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ABSTRACT 

 

 

Technical, Economic and Risk Analysis of Multilateral Wells. 

(December 2008) 

Dulce Maria Arcos Rueda, B.S., Instituto Technologico y de Estudios Superiores de 

Monterrey, Mexico 

Chair of Advisory Committee: Dr. Ding Zhu  

 

 

The oil and gas industry, more than at any time in the past, is highly affected by 

technological advancements, new products, drilling and completion techniques, capital 

expenditures (CAPEX), operating expenditures (OPEX), risk/uncertainty, and 

geopolitics. Therefore, to make a decision in the upstream business, projects require a 

thorough understanding of the factors and conditions affecting them in order to 

systematically analyze, evaluate and select the best choice among all possible 

alternatives.  

The objective of this study is to develop a methodology to assist engineers in the 

decision making process of maximizing access to reserves. The process encompasses 

technical, economic and risk analysis of various alternatives in the completion of a well 

(vertical, horizontal or multilateral) by using a well performance model for technical 

evaluation and a deterministic analysis for economic and risk assessment.  

In the technical analysis of the decision making process, the flow rate for a defined 

reservoir is estimated by using a pseudo-steady state flow regime assumption. The 

economic analysis departs from the utilization of the flow rate data which assumes a 

certain pressure decline. The financial cash flow (FCF) is generated for the purpose of 

measuring the economic worth of investment proposals. A deterministic decision tree is 

then used to represent the risks inherent due to geological uncertainty, reservoir 

engineering, drilling, and completion for a particular well. The net present value (NPV) 
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is utilized as the base economic indicator. By selecting a type of well that maximizes the 

expected monetary value (EMV) in a decision tree, we can make the best decision based 

on a thorough understanding of the prospect.  

The method introduced in this study emphasizes the importance of a multi-discipline 

concept in drilling, completion and operation of multilateral wells.  



 v

DEDICATION 

 

To my Heavenly Father who has given me wisdom, strength and perseverance during 

times when I felt weak and insufficient.  

To Roger, the love of my life, who believed in me, advised me, encouraged me when 

I was discouraged, and always prayed for me. 

To my parents, Ignacio and Ana Maria whom I immensely love and who have been 

supportive of my decision to pursue my master’s; they have set an example for me to 

follow in all of my life’s endeavors. 

To my brothers, Ignacio Carlos and Renato Jose, whom I love very much!  



 vi

ACKNOWLEDGEMENTS 

 

I want to thank Dr. Ding Zhu for her guidance, comments, suggestions and wisdom she 

has imparted to me. I fully appreciate the opportunity that was given to me to become a 

part of her research group where I was surrounded by outstanding academic minds. 

I would also like to thank Dr. Eric Bickel, Mr. George Voneiff and Dr. A. Daniel 

Hill who through their teaching and counsel helped to make it possible for me to perform 

the work that I have accomplished on my master’s. 

I express extreme gratitude to Roger Chafin who always encouraged and guided me; 

giving me new ideas, challenging my thoughts, and showing me different ways to 

approach this study.  

I also want to thank Keita Yoshioka, Jiayao Deng, Luis Antelo, Jiajing Lin, and all of 

my fellow students that from time to time helped when I was confused and needed 

assistance.  



 vii

TABLE OF CONTENTS 

 

              Page 

ABSTRACT ..............................................................................................................  iii 

DEDICATION ...........................................................................................................  v 

ACKNOWLEDGEMENTS .......................................................................................  vi 

TABLE OF CONTENTS ..........................................................................................  vii 

LIST OF FIGURES ...................................................................................................  ix 

LIST OF TABLES .....................................................................................................  xii 

1. INTRODUCTION ...............................................................................................  1 

  1.1 Statement of Research ..........................................................................  1 
  1.2 Background ...........................................................................................  1 
  1.3 Literature Review .................................................................................  3 
  1.4 Objective ...............................................................................................  5 

2. METHODOLOGY ..............................................................................................  6 

  2.1 Overview ..............................................................................................  6 
  2.2 Technical Analysis ...............................................................................  6 
   2.2.1    Vertical Well Performance .......................................................  7 
   2.2.2    Horizontal and Multilateral Well Performance ........................  8 
   2.2.3    Decline Curve Analysis ............................................................  11 
  2.3 Economic Analysis ...............................................................................  12 
   2.3.1    Economic Analysis Major Components ...................................  13 
   2.3.2    Economic Analysis Procedure ..................................................  13 
  2.4 Risk Analysis ........................................................................................  14 
   2.4.1    Vertical Well Decision Tree Analysis ......................................  18 
   2.4.2    Horizontal Well Decision Tree Analysis ..................................  18 
   2.4.3    Multilateral Well Decision Tree Analysis ................................  20 
  2.5 Sensitivity Analysis ..............................................................................  21 

3. UNDERSATURATED OIL WELL APPLICATION .........................................  22 

 



 viii

              Page 

  3.1 Overview ..............................................................................................  22 
  3.2 Example 1: Oil Well .............................................................................  22 
   3.2.1    Example 1 – Technical Analysis ..............................................  23 
   3.2.2    Example 1 – Economic Analysis ..............................................  35 
   3.2.3    Example 1 – Risk Analysis .......................................................  38 
   3.2.4    Example 1 – Sensitivity Analysis .............................................  43 
  3.3 Example 2: Oil Well, Low Anisotropy Ratio .......................................  45 
   3.3.1    Example 2 – Technical Analysis ..............................................  45 
   3.3.2    Example 2 – Economic Analysis ..............................................  54 
   3.3.3    Example 2 – Risk Analysis .......................................................  57 
   3.3.4    Example 2 – Sensitivity Analysis .............................................  60 

4. GAS WELL APPLICATION ..............................................................................  62 

  4.1 Overview ..............................................................................................  62 
  4.2 Example 3: Gas Well ............................................................................  62 
   4.2.1    Example 3 – Technical Analysis ..............................................  62 
   4.2.2    Example 3 – Economic Analysis ..............................................  73 
   4.2.3    Example 3 – Risk Analysis .......................................................  77 
   4.2.4    Example 3 – Sensitivity Analysis .............................................  80 

5. CONCLUSIONS AND RECOMMENDATIONS ..............................................  82 

  5.1 Conclusions ..........................................................................................  82 
  5.2 Recommendations ................................................................................  82 

NOMENCLATURE ..................................................................................................  84 

REFERENCES ..........................................................................................................  86 

APPENDIX A ............................................................................................................  88 

APPENDIX B ............................................................................................................  92 

APPENDIX C ............................................................................................................  96 

VITA ..........................................................................................................................  100 



 ix

LIST OF FIGURES 

 

                                                                                                                                       Page 
 
 Figure 2.1 Vertical, horizontal and multilateral well completions ..................  7 
 
 Figure 2.2 Babu and Odeh’s box shape model ................................................  8 
 
 Figure 2.3 Concessionary system cash flow diagram ......................................  14 
 
 Figure 2.4 Influence diagram for a deterministic decision tree analysis..........  15 
 
 Figure 2.5 Decision tree alternatives to drill and complete a well ...................  16 
 
 Figure 2.6 Decision tree structure ....................................................................  17 
 
 Figure 3.1 Well planning for examples 1 through 3 ........................................  23 
 
 Figure 3.2 Examples 1 & 2 – DCA for a vertical well system under 
  “base case scenario” .......................................................................  31 
 
 Figure 3.3 Example 1 – DCA for a horizontal well system under 
  “base case scenario” .......................................................................  31 
 
 Figure 3.4 Example 1 – DCA for a multilateral well system under 
  “base case scenario” .......................................................................  32 
 
 Figure 3.5 Example 1 – Monthly production rate under 
  “base case scenario” .......................................................................  33 
 
 Figure 3.6 Example 1 – Cumulative production rate under 
  “base case scenario” .......................................................................  34 
 
 Figure 3.7 Example 1 – Cumulative FCF under “base case scenario” ............  37 
 
 Figure 3.8 Example 1 – Decision tree expected monetary value 
  for each well system .......................................................................  43 
 
 Figure 3.9 Example 1 – Sensitivity analysis as a function of  
  reservoir quality ..............................................................................  44 
 
 



 x

                                                                                                                                       Page 
 
 Figure 3.10 Example 1 – Sensitivity analysis as a function of  
  geological features ..........................................................................  44 
 
 Figure 3.11 Example 2 – DCA for a horizontal well system under 
  “base case scenario” .......................................................................  51 
 
 Figure 3.12 Example 2 – DCA for a multilateral well system under 
  “base case scenario” .......................................................................  51 
 
 Figure 3.13 Example 2 – Monthly production rate under 
  “base case scenario” .......................................................................  52 
 
 Figure 3.14 Example 2 – Cumulative production rate under 
  “base case scenario” .......................................................................  53 
 
 Figure 3.15 Example 2 – Cumulative FCF under “base case scenario” ............  56 
 
 Figure 3.16 Example 2 – Decision tree expected monetary value 
  for each well system .......................................................................  59 
 
 Figure 3.17 Example 2 – Sensitivity analysis as a function of  
  reservoir quality ..............................................................................  60 
 
 Figure 3.18 Example 2 – Sensitivity analysis as a function of  
  geological features ..........................................................................  61 
  
 Figure 4.1 Example 3 – DCA for a vertical well system under 
  “base case scenario” .......................................................................  70 
  
 Figure 4.2 Example 3 – DCA for a horizontal well system under 
  “base case scenario” .......................................................................  70 
 
 Figure 4.3 Example 3 – DCA for a multilateral well system under 
  “base case scenario” .......................................................................  71 
 
 Figure 4.4 Example 3 – Monthly production rate under 
  “base case scenario” .......................................................................  72 
 
 Figure 4.5 Example 3 – Cumulative production rate under 
  “base case scenario” .......................................................................  73 
 
 Figure 4.6 Example 3 – Cumulative FCF under “base case scenario” ............  76 



 xi

                                                                                                                                       Page 
 
 Figure 4.7 Example 3 – Decision tree expected monetary value 
  for each well system .......................................................................  79 
 
 Figure 4.8 Example 3 – Sensitivity analysis as a function of  
  reservoir quality ..............................................................................  80 
 
 Figure 4.9 Example 3 – Sensitivity analysis as a function of  
  geological features ..........................................................................  81 
  



 xii

LIST OF TABLES 

 

                                                                                                                                  Page 

 Table 3.1 Examples 1 & 2 – Oil reservoir properties .....................................  24 

 Table 3.2 Example 1 – Analytical model results under 
  “base case scenario” .......................................................................  30 

 Table 3.3 Example 1 – DCA results under “base case scenario” ...................  30 

 Table 3.4 Example 1 – Summary of initial monthly production rate .............  34 

 Table 3.5 Examples 1 & 2 – Economic input data for oil wells .....................  35 

 Table 3.6 Example 1 – Summary of economic results under 
  “base case scenario” .......................................................................  36 

 Table 3.7 Example 1 – Summary of NPV at 10% discount rate ....................  37 

 Table 3.8 Examples 1& 2 – Probabilities of faults .........................................  38 

 Table 3.9 Examples 1 through 3 – Probability of low, medium and  
  high reservoir quality ......................................................................  38 

 Table 3.10 Examples 1 through 3 – Costs incurred during drilling and 
  completion failures .........................................................................  39 

 Table 3.11 Examples 1 through 3 – Probability of drilling and 
  completion in a vertical well ..........................................................  39 

 Table 3.12 Examples 1 through 3 – Probability of drilling and 
  completion in a horizontal well ......................................................  40 

 Table 3.13 Examples 1 through 3 – Probability of drilling and 
  completion in a multilateral well ....................................................  40 

 Table 3.14 Example 1 – Vertical well expected monetary value .....................  41 

 Table 3.15 Example 1 – Horizontal well expected monetary value .................  42 

 Table 3.16 Example 1 – Multilateral well expected monetary value ...............  42 



 xiii

                                                                                                                                  Page 

 Table 3.17 Examples 1 & 2 – Comparison of initial hypothetical 
  flow rates ........................................................................................  49 

 Table 3.18 Example 2 – Analytical model results under 
  “base case scenario” .......................................................................  50 

 Table 3.19 Example 2 – DCA results under “base case scenario” ...................  50 

 Table 3.20 Example 2 – Summary of initial monthly production rates ............  54 

 Table 3.21 Example 2 – Summary of economic results under 
  “base case scenario” .......................................................................  55 

 Table 3.22 Example 2 – Summary of NPV at 10% discount rate ....................  56 

 Table 3.23 Example 2 – Vertical well expected monetary value .....................  58 

 Table 3.24 Example 2 – Horizontal well expected monetary value .................  58 

 Table 3.25 Example 2 – Multilateral well expected monetary value ...............  59 

 Table 4.1 Example 3 – Gas reservoir properties .............................................  63 

 Table 4.2 Example 3 – Analytical model results under 
  “base case scenario” .......................................................................  69 

 Table 4.3 Example 3 – DCA results under “base case scenario” ...................  69 

 Table 4.4 Example 3 – Summary of initial monthly production rates ............  73 

 Table 4.5 Example 3 – Economic input data for gas wells ............................  74 

 Table 4.6 Example 3 – Summary of economic results under 
  “base case scenario” .......................................................................  75 

 Table 4.7 Example 3 – Summary of NPV at 10% discount rate ....................  76 

 Table 4.8 Example 3 – Probability of faults ...................................................  77 

 Table 4.9 Example 3 – Vertical well expected monetary value .....................  78 

 Table 4.10 Example 3 – Horizontal well expected monetary value .................  78 



 xiv 

                                                                                                                                  Page 

 Table 4.11 Example 3 – Multilateral well expected monetary value ...............  79 

 

 

 

 



 1

1. INTRODUCTION 

 

 

1.1 Statement of Research 

As the oil and gas industry is moving away from conventional reservoirs towards 

unconventional reservoirs, traditional vertical wells may not be the most effective 

techniques to maximize hydrocarbon recovery. However, we can not assume that 

horizontal or multilateral technologies are always the best alternative for any field 

development since each reservoir has unique conditions; horizontal or multilateral wells 

may not be necessarily ideal for effectively draining the reservoir.     

