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ABSTRACT

Asymptotics for the Maximum Likelihood Estimators

of Diffusion Models. (December 2008)

Minsoo Jeong, B.A., M.A., Seoul National University

Chair of Advisory Committee: Joon Y. Park

In this paper I derive the asymptotics of the exact, Euler, and Milstein ML

estimators for diffusion models, including general nonstationary diffusions. Though

there have been many estimators for the diffusion model, their asymptotic properties

were generally unknown. This is especially true for the nonstationary processes, even

though they are usually far from the standard ones. Using a new asymptotics with

respect to both the time span T and the sampling interval ∆, I find the asymptotics

of the estimators and also derive the conditions for the consistency. With this new

asymptotic result, I could show that this result can explain the properties of the

estimators more correctly than the existing asymptotics with respect only to the

sample size n. I also show that there are many possibilities to get a better estimator

utilizing this asymptotic result with a couple of examples, and in the second part of

the paper, I derive the higher order asymptotics which can be used in the bootstrap

analysis.
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CHAPTER I

INTRODUCTION

The diffusion model was originally designed and has long been used to model the

stochastic dynamics arising in physics and biology. In recent decades, however, it

also has gotten much attention from the financial and economics fields, and they ap-

plied the diffusion to the various financial and economics problems. Merton (1971)

and Black and Scholes (1973) are the most popular and significant works which es-

tablished the foundation of option pricing theory in finance. Vasicek (1977) and

Cox, Ingersoll and Ross (1985) are also well known works which have considered

the diffusion processes to model the interest rate term structure. Nowadays most of

the financial theories are written in terms of the continuous time framework, so the

importance of the diffusion model cannot be emphasized more.

As representing the importance and the popularity of the model, numerous es-

timation methods have been proposed, among which the main consideration in this

paper is the maximum likelihood estimation. Unlike the discrete time model estima-

tion, the main difficulties in the estimation of the diffusion model arises from the fact

that we cannot obtain the transition density in a closed form solution in most of the

cases, so we need to approximate it to do the estimation. The Euler scheme is the

most easiest and simplest way of the approximation, while the Milstein scheme gives

us a finer result with a higher order approximation of the data generating process.

There are also other various approximation methods proposed by many literatures,

and among them, Aı̈t-Sahalia (2002)’s method is one of the most popular methods in

practice.

The journal model is Econometrica.
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For each of those estimation methods, the corresponding asymptotic theories

were also provided, but mostly they could only deal with the stationary cases with

a few exceptions. We were mostly interested in the stationary processes in the past,

but in recent years people are getting more and more doubtful about the stationary

assumption even for the basic financial processes such as the interest rate or the

exchange rate processes. Moreover, the existing asymptotics with respect to the

number of samples is not enough to deal with the continuous time processes such as

the diffusion model. For example, it has been long been noted that there is a huge

magnitude of bias in the drift term parameter estimation of the diffusion models, but

it was just a well known phenomenon without reasonable asymptotic theory that can

explain it. In this paper, I propose a new asymptotic theory that can address this

problem, also without a restrictive stationary assumption. The basic concept for this

new asymptotics has mostly come from the ideas in Park and Phillips (2001), Aı̈t-

Sahalia and Park (2008a) and Aı̈t-Sahalia and Park (2008b). For the introduction

and the background theories of the diffusion processes, readers are recommended to

refer to Karlin and Taylor (1981), Revuz and Yor (1999) and Karatzas and Shreve

(1991).

In Chapter II, I derive the first order asymptotics of the exact, Euler and Milstein

maximum likelihood estimator of the diffusion models, and in Chapter III, I derive

the higher order asymptotics for the estimators. Various examples for the popular

diffusion models in finance and economics are also illustrated. In the Appendix, the

proofs for the theorems in the paper and other useful lemmas to derive them are

introduced.
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CHAPTER II

ASYMPTOTICS FOR THE MAXIMUM LIKELIHOOD ESTIMATORS OF

DIFFUSION MODELS

In the first chapter, I deal with the first order asymptotics of the Maximum Likelihood

estimators of diffusion models.

A. Background

Consider the time-homogeneous stochastic differential equation

dXt = µ(Xt, α)dt + σ(Xt, β)dWt (2.1)

where µ and σ are the drift and diffusion functions, respectively. I will denote θ =

(α′, β′)′ hereafter. I let D = (x, x̄) denotes the domain of the diffusion process Xt.

The Euler approximation of this SDE is

Xi∆ −X(i−1)∆ ' µ(X(i−1)∆)∆ + σ(X(i−1)∆)(Wi∆ −W(i−1)∆)

and the closed-form solution of this approximated transition density from x to y with

an interval ∆ is given by

p
E
(x, y) =

1√
2π∆ σ(x)

exp

[
−

(
y − x−∆µ(x)

)2

2∆σ2(x)

]

suppressing the parameter arguments for each function. Milstein approximation of

this SDE is

Xi∆ −X(i−1)∆ ' µ(X(i−1)∆)∆ + σ(X(i−1)∆)(Wi∆ −W(i−1)∆)

+
1

2
σσ·(X(i−1)∆)

[
(Wi∆ −W(i−1)∆)2 −∆

]
,
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where f ·(x, θ) denotes a derivative ∂/∂x f(x, θ). We denote fθ(x, θ) as a derivative

with respect to the parameter, ∂/∂θ f(x, θ). In the case of the Euler approximation,

the approximated transition density is the normal distribution, but in the case of the

Milstein approximation, the approximation error is reduced more with a mixture of a

normal and a chi-squared distribution, and the approximated transition density from

x to y with an interval ∆ is given by,

p
M

(x, y) =
1√

2π∆ τ(x, y)

(
exp

[−(
τ(x, y) + σ(x)

)2

2∆σ2σ·2(x)

]
+ exp

[−(
τ(x, y)− σ(x)

)2

2∆σ2σ·2(x)

])
,

where

τ(x, y) =
[
σ2(x) + ∆ σ2σ·2(x) + 2 σσ·(x)

(
y − x−∆ µ(x)

)]1/2

suppressing the parameter arguments for each function.

With a sample of time span T and the sampling interval ∆, the Euler and Milstein

ML estimator θ̂ is defined as an estimator which minimizes the log-likelihood function

L(θ) =
n∑

i=1

log p̂(x(i−1)∆, xi∆, θ)

over θ ∈ Θ, where n = T/∆, i.e.,

θ̂ = argmin
θ∈Θ

L(θ).

Here p̂ represents either p
E

or p
M

. We assume that Θ is compact and convex, and θ0

is an interior point of Θ. The Milstein ML estimation method was first proposed in

Elerian (1998). Replacing p̂ with the true transition density p, we can perform the

exact ML estimation, but it is only restricted to the cases when we know the true

transition density in a closed-form, such as Ornstein-Uhlenbeck, Feller’s square root,

and Brownian motion with drift.

Letting S = ∂L/∂θ and H = ∂2L/∂θ∂θ′, the asymptotic distribution of θ̂ can be
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obtained from the first order Taylor expansion of S, which is written as

S(θ̂) = S(θ0) +H(θ̃)(θ̂ − θ0)

where θ̃ lies in the line segment connecting θ̂ and θ0. If the following conditions hold

as T → ∞ and ∆ → 0 for some appropriate matrix sequence w, (w is a function of

both T and ∆ but I will suppress the subscript for the simplicity.)

AD1: w−1S(θ0) = Op(1).

AD2: w−1H(θ0)w
−1′= Op(1) and w′H−1(θ0)w= Op(1).

AD3: There is a sequence v such that vw−1 → 0, and such that

sup
θ∈N

∣∣v−1
(H(θ)−H(θ0)

)
v−1′∣∣ →p 0,

where N = {θ : |v′(θ − θ0)| ≤ 1}. (v is also a function of both T and ∆.)

we can derive the asymptotic leading term of the estimator. Wooldridge (1994) shows

that AD3 together with AD1 and AD2 implies1

AD4: S(θ̂) = 0 with probability approaching to one as T →∞ and ∆ → 0.

AD5: w−1
(H(θ̃)−H(θ0)

)
w−1′= op(1) and w′(θ̂ − θ0) = Op(1).

Thus, with these conditions, we have

w−1S(θ̂) = w−1S(θ0) + w−1H(θ0)w
−1′w′(θ̂ − θ0) + w−1

(H(θ̃)−H(θ0)
)
w−1′w′(θ̂ − θ0)

= w−1S(θ0) + w−1H(θ0)w
−1′w′(θ̂ − θ0) + op(1)

1 Weak dependency is originally assumed to show the asymptotic normality of the
estimator, but it turns out that without the weak dependency condition, we can still
show AD4 and AD5 as long as we can find a proper normalizing sequence w.
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so with probability approaching to one, w−1S(θ̂) = 0 and

w′(θ̂ − θ0) =− w′H(θ0)
−1S(θ0) + op(1).

So the rest of the steps are just to find the leading terms of H(θ0) and S(θ0).

B. Assumptions

1. Assumption Set 1

This set of assumptions to show the asymptotics of the Euler and Milstein ML Esti-

mators. We assume the following assumptions to make AD1 - AD3 hold.

Assumption 1. µ(x, α) has its derivatives up to 6th order, and σ(x, β) has its deriva-

tives up to the 7th order, w.r.t. x on D. µ(x, α) and σ(x, β) and their derivatives

w.r.t. x have their derivatives up to the 6th order, w.r.t. θ on the interior of Θ.

Assumption 2. Letting f(x) be each of those functions in Assumption 13 or σ−1(x),

f(x) is locally bounded on the domain D, and there exists a positive nondecreasing

function κf such that

1

κf (T )
sup

t∈[0,T ]

∣∣f(Xt)
∣∣ →p 0

T−pκf (T ) → 0

as T →∞ for some p < ∞. We call κf as the asymptotic function of f .

This assumption is to get proper bounds for the remainder terms which appears in the

derivation of the asymptotic terms. This can be guaranteed by the limit theorems of

the extremal process of diffusions, together with the appropriate boundary conditions

of the function f . For the properties of the extremal process of diffusion models, one

can refer to Berman (1964), Davis (1982), and Stone (1963), and for the properties
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for the function f , if f is regularly varying at both boundaries of D then it often is

possible to verify Assumption 2, as we will discuss further below.

To see more about this, note that the asymptotic property of supt∈[0,T ]

∣∣f(Xt)
∣∣

is determined by the asymptotic properties of supt∈[0,T ]

∣∣Xt

∣∣ and the supremum of

the properly centered reciprocal of Xt, together with the boundary properties of the

function f , so firstly we can use the following result in Davis (1982),

lim
T→∞

∣∣∣∣P
(

sup
t∈[0,T ]

∣∣Xt

∣∣ ≤ uT

)
− exp

(
− T

S(uT )M(D)

)∣∣∣∣ = 0

for any uT → x̄, for the positive recurrent processes. S is the scale function and

M is the speed measure of the process Xt. If we assume that µ(x) and σ(x) are

regularly varying at both boundaries, taking uT = T 1+ε for ε ≥ 0, we always have

T/S(uT ) = O(1) so the extremal process normalized with such uT always degenerates

to zero, or has a non-degenerating distribution. For the properties of the reciprocal of

Xt, we can apply Itô’s lemma to get the drift and diffusion function of the transformed

process first, and then we can apply the above result with the same manner. We will

explain more about this in the examples later. For null recurrent processes, the

derivation mostly depends on each case, but one can refer to Stone (1963) and Cline,

Jeong and Park (2008) for the most general cases. Once we know the asymptotics of

the suprema, rest steps are easy with the regular variation property of function f . It

will be more explained in the examples later.

Assumption 3. There exist positive nondecreasing functions wα and wβ such that

w−2
α (T )

∫ T

0

µ2
α

σ2
(Xt)dt and w−2

β (T )

∫ T

0

σ2
β

σ2
(Xt)dt

converge in distribution to some almost surely positive definite random variables as

T →∞.
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This can be easily shown for the positive recurrent processes with wα(T ) and wβ(T )

being
√

T , and for other cases, we can get reasonable conditions for it to hold as

in Cline, Jeong and Park (2008), which utilizes the result in Stone (1963), Kasahara

(1975) and Höpfner and Löcherbach (2003). It will be more dealt with in the examples

and in Cline, Jeong and Park (2008). We let w = Diag
(
wα(T ), ∆−1/2wβ(T )

)
hereafter.

Assumption 4. σ2(x) > 0 for any x ∈ D.

This is to guarantee the existence of the integrals of the function of the process, for

example,

∫ T

0

µσβ

σ5
(Xt)dt < ∞,

which appears in the asymptotic expansions. The key point here is that what is in

the denominator is always σ(X), so the existence of the integral is guaranteed by the

continuity of the process Xt, together with the local boundedness of µ and σ and

their derivatives.

For Ornstein-Uhlenbeck process and Brownian motion, we can easily check this

since the diffusion function is constant as σ(x) = β, so the above integral becomes

∫ T

0

µ(Xt)

β5
dt < ∞,

which is guaranteed from the continuity of Xt, local boundedness of µ(x), and σ2(x) >

0. As for CEV or Feller’s square root process, the above integral becomes

∫ T

0

µ(Xt) log(Xt)

X4β2
t

dt < ∞,

which is again guaranteed by the continuity of Xt, local boundedness of µ(x), and

σ2(x) > 0.
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Assumption 5. The asymptotic functions satisfy,

∆T → 0

∆1/4κ1(Tκ2(T )) → 0

as T →∞ and ∆ → 0, where κ1 and κ2 represent any combinations of the asymptotic

functions in Assumption 2.

This Assumption requires that ∆ should decrease fast enough as T increases. This

is a technical condition for the proofs and it does not restrict the model. Though it

seems to require a bunch of complicated conditions for the all possible combinations

of κ1 and κ2, it turns out that we only need to check this condition for the fastest

increasing function κf among others and it is not difficult to check.

Assumption 6. As T →∞, we have

T−ε κ̇(T )

κ(T )
→ 0

for any ε > 0, where κ represents one of the asymptotic function κf in Assumption 2,

and κ̇ represents corresponding asymptotic function of the derivative of f with respect

to the parameter.

This requires that the order difference between the derivatives is not too big, and

it is of course satisfied by many functional classes, such as the power functions and

the logarithmic function. It is also not difficult to check this condition since we only

need to check for one or two functional classes which are related with the model. Any

diffusion processes having polynomial drift and diffusion functions, such as Ornstein-

Uhlenbeck, Feller’s square root, Brownian motion with drift, CEV and AS-CEV of

course satisfy this condition. More will be shown in the examples later.
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Assumption 7. Defining NT,∆ = {θ : |v′(θ − θ0)| ≤ 1} with v satisfying vw−1 → 0,

we have

sup
θ∈NT,∆

∣∣∣∣
κ(T, θ0)

κ(T, θ)

∣∣∣∣ → 1

as T → ∞ subject to Assumption 5, where κ represents one of the asymptotic func-

tions in Assumption 2. Hereafter I suppress the subscript such as N for the simplicity.

This is also satisfied by many functional classes, including the power functions and

the logarithmic function. Examples for these Assumption 6 and 7 will be dealt with

more in Example 2. For Assumption 5-7, it looks as if at the first glance that it

will be very complicated and troublesome to check all the conditions, but as in the

Example 2, it turns out that we only need to check a few extremal cases for most of

the diffusion models used in practice, and we only need to check the conditions for a

functional class.

Example 1. (Ornstein-Uhlenbeck): Consider a process

dXt = α2(α1 −Xt)dt + βdWt

with α2 > 0, β > 0 and D = (−∞,∞). It is easy to see that both the drift function

µ(x) = α2(α1 − x) and the diffusion function σ(x) = β satisfy the differentiability

condition in the domain of the process D. For Assumption 5, they are conditions for

the decreasing rate of ∆, and it is satisfied if

∆T 4 → 0

as T →∞ and ∆ → 0. For Assumption 6, it is easy to check that

T−ε κ̇(T )

κ(T )
=

1

T ε
→ 0.
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Here, Assumption 7 is also obvious since in this Ornstein-Uhlenbeck case, all the

asymptotic order functions do not depend on the parameter value.

Example 2. (CEV): Consider a process

dXt = α2(α1 −Xt)dt + β1X
β2
t dWt

with α1 > 0, α2 > 0, β1 > 0, β2 > 1/2 also satisfying Assumption 4, and D = (0,∞).

It is also easy to see that both the drift function µ(x) = α2(α1− x) and the diffusion

function σ(x) = β1x
β2 satisfy the differentiability condition in the domain of the

process D, and they all satisfy Assumption 2. Borkovec and Klüppelberg (1998)

shows some examples of the properties of the extremal processes of the commonly

used diffusion models, and we can check that the supremum of the CEV process can

be bounded with a sequence ν(T ) = T . (The actual rate of ν(T ) is different for

each parameter setting, but here I only consider the biggest order for the simplicity.)

Applying Itô’s lemma, we can easily check that this also holds with the reciprocal of

the process, that is, supt∈[0,T ]

∣∣X−1
t

∣∣ = Op(T ) for β2 > 1/2, since

dYt =
(
α2Yt − α1α2Y

2
t + β2

1Y
3−2β2
t

)
dt− β1Y

2−β2
t dWt,

denoting Yt = X−1
t . So Assumption 2 is satisfied for each µ and σ and their derivatives

since they are all regularly varying at both boundaries. For example, if f(x) = x2,

sup
t∈[0,T ]

∣∣X2
t

∣∣ ≤
(

sup
t∈[0,T ]

∣∣Xt

∣∣
)2

= Op(T
2)

so κf (x) = x2, and if f(x) = 1/x3,

sup
t∈[0,T ]

∣∣X−3
t

∣∣ ≤
(

sup
t∈[0,T ]

∣∣X−1
t

∣∣
)3

= Op(T
3)

so κf (x) = x3. For Assumption 3, refer to Cline, Jeong and Park (2008).
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For Assumption 5, it is enough to check with the biggest order κf . When 1/2 <

β2 < 7/2, the biggest order becomes log(T )6T 7−β2 , thus the condition is satisfied if

∆1/4 log6
(
log6(T )T 8−β2

)
(log6(T )T 8−β2)7−β2 → 0

as T → ∞ and ∆ → 0. When β2 ≥ 7/2, the biggest order is log(T )6T β2 so the

condition becomes

∆1/4 log6
(
log6(T )T β2+1

)
(log6(T )T β2+1)β2 → 0

as T →∞ and ∆ → 0. Note again that these are just the technical conditions for the

proof, to deal with the remainder terms. For Assumption 6, we have, for example,

T−ε
κσβ2

(T )

κσ(T )
= T−ε log(T )T β2

T β2
=

log(T )

T ε
→ 0

as T → ∞ for any ε > 0. For Assumption 7, it suffices to show it holds for a power

function, for example, κ(T, β) = T β. To check this, note first that w = T 1/2 for this

CEV model, and for large enough T > 1,

sup
β∈N

∣∣∣∣
κ(T, β)

κ(T, β0)

∣∣∣∣ = sup
β∈N

∣∣T β−β0
∣∣ ≤ sup

β∈N

∣∣T |β−β0|∣∣ = sup
β∈N

T |β−β0| ≤ T T−ε

by choosing v = T 1/2−ε for some ε > 0, and also,

sup
β∈N

∣∣T β−β0
∣∣ ≥ sup

β∈N

∣∣T−|β−β0|∣∣ = sup
β∈N

T−|β−β0| ≥ inf
β∈N

T−|β−β0| ≥ T−T−ε

for some ε > 0. We have both T T−ε → 1 and T−T−ε → 1 so the assumption is satisfied

for this case.

Example 3. (AS-CEV): Consider a process

dXt =
(
α1 + α2Xt + α3X

2
t + α4X

−1
t

)
dt +

(
β1 + β2Xt + β3X

β4
t

)
dWt
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living on D = (0,∞). With a condition α3 < 0, β4 > 0 and α4 > β2
1 together with

β1 > 0, β2 > 0 and β3 > 0, we can show that this process satisfies Assumption 2 with

supt∈[0,T ] |Xt| = Op(T ) and supt∈[0,T ]

∣∣X−1
t

∣∣ = Op(T ), since

dYt =
[
β2

3Y
3−2β4
t + 2β1β3Y

3−β4
t + 2β2β3Y

2−β4
t − α3 − α2Yt

+
(
β2(β2 − 2β1)− α1

)
Y 2

t + (β2
1 − α4)Y

3
t

]
dt +

(
β2Yt + β1Y

2
t + β3Y

2−β4
t

)
dWt

where Yt = X−1
t . For 2α4 < −3β2

1 case, it can be also dealt with with the result in

Cline, Jeong and Park (2008), and it is also not difficult to show that it satisfies the

rest of the assumptions.

2. Assumption Set 2

This set of assumptions is to show the asymptotics of the exact ML estimator. We

denote `(x, y, ∆) = log p(x, y, ∆), where p is the true transition density of the diffusion

model. Parameter arguments are suppressed here.

