorly when compared to MUSCL 

scheme when used to simulate vibrational nonequilibrium flow. It was found that the 

Green Gauss scheme affects the upwinding of the scheme and thus results in oscillations 

in the solution.  

(f) The Boltzmann BGK scheme outperforms in Steger Warming schemes and Roe’s 

schemes for the case of nonequilibrium flow over a blunt body. The Roe’s scheme 

completely fails since it allows for expansion shocks in the solution. The Steger 

Warming scheme, on the other hand produces poorer results due to excessive dissipation. 

Although these failings can be avoided by using entropy fixes, such fixes tend to be 

highly grid dependent. Since the hypersonic aircrafts have a blunt shape for the nose, the 

Boltzmann BGK scheme seems to be a better option for simulating actual flight cases. 

  

9.2 Scope for Future Work 

(a) The Mutliquantum transition model to account for vibrational nonequilibrium can be 

implemented so that the code can be used to solve expanding flows as well. 

(b) The chemical nonequilibrium effects can be added by implementing the Park’s two 

temperature model. 

(c) The relation for relaxation time in the BGK model was derived assuming the 

nonequilibrium distribution to be a first order expansion around the equilibrium 

distribution. However a modified relaxation time can be implemented using a higher 

order expansion for the nonequilibrium distribution function. This would enable the code 

to be applicable to higher Knudsen number flows. 
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(d) The turbulence effects can be included using a one equation Spalart Allmaras model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

149

REFERENCES 

[1] Anderson JD Jr. Hypersonic and High Temperature Gas Dynamics. 

McGraw-Hill;New York, 1989. 

[2] Napolitano LG. Belotserkovski OM.Computational Gasdynamics. CISM Courses and 

Lectures n. 40; New York,1975. 

[3] Park C. Nonequilibrium Hypersonic Aero Thermodynamics. John Wiley and Sons: 

New York, 1990. 

[4] Ivanov MS, Gimelshein SF. Computational Hypersonic Rarefied Flows. Annu. Rev. 

Fluid Mech. 1998; 30:469–505. 

[5] Leonardo CS, Boyd ID. Development of an Unstructured Navier-Stokes Solver for 

Hypersonic Nonequilibrium Aerothermodynamics. 38th AIAA Thermophysics 

Conference, Toronto, Canada, 6-9 June 2005. 

[6] Schwartzentruber TE, Boyd ID. Detailed Analysis of a Hybrid CFD-DSMC Method 

for Hypersonic Non-Equilibrium Flows. 38th AIAA Thermophysics Conference, 

Toronto, Ontario Canada, 6-9 June 2005. 

[7] Josyula E, Bailey WF. Multiquantum Vibrational Energy Exchanges in 

Nonequilibrium Hypersonic Flows. 38th AIAA Thermophysics Conference, Toronto, 

Ontario Canada, 6-9 June 2005. 

[8] Josyula E, Bailey WF., Nonequilibrium Relaxation in High Speed Flows. 37th AIAA 

Thermophysics Conference, Portland, Oregon, 28 June-1 July 2004. 

[9] Josyula E. Computational Study of Vibrationally Relaxing Gas Past Blunt Body in 

Hypersonic Flows, Journal of Thermophysics and Heat Transfers, vol. 14, 2000; pp. 

18-26. 

[10] Adamovich IV, Rich JW. Three-dimensional nonperturbative analytic model of 

vibrational energy transfer in atom–molecule collisions. The Journal of Chemical 

Physics, vol. 109, Issue 18, November 8, 1998, pp.7711-7724. 



 

 

150

[11] Herzfeld KF, Litovitz TA. Absorption and Dispersion of Ultrasonic Waves. 

Academic Press:. New York, 1959. 

[12] Rapp D, Sharp TE. Vibrational Energy. Transfer in Molecular Collisions Involving 

Large. Transition Probabilities. J. Chem. Phys, vol. 38, 1963; pp 2641. 