The significance of this study resides in the process that engineers could adopt prior 

to making a decision whether to drill and complete a well by conventional or more 

sophisticated methods. One needs to take into account that not only the technical 

considerations but also the economic and risk aspects have equally important roles when 

evaluating options. 

 

1.2 Background 

The development of multilateral technology began in the early 1940s when horizontal 

wells (where the lower part of the wellbore parallels the pay zone) was used for oil 

exploration in California. This was made possible by the introduction of short radius 

drilling tools. 

After engineers began to realize that horizontal wells could increase production and 

ultimate recovery; the multilateral technology concept was introduced with the idea of 

drilling multiple branches into a reservoir from a main wellbore. The first truly 

multilateral well was drilled in Russia in 1953 with nine lateral branches from the main 

borehole that increased penetration of the pay zone by 5.5 times and production by 17 

fold, yet the cost was only 1.5 times that of a conventional well cost (JPT, 1999).  

 

 

____________ 

This thesis follows the format of the SPE Journal. 
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Multilateral technology has been increasing in popularity during the last ten years 

because it offers significant advantages when compared to vertical or horizontal wells. A 

few of the benefits are described below: 

§ Cost reduction: The total cost incurred by implementing a multilateral well could be 

higher than the cost of a single completion. However, the benefit can possibly 

overcome the cost when compared to a vertical well. CAPEX is reduced due to 

lower cost of rig time, tools, services, and equipment. Therefore, the cost/bbl can 

also be lower. 

§ Increased reserves: Additional reserves may be found in isolated lenses due to faults 

or compartmentalized reservoirs. By drilling multilateral wells several productive 

blocks may be effectively intersected. Thus, marginal or smaller reservoirs can turn 

out to be economic projects. 

§ Accelerated reserves: Drainage optimization is important due to the fact that finding 

and development cost, and OPEX can be significantly high. Consequently, 

multilateral wells are usually drilled in the same horizontal or vertical plane to 

accelerate production and reduce the cost. 

§ Slot conservation: In offshore environments, slot optimization is crucial in order to 

bring the, per barrel, capital cost down. In addition, multilateral technology 

contributes to holding the cost in check by maximizing the number of reservoir 

penetrations with a minimum number of wells. 

§ Heavy oil reserves: Multilateral wells provide improved drainage and sweep 

efficiency from wells which normally have low recovery rates, poor sweep 

efficiency and low mobility ratios.  

 

After consideration of the technical and economic benefits obtained by using 

multilateral technology, it is important to mention some of the suitable reservoir 

applications: 

§ Heavy oil reservoir: Steam assisted gravity drainage is possible with a multilateral 

well whereby the vertical steam injector and the producer are combined into one 

wellbore with two laterals.  



 3

§ Layered reservoirs: In a layered system, heterogeneity will separate individual 

reservoirs due to contrast in vertical permeability. A multilateral well can 

exceptionally augment the value obtained by using a single horizontal well. 

§ Depleted reservoirs and mature development: Multilateral technology is used to 

access additional reserves from previously depleted reservoirs through the re-entry 

of existing wells and infill drilling mature fields. 

§ Tight and naturally fractured reservoir: Productivity can be tremendously improved 

in anisotropic environments, where natural fracture systems and permeability 

contrast exist. Multilateral technology connects and intersects these features to 

increase reservoir exposure. 

 

1.3 Literature Review 

There are several horizontal well models developed to evaluate well performance. These 

models are based on a steady-state condition, a pseudo-steady state condition or a 

transient flow condition.  

The models presented assuming steady state conditions are generally ellipsoidal or 

box shaped reservoirs. One of the most popular models using an ellipsoid drainage 

pattern is Joshi’s model (1988), which divides the three-dimensional flow problem into 

two two-dimensional problems to obtain the horizontal well performance. For a box 

shaped reservoir, Furui’s model (2002) can predict horizontal well performance based on 

the finite element modeling.  

Babu and Odeh’s model (1989), under pseudo-steady state conditions, is a well 

known model, which calculates the horizontal well productivity considering a box-shaped 

reservoir. However, one of the limitations of this model is that the well has to be parallel 

to the y-axis. 

The concept of risk analysis in several applications of the oilfield business has been 

typically addressed by many authors. The majority of the risk analysis studies have been 

exclusively performed for reserves estimation by utilizing probabilistic modeling and 

deterministic decision trees. Despite the significance and value of incorporating this type 

of analysis, only a few authors apply it to other branches of the oil and gas industry.  
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Waddell (1999) developed an analytical system that considers the difficulties in risk 

analysis for an emerging technology using quantitative risk. Decision tree, Monte Carlo 

Simulation or Latin Hypercube Simulation may be used to correlate information that has 

been assimilated through operational and experience databases. His study primarily 

focuses on quantifying risk factors, defining potential outcomes, contingency plans, and 

event probabilities in the application of emerging technologies such as multilateral 

technology. The applications of this method include: candidate selection, systems review, 

decision making, and business development.      

Garrouch et al. (2004) developed a web-based fuzzy expert system for aiding in the 

planning and completion of multilateral wells: screening and selection of candidates, 

lateral-section completion types, and the junction level of complexity. This detailed 

system uses decision trees, matrix screening, and flow charts to take into account all type 

of technical considerations for the right selection of a multilateral well type, lateral 

completion, and junction type. However, this deterministic study does not provide for any 

type of economic and risk analysis since it purely emphasizes the technical approach.  

Lewis et al. (2004) studied the relationship between petroleum economics and risk 

analysis by using an integrated approach for project management. This analytical 

technique systematically and intuitively overcomes complex and high risk 

multidisciplinary ventures that are intrinsic in oil and gas projects. Certainly, this method 

addresses the use of technical, economic (return on investment), and risk assessments as 

mutually dependent analysis from the deterministic and probabilistic stand points. 

Despite the emphasis on the economic and risk analysis, the technical study does not 

assist directly on the evaluation of different well systems to drill and complete a well; it 

only offers a systematic path to be followed in project management because this is a tool 

intended to be applied for any type of decision making in the oil and gas industry. 

Bickel et al., (2006) studied dependence among geologic risks in sequential 

exploration decisions by developing a practical approach for modeling dependence 

among prospect wells and determining an optimal drilling strategy. The technique 

consists of constructing a joint probability distribution to measure the independence of 

success in a well based on another well results. Consequently, the use of a dynamic 

programming model for determining an optimal drilling strategy is utilized. Fortunately, 
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this study is not limited to geologic factors; it can also include other uncertainties such as 

production rates and commodity prices.    

Siddiqui et al. (2007) developed a tool to evaluate the feasibility of petroleum 

exploration projects using a combination of deterministic and probabilistic methods. The 

reason of this study is merely descriptive and encompasses, in a broad view, factors that 

must be taken into account when project feasibility is to be evaluated. This methodology 

does not represent an exhaustive process but a guideline of the risks that Exploration and 

Production ventures face; the applicability, advantages, and drawbacks of the 

deterministic and probabilistic models.  

Baihly et al. (2007) proposed a methodology for risk management to maximize 

success in horizontal wells in tight gas sands.  The objective of this study is to assist 

engineers in identifying and managing risks when planning, drilling, and completing 

horizontal wells in tight sandstone formations in order to improve success. The 

methodology emphasizes risk mitigation through the knowledge of several situations that 

can negatively impact the success of horizontal wells in tight gas sands. Regardless of the 

exhaustive aspects considered in each phase, this method does not specify where and 

when the deterministic and probabilistic models must take place in the process of 

horizontal vs. vertical wells assessment. Furthermore, this tool does not explain in detail 

the economic evaluation that one ought to perform; it simply refers to the technical 

aspects and the risk associated with. 

As previously mentioned there have been several studies involving technical, 

economic and risk analysis. These methodologies are designed to be either applied in any 

type of decision making process or specific situations for exclusive well types and 

formations.  

 

1.4 Objective 

The objective of this study is to develop a methodology to assist engineers in their 

decision making process of maximizing access to reserves. The process encompasses 

technical, economic and risk analysis of various alternatives in the completion of a well 

(vertical, horizontal or multilateral) by using a well performance model for technical 

evaluation and a deterministic analysis for economic and risk assessment.  
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2. METHODOLOGY 

 

 

2.1 Overview  

To efficiently develop a field, each reservoir must be completed with a well system that 

maximizes the hydrocarbon recovery. Several alternatives can be selected based on the 

feasibility of the system, revenue vs. cost, and risk or uncertainty involved.  

In order to properly analyze and evaluate a project, it is imperative to study first the 

technical features then followed by the economic and risk analysis. Prior to deciding the 

completion type to be used; one must be able to predict inflow performance from each 

well system, evaluate economic indicators which determines profitability, and risk 

associated with the success and/or failure.  

The methodology presented in this study is designed to assist engineers in decision 

making process by using hypothetical examples under certain reservoir characteristics to 

evaluate whether a multilateral well application is the most efficient alternative to be 

chosen for a project. Since field data is not included in this study, several assumptions are 

made to help illustrate the applicability of the tool in an oil and gas well.  

There are three cases used in the analysis based on the quality of the reservoir that is 

likely to be present: “high” (best permeability case scenario), “medium” (base 

permeability case scenario) and “low” (worst permeability case scenario). The 

methodology is described below.   

 

2.2 Technical Analysis 

In the technical study of the decision making process, a pseudo-steady state flow 

condition is assumed, which consists of a reservoir where no-flow boundaries are present. 

Drainage areas may be defined by natural limits such as faults and pinchouts, or induced 

by artificial limits from adjoining well production. As a result, the pressure at the outer 

boundary is not constant; it declines at a constant rate with time.  This pressure decline in 

the reservoir can be estimated based on material balance of the drainage system. 

This study examines the well performance in a hypothetical two layer reservoir as 

shown in Fig. 2.1; which includes the well structure of vertical, horizontal and 
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multilateral well completions. Production rates are calculated as a function of reservoir 

drawdown, which is the difference between the average reservoir pressure ( p ) and 

flowing bottom-hole pressure (
wfp ), as the pressure depletes due to production. The 

reservoir pressure decline is assumed to be around 5% per year depending on the 

formation permeability.  

 

 

 

 

 

 

 

 

Fig. 2.1 Vertical, horizontal and multilateral well completions 

 

2.2.1 Vertical Well Performance 

The vertical well equations for inflow performance have been summarized by 

Economides et al. (1994). For an undersaturated oil reservoir, the inflow relationship is 

calculated by using Eq. (2.1) derived from Darcy’s law: 
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where qo is the oil flow rate in bbl/day, Bo is the oil formation volume factor in 

resbbl/STB, re is the drainage radius in ft, rw is the well radius in ft, s is the 
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In natural gas wells, the previous inflow relationship can not be directly applied since 

the physical properties of hydrocarbon gases vary with time due to changes in pressure, 

temperature and gas composition.  

Darcy’s law for incompressible fluids can be adjusted by modifying the original 

Darcy’s flow equation with the real gas law, in addition to a non-Darcy coefficient, D. 

The approximation for the pseudo-steady state flow regime considers instead an average 

value of gas viscosity ( µ ), temperature (T ) and gas compressibility ( Z ) between p  and 

wfp ; as it can be seen in Eq. (2.2). 
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where qg is the gas flow rate in Mcf/day.  

 

2.2.2 Horizontal and Multilateral Well Performance  

Babu and Odeh developed one of the popular inflow models for horizontal laterals 

performance (1988-1989). The model assumes a box shaped drainage area with a 

horizontal well which has a length “L” parallel to the x-direction of the reservoir 

boundary with a length “b”, a width “a”, and a thickness “h” (Fig. 2.2).    

 

 

 

 

 

 
 

 

Fig. 2.2 Babu and Odeh’s box shape model 
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One of the principles of this model is that the well can be positioned in any location 

of the reservoir however it must be parallel to the y-axis and not too close to any 

boundary.  

Babu and Odeh’s approach is based on a radial flow in the y-z plane which considers 

any deviation from the circular shape drainage area with a geometry factor, CH, and 

inflow from outside the wellbore in the x-direction or partial penetration skin factor, sR.  