Assumption 8. `(x, y, ∆) and its derivatives w.r.t. the parameters, y, and ∆ up to

the third order satisfy Assumption 2 and 5-7.

Assumption 9. The following derivatives of the log-likelihood function ` satisfy

`α(x, x, 0) = 0 `αα′(x, x, 0) = 0

`αα′y(x, x, 0) = 0 `αβ′(x, x, 0) = 0

`αy(x, x, 0) =
µα

σ2
(x) `β(x, x, 0) = −σβ

σ
(x)

lim
∆→0

∆`βyy(x, x, ∆) =
2σβ

σ3
(x) lim

∆→0

√
∆`αβ′y(x, x, ∆) = 0
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and

`α∆(x, x, 0) +
1

2
`αyy(x, x, 0)σ2(x) =

µµα

σ2
(x)

`αα′∆(x, x, 0) +
1

2
`αα′yy(x, x, 0)σ2(x) = −µαµ′α

σ2
(x)

lim
∆→0

[
`ββ′(x, x, ∆) +

∆

2
`ββ′yy(x, x, ∆)σ2(x)

]
= −2σβσ′β

σ2
(x)

lim
∆→0

[√
∆`αβ′∆(x, x, ∆) +

√
∆

2
`αβ′yy(x, x, ∆)σ2(x)

]
= 0.

Assumption 8 and Assumption 9 are the crucial conditions so that the estimators have

the proper limit distributions. The following assumptions are technical conditions to

deal with the remainder terms deriving the asymptotic first order terms.

ED1: There exists KT,∆ such that
∑n

i=1 f(X(i−1)∆, 0) = Op(KT,∆) and

sup
0<∆̃<∆

n∑
i=1

(
f(X(i−1)∆, ∆̃)− f(X(i−1)∆, 0)

)
= op(KT,∆)

as T →∞ and ∆ → 0 satisfying Assumption 5.

ED2: There exists MT,∆ such that
∑n

i=1 f(X(i−1)∆, X(i−1)∆, ∆)(Xi∆−X(i−1)∆)2 =

Op(MT,∆) and

n∑
i=1

sup
ỹi∈[X(i−1)∆,Xi∆]

(
f(X(i−1)∆, ỹi, ∆)− f(X(i−1)∆, X(i−1)∆, ∆)

)
(Xi∆ −X(i−1)∆)2

= op(MT,∆)

as T →∞ and ∆ → 0 satisfying Assumption 5.
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Assumption 10. Denoting f(x, ∆) as each of the following functions,

`α∆∆(x, x, ∆), `αy∆(x, x, ∆)σ(x), `αy∆(x, x, ∆)µ(x), `αyy∆(x, x, ∆)σ2(x),

`β∆(x, x, ∆), `βy∆(x, x, ∆)σ(x), `βy∆(x, x, ∆)µ(x), `βyy∆(x, x, ∆)σ2(x),

`αα∆∆(x, x, ∆), `ααy∆(x, x, ∆)σ(x), `ααy∆(x, x, ∆)µ(x), `ααyy∆(x, x, ∆)σ2(x),

`ββ∆(x, x, ∆), `ββy∆(x, x, ∆)σ(x), `ββy∆(x, x, ∆)µ(x), `ββyy∆(x, x, ∆)σ2(x),

`αβ∆∆(x, x, ∆), `αβy∆(x, x, ∆)σ(x), `αβy∆(x, x, ∆)µ(x), `αβyy∆(x, x, ∆)σ2(x),

it satisfies ED1.

Assumption 11. Denoting f(x, y, ∆) as each of the following functions,

`αyy(x, y, ∆), `βyy(x, y, ∆), `ααyy(x, y, ∆), `ββyy(x, y, ∆), `αβyy(x, y, ∆),

it satisfies ED2.

Assumption 12. There exists a sequence v such that vw−1 → 0, and such that

sup
θ∈N

∣∣v−1
(H(θ)−H(θ0)

)
v−1′

∣∣ →p 0

where N = {θ : |v′(θ − θ0)| ≤ 1}.

It is only a matter of time to check these conditions and one can easily check

them for the models with known transition densities.

Example 4. (Ornstein-Uhlenbeck): Consider a process

dXt = α2(α1 −Xt)dt + βdWt

with α2 > 0, β > 0 and D = (−∞,∞). Checking Assumption 10-12 is not difficult

but can be tedious since we should apply almost same steps to the various given

functions. Here I will only check a couple of functions among the whole conditions as
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an example. Application to other functions is straightforward. For Assumption 10,

consider the following example,

`α1y∆(x, ∆) =
2α2

2e
α2∆

β2(eα2∆ + 1)2
.

Here, KT,∆ = T/∆ since

n∑
i=1

`α1y∆(x, 0) =
n∑

i=1

α2
2

2β2
=

Tα2
2

2∆β2
= Op(T/∆)

We have

n∑
i=1

(`α1y∆(x, ∆̃)− `α1y∆(x, 0)) =
n∑

i=1

(
2α2

2e
α2∆̃

β2(eα2∆̃ + 1)2
− α2

2

2β2

)

=
n∑

i=1

α2
2β

2(4eα2∆̃ − (eα2∆̃ + 1)2)

2β4(eα2∆̃ + 1)2

= −
n∑

i=1

α4
2∆̃

2

8β2
+ Op(T ∆̃2) = Op(T∆) = op(KT,∆)

since ∆̃ ≤ ∆, satisfying Assumption 10. For this Ornstein-Uhlenbeck process, As-

sumption 11 becomes obvious since there is no ỹ in any of the functions in the con-

dition. For Assumption 9, let us take a look at the second derivative with respect to

α1. Note that

`α1α1(x, y, ∆) = −2α2(e
α2∆ − 1)

β2(eα2∆ + 1)
.
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Thus, taking v = T−1/2+ε for some ε > 0,

sup
θ∈N

∣∣∣∣∣T
−1+2ε

n∑
i=1

(
2α2(e

α2∆ − 1)

β2(eα2∆ + 1)
− 2α2,0(e

α2,0∆ − 1)

β2
0(e

α2,0∆ + 1)

)∣∣∣∣∣

= sup
θ∈N

∣∣∣∣T 2ε

(
α2

2

β2
− α2

2,0

β2
0

)
+ Op(T

2ε∆)

∣∣∣∣

= sup
θ∈N

∣∣∣∣T 2ε
α2

2,0(β
2 − β2

0)− β2
0(α

2
2 − α2

2,0)

β2β2
0

+ Op(T
2ε∆)

∣∣∣∣

= T 2εOp(T
−1/2) + Op(T

2ε∆)

so we can choose any 0 < ε < 1/4 to make it converge to zero. For Assumption 12,

`α1y(x, x, ∆) =
2α2e

α2∆

β(eα2∆ + 1)

for example, so we have

`α1y(x, x, 0) =
α2

β2
=

µα1(x)

σ(x)

satisfying Assumption 12.

C. First Order Asymptotics

If the conditions AD1 - AD3 hold, we can easily derive the following result from the

steps described in Section 2. Hereafter, A ≈ B denote that A−B is of smaller order

than B.

Theorem 1. With Assumptions 1 to 7, the asymptotic first order terms of Euler,

and Milstein ML estimators are obtained as the following, and with Assumptions 8 to
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12, the asymptotic first order distribution of the exact ML estimator is obtained as

α̂− α ≈
(∫ T

0

µαµ′α
σ2

(Xt)dt

)−1 ∫ T

0

µα

σ
(Xt)dWt

β̂ − β ≈
√

∆

2

(∫ T

0

σβσ′β
σ2

(Xt)dt

)−1 ∫ T

0

σβ

σ
(Xt)dVt

as T →∞ and ∆ → 0 under Assumption 5, where V is a standard Brownian motion

independent of W .

Proof of this theorem is omitted here since it easily follows from the following propo-

sitions with the same steps already described at the end of the previous section.

Proposition 1. For Euler, and Milstein ML estimators, with Assumptions 1 to 7,

AD1 and AD2 hold with S(θ0) having its leading term as the following, and for the

exact ML estimator, the same holds with Assumptions 8 to 9,

∫ T

0

µα

σ
(Xt, θ0)dWt and

√
2

∆

∫ T

0

σβ

σ
(Xt, θ0)dVt

for the drift term parameters and the diffusion term parameters, respectively, and

also, H(θ0) having its leading term as

∫ T

0

µαµ′α
σ2

(Xt, θ0)dt and
2

∆

∫ T

0

σβσ′β
σ2

(Xt, θ0)dt

for the drift term parameters and the diffusion term parameters, respectively. Also,

the leading term of H(θ0) becomes a block diagonal matrix in probability as T → ∞
and ∆ → 0 under Assumption 5.

Proposition 2. For the Euler and Milstein ML estimators, with Assumptions 1 to

7, AD3 holds.

Example 1. (Ornstein-Uhlenbeck): For the Ornstein-Uhlenbeck process

dXt = α2(α1 −Xt)dt + βdWt,



19

with α2 > 0, note that the drift function is µ(x, α1, α2) = α2(α1−x) and the diffusion

function is σ(x, β) = β. Applying these functions to the asymptotic distribution in

Theorem 1, we have

α̂1 − α1 ≈ β

α2

WT

T

α̂2 − α2 ≈ β

(∫ T

0

(α1 −Xt)
2dt

)−1 ∫ T

0

(α1 −Xt)dWt

β̂ − β ≈
√

∆

2
β

VT

T
,

thus

√
T (α̂1 − α1) →d N(0, β2/α2

2)

√
T (α̂2 − α2) →d N(0, 2α2)

for the drift term parameters, and

√
T/∆(β̂ − β) →d N(0, β2/2)

for the diffusion term parameter as T → ∞ and ∆ → 0, since Ornstein-Uhlenbeck

process is stationary. Note here that the leading terms of α̂1 and β̂ is normal even

in finite T , while the leading term of α̂2 is non-normal in finite T . Figure 1 shows

the difference between the normal distribution and the first order term obtained from

Theorem 1. Even for this simplest stationary Ornstein-Uhlenbeck process, we can see

that the distributions are quite different.

Example 2. (Geometric Brownian Motion): For the geometric Brownian motion

dXt = αXtdt + βXtdWt,
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T = 5 (α2 = 0.25, α1 = 0 and β = 0.02)

(Dotted line is the density function of N
(
0, 2α2/

√
T

)
.)

Fig. 1.— First Order Distribution of α̂2 − α2

we can log transform the process to have

d log Xt =

(
α− β2

2

)
dt + βdWt.

For this transformed process, we have µ(x, α∗) = α∗x for the drift function denoting

α∗ = α− β2/2, and σ(x, β) = βx for the diffusion function. Applying these functions

to Theorem 1, we have

√
T (α̂∗ − α∗) →d N(0, β2)

for the drift term parameter, and

√
T/∆(β̂ − β) →d N(0, β2/2)

for the diffusion term parameter.
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Example 3. (Feller’s Square Root): For Feller’s square root process

dXt = α2(α1 −Xt)dt + β
√

XtdWt

with 2α1α2 ≥ β2, we have

α̂1 − α1 ≈ h22s1 − h12s2

h11h22 − h2
12

α̂2 − α2 ≈ h11s2 − h12s1

h11h22 − h2
12

β̂ − β ≈
√

∆

2
β

VT

T
,

where

h11 =

∫ T

0

α2
2

β2
1Xt

dt, h22 =

∫ T

0

(α1 −Xt)
2

β2
1Xt

dt, h12 =

∫ T

0

α2(α1 −Xt)

β2
1Xt

dt

s1 =

∫ T

0

α2

β1X
1/2
t

dWt, s2 =

∫ T

0

α1 −Xt

β1X
1/2
t

dWt.

Note that we have

1

T

∫ T

0

(α1 −Xt)
2

Xt

dt →p
α1β

2

2α2α1 − β2

1

T

∫ T

0

(α1 −Xt)

Xt

dt →p
β2

2α2α1 − β2

1

T

∫ T

0

1

Xt

dt →p
2α2

2α2α1 − β2

since Xt is stationary for 2α2α1 > β2, so

√
T (α̂1 − α1) →d N

(
0, α1β

2/α2
2

)

√
T (α̂2 − α2) →d N (0, 2α2)

as T →∞.

Example 4. (CEV - Constant Elasticity of Variance): For a positive recurrent CEV
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process

dXt = α2(α1 −Xt)dt + β1X
β2
t dWt

we have

α̂2 − α2 ≈ h11s2 − h12s1

h11h22 − h2
12

α̂1 − α1 ≈ h22s1 − h12s2

h11h22 − h2
12

β̂2 − β2 ≈
√

∆

2

h33s4 − h34s3

h33h44 − h2
34

β̂1 − β1 ≈
√

∆

2

h44s3 − h34s4

h33h44 − h2
34

,

where

h11 =

∫ T

0

α2
2

β2
1X

2β2
t

dt, h22 =

∫ T

0

(α1 −Xt)
2

β2
1X

2β2
t

dt, h12 =

∫ T

0

α2(α1 −Xt)

β2
1X

2β2
t

dt

s1 =

∫ T

0

α2

β1X
β2
t

dWt, s2 =

∫ T

0

α1 −Xt

β1X
β2
t

dWt

and

h33 =
T

β2
1

, h44 =

∫ T

0

log2(Xt)dt, h34 =
1

β1

∫ T

0

log(Xt)dt

s3 =
VT

β1

, s4 =

∫ T

0

log(Xt)dVt.

Corollary 1. With Assumptions 1 to 7, the asymptotic first order terms of the t-

statistics of the Euler, and Milstein ML estimators are obtained as the following, and

with Assumptions 8 to 12, the asymptotic first order distribution of the t-statistics of
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the exact ML estimator is obtained as

t(α̂k) ≈
[ (∫ T

0

µαµ′α
σ2

(Xt)dt

)−1 ∫ T

0

µα

σ
(Xt)dWt

]

k

/[(∫ T

0

µαµ′α
σ2

(Xt)dt

)−1 ]1/2

kk

t(β̂k) ≈
[(∫ T

0

σβσ′β
σ2

(Xt)dt

)−1 ∫ T

0

σβ

σ
(Xt)dVt

]

k

/[( ∫ T

0

σβσ′β
σ2

(Xt)dt

)−1]1/2

kk

as T →∞ and ∆ → 0 under Assumption 5, where V is a standard Brownian motion

independent of W . ak is the k’th element of a vector a, and Akk is the (k, k) element

of a matrix A.

Example 5. (Ornstein-Uhlenbeck): For a process

dXt = α2(α1 −Xt)dt + βdWt

with α2 > 0, we have

t(α̂2) ≈
( ∫ T

0

(α1 −Xt)
2

)−1/2 ∫ T

0

(α1 −Xt)dWt

t(α̂1) ≈ WT√
T
∼ N(0, 1)

t(β̂) ≈ VT√
T
∼ N(0, 1).

Note that we have also t(α̂2) →d N(0, 1) as T → ∞. Figure 2 shows the standard

normal density function, actual histogram of t(α̂2) obtained from the simulation, and

the distribution of the leading term obtained from Corollary 1. We can see that

the actual histogram of the t-statistic is closer to the limit distribution than to the

standard normal density function.

Example 6. (CEV - Constant Elasticity of Variance): For a positive recurrent CEV

process

dXt = α2(α1 −Xt)dt + β1X
β2
t dWt
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T = 5 (α2 = 0.25, α1 = 0 and β = 0.02)

(Dotted line is the standard normal density function.)

Fig. 2.— First Order Distribution and the Histogram of t(α̂2) – OU

we have

t(α̂2) ≈ h11s2 − h12s1[
h11(h11h22 − h2

12)
]1/2

t(α̂1) ≈ h22s1 − h12s2[
h22(h11h22 − h2

12)
]1/2

t(β̂2) ≈ h33s4 − h34s3[
h33(h33h44 − h2

34)
]1/2

t(β̂1) ≈ h44s3 − h34s4[
h44(h33h44 − h2

34)
]1/2

,

where each term is defined as same as above. Figure 3 shows the standard normal

density function, actual histogram of t(α̂2) obtained from the simulation, and the

distribution of the leading term obtained from Corollary 1. As in the Ornstein-

Uhlenbeck case, the distribution of the leading term explains the actual histogram

quite well.
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T = 5 (α2 = 0.09, α1 = 0.08, β1 = 0.8 and β2 = 1.5)

(Dotted line is the standard normal density function.)

Fig. 3.— First Order Distribution and the Histogram of t(α̂2) – CEV

1. Consistency and the Convergence Rate of the Estimator

From Theorem 1, we can check that the Milstein ML estimator is consistent as long

as

∫ T

0

µαµ′α
σ2

(Xt)dt →∞

for the drift term parameters and

1

∆

∫ T

0

σβσ′β
σ2

(Xt)dt →∞

for the diffusion term parameters, and also these determine the convergence rate. To

understand more about this in a specific case, let us consider the CEV model first,

dXt = α2(α1 −Xt)dt + β1X
β2
t dWt.
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For the CEV case, note that these conditions are

∫ T

0

(κ1 −Xt)
2

X2β2
t

dt →∞,

∫ T

0

X−2β2
t dt →∞,

1

∆

∫ T

0

β−2
1 dt →∞,

1

∆

∫ T

0

log(Xt)
2dt →∞.

With suitable parameter restrictions as in the example above, these convergence rates

become
√

T ,
√

T ,
√

T/∆ and
√

T/∆, and we can easily see that the drift term

parameters will not be consistent unless T →∞, while for diffusion term parameter

estimators, they will be still consistent if ∆ → 0. This is an interesting property of the

diffusion process estimation. This property of the diffusion estimator is well known

among those who study the diffusion process, but here, I present this theoretical result

in an explicit expression of the asymptotic distribution. For the Brownian motion

with drift

dXt = αdt + βdWt,

the above conditions become

∫ T

0

β−2dt →∞ and
1

∆

∫ T

0

β−2dt →∞

for α and β, respectively, so the convergence rates for each parameters are
√

T and
√

T/∆. In this case also, the convergence rate of the drift term parameter does not

depend on the sampling interval ∆, while the convergence rate of the diffusion term

parameter depends on both T and ∆.
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2. Mixed Normal Property of the Estimator

Since X and W are not independent of each other, the distribution of the drift term

estimator

α̂− α ≈
(∫ T

0

µαµ′α
σ2

(Xt)dt

)−1 ∫ T

0

µα

σ
(Xt)dWt

is very non-standard and far from normal distribution in general. On the other hand,

for the diffusion term estimator, X and V are independent of each other, so we can

show that the leading term of the diffusion term estimator is mixed normal as,

β̂ − β ≈
√

∆

2

( ∫ T

0

σβσ′β
σ2

(Xt)dt

)−1 ∫ T

0

σβ

σ
(Xt)dVt

∼ N

(
0,

∆

2

( ∫ T

0

σβσ′β
σ2

(Xt)dt

)−1
)

.

From this, we can expect that the diffusion term parameter estimator will behave

in more standard way than the drift term parameter estimator, and moreover, since

this is the mean-zero mixed normal distribution, we can expect that it will suffer less

from the bias problem.

For a single diffusion term parameter model, the leading term of the t-statistic

of the diffusion term parameter estimator is

t(β̂) ≈
( ∫ T

0

σ2
β

σ2
(Xt)dt

)−1 ∫ T

0

σβ

σ
(Xt)dVt

/( ∫ T

0

σ2
β

σ2
(Xt)dt

)−1/2

=

( ∫ T

0

σ2
β

σ2
(Xt)dt

)−1/2 ∫ T

0

σβ

σ
(Xt)dVt

∼ N(0, 1)

so we can check that it follows the standard normal distribution even if the process

is nonstationary.



28

D. Monte Carlo Study

1. Performance Comparison

In this section, I perform Monte Carlo simulations to assess the performance of the

Milstein ML estimator. The simulations are designed for two goals.

Firstly I consider the performance of the estimator in different time span T and

different sampling interval ∆. From the asymptotic result illustrated in Section 4,

we expect that the estimator will perform better as the time span increases and

the sampling interval decreases, but if we only focus on the drift term parameters,

decreasing the sampling interval will not help much to estimate them more accurately.

Thus, with this theoretical background, we may be able to say that obtaining intra-

day high frequency data will only give a marginal help on estimating the drift term.

So if we are only interested in the drift term estimation, and if we suspect that the

high frequency data is contaminated with the microstructure errors, then we can just

use the daily or monthly data for the estimation without worrying about the loss of

the information. This property of the diffusion estimator is shown in the following

MSE comparison. For this simulation, I generated process with the CEV model

dXt = α2(α1 −Xt)dt + β1X
β2
t dWt

To increase the accuracy of the data generation, I generated the process with the

Milstein approximation, with finer sampling interval ∆̃ = ∆/1000, and resampled it

to make a data of the sampling interval ∆. The simulation iterations are set to be

1000. As expected from the asymptotic result, while the MSEs decrease drastically

as the time span T increases in the first part of Table I, in the second part of Table I,

the MSEs for the drift term parameters stay almost still at a fixed level even though

the sampling interval is getting smaller and smaller.
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Table I.

