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ABSTRACT

RO(G)-graded Equivariant Cohomology Theory

and Sheaves. (December 2008)

Haibo Yang, B.S., Tianjin University, China;

M.S., Tsinghua University, China

Chair of Advisory Committee: Dr. Paulo Lima-Filho

If G is a finite group and if X is a G-space, then a Bredon RO(G)-graded equiv-

ariant cohomology theory is defined on X. Furthermore, if X is a G-manifold, there

exists a natural Čech hypercohomology theory on X. While Bredon RO(G)-graded

cohomology is important in the theoretical aspects, the Čech cohomology is indispens-

able when computing the cohomology groups. The purpose of this dissertation is to

construct an isomorphism between these two types of cohomology theories so that the

interplay becomes deeper between the theory and concretely computing cohomology

groups of classical objects. Also, with the aid of Čech cohomology, we can naturally

extend the Bredon cohomology to the more generalized Deligne cohomology.

In order to construct such isomorphism, on one hand, we give a new construc-

tion of Bredon RO(G)-graded equivariant cohomology theory from the sheaf-theoretic

viewpoint. On the other hand, with Illman’s theorem of smooth G-triangulation of

a G-manifold, we extend the existence of good covers from the nonequivariant to

the equivariant case. It follows that, associated to an equivariant good cover of a

G-manifold X, there is a bounded spectral sequence converging to Čech hypercoho-

mology whose E1 page is isomorphic to the E1 page of a Segal spectral sequence which

converges to the Bredon RO(G)-graded equivariant cohomology. Furthermore, This

isomorphism is compatible with the structure maps in the two spectral sequences. So
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there is an induced isomorphism between two limiting objects, which are exactly the

Čech hypercohomology and the Bredon RO(G)-graded equivariant cohomology.

We also apply the above results to real varieties and obtain a quasi-isomorphism

between two commonly used complexes of presheaves.
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CHAPTER I

INTRODUCTION

For a finite group G, Illman [Ill78] showed that every smooth G-manifold admits

a smooth equivariant triangulation onto a regular simplicial G-complex. With this

result we extend to the equivariant context a well-known theorem [BT82, p. 42] about

the existence of a good cover on a smooth manifold.

Theorem I.1 (Theorem III.25). Every smooth G-manifold has an equivariant good

cover. Moreover, the equivariant good covers are cofinal in the set of all open covers

of a G-manifold X.

On the other hand, an RO(G)-graded cohomology theory is defined on any G-

space X [May96]. It is a cohomology theory on X with coefficients in a Mackey

functor M and is one that is graded by the real orthogonal representation ring RO(G)

of G. Since the origin of this theory dates back to Bredon [Bre72], We call it RO(G)-

graded Bredon cohomology theory. We may apply this theory to a G-manifold X

with a coefficient system M which is associated to a discrete Z[G]-module M . For

any finite representation V of G we define a cochain complex of presheaves M(V )

and show that, for any equivariant good cover U of X and for any n ∈ Z, there is a

natural isomorphism

Ȟn
eq (U,M(V )) ∼= H

V+n−dim(V )
Br (X,M) ,

and since equivariant good covers are cofinal, we have the following main theorem

This dissertation follows the style of Transactions of the American Mathematical
Society.
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Theorem I.2 (Theorem V.5). There is a natural isomorphism

Ȟn
eq (X,M(V )) ∼= H

V+n−dim(V )
Br (X,M) .

This paper is organized as follows. Chapter II is a brief overview of the RO(G)-

graded cohomology theory and a homotopy theoretic result about this theory. A

consequence of the latter is that we get a simple model of the Eilenberg-MacLane

space K(M,V ). Proposition II.18 further identifies the homotopy groups of the G-

fixed subset of this model space with some RO(G)-graded Bredon cohomology groups

of a point.

In Chapter III we first review the necessary results about nonequivariant simpli-

cial complexes and then delve into the equivariant case. We define the terminology of

an equivariant good cover of a smooth G-manifold and prove that every G-manifold

has an equivariant good cover.

In Chapter IV for any presheaf on a G-manifold we construct an associated

complex of presheaves for which we call singular cochain complex. This complex has

homotopy invariant cohomology presheaves as stated in the same section.

Chapter V comes to the main theorem we present. A G-manifold, together with

an equivariant good cover, carries both the RO(G)-graded Bredon cohomology and

the Čech hypercohomology. The theorem says there is natural isomorphism between

them. Note that Deligne cohomology on a smooth or holomorphic complex manifolds

is defined as hypercohomology of some complexes. If we link Deligne cohomology with

the Čech hypercohomology, there is a bridge from Bredon to Deligne cohomology.
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CHAPTER II

EQUIVARIANT HOMOTOPY THEORY

AND RO(G)-GRADED COHOMOLOGY THEORY

A. The equivariant homotopy category

Let G be a topological group with unit e and let X be a topological space. A left

action of G on X is a map

τ : G×X → X

such that

(i) τ(e, x) = x,

(ii) τ(g, τ(h, x)) = τ(gh, x),

for all g, h ∈ G and x ∈ X. Here we always use ‘map’ to refer to ‘continuous function’.

When such action exists, X is called a left G-space. For simplicity, we denote τ(g, x)

by gx.

A right G-action is a map X × G to X, (x, g) 7→ xg such that xe = x and

(xg)h = x(gh). If X carries a right G-action, X is called a right G-space. When X

is a right G-space, the definition (g, x) 7→ xg−1 gives a left G-action on X. So we

usually work with left G-spaces and simply call them G-spaces.

A map f : X → Y between G-spaces X and Y is called a G-map or an equivariant

map if f(gx) = gf(x) for all g ∈ G and x ∈ X. With the usual composition of

maps there is a category G-Top whose objects are G-spaces and the morphisms are

G-maps between objects. We write HomG-Top(X, Y ) or HomG(X, Y ) for the set of

G-maps X → Y . The set HomG-Top(X, Y ) is a topological subspace of the space

HomTop(X, Y ) with compact-open topology ([Bre93, VII, sec 2], [Dug66, XII, sec 1]).
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Moreover, we can put a conjugate G-action on the space HomTop(X, Y ) by (g, f) 7→ g·f

and (g ·f)(x) = gf(g−1x). With this G-action the set HomTop(X, Y ) is an object in

G-Top. It is called the internal Hom and we denote it by HomTop(X, Y ). In addition,

the internal Hom HomTop(X, Y ) also denotes the topological space with compact-open

topology.

For any closed subgroup H of G, define the H-fixed point set of X as

XH = {x ∈ X | hx = x for all h ∈ H}.

For x ∈ X, Gx = {g | gx = x} is called the isotropy group of x. The equivariant

homotopy type of X is completely determined by the system of fixed point sets

{XH | H 6 G}. For the details see [Elm83].

Given G-spaces X and Y , consider the G-space HomTop(X, Y ) with the conjugate

G-action. Then a G-fixed point f in HomTop(X, Y ) has the property gf(g−1x) = f(x)

or equivalently, gf(x) = f(gx) for all g ∈ G and x ∈ X. That is, f is a G-map.

Reversely, a G-map f : X → Y , when viewed as an element in HomTop(X, Y ), is

clearly fixed by G. Hence we have the following equivalence

HomG-Top(X, Y ) =
(
HomTop(X, Y )

)G
. (II.1)

Next we prove some properties about the function space.

Proposition II.1. Let X, Z be Hausdorff G-spaces and Y locally compact Hausdorff

G-space. Then there is a natural G-homeomorphism

HomTop(X × Y, Z)
Φ−→∼= HomTop(X,HomTop(Y, Z)),

where Φ is defined by (Φ(f))(x)(y) = f(x, y) for all f : X × Y → Z, x ∈ X and

y ∈ Y .
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Proof. Forget the G-actions on X, Y and Z. Then we claim that Φ is a natu-

ral nonequivariant homeomorphism. The proof can be found in [Bre93, VII, Theo-

rem 2.5]. Add G-actions on the spaces and Hom sets. The map Φ becomes equivariant

since

Φ(g ·f)(x)(y) = (g ·f)(x, y) = gf(g−1x, g−1y)

and

(g ·Φ(f))(x)(y) = [g ·
(
Φ(f)(g−1x)

)
](y)

= g
(
Φ(f)(g−1x)(g−1y)

)
= gf(g−1x, g−1y).

Hence Φ is a G-homeomorphism.

Corollary II.2. Let X, Y , Z and Φ be the same as in Proposition II.1. Then there

is a natural homeomorphism

HomG-Top(X × Y, Z)
Φ−→∼= HomG-Top(X,HomTop(Y, Z)).

Proof. If f : X → Y is a G-homeomorphism, then f |XG : XG → Y G is a homeomor-

phism. Now the result comes from Proposition II.1 and the equation (II.1).

Proposition II.3. Let X be a G-space and let A be a space with trivial G-action.

Then there are the following natural homeomorphisms

(i) HomG-Top(A,X) ∼= HomTop(A,XG).

(ii) HomG-Top(X,A) ∼= HomTop(X/G,A).

Proof. See [May96, pp. 11-12].

Proposition II.4. If G is a compact group and H ⊂ G a closed subgroup then for

any G-space X there is a natural homeomorphism

XH Φ−→∼= HomG-Top(G/H,X),
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where Φ sends a ∈ XH to fa : G/H → X with fa(gH) = ga. The inverse of Φ sends

f ∈ HomG-Top(G/H,X) to f(H).

Proof. See [tD87, p. 25, Proposition 3.8].

If (Xα | α ∈ J) is a collection of G-spaces then the product
∏
α∈J

Xα is again a

G-space under the diagonal action

(g, (xα)α∈J) 7→ (gxα)α∈J .

Let I = [0, 1] be the unit interval with trivial left G-action. Two G-maps f0, f1 :

X → Y are called G-homotopic if there is a continuous G-map (where X × I carries

the diagonal G-action.)

F : X × I → Y

such that F (x, 0) = f0(x) and F (x, 1) = f1(x). The map F is called a G-homotopy

from f0 to f1. Since the action on I is trivial, the map ft : X → Y, x 7→ F (x, t)

is equivariant for all t ∈ I. As in the nonequivariant case, the relation of being G-

homotopic is an equivalence relation. We denote by [X, Y ]G the G-homotopy classes

of G-maps X → Y and use [f ] to denote the G-homotopy class represented by a map

f : X → Y . The homotopy category hG-Top is then the category whose objects

are same as those in G-Top and the morphisms are G-homotopy classes of G-maps

between G-spaces.

Recall that the cone CX of a topological space X is the space X × I/X × {1}.

If there is a G-action on X then CX is also a G-space with the diagonal G-action.

For a G-map f : A→ X, the cone Cf of f is the quotient space

Cf = X ∪f CA = X q CA/ ∼, (II.2)

where ∼ is the equivalence relation generated by (a, 0) ∼ f(a) for all a ∈ A.
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Definition II.5. A G-map f : A→ X is an equivariant cofibration or G-cofibration

if it satisfies the equivariant homotopy extension property (G-HEP). That is, for any

G-space Y and G-maps φ : X → Y , Φ : A × I → Y satisfying Φ ◦ i0 = φ ◦ f there

exists G-map Φ̃ : X × I → Y that makes the following diagram commute

A× {0} i0 //

f

��

A× I

Φ
{{xxxxxxxxx

f×id

��

Y

X × {0}
i0

//

φ

::vvvvvvvvv
X × I.

Φ̃

ccF
F

F
F

F

Here i0(x) = (x, 0).

In many situations we would like to work with based G-spaces. A based G-space

(X, ∗) is a G-space with a basepoint ∗ ∈ X and the basepoint is assumed to be fixed

by G, i.e. g∗ = ∗ for all g ∈ G. If no confusion arises we simply call X a based G-space

whenever a basepoint exists on X. If Z is any (unbased) G-space, let Z+ denotes the

disjoint union of Z and a G-fixed basepoint + so that Z+ becomes a based G-space.