As a result, Eq. (2.3) shows the Babu and Odeh’s inflow model for an oil well 

horizontal lateral performance: 
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where the shape factor, CH, is obtained applying Eq. (2.4)  
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since the examples presented in this study correspond exclusively to a long 

reservoir where (b>a) thus, sR is calculated using Eqs. (2.5) through (2.9) 
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Gas well horizontal lateral performance can be also calculated using Babu and Odeh’s 

modified equation by Kamkom and Zhu (2006). Eq. (2.13) presents the adapted 

mathematical approach. 
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The oil and gas flow rates at the surface are calculated by coupling the horizontal 

laterals well performance models with a wellbore flow model. For a single phase flow, 

mechanical energy balance equation is used to calculate hydrostatic and frictional 

pressure drop in the well. If flow becomes a two-phase system, empirical correlation is 

considered to calculate the pressure gradient for a particular location in the wellbore.  
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2.2.3 Decline Curve Analysis 

In order to forecast flow rate, the analytical procedure showed before (Eqs. 2.1 through 

2.13) is used to estimate production rate for six months. After the first initial rate of a 

vertical, horizontal and multilateral well (qo or qg) is obtained, we assume about 5% 

pressure decline rate per year to predict the next six months of production.  

The DCA finds a curve that approximates the production history calculated from 

previously mentioned analytical models, using “least squares fit” analysis, and 

extrapolating this curve into the future (Mian, 2002a).  Although, there are three rate-time 

decline curves –exponential, hyperbolic and harmonic declines (Arps, 1944) – only the 

hyperbolic decline curve is used since it considers the decline characteristic (Di) not as a 

constant value but a variable that changes with producing time, and a curvature of this 

curve defined by a hyperbolic exponent (bhyp).  

To forecast production, the rate at time t is estimated by Eq. (2.14). Thus, to obtain 

the total produced volume (Np) between the rate at an initial time (Qi) and the rate at time 

t (Qt) we use Eq. (2.15). Once monthly volumes are predicted and compared to those 

derived from the analytical procedure, we utilize “least squares fit” analysis to constantly 

change Qi, bhyp and Di variables in order to match monthly production rates. 
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When Qi, bhyp and Di for each well are obtained, production rates are forecasted using 

25 years for vertical wells, and 15 years for horizontal and multilateral wells due to 

higher pressure drawdown and extended reservoir contact. 

The production forecast is generated using a deterministic approach and different 

reservoir permeability conditions which have been previously determined: “high”, 

“medium”, and “low”. 
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2.3 Economic Analysis 

The economic analysis departs from FCF to obtain some of the economic yardsticks 

which are used to measure the economic worth of various investment proposals. NPV, 

Eq. (2.16), internal rate of return (IRR), Eq. (2.17), profitability index (PI), Eq. (2.18), 

and payback period are the main indicators to be utilized.  
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CAPEX

NPV
PI =                       (2.18) 

 

where n is the well life (months), Fv is the future sum received at time t ($), and ie is the 

discount rate (%).   

The net present value represents the cash surplus obtained by subtracting the present 

value of periodic cash outflows from the present value of periodic cash inflows. It is 

calculated using the discount rate or minimum acceptable rate of return. The internal rate 

of return refers to the discount rate at which the present value of cash inflows is equal to 

the present value of cash outflows. It can also be defined as the rate received for an 

investment consisting of payments and income that occur at regular periods. The 

profitability index is a dimensionless ratio that quantifies how much, in present value 

benefits, is created per dollar of investment. It shows the relative profitability of an 

investment. The payback period or breakeven point is the expected number of years or 

months required for recovering the original investment. It is calculated from 

accumulating the negative net cash flow each year until it turns positive (Mian, 2002a). 

The maximum negative cash flow is the amount of the CAPEX paid by the company, 

which is estimated from the working interest percentage.   



 13 

Proposals are considered to be mutually exclusive, under a concessionary petroleum 

fiscal system. The concessionary system allows private ownership of mineral resources 

while paying royalties, and taxes to the host government to assign the right to explore and 

develop certain areas. 

 

2.3.1 Economic Analysis Major Components 

The economic yardsticks are obtained by calculating FCF at different interest rates that 

range from 0% to 25%. The major components of the economic analysis are ownership, 

commodity prices, CAPEX, and OPEX. Some of the considerations included in each 

component are presented below:  

§ Ownership: Working interest before payout and after payout, royalties, override, 

and net revenue interest before payout and after payout. Net revenue interest is 

associated with working interest and is highly dependant on the non-operating 

interest (e.g. royalties). 

§ Commodity Prices: Oil and gas initial prices with basis differential if needed, 

gathering and transportation fees, and energy content adjustment. 

§ CAPEX: Pre-drilling costs, drilling and completion costs, gathering and surface 

equipment costs, facilities costs, and abandonment costs. 

§ OPEX: Fixed or lease costs, variable costs, water disposal costs, and production 

taxes. 

 

2.3.2 Economic Analysis Procedure 

FCF is estimated by assessing the gross revenue from a certain type of well including the 

production forecast. The data is assimilated from royalties to be paid, OPEX, 

depreciation, depletion, amortization, intangible drilling cost, and taxes (Fig. 2.3).  

For this study, federal income taxes and deductions other than CAPEX and OPEX 

will be diminished since the purpose of this methodology is merely illustrative rather than 

an exhaustive economic analysis.  
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Fig. 2.3 Concessionary system cash flow diagram 

 

2.4 Risk Analysis 

After the economic analysis is finished, we further conduct a risk analysis to complete the 

evaluation of a project. Thus, a decision tree is used to analyze the risk involved in a 

project, which is a deterministic tool that aids in the decision making process by 

graphically representing a set of alternative courses of action that provides a set of 

different outcome states (Mian, 2002b). New technologies such as multilateral well 

systems will likely bring a higher return on investment. Their inherited risk is generally 

higher too.  

Prior to building the decision tree, an influence diagram (Clemen and Reilly, 2001), 

which represents graphically the situations affecting an event or outcome, is developed to 

visualize all factors that have influence on the type of well system to be implemented. An 

influence diagram may encompass a number of different aspects that may influence 

whether a certain type of well is to be drilled, however we isolated only four of those 

which we believed play the most significant role in the decision process. Fig. 2.4 sets 

forth those four aspects: geological features, reservoir engineering, drilling and 

completion successes (Brister, 2000), and the influence they have upon each other and 

the expected monetary value ($).  
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Fig. 2.4 Influence diagram for a deterministic decision tree analysis  

 

A decision tree is created to aid in the assessment of risk involved in every aspect as 

previously determined in the influence diagram. The following conventions are adopted 

in structuring the decision tree: 

§ Decision node (    ): It illustrates nodes where decisions have to be made. The most 

optimal alternative between courses of action is to be selected. The option with the 

highest expected monetary value is chosen.  

§ Chance node (       ): It represents points where there are different possible outcomes 

at a node. The decision maker has no control over these actions and only chance or 

nature determines an outcome.  

§ Probability (%) or chance: It addresses the likelihood of possible outcomes. 

Previous experience and knowledge are used to objectively evaluate the chance of 

each outcome to occur. 

§ End, terminal or payoff node (    ): It is the deterministic financial outcome of a 

decision. It is based on any type of economic indicator, although usually NPV at 

certain discount rate is utilized. This type of node connects the economic estimator, 

based on technical evaluation, to the risk analysis.  Using probability, pi, for the 

event i at a chance node, C1, the expected monetary value, EMV, is calculated by 

using Eq. (2.19). 
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The most critical decision to be made is in the “leftmost” decision node of a tree.  At 

this point, the selection comes only after considering the expected monetary value (NPV 

at 10% discount rate is to be utilized for this methodology) of the various outcomes, and 

the probabilities of success or failure of the prospective well.  The choice is made 

whether to drill and complete (D&C) a vertical, horizontal or multilateral well (Fig. 2.5).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.5 Decision tree alternatives to drill and complete a well 

     

One must be aware that assigning chances can be detrimental for the selection of the 

best option; objective and careful analysis from the decision makers is imperative. Prior 

to assessing probabilities in a decision tree, engineers should acquire all pertinent data 

and lessons learned from previous experience.  

The decision tree used in this methodology starts from the geological conditions (e.g. 

faults/compartments); followed by the reservoir engineering evaluation or quality of the 

reservoir (e.g., high, medium and low permeability); and then success/failure of drilling 

and completing the well (Fig. 2.6). Each branch of this decision tree has a specific 
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probability as function of predetermined conditions and well type in order to estimate the 

expected monetary value of NPV at 10% discount rate.  

The first chance node from the left illustrated in Fig. 2.6 corresponds to the likelihood 

of the geological features to be encountered in the reservoir. Regardless the type of well 

under study, the chances to face a reservoir with these type of heterogeneities is 

independent and simply assigned according to previous experience or knowledge of the 

field.  

The effects of geological features are taken into account on the second chance node, 

when the reservoir engineering characteristics are defined (Fig. 2.6). The first chance 

node is believed to positively and/or negatively influence this second chance node. 

It is predetermined that the drilling success is affected not only by the type of well but 

also by the geological features and reservoir quality that is present. Meanwhile, the 

completion success will likewise depend purely upon the type of well system.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.6 Decision tree structure 
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2.4.1 Vertical Well Decision Tree Analysis 

From the heterogeneity stand point, a vertical well inflow performance is not directly 

affected by significant anisotropy ratio (kv/kh) because only kh impacts production. In 

addition, faults/compartments are determined to be located further than the drainage 

radius estimated to be reached by vertical well systems, which are intended to drain a pay 

zone within boundaries due to geological conditions that are present. However, the 

likelihood to encounter a “high”, “medium” or “low” quality reservoir can be dependant 

on faults/compartments. 

For the various vertical well branches of the decision tree (Fig. 2.6), the following are 

the main factors affecting each decision and chance node: 

Geological features: 

§ Lateral extent of the reservoir 

§ Lithology of target formation 

Reservoir engineering characteristics: 

§ Thickness of the formation 

§ kh   

§ Porosity  

§ Reservoir pressure and decline rate 

§ Fluid properties 

Drilling features: 

§ Tubular capacity 

§ Wellbore stability 

Completion features: 

§ Control of sand production  

§ Stimulation 

§ Ability to implement the lifting mechanism 

 

2.4.2 Horizontal Well Decision Tree Analysis 

The inflow performance in horizontal wells is highly affected by the degree of 

heterogeneity in a formation. Considerable anisotropy ratio affects the performance of a 

horizontal well despite faults or compartments existent in the reservoir. Horizontal wells 



 19 

have the ability to drain longer lateral extent reservoirs regardless of complexity of 

faulting, folding, compartmentalization; the drilling technique used surpasses these 

abnormalities. However, as it is in vertical wells, the likelihood to encounter a “high”, 

“medium” or “low” quality reservoir can be dependant on geological features. 

For the various horizontal well branches of the decision tree (Fig. 2.6), the following 

are the main factors affecting each decision and chance node: 

Geological features: 

§ Structural complexity of faulting and folding 

§ Compartmentalization 

§ Natural fracture network 

§ Lateral extent of the reservoir 

§ Lithology of target formation 

Reservoir engineering characteristics: 

§ Thickness of the formation 

§ kh and kv  

§ Porosity  

§ Reservoir pressure and decline rate 

§ Fluid properties 

§ Contact area 

Drilling features: 

§ Re-entry feasibility 

§ Tubular capacity 

§ Wellbore stability, especially in horizontal laterals 

§ Kick off and build section 

Completion features:  

§ Control of sand production  

§ Stimulation 

§ Ability to implement the lifting mechanism 

§ Zonal isolation 
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2.4.3 Multilateral Well Decision Tree Analysis 

As the horizontal well branch, the multilateral branch discusses the applicability of a well 

based on the heterogeneity of the reservoir by the presence of faults, 

compartmentalization, and anisotropy ratio.  

After evaluating the previously mentioned conditions and determining whether the 

prospect is an exceptional or poor application for multilateral, the geological features are 

analyzed in order to better understand the potential of the reservoir and the probabilities 

thereof.  

For the various multilateral well branches of the decision tree (Fig. 2.6), the following 

are the main factors affecting each decision and chance node: 

Geological features: 

§ Structural complexity of faulting and folding 

§ Compartmentalization 

§ Natural fracture network 

§ Lateral extent of the reservoir 

§ Lithology of target formation 

§ Multilayer formation 

Reservoir engineering characteristics: 

§ Thickness of the formation 

§ kh and kv  

§ Porosity  

§ Reservoir pressure and decline rate 

§ Fluid properties 

§ Contact area 

Drilling features: 

§ Junction stability 

§ Debris management 

§ Re-entry feasibility 

§ Laterals isolation  

§ Wellbore stability, especially in laterals 

§ Tubular capacity 
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Completion features:  

§ Mechanical Integrity 

§ Control of sand production  

§ Stimulation 

§ Ability to implement the lifting mechanism 

§ Zonal and lateral isolation 

 

2.5 Sensitivity Analysis 

As an additional section of the methodology, we have decided to include a brief 

sensitivity analysis that can be useful when it is extremely important to identify the most 

significant factors affecting the outcome of a project selection.  