MSE Comparison for Various Time Span T and Sampling Interval ∆

α2 = 1, α1 = 1, β1 = 0.1, β2 = 1.1

∆ = 0.01

α2 α1 β1 β2

T = 1 50.197 7.071×10−3 1.027×10−4 3.313

T = 2 11.794 4.549×10−3 4.397×10−5 1.104

T = 4 2.627 2.425×10−3 1.877×10−5 0.480

α2 = 1, α1 = 1, β1 = 0.1, β2 = 1.1

T = 10

α2 α1 β1 β2

∆ = 0.2 0.412 9.427×10−4 2.268×10−4 1.726

∆ = 0.05 0.348 9.113×10−4 4.181×10−5 0.470

∆ = 0.02 0.393 8.785×10−4 1.399×10−5 0.261

Our next Monte Carlo simulation is for the performance comparison with the

estimation method introduced in Aı̈t-Sahalia (2002). This is one of the most widely

used among other estimation methods, so I picked this for the comparison. While this

is a good estimator, I show that the Milstein ML estimator is as good as this in the

estimation performance. Moreover, the ease of application is a lot less complicated

than that, and also the computation time is a lot less than that. The computation

time for each estimator also depends on the parameter settings, but in the follow-

ing simulation, the calculation time was almost 10 times longer than the Milstein

estimator.

The simulation settings for this is T = 5, 20, and ∆ = 0.005, 0.025, 0.1,
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Table II.

Performance Comparison (T = 5)

IQR50 (α2 = 0.09, α1 = 0.08, β1 = 0.8 and β2 = 1.5)

T = 5 α1 α2 β1 β2

Euler 0.03379 1.1496 0.3648 0.1787

Daily Milstein 0.03382 1.1495 0.3642 0.1775

Aı̈t-Sahalia 0.03459 1.1865 0.3522 0.1697

Euler 0.03452 1.1677 0.8353 0.4217

Weekly Milstein 0.03442 1.1637 0.8249 0.4118

Aı̈t-Sahalia 0.03460 1.1891 0.8632 0.4052

Euler 0.03667 1.1924 1.6001 0.8290

Monthly Milstein 0.03646 1.1901 1.6098 0.7940

Aı̈t-Sahalia 0.03689 1.3037 1.9914 0.7649

representing 5 and 20 years of data observed in daily, weekly, and monthly basis.

The parameter settings are based on the estimation result in Aı̈t-Sahalia (1999). The

comparison criteria is IQR50. IQR50 is defined as IQR50=|q75 − q25| where qi is the

i-th quantile of the empirical distribution, and it helps to assess the performance

of estimators when the estimators suffers from possible outliers. As shown in Table

II and Table III, between Milstein ML and Aı̈t-Sahalia’s estimators, neither one

dominates the other and it is hard to tell which one performs better. As for the Euler

and Milstein ML estimators, we can also check that Milstein ML estimator generally

performs better than Euler ML estimator, especially when the sampling interval is

relatively large. Table IV is the outlier counts for each estimators. We can see that

the method in Aı̈t-Sahalia (2002) suffers from outliers of big magnitude.
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Table III.

Performance Comparison (T = 20)

IQR50 (α2 = 0.09, α1 = 0.08, β1 = 0.8 and β2 = 1.5)

T = 20 α1 α2 β1 β2

Euler 0.03018 0.3198 0.1197 0.0567

Daily Milstein 0.03036 0.3201 0.1182 0.0567

Aı̈t-Sahalia 0.03033 0.3167 0.1172 0.0554

Euler 0.03057 0.3164 0.2633 0.1280

Weekly Milstein 0.03057 0.3170 0.2617 0.1260

Aı̈t-Sahalia 0.03034 0.3183 0.2602 0.1242

Euler 0.03174 0.3182 0.5031 0.2644

Monthly Milstein 0.03167 0.3168 0.4990 0.2601

Aı̈t-Sahalia 0.03178 0.3239 0.5289 0.2567

2. Hypothesis Testing

From the form of the asymptotic distribution of the parameter estimates, one question

easily arises about the hypothesis testing. If the limiting distribution is not normal,

and still we use the critical values obtained under the normality, then it is obvious

that the size of the test will be very different from the actual size. For example, the

t-statistics for α2 and α1 of the CEV model have the following limiting distributions,

t(α̂1) ≈ h22s1 − h12s2[
h22(h11h22 − h2

12)
]1/2

(2.2)

t(α̂2) ≈ h11s2 − h12s1[
h11(h11h22 − h2

12)
]1/2

, (2.3)
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Table IV.

Outlier Comparison

Outliers greater than 106×IQR50 (out of 10000)

T = 5 T = 20

α1 α2 β1 β2 α1 α2 β1 β2

Euler 0 0 0 0 0 0 0 0

Daily Milstein 0 0 0 0 0 0 0 0

Aı̈t-Sahalia 9 0 70 0 2 0 63 0

Euler 0 0 0 0 0 0 0 0

Weekly Milstein 0 1 0 0 0 0 0 0

Aı̈t-Sahalia 4 0 32 1 2 1 12 0

Euler 0 0 0 0 0 0 0 0

Monthly Milstein 1 2 0 0 0 0 1 0

Aı̈t-Sahalia 6 5 40 0 0 0 4 0

where

h11 =

∫ T

0

α2
2

β2
1X

2β2
t

dt, h22 =

∫ T

0

(α1 −Xt)
2

β2
1X

2β2
t

dt, h12 =

∫ T

0

α2(α1 −Xt)

β2
1X

2β2
t

dt

s1 =

∫ T

0

α2

β1X
β2
t

dWt, s2 =

∫ T

0

α1 −Xt

β1X
β2
t

dWt,

so we can hardly expect that it will follow the standard normal distribution. We can

check this from the simulation and Figure 4 shows the simulated distributions for

each random variable (2.2) and (2.3).

So unless we know the exact limiting distribution, we can only use the critical

values for the normal distribution so this problem can be applied to any cases when
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T = 5 (α2 = 0.09, α1 = 0.08, β1 = 0.8 and β2 = 1.5)

(Dotted lines are for the standard normal density function.)

Fig. 4.— First Order Distributions of t(α̂1) and t(α̂2)

we are estimating diffusion processes. In Table V and Table VI, we present the

simulation results showing the discrepancies between the actual and the simulated

size of the tests, and also show that this property of the estimator is not only for

the Milstein ML estimator, but also same for other diffusion estimators such as Aı̈t-

Sahalia (2002)’s closed-form ML estimator. Table VII shows the comparison result

between the standard normal, bootstrap and the limit distribution obtained in (2)

and (3). For the limit distributions, I used estimated parameter values. As we can see

here, both bootstrap and first order limit distribution performed better than standard

normal critical values.

E. Application to the Estimation

This limit theorem for the diffusion estimators can be used to enhance the performance

of the estimators. Followings are a couple of examples.
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Table V.

Size of t-Statistics – Milstein ML estimation

T = 5, ∆ = 0.005

α1 α2 β1 β2

1% 0.07 0.129 0.000 0.016

One-sided 5% 0.107 0.384 0.010 0.055

10% 0.129 0.554 0.052 0.101

1% 0.405 0.109 0.041 0.010

Two-sided 5% 0.498 0.306 0.083 0.061

10% 0.541 0.452 0.121 0.112

1. Time Change Bias Correction Method

Assume that we have the following process

dXt = µ(Xt, α)dt + σ(Xt, β)dWt.

As illustrated in the previous examples, the estimator for α usually produces a big

bias even for the simple stationary processes such as the Ornstein-Uhlenbeck process.

Choi and Park (2008) shows that, from the idea that α̂ has the following leading

term,

α̂− α ≈
( ∫ T

0

µ2
α(Xt, α)

σ2(Xt, β)
dt

)−1 ∫ T

0

µα(Xt, α)

σ(Xt, β)
dWt,

we can think of a time change to make the denominator a constant c, so that,

α̂τc − α ≈
( ∫ τc

0

µ2
α(Xt, α)

σ2(Xt, β)
dt

) ∫ τc

0

µα(Xt, α)

σ(Xt, β)
dWt =

1

c

∫ τc

0

µα(Xt, α)

σ(Xt, β)
dWt.
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Table VI.

Size of t-Statistics – Aı̈t-Sahalia’s method

T = 5, ∆ = 0.005

α1 α2 β1 β2

1% 0.082 0.084 0.000 0.006

One-sided 5% 0.134 0.314 0.008 0.060

10% 0.156 0.502 0.056 0.098

1% 0.304 0.052 0.004 0.002

Two-sided 5% 0.392 0.192 0.018 0.032

10% 0.440 0.330 0.036 0.078

Since this is a martingale which is mean-zero, we can expect that this estimator will

have no bias, and we can construct an estimator utilizing this fact. One can refer to

Choi and Park (2008) for more on this.

2. Bias Correction Using the Rate of Convergence

Note that for a positive recurrent process, we have

1

T

∫ T

0

f(Xt)dt →a.s.

∫

D
f(x)p(x)dx (2.4)

1√
T

( ∫ T

0

f(Xt)dt− T

∫

D
f(x)p(x)dx

)
→d N(0, c)
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Table VII.

Size Adjustment

Size of t-statistics – Milstein ML estimation

T = 5, ∆ = 0.005

t(α̂1) t(α̂2)

Std. Nor. Bootst. Lim. Dist. Std. Nor. Bootst. Lim. Dist.

1% 0.065 0.049 0.053 0.136 0.062 0.047

One-side 5% 0.106 0.104 0.087 0.389 0.169 0.158

10% 0.133 0.133 0.116 0.569 0.267 0.256

1% 0.408 0.191 0.361 0.121 0.122 0.098

Two-side 5% 0.505 0.286 0.423 0.313 0.186 0.178

10% 0.551 0.382 0.467 0.461 0.257 0.241

Critical values based on:

Std. Nor. – standard normal distribution

Bootst. – parametric bootstrap method

Lim. Dist. – limit distribution simulated with the estimated parameter values

for some constant c, where p(x) = m(x)/M(D), with proper conditions. (See Khas-

minskii (2001).) From this, we can check the order of the bias of the estimator,

E(α̂− α) ≈ E
( ∫ T

0

µ2
α

σ2
(Xt)dt

)−1 ∫ T

0

µα

σ
(Xt)dWt

= E
C

T

∫ T

0

µα

σ
(Xt)dWt + E

N(0, c)

T 3/2C2

∫ T

0

µα

σ
(Xt)dWt + op(T

−1)

= 0 + Op(T
−1),
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where C =
( ∫

D
µ2

α

σ2 (x)p(x)dx
)−1

. Now using this information, we can think of a

method to correct the bias by setting up the following simple regression relationship,

E α̂i − α =
c

Ti

+ εi

for each different Ti. We can estimate ĉ by subsampling with different time span Ti,

and the bias corrected estimator α̃ becomes

α̃ = α̂− ĉ

T
.

Table VIII is the simulation table with this correction method. If we have null-

Table VIII.

Performance Comparison (α2)

CEV (α1 = 0.08, α2 = 0.09, β1 = 0.8, β2 = 1.5)

T = 5, ∆ = 0.005

Median bias IQR50

Original 0.949 1.133

Bias corrected 0.209 0.981

recurrent diffusion processes (with suitable conditions), the convergence rate of the

bias will become T−1/2, not T−1, since the integral in (2.4) will converge to a random

variable, not to a constant, so in this case, we can also apply this fact to the above

correction method.
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CHAPTER III

ASYMPTOTIC EXPANSIONS FOR THE MAXIMUM LIKELIHOOD

ESTIMATORS OF DIFFUSION MODELS

In this chapter, I deal with the second and the higher order asymptotics of the max-

imum likelihood estimators of diffusion models

A. Background

Consider a time-homogeneous stochastic differential equation

dXt = µ(Xt, α)dt + σ(Xt, β)dWt (3.1)

where µ and σ are the drift and diffusion functions, respectively. We will denote

θ = (α′, β′)′ hereafter. We let D = (x, x̄) denotes the domain of the diffusion process

Xt. Euler approximation of this SDE is

Xi∆ −X(i−1)∆ ' µ(X(i−1)∆)∆ + σ(X(i−1)∆)(Wi∆ −W(i−1)∆)

and the closed-form solution of this approximated transition density is given by

p
E
(x, y) =

1√
2π∆ σ(x)

exp

[
−

(
y − x−∆µ(x)

)2

2∆σ2(x)

]
,

denoting x = X(i−1)∆ and y = Xi∆, and suppressing the parameter arguments for

each function. Milstein approximation of this SDE is

Xi∆ −X(i−1)∆ ' µ(X(i−1)∆)∆ + σ(X(i−1)∆)(Wi∆ −W(i−1)∆)

+
1

2
σσ·(X(i−1)∆)

[
(Wi∆ −W(i−1)∆)2 −∆

]
,
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where a·(x, θ) denotes a derivative ∂/∂x a(x, θ) (I define a.(x, θ) as a derivative

∂/∂θ a(x, θ)). In the case of the Euler approximation, the approximated transition

density is a normal distribution, but in the case of the Milstein approximation, the

approximation error is reduced more with a mixture of a normal and a chi-squared

distribution, and the approximated transition density is given by,

p
M

(x, y) =
1√

2π∆ τ(x, y)

(
exp

[−(
τ(x, y) + σ(x)

)2

2∆σ2σ·2(x)

]
+ exp

[−(
τ(x, y)− σ(x)

)2

2∆σ2σ·2(x)

])
,

where

τ(x, y) =
(
σ2(x) + ∆ σ2σ·2(x) + 2 σσ·(x)

(
y − x−∆ µ(x)

))1/2

denoting x = X(i−1)∆ and y = Xi∆, and suppressing the parameter arguments for

each function.

The Euler and Milstein ML estimator θ̂ is defined as an estimator which mini-

mizes the log-likelihood function

L(θ) =
n∑

i=1

log p̂(X(i−1)∆, Xi∆, θ)

over θ ∈ Θ, i.e.,

θ̂ = argmin
θ∈Θ

L(θ).

Here p̂ represents either p
E

or p
M

. We assume that Θ is compact and convex, and θ0

is an interior point of Θ. The Milstein ML estimation method was first proposed in

Elerian (1998). Replacing p̂ with the true transition density p, we can perform the

exact ML estimation, but it is only restricted to the cases when we know the true

transition density in a closed-form, such as O-U, Feller, and BM with drift.
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B. Assumptions

Here I adopt Assumptions 2-4 and 6-7 from Part 1. For the following assumptions,

they are basically same as Assumption 1 and 5 in Part 1, but only requires higher

order conditions.

Assumption 13. µ(x, α) has its derivatives up to 7th order, and σ(x, β) has its

derivatives up to the 8th order, w.r.t. x on D. µ(x, α) and σ(x, β) have their deriva-

tives up to the 7th order, w.r.t. θ on the interior of Θ. (We assume only piecewise

differentiability.) These functions satisfy the conditions in Assumption 2, 6 and 7.

Assumption 14. The asymptotic order functions satisfy,

∆T 3 → 0

∆κ8
1(Tκ2(ν(T ))) → 0

as T → ∞ and ∆ → 0, where κ1 and κ2 represent any combinations of the order

functions in Assumption 13.

C. Asymptotic Higher Order Expansions

Let us denote S = ∂L/∂θ, H = ∂2L/∂θθ′ and J = ∂3L/∂θ⊗θθ′. Then by the Taylor

expansion of the score function around θ0, we have

S(θ̂) = S(θ0) +H(θ0)(θ̂ − θ0) +
1

2

(
Ik⊗(θ̂ − θ0)

′)J (θ̃)(θ̂ − θ0), (3.2)
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where θ̃ is a value in the line segment connecting θ0 and θ̂. Here, J is the derivative

of H represented by a k2 × k matrix (where k is the number of parameters), i.e.,

J (θ) =




J1(θ)

...

Jk(θ)




, where Jj(θ) =
∂H(θ)

∂θj

.

Rewriting the second term of the above expansion as the following,




(θ̂ − θ0)
′J1(θ̃)(θ̂ − θ0)

...

(θ̂ − θ0)
′Jk(θ̃)(θ̂ − θ0)




=




(θ̂ − θ0)
′J1(θ0)(θ̂ − θ0)

...

(θ̂ − θ0)
′Jk(θ0)(θ̂ − θ0)




+




(θ̂ − θ0)
′(J1(θ̃)− J1(θ0)

)
(θ̂ − θ0)

...

(θ̂ − θ0)
′(Jk(θ̃)− Jk(θ0)

)
(θ̂ − θ0)




= AT + BT .

If BT is of smaller order than AT , we can get the following approximation

S(θ̂) ' S(θ0) +H(θ0)(θ̂ − θ0) +
1

2

(
Ik⊗(θ̂ − θ0)

′)J (θ0)(θ̂ − θ0)

replacing J (θ̃) with J (θ0). This can be shown from the following conditions,

SD1: ρ−1
i Ji(θ0)ρ

−1′
i = Op(1) for each i = 1, . . . , k

SD2: There is a sequence %i such that %iρ
−1
i → 0, and such that

sup
θ∈N

∣∣%−1
i (Ji(θ)− Ji(θ0))%

−1′
i

∣∣ →p 0

for each i = 1, . . . , k, where N = {θ : |%′i(θ − θ0)| ≤ 1}.
From Wooldridge (1994), SD1 and SD2 together with AD1 and AD2 in Part 1 implies

SD3: ρ−1
i

(Ji(θ̃)− Ji(θ0)
)
ρ−1′

i →p 0.
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Thus, with SD1 and SD2, the above approximation becomes valid.

Now going back to the Taylor approximation above, with the first order condition

S(θ̂) = 0 for the maximum likelihood estimation, we have

θ̂ − θ0 ' −H(θ0)
−1S(θ0)− 1

2
H(θ0)

−1
(
Ik⊗(θ̂ − θ0)

′)J (θ0)(θ̂ − θ0) (3.3)

= CT + DT .

To get the second order expansion of the estimator, it is enough to get the first order

term from DT , while we need to obtain both the first and the second order term from

CT .

Proposition 3. For Euler, and Milstein ML estimators, the first and the second

order terms of S(θ0) and H(θ0), and the leading terms of J (θ0) are as shown in the

Appendix 1 and Appendix 2, respectively.

Note that this proposition also accounts to SD1.

Proposition 4. For Euler, and Milstein ML estimators defined above, SD2 holds.

The proof of Proposition 2 is omitted here since the same steps can be applied as in

the proof of Proposition 1 in Part 1, replacing H with J .

Now combining the above results together, we have the following result,

Theorem 2. The asymptotic expansions of Euler, and Milstein ML estimators are

obtained as

α̂− α0 ≈ −H−1
αα,1Sα,1 − 1

2
H−1

αα,1

(
Ik⊗S ′α,1H

−1
αα,1

)
Jααα,1H

−1
αα,1Sα,1

−
√

∆H−1
αα,1

(
Hαα,2H

−1
αα,1Sα,1 + Sα,2 −Hαβ,1H

−1
ββ,1Sβ,1

)

β̂ − β0 ≈ −
√

∆H−1
ββ,1Sβ,1 −∆3/4H−1

ββ,1Sβ,2

where each term is defined in Appendix 1 and Appendix 2, respectively.
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We can also only consider the case when ∆ is small enough to make the ∆-order

terms negligible. By the Taylor expansion of the score function around θ0, we have

S(θ̂) = S(θ0) +H(θ0)(θ̂ − θ0) +
1

2

(
Ik⊗(θ̂ − θ0)

′)J (θ0)(θ̂ − θ0)

+
1

6

(
Ik⊗(θ̂ − θ0)

′)K(θ̃)
(
(θ̂ − θ0)⊗(θ̂ − θ0)

)
,

where θ̃ is a value in the line segment connecting θ0 and θ̂. Here, J is as defined in

the above, and K is the derivative of J represented by a k2 × k2 matrix (where k is

the number of parameters), i.e., K = ∂4L/∂θθ′⊗θθ′. We can represent this as

K(θ) =




K11(θ) · · · K1k(θ)

...
. . .

...

Kk1(θ) · · · Kkk(θ)




, where Kij(θ) =
∂2H(θ)

∂θiθj

,

With the same type of the conditions for Kij,

SD1′: ρ−1
ij Kij(θ0)ρ

−1′
ij = Op(1) for each i, j = 1, . . . , k

SD2′: There is a sequence %ij such that %ijρ
−1
ij → 0, and such that

sup
θ∈N

∣∣%−1
ij (Kij(θ)−Kij(θ0))%

−1′
ij

∣∣ →p 0

for each i, j = 1, . . . , k, where N = {θ : |%′ij(θ − θ0)| ≤ 1}.
we have

SD3′: ρ−1
ij

(Kij(θ̃)−Kij(θ0)
)
ρ−1′

ij →p 0,

which makes the following approximation valid,

θ̂ − θ0 '−H(θ0)
−1S(θ0)− 1

2
H(θ0)

−1
(
Ik⊗(θ̂ − θ0)

′)J (θ0)(θ̂ − θ0)

− 1

6
H(θ0)

−1
(
Ik⊗(θ̂ − θ0)

′)K(θ0)
(
(θ̂ − θ0)⊗(θ̂ − θ0)

)
(3.4)

= AT + BT + CT .
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Now the rest of the steps are to get the third order asymptotic expansion of AT , the

second order asymptotic expansion of BT , and the first order asymptotic expansion

of CT . Note that the higher order terms containing ∆ order becomes negligible in

this setup, so we only need to consider the terms without ∆. For this, we need the

following assumptions instead of Assumption 13-14.