If (X, x0) and (Y, y0) are based G-spaces, then a G-map f : X → Y is called a based

G-map if f maps basepoint x0 to basepoint y0. The collection of based G-spaces and

based G-maps form a category G-Top0.

The wedge or one-point union X ∨ Y of based G-space (X, x0) and (Y, y0) is the

quotient space of the disjoint union X
∐
Y by the equivalence relation identifying x0

with y0. It is a G-space and is G-homeomorphic to the G-subspace X×{y0}∪Y ×{x0}

of the product X × Y . The smash product X ∧ Y is then defined to be the quotient

X×Y/X∨Y . We can think of X∧Y as the reduced version of X×Y which collapses

X ∨ Y to a basepoint.
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Let X and Y be based G-spaces. A based G-homotopy F between based G-

maps f0, f1 : X → Y is just a continuous based G-map F : X ∧ I+ → Y such that

F (x, 0) = f0(x), F (x, 1) = f1(x). Here X∧I+ is a based G-space obtained from X×I

by collapsing {x0} × I to the basepoint. We write [X, Y ]0G the based G-homotopy

classes of based G-maps X → Y . Then the homotopy category hG-Top0 is defined

similar to the unbased counterpart hG-Top. The objects of hG-Top0 are the based

G-spaces and the morphisms are the based G-homotopy classes of based G-maps.

Let (X, x0) be a based G-space. Then the reduced cone CX is the based quotient

G-space

CX = X × I/({x0} × I ∪X × {1}),

where {x0} × I ∪X × {1} collapses to the basepoint.

The reduced cone Cf of a based G-map f : A→ X is defined the same as (II.2)

except CA is replaced by the reduced cone of A.

The definition of G-cofibration has an obvious based version, in which all maps

and spaces in the diagram in Definition II.5 are required to be based.

B. Equivariant CW-complexes

The theory of nonequivariant CW-complexes ([May99], [Whi49], [Whi78]) can be

extended to the equivariant case accordingly.

Let Dn = {x ∈ Rn | |x| ≤ 1} be the unit disk in Rn with boundary the unit

sphere Sn−1. For convenience we set D0 as a point space and S−1 = ∅. The spaces

Dn and Sn−1 have the trivial G-action on them. We also set D̊n = Dn − Sn−1 the

open disk. For a closed subgroup H of G, an equivariant n-cell of type G/H is just

the product G-space G/H ×Dn.

An equivariant CW-complex or G-CW-complex X is a G-space X together with
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a filtration {Xn | n ≥ 0} of X satisfying:

(i) X0 is a disjoint union of orbits G/H and by induction, Xn is obtained from

Xn−1 by attaching equivariant n-cells G/Hα × Dn via attaching G-maps φα :

G/Hα × Sn−1 → Xn−1. That is, Xn is the quotient space

Xn−1
⋃∐

φα

(∐
α

G/Hα ×Dn

)
.

(ii) X = ∪nXn and X has the weak topology with respect to {Xn}, i.e. a subset

A ⊂ X is closed (or open) if and only if A ∩ Xn is closed (or open) in Xn for

all n.

Remark II.6. 1. For each n the space Xn is a closed G-subspace of X and is called

the n-skeleton of X. If there exists some n such that X = Xn and X 6= Xn−1

then we say that X has dimension n.

2. For each equivariant equivariant cell G/Hα ×Dn there is a characteristic map

Φα : G/Hα ×Dn → X which extends the attaching map φα : G/Hα × Sn−1 →

Xn−1. That is, we can take Φα to be the composition

G/Hα ×Dn ↪→ Xn−1
∐(∐

α

G/Hα ×Dn

)
q−→ Xn ↪→ X

where q is the quotient map defining Xn. The images Φα(G/Hα × Dn) and

Φα(G/Hα × D̊n) are called the closed and open n-cell in X, respectively. We

denote Φα(G/Hα ×Dn) by enHα and Φα(G/Hα × D̊n) by int(enHα).

3. The topology on X is equivalently characterized by the following: A subset

B ⊂ X is closed if and only if the intersection of B and any closed n cell is

closed in that n-cell. Namely, A∩enHα is closed in enHα for each equivariant n-cell

enHα . For the details see [FP90] and [McC01].
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A G-subspace A of a G-CW-complex X is called a G-subcomplex if A is a union

of some of the closed cells in X. In other words, if an open cell int(enHα) intersects

A nontrivially then the whole closed cell enHα is contained in A. From this definition

easy to see that A is itself a G-CW-complex which justifies the word G-subcomplex.

If A is a G-subcomplex we call (X,A) a pair of G-CW-complexes.

Proposition II.7. Let X be a G-CW-complex. Then the orbit space X/G is a

nonequivariant CW-complex with n-skeleton Xn/G.

Proof. It involves a straightforward translation of the definition of X into that of

the CW structure of X/G. For example, an equivariant attaching map φα : G/Hα ×

Sn−1 → Xn−1 becomes a nonequivariant attaching map φα/G : Sn−1 → Xn−1/G, and

so on.

The next property shows a connection between equivariant and nonequivariant

CW-complexes when G is discrete. Let G be a discrete group. Let X be a G-space and

an nonequivariant CW-complex. A regular G-action on X is a G-action satisfying:

(i) For each open cell int(enHα) and each g ∈ G the left translation g · int(enHα) is

again an open cell in X.

(ii) If int(enHα)∩g ·int(enHα) 6= ∅ then g fixes pointwised the set int(enHα)∩g ·int(enHα).

Proposition II.8. Let G be a discrete group and let X be a nonequivariant CW-

complex. If there is a regular G-action on X then X is a G-CW-complex with n-

skeleton Xn.

Proof. See [tD87, Proposition II.1.15].
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C. RO(G)-graded cohomology theories

Let G be a finite group and let RO(G) be the real orthogonal representation ring of G.

For a representation space V of G, let SV = V ∪{∞} be the one point compactification

of V with ∞ as basepoint. Let SVX := SV ∧X be the smash product of SV and X

for any based G-space X. Then for representation spaces V and W , there is a natural

isomorphism SWSVX ∼= SW+VX.

An RO(G)-graded equivariant cohomology theory consists of the following data:

(a) A family {hαG | α ∈ RO(G)} of contravariant functors G-Top0 → Ab, where Ab is

the category of abelian groups;

(b) For each representation V ofG, a family of natural transformations σV : hαG(X)→

hα+V
G (SVX).

These data satisfy the following axioms:

(i) If f0 is G-homotopic to a map f1: X → Y , then hαG(f0) = hαG(f1) : hαG(X) →

hαG(Y );

(ii) σV is an isomorphism for all V ;

(iii) The sequence

hαG(Cf )→ hαG(X)→ hαG(A)

is exact for each G-map f : A→ X;

(iv) The suspension σ0 = id and for any pair (V,W ) the following diagram commutes:

hαG(X) σV //

σV+W ((PPPPPPPPPPPP
hα+V
G (SVX)

σWuulllllllllllll

hα+V+W
G (SV+WX).
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It is called the transitivity of the suspension functors.

Next let us sketch Bredon’s construction [Bre67] of a Z-graded equivariant coho-

mology theory {Hn
G(X,M) | n ∈ Z}.

Definition II.9. The orbit category Or(G) is the category whose objects are the

homogeneous spaces G/H and whose morphisms are the equivariant maps between

them. A contravariant coefficient system M is just a contravariant functor Or(G)→

Ab, and a covariant coefficient system M is a covariant functor Or(G) → Ab. The

collection of contravariant coefficient systems for G and the natural transformations

between them form an abelian category CG.

Example II.10. Let C∗(−,Z) be the usual singular chain complex. Pick a G-space

X. For each n ∈ Z define an element Cn(X,Z) ∈ CG by Cn(X,Z)(G/H) = Cn(XH ,Z)

together with the obvious values on morphisms of Or(G).

For each n, there is an induced morphism d : Cn(X,Z) → Cn−1(X,Z) with

d2 = 0, hence the collection {Cn(X,Z) | n ∈ Z} forms a chain complex in the

category CG. For each contravariant coefficient system M let C∗G(X,M) be the cochain

complex HomCG(C∗(X,Z),M) with differentials δ = HomCG(d, id). Then the Bredon

cohomology Hn
G(X,M) is defined to be the n-th cohomology group of this cochain

complex, i.e.

Hn
G(X,M) := Hn(HomCG(C∗(X,Z),M)).

On the other hand, in order to define Bredon homology with coefficients in a covariant

coefficient system, we need the following definition.

Definition II.11. Let M : CG → Ab be a contravariant functor and N : CG → Ab

covariant. Then the coend, or categorical tensor product is the following quotient
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abelian group

M ⊗CG N =
⊕
H<G

M(G/H)⊗N(G/H)/ ∼,

where the equivalence relation is generated by (f ∗m,n) ∼ (m, f∗n) for a G-map

f : G/H → G/K and elements m ∈M(G/K) and n ∈M(G/H).

If N is a covariant coefficient system then for each n ∈ Z we define the abelian

group

CG
n (X,N) = Cn(X,Z)⊗CG N.

The boundary ∂ : CG
n (X,N) → CG

n−1(X,N) is ∂ = d ⊕ 1. It has property ∂2 = 0,

so CG
∗ (X,N) is a chain complex of abelian groups. The Bredon homology HG

n (X,N)

is just the n-th homology group of the chain complex CG
∗ (X,N). For the details,

see [Bre67] and [tD87, II.9].

Definition II.12. Let G-Fin be the category of finite G-sets and G-maps between

them. A Mackey functor M = (M∗,M∗) : G-Fin → Ab consists of a contravariant

functor M∗ : G-Fin→ Ab and a covariant functor M∗ : G-Fin→ Ab satisfying:

1. M∗(S) = M∗(S) for all finite G-sets S;

2. For a pull-back diagram

A
f //

g

��

B

h
��

C
k
// D

in G-Fin, we have the following commutative diagram

M(A)
f∗ //M(B)

M(C)

g∗

OO

k∗
//M(D)

h∗

OO

in Ab, where we use the notations f∗ = M∗(f), f ∗ = M∗(f);



14

3. The two inclusions S → S
∐
T ← T into disjoint union define an isomorphism

M(S
∐
T ) ∼= M(S)⊕M(T ).

Remark II.13. A Mackey functor defines both a contravariant coefficient system and

a covariant coefficient system.

Example II.14. A discrete Z[G]-module M defines an associated Mackey functor

M by M(G/H) := MH and the value of the contravariant part on the projection

G/H → G/K, for H ≤ K ≤ G, is the inclusion of MK into MH while that of the

covariant part is MH → MK : x 7→
∑
kix, where {ki} are a set of representatives of

left cosets K/H.

In [LMM81] J. P. May et al. showed that, when M is a Mackey functor, the Bre-

don cohomology theory can be uniquely extended to an RO(G)-graded cohomology

theory {Hα
Br(X,M) | α ∈ RO(G)}, which is called RO(G)-graded ordinary equiv-

ariant Bredon cohomology theory. We also use the notation Hα
Br,G(X,M) for this

theory to emphasize the group G. We refer the reader to [LMS86, May96, tD87] for

exhaustive study of this theory.

For any topological space X, let ZX denote the free abelian group on X with

induced topology from that of X. If X is a based space with base point x0, then define

Z0(X) := ZX/Zx0. Or equivalently, let Z0(X) be the kernel of the augmentation

homomorphism ε : ZX → Z. One can show that, if X is path connected then Z0(X)

is the connected component of 0 ∈ ZX.

When X is a based G-space, the topological abelian group ZX has a naturally

induced G-action by

g(
∑

nxx) =
∑

nxgx.
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In [LF97] Lima-Filho proved that when X is a based G-CW complex then

πn((Z0(X))G) ∼= H̃Br,G
n (X,Z),

where H̃Br,G
n (X,Z) denote the reduced Bredon homology of X with coefficients in the

Mackey functor Z. This is just an equivariant version of the classical Dold-Thom

theorem [DT58].

In [dS03b] dos Santos further generalizes the above result as follows. Let M

be a discrete Z[G]-module, i.e. a discrete abelian group M with a (left) G-action.

