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ABSTRACT

Nonlinear Quantum Well Photodetectors

Using Frequency Upconversion. (December 2008)

Venkata Ramalaxmi Chaganti, B.S., Sri Sathya Sai University;

M.S., University of Hyderabad

Chair of Advisory Committee: Dr. Alexey Belyanin

I describe mid/far-infrared photodetectors based on frequency up-conversion in a

near-resonant cascade of interband and intersubband transitions in high optical non-

linearity asymmetric quantum well structures. Such structures can yield high detec-

tivity and responsivity in the mid/far-infrared range. Resonant up-conversion detec-

tors can be designed for both collinear and perpendicular pump and signal beams.

They can be integrated with semiconductor pump lasers to yield compact devices.

Single photon counting is also achieved by these detectors. I present specific device

designs based on GaAs/AlGaAs and InGaAs/AlInAs heterostructures and calcula-

tions of their expected figures of merit. This includes a study of the intersubband

nonlinear absorption of asymmetric double quantum wells designed for mid/far-IR

range. The dependance of second order nonlinear susceptibility on various param-

eters of the structure is studied. In particular, different values for barrier and well

widths are considered. The nonlinear absorption can be obtained by using pertur-

bative calculation of the linear susceptibility up to second order with density matrix

approach. The intersubband linear and nonlinear asymmetric double quantum well

can be tuned using two design parameters. One is the width of the barrier between

the wells that controls the coupling and the second is the width of the narrow well

that controls the asymmetry of the structure. As the barrier width narrows the en-
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ergy gap at the anticrossing increases. The asymmetry of the two well potentials is

essential for sum frequency and difference frequency generation since in a symmetric

well 〈Z31〉 = 0 due to the same parity of the ground and second excited states so that

χ(2) = 0. In our detection scheme using frequency up-conversion we demonstrate

that these devices can achieve high detectivity, very low noise and high value for χ(2)

hence good efficiency. This can be an important advantage for low signal detection

and single photon counting.
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CHAPTER I

INTRODUCTION

Sensors are used to detect optical radiation. They are generally categorized into two

types, which are thermal detectors and photon detectors. In photon detectors the

radiation is absorbed within the material by interaction with electrons that are either

bound to lattice or impurity atoms. The electrical output signal results from the

charged electronic energy distribution. The interaction generates free-charge carriers

in intrinsic or extrinsic detectors [1], or delivers the necessary energy to charge carriers

confined within a potential well to overcome the barrier.

Photon detectors exhibit a selective wavelength dependence of response per unit

of incident radiation power. They exhibit good signal-to-noise performance and a very

fast response, but to achieve this at mid/far-infrared wavelengths cryogenic cooling is

needed. In mercury cadmium telluride detectors photo detection takes place due to

interband transitions. Quantum well infrared photodetectors (QWIPs) are based on

bound to bound intersubband transitions in quantum wells [2]. The transition energy

determined by the energy levels in each quantum well can be varied by changing its

structure. A good example is the structure made of GaAs/AlGaAs material [3]. The

optoelectronic properties of a QWIP [4] can be designed by varying its structural

parameters. By adjusting the Al fraction x, in the GaAs/AlGaAs system and the

thickness of the GaAs layer at the time of growth, we can create a quantum well with

optical properties tailored to a user’s specifications.

This thesis follows the style of Journal of Applied Physics.
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Fig. 1. State-of-the-art commercial photodetectors. Detectors with detectivity ap-

proaching the BLIP (Background Limited Infrared Performance) limit are liq-

uid nitrogen cooled. From Judson Technologies.
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Independently of their design, standard mid (3 to 25-40 microns)/far (greater

than 40 microns)-infrared semiconductor photo detectors suffer from high dark cur-

rents due to thermal excitations across a low energy interband, intersubband or impu-

rity transition. Cryogenic cooling is usually required for high detectivity. In general

detectivity can be defined as

D∗ =

√
A∆ν

NEP
(1.1)

Where A is the surface area of the sample, ∆ν is the band width and NEP is noise

equivalent power, i.e the power at the detection limit corresponding to a signal-to-

noise ratio of 1.