This technique is used to determine how different values of an independent variable 

e.g. reservoir quality, geological conditions, etc. can impact a dependent variable such as 

the expected monetary value of NPV at 10% discount rate. 
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3. UNDERSATURATED OIL WELL APPLICATION 

 

 

3.1 Overview  

The applicability of multilateral technology varies since reservoir conditions are always 

unique and each reservoir is characterized differently. As a result, vertical wells or 

horizontal wells can be considered as optimum choices when a multilateral technology 

application can not yield better production at the minimum cost in a development project. 

The following describes two different examples where a decision of drilling a 

vertical, horizontal or multilateral well must be made. The first case (Example 1) is 

intended to illustrate the applicability of a multilateral system considering heterogeneity 

due merely to a moderate anisotropic reservoir (kv/kh=0.10 ratio). Conversely, the second 

case (Example 2) is planned to show that in some cases multilateral systems are less 

attractive such as in highly anisotropic reservoirs (kv/kh=0.01 ratio) with exactly the same 

formation characteristics as presented in Example 1. 

 These hypothetical examples depart from a technical and economic analysis; 

addressing geological features impact, and drilling and completion rate of success in the 

risk analysis section.  

 

3.2 Example 1: Oil Well 

Example 1 consists of a well with two pay zones: zone 1 with a net height of 100 ft and a 

“medium” permeability of 40 md, and zone 2 with 60 ft net height and 20 md of 

“medium” permeability. The reservoir properties may vary due to uncertainty of the 

information previously studied and analyzed. However, for this study, we have 

determined that the reservoir quality is exclusively examined based on permeability in 

order to simplify the number of variables affecting the reservoir quality. 

Figure 3.1 shows each of the different well configurations analyzed in Example 1. By 

assuming a well with two pay zones, one can drill and complete the reservoir by a 

vertical, horizontal or multilateral well. Hypothetically, the vertical well structure 

produces from both zones with 1489 ft of drainage radius. The horizontal well structure is 

a system producing from zone 1, which has a lateral length of 3000 ft to overcome the 



 23 

fault estimated to be located 1500 ft away form the wellbore. The multilateral well 

structure differs from the horizontal by the number of laterals drilled. This configuration 

is designed to drain pay zones 1 and 2 with lateral lengths of 2500 ft each in order to 

reduce CAPEX while maximizing production.  

 

 

 

 

 

 

 

 

Fig. 3.1 Well planning for examples 1 through 3 

 

3.2.1 Example 1 – Technical Analysis 

Since uncertainty in the geological and reservoir engineering parameters may result in 

inaccurate information, three different scenarios are used to estimate production rates as 

function of permeability values: best, base and worst case scenarios. In order to assume 

that the reservoir is characterized by a highly permeable formation, 150% of the “base 

case scenario” permeability (kv and kh) is utilized for “best case scenario”, and 50% for 

“worst case scenario”.   

The input data for Example 1 is presented in Table 3.1, which shows all reservoir 

information assuming “high”, “medium” and “low” permeability values on the vertical, 

horizontal and multilateral well configurations necessary to predict production 

performances.  

The bottom-flowing pressure is calculated for pay zone 2 based on pay zone 1 

bottom-hole flowing pressure, which assumes 2000 psi. The vertical well configuration 

( wfp ) uses only a hydrostatic pressure drop of 0.433 psi/ft, subtracted from pay zone 1. 
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The multilateral well configuration (
*

wfp ) utilizes a mechanical energy balance equation 

to calculate hydrostatic pressure drop and frictional pressure drop in the well. 

 

Table 3.1 Examples 1 & 2 – Oil reservoir properties 

Input Data for Examples 1 & 2 

Parameter 
Worst Case Scenario Base Case Scenario Best Case Scenario 

Zone 1 Zone 2 Zone 1 Zone 2 Zone 1 Zone 2 

kh (md): 20 10 40 20 60 30 

kv example1 (md): 2 1 4 2 6 3 

kv example 2 (md): 0.2 0.1 0.4 0.2 0.6 0.3 

h (ft): 100 60 100 60 100 60 

Bo (resbbl/STB): 1.1 1.1 1.1 1.1 1.1 1.1 

µ (cp): 2 2 2 2 2 2 

re (ft): 1489 1489 1489 1489 1489 1489 

rw (ft): 0.328 0.328 0.328 0.328 0.328 0.328 

s: 8 5 8 5 8 5 

s*: 16 10 16 10 16 10 

p (psi): 3500 3200 3500 3200 3500 3200 

wfp  (psi): 2000 1567 2000 1567 2000 1567 

*

wfp  (psi): 2000 1635 2000 1635 2000 1635 

T (
o
F): 210 190 210 190 210 190 

a* (ft): 1000 1000 1000 1000 1000 1000 

b* (ft): 3500 3500 3500 3500 3500 3500 

Lhorizontal (ft): 3000 N/A 3000 N/A 3000 N/A 

Lmultilateral (ft): 2500 2500 2500 2500 2500 2500 

TVD (ft): 7100 6000 7100 6000 7100 6000 

  * Only applicable for horizontal and multilateral wells 

For a vertical well, the flowing bottom-hole pressure in the second zone is 1567 psi 

(2000 psi – 433 psi). It considers only the hydrostatic pressure drop (pressure gradient for 

water) between pay zone 1 and pay zone 2. 
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First, the initial production is estimated in each well system for the first six months 

assuming a pressure decline rate of about 5% annually. Using Eq. (2.1), we have the 

following vertical well “base case scenario” initial oil production:  
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As a result, the total oil production for the vertical well system is: 
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For horizontal and multilateral wells “base case scenario”, initial oil production is 

obtained using Eqs. (2.3) through (2.12).  

The horizontal oil flow rate is presented below: 
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where 
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then 
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For multilateral well “base case scenario”, the initial oil production for lateral 1 

(bottom branch) is obtained as followed: 
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 using  oy  calculated in Eq. (3.4) and having  midx  estimated by applying Eq. (2.9), then 
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47.666.072.309.2 =++=Rs                   (3.17) 

 

Thus, qo for lateral 1 is estimated utilizing the same shape obtained in Eq. (3.6). 
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After using the modified Hagedorn-Brown empirical correlation to determine the 

pressure drop (∆p) in the wellbore between lateral 1 and lateral 2 (upper branch), the total 

∆p for 1000 ft wellbore length between laterals is 365 psi. Therefore, the flowing bottom-

hole pressure, *wfp , for lateral 2 is calculated to be 1635 psi (2000 psi – 365 psi). 

If we assume that there is no pressure drop in the lateral, then the drawdown for 

lateral 2 will be 1565 psi (3200 psi – 1635 psi). 
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Next, the initial oil production rate for lateral 2 “base case scenario” is estimated by  
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with  oy  calculated with Eq. (3.4) and  midx  estimated with Eq. (3.14), then 
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Thus, qo for lateral 2 is estimated to be: 
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Consequently, the total oil production for the multilateral well system is: 

 

1178743087479
21

=+=+=
laterallateral ooalmultilater qqq  STB/day           (3.26) 

 

Since the sole purpose of the examples presented in this study is to take the reader 

through the decision process methodology, only initial oil production calculation is 

depicted. Furthermore, water production is accounted for after the first year of 

production, starting at 5% of total oil production, and increasing 5% annually assuming a 

vertical well life of 25 years and 15 years for horizontal and multilateral wells, as 

mentioned previously. 

Although, initial oil production estimation is given in detail in the equations above, 

Table 3.2 shows additional six months of production (qo) calculated using these 

analytical models and a reservoir pressure decline of about 5% per year. As a result, the 

multilateral well yields the highest production. 

After the initial production is calculated, the next six months production rates are then 

estimated utilizing the procedure set forth earlier to perform DCA and forecast 

production for the different well systems. Throughout “least squares fit” analysis and 

Eqs. (2.14) and (2.15), we have obtained Qi, Di and bhyp in order to estimate daily 

production and cumulative monthly production (Table 3.3).  Figs. 3.2 through 3.4 

portray the matching of hypothetical production against the results obtained utilizing 

hyperbolic decline with estimators displayed in Table 3.3. 

For exercise purpose, a minimum decline rate is assumed without considering any 

detailed change in the reservoir or well system thus, the decline curves are straight lines 
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in Figs. 3.2 through 3.4. In field practice, more sophisticated decline based on production 

history and reservoir characterization should be applied.  

 

Table 3.2 Example 1 – Analytical model results under “base case scenario” 

Month 

Vertical Well 

qo payzone1 

(STB/day) 

Vertical Well 

qo payzone2 

(STB/day) 

Horizontal Well 

qo horizontal 

(STB/day) 

Multilateral Well 

qo multilateral 

(STB/day) 

1 1233 498 8586 11787 

2 1227 496 8567 11710 

3 1215 492 8447 11683 

4 1203 488 8320 11516 

5 1186 482 8182 11334 

6 1161 473 7981 11071 

7 1121 460 7670 10660 

 

Table 3.3 Example 1 – DCA results under “base case scenario” 

Estimator Vertical 

Wellpayzone1  

Vertical 

Wellpayzone2 

Horizontal 

Well 

Multilateral 

Well 

Qi, STB/day 1251 504 8790 12135 

Di/year nominal rate 0.167 0.148 0.221 0.210 

bhyp 1.457E-06 0.027 1.525E-06 1.342E-06 
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Fig. 3.2 Examples 1 & 2 – DCA for a vertical well system under “base case scenario” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3 Example 1 – DCA for a horizontal well system under “base case scenario” 
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Fig. 3.4 Example 1 – DCA for a multilateral well system under “base case scenario” 

 

After performing DCA, we can observe that the initial production rate for a horizontal 

well surpasses the vertical well by 5 fold while the multilateral well exceeds it by nearly 

7 fold (Table 3.3). Obviously, the production increase by assuming horizontal drilling 

with a one or two branch system is extremely high because the moderate anisotropy ratio 

(kv/kh=0.10) does not diminish the benefits, and a significant lateral extent of the 

reservoir is drained. 

The hyperbolic decline curve estimators, for “worst case scenario” and “best case 

scenario”, only differ from “base case scenario” in the initial production rate. Di and bhyp 

estimators are kept the same since drawdown pressure remains equal regardless 

permeability values.   

Figure 3.5 shows the monthly production data forecasted by DCA under “base case 

scenario”. The semi-log plot reveals an increase in production from drilling and 

completing a multilateral well versus a horizontal well, almost 1.5 fold, due to the 
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well is 3000 ft while 2500 ft for a multilateral well.  Overall, Fig. 3.6 also reflects the 

considerable benefit from a multilateral well in the cumulative oil production. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5 Example 1 – Monthly production rate under “base case scenario” 
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Fig. 3.6 Example 1 – Cumulative production rate under “base case scenario” 

 

As a result of the previous DCA, Table 3.4 summarizes the initial production rates 

for the different well systems assuming the three different case scenarios. The increase or 

decrease in production is directly proportional to the reservoir quality (permeability for 

this particular study).  

 

Table 3.4 Example 1 – Summary of initial monthly production rate 

Well Type 
Example 1- Initial Monthly Oil Production, STB/month 

 Low k (Worst) Medium k (Base)  High k (Best) 

Vertical Well 26,544 53,086 79,635 

Horizontal Well 132,547 265,097 397,644 

Multilateral Well 182,979 366,137 549,718 
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3.2.2 Example 1 – Economic Analysis 

This type of analysis must embrace several economic indicators commonly used in the 

industry to evaluate and rank projects. Therefore, an economic analysis before-tax 

program developed using Visual Basic Code (VBA) has been created utilizing expected 

production rates to generate cash flows. 

Table 3.5 shows the main input data used for each well system to generate FCF.  

Drilling and completion costs for a horizontal well is 1.6 times higher than a vertical well 

cost, meanwhile a multilateral well exceeds a vertical well by almost 2.5 times. Variable 

operating cost and consequently finding and development costs are believed to decrease 

if horizontal or multilateral wells are adopted. For practical reasons, water disposal is set 

the same regardless the well system. As a result of the fiscal system assumed, royalties 

and working interest before and after payout are 12% and 80% respectively with 5% ad 

valorem. 

 

Table 3.5 Examples 1 & 2 – Economic input data for oil wells 

Economic Input Data for Oil Wells 

 Vertical Well Horizontal Well Multilateral Well 

Oil price, $/bbl $ 80 $ 80 $ 80 

Fixed operating cost, $/well $ 2,000 $ 4,000 $ 4,500 

Variable operating cost, $/bbl $ 10 $ 8 $ 6 

Water disposal, $/bbl $ 2 $ 2 $ 2 

Drilling and completion cost $ 2,500,000 $ 4,000,000 $ 6,000,000 

 

NPV, internal rate of return, profitability index, payout period, and maximum 

negative cash flow are among some of the economic indicators calculated by a program 

developed in this study. Nevertheless, since NPV is selected for this study as the 

economic yardstick to be utilized in the risk analysis section, we only portray, without an 

extensive discussion, a few of the other economic indicators in Table 3.6. While some 

big operating companies do not have any major hurdle while investing, small or 

independent operating companies need to carefully analyze the amount of maximum 

negative cash flow which may be faced through an investment; e.g., for the well system 
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alternatives described above, it is clear that a multilateral well requires approximately 

twice the investment of a vertical well (Table 3.6). 

