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ABSTRACT 

 

An Experimental Comparison of Wireless Position Locating Algorithms Based on 

Received Signal Strength.  (December 2008) 

Felix Gutierrez, Jr., B.S., The University of Texas at Austin 

Chair of Advisory Committee: Dr. Scott Miller 

 

 This thesis presents and discusses research associated with locating wireless 

devices.  Several algorithms have been developed to determine the physical location of 

the wireless device and a subset of these algorithms only rely on received signal strength 

(RSS).  Two of the most promising RSS-based algorithms are the LC and dwMDS 

algorithms; however each algorithm has only been tested via computer simulations with 

different environmental parameters.  To determine which algorithm performs better (i.e., 

produces estimates that are closer to the true location of the wireless device), a fair 

comparison needs to be made using the same set of data.  

 The goal of this research is to compare the performance of these two algorithms 

using not only the same set of data, but data that is collected from the field.  An 

extensive measurement campaign at different environments provided a vast amount of 

data as input to these algorithms.  Both of these algorithms are evaluated in a one-

dimensional (straight line) and two-dimensional (grid) setting.  In total, six environments 

were used to test these algorithms; three environments for each setting.   
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The results show that on average, the LC algorithm outperforms dwMDS in most 

of the environments.  Since the same data was inputted for each algorithm, a fair 

comparison can be made and doesn’t give any unfair advantage to any particular 

algorithm.  In addition, since the data was taken directly from the field as opposed to 

computer simulations, this provides a better degree of confidence for a successful real-

world implementation. 
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1. INTRODUCTION 

 

 There is no doubt that the first decade of the 21st century has seen a remarkable 

rise in the creation and usage of wireless devices.  However, with the freedom of 

untethered communication comes the price of knowing (with absolute certainty) the 

physical location of the transmitting device.  To physically locate the device is a process 

known as “position locating.”  One can think of many reasons to locate wireless devices.  

For example, with the increased use of RFID tags on consumer products, the idea of 

having a building stocked with these wireless devices is not a farfetched idea.  A person 

could use a position locating process to try and find a piece of inventory in a warehouse 

or perhaps a supermarket shelf.   To implement such a system, how would an engineer 

locate the wireless device?  A global positioning system is one solution, but if one 

considers the current cost involved per unit and a large number of units, that solution 

becomes infeasible.  Instead, engineers have developed other means to try to locate 

wireless devices such as using directional antennas, timing, connectivity, and signal 

strength.   

In the directional antenna case, a receiving unit (denoted as a “receiver” (RX)) 

can determine the direction of the impinging electromagnetic (EM) waves sent from a 

transmitting device (denoted as a “transmitter” (TX)).  With a timing approach, if a RX 

knew when a signal was sent and recorded the time of arrival (TOA), the RX can 

calculate the distance to the TX by using the velocity of the EM wave (usually the speed 

____________ 
This thesis follows the style of IEEE Transactions on Communications. 
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of light in a vacuum).  In a connectivity approach, a crude distance estimate is given 

simply if an RX can connect to a TX.  If the RX can connect, one distance estimate is 

returned, if it can’t, another distance estimate is returned.  The advantage of this 

approach is the ease of implementation.   The last approach is the one focused on in this 

research and that is received signal strength (RSS).  If the transmitting power is known 

as well as a few environmental parameters, the RX can use the RSS to determine the 

distance to the TX.  Using RSS as a way to locate wireless devices is a very attractive 

idea since the source of the information is readily available.  If a device can simply 

connect to other devices, then it can try to locate itself.  There is almost zero additional 

cost associated with implementing such a system.  In fact, one would need at least three 

RSS measurements from different receivers in order to triangulate the physical location 

of the device in a 2-dimensional plane.  However, the world is not perfect and obstacles 

can (and most likely will) interfere with readings causing random fluctuations.  

Obstacles and the environment in general can cause multiple time-delayed instances of 

EM energy to arrive at the RX from any direction.  Whether a person uses the directional 

antenna, TOA, or RSS approach, each method has the problem of trying to accurately 

estimate position based on random fluctuations.  Due to these random fluctuations, it 

seems there isn’t a single universal method for estimating position.   

Engineers have devised several sophisticated algorithms to try to estimate 

position given this type of random environment, and the two most promising algorithms 

based on RSS seem to be distributed weighted-multidimensional scaling (dwMDS) [1] 

and linear combination (LC) [2].  These two algorithms assume two different types of 
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devices in the wireless network: anchors and nodes.  An anchor is a device that has 

complete knowledge of its own location.  A node is a device in the network that has no 

knowledge of its physical location.  Nodes are sometimes said to be “blindfolded,” as a 

reference of not knowing where it is located.  Nodes are able to communicate to anchors 

and/or other nodes.  These two algorithms try to locate the position of each node in the 

network given the RSS between connecting nodes, and the coordinates of the anchors. 

The basis of this research is to try and determine which algorithm outperforms 

the other.  More detail about the problem will be discussed in the following section.  

This thesis is organized into four sections.  Section 2 will discuss the problem in detail 

and discuss more information about the two algorithms. Section 3 will present 

information about the test equipment used and the acquisition of data.  Section 4 will 

analyze the collected data and present the conclusions of the analysis.  
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2. PROBLEM 

 

Of all the algorithms that estimate position based on received signal strength 

(RSS), two of the most promising are the linear combination (LC) algorithm and the 

distributed weighted-multidimensional scaling (dwMDS) algorithm.  The authors of 

these algorithms have provided evidence to show how well their estimators perform, 

however each algorithm is tested using computer simulations of a wireless environment.  

The problem arises that a fair comparison can not be made if each algorithm is tested on 

a different set of data.  The focus of this research is to compare these algorithms and 

determine which is better using the same set of data.  In fact, the data will be collected 

from real world power measurements, not computer simulations.  This will provide a fair 

comparison of the algorithms and also provide confidence of a successful real world 

implementation of these algorithms. 

 

2.1 Comparing Algorithms 

How do we compare algorithms? One way of comparing algorithms could be 

through efficiency such as number of computations and/or memory used.  Another way 

is to determine which algorithm is better via performance, or how close the estimates are 

to the true locations.  The research discussed in this thesis will investigate performance 

not by computer simulations, but by actual real world data. One way of measuring 

performance is Mean-Squared Error (MSE).  MSE has had widespread use in technical 

literature as a measure of performance for many estimators and remains a popular choice 
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among engineers.  If the estimator is unbiased (that is, on average, the estimator will 

produce a value equal to the parameter it is trying to estimate), then the MSE is a 

measure of the variance.  The smaller the variance, the closer (on average) the estimates 

will be to the true locations.  Rather than using MSE, a final square root will be taken to 

get the root mean-squared error (RMSE).  The RMSE will be our measure of which 

algorithm performs better. 