Fig. 1 shows that mid infrared detectors have low detectivity when compared to

near infrared detectors at room temperature (Judson Technologies: http://www.judson

technologies.com) To achieve high detectivity cryogenic cooling is needed. The detec-

tivity is limited due to exponentially growing background blackbody radiation with

increase in the wavelength even at BLIP (background limited infrared performance)

conditions.

An alternative detection scheme is based on frequency up-conversion into the

near-infrared (0.7-2 microns) or visible range. This approach allows one to use supe-

rior visible/near-infrared detectors such as avalanche photo diodes(APDs) and photo

multipliers that have low dark currents and background noise and operate at room

temperature in single photon counting regime. Mid/far-infrared detectors using fre-

quency up-conversion give high detectivity but low quantum efficiency [5], which is

the ratio between the flux of created carriers and the flux of incident photons.

In order to improve the efficiency, χ(2) (second order nonlinear susceptibility)

should be high. Recently efficient up-conversion from telecom wavelengths (1.3-1.55

µm) into the operating range of silicon avalanche photodiodes has been achieved [6, 7].
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Fig. 2. A sketch of the up-conversion photodetection with orthogonal pump and input

signal beams.

Mid-infrared single-photon counting using frequency up-conversion in a periodically

poled lithium niobate crystal has been reported in [5]. Unfortunately, the efficiency

of nonlinear up-conversion of weak signals is low, especially in the continuous-wave

regime. For example, the up-conversion efficiency reported in [5] was of the order

of 10−6. It can be improved by employing high-power pulsed pump lasers, but the

resulting system becomes bulky and inconvenient. It is known that the optical non-

linearity becomes strongly enhanced in resonant cascade schemes when all interacting

fields are resonant with corresponding optical transitions in a medium. All practi-

cal up-conversion detector designs that could be potentially integrated with a pump

source and other optoelectronic components require the use of solid-state nonlinear

materials, preferably semiconductors. The crossed beam geometry in Fig. 2 is par-

ticularly interesting as it guarantees automatic phase matching and the up-converted

signal propagates into a different direction than the pump laser beam [8]. In this the-

sis I examine and theoretically analyze various detection schemes of mid/far-infrared

radiation by frequency up-conversion into the near-infrared range through resonantly

enhanced sum-frequency generation in coupled semiconductor quantum well struc-
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Fig. 3. A sketch of near-resonant SFG employing a cascade of interband and inter-

subband transitions (a, b) or intersubband transitions only (c). Bold solid line:

a near-IR pump laser at frequency ν2, dotted line: a mid/far-infrared signal at

frequency ν1, dashed line: an up-converted radiation at frequency ν3 = ν1 +ν2.

tures. The schemes utilize a near-resonant cascade of interband and intersubband

transitions. A near-infrared laser pump, slightly detuned from the interband transi-

tion, is mixed with a mid/far-infrared signal resonant to the intersubband transition

in the same structure, generating near-infrared sum-frequency radiation. A generic

scheme of such process is shown in Fig. 3(a,b). In Fig. 3c we also sketch a vari-

ant of the SFG process utilizing only intersubband transitions in high band-offset

heterostructures.
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CHAPTER II

INTERBAND AND INTERSUBBAND TRANSITIONS IN QUANTUM WELLS

Intersubband transitions in quantum wells are the basis for QWIPs and for our fre-

quency up-conversion scheme. Intersubband transitions lead to resonant absorption

spectra for photons with energies equal to the energy spacing between nearly parallel

subbands. QWIPs using the electron intersubband transitions usually employ grat-

ing couplers to couple thermal incident infrared radiation since the normal incident

absorption is forbidden according to selection rules. Light is emitted or absorbed

only when it is polarized in the growth direction. The strong Z direction confine-

ment makes the electrons oscillate in the Z direction much faster than in X and Y

directions. This confinement creates dipoles oriented along the Z direction which can

radiate and absorb radiation only when polarized along Z. Quantum mechanically the

intersubband transition rate between initial and final states can be calculated using

Fermi golden rule,

W = |〈ψf |H|Ψi〉|2(2π/h̄)δ(Ef − Ei − h̄ν) (2.1)

where H is the dipole matrix Hamiltonian,

H = − e

mec
Ap (2.2)