Given a based G-space X (with base point x0), let Z0(X)⊗M be the Z[G]-module1∑
x∈X−{x0}M . Each element in Z0(X)⊗M has a unique representation

∑
x∈X−{x0}

mxx,

in which only finitely many mx 6= 0. The G-action is

g(
∑

mxx) =
∑

(gmx)(gx).

Let πGV (Z0(X)⊗M) denotes the set of equivariant homotopy classes of maps

[SV ,Z0(X)⊗M ]0G.

Theorem II.15. [dS03b] If X is a based G-CW complex then Z0(X)⊗M is an

equivariant infinite loop space and there is a natural isomorphism

πGV (Z0(X)⊗M) ∼= H̃Br,G
V (X,M), (II.3)

where H̃Br,G
V (X,M) is the reduced RO(G)-graded Bredon homology group.

Remark II.16. In [Nie07] Nie unified the above results.

1In [dS03b] it is denoted by M⊗X.
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Definition II.17. Let V ∈ RO(G). A K(M,V ) space is a classifying space for the

functor H̃V
Br(−,M). In other words, a based G-space Z is a K(M,V ) space if for

every based G-space X there is a natural isomorphism

H̃V
Br(X,M) ∼= [X,Z]0G.

An essential consequence of (II.3) is that Z0(SV )⊗M is a K(M,V ) space. So

there is a natural isomorphism

H̃V
Br(X,M) ∼= [X,Z0(SV )⊗M ]0G (II.4)

for every based G-space X.

Proposition II.18. Given a finite-dimensional representation V of G and a discrete

Z[G]-module M , there is a natural isomorphism

πn
(
(Z0(SV )⊗M)G

) ∼= H̃V−n
Br (∗,M), (II.5)

where ∗ is a G-fixed point.

Proof. One has the following isomorphisms

πn
(
(Z0(SV )⊗M)G

)
=
[
Sn, (Z0(SV )⊗M)G

]0
Top

(definition)

∼= [Sn,Z0(SV )⊗M ]0G (trivial G-action on Sn)

∼= H̃V
Br(S

n,M) (II.4)

∼= H̃V−n
Br (∗,M). (suspension axiom)

This result will be used in Chapter IV.
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CHAPTER III

EQUIVARIANT GOOD COVER OF A G-MANIFOLD

A. Simplicial G-complex

Recall that an open cover U = {Uα} of a smooth manifold M is called a good cover

if all nonempty finite intersections Uα0...αn = Uα0 ∩ · · · ∩ Uαn are contractible. There

is a classical theorem (c.f. [BT82, Theorem 5.1]) stating that every smooth manifold

M has a good cover when considering the geodesic convex balls for a Riemannian

metric on M ([GHL04, Corollary 2.89], [dC92, p. 70]). We extend this theorem to

the equivariant case for a finite group G.

Let us start with some notations and terminology about simplicial complex and

G-complex. The first section of this chapter is to give some important results about

simplicial complexes needed for the latter chapters. It is by no means a thorough

overview of the theory of simplicial complexes. All of the contents in this section are

elementary and can be found in almost any textbook about algebraic or combinato-

rial topology. Among them we list the following: [Spa81], [Dol80], [Mac67], [Pra06],

[Bre72] and [Rot88].

If {v0, . . . , vn} is an affine independent set of some euclidean space, then the

subspace

s = 〈v0, . . . , vn〉 :=

{
n∑
i=0

λivi |
n∑
i=0

λi = 1, λi ≥ 0

}
is called the n-simplex spanned by {vi}. We denote its vertex set by Vert(s) =

{v0, . . . , vn}. A face s′ of s is a simplex s′ with Vert(s′) ⊂ Vert(s).

Definition III.1. A (geometric) simplicial complex K is a collection of simplices in

some euclidean space such that:

(i) if s ∈ K, then every face of s is also in K;



18

(ii) if s, t ∈ K, then s ∩ t is either empty or is a face of both s and t.

If K is a simplicial complex, we write Vert(K) for the vertex set of K, i.e. the set

of 0-simplices in K. The dimension of K is defined by dimK = sup{dim(s) | s ∈ K}.

K is locally finite if every point x ∈ |K| has a neighborhood intersecting only finite

many simplices of K ([Mun66, p. 69]). K is finite if it contains only a finite number

of simplices. Here for our purpose it suffices to assume that all simplicial complexes

are locally finite.

A simplicial subcomplex L of K is a subset of K such that L is itself a simplicial

complex. It is clear that a subset L of K is a subcomplex if and only if any simplex

in K that is a face of a simplex in L is a simplex in L.

Examples III.2. We give some examples of simplicial complexes.

1. Given an n-simplex s, let s̄ denote the set of all faces of s and ṡ the set of

all proper faces of s (If n = 0, let ṡ = ∅). Then s̄ and ṡ are both simplicial

complexes with dimension n and n−1, respectively. The set s◦ = s− ṡ is called

an open n-simplex.

2. If K is a simplicial complex, then its n-skeleton Kn is a simplicial complex

consisting of all simplices in K with dimension less than or equal to n.

We put |K| :=
⋃
s{s | s ∈ K} ⊂ RN , a subset of some ambient euclidean space.

We call |K| the associated polyhedron or the underlying space of K.

Definition III.3. A topological space X is called a polyhedron if there exists a

homeomorphism h : |K|
∼=−→ X for some simplicial complex K. The pair (K,h) is

called a triangulation of X.

Definition III.4. 1. Let K be a simplicial complex. Pick x ∈ |K|. The carrier
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carr(x) of x is defined to be the (unique) smallest simplex of K containing x.

In some cases we write carrK(x) for carr(x) to emphasize K.

2. If v is a vertex of K then the open star of v is

stK(v) = {x ∈ |K| | v ∈ carr(x)}.

Proposition III.5. Let K be a simplicial complex. Then x ∈ stK(v) if and only if

v ∈ carr(x) and for x, y ∈ |K|, y ∈ carr(x) implies carr(y) ⊂ carr(x).

Proof. The conclusions are clear from the definitions.

Proposition III.6. If v0, . . . , vn are vertices of a simplicial complex K then
⋂
i stK(vi) 6=

∅ if and only if 〈v0, . . . , vn〉 is a simplex of K.

Proof. A point x ∈
⋂
i stK(vi) iff vi ∈ carr(x) for all i iff 〈v0, . . . , vn〉 is a face of

carr(x), and the result follows.

The following theorem shows that the set of open stars of vertices is a good

cover of a simplicial complex. This gives an alternative proof of the existence of a

good cover for a smooth manifold since it is known that every manifold admits a

triangulation [Whi40].

Theorem III.7. Let K be a locally finite simplicial complex. Then for each vertex v

of K,

stK(v) =
⋃
s∈K

v∈Vert(s)

s◦. (III.1)

Furthermore, the set

U = {stK(v) | v ∈ Vert(K)}

is a good cover of K.

Before we prove this theorem we need the following lemma.
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Lemma III.8. If K is a simplicial complex, then |K| is the disjoint union of all the

open simplices s◦ with s ∈ K. Hence each x ∈ |K| lies in a unique open simplex. In

fact, x ∈ (carr(x))◦.

Proof. It follows by induction on the dimension of K.

Remark III.9. By Lemma III.8, for any two simplices s, t in a simplicial complex K,

the intersection s◦ ∩ t◦ is empty whenever s is not identically equal to the simplex t.

In particular, even if s is a face of t, the open simplex s◦ is still disjoint from t◦.

Proof of Theorem III.7. Denote
⋃
s∈K

v∈Vert(s)

s◦ by A. If x ∈ stK(v) then v ∈ carr(x) by

definition hence v ∈ Vert(carr(x)). Since x ∈ (carr(x))◦ by Lemma III.8, x ∈ A. On

the other hand, pick x ∈ s◦ for any simplex s containing v as a vertex. Then s =

carr(x) by the uniqueness statement in Lemma III.8. Hence the condition v ∈ Vert(s)

implies v ∈ Vert(carr(x)) ⊂ carr(x). Thus by definition x ∈ stK(v). By arbitrarity of

x and s, A ⊂ stK(v).

So U is a set of open subsets of |K| and it is clear that U covers |K|. Furthermore,

given any finite set of elements Ui = stK(vi), i = 0, . . . , n in U, one has

U0 ∩ · · · ∩ Un =
⋃

vi∈Vert(s)
for all i = 0, . . . , n

s◦

by (III.1) and Remark III.9, and this set is clearly contractible.

Definition III.10. Let K and L be simplicial complexes.

1. A simplicial map f : K → L is a map f : |K| → |L| which sends Vert(K) into

Vert(L) and is linear on each simplex of K, i.e. f(
∑

i λivi) =
∑

i λif(vi). Given

a continuous map ϕ : |K| → |L|, if f(x) ∈ carr(ϕ(x)) for each x ∈ |K| then f

is called a simplicial approximation to ϕ.
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2. A subdivision of K is a simplicial complex K ′ such that |K ′| = |K| and each

simplex s′ of K ′ lies in some simplex of K. A barycentric subdivision of K is a

simplicial complex K ′ whose vertices are the simplices of K and whose simplices

are the sets 〈s0, . . . , sn〉 such that si are simplices of K with

s0 ⊂ s1 ⊂ · · · ⊂ sn.

That is, si is a face of si+1 for all i.

From the definition it is easy to see that if f : K → L is simplicial then whenever

{w0, . . . , wn} spans a simplex in K, {f(w0), . . . , f(wn)} spans a simplex in L.

Proposition III.11. Let K and L be simplicial complexes.

(1) If f : K → L is a simplicial map then f(carr(x)) = carr(f(x)) and f(stK(v)) ⊂

stL(f(v)) for any x ∈ |K| and v ∈ Vert(K).

(2) A simplicial map f : K → L is a simplicial approximation to ϕ : |K| → |L| if

and only if ϕ(stK(v)) ⊂ stL(f(v)) for any vertex v of K.

Proof. For (1), let s = 〈v0, . . . , vn〉 be a simplex of K and x =
∑n

i=0 λivi with all

λi > 0. Then carr(x) = s. Since f is simplicial, f(x) =
∑n

i=0 λif(vi) (some of

the f(vi) may be equal). Thus carr(f(x)) = convex hull of {f(v0), . . . , f(vn)} which

is just f(carr(x)). Now pick x ∈ stK(v). Then v ∈ carr(x). Applying f yields

f(v) ∈ f(carr(x)) = carr(f(x)). This gives f(x) ∈ stL(f(v)). Since x is arbitrary, we

have f(stK(v)) ⊂ stL(f(v)).

The proof of (2) is similar to (1). If f is a simplicial approximation to ϕ, then

by definition f(x) ∈ carr(ϕ(x)) for all x ∈ |K|. Pick x ∈ stK(v). The inclusion

v ∈ carr(x) yields f(v) ∈ f(carr(x)) = carr(f(x)) ⊂ carr(ϕ(x)). The last inclusion

comes from Proposition III.5. So ϕ(x) ∈ stL(f(v)). For the ‘if’ part, pick x ∈ |K|
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and let carrK(x) = 〈v0, . . . , vn. Then x ∈ stK(vi) for all i by Proposition III.5. By

the assumption, ϕ(x) ∈ ϕ(stK(vi)) ⊂ stL(f(vi)) for all i. Then f(vi) ∈ carrL(ϕ(x))

for all i and hence one has f(x) ∈ 〈f(v0), . . . , f(vn)〉 ⊂ carrL(ϕ(x)). This shows that

f is a simplicial approximation to ϕ.

Given a simplicial complex K, let K(0) = K, K(1) = K ′, the barycentric subdivi-

sion of K, and by induction let K(n) be the barycentric subdivision of K(n−1). Then

we have the following theorem.

Theorem III.12 (The Simplicial Approximation Theorem). Let K and L be finite

simplicial complexes and let ϕ : |K| → |L|. Then there exist an integer q ≥ 0 and a

simplicial approximation f : K(q) → L to ϕ.