 

2.2  Position Locating Algorithms 

The algorithms to be compared are the LC and dwMDS [1][2].  Each of these 

algorithms are distributed in nature and do not rely on a centralized node to calculate 

everyone’s position.  Each algorithm exploits not just connections to anchors, but 

connections to other nodes to help estimate position of a particular node.  When a 

blindfolded node uses other blindfolded nodes to estimate its position, this is called 

“cooperative locating.”  Since each node has the potential to connect to every other 

node, a matrix can be created to store the RSS data.  The RSS data stored as a 2-D 

matrix is known as a “power matrix.”  The diagonals of the power matrix will be null, 

and the off-diagonal numbers are valid power measurements between nodes.  The terms 

“RSS” and “power measurements” will be used interchangeably throughout this 

document.  Each of the algorithms uses a power matrix as the input data.     

Both algorithms also use range estimators to convert power measurements into 

distances.  These estimators are based upon a “log-normal shadowing” model of the 

environment [3, p. 139].  This model states that at a distance of d , the RSS will have a 
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log-normal distribution (normal in dB) and will be ( ) XddnpP odBodBRSS −−= 10,, log10  

where X is a zero-mean Gaussian random variable with variance, 2σ .  od  is some 

reference distance (ex: 1 meter) from a TX and dBop ,  is the received power at that 

distance in dB.   n is referred to as the “path loss exponent.”  Using this model, the 

developers of the LC algorithm [2] created an unbiased range estimator of the form 

( ) n
oo pPcdd /1/ −= where )2/exp( 2bc −=  and )10()10ln( nb σ= , while dwMDS uses 

an maximum likelihood (ML) range estimator of the form ( ) n
oo pPdd /1/ −= .  Note that 

P and op are in watts, not dB. 

Parameters n and σ can be calculated from the power measurements, and more 

information of these two parameters will be discussed in section 4.1.1.  The two other 

parameters used by the range estimators ( od  and op ) are usually measured and 

calculated beforehand.  The units of od (meters, feet, inches) will be the same units used 

for RMSE. The units of op (dBm) will be the same units used in the power matrix. 

 

2.2.1  LC 

This section is to provide some background of the LC algorithm.  The LC 

algorithm was developed by Texas A&M graduate student, Wei-Yu Chen as part of his 

dissertation.  The details of the algorithm have been provided via a technical report, but 

have yet to be released as public information.  The algorithm can be divided into two 

parts.  The first part is an initialization in which each node obtains an initial position 

estimate based upon the anchors.  Once an initial estimate is found, then cooperative 



 7 

locating begins and each node uses other nodes (and anchors) to estimate its final 

position.  The algorithm relies on assigning weights to each RSS measurement and 

linearly combining the data to form a position estimate.  The algorithm is iterative-based 

and each iteration moves the estimate until a stopping criterion is met.  The larger the 

stopping criterion, the earlier the algorithm will stop and tend to have fewer iterations.  

In this research, a small stopping criterion is used to allow the algorithm to converge to a 

final estimate.  The number of iterations is usually dependent on the density of nodes in 

the network, but one can expect to have a range of a couple to a few dozen iterations 

before a final estimate is reached.  For further detail of the LC algorithm, please consult 

Appendix B.2 or [2]. 

 

2.2.2 dwMDS 

This section is to provide some background of the dwMDS algorithm.  The 

dwMDS algorithm was developed by Neal Patwari, Jose Costa, and Alfred Hero.  The 

algorithm focuses on weighting RSS measurements as well, however by minimizing a 

cost function.  Details of the algorithm can be found in [2].  Like LC, this algorithm is 

iterative-based and each iteration moves the estimates until a stopping criterion is met.  

The algorithm also comes equipped with the ability to select neighbors and will be 

discussed in section 4.1.4.  The algorithm, by itself, assumes an initial position estimate 

is already provided for each node, and the authors of dwMDS do give suggestions on 

how to create this initial guess. They propose a 2-stage approach based on a random 

initialization.  Essentially, a random (uniform distribution) initialization is used for each 
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node and dwMDS is run twice. The first run has a loose stopping criterion and is used to 

move the random estimates into a rough estimate.  Based upon the rough estimate, 

weights are reassigned and the algorithm is rerun with a finer stopping criterion to arrive 

at a final position estimate.  The weighting used in this algorithm is not strictly defined, 

but the authors suggest using an exponential form and as such, this weighting technique 

will be used in the analysis section.  For further detail of dwMDS, please consult 

Appendix B.1 or [1]. 
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3. TEST SETUP AND DATA ACQUISITION 

 

 In this section, the test equipment and test environment will be discussed.  

Figures of the data collected will also be presented.  

 

3.1  One-Dimensional Testing  

 There were three environments chosen to conduct the one-dimensional 

measurement campaign.  In each environment, eleven equally spaced locations were 

selected along an imaginary line.  Each of the locations was separated by 2.5 feet (76.2 

cm).  With 11 locations, the total length of the track was 25 feet (7.62 m).  Figure 1 

provides a top view illustration of the node locations.  Given eleven locations, the end 

locations can be considered the anchors and the nine interior locations can be considered 

the blindfolded nodes. 

 

 

 
Fig. 1. A typical layout for one-dimensional testing. Eleven equally spaced locations are selected 
along a line.  Each location is separated by 2.5 feet (76.2 cm). 

. . .  

2.5 feet 

25 feet 
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3.1.1 1-D Locations 

Three environments were chosen for the one-dimensional testing: an office 

space, a hallway, and a large indoor open space. The office space chosen was a vacant 

area of offices located on the 2nd floor of Wisenbaker Engineering Research Center 

(WERC) located at Texas A&M University.  The entire track of locations spanned 

across three offices as seen in Figure 2.   

 

 

 

The 2nd and 3rd one-dimensional environments were both located in Zachry 

Engineering Center at Texas A&M University.  The hallway was on the ground floor 

and the open space was a 1st floor lobby area.  There were no walls or obstacles between 

the nodes in these two environments as seen in the office-type environment. 

 

Fig. 2.  Layout of the track in WERC. The track spanned 3 offices. Walls separated location 
9&10 and 4&5. 

Office 1 Office 2 Office 3 

11     10      9        8       7       6       5      4      3       2     1 
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3.1.2 1-D Equipment 

In order to record real world power measurements, both a transmitter and 

receiver are needed. The TX must be transmitting at a constant power.  Since the 

position locating algorithms only require path loss exponents of the environment, any 

frequency of operation can be used.  Since there are many commercially available 

hardware and software products designed for 2.44 GHz, this unlicensed frequency band 

was chosen as the frequency of operation to collect the power measurements.  The 

chosen TX was an off-the-shelf D-Link® DI-514 wireless (802.11b) access point (AP) 

set up to simply broadcast its service set identifier (SSID) at its maximum power of 17 

dBm [4]. The wireless AP has a single omni-directional antenna.  The RX was chosen to 

be an off-the-shelf Zonet® ZEW1501 (802.11b/g) wireless network interface card (NIC) 

[5]. The NIC has a standard PC Card connection to a laptop computer.  Finally, a 

commercial software program called WirelessMon™ [6], developed by Passmark™ 

Software, was installed on the wireless-enabled laptop in order to monitor and record 

real-time signal strengths from any nearby access points.  A screenshot of 

WirelessMon™ in action can be seen in Figure 3.  Using the wireless AP, the wireless 

laptop, and the monitoring software, real world power measurements can be collected at 

all three environments.   
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Fig. 3.  A screenshot of WirelessMon, the software used to collect RSS measurements. 
 