Horizontal and multilateral wells internal rate of return exceed the vertical well 

internal rate of return by 3.5 times despite the high vertical well internal rate of return 

estimation. Horizontal drilling by one or two branches systems have quicker payout and 

larger cash flows, which indicates more efficient alternatives. Furthermore, horizontal 

and multilateral wells profitability index surpass by 3 fold vertical well profitability 

index, which means that for every dollar invested (CAPEX) a horizontal or multilateral 

well yields 3 times more cash flow compared to a vertical well (Table 3.6).    

 

Table 3.6 Example 1 – Summary of economic results under “base case scenario” 

Example 1 - Economic Results 

Economic Indicator Base Case Scenario 

 Vertical Well Horizontal Well Multilateral Well 

Well payout 33 days 10 days 10 days 

Profitability index 39.59 109.76 111.95 

Internal rate of return 1049% 3569% 3526% 

Max. negative cash flow - $ 2.28 M - $ 3.52 M - $ 5.12 M 

 

Figure 3.7 plots the cumulative FCF for a medium reservoir quality case. The return 

on investment occurs immediately after the well starts producing, 10 days payout period 

for horizontal and multilateral well systems, and one month for a vertical well system. 

Even though Fig. 3.7 illustrates the first 175 months of production by plotting the total 

well life, the total cumulative FCF for a vertical well is $ 145 M (25 years), $ 546 M for a 

horizontal well and $ 818 M for a multilateral well (15 years). These time frames do not 

represent the economic limit, but rather a life span to run a simplified economic analysis.  

Similar to the technical analysis, the economic analysis leads us to believe that the 

multilateral well is the most profitable option from the production rate and cumulative 

FCF stand points. Moreover, Table 3.7 shows the NPV results under all three different 

scenarios. The highest NPV is obtained by drilling and completing a multilateral well 
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system ($ 573 M under base case scenario) while the lowest NPV is achieved by drilling 

and completing a vertical well system ($ 90 M under base case scenario). Despite 

reservoir quality, NPV results are consistently presenting the multilateral well system as 

the most lucrative choice.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.7 Example 1 – Cumulative FCF under “base case scenario” 

 

Table 3.7 Example 1 – Summary of NPV at 10% discount rate 

Well Type 
Example 1- NPV at 10% discount rate, $ M 

 Low k (Worst) Medium k (Base)  High k (Best) 

Vertical Well 43.77 90.26 136.14 

Horizontal Well 191.19 386.36 581.44 

Multilateral Well 283.63 573.21 863.74 
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3.2.3 Example 1 – Risk Analysis 

To analyze all the risk involved in the selection of the most optimum well system, this 

study addresses in Table 3.8 the likelihood of having faults as one of the geological 

features characterizing the formation. Table 3.9 refers to the quality of the reservoir 

whether faults exist, and if a high or low anisotropy ratio is present. Although these 

assigned probabilities can be defined by engineers, geoscientist and geologists in real 

situations; for these examples we decided to allocate hypothetical chances thus, they do 

not relate to any particular reservoir. Table 3.10 displays all defined drilling and 

completion costs that can be originated because of failure to successfully drill and/or 

complete a well.  

 

Table 3.8 Examples 1 & 2 – Probability of faults 

Geological Features Examples 1 & 2 

Non faulted 40% 

Faulted 60% 

 

Table 3.9 Examples 1 through 3 – Probability of low, medium and high reservoir quality 

Geological 

Features 
Anisotropy 

Reservoir Evaluation 

Low k Medium k High k 

Non faulted 
Kv/kh=0.10 20% 50% 30% 

Kv/kh=0.01 70% 20% 10% 

Faulted 
Kv/kh=0.10 40% 40% 20% 

Kv/kh=0.01 80% 15% 5% 

 



 39 

Table 3.10 Examples 1 through 3 – Costs incurred due to drilling and completion failures 

Well Type 

Costs incurred due to drilling and completion 

failures, $ M 

Drilling Completion 

Vertical Well 3.00 4.00 

Horizontal Well 4.50 6.00 

Multilateral Well 4.80 6.50 

 

In order to utilize a deterministic decision tree, we have decided to use tables to 

represent all the probabilities corresponding to each branch of the decision tree (see 

Appendix A for a detailed decision tree of Example 1). Table 3.11 depicts probabilities 

of drilling and completion success and failure for a vertical well; all chances remain the 

same for a certain reservoir quality regardless of the geological features and anisotropy 

ratio that may be found. Since this is a vertical well and with few assumptions being 

made, the drilling path is not to be cutting any potential fault. Moreover, drilling and 

completion rate of success are predetermined to be high due to the simplicity involving 

this conventional well system.  

 

Table 3.11 Examples 1 through 3 – Probability of drilling and completion in a vertical well  

Geological 

Features 
Anisotropy 

Reservoir 

Quality 

Vertical Well 

Drilling Completion 

Success Failure Success Failure 

Non 

faulted 

Kv/kh=0.10 

Kv/kh=0.01 

Poor 92% 8% 92% 8% 

Fair 95% 5% 95% 5% 

Good 98% 2% 98% 2% 

Faulted 
Kv/kh=0.10 

Kv/kh=0.01 

Poor 92% 8% 92% 8% 

Fair 95% 5% 95% 5% 

Good 98% 2% 98% 2% 

 

Conversely, Tables 3.12 and 3.13 illustrate the probabilities assigned for horizontal 

and multilateral wells; which have less chance for success with drilling and completion, 
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when compared to a vertical well. This is primarily due to the complexity involved and 

the effect of geological features. Therefore, the probability of success in a reservoir with 

a high degree of faults could be negatively affected, especially in a well with more than 

one branch. Although it is realized that drilling through a faulted system adds more 

difficult to the procedure. In addition, a completion success ratio does not depend on the 

geological features due to the fact that at this stage the well has already been drilled and 

the risk is only related to the type of tools or equipment to be placed downhole. A 

multilateral well requires more sophisticated tools and equipment when compared to a 

horizontal well thus the ratio of success is higher in a horizontal well. 

  

Table 3.12 Examples 1 through 3 – Probability of drilling and completion 

in a horizontal well 

Geological 

Features 
Anisotropy 

Reservoir 

Quality 

Horizontal Well 

Drilling Completion 

Success Failure Success Failure 

Non 

faulted 

Kv/kh=0.10 

Kv/kh=0.01 

Poor 87% 13% 90% 10% 

Fair 89% 11% 93% 7% 

Good 92% 8% 96% 4% 

Faulted 
Kv/kh=0.10 

Kv/kh=0.01 

Poor 85% 15% 90% 10% 

Fair 87% 13% 93% 7% 

Good 90% 10% 96% 4% 

 

Table 3.13 Examples 1 through 3 – Probability of drilling and completion 

in a multilateral well 

Geological 

Features 
Anisotropy 

Reservoir 

Quality 

Multilateral Well 

Drilling Completion 

Success Failure Success Failure 

Non 

faulted 

Kv/kh=0.10 

Kv/kh=0.01 

Poor 82% 18% 87% 13% 

Fair 85% 15% 90% 10% 

Good 88% 12% 93% 7% 

Faulted 
Kv/kh=0.10 

Kv/kh=0.01 

Poor 80% 17% 87% 13% 

Fair 83% 14% 90% 10% 

Good 86% 18% 93% 7% 
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Once NPV has been obtained and the probabilities for each branch of the decision 

tree are defined, the expected monetary value is calculated for each well system using  

Eq. (2.19). Tables 3.14 through 3.16 show the expected monetary value as a function of 

geological features, anisotropy ratio and reservoir engineering characteristics. The 

column referred as “% occurrence” is the same despite the type of well to be completed, 

since this chance addresses all factors involved in the decision making affecting the 

reservoir, except to drilling and completion, which are exclusive for each well. The 

expected monetary value of a vertical well system is almost $ 79 M (Table 3.14) while 

the expected monetary value of a horizontal well is $ 307 M (Table 3.15) and $ 420 M 

(Table 3.16) for a multilateral well system.   

 

Table 3.14 Example 1 – Vertical well expected monetary value 

Geological 

Features 
Anisotropy 

Reservoir 

Quality 

Vertical Well 

% 

occurrence 

NPV at 10% disc. 

rate, $ M 

Expected 

Monetary Value 

Non 

faulted 
Kv/kh=0.10 

Poor 8% 43.77 2.92 

Fair 20% 90.26 16.22 

Good 12% 136.14 15.67 

Faulted Kv/kh=0.10 

Poor 24% 43.77 8.76 

Fair 24% 90.26 19.47 

Good 12% 136.14 15.67 

Total Vertical Well Expected Monetary Value 78.72 
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Table 3.15 Example 1 – Horizontal well expected monetary value 

Geological 

Features 
Anisotropy 

Reservoir 

Quality 

Horizontal Well 

% 

occurrence 

NPV at 10% disc. 

rate, $ M 

Expected 

Monetary Value 

Non 

faulted 
Kv/kh=0.10 

Poor 8% 191.19 11.89 

Fair 20% 386.36 63.78 

Good 12% 581.44 61.55 

Faulted Kv/kh=0.10 

Poor 24% 191.19 34.82 

Fair 24% 386.36 74.80 

Good 12% 581.44 60.20 

Total Horizontal Well Expected Monetary Value 307.05 

 

Table 3.16 Example 1 – Multilateral well expected monetary value 

Geological 

Features 
Anisotropy 

Reservoir 

Quality 

Multilateral Well 

% 

occurrence 

NPV at 10% disc. 

rate, $ M 

Expected 

Monetary Value 

Non 

faulted 
Kv/kh=0.10 

Poor 8% 283.63 16.06 

Fair 20% 573.21 87.45 

Good 12% 863.74 84.71 

Faulted Kv/kh=0.10 

Poor 24% 283.63 46.99 

Fair 24% 573.21 102.44 

Good 12% 863.74 82.77 

Total Multilateral Well Expected Monetary Value 420.41 

 

To visually represent a decision tree with the “leftmost” decision nodes, Fig. 3.8 

reveals the expected monetary value with the final results after encompassing a technical, 

economic and risk analysis for Example 1. The risk analysis confirms the technical and 

economic results by consistently indicating the multilateral well as the most effective 

choice that needs to be made.     
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Fig. 3.8 Example 1 – Decision tree expected monetary value for each well system 

 

3.2.4 Example 1 – Sensitivity Analysis 

Figure 3.9 sets forth the effect of two different independent variables: reservoir quality 

and geological conditions. The expected monetary value (dependent variable) is not the 

net present value calculated for each case rather it is the value believed to be obtained in 

the likelihood of encountering a reservoir under specific characteristics. Having a lower 

expected monetary value when a reservoir quality is determined to be good means that 

the probability of that event happening is less.  

When the expected monetary value of a poor quality reservoir is estimated, the results 

are lower because the production is less, and the probability of encountering a poor 

reservoir is not significantly different than the fair and good reservoir quality probability.   

Figure 3.10 demonstrates that from the type of well standpoint, the associated risk to 

successfully drill and complete horizontal and multilateral wells has an effect on the 

expected monetary value. It is observed that due to geological considerations only 

vertical well expected monetary value is the same under any type of geological 

complexity.  
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Fig. 3.9 Example 1 – Sensitivity analysis as a function of reservoir quality 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.10 Example 1 – Sensitivity analysis as a function of geological features 
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3.3 Example 2: Oil Well, Low Anisotropy Ratio 

Example 2 uses the same reservoir information as described in Example 1 except that the 

anisotropy ratio is more severe for this case (kv/kh=0.01). The vertical permeability for 

pay zone 1 is 0.4 md, and 0.2 md for pay zone 2 (assuming a “base case scenario”). As it 

is described in Fig. 3.1, the horizontal well is also intended to be drilled in the lower pay 

zone and the multilateral well includes both pay zones with shorter lateral lengths when 

compared to the horizontal well configuration. The reservoir properties presented in 

Table 3.1 are utilized for calculation of flow rates, keeping exactly the same skin factor 

and other parameters. The main objective of Example 2 is to determine and evaluate the 

impact on production performance for horizontal and multilateral well systems when 

there is significant anisotropy in the reservoir.     

 

3.3.1 Example 2 – Technical Analysis 

As it was performed in Example 1, there are three different scenarios to be used in order 

to account for uncertainty within geological conditions and reservoir engineering 

parameters. In reality, information may be inaccurate and estimators may be 

underestimated or overestimated.  

Similar to Example 1, the methodology to estimate flow rate is given in detail 

exclusively for “base case scenario”.  The vertical well production rate remains the same 

as Eq. (3.3) because kv does not have any effect on flow rate for this type of well. Thus, 

the vertical well initial rate is 1731 STB/day.  