Proof. See [Rot88, p. 139] or [Bre93, p. 252].

Next we consider an action of a group G on the simplicial complexes.

Definition III.13. Let G be a finite group.

1. A simplicial G-complex consists of a simplicial complex K together with a G-

action on K such that for every g ∈ G the map g : K → K is a simplicial

homeomorphism.

2. A simplicial G-complex K is a regular G-complex if the following conditions are

satisfied.

(R1) If vertices v and gv belong to the same simplex then v = gv.

(R2) If s = 〈v0, . . . , vn〉 is a simplex of K and s′ = 〈g0v0, . . . , gnvn〉, where

gi ∈ G, i = 0, . . . , n, also is a simplex of K then there exists g ∈ G such

that gvi = givi, for i = 0, . . . , n.

Remark III.14. (a) If K is a simplicial G-complex, then the underlying space |K|

carries a natural G-action so that |K| is a G-space.
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(b) In fact the condition (R2) implies (R1) since if v and gv belong to some simplex,

then 〈v, v〉 and 〈v, gv〉 are simplices of K, so for some g′, v = g′v = gv.

Proposition III.15. Let K be a simplicial G-complex. Then for any vertex v of K

and any g ∈ G, we have

stK(gv) = g(stK(v)).

Proof. Pick x ∈ stK(gv). By Proposition III.5, gv ∈ carr(x). So v ∈ g−1(carr(x)) =

carr(g−1x) by Proposition III.11. By Proposition III.5 again, g−1x ∈ stK(v). Thus

stK(gv) ⊂ g stK(v). On the other hand, If x ∈ stK(v), then v ∈ carr(x) implies

gv ∈ g(carr(x)) = carr(gx) which is equivalent to say gx ∈ stK(gv), and this yields

the desired result.

The following proposition shows that any simplicial G-complex becomes regular

after passing to the second barycentric subdivision. So restricting to regular G-

complexes is not seriously harmful. The following proposition comes from [Bre72].

Proposition III.16 ([Bre72]). If K is a simplicial G-complex, then the induced ac-

tion on the barycentric subdivision K ′ satisfies (R1). If (R1) is satisfied for K, then

(R2) is satisfied for K ′.

Proof. Pick a vertex s of K ′. s is a simplex of K. If s and gs belong to a same

simplex of K ′, then either s is a face of gs or vice versa. But s and gs have the same

dimension, so s = gs.

Now suppose K satisfies (R1). We will prove (R2) for K ′ by induction on n.

Suppose that 〈s0, s1, . . . , sn〉 is a simplex of K ′ and after some reordering we may as-

sume that s0 ⊂ s1 ⊂ · · · ⊂ sn−1 ⊂ sn as simplices of K. Suppose that 〈g0s0, . . . , gnsn〉

is also a simplex of K ′. By the inductive assumption, there is a g in G with gsi = gisi
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for 0 ≤ i < n. Left multiplicating g−1 shows that

〈s0, s1, . . . , sn−1, g
−1gnsn〉

is a simplex of K ′. Since si’s are ordered by dimension, we have

s0 ⊂ s1 ⊂ · · · ⊂ sn−1 ⊂ g−1gnsn

Then sn−1 ⊂ (sn ∩ g−1gnsn). But by (R1), g acts trivially on simplex s∩ g(s) for any

g ∈ G since for any vertex v of s ∩ g(s), 〈v, gv〉 ⊂ g(s) so that v = gv. Thus g−1gn

acts trivially on sn−1 hence trivially on si for all i < n. So we have gnsi = gsi = gisi

for i < n and therefore gnsi = gisi for all i.

For a subgroup H of G, we define KH := |K|H , the fixed point set of |K| by H.

The next proposition shows that when K is a regular G-complex, KH a subcomplex

of K.

Proposition III.17. Let K be a regular G-complex.

(1) For any subgroup H ≤ G, KH is a nonequivariant subcomplex of K.

(2) For x ∈ KH , carrKH (x) = carrK(x). Moreover, if v is a vertex of KH , then

stKH (v) = stK(v) ∩KH .

Proof. (1) KH = ∩h∈H |K|h, so it suffices to prove that for any h ∈ H, |K|h is a

subcomplex. Thus we pick x ∈ |K|h and consider the carrier carr(x) = carrK(x).

Since h(x) = x, then h carr(x) = carr(h(x)) = carr(x). In particular, it implies

that for any vertex v of carr(x), hv and v are in the same simplex carr(x). By the

regularity of K, hv = v. Then the linearity of the action of h on carr(x) shows

that each point in carr(x) is fixed by h. That is, carr(x) ⊂ |K|h. So |K|h is a
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collection of simplices of K. It is obvious that |K|h satisfies the conditions (i)

and (ii) in Definition III.1. Hence |K|h is indeed a simplicial subcomplex of K.

(2) The proof of (1) shows that if x ∈ KH then carrK(x) ⊂ KH . Since carrKH (x)

is the smallest simplex of KH containing x, there is the inclusion carrKH (x) ⊂

carrK(x). On the other hand, the set carrKH (x), as a simplex of KH , is also a

simplex of K containing x. Then the definition of carrK(x) yields the reverse

inclusion carrK(x) ⊂ carrKH (x). Thus carrKH (x) = carrK(x) if x ∈ KH . It

follows that the following equivalent relations hold.

x ∈ stKH (v)⇔ x ∈ KH and v ∈ carrKH (x)

⇔ x ∈ KH and v ∈ carrK(x)

⇔ x ∈ stK(v) ∩KH .

B. The equivariant good covers

Let U = {Uα}α∈I be an open cover of a paracompact G-space X. Then for any g ∈ G,

the set

gU := {gUα | Uα ∈ U}

is still an open cover of X. If gU = U for all g, we say U is G-invariant or just

invariant for simplicity. In this case there is an induced action of G on the index set

I defined by gα being the unique index with Ugα = gUα.

If U and V = {Vβ}β∈J are covers, then

U ∩V = {Uα ∩ Vβ | Uα ∈ U, Vβ ∈ V}



26

is an open cover which refines both U and V. Clearly (note that G is finite)

⋂
g∈G

gU

is an invariant cover refining U. Moreover this is locally finite if U is. Thus, for X

paracompact, the locally finite invariant covers are cofinal in the set of all covers of

X.

Now let U = {Uα}α∈I be a locally finite invariant cover of X and let

f = {fα}α∈I

be a partition of unity subordinate to U (in particular, supp(fα) ⊂ Uα). Then f is

called a G-partition of unity if fgα(gx) = fα(x) for all g, x and α.

If f = {fα} is any partition of unity subordinate to the invariant cover U, we

define

f̃α(x) =
1

|G|
∑
g

fgα(gx)

Then

∑
α

f̃α(x) =
1

|G|
∑
α

∑
g

fgα(gx) =
1

|G|
∑
g

(∑
α

fgα(gx)

)
=

1

|G|
∑
g

1 = 1

and

f̃g′α(g′x) =
1

|G|
∑
g

fgg′α(gg′x) =
1

|G|
∑
gg′

f(gg′)α ((gg′)x) = f̃α(x),

so f̃ = {f̃α}α∈I is a G-partition of unity.

Let ∆ be the category whose objects are the finite ordered sets [n] = {0 < 1 <

· · · < n} for integers n ≥ 0, and whose morphisms are nondecreasing functions. If A

is any category, a simplicial object A in A is a contravariant functor from ∆ to A, i.e.

A ∈ A∆op
. For simplicity, we write An for A([n]). Similarly, a cosimplicial object B

in A is a covariant functor from ∆ to A, i.e. B ∈ A∆. We write Bn for B([n]). There
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is a category SA whose objects are simplicial objects in A and whose morphisms are

the natural transformations.

Example III.18. Let A be the category Set of sets. Then there is a category SSet

whose objects are called simplicial sets. Similarly, for A = Ab we have the category

SAb of simplicial abelian groups.

Definition III.19. Let A be a simplicial set. For each n ≥ 0, let An have the discrete

topology. The geometric realization |A| of A is the topological space

|A| :=

(∐
n≥0

An ×∆n

)
/ ∼

where ∆n is the standard n-simplex and the equivalence relation is generated by

(f ∗(x), t) ∼ (x, f∗(t)).

Here f is a nondecreasing function [m]→ [n] and x ∈ An, t ∈ ∆m.

Definition III.20. Let U = {Uα}α∈I be an open cover of a topological space X. If

the index set {α}α∈I is ordered we associate a simplicial set N (U) as follows. For

any nonnegative integer n, let N (U)n consist of all ordered (n+1)-tuples (α0, . . . , αn)

of indices, possibly including repetition, such that Uα0 ∩ · · · ∩ Uαn 6= ∅. For each

nondecreasing function f : [m]→ [n], define f ∗ = N (U)(f) : N (U)n → N (U)m by

f ∗(α0, . . . , αn) = (αf(0), . . . , αf(m)).

Easy to check that N (U) is indeed a simplicial set and we call it the nerve of the

cover U. If σn = (α0, . . . , αn) ∈ N (U)n, we denote by Uσn or Uα0...αn the nonempty

finite intersection Uα0 ∩ · · · ∩ Uαn .

There is a simplicial complex Comp(N (U)) associated to the nerve N (U) whose

vertices {vα} are in one-to-one correspondence with the index set {α | α ∈ I}. A set
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{vα0 , . . . , vαn} is a simplex of Comp(N (U)) if and only if Uα0 ∩ · · · ∩ Uαn 6= ∅, that

is, if and only if (α0, . . . , αn) ∈ N (U)n.

Similarly, we define a simplicial space NTop(U) as follows. Let

NTop(U)n =
∐

(α0,...,αn)∈N (U)n

Uα0...αn

with disjoint union topology. For each nondecreasing function f : [m] → [n], the

induced map f ∗ : NTop(U)n → NTop(U)m is defined by

f ∗|Uα0...αn
: Uα0...αn → Uαf(0)...αf(m)

,

where the latter is either an inclusion or the identity.

Definition III.21. An invariant open cover U of a G-space X is a regular G-cover if

the complex associated to its nerve Comp(N (U)) is a regular G-complex, that is, if

it satisfies the following two conditions.

(RC1) For Uα ∈ U and g ∈ G, if Uα ∩ gUα 6= ∅ then Uα = gUα.

(RC2) If U0, . . . , Un are members of U and g0, . . . , gn are elements in G, and if the

intersections U0 ∩ · · · ∩ Un and g0U0 ∩ · · · ∩ gnUn are nonempty, then there

exists g ∈ G such that gUi = giUi for all i ≤ n.

Theorem III.22. Let X be a paracompact G-space, where G is finite. Then the

locally finite, regular G-covers of X are cofinal in the set of open covers of X.

Proof. Pick an invariant cover U of X. Let Comp(N (U)) be the simplicial complex

associated to the nerve of U. Then Comp(N (U)) is a simplicial G-complex. Let

f = {fα} be a G-partition of unity subordinate to U and let f̄ : X → |Comp(N (U))|

be the associated map with

f̄(x) =
∑
α

fα(x)vα
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Then f̄ is a well-defined G-map since all but finite fα = 0 and

f̄(gx) =
∑
α

fα(gx)vα =
∑
α

fg−1α(x)vα

= g
∑
α

fg−1α(x)g−1vα = g
∑
α

fα(x)vα = gf̄(x).

For any map f : X → |K| to a polyhedron, let f−1(stK) denote the open cover

of X by inverse images of open stars of vertices of K. Suppose that K is a G-complex

and that f is equivariant. Then f−1(stK) is an invariant cover by Proposition III.15.

Moreover, if K is a regular G-complex then f−1(stK) is a regular G-cover. This is

from the fact that if U0 ∩ · · · ∩Un 6= ∅ 6= g0U0 ∩ · · · ∩ gnUn, where Ui = f−1(stK(vi)),

then by Proposition III.6 〈v0, . . . , vn〉 and 〈g0v0, . . . , gnvn〉 are simplices of K. Now

the regularity of K implies that f−1(stK) is regular.