 
 

With the environments selected and the equipment set up, markings were labeled 

on the floor of each environment to indicate where the recording equipment should be 

placed.  The TX equipment was placed and centered on a moving cart.  The receiving 

laptop was also placed and centered on a different moving cart.  Both carts were of equal 

height.  Also, the equipment was placed in such a way that the antennas were slightly 

overhanging the edge of the carts to try to minimize any grounding effects from the 

carts.  The antennas of the equipment were centered directly above the markings on the 

floor.  Figure 4 provides a sample illustration.  It should be noted that during the 

recording process, the RSS reading would fluctuate due to randomness in the 
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environment.  A final reading and value of RSS was recorded when it appeared that the 

fluctuation stabilized and was on a constant received power.  

 

-52-52

 
Fig 4.  An illustration of how the 1-D test equipment was arranged. 

 
 
 
Unless the recording of power measurements is fully automated, any researchers 

in the environment being tested will have some influence on the received power. During 

recording, the researchers tried as much as possible not to influence the results.  The 

researchers stood as far as possible from the antennas and tried not to obstruct any line 

of sight path.  It is believed that if there was any influence simply caused by the presence 

of the researchers, it would be represented by the shadowing variance, 2σ .  In addition, 

from a practical point of view, if a company or organization decided to implement a 

position locating system, there will probably be humans and/or obstacles in the 

environment while the system is active and operating. Thus, it seems that the presence of 

researchers in the test environment seems like a more realistic scenario as compared to 

no researchers at all.    
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3.2 Two-Dimensional Testing 

With two-dimensional testing, the number of anchors usually is increased from 

two to four.  Additionally, based upon simulations from the authors of the algorithms 

[1][2], the density of nodes also needs to increase to get accurate location estimates.  

This increased density requires more locations and thus, more time to record 

measurements.  Luckily, there were a few previously recorded power measurements 

taken from other researchers.  The first set of data came from a previous Texas A&M 

student by the name of Rajukumar Samuel.  This set of data contains 15 locations 

arranged in a 10 x 20 meter grid inside a corridor.  Each adjacent node was separated by 

five meters as seen in Figure 5.  Nodes 5, 15, 1, and 11 will be considered the anchors.  

The second set of data came from Dr. Neal Patwari (one of the key researchers of 

dwMDS) with support from Motorola Labs’ Florida Communications Research Lab.  

This set of data is currently available to the public on Dr. Patwari’s website and consists 

of power measurements from a remarkable 44-node array [7].  The amount of time and 

effort in recording these measurements is quite remarkable and duly noted.  Figure 6 

shows a top view of how this 44-node array was arranged.  Nodes 1, 11, 36, and 44 will 

be considered the anchors.  With two sets of data readily available, there was only need 

for one more environment to record 2-D measurements. 
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Fig. 5.  Node locations for corridor environment arranged in 10 x 20 grid. Data courtesy of Rajukumar 
Samuel. 
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3.2.1 2-D Location 

The 2-D case seems more likely to be implemented in a real world setting 

compared to 1-D, and as such, an environment was chosen to try and reflect a real world 

application.  It was decided to find an environment that mimicked a warehouse or 

supermarket that consisted of metallic shelves with various items.  A library was the 

perfect environment.  The Sterling C. Evans Library located on the Texas A&M 

University campus was chosen to conduct the 2-D power measurements.  A square area 

of roughly 40x40 feet (12.2x12.2 m) located at the corner of the 1st floor was chosen. 

This area had seven library stacks filled with books and encyclopedias.  In all, 16 

possible locations were selected to form a rough 4x4 node grid.  The grid was not 

exactly uniformly spaced since some locations made it difficult to place the equipment.  

As such, a compromise had to be made at some locations in order to have the recording 

equipment placed directly on the shelves.  All locations were placed at the same shelf 

height.  Figure 7 displays a top view of where the nodes were located.  Nodes 1, 4, 13, 

and 16 will be considered the anchors.   
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3.2.2 2-D Equipment 

Seeing an opportunity to cut down the measurement time in half, two 

transceivers were used instead of a transmitter and receiver separately.  When placed in 

an ad-hoc mode, wireless NICs can create a personal wireless network and broadcast a 

unique SSID.  This allows a laptop to act as both a transmitter and receiver, or in other 

words, a transceiver (XCVR).  The wireless laptop used in the 1-D case was reused in 

this experiment as the first XCVR.  A second laptop was used as the second XCVR and 

was equipped with an integrated Intel® 3945ABG (802.11a/b/g) wireless NIC [8].  Both 

Fig. 7.  Node locations for the 2-D environment. Nodes were placed in a rough grid formation of 4x4.  
The grey bars represent the library stacks. 
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laptops were installed with the WirelessMon™ software and able to record RSS values 

from each other.  Figure 8 provides a sample illustration.   

 
 

-48-52 -48-48-48-52-52-52

 
Fig. 8.  An illustration of how the 2-D test equipment was arranged in the library. 
 

 
 

By having two XCVRs, there was some savings in the amount of time to record 

data.  With this savings, instead of recording a single value of RSS, ten RSS values were 

recorded as it fluctuated.  These ten measurements can be averaged to get a final reading, 

but can also be used to calculate a more accurate value of the path loss exponent, n, and 

the shadowing variance, 2σ .   

 

3.3 Total Data Collected 

This section will display the collected data from both the 1-D and 2-D 

environments. Figure 9 shows the results for the three 1-D environments, and Figure 10 

shows the results for the 2-D environment. Lastly, Figure 11 shows the averaged data for 

the 2-D environment.  The power matrices and raw numbers can be found in Appendix 

A in Tables 4 – 8.  Dr. Patwari’s raw data can be downloaded from his website [7].  
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Fig. 9.  The RSS measurements for the three 1-D test environments. Both path loss exponent, n, and 

shadowing variance, 2σ , have been calculated.
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Fig. 10.  The RSS measurements for the 2-D environment from laptop 1 and laptop 2.  Each TX-RX connection has 20 measurements to calculate an 

accurate path loss exponent, n, and shadowing variance, 2σ . 
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4. ANALYSIS AND CONCLUSIONS 

  

4.1 Analysis 

This section will present analysis and results comparing the two algorithms in 

both the 1-D and 2-D cases using real world power measurements.  Since each algorithm 

has various tuning parameters, the analysis was conducted using common tuning 

variables used by the authors of each algorithm. 

 

4.1.1 Path Loss Exponent and Shadowing Variance 

To begin our analysis, both algorithms use range estimators to estimate distances 

based on RSS.  The first step is to estimate an environmental parameter that the range 

estimators rely on, the path loss exponent (commonly symbolized as “n”).  The path loss 

exponent is a general measure of how fast the signal strength is degrading over distance.  