Assumption 15. µ(x, α) has its derivatives up to 8th order, and σ(x, β) has its

derivatives up to the 9th order, w.r.t. x on D. µ(x, α) and σ(x, β) have their deriva-

tives up to the 8th order, w.r.t. θ on the interior of Θ. (We assume only piecewise

differentiability.) These functions satisfy the conditions in Assumption 2.

Under these additional assumptions, we have the following result,

Proposition 5. For Euler, and Milstein ML estimators, the first and the second

order terms of J (θ0), and the leading terms of K(θ0) are as shown in the Appendix 1

and Appendix 2, respectively.

Theorem 3. The asymptotic expansions of Euler, and Milstein ML estimators are

obtained as

α̂− α0 ≈ −H−1
αα,1Sα,1 − 1

2
H−1

αα,1

(
Ik⊗S ′α,1H

−1
αα,1

)
Jααα,1H

−1
αα,1Sα,1

− 1

6
H−1

αα,1

(
Ik⊗S ′α,1H

−1
αα,1

)
Kαααα,1

(
H−1

αα,1Sα,1⊗H−1
αα,1Sα,1

)

β̂ − β0 ≈ −
√

∆H−1
ββ,1Sβ,1

where each term is defined in Appendix 1 and Appendix 2, respectively.

Followings are examples.

Example 1. (Ornstein-Uhlenbeck): For the Ornstein-Uhlenbeck process

dXt = α2(α1 −Xt)dt + βdWt,
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note that the drift function is µ(x, α1, α2) = α2(α1 − x) and the diffusion function is

σ(x, β) = β. Applying these functions to the asymptotic distribution in Theorem 2,

we have

α̂1 − α1 ≈ − s1

h11

−
[
(h12,1 + h12,2)s2

h11h22

]

−
[
α2h22h

2
12,1s1 − h12,1(s

2
2h11 + h22s

2
1)− h12,2(3s

2
2h11 + 2h22s

2
1)

α2h2
22h

2
11

]

α̂2 − α2 ≈ − s2

h22

+

[
h12,1s1

h11h22

]
−

[
s2(h

2
12,1 − 4h2

12,2)

h11h2
22

]
,

where

s1 =
α2

β
WT , s2 =

1

β

∫ T

0

(α1 −Xt)dWt, h11 = −α2
2

β2
T,

h22 = − 1

β2

∫ T

0

(α1 −Xt)
2dt, h12,1 = −α2

β2

∫ T

0

(α1 −Xt)dt, h12,2 =
Wt

β
.

Note that the order of these terms are T−1/2, T−1 and T−3/2, respectively. If we

consider the case when the decreasing rate of ∆ is fairly slow to make all the higher

T -order terms negligible, we have

α̂2 − α2 ≈ − s2

h22

−
√

∆
s2,d

h22

,

where s2,d = −VT /
√

2.

Example 2. (Feller’s Square Root): For the process

dXt = α2(α1 −Xt)dt + β1

√
XtdWt,
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we have

α̂1 − α1 ≈ −h22s1 − h12,1s2

h11h22 − h2
12,1

−
[
(h12,1s2 − h22s1)(h12,1s1 − h11s2)

α2(h11h22 − h2
12,1)

2

]

+

[
α2h

2
11h

2
22h12,2(3h11s

2
2 + 2h22s

2
1) + h11h

3
12,1s2(5h22s

2
1 − h11s

2
2)

α2
2(h11h22 − h2

12)
4

+
α2h11h22h

2
12,1h12,2(7h11s

2
2 + 9h22s

2
1)− h2

11h22h12,1s2(h11s
2
2 + 16h22s

2
1)

α2
2(h11h22 − h2

12)
4

− α2h
4
12,2(4h11h12,2s

2
2 + 9h22h12,2s

2
1)− 5α2

2h
5
12,1h

2
12,2s2

α2
2(h11h22 − h2

12)
4

]

α̂2 − α2 ≈ −h11s2 − h12,1s1

h11h22 − h2
12,1

+

[
α2

2(4h
3
11h

2
22h

2
12,2s2 − 6h11h

4
12,1h

2
12,2s2 + 2h5

12,1h
2
12,2s1 + 2h11h22h

3
12,1h

2
12,2s1)

α2
2(h11h22 − h2

12,1)
4

− 6α2h
2
11h22h12,1h12,2(h11s

2
2 + h22s

2
1) + 2h2

11h
2
12,1s2(h11s

2 + 4h22s
2
1)

α2
2(h11h22 − h2

12,1)
4

]
,

where

s1 =
α2

β1

∫ T

0

1√
Xt

dWt, s2 =
1

β1

∫ T

0

α1 −Xt√
Xt

dWt, h11 = −α2
2

β2
1

∫ T

0

1

Xt

dt,

h22 = − 1

β2
1

∫ T

0

(α1 −Xt)
2

Xt

dt, h12,1 = −α2

β2
1

∫ T

0

α1 −Xt

Xt

dt, h12,2 =
1

β1

∫ T

0

1√
Xt

dWt.

Note that the order of these terms are T−1/2, T−1 and T−3/2 for α1, while those are

T−1/2 and T−3/2 for α2 since the T−1 order term vanishes. If we consider the case

when the decreasing rate of ∆ is fairly slow to make all the higher T -order terms
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negligible, we have

α̂1 − α1 ≈ −h22s1 − h12,1s2

h11h22 − h2
12,1

+
√

∆

[
h12,1

[
(h33h44 − h2

34)s2,d + (h24h34 − h23h44)s3 − (h24h33 − h23h34)s4

]

(h11h22 − h2
12,1)(h33h44 − h2

34)

− h22

[
(h33h44 − h2

34)s1,d + (h14h34 − h13h44)s3 − (h14h33 − h13h34)s4

]

(h11h22 − h2
12,1)(h33h44 − h2

34)

]

α̂2 − α2 ≈ −h11s2 − h12,1s1

h11h22 − h2
12,1

+
√

∆

[
h12,1

[
(h33h44 − h2

34)s1,d + (h14h34 − h13h44)s3 − (h14h33 − h13h34)s4

]

(h11h22 − h2
12,1)(h33h44 − h2

34)

− h11

[
(h33h44 − h2

34)s2,d + (h24h34 − h23h44)s3 − (h24h33 − h23h34)s4

]

(h11h22 − h2
12,1)(h33h44 − h2

34)

]
,

for the Milstein ML estimation case, and

β̂1 − β1 ≈ −
√

∆
h44s3 − h34,1s4

h33h44 − h2
34,1

+ ∆−3/2 h34,1s4,d

h33h44 − h2
34,1

β̂2 − β2 ≈ −
√

∆
h33s4 − h34,1s3

h33h44 − h2
34,1

−∆−3/2 h33s4,d

h33h44 − h2
34,1

,

where

h33 = −2T

β2
1

, h44 = −2

∫ T

0

log(Xt)
2dt, h34 = − 2

β1

∫ T

0

log(Xt)dt,

s1,d =

√
2α2

2

∫ T

0

1

Xt

dVt, s2,d =

√
2α1

2

∫ T

0

1

Xt

dVt −
√

2VT ,

s3 =

√
2

β1

∫ T

0

X
α2−1/2
t dVt, s4 =

√
2α1

β1

∫ T

0

log(Xt)X
α2−1/2
t dVt,

h14 =
3α2

2

∫ T

0

log(Xt)

Xt

dt, h13 =
3α2

2β1

∫ T

0

1

Xt

dt, h23 =
3

2β1

∫ T

0

α1 −Xt

Xt

dt,

h24 =
3

2

∫ T

0

(α1 −Xt) log(Xt)

Xt

dt, s4,d =
2β1

31/4

∫ T

0

X
−1/2
t

√∣∣∣∣
√

2

3
Vt +

1√
3
Zt

∣∣∣∣dUt.
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For the Euler ML estimation case, we have

α̂1 − α1 ≈ −h22s1 − h12,1s2

h11h22 − h2
12,1

−
√

∆

[
h22s1,d − h12,1s2,d

h11h22 − h2
12,1

]

α̂2 − α2 ≈ −h11s2 − h12,1s1

h11h22 − h2
12,1

−
√

∆

[
h11s2,d − h12,1s1,d

h11h22 − h2
12,1

]

with the followings replaced as

s1,d = − α2

2
√

2

∫ T

0

1

Xt

dVt, s2,d = − α1

2
√

2

∫ T

0

1

Xt

dVt − 1

2
√

2
VT .

Example 3. (CEV - Constant Elasticity of Variance): For a positive recurrent CEV

process

dXt = α2(α1 −Xt)dt + β1X
β2
t dWt,

we have

α̂1 − α1 ≈ −h22s1 − h12,1s2

h11h22 − h2
12,1

−
[
(h12,1s2 − h22s1)(h12,1s1 − h11s2)

α2(h11h22 − h2
12,1)

2

]

+

[
α2h

2
11h

2
22h12,2(3h11s

2
2 + 2h22s

2
1) + h11h

3
12,1s2(5h22s

2
1 − h11s

2
2)

α2
2(h11h22 − h2

12)
4

+
α2h11h22h

2
12,1h12,2(7h11s

2
2 + 9h22s

2
1)− h2

11h22h12,1s2(h11s
2
2 + 16h22s

2
1)

α2
2(h11h22 − h2

12)
4

− α2h
4
12,2(4h11h12,2s

2
2 + 9h22h12,2s

2
1)− 5α2

2h
5
12,1h

2
12,2s2

α2
2(h11h22 − h2

12)
4

]

α̂2 − α2 ≈ −h11s2 − h12,1s1

h11h22 − h2
12,1

+

[
α2

2(4h
3
11h

2
22h

2
12,2s2 − 6h11h

4
12,1h

2
12,2s2 + 2h5

12,1h
2
12,2s1 + 2h11h22h

3
12,1h

2
12,2s1)

α2
2(h11h22 − h2

12,1)
4

− 6α2h
2
11h22h12,1h12,2(h11s

2
2 + h22s

2
1) + 2h2

11h
2
12,1s2(h11s

2 + 4h22s
2
1)

α2
2(h11h22 − h2

12,1)
4

]
,
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where

s1 =
α2

β1

∫ T

0

1

Xβ2
t

dWt, s2 =
1

β1

∫ T

0

α1 −Xt

Xβ2
t

dWt, h11 = −α2
2

β2
1

∫ T

0

1

X2β2
t

dt,

h22 = − 1

β2
1

∫ T

0

(α1 −Xt)
2

X2β2
t

dt, h12,1 = −α2

β2
1

∫ T

0

α1 −Xt

X2β2
t

dt, h12,2 =
1

β1

∫ T

0

1

Xβ2
t

dWt.

Note that the order of these terms are T−1/2, T−1 and T−3/2 for α1, while those are

T−1/2 and T−3/2 for α2 since the T−1 order term vanishes. If we consider the case

when the decreasing rate of ∆ is fairly slow to make all the higher T -order terms

negligible, we have

α̂1 − α1 ≈ −h22s1 − h12,1s2

h11h22 − h2
12,1

+
√

∆

[
h12,1

[
(h33h44 − h2

34)s2,d + (h24h34 − h23h44)s3 − (h24h33 − h23h34)s4

]

(h11h22 − h2
12,1)(h33h44 − h2

34)

− h22

[
(h33h44 − h2

34)s1,d + (h14h34 − h13h44)s3 − (h14h33 − h13h34)s4

]

(h11h22 − h2
12,1)(h33h44 − h2

34)

]

α̂2 − α2 ≈ −h11s2 − h12,1s1

h11h22 − h2
12,1

+
√

∆

[
h12,1

[
(h33h44 − h2

34)s1,d + (h14h34 − h13h44)s3 − (h14h33 − h13h34)s4

]

(h11h22 − h2
12,1)(h33h44 − h2

34)

− h11

[
(h33h44 − h2

34)s2,d + (h24h34 − h23h44)s3 − (h24h33 − h23h34)s4

]

(h11h22 − h2
12,1)(h33h44 − h2

34)

]
,

for the Milstein ML estimation case, and

β̂1 − β1 ≈ −
√

∆
h44s3 − h34s4

h33h44 − h2
34

+ ∆−3/2 h34s4,d

h33h44 − h2
34

β̂2 − β2 ≈ −
√

∆
h33s4 − h34s3

h33h44 − h2
34

−∆−3/2 h33s4,d

h33h44 − h2
34

,
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where

h33 = −2T

β2
1

, h44 = −2

∫ T

0

log(Xt)
2dt, h34 = − 2

β1

∫ T

0

log(Xt)dt,

s1,d =
√

2α2β2

∫ T

0

1

Xt

dVt, s2,d =
√

2α1β2

∫ T

0

1

Xt

dVt − 1 + 2β2√
2

VT ,

s3 =

√
2

β1

∫ T

0

Xα2−β2
t dVt, s4 =

√
2α1

β1

∫ T

0

log(Xt)X
α2−β2
t dVt,

h14 = 3α2β2

∫ T

0

log(Xt)

Xt

dt, h13 =
3α2β2

β1

∫ T

0

1

Xt

dt, h23 =
3β2

β1

∫ T

0

α1 −Xt

Xt

dt,

h24 = 3β2

∫ T

0

(α1 −Xt) log(Xt)

Xt

dt, s4,d =
2β1

31/4

∫ T

0

Xβ2−1
t

√∣∣∣∣
√

2

3
Vt +

1√
3
Zt

∣∣∣∣dUt.

For the Euler ML estimation case, we have

α̂1 − α1 ≈ −h22s1 − h12,1s2

h11h22 − h2
12,1

−
√

∆

[
h22s1,d − h12,1s2,d

h11h22 − h2
12,1

]

α̂2 − α2 ≈ −h11s2 − h12,1s1

h11h22 − h2
12,1

−
√

∆

[
h11s2,d − h12,1s1,d

h11h22 − h2
12,1

]

with the followings replaced as

s1,d = −α2β2√
2

∫ T

0

1

Xt

dVt, s2,d = −α1β2√
2

∫ T

0

1

Xt

dVt − 1− β2√
2

VT .
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CHAPTER IV

CONCLUSION

In this paper, I introduced a new asymptotics for the diffusion model estimation, and

derived the asymptotic first and the higher order terms according to this asymptotics.

As mentioned in the introduction, I could show where the big bias for the drift term

parameter estimator comes from using this asymptotics, and could also show that we

have very different characteristics for the drift and diffusion parameters. As we know

the source of the bias and the distortion of the distribution, we can also think of many

ways to correct them. In this paper I suggested a couple of correction methods which

could successfully reduce the bias of the estimator and could get a more correct size

for the hypothesis testing. Though the correction methods are in the baby steps now,

I expect that there are many possibilities to utilize this new asymptotic result to get

more efficient estimators and better test statistics with a correct size.
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APPENDIX A

PROOFS, LEMMAS, AND THE ASYMPTOTIC EXPANSIONS

A. Proofs and Useful Lemmas for Chapter II

I assume Assumptions 1-7 for the following lemmas. Here, Et denotes a conditional

expectation with information given up to time t. Hereafter, I define

e+(xi, yi) = exp

(√
σ2(xi) + ∆σ2σ·2(xi) + 2σσ·(xi)(yi − xi −∆µ(xi))

∆σσ·2(xi)

)

e−(xi, yi) = 1/e+(xi, yi),

for the simplicity.

1. Proof of Proposition 1

Part 1: Euler ML Case

Denote xi = X(i−1)∆ and yi = Xi∆. Note that we have the scores of the likelihood L
as S(θ0) =

∑n
i=1

(
`α(xi, yi), `β(xi, yi)

)′
, where

`α(xi, yi) =
µα(xi)

σ2(xi)

(
yi − xi −∆µ(xi)

)

`β(xi, yi) =
σβ(xi)

∆σ3(xi)

[(
yi − xi −∆µ(xi)

)2 −∆σ2(xi)
]

and for the Hessians, we have

H(θ0) =
n∑

i=1




`αα′(xi, yi) `αβ′(xi, yi)

`βα′(xi, yi) `ββ′(xi, yi)



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where

`αα′(xi, yi) =
µαα′(xi)

σ2(xi)

(
yi − xi −∆µ(xi)

)− ∆µαµ′α(xi)

σ2(xi)

`αβ′(xi, yi) = −2µασ′β(xi)

σ3(xi)

(
yi − xi −∆µ(xi)

)

`ββ′(xi, yi) =
1

∆σ4(xi)

[(
σσββ′(xi)− 3σβσ′β(xi)

)[(
yi − xi −∆µ(xi)

)2 −∆σ2(xi)
]

− 2∆σ2σβσ′β(xi)
]
.

Thus,it’s easily derived from Lemma 9 and 10, that

n∑
i=1

`α(xi, yi) =

∫ T

0

µα

σ
(Xt)dWt + Op(

√
∆T (κµ′α − κµακσ·κσ−1)(T ))

n∑
i=1

`β(xi, yi) =

√
2

∆

∫ T

0

σβ

σ
(Xt)dVt + Op(∆

−1/4−ζFσβσ−3(T ))

and this proves the first part of the proposition. Note that, for example,

∫ T

0

µα

σ
(Xt)dWt = Op

(√
Tκµακσ−1(T )

)

and

√
∆T (κµ′α − κµακσ·κσ−1)(T ) → 0
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from Assumption 15. From Lemma 9, 10 and 1, we have

n∑
i=1

`αα′(xi, yi) = −
∫ T

0

µαµ′α
σ2

(Xt)dt +

∫ T

0

µαα′

σ
(Xt)dWt

+ Op(
√

∆T (κµ·
αα′
− κµαα′κσ·κσ−1)(T ))

n∑
i=1

`αβ′(xi, yi) = −2

∫ T

0

µασ′β
σ2

(Xt)dWt

+ Op(
√

∆T (κµ·ακ′σβ
κσ−1 − 2κµακ′σβ

κσ·κ
2
σ−1 + κµακ′σ·βκσ−1)(T ))

n∑
i=1

`ββ′(xi, yi) = − 2

∆

∫ T

0

σβσ′β
σ2

(Xt)dt + Op

(√
T

∆
(κσκσββ′− 3κσβ

κ′σβ
)κ2

σ−1(T )

)
.

Note that for `αα term, the second term will be of smaller order from Assumption 6

when T → ∞ and ∆ → 0, but when T is fixed, both the first term and the second

term will be the leading term in the asymptotics. It’s also easy to extend the vector

case by applying these lemmas elementwise. As for the diagonality, it’s easy to check

that H0(θ0) will be block diagonal from

√
∆

T
κ2

σκ
−1
µα

(T )

∫ T

0

µασ′β
σ2

(Xt)dWt κ−1
σβ

′
(T )

=

√
∆

T
κ2

σκ
−1
µα

(T ) Op

(√
Tκµακ′σβ

κ2
σ−1(T )

)
κ−1

σβ

′
(T ) →p 0

as T → ∞ and ∆ → 0. (The inverse operator is elementwise, for the notational

convenience.)

Part 2: Milstein ML Case

Here I also denote xi = X(i−1)∆ and yi = Xi∆. It’s straightforward from the func-

tional form of the score and Hessian functions, using Lemma 1-11 and 13. The basic

procedure is same as the Euler case, but I will not go in detail for each case here. For
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example, for the score function with respect to the drift term parameter,

∂`(xi, yi)

∂α
=

(
e+(xi, yi)− e−(xi, yi)

e+(xi, yi) + e−(xi, yi)

) √
∆µα

σ·G (xi, yi) +
µα

σσ· (xi, yi) +
∆2σσ·µα

G2
(xi, yi)

where G(xi, yi) =
(
∆ σ(xi)(σ(xi) + ∆ σσ·2(xi) + 2 σ·(xi)(yi − xi −∆ µ(xi)))

)1/2
, sup-

pressing all the arguments for the functions. Note that for the term containing

e+(x,y)−e−(x,y)
e+(x,y)+e−(x,y)

, it’s same as finding the limiting distribution without e+(x,y)−e−(x,y)
e+(x,y)+e−(x,y)

from

Lemma 11, and for the terms with B(x, y), they can be taken care of by Lemma 13,

and as a result, we get the following terms.

n∑
i=1

∂`(xi, yi)

∂α
=

n∑
i=1

µα

σ2
(xi)(yi − xi −∆ µ(xi))

−3

2

n∑
i=1

µασ·
σ3

(xi)
[
(yi − xi −∆ µ(xi))

2 −∆σ2(xi)
]

+Op(∆
√

Tκ2
σ·κµακ2

σ−1(T ))

So the rest of the step is to find the limiting distribution of each terms, and we get

n∑
i=1

∂`(xi, yi)

∂α
=

∫ T

0

µα

σ
(Xt)dWt + Op(

√
∆Tκµακσ·κσ−1(T ))

using Lemma 8 and 10.