Back to the equivariant map f̄ : X → |Comp(N (U))|, note that f̄−1(stComp(N (U)))

is a refinement of U. Actually, for any α, f̄−1(stComp(N (U))(vα)) = f−1
α ((0, 1]) ⊂

Uα. Let L be the second barycentric subdivision of Comp(N (U)) such that |L| =

|Comp(N (U))| and L is a regular G-complex by Proposition III.16. So V = f̄−1(stL)

is a regular G-cover which refines U.

Theorem III.23. Let X be a smooth G-manifold. Then

(1) There exists a regular simplicial G-complex K and a smooth equivariant triangu-

lation h : K → X.

(2) If h : K → X and h1 : L → X are smooth equivariant triangulations of X there

exist equivariant subdivisions K ′ and L′ of K and L, respectively, such that K ′

and L′ are G-isomorphic.

Proof. See [Ill78].

Let U = {Uα}α∈I be an open cover of G-space X. For any subgroup H of G and
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α ∈ I, let UH
α = Uα ∩ XH = {x ∈ Uα | hx = x for all h ∈ H}. Denote by UH the

collection of {UH
α }α∈I . It is clear that UH is an open cover of XH .

Definition III.24. U is called an equivariant good cover of X if it is a regular G-cover

(see Definition III.21) and UH is a good cover of XH for all subgroups H ≤ G.

Theorem III.25. Every smooth G-manifold has an equivariant good cover. More-

over, the equivariant good covers are cofinal in the set of open covers of a G-manifold

X.

Proof. By Theorem III.23 it is no loss to assume X is a realization of a regular

simplicial G-complex K. Consider the open cover

W = {stK(v) | v ∈ Vert(K)} .

By Proposition III.15 W is G-invariant. Moreover, We claim that W is a regular

G-cover. The proof is as follows. Let U = stK(v) ∈W and g ∈ G with ∅ 6= U ∩gU =

stK(v) ∩ stK(gv). It follows that 〈v, gv〉 is a simplex in K by Proposition III.6. The

regularity of K yields v = gv and hence U = gU . If for i = 0, . . . , n, Ui = stK(vi) are

members of W and gi are members of G such that U0∩· · ·∩Un and g0U0∩· · ·∩gnUn =

stK(g0v0) ∩ · · · ∩ stK(gnvn) are nonempty, then again by Proposition III.6 there are

two simplices in K: 〈v0, . . . , vn〉 and 〈g0v0, . . . , gnvn〉. Since K is regular, there exists

g ∈ G such that gvi = givi for all i which is equivalent to gUi = giUi for all i. So by

Definition III.21 W is a regular G-cover.

For any subgroup H of G, the Proposition III.17 (1) shows that KH is a simplicial

subcomplex of K and XH is homeomorphic to KH . Pick an element U = stK(v) of

W. Consider the intersection U ∩ KH = stK(v) ∩ KH . If v ∈ Vert(KH) then by

Proposition III.17 (2), U ∩KH = stKH (v). If v /∈ KH , we claim that U ∩KH = ∅.

To justify this, assume U ∩ KH 6= ∅. Pick x ∈ U ∩ KH . Then x ∈ U = stK(v)
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implies v ∈ carrK(x) by Proposition III.5 and x ∈ KH yields carrK(x) ⊂ KH by

Proposition III.17 (2). Hence v ∈ KH , contradicting the assumption v /∈ KH . So

WH = {U ∩KH | U ∈W} = {stKH (v) | v ∈ Vert(KH)},

and hence WH is a good cover of KH by Theorem III.7.

Note that a barycentric subdivision a regular G-complex is still regular. Then

for any given open cover U of X, there exists an integer m such that the m-th

barycentric subdivision K(m) of the above K has the properties that V = {stK(m)(v) |

v ∈ Vert(K(m))} refines U and that V is still an equivariant good cover since V is

again the set of open stars of the regular G-complex K(m), which shows the cofinality

of equivariant good covers in the set of open covers of X.

If K is a G-complex, then the orbit space K/G has the structure of an ordinary

simplicial complex if we define the vertices of K/G to be the orbits v̄ = G(v) of the

action of G on the vertices v of K and s̄ = 〈v0, . . . , vn〉 is a simplex of K/G if and

only if there exist representatives vi of vi such that s = 〈v0, . . . , vn〉 is a simplex of

K. In this case s is called to be over s̄.

By the above definition of K/G the natural projection π : K → K/G, v 7→

v = G(v) is simplicial and π maps each simplex of K homeomorphically onto the

corresponding image simplex of K/G. By regularity, if s = 〈v0, . . . , vn〉 and s′ =

〈v′0, . . . , v′n〉 are simplices of K over the same simplex s̄ of K/G then 〈v0, . . . , vn〉 =

g〈v′0, . . . , v′n〉 for some g ∈ G. So the set of all simplices over a given simplex s̄ of

K/G form an orbit of a simplex s of K which is over s̄.

Now consider the good cover stK/G of K/G. The set U′ = π−1(stK/G) is an open



32

cover of K. We claim that for each vertex v of K,

π−1(stK/G(v)) =
∐
g∈G

stK(gv). (III.2)

First, pick g, g′ ∈ G. If stK(gv) ∩ stK(g′v) 6= ∅, then 〈gv, g′v〉 is a simplex in K

by Proposition III.6 and hence gv = g′v by Definition III.13 (R1). Therefore either

stK(gv) = stK(g′v) or they are disjoint for g, g′ ∈ G. Thus the right hand side of

(III.2) is indeed a disjoint union of open stars. For the equality, pick x ∈ stK(gv)

for some g. Then gv ∈ carrK(x) and v = π(gv) ∈ π(carrK(x)) = carrK/G(π(x)) by

Proposition III.11. So π(x) ∈ stK/G(v) which shows
∐

g∈G stK(gv) ⊂ π−1(stK/G(v)).

On the other hand, pick x ∈ π−1(stK/G(v)) and let carrK(x) = 〈w0, . . . , wn〉. By

Lemma III.8 there is a unique expression x =
∑n

i=0 λiwi with all λi > 0. Applying

π we have π(x) =
∑n

i=0 λiwi. This shows carrK/G(π(x)) = 〈w0, . . . , wn〉. Since

x ∈ π−1(stK/G(v)), π(x) ∈ stK/G(v) and hence v ∈ carrK/G(π(x)) = 〈w0, . . . , wn〉.

This yields that v = wi, i.e. wi = gv for some g ∈ G. So gv ∈ carrK(x) and

x ∈ stK(gv). This shows the reverse inclusion.

Corollary III.26. Let X be a G-manifold. Then there is an open cover consisting of

G-invariant subspaces such that every finite intersection of the elements in this open

cover is homeomorphic to the orbit of a contractible space, i.e., a space of the form

G/H ×D, where H is a subgroup of G and D is contractible.

Proof. By the proof of Theorem III.25, the G-manifold X has an equivariant good

cover U = {Uα} such that each Uα is the star of a vertex vα ∈ Vert(K). Here K

is a regular G-complex. Now define a new open cover V = {Vα} by letting Vα =⋃
g∈G g(stK(vα)). Then Vα is G-invariant and every finite intersection Vα0 ∩ · · · ∩ Vαp

is homeomorphic to G/H × D where D is the contractible space stK/G(vα0) ∩ · · · ∩

stK/G(vαp).
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The nerve of an equivariant good cover carries a great deal of information on

the G-homotopy structure of X. Let us first review the ideas of “fat realization” of a

simplicial space introduced by Segal.

Definition III.27. Let A be a simplicial space. The fat geometric realization of A

is the topological space

‖A‖ :=

(∐
n≥0

An ×∆n

)
/ ∼

where ∆n is the standard n-simplex and the relation is (∂i(x), t) ∼ (x, ∂i(t)), for

∂i : ∆n → ∆n+1 the inclusion as the ith face and ∂i : An+1 → An the face map for A.

If A is a simplicial G-space, then the fat realization ‖A‖ naturally carries a

G-action so that ‖A‖ is a G-space.

A simplicial map f between simplicial spaces A and A′ induces a map ‖f‖ :

‖A‖ → ‖A′‖. If f is a simplicial G-map between simplicial G-spaces then ‖f‖ is a

G-map between topological G-spaces.

Proposition III.28. Let A and A′ be simplicial spaces and let f : A → A′ be a

simplicial map.

(1) If fn : An → A′n is a homotopy equivalence for all n then ‖f‖ : ‖A‖ → ‖A′‖ is a

homotopy equivalence.

(2) ‖A× A′‖ is homotopy equivalent to ‖A‖ × ‖A′‖.

(3) The ith degeneracy map ηi : [n] → [n− 1] induces a map si : An−1 → An and si

maps An−1 into An as a retraction. If the inclusion si(An−1) ↪→ An is a closed

cofibration for all i and n, then ‖A‖ → |A| is a homotopy equivalence.

Proof. See [Seg74].



34

Let U = {Uα}α∈I be an open cover of a topological space X. Recall that If

σn = (α0, . . . , αn) ∈ N (U)n, we denote by Uσn the nonempty finite intersection Uα0 ∩

· · · ∩ Uαn . Let XU be the fat realization ‖NTop(U)‖, i.e.

XU =

 ∐
n>0

σn∈N (U)n

Uσn ×∆n
σn

 / ∼

where ∆n
σn is the standard n-simplex with vertices vα0 , . . . , vαn and the equivalence

relation is (∂i(x), t) ∼ (x, ∂i(t)), where ∂i : ∆n−1 → ∆n is the ith face map and ∂i is

the inclusion Uα0...αn → Uα0...α̂i...αn .

Let π :
∐

σn(Uσn × nσn)→ XU be the quotient map.

Proposition III.29. If U = {Uα}α∈I is a locally finite open cover of a paracompact

space X, then the fat realization XU = ‖NTop(U)‖ is homotopy equivalent to X.

Proof. For each σn = (α0 . . . αn) ∈ N (U) let pσn be the composite of maps Uσn ×

∆n
σn

p1−→ Uσn ↪→ X, where p1 is the first coordinate projection. The set of maps pσn

induces a map

p :
∐
n>0

σn∈N (U)n

(Uσn ×∆n
σn)→ X.

Easy to verify p preserves the equivalence relation, so there is a unique map q : XU →

X such that qπ = p. ∐
σn

(Uσn ×∆n
σn)

π

��

p // X

XU

q

99sssssss

For every point x ∈ X, let {α0, . . . , αn} be the set of all the indices such that x ∈ Uαi .

That is, x /∈ Uα for all α 6= α0, . . . , αn. This set is finite since the cover is locally

finite. Then the preimage q−1(x) is just the n-simplex {x} × ∆n
α0...αn

. Hence every

point in q−1(x) can be represented as {x} ×
∑n

i=1 tivαi , where ti ≥ 0,
∑
ti = 1.
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Since X is paracompact, there exists a partition of unity {fα} subordinate to

the cover {Uα}. In particular, supp(fα) ⊂ Uα for each α. Pick x ∈ X and let

{α0, . . . , αn} be the set of all the indices such that x ∈ Uαi . Then the set of α’s such

that fα(x) > 0 is a subset of {α0, . . . , αn} and hence is finite. Now consider a map

s : X →
∐

σn Uσn×∆n
σn , x 7→ {x}×

∑
fαi(x)vαi ∈ Uα0...αn×∆n

α0...αn
⊂
∐

σn Uσn×∆n
σn ,

and let r : X → XU be the composite πs. Clearly, qr = idX . We need to verify that

rq ' idXU
. Suppose that a point x belongs to sets Uα0 , . . . , Uαn and does not belong

to any other Uα. Then the points y = {x}×
∑
tivαi and r(q(y)) = {x}×

∑
fαi(x)vαi

belong to the simplex with vertices vα0 , . . . , vαn . The required homotopy uniformly

moves r(q(y)) to y along the segment joining these points.

Proposition III.30. If U = {Uα}α∈I is a good cover of a topological space X, then

the fat realization XU = ‖NTop(U)‖ is homotopy equivalent to the normal realization

|N (U)| of the nerve N (U).