Where A is the vector potential and p is the momentum operator. In general the

matrix element of the momentum operator can be written as

8∑

j=1

〈φnj|pz|φn
′
j
′ 〉〈uj|uj

′ 〉+
8∑

j=1

〈φnj|φn
′
j
′ 〉〈uj|pz|uj

′ 〉 (2.3)

where we have separated the wave functions into Bloch function (u) and envelope

function (φ) components. The indices n, j, n
′
, j

′
represent initial conduction band



7

states and final unoccupied valence band states respectively. The first term describes

intersubband transitions and second term describes interband transitions. Interband

transitions lead to staircase-like absorption spectra, with each step corresponding to

the transition threshold of a paired electron subband and hole subband [9]. On the

other hand intersubband transitions lead to resonant absorption spectra for photons

with energies equal to the energy spacing between parallel subbands. Intersubband

and interband transitions differ in parity selection rules for a symmetric well. For

interband transitions, the transitions between the envelope functions of the same

parity are stronger. In case of intersubband transitions, the transitions between the

envelope functions of different parity are stronger, i.e transitions from odd to even

states are allowed. In the case of asymmetric quantum wells all the transitions are

dipole allowed. We considered electron intersubband and interband transitions in the

GaAs/AlGaAs system as a function of QW thickness and aluminum concentration

and barrier width.



8

CHAPTER III

NONLINEAR OPTICAL PROCESSES IN QUANTUM WELLS

Nonlinear-optical properties of quantum wells and super-lattices have become an ob-

ject of intense study [10]. Nonlinear optics is the study of phenomena in which the

optical properties of a material system get modified in the presence of light. In the

case of linear optics, the induced polarization i.e the dipole moment per unit volume

P̃ (t) = χ(1)Ẽ(t) (3.1)

where the constant of proportionality χ(1) is known as the linear susceptibility.

In the case of nonlinear optics, the optical response can often be described by

expressing the polarization P̃ (t) as a power series in the field strength Ẽ(t) as

P̃ (t) = χ(1)Ẽ1(t) + χ(2)Ẽ2(t) + χ(3)Ẽ3(t) + . . . , (3.2)

= P̃ (1)(t) + P̃ (2)(t) + P̃ (3)(t) + . . . ,

here the quantities χ(2), χ(3), P̃ (2)(t) and P̃ (3)(t) are known as the second-order non-

linear susceptibility, third-order nonlinear susceptibility, second-order and third-order

nonlinear polarizations respectively. The second-order nonlinear optical interactions

can occur only in noncentrosymmetric systems.

The nonlinear optical properties can be explained in a more intutive way, in terms

of an electron in a confining potential, is accelerated in this potential under an incident

electromagnetic field. The accelerated electron oscillates and radiates according to

its motion in the potential. The observed optical properties of the material rely on

this motion. If the potential is asymmetric and the driving field is large enough to

force the electron into the noticeably nonharmonic portion of the potential then the
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reradiated light will contain higher harmonics. The actual shape of the potential

determines the relative strength of the higher harmonics, leading to, for example,

second harmonic generation (SHG) or third harmonic generation (THG). Similarly

we can infer that an electron in any asymmetric potential driven by two different

incident electric fields will radiate the sum-frequency/difference frequency of the two

incident fields. This results in sum frequency generation (SFG)/difference frequency

generation (DFG).

A. Nonlinear Optical Interactions

In this section, I present brief qualitative descriptions of second order nonlinear optical

interactions. We consider the situation in which the optical field incident upon a

nonlinear optical medium characterized by a nonlinear susceptibility χ(2) consists of

two distinct frequency components, as

Ẽ(t) = E1e
−iν1t + E2e

−iν2t (3.3)

In the above equation we assume that the second-order contribution to the nonlinear

polarization is of the form

P̃ (2)(t) = χ(2)Ẽ(t)Ẽ∗(t) (3.4)

Hence, the nonlinear polarization is given by

P̃ (2)(t) = χ(2)[E2
1e
−2iν1t + E2

2e
−2iν2t + 2E1E2e

−i(ν1+ν2)t + (3.5)

2E1E
∗
2e
−i(ν1−ν2)t + c.c] + 2χ(2)[E1E

∗
1 + E2E

∗
2 ]

We can also express this result as
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P̃ (2)(t) =
∑
n

P (νn)e−iνnt (3.6)

here the summation extends over positive and negative frequencies νn. The complex

amplitudes of the various frequency components of the nonlinear polarization are

hence given by

P (2ν1) = χ(2)E2
1 , (3.7)

P (2ν2) = χ(2)E2
2 ,

P (ν1 + ν2) = 2χ(2)E1E2,

P (ν1 − ν2) = 2χ(2)E1E
∗
2 .