The larger the value of n, the weaker the signal strength will likely be at a certain 

distance.  In addition, if the range estimator wishes to be unbiased, then an additional 

environmental parameter called the shadowing variance (commonly symbolized as 

“ 2σ ” or “ 2
dBσ ”) is needed.  This nonnegative number is a measure of how much random 

fluctuation exists in the RSS.  Recall that obstacles in the environment may cause the 

RSS to undergo random fluctuations.  A larger value of 2σ  will result in a larger swing 

of power readings.  If 2σ  was equal to zero, there would be no randomness and 

consecutive power readings would be constant at a given distance.  Larger values of n 
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and smaller values of σ  will tend to produce more accurate position estimations in the 

algorithms.  

The RSS data was used to estimate both n and σ .  Using a simple linear 

regression, a best fit line can be found from the data.  The negative slope of this line is 

the path loss exponent.  To estimate the shadowing variance, simply take the average of 

the squared errors between the observed data and the best fit line. Take the square root of 

the average to get σ .  In the 2-D library environment, 20 RSS measurements were taken 

for each TX-RX pair, and the results show that n and σ  were around 2.3 and 5.3 dB, 

respectively.  In fact, a value of 2 and 5 for n and σ , were common across 

environments.  Figures 9 –11 in section 3.3 have both n and σ labeled.  The n and σ for 

Dr. Patwari’s data was calculated to be 2.30 and 3.92 dB, respectively, and verified in [9, 

p. 2142]. 

Equipped with both the path loss exponent and shadowing variance, the range 

estimator can convert RSS into distances, which will be used in both algorithms. 

 

4.1.2  Comparing with Typical Values 

To start the comparison, typical values for both algorithms are used.  For both 

algorithms, a small stopping criterion, ε, is used.  With a small ε, the algorithms will 

tend to execute more iterations and will allow their RMSEs to converge to a final value.  

For the LC algorithm, an unbiased range estimator is used.  For the dwMDS algorithm, a 

2-stage random initialization approach is used.  The range estimator is maximum 

likelihood, and the weights are assigned as exponentials using the same method in [1, p. 
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49].  For both algorithms, full connectivity is assumed, that is, every node is able to 

connect to every node, and every node will use all of its RSS measurements to estimate 

its own position.  As will be seen later, the full connectivity assumption can be relaxed 

in a process known as “Neighborhood Selection.” 

Since dwMDS has a random initialization, the final estimation will likely be 

random as well.  It could be that some initializations might provide a better estimation 

compared to LC than other initializations.  Due to this, dwMDS will be run 100 times 

with the exact same parameters and data; however, each run will have a different random 

initialization.  An averaging will be used to find a final RMSE for dwMDS.  These 

repeated runs will also estimate the probability that the LC algorithm provides a better 

estimation than dwMDS.  It is impractical to present 100 different graphs of possible 

dwMDS solutions, so instead, the results of the LC will be shown and the corresponding 

dwMDS average will be plotted alongside.  If the reader is curious to see how a sample 

dwMDS solution compares with the LC across iterations, several example plots (Figures 

30-32) are provided in the Appendix.  First, the 1-D results will be presented in Figures 

12-14, followed by 2-D results in Figures 15-17, and concluded by Table 1 to summarize 

the results. 
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Fig. 12.  1-D hallway environment: estimations can be seen across several iterations (top), and the 
corresponding RMSE (bottom).
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Fig. 13.   The 1-D results of office environment.
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Fig. 14.   1-D results of open space environment.
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Fig. 15.   2-D Library (shelving) environment:  final estimation is shown (top) and the corresponding 
RMSE (bottom). 
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Fig. 16.  2-D results of cubicle environment. Data courtesy of Dr. Neal Patwari [7].
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Fig. 17.   2-D results of corridor environment. Data courtesy of Rajukumar Samuel. The raw data can be 
obtained from Table 8. 
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Table 1  

RMSE and probability results for the 1-D and 2-D environments. 

1-D 
Environments 

LC RMSE 
(feet) 

Average 
dwMDS 

RMSE (feet) 

Probability 
that LC had 

lower RMSE 

Zachry Hallway 1.645 3.571 1 

WERC Offices 3.875 4.63 .66 

Zachry Open 
Space 

2.228 3.17 1 

2-D 
Environments 

LC RMSE  Average 
dwMDS 
RMSE  

Probability 
that LC had 

lower RMSE 
Library 

(shelving) 
53.15 in. 80.34 in. 1 

Cubicle 1.883 m 2.6581 m 1 

Corridor 3.119 m 2.3255 m 0 

 

 
 
 

The dwMDS algorithm was allowed to run for many iterations.  It could be that 

the last iteration had the lowest RMSE, or somewhere midway through the iterations, the 

lowest RMSE was reached.  Regardless, the “Average dwMDS RMSE” was computed 

by taking the minimum RMSE (whether it was the last iteration or somewhere prior to 

that) from each of the 100 realizations.  Despite giving dwMDS this advantage, the LC 

algorithm outperformed dwMDS a majority of the time in all but one environment, the 

2-D Corridor.  Recall that typical settings were used for both algorithms. The next 

sections will look into adjusting some of these settings. 
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4.1.3  Symmetric vs. Asymmetric 

Both algorithms rely on a “power matrix”.  Recall that a power matrix is the 2-D 

matrix that holds the RSS values for each TX-RX pair.  Reciprocity is the assumption 

that the RSS of the TX and RX are equal if the TX and RX swapped roles.  So for every 

TX-RX combination, there is only one RSS measurement.  If reciprocity is assumed, the 

power matrix will be symmetric.  In fact, in each of the developed algorithms [1][2], the 

authors use symmetric power matrices as their examples to demonstrate their 

performance.  However, in the real world, reciprocity might not be observed, and, in 

fact, during the measurement campaign, there were different RSS values when TX and 

RX reversed roles.   

In this section, a comparison between symmetric and asymmetric power matrices 

is presented and how it affects the position estimation.   By default, asymmetric power 

matrices were recorded from the measurement campaign, however, a symmetric version 

(used in section 4.1.2) was obtained by simply averaging the RSS readings for each TX-

RX pair.  Since the 2-D library environment had 20 readings for each TX-RX pair, more 

averaging was used here.  Below are the results for both 1-D (Figures 18-20) and 2-D 

environment (Figure 21) when symmetry is disabled.  The algorithms were run with 

nearly identical parameters as the figures presented in 4.1.2.  Table 2 provides a 

summary of the results. 
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Fig. 18.  1-D hallway environment with an asymmetric power matrix: estimations can be seen across 
several iterations (top), and the corresponding RMSE (bottom). 
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Fig. 19.  1-D results for office environment with asymmetric power matrix. 
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Fig. 20.  1-D results for open space environment with asymmetric power matrix. 
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Fig. 21.  2-D results for library (shelving) environment with asymmetric power matrix.
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Table 2 

RMSE and probability results for both 1-D and 2-D using asymmetric power matrices. 