Part 3: Exact ML Case

For the score terms w.r.t. α, what we want to show is

n∑
i=1

`α(xi, yi, ∆) ≈
∫ T

0

µα

σ
(Xt)dWt. (A.1)

Since the function `α is not only a function of x, but also a function of y and ∆, we
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can consider the following Taylor expansion

n∑
i=1

`α(xi, yi, ∆) =
n∑

i=1

`α(xi, xi, ∆) +
n∑

i=1

`αy(xi, xi, ∆)(yi − xi)

+
1

2

n∑
i=1

`αyy(xi, xi, ∆)(yi − xi)
2 + Op(R1(T,∆))

for some order R1(T,∆). (Hereafter, I will denote the order of the remainder term as

Rk(T,∆).) Note that R1(T,∆) will be of smaller order from Assumption 11. Denoting

Wi = Wi∆ −W(i−1)∆ for the simplicity, we can replace (yi − xi) with

yi − xi = ∆µ(xi) + σ(xi)Wi + Ri

where Ri is a remainder term, and we have

n∑
i=1

`α(xi, yi, ∆) =
n∑

i=1

`αy(xi, xi, ∆)σ(xi)Wi

+
n∑

i=1

`α(xi, xi, ∆) + ∆
n∑

i=1

`αy(xi, xi, ∆)µ(xi)

+
1

2

n∑
i=1

`αyy(xi, xi, ∆)σ2(xi)W2
i + Op(R2(T,∆))

= AT + BT + Op(R2(T,∆)).

Note that R2 becomes of smaller order by Assumption 8. To make (A.1) hold, we

should have

AT ≈
∫ T

0

µα

σ
(Xt)dWt (A.2)

and BT should be of smaller order than AT . To show (A.2), we can do the Taylor

expansion w.r.t. ∆ again, then

AT =
n∑

i=1

`αy(xi, xi, 0)σ(x)Wi + ∆
n∑

i=1

`αy∆(xi, xi, 0)σ(xi)Wi + Op(R3)
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and from the following condition in Assumption 12,

`αy(xi, xi, 0) =
µα

σ2
(xi),

we can check that (A.2) holds. Note that R3 is of smaller order by Assumption 10.

Similarly, applying Taylor expansions w.r.t. ∆ for each term in BT , and using the

following condition,

`α∆(xi, xi, 0) +
1

2
`αyy(xi, xi, 0)σ2(xi) =

µµα

σ2
(xi)

with `α(xi, xi, 0) = 0, we can be sure that BT is of smaller order than AT . Thus, with

the following conditions,

`αy(xi, xi, 0) =
µα

σ2
(xi)

`α∆(xi, xi, 0) +
1

2
`αyy(xi, xi, 0)σ2(xi) =

µµα

σ2
(xi)

`α(xi, xi, 0) = 0

we can show that (A.1) holds. For the scores w.r.t. β, we want show

n∑
i=1

`β(xi, yi, ∆) ≈
√

2

∆

∫ T

0

σβ

σ
(Xt)dVt.

and following the similar steps, it can be shown under the following conditions as in

Assumption 12,

`β(xi, xi, 0) = −σβ

σ
(xi)

∆`βyy(xi, xi, ∆) → 2σβ

σ3
(xi) as ∆ → 0.

For the Hessian terms w.r.t. α, we want to show

n∑
i=1

`αα(xi, yi, ∆) = −
∫ T

0

µ2
α

σ2
(Xt)dt

(
1 + op(1)

)
,
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and similarly, the conditions to make this leading term is

`αα(xi, xi, 0) = 0

`ααy(xi, xi, 0) = 0

`αα∆(xi, xi, 0) +
1

2
`ααyy(xi, xi, 0)σ2(xi) = −µ2

α

σ2
(xi)

as in Assumption 12. For the Hessian w.r.t. β, we want show

n∑
i=1

`ββ(xi, yi, ∆) ≈ − 2

∆

∫ T

0

σ2
β

σ2
(Xt)dt,

and the conditions are

`ββ(xi, xi, ∆) +
∆

2
`ββyy(xi, xi, ∆)σ2(xi) → −2σ2

β

σ2
(xi) as ∆ → 0.

For the off-diagonal blocks of the Hessian, we should have

`αβ(xi, xi, 0) = 0

√
∆`αβy(xi, xi, ∆) → 0 as ∆ → 0

√
∆`αβ∆(xi, xi, ∆) +

√
∆

2
`αβyy(xi, xi, ∆)σ2(xi) → 0 as ∆ → 0

to make them asymptotically negligible.

2. Proof of Proposition 2

Part 1: Euler ML Case

We need to show

sup
θ∈N

∣∣∣v−1
(H(θ)−H(θ0)

)
v−1′

∣∣∣ →p 0

where N = {θ : |v′(θ − θ0)| ≤ 1}. Here, I let w as defined in AD2, and v = T−εw for
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some ε > 0, so that it satisfies vw−1 → 0. To prove this, note that we have

sup
θ∈N

∣∣∣v−1
(H(θ)−H(θ0)

)
v−1′

∣∣∣ = sup
θ∈N

∣∣∣v−1J (θ̃)
(
(θ − θ0)⊗ v−1′)∣∣∣

≤ v−1 sup
θ∈N

∣∣J (θ)
∣∣(v̄ ⊗ v−1′)

where θ̃ is a value in the line connecting θ and θ0, K is the number of the parameters,

i.e., the length of a vector θ, J (θ) = ∂
∂θ

vec(H(θ))′, and v̄ = diag
(
v−1

)
. To show

that this converges to 0, I will first show that the order difference between H(θ0)

and J (θ0) is small enough compared to v̄, and next, that supθ∈N |J (θ)| has the same

asymptotic order as J (θ0). And after that, the rest is just an application of these

results, to show

v−1 sup
θ∈N

∣∣J (θ)
∣∣(v̄ ⊗ v−1′) →p 0.

as T → ∞ and ∆ → 0. Hereafter, I will denote xi = X(i−1)∆ and yi = Xi∆ for the

simplicity.

Step 1. To check the difference of the order between H(θ0) and J (θ0), let’s first

consider the order of H(θ0). Denoting (j, l) element of H(θ0) as h̄jl =
∑n

i=1 hi,jl, note

that hi,jl has the following form,

hi,jl(θ) =∆s1
(
yi − xi −∆µ(xi, θ)

)r
a(xi, θ) + ∆s2b(xi, θ)

with r = 1, 2. On the other hand, we have

∂

∂θ
hi,jl(θ) = ∆s1

(
yi − xi −∆µ(xi, θ)

)r
aθ(xi, θ) + ∆s2bθ(xi, θ)

+ r∆s1+1
(
yi − xi −∆µ(xi, θ)

)r−1
aµθ(xi, θ).

Note that the derivative has a same form as hi,jl(θ) but only with derivatives of each
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function, so it’s easy to check that

v−1J (θ0)
(
v̄ ⊗ v−1′) = T 3εw−1J (θ0)

(
w̄ ⊗ w−1′)

and w̄ = diag
(
w−1

)
. Since there exists a > 0 such that T aw̄ →p 0 and we can choose

ε < a/3, we have

T 3εw−1J (θ0)
(
w̄ ⊗ w−1′) ≤ T 3ε−aw−1J (θ0)

(
ιk ⊗ w−1′) →p 0

for large enough T from Assumption 6, where ιk is k by 1 one vector and k is the

number of rows in w̄.

Step 2. We will next show that J (θ0) and supθ∈N |J (θ)| have the same asymptotic

order, i.e., if we have

ηJ (θ0)
(
η̄ ⊗ η′

)
= Op(1),

with an appropriate matrix and a vector η and η̄, then we also have

sup
θ∈N

∣∣ηJ (θ)
(
η̄ ⊗ η′

)∣∣ = Op(1).

For this, denoting h̄jl
k (θ) as (j, lk) element of J (θ) and ηjl

k as its corresponding con-

vergence rate, it’s enough to show that,

sup
θ∈N

∣∣∣ηjl
k h̄jl

k (θ)
∣∣∣ = Op(1)

when we have ηjl
k h̄jl

k (θ0) = Op(1), for each k, j and l. We will suppress all the

superscripts hereafter for the simplicity, that is, h̄ = h̄jl
k and η = ηjl

k . Note that h̄ also

has the following form as previously denoted,

h̄(θ) =
n∑

i=1

∆s1
(
yi − xi −∆µ(xi, θ)

)r
a(xi, θ) + ∆s2b(xi, θ).
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Denoting η(θ) as the order of h̄(θ), i.e.,

η(θ)h̄(θ) = Op(1)

note that η(θ) has a form ∆s1T s2κg(T, θ), where κg is a product of some asymptotic

order functions which appear in Assumption 13. Explicitly denoting η = η(θ0) as a

function η(θ) evaluated at θ0, we have

sup
θ∈N

∣∣η(θ0)h̄(θ)
∣∣ = sup

θ∈N

∣∣η(θ0)η(θ)−1η(θ)h̄(θ)
∣∣

= sup
θ∈N

∣∣η(θ0)η(θ)−1
∣∣ Op(1).

If we only consider the case of one function for the simplicity, we have

η(θ) =Tκf (T, θ)

and we have

sup
θ∈N

∣∣η(θ0)η(θ)−1
∣∣ = sup

θ∈N

∣∣∣∣
κf (T, θ0)

κf (T, θ)

∣∣∣∣ →p 1

by Assumption 7. Generalization for multiple product is also not difficult. So now I

showed that supθ∈N |J (θ)| has the same order as J (θ0), and the rest steps are same

as already described in the beginning.

Part 2: Milstein ML Case

We need to show

sup
θ∈N

∣∣∣v−1
(H(θ)−H(θ0)

)
v−1′

∣∣∣ →p 0

where N = {θ : |v′(θ − θ0)| ≤ 1}. Here, I let w as defined in AD2, and v = T−εw for



65

some ε > 0, so that it satisfies vw−1 → 0. To prove this, note that we have

sup
θ∈N

∣∣∣v−1
(H(θ)−H(θ0)

)
v−1′

∣∣∣ = sup
θ∈N

∣∣∣v−1J (θ̃)
(
(θ − θ0)⊗ v−1′)∣∣∣

≤ v−1 sup
θ∈N

∣∣J (θ)
∣∣(v̄ ⊗ v−1′)

where θ̃ is a value in the line connecting θ and θ0, K is the number of the parameters,

i.e., the length of a vector θ, J (θ) = ∂
∂θ

vec(H(θ))′, and v̄ = diag
(
v−1

)
. To show

that this converges to 0, I will first show that the order difference between H(θ0)

and J (θ0) is small enough compared to v̄, and next, that supθ∈N |J (θ)| has the same

asymptotic order as J (θ0). And after that, the rest is just an application of these

results, to show

v−1 sup
θ∈N

∣∣J (θ)
∣∣(v̄ ⊗ v−1′) →p 0.

as T → ∞ and ∆ → 0. Hereafter, I will denote xi = X(i−1)∆ and yi = Xi∆ for the

simplicity.

Step 1. To check the difference of the order between H(θ0) and J (θ0), let’s first

consider the order of H(θ0). Denoting (j, l) element of H(θ0) as h̄jl =
∑n

i=1 hi,jl, note

that hi,jl has the following form,

hi,jl(θ) =
r̄∑

r=1

[
A(xi, yi)

prB(xi, yi)
qr∆sr

(
yi − xi −∆µ(xi, θ)

)wr
d(xi, θ)×

[
a(xi, θ) + ∆b(xi, θ) +

(
yi − xi −∆µ(xi, θ)

)
c(xi, θ)

]ur
]

for some r̄ < ∞, where

A(xi, yi) =
e+(xi, yi)− e−(xi, yi)

e+(xi, yi) + e−(xi, yi)
and B(xi, yi) =

1

e+(xi, yi) + e−(xi, yi)
,

pr, qr, wr being non-negative (possibly zero) integers and sr, ur being possibly negative

real numbers. As for this functional form, one can check this by looking at the actual
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derivatives of log-likelihood function in Appendix II. For this function hi,jl, here I will

only focus on the terms with qr = 0 since it can be shown from the proof of Lemma

11 that those terms with positive qr will be of smaller order than the other terms.

Now with this functional form, and assuming that we have the biggest order term for

r = r∗, we can write hi,jl(θ) as, ignoring all the smaller order terms,

hi,jl(θ) = A(xi, yi)
p∗∆s∗

(
yi − xi −∆µ(xi, θ)

)w∗
d(xi, θ)

[
a(xi, θ) + ∆b(xi, θ) +

(
yi − xi −∆µ(xi, θ)

)
c(xi, θ)

]u∗(
1 + op(1)

)

≡ ∆s∗h(xi, yi, ∆, θ)
(
1 + op(1)

)
,

where the subscript ∗ denotes the corresponding values for r = r∗. By Lemma 12, we

have

v(θ0)
−1∆s∗

n∑
i=1

h(xi, yi, ∆, θ0) = Op(1)

where v(θ0)
−1 is the order of

∆s∗
n∑

i=1

h∗(xi, θ0) = ∆s∗
n∑

i=1

v(xi, θ)a
u∗(xi, θ).

Note that from Assumption 13, v(xi, θ)a
u∗(xi, θ) will have the following form of the

product of several functions, but here, I will only consider when there are 2 functions

only, such that,

v(xi, θ)a
u(xi, θ) = f(xi, θ)

pg(xi, θ)
q

for some asymptotically homogeneous functions f and g and real numbers p and q.

Also, in this case, if we think about J (θ), a derivative of H(θ) w.r.t. the parameters,
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the biggest order term will be

∆sr

n∑
i=1

∂

∂θ
h∗(xi, θ0) =∆sr

n∑
i=1

∂

∂θ
v(xi, θ0)a

u(xi, θ0)

=∆sr

n∑
i=1

∂

∂θ
f(xi, θ0)

pg(xi, θ0)
q

=∆sr

n∑
i=1

(
pf(xi, θ0)

p−1f ·(xi, θ0) + qg(xi, θ0)
q−1g′(xi, θ0)

)

and from Assumption 15, it’s obvious that

K∑

k=1

v−1J (θ)
(
v̄ ⊗ v−1′) →p 0.

A generalization for the cases that consists of multiple product of functions is also

straightforward.

Step 2. We will next show that J (θ0) and supθ∈N |J (θ)| have the same asymptotic

order, i.e., if we have

ηJ (θ0)
(
η̄ ⊗ η′

)
= Op(1),

with an appropriate matrix and a vector η and η̄, then we also have

sup
θ∈N

∣∣ηJ (θ)
(
η̄ ⊗ η′

)∣∣ = Op(1).

For this, denoting h̄jl
k (θ) as (j, lk) element of J (θ) and ηjl

k as its corresponding con-

vergence rate, it’s enough to show that,

sup
θ∈N

∣∣∣ηjl
k h̄jl

k (θ)
∣∣∣ = Op(1)

when we have ηjl
k h̄jl

k (θ0) = Op(1), for each k and (j, l). We will suppress all the

superscripts hereafter for the simplicity, that is, h̄ = h̄jl
k and η = ηjl

k . Note that hi
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(h̄ =
∑n

i=1 hi) also has the following form as previously denoted,

hi(θ) =
r̄∑

r=1

[
Apr

i Bqr

i ∆sr
(
yi − xi −∆µ(xi, θ)

)wr
v(xi, θ)×

[
a(xi, θ) + ∆b(xi, θ) +

(
yi − xi −∆µ(xi, θ)

)
c(xi, θ)

]ur
]
.

We will only focus on the terms with qr = 0 with the same reason as before. Again,

we can express h̄(θ) as

h̄(θ) = ∆sr

n∑
i=1

h(xi, yi, ∆, θ),

and by Lemma 12,

η(θ)∆sr

n∑
i=1

h(xi, yi, ∆, θ) = Op(1)

where η(θ) is the order of

∆s∗
n∑

i=1

h∗(xi, θ) = ∆s∗
n∑

i=1

v(xi, θ)a
u∗(xi, θ).

So, since η is the order of ∆s∗
∑

h∗(xi, θ0), explicitly denoting η = η(θ0) as a function

η(θ) evaluated at θ0, we have

sup
θ∈N

∣∣η(θ0)h̄(θ)
∣∣ = sup

θ∈N

∣∣η(θ0)η(θ)−1η(θ)h̄(θ)
∣∣

= sup
θ∈N

∣∣η(θ0)η(θ)−1
∣∣ Op(1).

Note that from Assumption 13, v(x, θ)au∗(x, θ) also consists of the product of the

functions, so if I only consider the case of one function,

v(x, θ)au∗(x, θ) = f(x, θ)
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and in this case, we have

η(θ) =Tκf (T, θ)

and we have

sup
θ∈N

∣∣∣η(θ0)η(θ̃)−1
∣∣∣ = sup

θ∈N

∣∣∣∣
κf (T, θ0)

κf (T, θ)

∣∣∣∣ →p 1

by Assumption 6. So now I showed that supθ∈N |J (θ)| has the same order as J (θ0),

and the rest steps are same as already described in the beginning.

3. Useful Lemmas

Lemma 1. Let f be a twice differentiable function, and let f and its derivatives

satisfy Assumption 2. Then,

n∑
i=1

f(X(i−1)∆)∆ =

∫ T

0

f(Xt)dt + Op

(
∆T (κµκf· + κ2

σκf··)(T )
)

+ Op

(
∆
√

Tκσκf·(T )
)
.

Proof.

n∑
i=1

f(X(i−1)∆)∆ =

∫ T

0

f(Xt)dt−
n∑

i=1

∫ i∆

(i−1)∆

(
f(Xt)− f(X(i−1)∆)

)
dt

=

∫ T

0

f(Xt)dt−
n∑

i=1

∫ i∆

(i−1)∆

∫ t

(i−1)∆

(
µf · + σ2f ··

2

)
(Xs)dsdt

−
n∑

i=1

∫ i∆

(i−1)∆

∫ t

(i−1)∆

σf ·(Xs)dWsdt

=

∫ T

0

f(Xt)dt + AT + BT
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by Itô’s lemma.

AT =
n∑

i=1

∫ i∆

(i−1)∆

(s− (i− 1)∆)

(
µf · + σ2f ··

2

)
(Xs)ds

≤ ∆

∫ T

0

∣∣∣∣µf · + σ2f ··
2

∣∣∣∣ (Xt)dt (A.3)

= Op

(
∆Tκµκf·(T )

)
+ Op

(
∆Tκ2

σκf··(T )
)
.

Also,

BT =
n∑

i=1

∫ i∆

(i−1)∆

(s− (i− 1)∆)σf ·(Xs)dWs

and this is a martingale whose quadratic variation is bounded by

∆2

∫ T

0

σ2f ·2(Xt)dt = Op

(
∆2Tκ2

σκ
2
f·(T )

)
.

So the remainder terms are of order

AT + BT = Op

(
∆Tκµκf·(T )

)
+ Op

(
∆Tκ2

σκf··(T )
)

+ Op

(
∆
√

Tκσκf·(T )
)
.

Lemma 2. For g and f satisfying Assumption 2,

(a) if the following repeated integrations only consist of the time (dt) integtation,

n∑
i=1

g(X(i−1)∆)

∫ i∆

(i−1)∆

· · ·
∫ s

(i−1)∆

f(Xr)dr · · · dt = Op(∆
k−1Tκgκf (T ))

where k is the number of the repeated integrations,

(b) and otherwise,

n∑
i=1

g(X(i−1)∆)

∫ i∆

(i−1)∆

· · ·
∫ s

(i−1)∆

f(Xr)dr · · · dWt = Op(∆
(2k1+k2−1)/2

√
Tκgκf (T ))

where k1 is the number of integrals w.r.t. the time, and k2 is the number of integral

w.r.t. the Brownian motion. Here, though I could not write appropriately, in the
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expression for the repeated integration, the integral can be with respect to either time

(dt) or the Brownian motion (dWt) with any combinations of the two, which has at

least one dWt term.

Proof. (a) Applying the same technique in the proof of Lemma 1, we can show that

n∑
i=1

g(X(i−1)∆)

∫ i∆

(i−1)∆

· · ·
∫ s

(i−1)∆

f(Xr)dr · · · dt

=
n∑

i=1

g(X(i−1)∆)

∫ i∆

(i−1)∆

(r − (i− 1)∆)k−1f(Xr)dr

≤ ∆k−1

n∑
i=1

|g(X(i−1)∆)|
∫ i∆

(i−1)∆

|f(Xr)|dr

≤ ∆k−1T sup
0≤t≤T

∣∣g(Xt)
∣∣ sup

0≤t≤T

∣∣f(Xt)
∣∣

= Op(∆
k−1Tκgκf (T )).