Proof. Proposition III.28 (1) implies that if U is a good cover then XU is homotopy

equivalent to the fat realization ‖N (U)‖ of the nerveN (U). Here we identify simplicial

sets with discrete simplicial spaces. On the other hand, as simplicial sets ‖N (U)‖ is

homotopy equivalent to |N (U)| by Proposition III.28 (3).

Corollary III.31. If U = {Uα}α∈I is a locally finite good cover of a paracompact space

X, then the normal realization |N (U)| of the nerve N (U) is homotopy equivalent to

X.

Now let us turn to the equivariant case.

Lemma III.32. If A is a simplicial G-space, then the realizations |A| and ‖A‖ inherit

G-actions such that

|AH | = |A|H and ‖AH‖ = ‖A‖H
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for all subgroups H of G.

Proof. The inclusion AH ↪→ A induces a well-defined map

∐
n

AHn ×∆n/ ∼ →
∐
n

An ×∆n/ ∼

whose image is fixed by H. On the other hand, if a ∈ |A|H (or a ∈ ‖A‖H), then

a is the equivalent class of an element (x, t) ∈ AHi × ∆i for some i which indicates

a ∈ |AH | (or a ∈ ‖AH‖).

Theorem III.33. If U = {Uα}α∈I is a locally finite equivariant good cover of a G-

CW complex X, then the normal realization |N (U)| of the nerve N (U) is G-homotopy

equivalent to X.

Proof. The realization |N (U)| is a G-space since U is G-invariant. With the natural

CW complex structure on a realization, |N (U)| becomes a G-CW complex. So it is

sufficient to show that |N (U)| is weakly G-homotopy equivalent to X. We prove this

by showing that for any subgroup H of G, |N (U)|H is homotopy equivalent to XH .

By definition, if U is an equivariant good cover of X then UH is a good cover of

XH , so by Corollary III.31 |N (UH)| is homotopy equivalent to XH . But N (UH) =

N (U)H . Hence, together with Lemma III.32, we have

|N (U)|H = |N (U)H | = |N (UH)| ' XH .

Remark III.34. By the conclusions of the above theorem and Theorem III.25, for

every smooth G-manifold, there exists an equivariant good cover such that the normal

realization of the nerve of this cover is G-homotopy equivalent to the G-manifold.
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CHAPTER IV

PRESHEAVES ON G-MANIFOLDS

Given a finite group G, let G-Man denote the category of smooth manifolds with

smooth G-action and equivariant smooth morphisms. Given U ∈ G-Man, let Û

denote the full subcategory of G-Man ↓ U consisting of equivariant finite covering

maps p
X

: X → U . The morphisms in Û from X
p
X−→ U to X ′

p
X′−−→ U are G-maps

φ : X → X ′ such that the following diagram commutes:

X
φ //

p
X   A

AA
AA

AA
A X ′

p
X′~~||

||
||

||

U.

In particular, when U = pt, a one-point space, Û is the category G-Fin of finite

G-sets.

Proposition IV.1. Let f : V → U be a morphism in G-Man. Given p
X

: X → U

in Û , let f ∗X = V ×U X be the pull-back of X along f . Then the morphism p
f∗X :

f ∗X → V is in V̂ .

f ∗X
q
X //

p
f∗X
��

X

p
X

��
V

f
// U

Proof. The fiber (p
f∗X )−1(b) on b is homeomorphic to (p

X
)−1(f(b)).

Definition IV.2. A Mackey presheaf on G-Man is a contravariant functor M :

G-Man→ Ab which is covariant for morphisms in Û for all U ∈ G-Man. Furthermore,

if

Y
q //

p
Y

��

X

p
X

��
V

f
// U
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is a pull-back diagram with p ∈ Û , then

M(Y )

(p
Y

)∗
��

M(X)
q∗oo

(p
X

)∗
��

M(V ) M(U)
f∗
oo

commutes.

A topological G-module M represents an abelian Mackey presheaf M on G-Man

by sending a G-manifold X to M(X) := HomG-Top(X,M). If φ:

X ′
φ //

p
X′   A

AA
AA

AA
A X

p
X~~~~

~~
~~

~~

U

is a morphism in Û , the covariant part of M on φ is φ∗ : HomG-Top(X ′,M) →

HomG-Top(X,M) with

φ∗(f)(a) =
∑

a′∈φ−1(a)

f(a′),

where f ∈ HomG-Top(X ′,M) and a ∈ X.

Recall that an abelian presheaf onG-Man is just a contravariant functorG-Man→

Ab. Let F be an abelian presheaf on G-Man and let M be a Mackey presheaf. Given

U ∈ G-Man, we denote by F ⊗Û M the coend ⊕
{X

p
X−→U}∈Û

F(X)⊗M(X)

 /KF ,M(U)

in the category Ab, where KF ,M(U) is the subgroup generated by elements of the

form

(φ∗Fa)⊗m′ − a⊗ (φM)∗(m
′)

where φ : X ′ → X is a morphism in Û , a ∈ F(X) and m′ ∈M(X ′).
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Given an abelian presheaf F on G-Man, for any nonnegative integer n, the

presheaf C−n(F) is defined by C−n(F)(U) = F(∆n × U), where ∆n is the standard

topological n-simplex with the trivial G-action. The natural cosimplicial structure

(see [Wei94, Chapter 8]) of {∆n | n ≥ 0} induce a simplicial abelian presheaf C•(F) on

G-Man. Denote the associated complex of presheaves by C∗(F). For the convenience,

let Ci(F) = 0 for i > 0.

Proposition IV.3. Let F be an abelian presheaf and let M be a Mackey presheaf on

G-Man. Then the assignment U 7→ F⊗ÛM is a contravariant functor G-Man→ Ab.

We denote by F
∫
M the resulting abelian presheaf on G-Man, i.e. F

∫
M(U) := F ⊗Û

M .

Proof. Let f : V → U be a morphism in G-Man. Given p
X

: X → U in Û , then by

Proposition IV.1 p
f∗X : f ∗X → V is an element in V̂ , and the pull-back square

f ∗X
q
X //

p
f∗X
��

X

p
X

��
V

f
// U

(IV.1)

implies there is a functor f ∗ : Û → V̂ . This functor in turn, induces a morphism

f̂ ∗ :
⊕

{X
p
X−→U}∈Û

F(X)⊗M(X)→
⊕

{Y
p
Y−→V }∈V̂

F(Y )⊗M(Y )

sending a⊗m ∈ F(X)⊗M(X) to q∗X,F(a)⊗q∗X,M(m) ∈ F(f ∗X)⊗M(f ∗X), where the

morphism q∗X,F is just F(q
X

) obtained by applying F to the pull-back diagram (IV.1):

F(f ∗X) F(X)
q∗X,Foo

F(V )

F(p
f∗X )

OO

F(U).

F(p
X

)

OO

F(f)
oo

Similarly, q∗X,M = M(q
X

).
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We claim that the homomorphism f̂ ∗ sends KF ,M(U) to KF ,M(V ). The proof is

as follows. Let φ

X ′
φ //

p
X′   A

AA
AA

AA
A X

p
X~~~~

~~
~~

~~

U

be a morphism in Û . Consider the following diagram:

f ∗X
q
X //

p
f∗X

��

X

p
X

��

f ∗(X ′)

f∗φ
88rrrrrrrrrr q

X′ //

p
f∗(X′)

��?
??

??
??

??
??

??
??

? X ′

φ
;;wwwwwwwwww

p
X′

��8
88

88
88

88
88

88
88

V
f

// U.

Since all of the squares and triangles are commutative except the top square, the top

one is also commutative, i.e. q
X
◦ f ∗φ = φ ◦ q

X′
. After applying F and M to the top

square, we have the following commutative diagrams.

F(f ∗X ′) F(X ′)
q∗
X′,Foo

F(f ∗X)

(f∗φ)∗F

OO

F(X),

φ∗F

OO

q∗X,F

oo

and

M(f ∗X ′)

((f∗φ)M )∗
��

M(X ′)

(φM )∗
��

q∗
X′,Moo

M(f ∗X) M(X),
q∗X,M

oo

where φ∗F = F(φ) and (φM)∗ = M(φ), etc.
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Now given a ∈ F(X) and m′ ∈M(X ′), we have

f̂ ∗(φ∗F(a),m′)

=q∗X′,F ◦ φ∗F(a)⊗ q∗X′,M(m′)

=(f ∗φ)∗F ◦ q∗X,F(a)⊗ q∗X′,M(m′)

and

f̂ ∗(a, (φM)∗(m
′))

=q∗X,F(a)⊗ q∗X,M ◦ (φM)∗(m
′)

=q∗X,F(a)⊗ ((f ∗φ)M)∗ ◦ q
∗
X′,M(m′),

where the latter equality follows from the fact that M is a Mackey presheaf and the

top square in diagram (IV.1) is commutative. Now the claim follows.

Using the claim we obtain a homomorphism

f∗ : F ⊗Û M → F ⊗V̂ M.

It is easy to check that f∗ makes the assignment U 7→ F ⊗Û M a contravariant

functor.

Given a G-manifold X, let ZX be the abelian presheaf on G-Man defined by

ZX(U) := ZHomG-Man(U,X).

Let F be an abelian presheaf on G-Man and M the Mackey presheaf associated

to a G-module M . The singular cochain complex C∗(F ,M) of F with coefficients in

M is defined by

C∗(F ,M) = C∗(F)

∫
M.

In particular, for a finite-dimensional representation space V of G let F = ZSV .

Denote by M(V ) the shifted complex C∗(ZSV ,M)[−dim(V )]. Here we recall that,
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for an integer q ∈ Z, the shifted complex C∗[q] of a cochain complex (C∗, δ) is still

a cochain complex defined by C∗[q]n := Cn+q and the differential δ′n = (−1)qδn+q :

C∗[q]n → C∗[q]n+1 for each n ∈ Z.

Lemma IV.4. As abelian presheaves on G-Man, C−n(ZX) is naturally isomorphic

to C−n(HomG-Top(−, X)) for any n ≥ 0.

For the definition of Hom, see page 4.

Proof. Pick a G-manifold U . We have

C−n(ZX)(U)

= ZHomG-Top(∆n × U,X) (definition)

∼= ZHomG-Top(∆n,HomTop(U,X)) (Corollary II.2)

∼= ZHomTop(∆n, (HomTop(U,X))G) (Proposition II.3 (i))

∼= ZHomTop(∆n,HomG-Top(U,X)) (II.1)

= C−n(HomG-Top(U,X)). (definition)

The naturality is clear.

Lemma IV.5. Let ∗ be the one point set G/G. Then for any G-manifold X, we have

C−n(ZX,M)(∗) = C−n(ZX)⊗∗̂M

∼= C−n(HomG-Top(−, X))⊗G-Fin M

for every n ≥ 0. Hence

H−n(C∗(ZX,M)(∗)) ∼= HBr,G
n (X,M) (IV.2)

where the right hand side is the ordinary n-th Bredon homology groups.
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Proof. Since the category ∗̂ is exactly the category G-Fin, there is an isomorphism

C∗(ZX)⊗∗̂M ∼= C∗(ZX)⊗G-FinM . By Lemma IV.4, the right hand side is isomorphic

to C∗(HomG-Top(−, X))⊗G-FinM . The cohomology groups of this complex are exactly

by definition the Bredon homology groups.

In many cases we need to consider actions of various groups at the same time.

This leads important functors of restriction and induction.

Let H be a subgroup of G. Restricting the group action from G to H induces

the functor

ResGH : G-Top→ H-Top

which is called restriction. There is also a functor

IndGH : H-Top→ G-Top

defined as follows. Pick any H-space A. The cartesian product G × A carries an

H-action

(h, (g, a)) 7→ (gh−1, ha),

and define IndGH(A) to be the H-orbit space G ×H A := G × A/H. The G-action

(g′, (g, a)) 7→ (g′g, a) on G × A induces a G-action on IndGH(A) = G ×H A. For an

H-map f : A→ B, there is an induced map

IndGH(f) = G×H f : G×H A→ G×H B, (g, a) 7→ (g, f(a)).