1-D Environments 
ASYMMETRIC 

LC 
RMSE 
(feet) 

Average 
dwMDS 
RMSE 
(feet) 

Probability 
that LC had 

lower RMSE 

Zachry Hallway 10.55 5.04 .04 

WERC Offices 4.72 5.17 .23 

Zachry Open Space 5.654 5.34 0 

2-D Environments 
ASYMMETRIC 

LC 
RMSE  

Average 
dwMDS 
RMSE  

Probability 
that LC had 

lower RMSE 
Library (shelving) 70.76 in. 73.20 in. .69 

 

 
 
 
Clearly in the 1-D case, both algorithms have degraded performance by not 

having a symmetric power matrix.  In the 2-D case, comparisons can only be made in the 

library environment since the other two sets of data are, by default, symmetric.  The 2-D 

case doesn’t show as much of a degradation in performance, and, in fact, dwMDS seems 

to have improved slightly.  Despite the improvement, dwMDS only showed better 

results 31% of the time.  It should be worth noting that by averaging RSS measurements, 

the variance begins to decrease.  This is the reason the variance is slightly different than 

the figures in 4.1.2.  
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4.1.4 Full Connectivity vs. Neighbor Selection 

A final comparison looks at how removing the assumption of full connectivity 

can change the position estimation (by either improving or degrading).  Recall that full 

connectivity is the scenario that each blindfolded node can connect to every other node, 

and all the connections are used to estimate location.  Without full connectivity, the 

blindfolded nodes must select “neighbors” to use in the algorithm.  The idea of not being 

able to fully connect to all nodes (including anchors) seems more realistic. 

The creators of dwMDS proposed a 2-stage algorithm which includes an adaptive 

neighborhood selection process [1, p. 55].   However, at the time of this writing, the 

authors of the LC algorithm do not have a formal neighbor-selecting process yet.  One 

needs to be created in order to fairly compare each algorithm.  One solution was 

proposed in which initial neighbors are chosen via a power threshold.  Consulting the 

power matrix, neighbors can be selected based upon meeting or exceeding the power 

threshold.  However, if this list of neighbors remains static throughout the algorithms’ 

iterations, a bias remains and position estimates are slowly pulled toward the center as 

seen in Figure 22.  For more information on the bias and why it exists, please consult [1, 

p. 54].  
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Fig. 22.   A bias remains when neighbor selection is static.  The position estimates are pulled towards the 
center due to the bias. 
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Fig. 23.   Adaptive neighbor selection removes the biasing.  (Top) The neighbors are static (based on 
power matrix) for the first five iterations, and are adaptively selected after that. (Bottom) The RMSE gets 
a “boost” from adaptive selection. 

 
 
 

To overcome this bias, neighbors must be selected adaptively or, in other words, 

dynamically.  A revised neighbor selection process was developed where initial 
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neighbors are chosen based on the power matrix satisfying the power threshold, however 

after a few iterations, neighbors are adaptively chosen each successive iteration based on 

current position estimate.  Recall that the range estimator allows conversions from power 

to distance, so a power threshold can be thought of also as a distance threshold.  The 

neighbors are adaptively chosen (each iteration) by comparing the distances between all 

the estimates against the distance threshold.  Figure 23 shows the same nodes and data as 

Figure 22, but with adaptive neighbor selection after five iterations.  

Another consideration is whether anchors should be subject to neighbor 

selection.  It has been assumed up to this point that the anchors are most likely stationary 

XCVRs and every node can communicate to all anchors, however, in the real world, this 

may not be true.  Therefore, anchors will be subject to neighbor selection.  This brings 

about another problem of initialization.  In the LC algorithm, each node obtains an initial 

position estimate from all anchors, however, if by chance, a node can not connect to any 

anchor, where should we place the initial estimate?  It seems that if a node can not 

connect to any anchor, it is most likely in the center of the test area, and based on that, 

these initial estimates are placed in the center of the square (or line if 1-D).  Other 

scenarios such as placing at the center with some randomness were investigated, but 

didn’t seem to provide any more improvement than simply placing the initial estimate 

directly at center. 
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Finally, one last consideration is the possibility of two nodes not being neighbors 

at first, but after several iterations, their estimates grow closer together and the nodes are 

selected as neighbors.  From a real world perspective, it could be that the nodes are not 

neighbors at first simply because the nodes physically can not communicate.  It doesn’t 

make much sense that after a few iterations, the nodes become neighbors even though 

they physically can not communicate.  To mimic the real world, a second threshold was 

created called a “connection distance.”   In order for two nodes to be neighbors, they 

must satisfy both a neighbor distance and a connection distance.  The connection 

distance should always be greater than or equal to the neighbor distance.  One can think 

of the neighbors as the strongest signals from the pool of connections. 

With the above proposed adaptive neighborhood selection, we can now look at 

how the LC algorithm compares with dwMDS when full connectivity is not assumed.  

The test setup and algorithm parameters are identical to section 4.1.2 (i.e. typical values, 

symmetric power matrices, averaging, etc.) except in this test, the nodes are allowed to 

choose neighbors and which connections will be used to estimate their positions.  

Figures 24-26 provide the 1-D results and Figures 27-29 provide the 2-D results.  Table 

3 summarizes the results for neighborhood selection. 
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Fig. 24.  1-D hallway environment with neighbors selected: estimations can be seen across several 
iterations (top), and the corresponding RMSE (bottom). 
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Fig. 25.  1-D office environment with neighbors selected. 
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Fig. 26.   1-D open space environment with neighbors selected. 
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Fig. 27.  2-D Library (shelving) environment with neighbor selection:  final estimation is shown (top) and 
the corresponding RMSE (bottom). 



47 

0 5 10 15
-2

0

2

4

6

8

10

12

14

Position (meters)

P
os

iti
on

 (m
et

er
s)

Patwari RSS - Position LC-UB, n=2.3022, σ=3.92, ε=1
Connection Distance = 15, Neighbor Distance = 6

0 2 4 6 8 10 12
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

Iteration Number

R
M

S
E

 (m
et

er
s)

Anchors

Nodes

Estimates

RMSE:1.671

dwMDS Average:2.395

 

Fig. 28.  2-D results of cubicle environment with neighbor selection. Data courtesy of Dr. Neal Patwari 
[7]. 
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Fig. 29.  2-D results of corridor environment with neighbor selection. Data courtesy of Rajukumar 
Samuel. The raw data can be obtained from Table 8. 
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Table 3 

RMSE and probability results for the 1-D and 2-D environments with neighbor selection. 

1-D Environments 
(Neighbors Selected) 

Min. LC 
RMSE 
(feet) 

Average Min. 
dwMDS RMSE 

(feet) 

Probability that 
LC had lower 

RMSE 

Zachry Hallway 1.2326 3.2033 .69 

WERC Offices 1.6728 4.1088 1 

Zachry Open Space 2.7065 1.7959 .09 

2-D Environments 
(Neighbors Selected) 

Min. LC 
RMSE  

Average Min. 
dwMDS RMSE  

Probability that 
LC had lower 

RMSE 

Library (shelving) 48.66 in. 50.5 in. .58 

Cubicle 1.671 m. 2.395 m. 1 

Corridor 1.391 m. 2.442 m. .99 

 
 
 

Compared to Table 1, there is a slight improvement in RMSE when nodes are 

able to select neighbors.  For Zachry Open Space, dwMDS saw a dramatic improvement 

due to neighbor selection (from 3.17ft. to 1.79ft.).  Likewise, for the 2-D Corridor, LC 

saw a dramatic improvement as well (from 3.119m. to 1.391m.).  It is quite evident that 

neighbor selection can improve the final estimates of these algorithms.  Despite the 

improvements, however, dwMDS still seems unable (on average) to perform better than 

LC in most of the environments. 