In the above expression the first two terms represent second harmonic generation

and the second and third terms represent sum frequency and difference frequency gen-

erations respectively. Among the four different nonzero frequency components present

in the nonlinear polarization only one of these frequency components will be present

with any appreciable intensity in the radiation generated by the nonlinear optical

interaction. This is due to the fact that the nonlinear polarization can efficiently cou-

ple to an electromagnetic wave only if a certain phase-matching condition is satisfied.

Which frequency component will be radiated depends also on the polarization of the

input radiation and orientation of the material system.

Quantum confinement of carriers leads to the existence of strong resonances in

the absorption spectra attributed to both interband and intersubband transitions.

The existing theoretical and experimental studies of nonlinear optical properties of

quantum wells can be divided into two groups: those examining photon energies in

the infrared that are due to intersubband transitions and others dealing with energies
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in the visible range that are due to interband transitions. In a symmetric quantum

well, because of the same parity of the ground state and second excited state the

corresponding dipole matrix element (〈Z31〉) is 0 so that χ(2) = 0. Hence we need

to break the symmetry of the well; asymmetry of the two well potential is essential

for sum frequency generation. In order to maximize χ(2) in any system we need to

maximize the product of dipole matrix elements. In the case of an asymmetric dou-

ble quantum well, by designing its structure, we can achieve the maximum product

of dipole moments. There exist many advantages of intersubband processes such as

their large oscillator strengths, narrow line widths and large dipole matrix elements

(10-20 Å) [11]. Large second order nonlinearities based on intersubband resonant

enhancement were first observed by Gurnick and De Temple in 1983 [12]. Early an-

alytical expressions for all of the most important second-order nonlinear coefficients

in asymmetric quantum well structures were deduced in 1989 [13]. Systematic theo-

retical and experimental analysis of resonant optical nonlinearities in quantum well

semiconductor lasers has been reviewed in [14, 15] and mid-infrared quantum cas-

cade laser sources based on intra-cavity nonlinear frequency conversion is discussed

in [16, 17, 18]. Resonant QW schemes for the up-conversion detection of mid/far-

infrared radiation were proposed and analyzed in [8, 19]. The discussion in the next

chapter largely follows these references.
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CHAPTER IV

NONLINEAR OPTICAL SUSCEPTIBILITY

In any medium, the nonlinear susceptibilities of order n, are in general sums of various

contributions, each containing in the numerator the product of (n + 1) dipole ma-

trix elements and in the denominator products of linear combinations involving the

difference between photon frequencies participating in the nonlinear interaction and

complex transition frequencies of the system. We consider the second order nonlinear

susceptibility. To optimize χ(2) in any quantum well we therefore need to maximize

the product of dipole elements of transitions and to minimize energy denominators,

using resonant effects. In this chapter we consider a three level system and show the

necessary steps to obtain the nonlinear susceptibility.

Let us consider the hamiltonian of the form

H = H0 + H1 (4.1)

where H1 is the dipole interaction term −qrE(t), in which q is the electron charge, r

is the position operator in the direction parallel to the electric field E(t).

The density matrix equation has the form

ρ̇nm = − i

h̄
[Ĥ, ρ̂]nm − γnmρnm (4.2)

The elements of density matrix have the following physical interpretation. The

diagonal elements ρnn give the probability that the system is in energy eigenstate n.

The off-diagonal elements ρnm represent the coherence between levels n and m. For

a three level system we can represent H0 and H1 in the following way.