The functors Res and Ind are adjoint pairs as shown in the next proposition.

Proposition IV.6. Pick a G-space Y and an H-space A. Then there is a natural

bijection

HomG-Top(G×H A, Y ) ∼= HomH-Top(A,ResGH(Y )).
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Proof. See [tD87, p. 32, Proposition 4.3].

Apply this to the category of presheaves. For a presheaf F on G-Man and a

subgroup K of G, let ResGK F be the presheaf on the K-Man defined on U ∈ K-Man

by

(ResGK F)(U) = F(G×K U) = F(IndGK U). (IV.3)

Lemma IV.7. (1) ResGK(M) is a Mackey presheaf on K-Man.

(2) Let F be an abelian presheaf on G-Man. Then for any K-manifold U there is a

natural isomorphism

(ResGK F)⊗Û (ResGKM) ∼= F ⊗Ĝ×KU M. (IV.4)

Proof. It is easy to check that there is a natural G-homeomorphism G ×K X ∼=

G/K ×X for any G-space X. For a K-map f : X → Y of K-manifold X and Y , the

induced map IndGK f : G×K X → G×K Y is just the map 1G/K × f .

(1) For any K-map f : X → Y , the contravariant part f ∗ : ResGK(M)(Y ) →

ResGK(M)(X) is just the induced map (1 × f)∗ : HomG-Top(G/K × Y,M) →

HomG-Top(G/K ×X,M). The covariant part φ∗ for a map

X
φ //

p
X   @

@@
@@

@@
Y

p
Y��~~

~~
~~

~

U

in K-Man ↓U is just the covariant part (1 × φ)∗ of the Mackey presheaf M for

the map 1× φ:

G/K ×X 1×φ //

1×p
X ''OOOOOOOOOOO

G/K × Y

1×p
Ywwppppppppppp

G/K × U.



45

Furthermore, a pullback diagram

Z
q //

p

��

Y

f

��
Y ′ m

// U

in K-Man induces a pullback diagram in G-Man

G/K × Z 1×q //

1×p
��

G/K × Y
1×f
��

G/K × Y ′
1×m

// G/K × U.

Hence the pullback condition for ResGK(M) comes from that of M .

(2) For any G-manifold X with (surjective) structure map p : X → G/K × U , let

Y = Y1 = p−1(eK × U). If {g1 = e, g2, . . . , gl} is a set of representatives of left

cosets G/K, then X = qYi where Yi = p−1(giK × U) and X = G/K × Y . This

implies each p : X → G×K U ∈ Ĝ×K U is one to one correspondence to p̃ : Y →

U ∈ Û . Then easy to show, by definition, (ResGK F)⊗Û (ResGKM) ∼= F ⊗Ĝ×KUM .

Corollary IV.8. Let K be a subgroup of G. Then for any G-manifold X, there is

an isomorphism

C−n(ZX,M)(G/K) ∼= C−n(HomK-Top(−, X))⊗K-Fin M

for every n ≥ 0. Hence

H−n(C∗(ZX,M)(G/K)) ∼= HBr,K
n (X,M). (IV.5)
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Proof. For every U ∈ K-Man,

ResGK(C−n(ZX))(U)

= C−n(ZX)(IndGK U) (IV.3)

= ZHomG-Top(∆n × IndGK U,X) (definition)

∼= ZHomG-Top(∆n,HomTop(IndGK U,X)) (Corollary II.2)

∼= ZHomTop(∆n, (HomTop(IndGK U,X))G) (Proposition II.3 (i))

∼= ZHomTop(∆n,HomG-Top(IndGK U,X)) (II.1)

∼= ZHomTop(∆n,HomK-Top(U,X)) (Proposition IV.6)

∼= C−n(HomK-Top(U,X)). (definition)

So

C−n(ZX,M)(G/K)

= C−n(ZX)⊗
Ĝ/K

M (definition)

∼= ResGK(C−n(ZX))⊗
K̂/K

ResGKM (IV.4)

= C−n(HomK-Top(−, X))⊗K-Fin ResGKM.

Then the isomorphism (IV.5) is again from the definition of the Bredon homology

groups.

Pick a G-manifold X and let U be an open G-cover of X. For any complex of

presheaves F• on G-Man, denote by Ȟn
G(U,F•) or Ȟn

eq(U,F•) the n-th Čech equivari-

ant hypercohomology of U with coefficients in F•. Let Ȟn
G(X,F•)(or Ȟn

eq(X,F•)) =

lim−→
U

Ȟn
G(U,F•).

Recall the definition of the complex M(V ). Given a Mackey presheaf M asso-
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ciated to a discrete G-module M , let C∗(SV ,M) := C∗(ZSV )
∫
M be the singular

cochain complex of presheaves on G-Man and denote by M(V ) the shifted complex

C∗(SV ,M)[−dim(V )].

Definition IV.9. A presheaf F is homotopy invariant if for every space X the

induced map p∗ : F(X)→ F(X × I) of projection p : X × I → X is an isomorphism.

Remark IV.10. As p : X × I → X has a section, p∗ is always split injective. Thus

homotopy invariance of F is equivalent to p∗ being onto.

Lemma IV.11. Let it : X → X × I, x 7→ (x, t) be the inclusion map. A presheaf F

is homotopy invariant if and only if i∗0 = i∗1 : F(X × I)→ F(X) for all X.

Proof. One way is obvious. Now suppose i∗0 = i∗1 for all X. Applying F to the

multiplication map m : I × I → I, (s, t) 7→ st, yields the following diagram

F(X × I)
1

vvnnnnnnnnnnnn
(1X×m)∗

��

i∗0 // F(X)

p∗

��
F(X × I) F(X × I × I)

(i1×1I)∗
oo

(i0×1I)∗
// F(X × I)

Hence p∗i∗0 = (i0 × 1I)
∗(1X ×m)∗ = (i1 × 1I)

∗(1X ×m)∗ = id. Since i∗0p
∗ = id, p∗ is

an isomorphism.

Lemma IV.12. Let F be a presheaf. Then the maps i#0 , i
#
1 : C∗F(X×I)→ C∗F(X)

are chain homotopic for all X.

Proof. For all i = 0, . . . , n, define θi : ∆n+1 → ∆n × I to be the map that sends the

vertex vj to vj ×{0} for j ≤ i and to vj−1×{1} otherwise. The maps θi induce maps

hi = (1X × θi)∗ : C−nF(X × I)→ C−n−1F(X)

The hi form a simplicial homotopy from i#1 = ∂0h0 to i#0 = ∂n+1hn, so the alternating



48

sum s =
∑

(−1)ihi is a chain homotopy from i#1 to i#0 .

. . . // C−n−1F(X × I)
d //

i#1 −i
#
0

��

C−nF(X × I)
d //

i#1 −i
#
0

��

s

uul l l l l l l
C−n+1F(X × I) //

i#1 −i
#
0

��

s

uul l l l l l l
. . .

. . . // C−n−1F(X)
d

// C−nF(X)
d

// C−n+1F(X) // . . .

Corollary IV.13. For any presheaf F the complex C∗F has homotopy invariant

cohomology presheaves. That is, for every p, Hp(C∗F) is homotopy invariant. In

particular, M(V ) has homotopy invariant cohomology presheaves.

We apply this corollary to some suitable open covers of a G-manifold in the

following chapters.
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CHAPTER V

RO(G)-GRADED BREDON COHOMOLOGY AND ČECH

HYPERCOHOMOLOGY

Given a group G, let h∗G be a generalized reduced RO(G)-graded equivariant coho-

mology theory which is defined by a G-spectrum {EV |V ∈ RO(G)}. That is, for any

G-space X,

hVG(X) := lim−→
W⊃V

[SW−V ∧X+, EW ]0G.

As a special case, fix a finite dimensional representation V of G and a Mackey

functor M associated to a discrete Z[G]-module M . Define the functors hp (p ∈ Z)

on G-CW complexes X graded by Z by hp(X) := H
p+V−dim(V )
Br (X,M), which is just

isomorphic to the homotopy classes of maps [Sdim(V ) ∧X+, K(M, p+ V )]0G.

The functors h∗ satisfy the following cohomology axioms:

(i) Homotopy invariance. If f, g : X → Y are G-homotopic, then f ∗ = g∗ : h∗(Y )→

h∗(X).

(ii) Exact sequence for G-CW pairs (X,A). This is from the standard G-cofibration

sequence associated to (X,A).

(iii) Suspension. Clear from the homotopy representation.

Let A• be a simplicial G-space. We denote by Adp the degenerate part of Ap,

i.e. the union of the images of all maps Ar → Ap with r < p, and by Andp the non-

degenerate part of Ap. The geometric realization |A•| has a natural skeleta filtration:

|A•| ⊃ · · · ⊃ |A•|(p) ⊃ |A•|(p−1) ⊃ · · · ⊃ |A•|(0) ⊃ {∗}

and it gives rise to an associated spectral sequence which is first formulated in [Seg68].

Here we apply it to the equivariant case.
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Lemma V.1. The filtration of |A•| induces a natural spectral sequence converging

to h∗(|A•|) with Epq
1 = hq(Ap/A

d
p) = hq(Andp ). Moreover, under the natural map

Epq
1 → hq(Ap) the differential dpq1 : Epq

1 → Ep+1,q
1 is compatible with the differential of

the cochain complex hq(A•).

Proof. The filtration on |A•| yields a spectral sequence converging to h∗(|A•|) with

Epq
1 = hp+q(|A•|(p)/|A•|(p−1)). There is a homeomorphism

Ap ×∆p/((Adp ×∆p) ∪ (Ap × ∂∆p))→ |A•|(p)/|A•|(p−1)

where ∂∆p is the (p− 1)-skeleton of the simplex ∆p. Thus the space |A•|(p)/|A•|(p−1)

can be identified with the p-fold suspension ofAp/A
d
p, and accordinglyEpq

1
∼= hq(Ap/A

d
p).

Next, the compatibility of the differentials, i.e. the commutativity of the diagram

Epq
1

d1
��

// hq(Ap)

d
��

Ep+1,q
1

// hq(Ap+1)

follows from the commutativity of the following diagram

hn(|A•|(p)/|A•|(p−1))
d1 //

��

hn(|A•|(p+1)/|A•|(p))

��

hn(Ap ×∆p/Ap × ∂∆p)

θ×1
��

hn−p(Ap)Sp∧−

∼=oo

θ
��

d

xx

∏
p h

n(Ap+1 ×∆p/Ap+1 × ∂∆p)
∏

p h
n−p(Ap+1)

Sp∧−

∼=oo

Σ
��

hn(Ap+1 × ∂∆p+1/Ap+1 × ∂2∆p+1)

d1
--

∼=

OO

hn−p(Ap+1)
Sp+1∧−
∼=

**VVVVVVVVVVVVVVVVV

hn+1(Ap+1 ×∆p+1/Ap+1 × ∂∆p+1)

where ∂2∆p means the (p− 2)-skeleton of ∆p. The maps θ are induced by the p+ 2
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face maps [p] → [p + 1], and Σ denotes the alternative sum, so that the composite

Σ ◦ θ is the differential d.

Remark V.2. By the the proof of the above Lemma, the E2-term of the spectral

sequence is Ep,q
2
∼= Hp(hq(And• )).

Pick an equivariant good cover U of a smooth G-manifold X. Then for every

p ≥ 0 the nonempty finite intersection Uσp = Uα0∩· · ·∩Uαp has the form (G/Jσp)×D

where D is a contractible space and Jσp is a subgroup of G. Applying Theorem III.33

and Lemma V.1 to h∗ and N (U) yields

Lemma V.3. Given X and U as above, there is a spectral sequence converging to

H
V+∗−dim(V )
Br (X,M) whose E1-term is

Epq
1 =

∏
σp∈N (U)ndp

H
q+V−dim(V )
Br,Jσp

(∗,M)

where ∗ denotes the trivial coset J/J for subgroups J of G. Moreover, the differential

of E1 is compatible with the differential of the complex
∏

σ∗∈N (U)∗
H
q+V−dim(V )
Br (Uσ∗ ,M).