[13] Rapp D, Golden PE. Resonant and Near Resonant Vibrational—Vibrational Energy 

Transfer between Molecules in Collisions, J. Chem. Phys. vol. 40, 1964; pp 3120 . 

[14] Sharma RD, Brau CA. Energy Transfer in Near-Resonant Molecular Collisions due 

to Long-Range Forces, J. Chem. Phys, vol. 50, 1969; pp 924-930. 

[15] Kerner EH, Note on The Forced and Damped Oscillator in Quantum Mechanics, 

Can. J. Phys, vol. 36, 1958.: pp 371. 

[16] Treanor CE. Vibrational Energy Transfer in High Energy Collisions, J. Chem. Phys, 

vol. 43, 1965; pp 532. 

[17] Zelechow A, Rapp D, Sharp TE. Vibrational-Vibrational Translational Energy 

Transfer Between Two Diatomic Molecules, J. Chem. Phys, vol. 49, 1968; pp 286. 

[18] Kelley JD, Vibrational Energy Transfer Processes in Collisions between Diatomic 

Molecules, J. Chem. Phys. 56, 1972; pp 6108. 

[19] Millikan RC, White DR. Systematics of Vibrational Relaxation, J. of Chem. Phys., 

vol. 39, 1963; pp. 3209–3213. 

[20] Gupta RN, Yos JM, Thompson RA. A Review of Reaction Rates and 

Thermodynamic and Transport Properties for the 11 Species Air Model for 

Chemical and Thermal Nonequilibrium Calculations to 30000 K, NASA 

TM-101528, 1989. 

[21] Hammerling P, Teare JD, Kivel B. Theory of Radiation from Luminous Shock 

Waves in Nitrogen, Physics of Fluids, vol. 2, no. (4), 1959; pp. 422–426. 

[22] Treanor CE, Marrone PV. Effects of Dissociation on the Rate of Vibrational 

Relaxation, Physics of Fluids, vol. 5, no. (9), 1962; pp. 1022–1026. 



 

 

151

[23] Marrone PV, Treanor CE. Chemical Relaxation with Preferential Dissociation from 

Excited Vibrational Levels, Physics of Fluids, vol. 6, no. (9), 1963; pp. 1215–1221. 

[24] Josyula E, Bailey WF, Xu K. Nonequilibrium Relaxation in High Speed Flows, 37th 

AIAA Thermophysics Conference, Portland, Oregon, 28 June - 1 July 2004. 

[25] Knab O, Fruhauf HH, Messerschmid EW. Theory and Validation of the Physically 

Consistent Coupled Vibration-Chemistry-Vibration Model, Journal of 

Thermophysics and Heat Transfer, vol. 9, no. (2), 1995; pp. 219–226. 

[26] Curtiss C, Hirschfelder JO. Transport Properties of Multicomponent Gas Mixtures, 

J. Chem. Phys., vol. 17, no. (6), 1949; p. 550-555. 

[27] Hirschfelder JO, Curtiss CF, Bird RB. Molecular Theory of Gases and Liquids, 

John Wiley and Sons, New York, 1954. 

[28] Hirschfelder JO. Heat Conductivity in Polyatomic or Electronically Excited Gases 

II., J. Chem Phys., vol. 26, no. (2), 1957; pp. 282-285. 

[29] Wilke CR. A Viscosity Equation for Gas Mixtures, J. Chem. Phys, vol. 18, no.(4) , 

1950; p. 517-519. 

[30] Mason E, Saxena S. Approximate Formula for the Thermal Conductivity of Gas 

Mixtures, Physics of Fluids, vol. 1, no. (5), 1958; pp. 361-369. 

[31] Hanson C. Approximations for the Thermodynamic and Transport Properties of 

High-Temperature Air, NASA TR-50, 1960. 

[32] Viegas J, Howe J. Thermodynamic and Transport Property Correlation Formulas 

for Equilibrium Air from 1,000 K to 15,000 K, NASA TN D-1429, 1962. 

[33] Blottner F. Chemically Reacting Viscous Flow Program for Multi-Component Gas 

Mixtures, Sandia Labs Report SCRR-70-754, 1971. 