H0 = h̄ω1|1〉〈1|+ h̄ω2|2〉〈2|+ h̄ω3|3〉〈3| (4.3)
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and

H1 = −h̄(Ω∗
1e

iφ1eiν1t|1〉〈2|+ Ω∗
2e

iφ2eiν2t|2〉〈3|+ Ω∗
3e

iφ3eiν3t|1〉〈3|) (4.4)

−h̄(Ω1e
−iφ1e−iν1t|2〉〈1|+ Ω2e

−iφ2e−iν2t|3〉〈2|+ Ω3e
−iφ3e−iν3t|3〉〈1|)

Here Ω is the complex Rabi frequency of the corresponding fields that can be

written as

Ωi,j,k =
µi,j,kE(t)

2h̄
(4.5)

and µi,j,k represent dipole moments of the corresponding transitions.

We consider second order susceptibility for the process of resonant sum-frequency

generation in a three level system in which ν1 and ν2 are different and ν3 = ν1 + ν2 is

the resultant signal (see Fig.4.).

In the rotating wave approximation, introducing slowly varying amplitudes of

the off-diagonal elements of the density matrix

ρij = σije
−iνt. (4.6)

the density matrix equations for populations can be written as

ρ̇11 = −2Im[Ω∗
3σ31]− 2Im[Ω∗

1σ21] + r12ρ22 + r31ρ33 (4.7)

ρ̇22 = −2Im[Ω∗
2σ32] + 2Im[Ω∗

1σ21] + r32ρ33 − r21ρ22 (4.8)

ρ̇33 = 2Im[Ω∗
3σ31] + 2Im[Ω∗

2σ32]− (r31 + r32)ρ22 (4.9)

where rik are relaxation rates of transitions i −→ k.

The equations for amplitudes of the off diagonal matrix elements can be written
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Fig. 4. Sketch of a three level system interacting with three fields with Rabi frequen-

cies Ω1, Ω2 and Ω3.
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as

σ̇21 + Γ21σ21 = iΩ1n12 + iΩ∗
2σ31 − iσ∗32Ω3 (4.10)

σ̇32 + Γ32σ32 = iΩ2n23 − iΩ∗
1σ31 + iσ∗21Ω3 (4.11)

σ̇31 + Γ31σ31 = iΩ3n13 − iΩ1σ32 + iσ∗21Ω2 (4.12)

where nij = ρii − ρjj,

Γ21 = γ21 + i(ω21 − ν1) (4.13)

Γ32 = γ32 + i(ω32 − ν2) (4.14)

Γ31 = γ31 + i(ω31 − ν3) (4.15)

Now we consider steady state

σ̇ij = 0. (4.16)

In order to obtain the nonlinear susceptibility we solve for σ21, σ32 and σ31. The

polarization at the sum frequency is proportional to σ31.

By solving the above three equations at the steady state we can obtain σ21, σ32

and σ31. For sum frequency generation σ31 can be written as

σ31 =
Ω1Ω2(

n21

Γ21
+ n23

Γ32
) + iΩ3(n13 + |Ω1|2n21

Γ∗21Γ32
− |Ω2|2n23

Γ21Γ∗32
)

Γ31 + |Ω1|2
Γ32

+ |Ω2|2
Γ21

. (4.17)
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In the above derivation we considered Ω1 and Ω2 be the strong fields and Ω3 to

be the weak field.

The second order nonlinear polarization, neglecting higher order terms in (4.18),

is given by

P (ν1 + ν2) = χ(2)(ν1 + ν2)E1(ν1)E2(ν2). (4.18)

The second-order nonlinear susceptibility for the process sum frequency can be

written as

χ(2) =
N

h̄2

〈µ12〉〈µ23〉〈µ13〉
Γ31

(
n21

Γ21

+
n23

Γ32

). (4.19)

Where N is the electron density in the wells, ε0 is the permitivity of the vacuum, q

is the electron charge and 〈µ12〉, 〈µ23〉 and 〈µ31〉 are the transition matrix elements.

The intersubband matrix elements are typically in the 10-20 Å range, leading to high

oscillator strengths. The interband matrix elements are of the order of 1-5 Å. The

multiple resonance effects are responsible for the extremely large nonlinearities in

the infrared. In case of interband transitions both the dipole moments, relaxation

rates and energies of the corresponding transitions depend on k|| (see Fig.5.) While

calculating χ(2) for interband transitions integration over k|| is needed, where the

absolute value of k|| is defined as
√

k2
x + k2

y where (kx, ky) is a point in the quantum

well plane.