 

4.2 Conclusions  

The focus of this research was to investigate the performance of two position 

locating algorithms in a wireless environment.  These two algorithms rely solely on an 
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easily obtainable source of information, received signal strength (RSS).  Rather than 

using computer simulations to test these algorithms, real world power measurements in 

the field were collected and used as the input data.  The two algorithms tested were a 

linear combination (LC) algorithm [2] and the distributed weighted-multidimensional 

scaling (dwMDS) [1] algorithm.  Since the same data was used for each algorithm, this 

provides a fair comparison and does not give any advantage to any particular algorithm.  

In addition, since the data is taken directly from the field, this provides more confidence 

of a successful real world implementation of these algorithms. 

Results showed that in most environments with typical settings, the LC algorithm 

provides an estimate that is closer to the true location compared to dwMDS for both the 

1-D and 2-D scenario.  As seen in 4.1.3, the algorithms seem to perform the best when 

the power matrices are symmetric.  Finally, when the assumption of full connectivity is 

removed and a more realistic system is used (not every node is able to connect to all 

other nodes), all estimates seem to improve and again the LC algorithm performed better 

on average in most environments compared to dwMDS. 
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Fig. 30.  Sample dwMDS estimates for the 1-D hallway and office (top). The corresponding RMSE for 
each environment (bottom). 
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Fig. 31.  Sample dwMDS estimates for the 1-D open space and 2-D library (top). The corresponding 
RMSE for each environment (bottom). 
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Fig. 32. Sample dwMDS estimates for the 2-D cubicle and 2-D corridor (top). The corresponding RMSE 
for each environment (bottom). 
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Table 4 

 Zachry hallway RSS and actual distance. 

RSS 
(dBm) 

Transmitter Location 
5.20 =d 29.230 −=p  

 1 2 3 4 5 6 7 8 9 10 11 
1 0 -18 -20 -32 -28 -25 -35 -31 -34 -29 -30 
2 -31 0 -16 -18 -36 -35 -37 -25 -37 -29 -37 
3 -36 -22 0 -26 -19 -31 -33 -42 -37 -35 -37 
4 -30 -22 -37 0 -25 -21 -39 -26 -34 -37 -41 
5 -33 -33 -25 -26 0 -19 -19 -23 -34 -36 -39 
6 -36 -36 -33 -24 -23 0 -23 -22 -34 -32 -35 
7 -31 -30 -42 -31 -22 -21 0 -22 -27 -32 -26 
8 -32 -35 -28 -37 -24 -32 -20 0 -26 -19 -35 
9 -36 -37 -37 -32 -33 -33 -31 -20 0 -31 -30 

10 -32 -31 -31 -37 -30 -36 -32 -18 -18 0 -27 

R
ec

ei
ve

r L
oc

at
io

n 

11 -32 -27 -32 -30 -28 -30 -36 -30 -22 -21 0 
Distance 

(feet) 
Transmitter Location 

 1 2 3 4 5 6 7 8 9 10 11 
1 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 
2 2.5 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 
3 5 2.5 0 2.5 5 7.5 10 12.5 15 17.5 20 
4 7.5 5 2.5 0 2.5 5 7.5 10 12.5 15 17.5 
5 10 7.5 5 2.5 0 2.5 5 7.5 10 12.5 15 
6 12.5 10 7.5 5 2.5 0 2.5 5 7.5 10 12.5 
7 15 12.5 10 7.5 5 2.5 0 2.5 5 7.5 10 
8 17.5 15 12.5 10 7.5 5 2.5 0 2.5 5 7.5 
9 20 17.5 15 12.5 10 7.5 5 2.5 0 2.5 5 

10 22.5 20 17.5 15 12.5 10 7.5 5 2.5 0 2.5 

R
ec

ei
ve

r L
oc

at
io

n 

11 25 22.5 20 17.5 15 12.5 10 7.5 5 2.5 0 
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Table 5 

RSS for Wisenbaker (WERC) office environment.  True distance is same as Table 5. 

RSS 
(dBm) 

Transmitter Location 
5.20 =d 8.180 −=p  

 1 2 3 4 5 6 7 8 9 10 11 
1 0 -19 -33 -26 -36 -34 -29 -29 -30 -33 -35 
2 -12 0 -22 -20 -23 -22 -33 -43 -35 -39 -30 
3 -22 -12 0 -12 -33 -32 -29 -31 -39 -37 -27 
4 -25 -15 -13 0 -38 -27 -25 -34 -40 -40 -30 
5 -38 -34 -30 -30 0 -12 -15 -29 -27 -30 -30 
6 -31 -32 -24 -33 -14 0 -12 -26 -37 -38 -27 
7 -40 -32 -29 -25 -16 -12 0 -22 -28 -28 -27 
8 -30 -28 -35 -33 -34 -17 -10 0 -17 -31 -33 
9 -33 -31 -32 -36 -25 -21 -15 -11 0 -23 -25 

10 -31 -33 -34 -32 -26 -28 -30 -25 -34 0 -13 

R
ec

ei
ve

r L
oc

at
io

n 

11 -39 -36 -33 -27 -24 -27 -27 -29 -28 -17 0 
 

Table 6 

RSS for Zachry open space environment.  True distance is same as Table 5. 

RSS 
(dBm) 

Transmitter Location 
5.20 =d 12.290 −=p  

 1 2 3 4 5 6 7 8 9 10 11 
1 0 -27 -27 -32 -37 -37 -43 -44 -49 -37 -37 
2 -35 0 -31 -36 -34 -34 -39 -43 -43 -40 -39 
3 -28 -33 0 -25 -27 -35 -30 -43 -42 -43 -40 
4 -25 -25 -25 0 -27 -30 -31 -33 -37 -42 -38 
5 -41 -30 -32 -44 0 -25 -30 -32 -31 -39 -41 
6 -43 -33 -35 -28 -32 0 -29 -28 -29 -39 -33 
7 -39 -46 -32 -31 -35 -32 0 -32 -33 -30 -34 
8 -38 -40 -42 -33 -32 -39 -40 0 -30 -34 -32 
9 -35 -44 -36 -40 -34 -30 -25 -33 0 -37 -24 

10 -37 -46 -38 -44 -36 -33 -29 -24 -30 0 -33 

R
ec

ei
ve

r L
oc

at
io

n 

11 -40 -42 -41 -33 -36 -37 -39 -34 -35 -34 0 
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Table 7 

RSS and node location for 2-D library environment. 