[34] Candler G. The Computation of Weakly Ionized Hypersonic Flows in 

Thermo-Chemical Nonequilibrium, Journal of Thermophysics and Heat Transfer, 

vol. 5, no.(3) , 1991; pp 266-273. 



 

 

152

[35] Macheret SO, Rich JW. Nonequilibrium Dissociation Rates behind Strong Shock 

Waves. Chemical Physics, vol. 174, no.(1),1993; pp 25-43. 

[36] Macheret SO, Fridman AA, Adamovich IV, Rich JW, Treanor CE. Mechanisms of 

Nonequilibrium Dissociation of Diatomic Molecules. Joint Thermophysics and Heat 

Transfer Conference, 6th, Colorado Springs, Colorado, 20-23 June 1994. 

[37] Gonzales DA, Varghese P.L. Evaluation of Simple Rate Expressions for 

Vibration-Dissociation Coupling. Journal of Thermophysics and Heat Transfer, vol 

8, no.(2), 1994; pp 236-243. 

[38] Kiefer JH, Hadjuk JC. A Vibrational Bias Mechanism for Diatomic Dissociation : 

Induction Times and Steady Rates for 02, H2 and D2 Dilute in Argon,. J. Chem. Phys,. 

vol. 38, 1979; pp 329-340. 

[39] Sharma SP, Huo WM., Park C. Rate Parameters for Coupled Vibration-Dissociation 

in a Generalized SSH Approximation. Jour. Thermo. Heat. Transf,. vol. 6, no.(1), 

1992; pp 9-21. 

[40] Losev SA, Makarov VN, Pogosbekyan MJ, Shatalov OP. Thermochemical 

Nonequilibrium Kinetic Models in Strong Shock Waves in Air. Joint Thermophysics 

and Heat Transfer Conference, 6th, Colorado Springs, Colorado, 20-23 June 1994. 

[41] Park C. Assessment of a Two-Temperature Kinetic Model for Dissociating and 

Weakly Ionizing Nitrogen. AIAA and ASME, Joint Thermophysics and Heat 

Transfer Conference, 4th, Boston, Massachusetts, June 2-4, 1986. 

[42] Palmer G. An Assessment of Transport Property Methodologies for Hypersonic 

Flows, AIAA, Aerospace Sciences Meeting & Exhibit, 35th, Reno, Nevada, Jan. 6-9, 

1997. 

[43] Bertin JJ, Cummings RM. Critical Hypersonic Aerothermodynamic Phenomena. 

Annu. Rev. Fluid Mech. vol. 38, 2006; pp 129–57. 

[44] Kim KH, Kim C, Rho OH. Methods for the Accurate Computations of Hypersonic 



 

 

153

Flows: AUSMPW+ scheme. J. Comput. Phys, vol. 174, 2001; pp 38–80. 

[45] Pirzadeh S. Vortical Flow Prediction Using an Adaptive Unstructured Grid Method. 

RTO Applied Vehicle Technology (AVT) Panel, Loen, Norway, May 2001. 

[46] Papadopoulos P, Venkatapathy E, Prabhu D, Loomis MP, Olynick D. Current 

Grid-generation Strategies and Future Requirements in Hypersonic Vehicle Design, 

Analysis, and Testing., Appl. Math. Model, vol. 23, 1999; pp 705–735. 

[47] Ait-Ali-Yahia D, Habashi WG. Finite Element Adaptive Method for Hypersonic 

Thermochemical Nonequilibrium Flows. AIAA Journal, vol. 35, no. (8), August 

1997; pp 1294. 

[48] Palmer G, Venkatapathy E. Comparison of Nonequilibrium Solution Algorithms 

Applied to Chemically Stiff Hypersonic Flows. AIAA Journal, vol. 33, no. (7), July 

1995; pp 1211-1219. 

[49] Ju Y. Lower-Upper Scheme for Chemically Reacting Flow with Finite Rate 

Chemistry. AIAA Journal, vol. 33, no. (7), July 1995; pp 1418-1425. 