For a given detuning, the strength of the nonlinearity is characterized by the

product of the three dipole moments 〈µ12〉〈µ23〉〈µ31〉 where 〈µij〉 = q〈Zij〉. To ob-

tain a large value of the product one needs to use asymmetric heterostructures. A

vast number of different configurations has been proposed in the literature. We use

an asymmetric double quantum well structure. We have performed k.p simulations
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Fig. 5. Electron energy as a function of parallel momentum k||.
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Fig. 6. The product of three dipole moments as a function of the normalized asym-

metry of a double QW, defined as d1−d3

d1+d2+d3
, where d1,3 are the thicknesses of

two QWs and d2 is the thickness of a barrier in between. Open squares repre-

sent InGaAs/AlInAs heterostructure lattice matched to InP and open circles

represent GaAs/AlGaAs heterostructure. Graphs are plotted for a constant

(d1 + d2 + d3) = 90Å and d2 = 10Å.
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Fig. 7. The intersubband transition energy as a function of the normalized asymmetry

of a double quantum well, defined as d1−d3

d1+d2+d3
, where d1,3 are the thicknesses

of two QWs and d2 is the thickness of a barrier in between. Open circles

represent InGaAs/AlInAs heterostructure lattice matched to InP and solid

squares represent an GaAs/AlGaAs heterostructure. Graphs are plotted for a

constant d1 + d2 + d3 = 90Å and d2 = 10Å.
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Fig. 8. The intersubband transition energy represented by the squares on left axis and

the product of three dipole moments represented by circles on right axis as func-

tions of the total thickness d1+d2+d3 of a double GaAs/AlGaAs QW, where d1,3

are the thicknesses of two QWs and d2 is the thickness of a barrier in between.

Graphs are plotted for a constant asymmetry ratio (d1−d3)/(d1+d2+d3) = 0.2

and d2 = 10Å.
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Fig. 9. The value of |χ(2)| as a function of detuning of the up-converted signal fre-

quency from the transition 1-3. All parameters are specified in the text.

in various approximations (from 8-band to effective 3-band) for a large number of

QW configurations and found that for a given material system and given intersub-

band energy the maximum values of the above product are similar within a factor

of 2. In Fig. 6-8 we show the simulation results for unbiased double QW for two

heterostructures. One is the InGaAs/AlInAs heterostructure lattice matched to InP

and the other is GaAs/AlGaAs heterostructure. These figures illustrate optimal QW

thickness, asymmetry and maximum nonlinearity achieved in these heterostructures

for various intersubband transition energies in the mid/far-infrared range. Peak re-

sponsivity of the detector is reached at the photon energy of the signal roughly equal

to the intersubband transition energy. From figures 6-8 one can choose the optimal

structure of the nonlinear system for a given wavelength.

Fig. 9 shows the value of |χ(2)| as a function of detuning δ13, when the pump laser

is detuned by 20 meV below the absorption edge E21(0). All numerical values are



22

chosen for a double quantum well InGaAs/AlInAs heterostructure lattice matched to

InP, with all line broadenings γ (half-widths at half maximum) equal to 10 meV and

the product of three dipole moments equal to 280 A3 (from Fig.6). The structure

consists of 30 A and 22 A QWs separated by a 20 A barrier. As is clear from the

figure, the full width at half-maximum of the spectral response of the detector is

about 46 meV, i.e about 1/3 of the mid-infrared signal frequency (120 meV). Tuning

pump laser closer to the band gap increases the maximum nonlinearity but also

increases the pump absorption, which leads to enhanced spontaneous recombination

of photoexcited electrons and ultimately to higher noise-equivalent power and lower

detectivity. One should choose an optical pump detuning depending on the specific

application.

The multiple resonance effects are responsible for the extremely large nonlin-

earities and the large value of χ(2) in the infrared. Maximum values of |χ(2)| in the

mid-infrared range at 10µm wavelength are within 5-20 nm/V. The nonlinearity in

the InGaAs/AlInAs heterostructure is stronger by a factor of 2-3 as compared to

the GaAs/AlGaAs system. However, because of a narrower band gap of InGaAs the

wavelengths of the up-converted signal are typically in the range 1.1-1.2 µm. For

detection in this range one has to use InGaAs APDs that have lower efficiency com-

pared to silicon APDs. In GaAs-based heterostructures the up-converted signal does

fit into the operating range of superior silicon APDs.