(b) First, note that we can make the most outer integration w.r.t. the Brownian

motion by change of the integration, to have

n∑
i=1

g(X(i−1)∆)

∫ i∆

(i−1)∆

(i∆− u)k

k!

∫ u

(i−1)∆

· · ·
∫ s

(i−1)∆

f(Xr)dr · · · dWvdWu

where k is the number of dt integrations at the most outer side. This is a martingale

with a quadratic variation bounded by

∆2k

n∑
i=1

g2(X(i−1)∆)

∫ i∆

(i−1)∆

(∫ u

(i−1)∆

· · ·
∫ s

(i−1)∆

f(Xr)dr · · · dWv

)2

du

and since this is a positive process, its order is the same as the order of its expectation.

We have

∆2kE

(
n∑

i=1

g2(X(i−1)∆)

∫ i∆

(i−1)∆

(∫ u

(i−1)∆

· · ·
∫ s

(i−1)∆

f(Xr)dr · · · dWv

)2

du

)

=∆2kE

(
n∑

i=1

g2(X(i−1)∆)

∫ i∆

(i−1)∆

E(i−1)∆

(∫ u

(i−1)∆

· · ·
∫ s

(i−1)∆

f(Xr)dr · · · dWv

)2

du

)
.
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For the condition expectation part, we can change the order of the integrals to reduce

the number of integrations. When the most inner integral is w.r.t. the Brownian

motion, this is bounded by

∆2k1+k2−1

n∑
i=1

g2(X(i−1)∆)

∫ i∆

(i−1)∆

E(i−1)∆f 2(Xr)dr = Op(∆
2k1+k2−1Tκ2

gκ
2
f (T ))

Note that this is also a positive process so the order is same as the expectation

∆2k1+k2−1E

(
n∑

i=1

g2(X(i−1)∆)

∫ i∆

(i−1)∆

E(i−1)∆f 2(Xr)dr

)

= ∆2k1+k2−1E

(
n∑

i=1

g2(X(i−1)∆)

∫ i∆

(i−1)∆

f 2(Xr)dr

)

≤ ∆2k1+k2−1T E
(

sup
0≤t≤T

∣∣g2(Xt)
∣∣ sup

0≤t≤T

∣∣f 2(Xt)
∣∣
)

= Op(∆
2k1+k2−1Tκ2

gκ
2
f (T )).

Also,

∆2k1+k2−3

n∑
i=1

g2(X(i−1)∆)

∫ i∆

(i−1)∆

E(i−1)∆

(∫ t

(i−1)∆

f(Xs)ds

)2

dt

has the same order as

∆2k1+k2−3E

(
n∑

i=1

g2(X(i−1)∆)

∫ i∆

(i−1)∆

(∫ t

(i−1)∆

f(Xs)ds

)2

dt

)

≤ ∆2k1+k2−3E

(
n∑

i=1

sup
0≤t≤T

∣∣g2(Xt)
∣∣
∫ i∆

(i−1)∆

(∫ t

(i−1)∆

sup
0≤t≤T

∣∣f(Xt)
∣∣ds

)2

dt

)

≤ ∆2k1+k2−1T E
(

sup
0≤t≤T

∣∣g2(Xt)
∣∣ sup

0≤t≤T

∣∣f(Xt)
∣∣2

)

= Op(∆
2k1+k2−1Tκ2

gκ
2
f (T ))

when the most inner integral is w.r.t. the time.
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Lemma 3. Let Aij be one of the followings,

∫ i∆

(i−1)∆

∫ t

(i−1)∆

fj(Xs)dsdt

∫ i∆

(i−1)∆

∫ t

(i−1)∆

fj(Xs)dsdWt

∫ i∆

(i−1)∆

∫ t

(i−1)∆

fj(Xs)dWsdt

∫ i∆

(i−1)∆

∫ t

(i−1)∆

fj(Xs)dWsdWt

for fj’s satisfying Assumption 2, and Bij be the same integral without the function

fj(Xs). Let Vi∆ = (Wi∆ −W(i−1)∆)p
∏k

j=1 Bij.

(a) If EV∆ = 0, we have

n∑
i=1

g(X(i−1)∆)(Wi∆ −W(i−1)∆)p

k∏
j=1

Aij = Op(κ1∆

√
Tκgκf1 · · ·κfk

(T ))

where κ1∆ =
(
EV 2

∆/∆
)1/2

(b) Otherwise,

n∑
i=1

g(X(i−1)∆)(Wi∆ −W(i−1)∆)p

k∏
j=1

Aij = Op(κ2∆Tκgκf1 · · ·κfk
(T ))

where κ2∆ = EV∆/∆.

(κ1∆ = c1∆
2k1+k2+ 3

2
k3+ 3

2
k4+ 1

2
kw− 1

2 and κ2∆ = c2∆
2k1+k2+ 3

2
k3+ 3

2
k4+ 1

2
kw−1.)

Proof. Replacing each fj(Xt) with fj(X(i−1)∆)+(fj(Xt)−fj(X(i−1)∆)) and arranging

them, we have

n∑
i=1

g(X(i−1)∆)(Wi∆ −W(i−1)∆)p

k∏
j=1

Aij

=
n∑

i=1

g(X(i−1)∆)
k∏

j=1

fj(X(i−1)∆)(Wi∆ −W(i−1)∆)p

k∏
j=1

Bij + R

where R represents a remainder term. When EV∆ = 0, the order of the leading term
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can be obtained from the expectation of the square, that is,

E

(
n∑

i=1

g(X(i−1)∆)
k∏

j=1

fj(X(i−1)∆)(Wi∆ −W(i−1)∆)p

k∏
j=1

Bij

)2

=E




n∑
i=1

g2(X(i−1)∆)
k∏

j=1

f 2
j (X(i−1)∆)E(i−1)∆

(
(Wi∆ −W(i−1)∆)p

k∏
j=1

Bij

)2



from the independent increment property of the Brownian motion, so

E

(
E(i−1)∆V 2

i∆

n∑
i=1

g2(X(i−1)∆)
k∏

j=1

f 2
j (X(i−1)∆)

)
= Op

(
EV 2

∆∆−1Tκ2
gκ

2
f1
· · ·κ2

fk
(T )

)
.

When EV∆ 6= 0,

n∑
i=1

g(X(i−1)∆)
k∏

j=1

fj(X(i−1)∆)(Wi∆ −W(i−1)∆)p

k∏
j=1

Bij

= EV∆

n∑
i=1

g(X(i−1)∆)
k∏

j=1

fj(X(i−1)∆)

+
n∑

i=1

g(X(i−1)∆)
k∏

j=1

fj(X(i−1)∆)

(
(Wi∆ −W(i−1)∆)p

k∏
j=1

Bij − EV∆

)

so the first term is of order Op(EV∆∆−1Tκgκf1 · · ·κfk
(T )) and it’s also easy to check

the order of the second term is smaller than the first term by taking expectation of

the square with the same steps as in the previous case. The order of the remainder

term R can be obtained using Lemma 2 and the Schwartz inequality, but here, I will

show a simple case as an example. For

n∑
i=1

g(X(i−1)∆)

∫ i∆

(i−1)∆

∫ t

(i−1)∆

f1(Xs)dsdWt

∫ i∆

(i−1)∆

∫ t

(i−1)∆

f2(Xs)dsdWt
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we can rewrite it as

n∑
i=1

g(X(i−1)∆)f1(X(i−1)∆)f2(X(i−1)∆)

∫ i∆

(i−1)∆

∫ t

(i−1)∆

dsdWt

∫ i∆

(i−1)∆

∫ t

(i−1)∆

dsdWt

+
n∑

i=1

g(X(i−1)∆)f1(X(i−1)∆)

∫ i∆

(i−1)∆

∫ t

(i−1)∆

dsdWt×
∫ i∆

(i−1)∆

∫ t

(i−1)∆

(
f2(Xs)− f2(X(i−1)∆)

)
dsdWt

+
n∑

i=1

g(X(i−1)∆)f2(X(i−1)∆)

∫ i∆

(i−1)∆

∫ t

(i−1)∆

dsdWt×
∫ i∆

(i−1)∆

∫ t

(i−1)∆

(
f1(Xs)− f1(X(i−1)∆)

)
dsdWt

+
n∑

i=1

g(X(i−1)∆)

∫ i∆

(i−1)∆

∫ t

(i−1)∆

(
f1(Xs)− f1(X(i−1)∆)

)
dsdWt×

∫ i∆

(i−1)∆

∫ t

(i−1)∆

(
f2(Xs)− f2(X(i−1)∆)

)
dsdWt

For the first term,

n∑
i=1

g(X(i−1)∆)f1(X(i−1)∆)f2(X(i−1)∆)

(∫ i∆

(i−1)∆

tdWt

∫ i∆

(i−1)∆

tdWt − ∆3

3

)

the order can be obtained from the expectation of the square,

E

(
n∑

i=1

g2(X(i−1)∆)f 2
1 (X(i−1)∆)f 2

2 (X(i−1)∆)E(i−1)∆

(∫ i∆

(i−1)∆

tdWt

∫ i∆

(i−1)∆

tdWt − ∆3

3

)2
)

= E

(
2∆6

9

n∑
i=1

g2(X(i−1)∆)f 2
1 (X(i−1)∆)f 2

2 (X(i−1)∆)

)

= Op(∆
5Tκ2

gκ
2
f1

κ2
f2

(T ))

while

∆3

3

n∑
i=1

g(X(i−1)∆)f1(X(i−1)∆)f2(X(i−1)∆) = Op(∆
2Tκgκf1κf2(T ))

so this will become the leading term. This is guaranteed from the order of the
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remainder terms,

n∑
i=1

g(X(i−1)∆)f1(X(i−1)∆)

∫ i∆

(i−1)∆

∫ t

(i−1)∆

dsdWt×
∫ i∆

(i−1)∆

∫ t

(i−1)∆

(
f2(Xs)− f2(X(i−1)∆)

)
dsdWt

≤
√√√√

n∑
i=1

g2(X(i−1)∆)f 2
1 (X(i−1)∆)

(∫ i∆

(i−1)∆

∫ t

(i−1)∆

dsdWt

)2

×
√√√√

n∑
i=1

(∫ i∆

(i−1)∆

∫ t

(i−1)∆

(
f2(Xs)− f2(X(i−1)∆)

)
dsdWt

)2

= Op(∆
√

Tκgκf1(T ))Op(∆
3/2
√

Tκσκf·2(T ))

= Op(∆
5/2Tκgκf1κσκf·2(T ))

Note that

f2(Xs)− f2(X(i−1)∆) =

∫ s

(i−1)∆

(
µf · + f ··

2

)
(Xt)dt +

∫ s

(i−1)∆

σf ·(Xt)dWt

and all terms can be taken care of by Lemma 2 and Schwartz inequality, and the

same thing can be done to show

n∑
i=1

g(X(i−1)∆)

∫ i∆

(i−1)∆

∫ t

(i−1)∆

(
f1(Xs)− f1(X(i−1)∆)

)
dsdWt×

∫ i∆

(i−1)∆

∫ t

(i−1)∆

(
f2(Xs)− f2(X(i−1)∆)

)
dsdWt

= Op(∆
3Tκ2

σκgκf·1κf·2(T ))

Lemma 4. If Yt = Op(g(t)) as t →∞ for some positive function g, then we have

∫ T

0

Ytdt = Op

(
G(T )

)
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as T →∞, where G(x) =
∫ x

g(s)ds.

Proof. The condition means that for any ε > 0, there exists M such that

P

{∣∣∣∣
Yt

g(t)

∣∣∣∣ > M

}
< ε (A.4)

holds for all t ≥ t0. Note that

∣∣∣∣
∫ T

0

Ytdt

∣∣∣∣ =

∣∣∣∣
∫ t0

0

Ytdt +

∫ T

t0

Ytdt

∣∣∣∣ ≤
∣∣∣∣
∫ t0

0

|Yt|dt

∣∣∣∣ +

∣∣∣∣
∫ T

t0

|Yt|dt

∣∣∣∣ = AT + BT .

Since we can always find M̃ such that

P

{∣∣∣∣
∫ t0

0

Ytdt

∣∣∣∣ > M̃

∣∣∣∣
∫ t0

0

g(t)dt

∣∣∣∣
}

< ε,

we have

AT ≤ M̃

∫ t0

0

g(t)dt

with probability 1− ε. Also, we have

BT ≤ M

∫ T

t0

g(t)dt

with probability 1− ε from (A.4) and from these, we can find M̄ that makes

P

{∣∣∣∣
∫ T

0

Ytdt

∣∣∣∣ > M̄

∣∣∣∣
∫ T

0

g(t)dt

∣∣∣∣
}

< ε,

which completes the proof.

Lemma 5. Let f satisfy Assumption 2.

(a) If k > 0 is an odd number,

n∑
i=1

f(X(i−1)∆)(Wi∆ −W(i−1)∆)k = Op(∆
(k−1)/2

√
Tκf (T ))
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(b) If k > 0 is an even number,

n∑
i=1

f(X(i−1)∆)(Wi∆ −W(i−1)∆)k = Op(∆
(k−2)/2Tκf (T )).

Proof. (a)

E

(
n∑

i=1

f(X(i−1)∆)(Wi∆ −W(i−1)∆)k

)2

= E

(
n∑

i=1

f 2(X(i−1)∆)E(i−1)∆(Wi∆ −W(i−1)∆)2k

)

since (Wi∆ −W(i−1)∆)k and (Wj∆ −W(j−1)∆)k are independent for i 6= j.

E(i−1)∆(Wi∆ −W(i−1)∆)2k = (2k − 1)!!∆k

so

E

(
(2k − 1)!!∆k

n∑
i=1

f 2(X(i−1)∆)

)
= Op(∆

k−1Tκ2
f (T ))

from Lemma 1. So

n∑
i=1

f(X(i−1)∆)(Wi∆ −W(i−1)∆)k = Op(∆
(k−1)/2

√
Tκf (T ))

(b) We rewrite the expression as

n∑
i=1

f(X(i−1)∆)(Wi∆ −W(i−1)∆)k = ∆k/2(k − 1)!!
n∑

i=1

f(X(i−1)∆)

+
n∑

i=1

f(X(i−1)∆)
(
(Wi∆ −W(i−1)∆)k −∆k/2(k − 1)!!

)

We can show

∆k/2(k − 1)!!
n∑

i=1

f(X(i−1)∆) = Op

(
∆(k−2)/2Tκf (T )

)
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from Lemma 1 and note that

E

(
n∑

i=1

f(X(i−1)∆)
(
(Wi∆ −W(i−1)∆)k −∆k/2(k − 1)!!

)
)2

= E

(
n∑

i=1

f 2(X(i−1)∆)E(i−1)∆

[
(Wi∆ −W(i−1)∆)k −∆k/2(k − 1)!!

]2

)

Note that

E(i−1)∆

[
(Wi∆ −W(i−1)∆)k −∆k/2(k − 1)!!

]2
=

(
(2k − 1)!!− ((k − 1)!!)2

)
∆k

so

E

(
(
(2k − 1)!!− ((k − 1)!!)2

)
∆k

n∑
i=1

f 2(X(i−1)∆)

)
= Op(∆

k−1Tκ2
f (T ))

from Lemma 1. So the second term is of order Op(∆
(k−1)/2

√
Tκf (T )) which is smaller

than the first term.

Lemma 6. Define

V ∆
t =

√
2

∆

(
j−1∑
i=1

∫ i∆

(i−1)∆

∫ s

(i−1)∆

dWudWs +

∫ t

(j−1)∆

∫ s

(j−1)∆

dWudWs

)

for t ∈ [(j − 1)∆, j∆), j = 1, . . . , n + 1. Then

V ∆ →p V

for a standard Brownian motion V independent of W , and

V ∆
T − VT = Op

(
(∆T )1/4

)
.

Proof. Clearly, V ∆ is a continuous martingale with quadratic variation given by

[V ∆]t =
2

∆

[
j−1∑
i=1

∫ i∆

(i−1)∆

(Ws −W(i−1)∆)2ds +

∫ t

(j−1)∆

(Ws −W(j−1)∆)2ds

]
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for t ∈ [(j − 1)∆, j∆), j = 1, . . . , n + 1.

We have

[V ∆]t − t =
2

∆

j−1∑
i=1

∫ i∆

(i−1)∆

[
(Ws −W(i−1)∆)2 − (s− (i− 1)∆)

]
ds

+
2

∆

∫ t

(j−1)∆

[
(Ws −W(j−1)∆)2 − (s− (j − 1)∆)

]
ds + O(∆) (A.5)

for t ∈ [(j − 1)∆, j∆), j = 1, . . . , n + 1, uniformly in t ∈ [0, T ]. Therefore, ignoring

O(∆) term in (A.17) that is unimportant, it follows that

E
(
[V ∆]t − t

)2
=

(
2

∆

)2 j−1∑
i=1

E
(∫ i∆

(i−1)∆

[
(Ws −W(i−1)∆)2 − (s− (i− 1)∆)

]
ds

)2

+

(
2

∆

)
E

(∫ t

(j−1)∆

[
(Ws −W(j−1)∆)2 − (s− (j − 1)∆)

]
ds

)2

(A.6)

for t ∈ [(j − 1)∆, j∆), j = 1, . . . , n + 1, due to the independent increment property

of Brownian motion. However, by Cauchy-Schwarz inequality, we have

E
(∫ i∆

(i−1)∆

[
(Ws −W(i−1)∆)2 − (s− (i− 1)∆)

]
ds

)2

≤ ∆

∫ i∆

(i−1)∆

E
[
(Ws −W(i−1)∆)2 − (s− (i− 1)∆)

]2
ds =

2∆4

3
(A.7)

for i = 1, . . . , n. Moreover, we may deduce from (A.18) and (A.19) that

E
(
[V ∆]t − t

)2 ≤
(

2

∆

)2 n∑
i=1

E
(∫ i∆

(i−1)∆

[
(Ws −W(i−1)∆)2 − (s− (i− 1)∆)

]
ds

)2

=

(
2

∆

)2

n
2∆4

3
=

8

3
∆T → 0

under our assumption. Consequently, it follows that

sup
0≤t≤T

E
(
[V ∆]t − t

)2 → 0
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in our asymptotic framework. This implies that

V ∆ →p V,

where V is the standard Brownian motion. Now we show that V is independent of

W . For this, we note that

[V ∆, W ]t =

√
2

∆

[
j−1∑
i=1

∫ i∆

(i−1)∆

(Ws −W(i−1)∆)ds +

∫ t

(j−1)∆

(Ws −W(j−1)∆)ds

]

for t ∈ [(j − 1)∆, j∆), j = 1, . . . , n + 1. It follows that

E[V ∆,W ]2t (A.8)

=
2

∆

[
j−1∑
i=1

E
(∫ i∆

(i−1)∆

(Ws −W(i−1)∆)ds

)2

+ E
(∫ t

(j−1)∆

(Ws −W(j−1)∆)ds

)2
]

for t ∈ [(j − 1)∆, j∆), j = 1, . . . , n + 1, due to the independent increment property

of Brownian motion. Moreover, we have by Cauchy-Schwarz

E
(∫ i∆

(i−1)∆

(Ws −W(i−1)∆)ds

)2

≤ ∆

∫ i∆

(i−1)∆

E(Ws −W(i−1)∆)2ds

= ∆

∫ i∆

(i−1)∆

(s− (i− 1)∆) ds =
∆3

2
(A.9)

for i = 1, . . . , n. Therefore, it can be deduced from (A.20) and (A.21) that

E[V ∆,W ]2t ≤
2

∆

n∑
i=1

E
(∫ i∆

(i−1)∆

(Ws −W(i−1)∆)ds

)2

2

∆
n

∆3

2
= ∆T → 0,

and that

sup
0≤t≤T

E[V ∆,W ]2t → 0

in our asymptotic framework. This proves that V is independent of W .

For the second statement, note that V ∆
t can be represented as a time changed
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Brownian motion V[V ∆]t from the DDS representation. Thus we have

V[V ∆]t − Vt√∣∣[V ∆]t − t
∣∣
√∣∣[V ∆]t − t

∣∣ = Op(1)

√∣∣Op(
√

∆T )
∣∣ = Op

(
(∆T )1/4

)
.