RSS 
(dBm) 
 

Transmitter Location 
940 =d 95.440 −=p  

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
1 0 -52.3 -49.1 -55.7 -57.5 -51.3 -50.2 -47.2 -53.1 -58.2 -57.8 -59.9 -67.3 -57.1 -63.4 -59.7 
2 -43.5 0 -49.7 -51.4 -57.5 -53.6 -51 -49.9 -58.8 -61.3 -60.8 -59.5 -66.9 -59.2 -62 -64.6 
3 -50.3 -45 0 -51.7 -49.2 -51.7 -51 -54 -56 -57.9 -58.7 -52.2 -63.9 -57.7 -59.7 -55.9 
4 -53.9 -54.6 -40.6 0 -50.9 -51.1 -51 -58.7 -58.5 -67.1 -53.4 -55.4 -54.1 -58.4 -70.2 -61.4 
5 -63.9 -55.7 -53.6 -46.3 0 -49.3 -52.3 -58.1 -63.6 -64.6 -56 -51.9 -59.5 -63.3 -69.3 -60.9 
6 -53.4 -52.9 -49.6 -42.7 -48 0 -52.7 -51.1 -61.1 -55.8 -53.9 -53.8 -59.5 -58.4 -61.7 -57.6 
7 -48.2 -43 -51.3 -50.8 -58.3 -49.5 0 -51.1 -53.1 -51.4 -54.2 -63.1 -61.7 -59.2 -55.8 -57.3 
8 -43.3 -48.9 -56.6 -62.3 -61.8 -58.8 -50.9 0 -49.9 -52.2 -54.7 -62.3 -64.1 -60.2 -56.2 -52.2 
9 -50 -59.7 -60.8 -67.1 -65.8 -64.9 -52.7 -43.9 0 -51.2 -55 -60.8 -59.2 -62.3 -49 -50.5 

10 -55.2 -61.9 -56.6 -61.4 -63 -64.1 -52.9 -53.4 -55.5 0 -55.5 -59.1 -59.3 -54.4 -49.1 -50.5 
11 -55.8 -59.3 -55.3 -55.1 -59 -54.2 -52.7 -56.9 -61.1 -52.4 0 -49.6 -48.5 -50.6 -64.4 -51.8 
12 -63.7 -65.6 -57.4 -51.3 -50.9 -49.4 -58.5 -61.2 -63.1 -56.3 -44.2 0 -46.2 -55.5 -60.5 -66.4 
13 -66.6 -61.4 -64.7 -54.9 -60 -63.8 -66 -65.2 -63.3 -61.9 -55.8 -49.5 0 -50.6 -63.5 -54.9 
14 -63 -58.9 -61.8 -56 -62 -59.4 -56.7 -59.7 -56.4 -57.8 -41.9 -55.6 -53.5 0 -55.2 -51.4 
15 -63.8 -63.1 -62.4 -62.2 -69.1 -62.9 -55.5 -55.4 -45.6 -52.8 -58.4 -64.5 -59.1 -55.4 0 -48.1 

R
ec

ei
ve

r L
oc

at
io

n 
(u

pp
er

 tr
ia

ng
le

 –
 Z

on
et

, l
ow

er
 tr

ia
ng

le
 –

 In
te

l)
 

16 -63.9 -60.1 -61.8 -64.4 -60.9 -64.9 -54.5 -49.3 -44.7 -44.1 -60.6 -62.6 -55.1 -54.7 -41.8 0 
x 0 167 313 456 460 349 167 0 0 96 286 459 467 320 94 0 

 
Inches 

 y 0 0 0 0 128 128 128 128 277 277 277 277 410 410 410 410 
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Table 8 

RSS and node locations for 2-D corridor environment. 

RSS 
(dBm) 
 

Transmitter Location 
50 =d 895.300 −=p  

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 0 -27.3 -39.5 -36.3 -40.6 -42.5 -36.2 -36.9 -35.7 -30.8 -36.0 -35.4 -39.0 -41.2 -40.9 
2 -27.3 0 -30.3 -39.5 -40.1 -36.6 -40.7 -36.6 -29.4 -37.5 -35.5 -35.2 -38.0 -41.4 -40.1 
3 -39.5 -30.3 0 -28.3 -35.2 -37.9 -38.9 -27.7 -34.1 -33.4 -33.2 -34.8 -34.8 -39.3 -37.5 
4 -36.3 -39.5 -28.3 0 -29.4 -33.9 -30.4 -35.8 -35.8 -37.2 -41.1 -33.6 -37.5 -36.7 -36.7 
5 -40.6 -40.1 -35.2 -29.4 0 -29.7 -36.5 -37.3 -36.2 -41.1 -45.9 -39.3 -37.2 -36.0 -36.0 
6 -42.5 -36.6 -37.9 -33.9 -29.7 0 -29.3 -36.0 -37.2 -38.0 -38.2 -36.2 -33.3 -36.4 -29.3 
7 -36.2 -40.7 -38.9 -30.4 -36.5 -29.3 0 -28.6 -35.0 -33.9 -37.1 -36.1 -37.4 -28.0 -37.7 
8 -36.9 -36.6 -27.7 -35.8 -37.3 -36.0 -28.6 0 -28.6 -34.8 -38.9 -33.4 -27.6 -39.1 -39.1 
9 -35.7 -29.4 -34.1 -35.8 -36.2 -37.2 -35.0 -28.6 0 -27.9 -37.7 -30.5 -33.8 -34.7 -36.1 

10 -30.8 -37.5 -33.4 -37.2 -41.1 -38.0 -33.9 -34.8 -27.9 0 -30.3 -41.8 -35.9 -36.4 -41.4 
11 -36.0 -35.5 -33.2 -41.1 -45.9 -38.2 -37.1 -38.9 -37.7 -30.3 0 -29.9 -35.1 -35.4 -43.9 
12 -35.4 -35.2 -34.8 -33.6 -39.3 -36.2 -36.1 -33.4 -30.5 -41.8 -29.9 0 -28.2 -34.6 -35.1 
13 -39.0 -38.0 -34.8 -37.5 -37.2 -33.3 -37.4 -27.6 -33.8 -35.9 -35.1 -28.2 0 -29.0 -36.5 
14 -41.2 -41.4 -39.3 -36.7 -36.0 -36.4 -28.0 -39.1 -34.7 -36.4 -35.4 -34.6 -29.0 0 -30.5 

R
ec

ei
ve

r L
oc

at
io

n 
 

15 -40.9 -40.1 -37.5 -36.7 -36.0 -29.3 -37.7 -39.1 -36.1 -41.4 -43.9 -35.1 -36.5 -30.5 0 
x 0 0 0 0 0 5 5 5 5 5 10 10 10 10 10 Meters 

 y 0 5 10 15 20 20 15 10 5 0 0 5 10 15 20 
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Fig. 33.  This plot verifies correct implementation of the dwMDS algorithm. The results are nearly 
identical to [1] Figure 7d.  The RMSE for this plot was 2.27 m as compared to 2.48 m in [1, p. 60]. 
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Fig. 34.  This plot verifies correct implementation of the LC algorithm.  The graph was redrawn from [2].
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APPENDIX B 

 

 This appendix will give some details about the implemented algorithms such as 

initialization and weights assigned. 