For horizontal and multilateral wells “base case scenario”, initial production is 

calculated also using Eqs. (2.3) through (2.12). However, due to the fact that the box-

shaped geometry of the reservoir remains the same, oz , oy  and midx  used values are 

those obtained in Example 1 section.  

The horizontal oil flow rate is presented below using Eqs. (3.4) and (3.5) to calculate 

the geometry shape factor: 
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and midx  = 1750 from Eq. (3.8) 
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then 

 

( )( )( )

( )( )
( )( )












++−−

−
=

1657.175.056.0
328.0

1001000
ln21.12.141

200035004.0403500
horizontaloq   

2923=  STB/d ay          (3.32) 

 



 47 

For multilateral well “base case scenario”, the initial oil production for lateral 1 is 

obtained as followed: 
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using  oy  calculated in Eq. (3.4) and having  midx  estimated in Eq. (3.14), then 
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69.320.017.132.2 =++=Rs                   (3.36) 

 

Thus, qo for lateral 1 is estimated utilizing the same shape obtained in Eq. (3.27). 
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From the results obtained in Example 1 after using the modified Hagedorn-Brown 

empirical correlation to determine the pressure drop (∆p) in the wellbore between lateral 

1 and lateral 2, the flowing bottom-hole pressure, *wfp , for lateral 2 used in Example 2 is 

also 1635 psi (same distance between laterals for both examples).  
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Next, the initial oil production rate for lateral 2 “base case scenario” is calculated 

utilizing oy , midx  and oz  from Eqs. (3.4), (3.14) and (3.19). Then 
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42.434.096.112.2 =++=Rs                   (3.42) 

 

Thus, qo for lateral 2 is estimated to be: 
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As a result, the total oil production for the multilateral well system is: 

 

445717802677
21

=+=+=
laterallateralalmultilater ooo qqq  STB/day        (3.44) 

 

At first glance, we can see how detrimental an extremely low anisotropy ratio 

(kv/kh=0.01) is in predicting flow rates for horizontal and multilateral wells. Table 3.17 

shows that the production rate in horizontal and multilateral wells “under base case 

scenario” can be decreased nearly 3 times if kv is very low when compared to kh.  

One of the conditions that ought to be carefully analyzed when one considers 

horizontal drilling and completion for one or more branches is the anisotropy of the 

reservoir. Vertical wells are not significantly affected by kv but the magnitude of the 

success obtained by horizontal and multilateral wells is highly dependant on anisotropy 

ratio.  

 

Table 3.17 Examples 1 & 2 – Comparison of initial hypothetical flow rates 

Base case scenario 

Well Type 

Vertical Well, 

STB/day 

Horizontal Well, 

STB/day 

Multilateral Well, 

STB/day 

Example 1 (kv/kh=0.10) 1731 8586 11787 

Example 2 (kv/kh=0.01) 1731 2923 4457 

 

As it was calculated in Example 1, we have forecasted production rates for either 15 

or 25 years depending of the well type. Initially, six months production rates are 

estimated utilizing the analytical approach (qo) presented to perform DCA and forecast 

production for the different well systems (Table 3.18).  
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Table 3.18 Example 2 – Analytical model results under “base case scenario” 

Month 

Vertical Well 

qo payzone1 

(STB/day) 

Vertical Well 

qo payzone2 

(STB/day) 

Horizontal Well 

qo horizontal 

(STB/day) 

Multilateral Well 

qo multilateral 

(STB/day) 

1 1233 498 2923 4457 

2 1227 496 2919 4444 

3 1215 492 2878 4424 

4 1203 488 2835 4361 

5 1186 482 2788 4293 

6 1161 473 2719 4194 

7 1121 460 2613 4038 

 

Table 3.19 results are very similar to Table 3.3, Di values do not change because the 

same pressure drawdown is used. The initial rate, Qi, is lower due to the heterogeneity 

condition. For horizontal and multilateral wells, Figs. 3.11 and 3.12 depicts the matching 

of hypothetical production, which varies in its decline rate, from Table 3.18 against the 

results obtained utilizing hyperbolic decline with estimators displayed in Table 3.19 

(refer to fig. 3.2 for vertical well plot). 

 

Table 3.19 Example 2 – DCA results under “base case scenario” 

Estimator Vertical 

Wellpayzone1  

Vertical 

Wellpayzone2 

Horizontal 

Well 

Multilateral 

Well 

Qi, STB/day 1251 504 2995 4595 

Di/year nominal rate 0.167 0.148 0.221 0.210 

bhyp 1.457E-6 0.027 1.84E-06 1.62E-04 
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Fig. 3.11 Example 2 – DCA for a horizontal well system under “base case scenario” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.12 Example 2 – DCA for a multilateral well system under “base case scenario” 
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Compared to Example 1, we can observe that in Example 2, the initial production rate 

for a horizontal well surpasses the vertical well by nearly 2 fold, and 3 fold for a 

multilateral well. Evidently, the production increase assuming horizontal drilling with 

one or two branches system is not as significant as it is in Example 1 because of the 

extreme anisotropy ratio.  

The hyperbolic decline curve estimators for “worst case scenario” and “best case 

scenario” only differ from “base case scenario” in the initial production rate. Di and bhyp 

estimators are kept the same since drawdown pressure remains equal regardless the 

permeability values to be consistent with methodology used in Example 1.   

Figure 3.13 Example 2 shows monthly production data forecasted by DCA under 

“base case scenario”. The semi-log plot does not portray the same behavior depicted in 

Fig. 3.5 (Example 1) where horizontal and multilateral well production exceeds by a 

significant margin the vertical well production despite time. Example 2 vertical well 

production eventually reaches and surpasses horizontal well production (after 8 years) 

due to the severe anisotropy ratio.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.13 Example 2 – Monthly production rate under “base case scenario” 
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Figure 3.14 presents the cumulative production for each well system. While Example 

1 horizontal well has a cumulative production of 14 STB M after 175 months (Fig. 3.6), 

Example 2 horizontal well has a cumulative production of nearly 5 STB M (Fig. 3.14).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.14 Example 2 – Cumulative production rate under “base case scenario” 

 

The results of the previous DCA are included in Table 3.20. Despite anisotropy ratio, 

vertical well production is consistent; however, Example 2 initial production rate in 

horizontal well under “base case scenario” is 175,000 STB/month less than Example 1 

initial production rate. Example 2 multilateral well initial production rate drops also by 

228,000 STB/month if compared to Example 1 initial production rate (Table 3.4). 
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Table 3.20 Example 2 – Summary of initial monthly production rates 

Well Type 
Example 1- Initial Monthly Oil Production, STB/month 

 Low k (Worst) Medium k (Base)  High k (Best) 

Vertical Well 26,544 53,086 79,635 

Horizontal Well 45,188 90,333 135,481 

Multilateral Well 69,375 138,462 208,008 

 

3.3.2 Example 2 – Economic Analysis 

For Example 2, the same economic indictors portrayed in Example 1 are calculated in 

order to evaluate the various alternatives to drill and complete the well.  

Table 3.4 is used as input data to generate FCF, hence the economic analysis in 

Example 2 considers the same drilling and completion, fixed and variable operating costs, 

and commodity price for each type of well. Table 3.21 depicts some economic indicators 

other than NPV. In spite of the lower production rates estimated in Example 2, the well 

payout remains the same as Example 1, less than a month, since production and 

commodity price still easily overcome the investment. Nonetheless, the efficiency of the 

horizontal and multilateral wells project drops by two thirds, profitability index in 

Example 1 is about 110 while profitability index in Example 2 is nearly 40. As a result, 

the amount of revenue generated by each dollar initially invested is three times more in 

Example 1 than Example 2. Furthermore, the internal rate of return keeps the same trend; 

internal rate of return in Example 2 is between 1200% and 1300%, an attractive rate but 

not as high as internal rate of return in Example 1 which is 3500%.  

It is evident that Example 2 also represents a good investment, especially if a 

multilateral well system is chosen. Due to the reservoir conditions, an analytical approach 

based on material balance of the drainage system estimates high flow rates that 

accompanied by high commodity prices and relatively low cost, bring a high yield on 

investment.   
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Table 3.21 Example 2 – Summary of economic results under “base case scenario” 

Example 2 - Economic Results 

Economic Indicator Base Case Scenario 

 Vertical Well Horizontal Well Multilateral Well 

Well payout 33 days 30 days 27 days 

Profitability index 39.59 36.64 41.82 

Internal rate of return 1049% 1201% 1322% 

Max. negative cash flow - $ 2.28 M - $ 3.52 M - $ 5.12 M 

 

Figure 3.15 plots the cumulative FCF for a base case scenario. The return on 

investment occurs immediately after the well starts producing, less than one month 

payout period for a horizontal and multilateral well systems, and over one month for a 

vertical well system. Even though Fig. 3.15 illustrates the first 50 months of production, 

by plotting the wells’ life, the total cumulative FCF for a vertical well is $ 145 M (same 

as Example 1), $ 183 M for a horizontal well ($ 360 M less than horizontal well in 

Example 1), and $ 307 M for a multilateral well ($ 510 M less than multilateral well in 

Example 1). Refer to Fig. 3.7 to compare the results with Example 1. 

Similar to the technical analysis in Example 1, the economic analysis leads us to 

believe that the multilateral well is the most profitable option from the production rate 

and cumulative FCF aspects. Moreover, Table 3.22 shows the NPV results under all 

three different scenarios. The highest NPV is obtained by drilling and completing a 

multilateral well ($ 214 M under base case scenario) while the lowest NPV is achieved 

by drilling and completing a vertical well ($ 90 M under base case scenario). NPV 

estimated in Example 2 for the horizontal and multilateral wells is only one third of the 

NPV estimated in Example 1, which is corroborated with previous analysis.  Despite 

reservoir quality, NPV results are consistent, presenting the multilateral well system as 

the most profitable alternative.  
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Fig. 3.15 Example 2 – Cumulative FCF under “base case scenario” 

 

Table 3.22 Example 2 – Summary of NPV at 10% discount rate 

Well Type 
Example 2- NPV at 10% discount rate, $ M 

 Low k (Worst) Medium k (Base)  High k (Best) 

Vertical Well 43.77 90.26 136.14 

Horizontal Well 42.22 128.96 195.62 

Multilateral Well 71.08 214.14 324.31 

 

If a severe anisotropy ratio is very likely to be encountered and one evaluates 

horizontal or multilateral well systems without taking into account the risk involved 

while drilling and completing the well, these types of wells remain the most attractive 

alternative. It is clear that for these two examples the flow rate drop is significant but the 

outstanding reservoir properties outweighed the negative effect. However, there are 

circumstances when heterogeneity or poor quality reservoirs could be detrimental in such 

cases where horizontal wells with one or more branches are the most effective choice 

from the technical, economic and risk/uncertainty stand points.  
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3.3.3 Example 2 – Risk Analysis 

Similar to Example 1, we use Tables 3.8 and 3.9 to address the probability of finding 

geological features that can impact not only the drilling success but also the reservoir 

quality. Table 3.10, drilling and completion cost, is utilized for all possible failures that 

may occur during any of these stages. In addition, we refer to Tables 3.11 through 3.13 to 

associate risk to every well type considering complexity due to the geological aspect.  

The probability values assigned to almost every branch of the decision tree in Example 

2 is practically the same as the chances in the branches of the decision tree used in 

Example 1. Nevertheless, the reservoir engineering evaluation assigns a lower likelihood 

to high and medium reservoir quality when kv/kh=0.01. Example 2 illustrates a case 

where heterogeneity plays a role in production. Tables 3.23 through 3.25 depict the 

NPV results according to the type of well, reservoir quality and geological complexities 

in addition to the probability of occurrence. Using Eq. (2.19), the expected monetary 

value for a vertical well system is nearly $ 51 M (Table 3.23) while the expected 

monetary value of a horizontal well is $ 54 M (Table 3.24) and $ 82 M (Table 3.25) for a 

multilateral well system (see Appendix B for a detailed decision tree of Example 2). 

After a thorough analysis of the type of reservoir that could be encountered when 

kv/kh=0.01, the expected monetary value for horizontal and multilateral wells represents 

only one fifth of the expected monetary value obtained for these wells in Example 1; 

which differs from the technical and economic analysis comparison where Example 2 

represents one third of Example 1 results. The main reason of this inconsistency is due to 

the fact that chances to find a good or bad reservoir quality are not as highly dependent 

on the geological considerations as are on anisotropy ratios. 