Lemma 7. Let f be a two times differentiable function and let f and its derivatives

satisfy Assumption 2. Then

n∑
i=1

f(X(i−1)∆)(Wi∆ −W(i−1)∆) =

∫ T

0

f(Xt)dWt + Op

(√
∆Tκσκf·(T )

)

and

√
2

∆

n∑
i=1

f(X(i−1)∆)

∫ i∆

(i−1)∆

∫ s

(i−1)∆

dWudWs

=

∫ T

0

f(Xt)dVt + Op

(
∆1/4T 1/4κf (T )

)

+ Op

(
∆1/4T 3/4κ2

σκ
2
f·(T )

)

+ Op(∆
1/4T 5/4(κµκf· + κ2

σκf·· +
√

κµκf·κf··κσ)(T )),

where V is as defined in Lemma 16.
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Proof. For the first statement,

n∑
i=1

f(X(i−1)∆)(Wi∆ −W(i−1)∆)

=

∫ T

0

f(Xt)dWt −
n∑

i=1

∫ i∆

(i−1)∆

(f(Xt)− f(X(i−1)∆))dWt

=

∫ T

0

f(Xt)dWt −
n∑

i=1

∫ i∆

(i−1)∆

∫ t

(i−1)∆

(µf · + σ2f ··
2

)(Xs)dsdWt

−
n∑

i=1

∫ i∆

(i−1)∆

∫ t

(i−1)∆

σf ·(Xs)dWsdWt

=

∫ T

0

f(Xt)dWt + Op(∆Tκµκf·(T )) + Op(∆Tκ2
σκf··(T ))

+ Op(
√

∆Tκσκf·(T )).

The last line is due to Lemma 3.

For the second statement,

√
2

∆

n∑
i=1

f(X(i−1)∆)

∫ i∆

(i−1)∆

∫ s

(i−1)∆

dWudWs

=

∫ T

0

f(Xt)dVt +

∫ T

0

f(Xt)d(V ∆ − V )t

−
n∑

i=1

∫ i∆

(i−1)∆

(
f(Xt)− f(X(i−1)∆)

)
dV ∆

t

=

∫ T

0

f(Xt)dVt + AT + BT .

We will show the order of AT in Part 1, and in Part 2, the order of BT .

Part 1. For AT , note that

AT = f(XT )(V ∆
T − VT )−

∫ T

0

(V ∆
t − Vt)df(Xt)− [f(X), (V ∆ − V )]T

from integration by parts exploiting the notation for the quadratic covariation term.

The orders of the first two terms can be easily obtained from the order of f(XT ),
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V ∆
T − VT , and from Lemma 4. For the first term,

f(XT )(V ∆
T − VT ) = Op(κf (T ))Op

(
(∆T )1/4

)
= Op

(
(∆T )1/4κf (T )

)

and for the second term,

∫ T

0

(V ∆
t − Vt)df(Xt) =

∫ T

0

(V ∆
t − Vt)

(
µf · + σ2f ··

2

)
(Xt)dt

+

∫ T

0

(V ∆
t − Vt)σf ·(Xt)dWt

= CT + DT .

We have

CT ≤
√∫ T

0

(V ∆
t − Vt)2dt

∫ T

0

(
µf · + σ2f ··

2

)2

(Xt)dt

= Op(∆
1/4T 3/4)

[
Op(

√
Tκµκf·(T )) + Op(

√
Tκ2

σκf··(T ))

+ Op(
√

Tκµκf·κf··κσ(T ))
]

= Op(∆
1/4T 5/4κµκf·(T )) + Op(∆

1/4T 5/4κ2
σκf··(T ))

+ Op(∆
1/4T 5/4√κµκf·κf··κσ(T ))

from Lemma 4, and DT is a martingale with a quadratic variation

∫ T

0

(V ∆
t − Vt)

2σ2f ·2(Xt)dt ≤
√∫ T

0

(V ∆
t − Vt)4dt

∫ T

0

σ4f ·4(Xt)dt

= Op(∆
1/2−2ζT 1−2ζ)Op(

√
Tκ4

σκ
4
f·(T ))

from Lemma 4 also, so

DT = Op

(
∆1/4T 3/4κ2

σκ
2
f·(T )

)
.
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For the last term [f(X), (V ∆ − V )]T , since

f(Xt) = f(X0) +

∫ t

0

(
µf · + σ2f ··

2

)
(Xs)ds +

∫ t

0

σf ·(Xs)dWs

and W and V are independent of each other, [f(X), (V ∆ − V )]T is same as the

quadratic covariation of

∫ t

0

σf ·(Xs)dWs

and

V ∆
t =

√
2

∆

(
j−1∑
i=1

∫ i∆

(i−1)∆

∫ s

(i−1)∆

dWudWs +

∫ t

(j−1)∆

∫ s

(j−1)∆

dWudWs

)

as in the definition of V ∆
t . So we have

[f(X), (V ∆ − V )]T =

√
2

∆

n∑
i=1

∫ i∆

(i−1)∆

σf ·(Xs)

∫ s

(i−1)∆

dWuds.

To obtain its order, note that

n∑
i=1

∫ i∆

(i−1)∆

f(Xs)

∫ s

(i−1)∆

dWuds

=
n∑

i=1

f(X(i−1)∆)

∫ i∆

(i−1)∆

∫ s

(i−1)∆

dWuds

+
n∑

i=1

∫ i∆

(i−1)∆

(
f(Xs)− f(X(i−1)∆)

) ∫ s

(i−1)∆

dWuds

= A1T + A2T .

We have

A1T =
n∑

i=1

f(X(i−1)∆)

∫ i∆

(i−1)∆

(i∆− u)dWu
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and this is a martingale with a quadratic variation bounded by

∆2

n∑
i=1

f 2(X(i−1)∆)

∫ i∆

(i−1)∆

du = ∆3

n∑
i=1

f 2(X(i−1)∆) = Op(∆
2Tκ2

f (T ))

from Lemma 1. For A2T ,

A2T =
n∑

i=1

∫ i∆

(i−1)∆

∫ s

(i−1)∆

(
µf · + σ2f ··

2

)
(Xu)du

∫ s

(i−1)∆

dWuds

+
n∑

i=1

∫ i∆

(i−1)∆

∫ s

(i−1)∆

σf ·(Xu)dWu

∫ s

(i−1)∆

dWuds

=A21T + A22T .

and

A21T ≤
n∑

i=1

∫ i∆

(i−1)∆

∫ s

(i−1)∆

∣∣∣∣µf · + σ2f ··
2

∣∣∣∣ (Xu)duds

=Op(∆Tκµκf·(T )) + Op(∆Tκ2
σκf··(T ))

from Lemma 3. For A22T ,

A22T ≤
√√√√

n∑
i=1

∫ i∆

(i−1)∆

(∫ s

(i−1)∆

σf ·(Xu)dWu

)2

ds

n∑
i=1

∫ i∆

(i−1)∆

(∫ s

(i−1)∆

dWu

)2

ds.

Note that

n∑
i=1

∫ i∆

(i−1)∆

(∫ s

(i−1)∆

σf ·(Xu)dWu

)2

ds = Op(∆T 2κ2
σκ

2
f·(T ))

since

∫ s

(i−1)∆

σf ·(Xu)dWu = Op(
√

∆Tκσκf·(T )),

so

A22T = Op

(√
∆Tκσκf·(T )

)
Op

(√
∆T

)
= Op(∆T 3/2κσκf·(T )),
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and the order of quadratic covariation becomes

[f(X),(V ∆ − V )]T = Op

(√
∆
√

Tκσκf·(T )
)

+ Op

(√
∆Tκµκσκf··(T )

)

+ Op

(√
∆Tκµκσ·κf·(T )

)
+ Op

(√
∆Tκ2

σκσ·κf··(T )
)

+ Op

(√
∆Tκ3

σκf···(T )
)

+ Op

(√
∆Tκ2

σκσ··κf·(T )
)

+ Op

(√
∆Tκ2

σκf··(T )
)

+ Op

(√
∆Tκσκσ·κf·(T )

)

+ Op

(√
∆

√
Tκ2

σκf··(T )
)

+ Op

(√
∆

√
Tκσκσ·κf·(T )

)
.

Since these are all of smaller order than the previous, we have

AT = Op

(
∆1/4T 1/4κf (T )

)
+ Op(∆

1/4T 5/4κµκf·(T )) + Op(∆
1/4T 5/4κ2

σκf··(T ))

+ Op(∆
1/4T 5/4√κµκf·κf··κσ(T )) + Op

(
∆1/4T 3/4κ2

σκ
2
f·(T )

)

as a result.

Part 2. For BT ,

BT =
n∑

i=1

∫ i∆

(i−1)∆

∫ t

(i−1)∆

(
µf · + σ2f ··

2

)
(Xs)dsdV ∆

t

+
n∑

i=1

∫ i∆

(i−1)∆

∫ t

(i−1)∆

σf ·(Xs)dWsdV ∆
t

= B1T + B2T

from Itô’s lemma. For B1T , note that

n∑
i=1

∫ i∆

(i−1)∆

∫ t

(i−1)∆

f(Xs)dsdV ∆
t
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is a martingale with a quadratic variation

n∑
i=1

∫ i∆

(i−1)∆

(∫ t

(i−1)∆

f(Xs)ds

)2

d[V ∆]t

=
n∑

i=1

∫ i∆

(i−1)∆

∫ t

(i−1)∆

f(Xu)

∫ u

(i−1)∆

f(Xs)dsdud[V ∆]t

=
n∑

i=1

∫ i∆

(i−1)∆

(
[V ∆]i∆ − [V ∆]u

)
f(Xu)

∫ u

(i−1)∆

f(Xs)dsdu

≤
√√√√

n∑
i=1

∫ i∆

(i−1)∆

(
[V ∆]i∆ − [V ∆]u

)2
du

n∑
i=1

∫ i∆

(i−1)∆

f 2(Xu)

(∫ u

(i−1)∆

f(Xs)ds

)2

du

=B11T B12T .

Since the order of
∑n

i=1

∫ i∆

(i−1)∆

(
[V ∆]i∆ − [V ∆]s

)2
ds is the same as the order of its

expectation being a positive process, we can consider the order of the expectation

instead. We have

E

(
n∑

i=1

∫ i∆

(i−1)∆

(
[V ∆]i∆ − [V ∆]s

)2
ds

)

= E

(
4

∆2

n∑
i=1

∫ i∆

(i−1)∆

(∫ i∆

s

(Wu −Ws)
2du

)2

ds

)
(A.10)

= E

(
4

∆2

n∑
i=1

∫ i∆

(i−1)∆

E(i−1)∆

(∫ i∆

s

(Wu −Ws)
2du

)2

ds

)
.

and since

E(i−1)∆

(∫ i∆

s

(Wu −Ws)
2du

)2

≤ (i∆− s)

∫ i∆

s

E(i−1)∆(Wu −Ws)
4du

= (i∆− s)4,

we have

E

(
n∑

i=1

∫ i∆

(i−1)∆

(
[V ∆]i∆ − [V ∆]s

)2
ds

)
≤ 4∆2T
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and

B11T = Op(∆
√

T ).

For B12T ,

n∑
i=1

∫ i∆

(i−1)∆

f 2(Xu)

(∫ u

(i−1)∆

f(Xs)ds

)2

du ≤ ∆2T sup
0≤t≤T

∣∣f 2(Xt)
∣∣ sup

0≤t≤T

∣∣f(Xt)
∣∣2

= Op(∆
2Tκ4

f (T )),

so

B1T = Op(∆
√

T )Op(∆
√

Tκ2
f (T )) = Op(∆

√
Tκf (T )).

For B2T , note that

n∑
i=1

∫ i∆

(i−1)∆

∫ t

(i−1)∆

f(Xs)dWsdV ∆
t

is a martingale with a quadratic variation

n∑
i=1

∫ i∆

(i−1)∆

(∫ t

(i−1)∆

f(Xs)dWs

)2

d[V ∆]t

=
n∑

i=1

∫ i∆

(i−1)∆

∫ t

(i−1)∆

f 2(Xs)dsd[V ∆]t

+ 2
n∑

i=1

∫ i∆

(i−1)∆

∫ t

(i−1)∆

f(Xs)

∫ s

(i−1)∆

f(Xu)dWudWsd[V ∆]t

=B21T + 2B22T .
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For B21T ,

B21T =
n∑

i=1

∫ i∆

(i−1)∆

(
[V ∆]i∆ − [V ∆]s

)
f 2(Xs)ds

≤
√√√√

n∑
i=1

∫ i∆

(i−1)∆

(
[V ∆]i∆ − [V ∆]s

)2
ds

n∑
i=1

∫ i∆

(i−1)∆

f 4(Xs)ds.

so

B21T = Op(∆
√

T )Op(
√

Tκ2
f (T )) = Op(∆Tκ2

f (T )).

For B22T ,

B22T =
n∑

i=1

∫ i∆

(i−1)∆

(
[V ∆]i∆ − [V ∆]s

)
f(Xs)

∫ s

(i−1)∆

f(Xu)dWudWs

and this is a martingale with a quadratic variation

n∑
i=1

∫ i∆

(i−1)∆

(
[V ∆]i∆ − [V ∆]s

)2
f 2(Xs)

(∫ s

(i−1)∆

f(Xu)dWu

)2

ds

≤
√√√√

n∑
i=1

∫ i∆

(i−1)∆

(
[V ∆]i∆ − [V ∆]s

)4
ds

n∑
i=1

∫ i∆

(i−1)∆

f 4(Xs)

(∫ s

(i−1)∆

f(Xu)dWu

)4

ds.

Note that

∫ s

(i−1)∆

f(Xu)dWu = Op(
√

∆Tκf (T ))

since it’s a martingale with a quadratic variation

∫ s

(i−1)∆

f 2(Xu)du = Op(∆Tκ2
f (T )),

and since

f(Xs) = Op(κf (T )),
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we have

n∑
i=1

∫ i∆

(i−1)∆

f 4(Xs)

(∫ s

(i−1)∆

f(Xu)dWu

)4

ds = Op(∆
2T 3κ8

f (T ))

and

n∑
i=1

∫ i∆

(i−1)∆

(
[V ∆]i∆ − [V ∆]s

)4
ds = Op(∆

4T )

since

E(i−1)∆

(∫ i∆

s

(Wu −Ws)
2du

)4

≤ (i∆− s)2E(i−1)∆

(∫ i∆

s

(Wu −Ws)
4du

)2

≤ (i∆− s)3

∫ i∆

s

E(i−1)∆(Wu −Ws)
8du

= 21(i∆− s)8

with the same way as in (A.22). So

B22T = Op(∆
√

Tκf (T ))

and we can check that BT has a smaller order than AT .

Lemma 8. For a positive integer k and for a four times differentiable function f , let

f and its derivatives satisfy Assumption 2. Then

n∑
i=1

f(X(i−1)∆)(Xi∆ −X(i−1)∆ −∆µ(X(i−1)∆))k = Op

(
∆(k−1)/2

√
Tκk

σκf (T )
)

when k is odd and

n∑
i=1

f(X(i−1)∆)(Xi∆ −X(i−1)∆ −∆µ(X(i−1)∆))k = Op

(
∆(k−2)/2Tκk

σκf (T )
)

when k is even.
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Proof. Note that, by Ito’s Lemma,

Xi∆ −X(i−1)∆ =

∫ i∆

(i−1)∆

µ(Xt)dt +

∫ i∆

(i−1)∆

σ(Xt)dWt

=∆µ(X(i−1)∆) + σ(X(i−1)∆)(Wi∆ −W(i−1)∆)

+

∫ i∆

(i−1)∆

(µ(Xt)− µ(X(i−1)∆))dt

+

∫ i∆

(i−1)∆

(σ(Xt)− σ(X(i−1)∆))dWt

and

Xi∆ −X(i−1)∆ −∆µ(X(i−1)∆) =σ(X(i−1)∆)(Wi∆ −W(i−1)∆)

+

∫ i∆

(i−1)∆

∫ t

(i−1)∆

(µµ· + σ2µ··
2

)(Xs)dsdt

+

∫ i∆

(i−1)∆

∫ t

(i−1)∆

σµ·(Xs)dWsdt

+

∫ i∆

(i−1)∆

∫ t

(i−1)∆

(µσ· + σ2σ··
2

)(Xs)dsdWt

+

∫ i∆

(i−1)∆

∫ t

(i−1)∆

σσ·(Xs)dWsdWt.

so we have

n∑
i=1

f(X(i−1)∆)(Xi∆ −X(i−1)∆ −∆µ(X(i−1)∆))k

=
n∑

i=1

f(X(i−1)∆)(σk(X(i−1)∆)(Wi∆ −W(i−1)∆)k + Ri)

where Ri are the cross products of each terms and

n∑
i=1

f(X(i−1)∆)σk(X(i−1)∆)(Wi∆ −W(i−1)∆)k = Op

(
∆(k−1)/2

√
Tκk

σκf (T )
)
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when k is odd and

n∑
i=1

f(X(i−1)∆)σk(X(i−1)∆)(Wi∆ −W(i−1)∆)k = Op

(
∆(k−2)/2Tκk

σκf (T )
)

when k is even from Lemma 5. And also,

n∑
i=1

f(X(i−1)∆)Ri

can be dealt with Lemma 3 and can be shown to be of smaller order.

Lemma 9.

n∑
i=1

f(X(i−1)∆)(Xi∆ −X(i−1)∆ −∆µ(X(i−1)∆))

=

∫ T

0

σf(Xt)dWt + Op

(√
∆Tκσκσ·κf (T )

)
+ Op

(√
∆Tκ2

σκf·(T )
)

Proof. The proof is same as the proof of Lemma 8 only with a difference that k = 1

and

n∑
i=1

fσ(X(i−1)∆)(Wi∆ −W(i−1)∆) =

∫ T

0

σf(Xt)dWt + Op

(√
∆Tκσκσ·κf (T )

)

+ Op

(√
∆Tκ2

σκf·(T )
)

from Lemma 15

Lemma 10. For a four times differentiable function f , let f and its derivatives satisfy

Assumption 2. Then

n∑
i=1

f(X(i−1)∆)
[
(Xi∆ −X(i−1)∆ −∆µ(X(i−1)∆))2 −∆σ2(X(i−1)∆)

]

=
√

2∆

∫ T

0

σ2f(Xt)dVt + Op(∆
1/4Ff (T ))

for any ζ > 0, where Ff (T ) is a function of T as defined as in (A.11) and (A.12)

according to f , and V is a standard Brownian motion independent of W .
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Proof. Denoting V ∆
i∆ − V ∆

(i−1)∆ =
∫ i∆

(i−1)∆

∫ t

(i−1)∆
dWsdWt, we can write as

Xi∆ −X(i−1)∆ −∆µ(X(i−1)∆)

= σ(X(i−1)∆)(Wi∆ −W(i−1)∆) + σσ·(X(i−1)∆)(V ∆
i∆ − V ∆

(i−1)∆) + Ri,

where Ri is a remainer term, from the first equation of the proof of Lemma 8. Re-

placing this into the following, we have

n∑
i=1

f(X(i−1)∆)
[
(Xi∆ −X(i−1)∆ −∆µ(X(i−1)∆))2 −∆σ2(X(i−1)∆)

]

=
n∑

i=1

f(X(i−1)∆)
[
(σ(X(i−1)∆)(Wi∆ −W(i−1)∆) + σσ·(X(i−1)∆)(Vi∆ − V(i−1)∆) + Ri)

2

−∆σ2(X(i−1)∆)
]

=
n∑

i=1

f(X(i−1)∆)
[
σ2(X(i−1)∆)(Wi∆ −W(i−1)∆)2

+ 2σ2σ·(X(i−1)∆)(Wi∆ −W(i−1)∆)(V ∆
i∆ − V ∆

(i−1)∆)

+ σ2σ·2(X(i−1)∆)(V ∆
i∆ − V ∆

(i−1)∆)2 + R∗
i

−∆σ2(X(i−1)∆)
]
,

where R∗
i denotes the terms multiplied by Ri. From Lemma 15,

n∑
i=1

fσ2(X(i−1)∆)[(Wi∆ −W(i−1)∆)2 −∆] =
√

2∆

∫ T

0

fσ2(Xt)dVt

+ Op(∆
3/4T 1/4κfκ

2
σ(T )) (A.11)

+ Op(∆
3/4T 3/4κ4

σ(κσκf· + 2κfκσ·)
2(T ))

+ Op(∆
3/4T 5/4F (T ))
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where

F (T ) = κσ

(
κf··κ

3
σ + 2 (2κf·κσ· + κfκσ··) κ2

σ + 2κfκ
2
σ·κσ + κµ (κσκf· + 2κfκσ·) (A.12)

+
(
κµκσ (κσκf· + 2κfκσ·)

(
κf··κ

2
σ + 4κf·κσ·κσ + 2κfκσ··κσ + 2κfκ

2
σ·
))1/2

)
(T )

and

n∑
i=1

fσ2σ·(X(i−1)∆)(Wi∆ −W(i−1)∆)(V ∆
i∆ − V ∆

(i−1)∆) = Op(∆Tκfκ
2
σκσ·(T ))

n∑
i=1

fσ2σ·2(X(i−1)∆)(V ∆
i∆ − V ∆

(i−1)∆)2 = Op(∆Tκfκ
2
σκ

2
σ·(T ))

by the same steps in the proof of Lemma 3 from the independent increments of the

Brownian motion and E
(
(Wi∆ − W(i−1)∆)(V ∆

i∆ − V ∆
(i−1)∆)

)
= 0, and the remainder

term
∑n

i=1 f(X(i−1)∆)R∗
i can be also shown to be of smaller order by Lemma 3.