 

B.1 dwMDS Details 

 For a more complete analysis of dwMDS, please consult [1].  dwMDS tries to 

minimize a cost function labeled as, S .  This cost function can be reduced into local cost 

functions, iS , for each of the n  blindfolded nodes. 

�
=

=
n

i
iSS

1

      (1) 

2

1 1

2 ))((2))(( XdwXdwS ijij

n

ij
j

mn

nj
ijijijiji −+−=� �

≠
=

+

+=

δδ    (2) 

where ijw is a weight assigned for the node i  to node j connection (more on this later).  

ijδ is the range estimate based upon the power matrix between node i  and j . m  is the 

number of anchors (two for 1-D and four for 2-D). X is a coordinate matrix containing 

the estimate locations, so )(Xd ij is the distance between the estimates of node i  and 

node j .  X is arranged such that each column holds the coordinates of each node.  The 

first n  columns are node coordinates followed by m  columns for the anchors 

coordinates.  Since dwMDS is iterative-based, the X matrix and S will change each 

iteration, k , as the estimates move, so it is common to denote X as )(kX where )0(X  is 
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the initial estimate of all nodes, and S as )(kS . ijw and ijδ  will remain constant 

throughout iterations. 

 The algorithm begins with the user providing the weights, range estimates, and 

initial estimations.   )0(S is computed along with another set of weights denoted as a . 

��
+

+=
≠
=

− +=
mn

nj
ij

n

ij
j

iji wwa
11

1 2  ni ,....,1=   (3) 

The algorithm is a nested loop.  The outer loop stops when ε<−− )()1( kk SS  (we begin 

with )1=k  whereε  is a user-specified number.  The inner loop iterates across all n  

blindfolded nodes.  During each iteration of the inner loop, )(kS  is being modified as 

each node updates its current estimation (i.e. )()1()()( k
i

k
i

kk SSSS +−= − ).   The nodes 

calculate their new position with a third set of weights for each node i , denoted as ib
�

.  ib
�

 

depends on the current estimates ( )(kX ) and will change across iterations.  

[ ]Tmn
k

i bbb += ,...,1
)(

�
  ni ,....,1=   (4) 

ib
�

 will be the weighting for each of the nodes that node i  can establish a connection. 

[ ])(/1 )(k
ijijijj Xdwb δ−=   for ijnj ≠≤ ,   

 )(/2)(/ )(
1

)(
1

k
ijij

mn

nj ij
k

ijij
n

j ijj XdwXdwb δδ ��
+

+==
+=    for ij =  (5) 

[ ])(/12 )(k
ijijijj Xdwb δ−=   for nj >    

 
The new estimate, )(k

ix , of each node i  is calculated by: 

( ))1()1()(ˆ −−= k
i

k
i

k
i bXax

�
   ni ,....,1=  (6) 
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Once )(k
ix  is found, )(kS is adjusted and the new position estimate is sent to all the 

neighbors nodes. 

 The first set of weights, ijw , was chosen based upon [1, p. 55].  

( )22 /exp ijijij hw δ−=   for valid ijδ , else 0. (7) 

{ }kjkikkijh δδ max,maxmax=      
 

ijδ  was calculated from the power matrix using a maximum likelihood estimator of the 

form: 

 
n

o
oij p

P
d

/1−

��
�

�
��
�

�
=δ      (8) 

where od is a reference distance and op  is the power at that distance.  Both P and op  are 

measured in watts.  n in this particular equation is the path loss exponent (not to be 

confused with the number of nodes). 

The initialization used was a 2-stage process according to [1, p. 53].  dwMDS 

was run twice with the first run having a random initialization and a fairly large ε .  The 

ijw  was assigned based on (7) with ijδ  being valid if it was less than a user-specified 

“connection distance” (section 4.1.4).  When finished, these rough estimates were then 

used as the initial estimates for the second run.  The weights were re-assigned in the 

second run based on (7), with a valid weight being determined not by ijδ , but by 

ji xx ˆˆ − being less than a user-specified “neighbor distance”.  The second run had a 

smaller ε .   
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B.2 LC Details 

 This section will go into further detail of the LC algorithm.  Like dwMDS, the 

LC algorithm is distributive and also relies on weighting to calculate a nodes position 

estimate.   The algorithm is also iterative-based and terminates when the cumulative 

squared difference of estimates from one iteration to the next becomes less than a user-

specified ε .   

First, the unbiased range estimator converts the power matrix into distances. 

 ( ) )5.0exp(/ˆ 2/1 bpPdd n
ooij −= −    (9) 

where )10()10ln( nb σ=  and power is measured in a linear scale (i.e. watts).  Note that 

ijd̂  represents the distance to node i  based upon node j ’s perspective (i.e. i  is the TX, 

and j  is the RX).  This notation will be used throughout B.2.  Next is the initialization 

of each node based upon anchors.  For 1-D, we estimate an initial position by 

)ˆ(ˆˆ 2211 dRadax −+=     (10) 

21

2
1 ˆˆ

ˆ

dd
d

a
+

=  and 
21

1
2 ˆˆ

ˆ

dd

d
a

+
=           (11) 

 
where 1d̂ is the estimated distance to the first anchor at coordinate 0 and 2d̂ is the 

estimated distance to the 2nd anchor at coordinate R .  For 2-D, it is not as simple.  The 

2-D initialization is iterative and terminates when the squared difference of estimates 

between one iteration and the next is less than anε .  We begin with 1=k  and by 



64 

placing nodes in the center of the area [ ] [ ]2/,2/ˆ,ˆ )0()0( RRyx = .  Normalized vectors are 

created from the node to each of the four anchors. 

[ ]
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  for 4,...,1=i  (12) 

where ⋅  is the Euclidean norm.  Weights are computed by 

� =

= 4

1
2

2

ˆ1

ˆ1

j j

i
i

d

d
a    for 4,...,1=i   (13) 

and an estimate is found by 

[ ] [ ]( )�
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1

)()()( ˆ,ˆ,ˆ
i

k
iiiii

kk vdyxayx  .  (14) 

 

The iterations stop when 

( ) ( ) ε<−+− −− 2)1()(2)1()( ˆˆˆˆ kkkk yyxx .   (15) 

 

If a node is not able to connect to all four anchors (section 4.1.4), then it will estimate its 

position based upon whichever anchors are available.  If no anchors are available, the 

node is placed at the center. 

 With an initial estimate, cooperative locating can begin.  M is the number of 

blindfolded nodes and ]4,1[ ++ MM  are the four anchors.  For the 1-D case, we create a 

set of distances denoted as “estimated effective distances” for all connecting nodes 
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The new node estimate is computed by 
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and the iterations stop when 
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For the 2-D case, we compute the normalized vectors between connecting nodes. 
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The “estimated effective distances” are computed for all connecting nodes. 
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The new node estimate is calculated by 
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The iterations stop when 
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