     



 58 

Table 3.23 Example 2 – Vertical well expected monetary value 

Geological 

Features 
Anisotropy 

Reservoir 

Quality 

Vertical Well 

% 

occurrence 

NPV at 10% disc. 

rate, $ M 

Expected 

Monetary Value 

Non 

faulted 
Kv/kh=0.10 

Poor 28% 43.77 10.22 

Fair 8% 90.26 6.49 

Good 4% 136.14 5.22 

Faulted Kv/kh=0.10 

Poor 48% 43.77 17.53 

Fair 9% 90.26 7.30 

Good 3% 136.14 3.92 

Total Vertical Well Expected Monetary Value 50.68 

 

Table 3.24 Example 2 – Horizontal well expected monetary value 

Geological 

Features 
Anisotropy 

Reservoir 

Quality 

Horizontal Well 

% 

occurrence 

NPV at 10% disc. 

rate, $ M 

Expected 

Monetary Value 

Non 

faulted 
Kv/kh=0.10 

Poor 28% 42.22 8.95 

Fair 8% 128.96 8.47 

Good 4% 195.62 6.89 

Faulted Kv/kh=0.10 

Poor 48% 42.22 14.93 

Fair 9% 128.96 9.31 

Good 3% 195.62 5.05 

Total Horizontal Well Expected Monetary Value 53.59 
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Table 3.25 Example 2 – Multilateral well expected monetary value 

Geological 

Features 
Anisotropy 

Reservoir 

Quality 

Multilateral Well 

% 

occurrence 

NPV at 10% disc. 

rate, $ M 

Expected 

Monetary Value 

Non 

faulted 
Kv/kh=0.10 

Poor 28% 71.08 13.76 

Fair 8% 214.14 13.00 

Good 4% 324.31 10.58 

Faulted Kv/kh=0.10 

Poor 48% 71.08 22.96 

Fair 9% 214.14 14.27 

Good 3% 324.31 7.75 

Total Multilateral Well Expected Monetary Value 82.33 

 

Figure 3.16 Example 2 displays decision tree with the “leftmost” decision nodes.  

Despite expected monetary value results in Example 2 are lower than expected monetary 

value in Example 1 (Fig. 3.8); once again the multilateral well overcomes the risk 

involved due to production rates and high commodity prices accompanied by low 

CAPEX.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.16 Example 2 – Decision tree expected monetary value for each well system 
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3.3.4 Example 2 – Sensitivity Analysis 

Figure 3.17 shows some consistency with Fig. 3.9 results, however, the expected 

monetary value for a highly anisotropic reservoir is affected not only in a poor and fair 

reservoir quality but also in a good reservoir quality. Geological features (e.g. complexity 

of faults, compartments, and folding) can affect more the expected monetary value as 

function of reservoir quality than type of well. Contrary to Example 1, vertical well trend 

on the sensitivity analysis as function of reservoir quality is affected by faults because we 

have defined a high likelihood of facing a poor reservoir quality when faults are present 

in highly anisotropic reservoirs.  

Figure 3.18, being consistent to Example 1 results, plots a similar trend on the 

expected monetary value as function of the type of well and geological features 

(associated risk to successfully drill and complete horizontal and multilateral wells). This 

differs from Example 1 only in the fact that also a vertical well expected monetary value 

is affected by geological complexity with a kv/kh=0.01.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.17 Example 2 – Sensitivity analysis as a function of reservoir quality 
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Fig. 3.18 Example 2 – Sensitivity analysis as a function of geological features 
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4. GAS WELL APPLICATION 

 

 

4.1 Overview  

Multilateral technology can be successfully applied in low permeability and highly 

fractured gas reservoirs, particularly when a natural fractures network can be connected 

due to maximum reservoir contact enhancing productivity and hydrocarbon recovery.  

Gas reservoirs exhibit lower permeability than oil wells, thus prior to deciding 

whether a horizontal or multilateral well system is a suitable completion candidate, we 

need to make an exhaustive study of the technical, economic and risk analysis. Marginal 

gas wells do not justify a major investment and one must be careful not to allow the 

properties information to lead us to undesirable economic results and wrong decisions.  

 

4.2 Example 3: Gas Well 

In this section we present a gas well case (Example 3) which has the same well planning 

as Examples 1 and 2 (Fig. 3.1). There are two pay zones with permeability of 0.2 md and 

0.1 md in “base case scenario”, and a medium anisotropy ratio (kv/kh=0.10) with 90 ft and 

80 ft thickness respectively.  

Similar to Example 2, several assumptions made in Example 1 are adopted for this 

gas well application. The geometry of the box-shaped reservoir remains the same, lateral 

reservoir length of 3500 ft with a lateral wellbore length of 3000 ft for a horizontal well 

and a lateral wellbore length of 2500 ft for a multilateral well.  

 

4.2.1 Example 3 – Technical Analysis 

Uncertainty in the geological and reservoir parameters does not provide us accurate 

information while making decisions. Therefore, the three different scenarios used in oil 

well examples are set for the gas well application also. A reservoir characterized by an 

optimistic evaluation of formation permeability, 150% of the “base case scenario” 

permeability (kv and kh) is utilized for “best case scenario”, and 50% for “worst case 

scenario”.   
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The input data for Example 3 is presented in Table 4.1, which shows all reservoir 

information assuming “high”, “medium” and “low” permeability values on vertical, 

horizontal and multilateral well configurations necessary to predict production 

performance. Contrary to Examples 1 and 2, the vertical well in Example 3 uses a 

negative skin factor to illustrate the hydraulic fracturing application in tight gas wells.   

 

Table 4.1 Example 3 – Gas reservoir properties 

Input Data for Example 3 

Parameter 
Worst Case Scenario Base Case Scenario Best Case Scenario 

Zone 1 Zone 2 Zone 1 Zone 2 Zone 1 Zone 2 

kh (md): 0.1 0.05 0.2 0.1 0.3 0.15 

kv (md): 0.01 0.005 0.02 0.01 0.03 0.015 

h (ft): 90 80 90 80 90 80 

Z  (ft): 0.945 0.945 0.945 0.945 0.945 0.945 

µ  (ft): 0.0244 0.0244 0.0244 0.0244 0.0244 0.0244 

re (ft): 1489 1489 1489 1489 1489 1489 

rw (ft): 0.328 0.328 0.328 0.328 0.328 0.328 

s: -4 -4 -4 -4 -4 -4 

s*: 4 1.4 4 1.4 4 1.4 

p  (psi): 3161 3040 3161 3040 3161 3040 

wfp  (psi): 2500 2413 2500 2413 2500 2413 

*

wfp  (psi): 2500 2488 2500 2488 2500 2488 

T  (
o
F): 210 205 210 205 210 205 

a* (ft): 1000 1000 1000 1000 1000 1000 

b* (ft): 3500 3500 3500 3500 3500 3500 

Lhorizontal (ft): 3000 N/A 3000 N/A 3000 N/A 

Lmultilateral (ft): 2500 2500 2500 2500 2500 2500 

TVD (ft): 7300 7020 7300 7020 7300 7020 

 

Similar to Examples 1 and 2, the bottom-hole flowing pressure in pay zone 1 is an 

assumed value at 2500 psi. For vertical well configuration, wfp  in zone 2 uses only a 

hydrostatic pressure drop of 0.433 psi/ft, subtracted from the pressure in zone 1. The 
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multilateral well configuration (
*

wfp ) utilizes a mechanical energy balance equation to 

calculate hydrostatic pressure drop and frictional pressure drop in the well. 

For a vertical well, the flowing bottom-hole pressure in the pay zone 2 is 2413 psi 

(2500 psi – 87 psi), it considers only the hydrostatic pressure drop between pay zone 1 

and pay zone 2 (200 ft * 0.433 psi/ft = 87 psi). 

First, the initial production is estimated in each well system for the first six months 

assuming a pressure decline rate of less than 5% annually. Using Eq. (2.2), with a 

temperature in oR (oF+460) and the reservoir properties for each pay zone, neglecting the 

non-Darcy coefficient, we have the following vertical well “base case scenario” initial 

gas production:  
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      341=  Mcf/day               (4.2) 

 

As a result, the total gas production for the vertical well system is: 

 

1175341834
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For the horizontal and multilateral well “base case scenario”, initial gas production is 

calculated using Eqs. (2.4) through (2.13). However, due to the fact that the box-shaped 

geometry of the reservoir remains the same as Examples 1 and 2, oz , oy  and midx  used 

values are those obtained in Example 1 section.  
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The horizontal gas flow rate is presented below using Eq. (3.5) to calculate the 

geometry shape factor: 
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and midx  = 1750 from Eq. (3.8) 
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98.230.083.185.0 =++=Rs                         (4.9) 
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then 
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For multilateral well “base case scenario”, the initial gas production for lateral 1 is 

obtained as followed: 
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using  oy  calculated in Eq. (3.4) and having  midx  estimated in Eq. (3.14), then 
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91.673.013.405.2 =++=Rs                      (4.14) 
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Thus, qg for lateral 1 is estimated utilizing the same shape obtained in Eq. (4.5): 
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After using an empirical correlation to determine the pressure drop (∆p) in the 

wellbore between lateral 1 and lateral 2 (upper branch), the total ∆p is obtained for 200 ft 

wellbore length between laterals (12 psi). Therefore, the flowing bottom-hole pressure, 

*wfp , for lateral 2 is calculated to be 2488 psi (2500 psi –12 psi). 

If we assume that there is no pressure drop in the lateral, then the drawdown for 

lateral 2 will be 552 psi (3040 psi – 2488 psi). 

Next, the initial gas production rate for lateral 2 “base case scenario” is calculated 

utilizing oy  and midx  from Eqs. (3.4), and (3.14). Then, using Eq. (3.5): 
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52.787.065.400.2 =++=Rs                   (4.21) 

 

Thus, qg for lateral 2 is estimated to be: 
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As a result, the total gas production for the multilateral well system is: 

 

321810162202
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Though, only initial gas production estimation is depicted in the equations above, 

Table 4.2 shows additional six months of production (qg) calculated using these 

analytical models and a reservoir pressure decline of about 5% per year.  

Using the “least squares fit” analysis of monthly production rates from Table 4.2, and 

Eqs. (2.14) and (2.15), we have obtained Qi, Di and bhyp in order to forecast daily 

production and cumulative monthly production (Table 4.3).  Figs. 4.1 through 4.3 reveal 

the matching of hypothetical production (Table 4.2) against the results obtained utilizing 

hyperbolic decline (Table 4.3). 
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Table 4.2 Example 3 – Analytical model results under “base case scenario” 

Month 

Vertical Well 

qg payzone1 

(Mcf/day) 

Vertical Well 

qg payzone2 

(Mcf/day) 

Horizontal Well 

qg horizontal 

(Mcf/day) 

Multilateral Well 

qg multilateral 

(Mcf/day) 

1 834 341 2859 3218 

2 833 339 2825 3183 

3 829 338 2801 3154 

4 823 337 2772 3120 

5 823 335 2743 3086 

6 819 333 2724 3064 

7 811 333 2710 3047 

  

Table 4.3 Example 3 – DCA results under “base case scenario” 

Estimator Vertical 

Wellpayzone1  

Vertical 

Wellpayzone2 

Horizontal 

Well 

Multilateral 

Well 

Qi, Mcf/day 836 341 2859 3224 

Di/year nominal rate 0.053 0.051 0.107 0.112 

bhyp 0.002 0.007 0.055 0.033 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 Example 3 – DCA for a vertical well system under “base case scenario” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2 Example 3 – DCA for a horizontal well system under “base case scenario” 

70000

75000

80000

85000

90000

95000

100000

0 1 2 3 4 5 6 7 8

Month

V
o
lu
m
e,
 M
cf

Well data Regression

0

5000

10000

15000

20000

25000

30000

35000

40000

0 1 2 3 4 5 6 7 8

Month

V
o
lu
m
e,
 M
cf

Well data Regression

Pay Zone 1

Pay Zone 2



 71 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3 Example 3 – DCA for a multilateral well system under “base case scenario” 

 

From DCA, we observed that the initial production rate for a horizontal well 

surpasses the vertical well by 2.5 fold while the multilateral well exceeds it by 3 fold. 

Obviously, the production increase by horizontal drilling with a one or two branch system 

is significantly high. 

As said in Example 1, the hyperbolic decline curve estimators for “worst case 

scenario” and “best case scenario” only differ from “base case scenario” in the initial 

production rate. Di and bhyp estimators are kept the same since drawdown pressure 

remains equal regardless permeability values.   

Figure 4.4 shows the monthly production data forecasted by DCA under “base case 

scenario”. It is noticed in the semi-log plot that for this very low permeability gas well 

(especially the upper zone), at the assumed anisotropy ratio, the vertical permeability 

becomes extremely small thus production from the upper lateral is significantly reduced. 

In such case, the production rate obtained from a multilateral well may not surpass a 

horizontal well production by a sufficient margin to justify the investment and risk 

incurred.  
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Fig. 4.4 Example 3 – Monthly production rate under “base case scenario” 

 

Figure 4.5 also validates the previous statement; the benefit from a multilateral well 

regarding the cumulative oil production seems to be insignificant for the type of 

technology required. 
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Fig. 4.5 Example 3 – Cumulative production rate under “base case scenario” 

 

As a result of the previous DCA, Table 4.4 summarizes the initial production rates 

for the different well systems assuming the three different case scenarios.  