[50] Park C, Yoon S. Fully Coupled Implicit Method for Thermochemical 

Nonequilibrium Air at Suborbital Flight Speeds. AIAA Computational Fluid 

Dynamics Conference, 9th, Buffalo, New York; 13-15 June 1989;. pp. 440-449. 

[51] Bertolazzi E. A Finite Volume Scheme for Two Dimensional Chemically Reactive 

Hypersonic Flow. International Journal of Numerical Methods for Heat & Fluid 

Flow, vol. 8, no. (8), 1998; pp 888-933. 

[52] Tsai YLP, Hsieh KC. Comparative Study of Computational Efficiency of Two LU 

Schemes for Non-Equilibrium Reacting Flows. Aerospace Sciences Meeting, 28th, 

Reno, Nevada, Jan 8-11, 1990.  

[53] Roe PL. Approximate Riemann Solver, Parameter Vector and Difference Schemes, 

Journal of Computational Physics, vol. 43:1981: pp 357-372,  

[54] Harten A, Lax PD, Leer BV. On Upstream Differencing and Godunov-type 



 

 

154

Schemes for Hyperbolic Conservation Laws, SIAM Rev., vol. 25, 1983; pp 35-61. 

[55] Steger JL, Warming RF. Flux Vector Splitting of the Inviscid Gas Dynamics 

Equations with Application to Finite Difference Methods. Journal of Computational 

Physics, vol. 40, 1981, pp 263-293. 

[56] B. Van Leer. Flux-Vector Splitting for the Euler Equations, Lecture Notes in Physics, 

170:507-512, 1982;.pp 507-512. 

[57] Liou MS, Steffen CJ. A New Flux Splitting Scheme, Journal of Computational 

Physics, vol. 107, July 1993, pp.23-39. 

[58] Ruffin SM. Vibrational Energy Transfer of Diatomic Gases in Hypersonic 

Expanding Flows, PhD. Dissertation, SUDDAR 635, Stanford Univ., Stanford, 

California, June 1993. 

[59] Ruffin SM. Prediction of Vibrational Relaxation in Hypersonic Expanding Flows 

Part I : Model Development. Journal of Thermophysics and Heat Transfer, vol. 9, 

no. (3), 1995; p. 432. 

[60] Ruffin S M. Prediction of Vibrational Relaxation in Hypersonic Expanding Flows 

Part II: Results. Journal of Thermophysics and Heat Transfer, vol. 9, no. (3), 1995; 

pp. 438. 

[61] Wang WL, Boyd ID. Hybrid DSMC-CFD Simulations of Hypersonic Flow over 

Sharp and Blunted Bodies, 36th AIAA Thermophysics Conference, Orlando Florida, 

June 23-26, 2003. 

[62] Anderson JD. Computational Fluid Dynamics: The Basics with Applications, 

McGraw-Hill: New York, 1995. 

[63] MacCormack RW. The Effect of Viscosity in Hypervelocity Impact Cratering, 

AIAA Paper, 1969; pp 354. 

[64] Hirsch C. The Finite Difference Method, Numerical Computation of Internal and 

External Flows, vol. 1, chap. 4, John Wiley and Sons: Chichester, United Kingdom, 



 

 

155

1988, pp. 167–200. 

[65] Hirsch C, Finite Volume Method and Conservative Discretizations, Numerical 

Computation of Internal and External Flows, vol. 1, chap. 6, John Wiley and Sons: 

Chichester, United Kingdom, 1988, pp. 237–264.  

[66] Rizzi AW, Inouye M. Time-Split Finite-Volume Method for Three-Dimensional 

Blunt-Body Flow, AIAA Journal, vol. 11, no. (11), Nov. 1973; pp. 1478–1485. 

[67] Hirsch C. The Finite Element Method, Numerical Computation of Internal and 

External Flows, vol. 1, chap. 5, John Wiley and Sons: Chichester, United Kingdom, 

1988, pp. 201–236. 