A. Detector Geometry and Up-Conversion Efficiency

The detector geometry and beam alignment depend on which of the up-conversion

schemes on Fig.3 one chooses. For a scheme on Fig.3a, the mid/far-infrared signal

should have a TM-polarization and come from the facet, while the near-IR pump
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can either come from the facet or propagate at normal incidence to the layers as

shown in Fig.2. For a scheme in Fig.3b both signal and pump are allowed to have TE

polarization and propagate normal to the layers if the transition 2-3 occurs between

the first heavy-hole and second light-hole subbands. Normal incidence is an important

advantage; however in this case maximum nonlinearity is lower by a factor of 7-8 as

compared to using a TM-polarized intersubband transition. Finally for a scheme

in Fig.3c all beams should have TM-polarization and therefore propagate parallel

to the QW layers. For the geometry of Fig.2 the total output SFG power in the

phase-matched direction is

P =
2πNω4

c3

|χ(2)|2(A1A2)
2L2

zLx

k2
z

. (4.20)

Where Lx is the length of the pumped spot in the x-direction, Lz is the active

region thickness, A1 and A2 are the amplitudes of the electric fields of mid-infrared

signal E1 and near-infrared pump E2 respectively. Assuming that the mid-infrared

signal has overlap Γ with the active region in z-direction, and the pump and the signal

are overlapped over the length Ly in y-direction, the above equation can be expressed

through the total signal power P1 and the pump intensity in the mixing region I2 as

P =
4π3ω2

c3nn1n2

|χ(2)|2LzLxΓI2P1, (4.21)

where n, n1, n2 are the refractive indices of three interacting beams in the active

region. Note that the mid-IR radiation can be guided in the crystal in which case n1

is an effective modal refractive index. The power up-conversion efficiency defined as

ηup = P
P1

is an important figure of merit of the detector.
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B. Detector Performance

Although the proposed mid/far-infrared photodetection scheme consists of two steps

i.e. up-conversion and subsequent detection by a near-IR APD, it can be still charecter-

ized by standard figures of merit. They are the noise equvivalent power(NEP), which

is inversely proportional to the detectivity, the quantum efficiency and the responsiv-

ity. The intrinsic noise of our detector in the absence of an input signal has several

contributions: an intrinsic noise of the near-IR APD, background radiation at the

sum frequency, background noise at the mid-IR signal frequency up-converted by

SFG processes, and spontaneous recombination emission of the QW structure in the

absence of a signal that gets intercepted by an APD. The detection sensitivity is a

measure of the minimum signal level that can be detected. It indicates the amount of

power, in watts, to obtain a signal-to-noise ratio of unity. In other words the signal

to noise ratio can be written as

S

N
=

Pinc

NEP
. (4.22)

Here NEP is given by the expression

NEP =
h̄ω1

ηphot

〈ntot〉, (4.23)

where 〈ntot〉 describes the detection noise statistics and ηphot is the total quantum

efficiency. It comprises all statistically independent sources of noise, namely, dark

counts nDC (inherent in the Si APD), background noise nBG and Psp such that

〈ntot〉 = 〈nDC〉+ 〈nup
BG〉+ 〈nNIR

BG 〉+ Psp. (4.24)

ηphot is given by

ηphot = ηup
ω1

ω3

ηNIR, (4.25)
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where ηup is the power up-conversion efficiency which is the ratio power of the sum-

frequency generated signal and the power of incident signal. ηNIR is the efficiency of

the near-IR APD.

The background noise consists in all counts generated by external photons other

than the signal photons. In our case we also have spontaneous recombination noise at

the sum frequency coming from the quantum wells. Ideally we would like to have all

contributions to be lower than or comparable to the intrinsic APD noise. In this case

the detectivity of the whole scheme is determined by the detectivity of the near-IR

APD. The up-converted back-ground noise is mostly filtered out by the phase-matched

SFG process since only one spatial mode of this noise can be up-converted efficiently.