 

Table 4.4 Example 3 – Summary of initial monthly production rates 

Well Type 
Example 3- Initial Monthly Gas Production, Mcf/month 

 Low k (Worst) Medium k (Base)  High k (Best) 

Vertical Well 17,780 35,696 53,610 

Horizontal Well 43,265 86,498 129,785 

Multilateral Well 48,782 97,510 146,354 

 

4.2.2 Example 3 – Economic Analysis 

For Example 3, the economic analysis plays an important role because under certain 

conditions this well exhibits low production rates that may not represent an attractive 

NPV, and perhaps some poor profitability index and internal rate of return results. The 
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economics of this well can dictate whether a well system may be included or removed 

from the risk evaluation section.  

Table 4.5 depicts the main input data used for each well system to generate FCF. 

Compared to an oil well, fixed and variable costs are considerably reduced.  

 

Table 4.5 Example 3 – Economic input data for gas wells 

Economic Input Data for Gas Well 

 Vertical Well Horizontal Well Multilateral Well 

Gas price, $/Mcf $ 8 $ 8 $ 8 

Fixed operating cost, $/well $ 1,000 $2,000 $ 2,500 

Variable operating cost, $/Mcf $ 0.50 $ 0.30 $ 0.20 

Water disposal, $/Mcf $ 0.33 $ 0.33 $ 0.33 

Drilling and completion cost $ 2,500,000 $ 4,000,000 $ 6,000,000 

 

Table 4.6 presents the economic results for internal rate of return, profitability index, 

payout period, and maximum negative cash flow. Contrary to the economics of Examples 

1 and 2 where we observed exceptional internal rate of return and profitability index 

results (regardless anisotropy ratio), the economics of Example 3 are much lower. 

 Despite a moderate anisotropy ratio (kv/kh=0.10), horizontal and multilateral wells 

show low expectations. Payout for a horizontal well is 8 months, while the multilateral 

well is 11 months, which results in a longer wait before positive cash flow is realized. 

Furthermore, a vertical well shows the worst payout period, about 13 months. As an 

investment opportunity, one must take into account the payout period because the “time 

value of money” is always critical. 

The profitability index of a vertical well is 3.49, which means that for every dollar 

invested the project will return three and half dollars of that investment dollar. On the 

other hand, the profitability index of a horizontal well (4.53) is better than profitability 

index of a multilateral well (3.36); yet both of these values can not be near those obtained 

in Examples 1 and 2 (Tables 3.6 and 3.20) even though they are acceptable.  
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Table 4.6 Example 3 – Summary of economic results under “base case scenario” 

Example 3 - Economic Results 

Economic Indicator Base Case Scenario 

 Vertical Well Horizontal Well Multilateral Well 

Well payout 13 months 8 months 11 months 

Profitability index 3.49 4.53 3.36 

Internal rate of return 81% 128% 98% 

Max. negative cash flow - $ 2.28 M - $ 3.52 M - $ 5.12 M 

 

Regarding internal rate of return results, the horizontal well (128%) exceeds the 

multilateral well (98%). However, by selecting either option the project can add value to 

a company since the cost of capital or rate of return unlikely exceeds the internal rate of 

return values.  

Figure 4.6 shows the cumulative FCF for a medium reservoir quality case. The trend 

observed in this plot corroborates what we said before regarding the economics of a 

horizontal well versus multilateral well, and the less desirable performance of a vertical 

well. Even though Fig. 4.6 illustrates only 50 months of production, by plotting the total 

time of the wells life, the total cumulative FCF for a vertical well is $ 16 M, $ 26 M for a 

horizontal well, and $ 29 M for a multilateral well.  
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Fig. 4.6 Example 3 – Cumulative FCF under “base case scenario” 

 

NPV results, considering all type of scenarios, point out a multilateral well system as 

a slightly better alternative than a horizontal well. Almost the same return on investment 

is obtained by using either a horizontal or multilateral well system (Table 4.7). 

 

Table 4.7 Example 3 – Summary of NPV at 10% discount rate 

Well Type 
Example 3- NPV at 10% discount rate, $ M 

 Low k (Worst) Medium k (Base)  High k (Best) 

Vertical Well 2.79 7.95 13.12 

Horizontal Well 6.14 15.96 25.80 

Multilateral Well 5.93 17.19 28.47 

 

In this particular situation, it is hard to select a type of well because of the closeness 

in results between a horizontal and multilateral well. The risk analysis certainly addresses 

other factors that can help make more evident which is the best option.  
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4.2.3 Example 3 – Risk Analysis 

In situations where two alternatives have very similar results from the technical and 

economic analysis stand point, risk analysis can be extremely useful in order to magnify 

the pros and cons of each choice by addressing uncertainty and/or risk.  

In Example 3, the likelihood of encountering a faulted reservoir differs slightly from 

previous examples (Table 4.8). Nevertheless, Table 3.9 is used to address the probability 

of finding a good or bad reservoir as a result of geological complexities and anisotropy 

ratio.  Table 3.10 is utilized to estimate drilling and completion costs that can be 

originated because of failure to successfully drill and/or complete a well. Last, Tables 

3.11 through 3.13 are used to assign chances to succeed or fail while drilling and 

completing a well. 

 

Table 4.8 Example 3 – Probability of faults 

Geological Features Example 3 

Non faulted 30% 

Faulted 70% 

 

The results of the risk analysis are depicted in Tables 4.9 through 4.11, the expected 

monetary value is calculated for each well type using Eq. (2.19) considering geological 

complexities, reservoir quality, anisotropy, and costs incurred if systems failed (see 

Appendix C for a detailed decision tree of Example 3).  

The likelihood calculated (% occurrence) to find a non faulted or faulted reservoir 

under certain reservoir quality is similar in Examples 1 and 3. Example 2 is different due 

to the fact that the anisotropy ratio is more severe thus good reservoir quality chances are 

reduced. As a result, the expected monetary value of a vertical well system is $ 6.4 M 

(Table 4.9) while the expected monetary value of a horizontal well is $ 11.5 M (Table 

4.10) and $ 11 M (Table 4.11) for a multilateral well system.   
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Table 4.9 Example 3 – Vertical well expected monetary value 

Geological 

Features 
Anisotropy 

Reservoir 

Quality 

Vertical Well 

% 

occurrence 

NPV at 10% disc. 

rate, USD M 

Expected 

Monetary Value 

Non 

faulted 
Kv/kh=0.10 

Poor 6% 2.79 0.11 

Fair 15% 7.95 1.03 

Good 9% 13.12 1.12 

Faulted Kv/kh=0.10 

Poor 28% 2.79 0.51 

Fair 28% 7.95 1.91 

Good 14% 13.12 1.75 

Total Vertical Well Expected Monetary Value 6.43 

 

Table 4.10 Example 3 – Horizontal well expected monetary value 

Geological 

Features 
Anisotropy 

Reservoir 

Quality 

Horizontal Well 

% 

occurrence 

NPV at 10% disc. 

rate, USD M 

Expected 

Monetary Value 

Non 

faulted 
Kv/kh=0.10 

Poor 6% 6.14 0.22 

Fair 15% 15.96 1.85 

Good 9% 25.80 2.00 

Faulted Kv/kh=0.10 

Poor 28% 6.14 0.98 

Fair 28% 15.96 3.35 

Good 14% 25.80 3.03 

Total Horizontal Well Expected Monetary Value 11.43 
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Table 4.11 Example 3 – Multilateral well expected monetary 

Geological 

Features 
Anisotropy 

Reservoir 

Quality 

Multilateral Well 

% 

occurrence 

NPV at 10% disc. 

rate, USD M 

Expected 

Monetary Value 

Non 

faulted 
Kv/kh=0.10 

Poor 6% 5.93 0.16 

Fair 15% 17.19 1.78 

Good 9% 28.47 2.01 

Faulted Kv/kh=0.10 

Poor 28% 5.93 0.70 

Fair 28% 17.19 3.22 

Good 14% 28.47 3.04 

Total Multilateral Well Expected Monetary Value 10.90 

 

To graphically represent a decision tree with the “leftmost” decision nodes, Fig. 4.7 

reveals the expected monetary value and final results after encompassing a technical, 

economic and risk analysis for Example 3. The risk analysis opposes the technical and 

economic results by indicating that after analyzing the risk involved in a multilateral well, 

the horizontal well is the most effective choice; it has a better chance to successfully 

being drilled and completed.     

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.7 Example 3 – Decision tree expected monetary value for each well system 

 

D&C vertical 
well?

D&C horizontal 
well?

D&C multilateral 
well?

Chance:

$ 6.43 M

Chance:

$ 11.43 M

Chance:

$ 10.90 M

D&C vertical 
well?

D&C horizontal 
well?

D&C multilateral 
well?

Chance:

$ 6.43 M

Chance:

$ 11.43 M

Chance:

$ 10.90 M



 80 

4.2.4 Example 3 – Sensitivity Analysis 

The sensitivity analysis results in Example 3 are not consistent with the results obtained 

in Examples 1 and 2 due to the different probabilities assigned in Example 3. Fig. 4.8 

illustrates a trend where the expected monetary value does not vary considerably despite 

geological features (e.g. complexity of faults, compartments, and folding). In addition to 

that, the expected monetary value does not change significantly whether the reservoir 

quality is fair or good.  

Figure 4.9 shows that from the type of well standpoint, the associated risk to 

successfully drill and complete horizontal and multilateral wells do not have as much 

effect on the expected monetary value as geological features do.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.8 Example 3 – Sensitivity analysis as a function of reservoir quality 
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Fig. 4.9 Example 3 – Sensitivity analysis as a function of geological features 
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5. CONCLUSIONS AND RECOMMENDATIONS 

 

 

5.1 Conclusions 

The following conclusions have been drawn from this study:  

§ Technical, economic and risk analysis must be concurrently performed to enable us 

in making better decisions. Analyzing the technical feasibility of a well system only 

does not necessarily ensure the most profitable and best opportunity to succeed. 

§ Severe heterogeneity in oil and gas reservoirs is critical to the success of each type 

of completion. Every reservoir presents unique characteristics and should be 

individually analyzed.  

§ Geological features such as complexity of faults, compartmentalization, natural 

fracture network, etc. are critical to the application of vertical drilling. Lateral 

extent of the reservoir is possible by drilling horizontally parallel to the zone of 

interest. 

§ Due to drilling risk, success rate is highly dependant on geological features, quality 

of the reservoir under study, and the well system. Completion risk is extremely 

influenced by the type of well system selected. 

§ The use of purely deterministic methods, e.g. decision trees, is very dependant on 

the use of existing knowledge and experience which leads sometimes to biased 

evaluation of options.  

 

5.2 Recommendations 

§ Geologists, geoscientists, engineers and managers should collaborate together 

regarding development projects and must take a multidiscipline approach 

encompassing a technical, economic and risk analysis. 

§ Objective and careful analysis from the decision makers is imperative. Prior to 

assessing probabilities in the decision tree, engineers should acquire all pertinent 

data and lessons learned from previous experience. 
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§ Deterministic and probabilistic methods can be used in conjunction to evaluate 

several alternatives due to the nature of the oil and gas industry: high risk involved, 

high capital intensive investments, complexity of operations, and income potential. 

§ A computer based program needs to be developed to include not only a technical 

analysis but also an economic and risk analysis of single and multiphase flow 

reservoirs. 
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NOMENCLATURE 

 

 

Symbol  Description 

 

a   Reservoir width, ft 

A   Drainage area, ft2  

Bo   Oil formation volume factor, res bbl/STB 

b   Reservoir length, ft 

bhyp   Hyperbolic curve exponent 

CH   Shape factor, dimensionless 

Ci   Chance node 

D   Non-Darcy coefficient, dimensionless  

Di   Hyperbolic initial nominal decline rate 

Fv   Future sum received at time t 

h   Thickness, ft 

ie   Effective annual interest rate (discount rate, fraction) 

k   Average permeability, md 

kh   Horizontal permeability, md 

kv   Vertical permeability, md 

ky   Horizontal permeability, md 

kz   Vertical permeability, md 

L   Wellbore length, ft 

Np   Oil or gas produced volume, STB or Mscf 

NPVi   Net present value corresponding to the branch with Pi, $ M 

P    Average reservoir pressure, psi 

Pi   Conditional probability 

wfP    Flowing bottom-hole pressure, psi 

Pxy   Partial penetration skin component x-y plane 

Pxyz   Partial penetration skin component x-y-z plane 

Py   Partial penetration skin component y plane 
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Qi   Initial rate, STB/day or Mcf/day (DCA) 

Qt   Rate at time t, STB or Mcf/day (DCA) 

qg   Gas rate, Mcf/day 

qo   Oil rate, STB/day  

re   Drainage radius, ft 

rw   Wellbore radius, ft 

s   Skin effect, dimensionless 

sR   Partial penetration skin factor, dimensionless 

T    Average reservoir temperature (oF) 

t   Time, months 

midx    x-coordinate of the midpoint of the well, ft 

oy    Well location in y axis, ft 

Z    Average gas compressibility (gas deviation factor), dimensionless 

oz    Well location in z axis, ft 

 

Greek 

µ    Average oil or gas viscosity (cp) 
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EXAMPLE 1 DECISION TREE 
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EXAMPLE 2 DECISION TREE 
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EXAMPLE 3 DECISION TREE 
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