[68] Hirsch C. Numerical Computation of Internal and External Flows, John Wiley & 

Sons: New York 1991. 

[69] Laney CB. Computational Gas Dynamics. Cambridge University Press: New York 

1998. 

[70] Harris S. An Introduction to the Theory of the Boltzmann Equation, Dover 

Publications: New York 1971.  

[71] Bhatnagar PL, Gross EP, Krook M. A Model for Collision Processes in Gases. Phys. 

Rev., 1954; pp. 511. 

[72] Vincenti WG, Kruger CH. Introduction to Physical Gas Dynamics. John Wiley & 

Sons: New York 1965. 

[73] Xu K, Martinelli L, Jameson A, Gas-kinetic Finite Volume Methods, Flux-Vector 

Splitting, and Artificial Diffusion. Journal of Computational Physics, vol. 120, 

no.(1), Aug. 1995; p.48-65. 

[74] Xu K. A Gas-Kinetic BGK Scheme for the Navier-Stokes Equations and Its 

Connection with Artificial Dissipation and Godunov Method. Journal of 

Computational Physics, vol. 171, no (1), 20 July 200; pp. 289-335. 

[75] Godunov SK. A Difference Scheme for Numerical Computation of Discontinuous 



 

 

156

Solution of Hydrodynamic Equations, Matematicheskii Sbornik, vol. 47, 1959; pp. 

271–306 (in Russian). 

[76] Leonardo S, Boyd I. Numerical Simulation of Weakly Ionized Hypersonic Flow for 

Reentry Configurations. 9th AIAA/ASME Joint Thermophysics and Heat Transfer 

Conference, San Francisco, California, 5-8 June, 2005. 

[77] Choi H, Liu JG. The Reconstruction of Upwind Fluxes for Conservation Laws: Its 

Behavior in Dynamics and Steady State Calculations, Journal of Computational 

Physics, vol. 144, no. (2), Aug. 1998; pp. 237–256. 

[78] White FM. Viscous Fluid Flow. McGraw Hill: New York 2005. 

[79] Van Driest R. Investigation of Laminar Boundary Layer and Compressible Fluids 

Using the Crocco. Method. Technical Note. TN. 2597, NACA, January. 1952. 

[80] Peery KM , Imlay ST. Blunt Body Flow Simulations, AIAA Paper 1988; pp 2924. 

[81] Belluci GD, Colonna V, Capitelli G, Armenise MI, Bruno C. Vibrationally Relaxing 

Flow of N2 Past an Infinite Cylinder. Journal of Thermophysics and Heat Transfer, 

vol. 11, no.(1), 1997; pp. 27-35. 

[82] Tennekes H, Lumley JL. A First Course on Turbulence. IBM Univers Medium; 

Boston, Massachusetts 1972. 

[83] Spalart PR, Allmaras SR A One-Equation Turbulence Model for Aerodynamic 

Flows. AIAA Paper, January 1992; pp 439. 

[84] Baldwin BS, Barth TJ. A One-equation Turbulence Transport Model for High 

Reynolds Number for Wall-Bounded Flows. NASA TM 102847, 1990.

[85] Schlichting, H. Boundary Layer Theory, McGraw-Hill: New York, 1979. 

[86] Jiang YT, Damodaran M, Lee KH. High Resolution Finite Volume Computation of 

Turbulence Transonic Flow Past Airfoils. AIAA Journal, vol. 35, no.(7), July 1997; 

pp 1134-1142. 

[87] Raman IR. http://neon.otago.ac.nz/chemlect/chem306/pca/IR_Raman/ 



 

 

157

Hyperphysics, Principal Component Analysis, University of Otago, New Zealand, 

2007 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

158

 

VITA 

 
Name:   Sunny Jain 
 
Address:  H.R. Bright Building, Rm. 631B 
     3141 TAMU 
     College Station, TX 77843-3141 
 
Education: B.Tech., Aerospace Engineering, Indian Institute of Technology Bombay,             

2005 
     M.S., Aerospace Engineering, Texas A&M University, 2007 
 

 

 

 

 

 