Lemma V.4. Given X and U as above, there is a spectral sequence converging to

Ȟ∗eq(U,M(V )) whose E1-term is

Epq
1 =

∏
σp∈N (U)p

Hq(M(V ))(Uσp)

∼=
∏

σp∈N (U)p

H
q+V−dim(V )
Br,Jσp

(∗,M).
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Proof. The standard filtration on the double complex Č∗(U,M(V )) yields

Epq
1 = Hq(Čp(U,M(V )))

= Čp(U,Hq(M(V )))

=
∏

σp∈N (U)p

Hq(M(V ))(Uσp).

For any homogeneous space G/J we proved in Corollary IV.8 that

(Hq(M(V )))(G/J)

= Hq(M(V )(G/J))

∼= H
q+V−dim(V )
Br,J (∗,M).

Now since Uσp is homeomorphic to (G/Jσp)×D, the homotopy invariant property

of Hq(M(V )) implies Hq(M(V ))(Uσp) ∼= H
q+V−dim(V )
Br,Jσp

(∗,M). So

Epq
1 =

∏
σp∈N (U)p

Hq(M(V ))(Uσp)

∼=
∏

σp∈N (U)p

H
q+V−dim(V )
Br,Jσp

(∗,M).

Theorem V.5. There is a natural isomorphism

Ȟn
eq(X,M(V )) ∼= H

V+n−dim(V )
Br (X,M).

Proof. If denote by E1 and E ′1 the E1 terms in Lemma V.3 and Lemma V.4, respec-

tively, the natural map f1 : E1 → E ′1 induces a morphism f of spectral sequences (by

the compatibility stated in Lemma V.3 and fpq : Epq
1
∼= E ′pq1 . Hence f induces an

isomorphism on E∞ pages.
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CHAPTER VI

EXAMPLES AND APPLICATIONS

One of the applications to algebraic geometry of our results is to develop a version of

bigraded cohomology and Deligne cohomology for real varieties. The reader can find

the work of dos Santos and Lima-Filho on this topic in [dS03a, dSLF07, dSLF08].

Definition VI.1. A real algebraic variety X is a complex algebraic variety endowed

with an anti-holomorphic involution σ : X → X. A morphism of real varieties

(X, σ) → (X ′, σ′) is a morphism of complex varieties f : X → X ′ such that f is

compatible with the involution, i.e. f ◦ σ = σ′ ◦ f .

Let S := Gal(C/R), the Galois group of C over R. It is isomorphic to the

group Z/2. If (X, σ) is a real variety, the anti-holomorphic involution σ induces a

S-action on X. The fixed point set XS of this action is called the set of real points

of X and denoted by X(R). On the other hand, we use X(C) to denote the set of

complex-valued points of X.

One of the example of real algebraic variety is the complex projective space Pn

with involution σ(z0, . . . , zn) = (z̄0, . . . , z̄n). The S action induced by σ is just by

taking complex conjugation.

In this chapter we mainly consider the case G = S ∼= Z/2. The real orthogonal

representation ring of S is RO(S) = Z ·1⊕Z · ξ, where 1 is the trivial representation

and ξ is the sign representation. Furthermore, we use the bigraded cohomology

notation Hr,s
Br (X,M) for the S-equivariant Bredon cohomology with coefficients M

in dimension (r − s) · 1 + s · ξ, i.e.

Hr,s
Br (X,M) := H

(r−s)·1+s·ξ
S (X,M).
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One of the interesting problem is the computation of the bigraded cohomology

groups of a point H∗,∗Br (pt,M). The following result shows that even this simplest case

is far from trivial.

Proposition VI.2. The bigraded cohomology groups of a point are as follows:

Hr,s
Br (pt,Z) =


Z/2, if r − s is even, 0 < r ≤ s or if r − s is odd, 1 + s < r ≤ 0;

Z, if s is even and r = 0;

0, otherwise.

There is also a cup product `: Hr,s
Br (pt,Z) ⊗ Hr′,s′

Br (pt,Z) → Hr+r′,s+s′

Br (pt,Z)

which gives a ring structure to B :=
∑

r,sH
r,s
Br (pt,Z). In [dSLF07] the ring B is

explicitly formulated as follows.

In order to describe B, first consider indeterminates ε, ε−1, τ, τ−1 satisfying deg ε =

(1, 1), deg ε−1 = (−1,−1), deg τ = (0, 2) and deg τ−1 = (0,−2). Henceforth, ε and

ε−1 will always satisfy 2ε = 0 = 2ε−1.

As an abelian group, B can be written as a direct sum

B := Z[ε, τ ] · 1 ⊕ Z[τ−1] · α⊕ F2[ε−1, τ−1] · θ

where each summand is a free bigraded module over the indicated ring. The bidegrees

of the generators 1, α and θ are, respectively, (0, 0), (0,−2) and (0,−3).

The product structure on B is completely determined by the following relations

α · τ = 2, α · θ = α · ε = θ · τ = θ · ε = 0.

Recall that in Chapter IV we defined the complex of presheaves C∗(F) for any

presheaf F on G-Man whose (−n)-th term is

C−n(F) : U 7→ F(∆n × U), n ≥ 0.
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Also, given a G-manifold X, the abelian presheaf ZX on G-Man was defined by

ZX(U) := ZHomG-Man(U,X). We then defined the singular cochain complex C∗(F ,M)

of F with coefficients in M by

C∗(F ,M) = C∗(F)

∫
M.

In particular, for a finite-dimensional representation space V of G = S, let F = ZSV .

We denoted by Z(V ) the shifted complex C∗(ZSV ,Z)[−dim(V )].

In [dSLF08], a complex of presheaves called Bredon complex is defined as follows.

First denote

(C×)p−1
i := C× × · · · × 1× · · · × C× ⊂ C×p,

where 1 appears in the i-th coordinate.

Definition VI.3 ([dSLF08]). Given a S-manifold X, let

JX, p :

p⊕
i=1

C∗(Z((C×)p−1
i ×X)) −→ C∗(Z(C×p ×X))

be the map induced by the inclusions and denote

C∗(Z0(Sp,p ∧X+)) := cone(JX,p).

We denote cone(JX,p) by C∗(Z0(Sp,p)) when X = ∅. The p-th Bredon complex with

coefficients in Z is the complex of presheaves

Z(p)Br := C∗(Z0(Sp,p))

∫
Z [−p].

Proposition VI.4. Pick an integer p ≥ 0. Let V be the representation space p · ξ of

S. Then there is a natural quasi-isomorphism f : Z(p)Br → Z(V ).

We proceed the proof by two lemmas. First we define a complex of presheaves

similar to the Bredon complex.
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Definition VI.5. Let Sξ ⊂ C be the unit circle. Denote

(Sξ)p−1
i := Sξ × · · · × 1× · · · × Sξ ⊂ (Sξ)p,

where 1 appears in the i-th coordinate. Let

Kp :

p⊕
i=1

C∗(Z((Sξ)p−1
i )) −→ C∗(Z((Sξ)p))

be the map induced by the inclusions. Define L(p) to be the complex of presheaves

L(p) := cone(Kp)

∫
Z [−p].

Lemma VI.6. The map of complexes

ϕ : Z(p)Br → L(p)

induced by the retraction r : C× → Sξ is a quasi-isomorphism of complexes of

presheaves.

Proof. Given U ∈ G-Man, for each j, 0 ≤ j ≤ p, we have

Z(p)jBr(U) = Cj(Z0(Sp,p))

∫
Z [−p] (U)

=
⊕

{T
π−→U}∈Û

[(
⊕pi=1 C

j+1−p(Z((C×)p−1
i ))(T )⊕ Cj−p(Z(C×p))(T )

)
⊗ Z(T )

]
/K

=
⊕

{T
π−→U}∈Û

[(
⊕pi=1 ZHomG-Man(∆p−j−1 × T, (C×)p−1

i )

⊕ ZHomG-Man(∆p−j × T,C×p)
)
⊗ HomG-Top(T,Z)

]
/K.

So elements in Z(p)jBr(U) are represented by sums of pairs of the form α ⊗ m =

(a, f)⊗m where a, f and m are equivariant maps satisfying

1. a : ∆p−j−1 × T → (C×)p−1
i ⊂ C×p is smooth and π : T → U is a map in Û ;

2. f : ∆p−j × T → (C×)p is a smooth map;



57

3. m : T → Z ∈ Z(T ) is locally constant (since Z has discrete topology).

With the same argument each element in L(p)j(U) is represented by sums of pairs of

the form α′ ⊗m′ = (a′, f ′)⊗m′ where equivariant maps a′, f ′ and m′ satisfy

1. a′ : ∆p−j−1 × T → (Sξ)p−1
i ⊂ C×p is smooth and π : T → U is a map in Û ;

2. f ′ : ∆p−j × T → (Sξ)p is a smooth map;

3. m′ : T → Z ∈ Z(T ) is locally constant.

The map ϕ : Z(p)Br → L(p) induced by the retraction r : C× → Sξ is defined

as follows. If j < 0 or j > p, let ϕ = 0 : Z(p)jBr → L(p)j. If 0 ≤ j ≤ p, let

ϕ : Z(p)jBr(U)→ L(p)j(U) be the map sending a representative element (a, f)⊗m to

(r1 ◦ a, r2 ◦ f)⊗m

where r1 : (C×)p−1
i → (Sξ)p−1

i and r2 : (C×)p → (Sξ)p are maps both induced by r.

It is easy to check ϕ is a map of complexes.

Since both Z(p)Br and L(p) have homotopy invariant cohomology presheaves by

Corollary IV.13 and G-manifolds are locally contractible, in order to show ϕ induces

an isomorphism of cohomology presheaves, it suffices to check ϕ : Z(p)∗Br(pt) →

L(p)∗(pt) induces an isomorphism of cohomology groups. But in this case the map

of complexes ψ : L(p)∗(pt)→ Z(p)∗Br(pt) induced by the inclusion ι : Sξ → C× serves

as inverse of ϕ in the cohomology level.

Lemma VI.7. There is a quasi-isomorphism

ϕ : L(p)→ Z(V ).

Proof. Similar to the proof of Lemma VI.6.

Corollary VI.8. Let X be a S-manifold. Then for all n, p ≥ 0 there is a natural



58

isomorphism

Ȟn
eq(X,Z(p)Br) ∼= Hn,p

Br (X,Z).

Proof. This comes from Theorem V.5 and Proposition VI.4. Let V = p · ξ be a

representation space of S. Then we have

Ȟn
eq(X,Z(p)Br)

∼= Ȟn
eq(X,Z(V )) (Proposition VI.4)

∼= H
V+n−dim(V )
Br (X,Z) (Theorem V.5)

= H
(n−p)·1+p·ξ
Br (X,Z)

= Hn,p
Br (X,Z).
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CHAPTER VII

SUMMARY

In this dissertation we investigate a theoretic approach to generalized RO(G)-graded

equivariant cohomology theory. When X is an equivariant smooth manifold, using

equivariant good covers on X we construct complexes of sheaves M(V ) on the site

G-Man of smooth G-manifolds associated to a representation space V of G and a

discrete G-module M such that

Ȟn
eq(X,M(V )) ∼= H

V+n−dim(V )
Br,G (X,M),

where the later denotes RO(G)-graded equivariant cohomology. The proof relies on

the existence of good covers and on comparisons of various spectral sequences.

The results naturally apply to the Deligne cohomology for a real variety X. For

a real holomorphic proper manifold X, let p ≥ 0 and define the Deligne cohomology

of X as the Čech hypercohomology groups

H i
D/R(X,Z(p)) := Ȟi

eq(X,Z(p)D/R),

where Z(p)D/R is some equivariant Deligne complex. If p < 0, then define Deligne

cohomology such that it coincides with equivariant Bredon cohomology. The author

will address in the near future the generalization of our results to Deligne cohomology.
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