Spontaneous emission at frequencies near the sum frequency ν from the MQW

structure is due to excitation of electrons and holes by a strong pump, followed by

radiative recombination of a hot tail of the distributions of photoexcited carriers

having parallel momenta k|| satisfying the condition

E21(k||) ≈ E21(0) +
h̄2k2

||
2me

+
h̄2k2

||
2mh

, (4.26)

h̄ν = E21(0) +
h̄2k2

||
2mr

. (4.27)

The noise signal power reaching the detector within the frequency bandwidth

∆ν and a solid-angle aperture ∆Ω ¿ 1 of the detector, which is set to receive only a

highly collimated sum-frequency signal, can be estimated as

Psp = A(k||)Ne(k||)VMQW ∆ν
∆Ω

4π
, (4.28)

where A is the spectral density of the spontaneous emission rate and VMQW is the

pumped volume of the active region. The density of hot electrons and holes with a
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given parallel momentum obeys Boltzmann distribution in the simplest case. It can

be calculated from the absorbed power of the pump radiation and can be controlled

by the detuning δ12 of the pump below the band edge and by the pump intensity

I2. Recent advances have pushed the NEP of APDs to very low values of 10−15 W

cm−1/2 even for the InGaAS APDs at room temperatures [20]. Ideally Psp should

be below the NEP of the near-IR APD, which limits the pump intensity I2 to about

106 W/cm2 for E32 ∼ 100 meV, ∆Ω ∼ 0.01, δ12 ∼ 30 meV, and resonable values for

all other parameters. Another kind of noise specific to the up-conversion detection is

due to the fact that the output sum-frequency signal is effectively modulated by the

pump laser intensity. The pump laser can have intensity fluctuations, a kind of noise

known as Relative Intensity Noise (RIN). This noise will introduce small fluctuations

in the output power, proportional to the intensity of the signal. This noise can be

neglected for NEP calculations, but it can introduce a certain noise level depending

of the specific system. The overall photon conversion efficiency is given by

η =
ω1

ω
ηupηcηAPD, (4.29)

where ηup = P
P1

, ηc is the coupling efficiency of the sum-frequency radiation to the

APD which can be close to 1, and ηAPD is the conversion efficiency of the APD. For

the strucutes considered earlier and the pump intensity I2 ∼ 106 W/cm2, we obtain η

in the 1−3% interval. The efficiency is much higher for collinear in-plane propagation

of the signal and pump beam. The overall responsivity defined as the ratio of the

APD photocurrent to the mid-IR signal power P1 incident on a crystal is given by

R =
IAPD

P1

(4.30)

= ηupηcRAPD. (4.31)
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Where RAPD is the APD responsivity.
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CHAPTER V

CONCLUSIONS

We considered sum frequency generation in an asymmetric double quantum well of

GaAs/AlGaAs and InGaAs/AlInAs structures. We studied the intersubband non-

linear absorption of asymmetric double quantum wells designed for mid/far-infrared

range. We also studied the dependance of second-order nonlinear susceptibility on

various parameters of the well. We also observed that InGaAs/AlInAs has one ad-

vantage compared to GaAs/AlGaAs system: the electron effective mass in InGaAs is

35% smaller than in GaAs due to which for the same intersubband transition energies

InGaAs has larger dipole matrix elements. However, the smallest linewidths measured

by absorption spectroscopy have been found in the GaAs/AlGaAs system. We also

studied figures of merit of the detector. The detectors using frequency up-conversion

usually show high detectivity at the cost of low efficiency. In order to obtain high effi-

ciency one needs to have large χ(2) and long interaction or coherance length. With our

detection scheme we have not only achieved high detectivity but also good quantum

efficiency due to high nonlinearity. Our scheme is independent of temperature, i.e it

is not sensitive to temperature as direct detection scheme. Single photon counting

is also possible due to low noise, low dark currents and high detectivity. In conclu-

sion, the proposed mid/far-IR photodetection scheme has the potential of reaching

very high room temperature detectivity values comparable to that of state of the art

near-IR APDs. There is a trade-off between the detectivity and photon conversion

efficiency which originates from spontaneous emission by carriers generated in QWs

by a strong pump. For the pump intensities supplied by a 100 mW semiconductor

laser the conversion efficiency is of the order of a few percent. We can also achieve

single photon detection based on the proposed geometry.
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