Lemma 11. Let {Zi} be a sequence of random variables. Denoting xi = X(i−1)∆ and

yi = Xi∆, we have

n∑
i=1

(
e+(xi, yi)− e−(xi, yi)

e+(xi, yi) + e−(xi, yi)

)p

Zi =
n∑

i=1

Zi + Op

(√
Tν

∆ exp(∆−1)

)

for a finite integer p > 0, as ∆ → 0 and T → ∞, where ν is a sequence satisfying
∑n

i=1 Z2
i = Op(ν).

Proof. By expanding the terms and arranging them, we have

n∑
i=1

(
e+(xi, yi)− e−(xi, yi)

e+(xi, yi) + e−(xi, yi)

)p

Zi =
n∑

i=1

(
1− 2e−(xi, yi)

e+(xi, yi) + e−(xi, yi)

)p

Zi

=
n∑

i=1

Zi +
n∑

i=1

(
p∑

j=1

Cp,j

(
2e−(xi, yi)

e+(xi, yi) + e−(xi, yi)

)j
)

Zi
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where Cp,j =
(

cj
p

p

)
with cj

p = min(j − 1, p− j). For each term in the remainder,

n∑
i=1

Cp,j

(
2e−(xi, yi)

e+(xi, yi) + e−(xi, yi)

)j

Zi ≤
√√√√

n∑
i=1

C2
p,j

(
2e−(xi, yi)

e+(xi, yi) + e−(xi, yi)

)2j n∑
i=1

Z2
i

=
√

Op(n exp(−∆−1))Op(ν)

= Op

(√
Tν

∆ exp(∆−1)

)

since

(
2e−(xi, yi)

e+(xi, yi) + e−(xi, yi)

)2j

= Op

(
exp(−∆−1)

)
. (A.13)

for each i. To show (A.13), we will first obtain the order of Xi∆ −X(i−1)∆ in Part 1,

and will prove (A.13) by finding out the order of e−(xi, yi) and e−(xi, yi) in Part 2.

Hereafter, we will explicitly denote the arguments for e+(xi, yi) and e−(xi, yi) such as

e+(X(i−1)∆, Xi∆) (A.14)

e−(X(i−1)∆, Xi∆).

Part 1. By Itô’s lemma,

Xi∆ −X(i−1)∆ = ∆µ(X(i−1)∆) +

∫ i∆

(i−1)∆

∫ t

(i−1)∆

(
µµ· + σ2µ··

2

)
(Xs)dsdt

+

∫ i∆

(i−1)∆

∫ t

(i−1)∆

σµ·(Xs)dWsdt +

∫ i∆

(i−1)∆

σ(Xt)dWt

= ∆µ(X(i−1)∆) + AT + BT + CT .

For AT , note that

∫ i∆

(i−1)∆

f(Xs)ds ≤ ∆ sup
s∈[(i−1)∆,i∆]

∣∣f(Xs)
∣∣ ≤ ∆ sup

s∈[0,T ]

∣∣f(Xs)
∣∣
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and

sup
t∈[0,T ]

∣∣f(Xt)
∣∣ = Op(κf (T )).

Thus we have

AT =

∫ i∆

(i−1)∆

(i∆− s)

(
µµ· + σ2µ··

2

)
(Xs)ds

≤ ∆

∫ i∆

(i−1)∆

∣∣∣∣µµ· + σ2µ··
2

∣∣∣∣ (Xs)ds

= Op(∆
2κµκµ·(T )) + Op(∆

2κ2
σκµ··(T )).

Also,

BT =

∫ i∆

(i−1)∆

(i∆− s)σµ·(Xs)dWs

is a martingale whose quadratic variation is

[B]T =

∫ i∆

(i−1)∆

(i∆− s)2σ2µ·2(Xs)ds = Op

(
∆3κ2

σκ
2
µ·(T )

)
,

so we have

BT = Op

(
∆3/2κσκµ·(T )

)
.

Also, CT is a martingale whose quadratic variation is

[C]T =

∫ i∆

(i−1)∆

σ2(Xt)dt = Op(∆κ2
σ(T )),

so we have

CT = Op

(
∆1/2κσ(T )

)
.
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Combining these results, we have

Xi∆ −X(i−1)∆ =∆µ(X(i−1)∆) + Op(∆
2κµκµ·(T )) + Op(∆

2κ2
σκµ··(T ))

+ Op

(
∆3/2κσκµ·(T )

)
+ Op

(
∆1/2κσ(T )

)

=Op

(
∆1/2κσ(T )

)
.

Note that we have

f(X(i−1)∆) ≤ sup
t∈[0,T ]

∣∣f(Xt)
∣∣ = Op(κf (T )) (A.15)

for each i.

Part 2. From the order results in Part 1 and (A.15), we know that

1

∆σ·2(X(i−1)∆)

is the biggest order term in (A.14), so we have

e+(X(i−1)∆, Xi∆) = Op

(
exp(∆−1κ2

σ·−1(T ))
)

and

e−(X(i−1)∆, Xi∆) = Op

(
exp(−∆−1κ2

σ·−1(T ))
)
.

From e−(xi, yi)/ exp(−∆−1) →p 0, we have

e−(xi, yi) = Op(exp(−∆−1)),
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and with this order, we can show by CMT,

2e−(xi, yi)

e+(xi, yi) + e−(xi, yi)
=

2e−(xi, yi)

e+(xi, yi) + op(1)

=
2e−(xi, yi)

e+(xi, yi)

(
1 + op(1)

)

= Op(exp(−∆−1)).

Lemma 12. Let f be a function of a form of,

f(X(i−1)∆, Xi∆, ∆) =
(
Xi∆ −X(i−1)∆ −∆µ(X(i−1)∆)

)v
d(X(i−1)∆)

[
σ(X(i−1)∆) + ∆b(X(i−1)∆) +

(
Xi∆ −X(i−1)∆ −∆µ(X(i−1)∆)

)
c(X(i−1)∆)

]u

with v = 0, 1, 2 and a real number u < 2, for b(x), c(x) and d(x) being four times

differentiable functions. These functions and their derivatives satisfy Assumption 2.

Let

f ∗(X(i−1)∆) = d(X(i−1)∆)σ(X(i−1)∆)u
(
Xi∆ −X(i−1)∆ −∆µ(X(i−1)∆)

)v

If we have a decreasing sequence µT satisfying

µT ∆3/2

n∑
i=1

f ∗(X(i−1)∆) →p A

for some A as T →∞ and ∆ → 0, we also have

µT ∆3/2

n∑
i=1

f(X(i−1)∆, Xi∆, ∆) →p A

as T →∞ and ∆ → 0.

Proof. Note that

f(X(i−1)∆, Xi∆, ∆) = (Xi∆ −X(i−1)∆ −∆µ(X(i−1)∆))vd(X(i−1)∆)σ(X(i−1)∆)u + R
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where R is the remainder term which is

R ≤ (Xi∆ −X(i−1)∆ −∆µ(X(i−1)∆))vd(X(i−1)∆)

uσ(X(i−1)∆)u−1
(
∆b(X(i−1)∆) + (Xi∆ −X(i−1)∆ −∆µ(X(i−1)∆))c(X(i−1)∆)

)

+ |(Xi∆ −X(i−1)∆ −∆µ(X(i−1)∆))|v|d(X(i−1)∆)|

Asup

(
∆b(X(i−1)∆) + (Xi∆ −X(i−1)∆ −∆µ(X(i−1)∆))c(X(i−1)∆)

)2

where

Asup = sup
t∈[0,T ]

∣∣∣∣∣
u(u− 1)

2

(
σ(Xt) + ∆b(Xt) + (Xt+∆ −Xt −∆µ(Xt))c(Xt)

)u−2

∣∣∣∣∣

+ sup
t∈[0,T ]

∣∣∣∣∣
u(u− 1)

2
σu−2(Xt)

∣∣∣∣∣

since a power function is monotonic. Thus,

n∑
i=1

f(X(i−1)∆, Xi∆, ∆) =
n∑

i=1

(Xi∆ −X(i−1)∆ −∆µ(X(i−1)∆))vd(X(i−1)∆)σ(X(i−1)∆)u

+ ΣR

where ΣR is the sum of the remainder terms, such that

ΣR ≤
n∑

i=1

(Xi∆ −X(i−1)∆ −∆µ(X(i−1)∆))vd(X(i−1)∆)

uσ(X(i−1)∆)u−1
(
∆b(X(i−1)∆) + (Xi∆ −X(i−1)∆ −∆µ(X(i−1)∆))c(X(i−1)∆)

)

+ Asup

n∑
i=1

|(Xi∆ −X(i−1)∆ −∆µ(X(i−1)∆))|v|d(X(i−1)∆)|

(
∆b(X(i−1)∆) + (Xi∆ −X(i−1)∆ −∆µ(X(i−1)∆))c(X(i−1)∆)

)2

= AT + BT
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It is easy to check

AT =

{
Op(∆

v/2
√

Tκv+1
σ κdκ

1−u
σ−1 κc(T )) if u < 1

Op(∆
v/2
√

Tκv+u
σ κdκc(T )) if u ≥ 1

when v + 1 is odd and

AT =

{
Op(∆

(v−1)/2Tκv+1
σ κdκ

1−u
σ−1 κc(T )) if u < 1

Op(∆
(v−1)/2Tκv+u

σ κdκc(T )) if u ≥ 1

when v + 1 is even from Lemma 8, and for BT ,

BT =

{
Op(∆

v/2Tκv+2
σ κ2−u

σ−1 κdκ
2
c(T )) if u < 2

Op(∆
v/2Tκv+u

σ κdκ
2
c(T )) if u ≥ 2

following the same steps in the proof of Lemma 11.

On the other hand,

n∑
i=1

(Xi∆−X(i−1)∆ −∆µ(X(i−1)∆))vd(X(i−1)∆)σ(X(i−1)∆)u

=

{
Op(∆

(v−1)/2
√

Tκv
σκdκ

−u
σ−1(T )) if u < 0

Op(∆
(v−1)/2

√
Tκv+u

σ κd(T )) if u ≥ 0

when v is odd and

n∑
i=1

(Xi∆−X(i−1)∆ −∆µ(X(i−1)∆))vd(X(i−1)∆)σ(X(i−1)∆)u

=

{
Op(∆

(v−2)/2Tκv
σκdκ

−u
σ−1(T )) if u < 0

Op(∆
(v−2)/2Tκv+u

σ κd(T )) if u ≥ 0

when v is even. Under our condition, this becomes the leading term, which completes

the proof.

Lemma 13. Let g be a power function g(x) = xp and f be a four times differentiable
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function. Also let f and its derivatives satisfy Assumption 2. Denoting

D(X(i−1)∆, Xi∆) = ∆σσ·2(X(i−1)∆) + 2σ·(X(i−1)∆)
(
Xi∆ −X(i−1)∆ −∆µ(X(i−1)∆)

)

we have

n∑
i=1

f(X(i−1)∆)g
(
σ(X(i−1)∆) + D(X(i−1)∆, Xi∆)

)

=
n∑

i=1

f(X(i−1)∆)
[
g(σ(X(i−1)∆)) + g′(σ(X(i−1)∆))D(X(i−1)∆, Xi∆) + · · ·

+ g(k)(σ(X(i−1)∆))D(X(i−1)∆, Xi∆)k
]

+ Op(R),

where R = ∆k/2(
√

Tκp
σκfκσ·(T ) + Tκfκ

p
σ(T )) when k is an even number, and R =

∆(k−1)/2Tκp
σκfκσ·(T ) when k is odd if p ≥ 0. If p < 0, R = ∆k/2(

√
Tκ−p

σ−1κfκσ·(T ) +

Tκfκ
−p
σ−1(T )) when k is even, and R = ∆(k−1)/2Tκ−p

σ−1κfκσ·(T ) when k is odd.

Proof. Let’s denote Di = D(X(i−1)∆, Xi∆) for the simplicity hereafter.

n∑
i=1

f(X(i−1)∆)g
(
σ(X(i−1)∆) + Di

)

=
n∑

i=1

f(X(i−1)∆)
[
g(σ(X(i−1)∆)) + g′(σ(X(i−1)∆))Di + · · ·+ 1

k!
g(k)(σ(X(i−1)∆))Dk

i

]

+ R

where R is a remainder term which is

R ≤
n∑

i=1

1

(k + 1)!
f(X(i−1)∆)g(k+1)(σ(X(i−1)∆))Dk+1

i +
n∑

i=1

Gsup

(k + 2)!
|f(X(i−1)∆)||Di|k+2

= AT + BT
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where

Gsup = sup
t∈[0,T ]

∣∣∣g(k+2)
[
σ(Xt) + ∆σσ·2(Xt) + 2σ·(Xt)(Xt+∆ −Xt −∆µ(Xt))

]∣∣∣

+ sup
t∈[0,T ]

∣∣∣g(k+2)
[
σ(Xt)

]∣∣∣

since a power function is monotone. With the same steps as in the proof of Lemma

12, we can show

AT =

{
Op(∆

k/2
√

Tκp
σκfκσ·(T )) if p > 0

Op(∆
k/2
√

Tκ−p
σ−1κfκσ·(T )) if p ≤ 0

when k + 1 is odd and

AT =

{
Op(∆

(k−1)/2Tκp
σκfκσ·(T )) if p > 0

Op(∆
(k−1)/2Tκ−p

σ−1κfκσ·(T )) if p ≤ 0

when k + 1 is even. Also

BT =

{
Op(∆

k/2Tκfκ
p
σ(T )) if p > 0

Op(∆
k/2Tκfκ

−p
σ−1(T )) if p ≤ 0

So as a result,

n∑
i=1

f(X(i−1)∆)g
(
σ(X(i−1)∆) + Di

)

=
n∑

i=1

f(X(i−1)∆)
[
g(σ(X(i−1)∆)) + g′(σ(X(i−1)∆))Di + · · ·+ 1

k!
g(k)(σ(X(i−1)∆))Dk

i

]

+

{
Op(∆

k/2
√

Tκp
σκfκσ·(T )) + Op(∆

k/2Tκfκ
p
σ(T )) if p > 0

Op(∆
k/2
√

Tκ−p
σ−1κfκσ·(T )) + Op(∆

k/2Tκfκ
−p
σ−1(T )) if p ≤ 0
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when k is even and

n∑
i=1

f(X(i−1)∆)g
(
σ(X(i−1)∆) + Di

)

=
n∑

i=1

f(X(i−1)∆)
[
g(σ(X(i−1)∆)) + g′(σ(X(i−1)∆))Di + · · ·+ 1

k!
g(k)(σ(X(i−1)∆))Dk

i

]

+

{
Op(∆

(k−1)/2Tκp
σκfκσ·(T )) if p > 0

Op(∆
(k−1)/2Tκ−p

σ−1κfκσ·(T )) if p ≤ 0

when k is odd.

B. Asymptotics of the Log-Likelihood Derivatives

1. Euler ML Estimator Asymptotics

For the scores of the Euler approximated log-likelihood function, we have

Sα(θ) =
n∑

i=1

`α(xi, yi) =

∫ T

0

µα

σ
(Xt)dWt + Op

(√
∆T (κµ·α+ κµακσ·κσ−1)(T )

)

Sβ(θ) =
n∑

i=1

`β(xi, yi) =

√
2

∆

∫ T

0

σβ

σ
(Xt)dVt + Op

(
∆−1/4Fσβσ−3(T )

)



105

and for the Hessians, we have

Hαα′(θ) =
n∑

i=1

`αα′(xi, yi) = −
∫ T

0

µαµ′α
σ2

(Xt)dt +

∫ T

0

µαα′

σ
(Xt)dWt

+ Op(
√

∆T (κµ·
αα′
− κµαα′κσ·κσ−1)(T ))

Hαβ′(θ) =
n∑

i=1

`αβ′(xi, yi) = −2

∫ T

0

µασ′β
σ2

(Xt)dWt

+ Op(
√

∆T (κµ·ακ′σβ
κσ−1 − κµακ′σβ

κσ·κ
2
σ−1 + κµακ′σ·βκσ−1)(T ))

Hβα′(θ) =
n∑

i=1

`βα′(xi, yi) = −2

∫ T

0

σβµ′α
σ2

(Xt)dWt

+ Op(
√

∆T (κσβ
κ′µ·ακσ−1 − κσβ

κ′µα
κσ·κ

2
σ−1 + κσ·βκ′µα

κσ−1)(T ))

Hββ′(θ) =
n∑

i=1

`ββ′(xi, yi) = − 2

∆

∫ T

0

σβσ′β
σ2

(Xt)dt

+ Op

(√
T

∆
(κσκσββ′ − 3κσβ

κ′σβ
)κ2

σ−1(T )

)

2. Milstein ML Estimator Asymptotics

For the scores of the Milstein approximated log-likelihood function, we have

Sα(θ) =
n∑

i=1

`α(xi, yi) =

∫ T

0

µα

σ
(Xt)dWt + Op

(√
∆T (κµ·α+ κµακσ·κσ−1)(T )

)

Sβ(θ) =
n∑

i=1

`β(xi, yi) =

√
2

∆

∫ T

0

σβ

σ
(Xt)dVt + Op

(
∆−1/4Fσβσ−3(T )

)
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and for the Hessians, we have

Hαα′(θ) =
n∑

i=1

`αα′(xi, yi) = −
∫ T

0

µαµ′α
σ2

(Xt)dt +

∫ T

0

µαα′

σ
(Xt)dWt

+ Op(
√

∆T (κµ·
αα′
− κµαα′κσ·κσ−1)(T ))

Hαβ′(θ) =
n∑

i=1

`αβ′(xi, yi) = −2

∫ T

0

µασ′β
σ2

(Xt)dWt + 3

∫ T

0

µασ′βσ·
σ2

(Xt)dt

+ Op(
√

∆T (κµ·ακ′σβ
κσ−1 − κµακ′σβ

κσ·κ
2
σ−1 + κµακ′σ·βκσ−1)(T ))

Hβα′(θ) =
n∑

i=1

`βα′(xi, yi) = −2

∫ T

0

σβµ′α
σ2

(Xt)dWt + 3

∫ T

0

σβµ′ασ·
σ2

(Xt)dt

+ Op(
√

∆T (κσβ
κ′µ·ακσ−1 − κσβ

κ′µα
κσ·κ

2
σ−1 + κσ·βκ′µα

κσ−1)(T ))

Hββ′(θ) =
n∑

i=1

`ββ′(xi, yi) = − 2

∆

∫ T

0

σβσ′β
σ2

(Xt)dt

+ Op

(√
T

∆
(κσκσββ′ − 3κσβ

κ′σβ
)κ2

σ−1(T )

)

C. Proofs and Useful Lemmas for Chapter III

1. Proof of Proposition 3 and 5

Part 1: Euler ML Case

Denote x = X(i−1)∆ and y = Xi∆. Note that we have the scores of the likelihood L
as S(θ0) =

∑n
i=1

(
`α(x, y), `β(x, y)

)′
, where

`α(x, y) =
µα(x)

σ2(x)

(
y − x−∆µ(x)

)

`β(x, y) =
σβ(x)

∆σ3(x)

[(
y − x−∆µ(x)

)2 −∆σ2(x)
]
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and for the Hessians, we have

H(θ0) =
n∑

i=1




`αα(x, y) `αβ(x, y)

`αβ(x, y) `ββ(x, y)




where

`αα(x, y) =
µαα(x)

σ2(x)

(
y − x−∆µ(x)

)− ∆µ2
α(x)

σ2(x)

`αβ(x, y) = −2µασβ(x)

σ3(x)

(
y − x−∆µ(x)

)

`ββ(x, y) =
1

∆σ4(x)

[(
σσββ(x)− 3σ3

β(x)
)[(

y − x−∆µ(x)
)2 −∆σ2(x)

]− 2∆σ2σ2
β(x)

]
.

Also we have

J(θ0) =
n∑

i=1




`ααα(x, y) `ααβ(x, y)

`ααβ(x, y) `αββ(x, y)

`ααβ(x, y) `αββ(x, y)

`αββ(x, y) `βββ(x, y)




,

where

`ααα(x, y) = −µααα(x)

σ2(x)

(
y − x−∆µ(x)

)− 3∆µαµαα(x)

σ2(x)

`ααβ(x, y) = −2µαασβ(x)

σ3(x)

(
y − x−∆µ(x)

)
+

2∆µ2
ασβ(x)

σ3(x)

`αββ(x, y) =
2µα

(
3σ2

β(x)− σσββ

)

σ4(x)

(
y − x−∆µ(x)

)

`βββ(x, y) =
1

∆σ5(x)

(
σ2σβββ(x)− 9σσβσββ(x) + 12σ3

β

)[(
y − x−∆µ(x)

)2 −∆σ2(x)
]

+
1

σ3(x)

(
10σ3

β(x)− 6σσβσββ(x)
)
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and

Kαααα(θ0) =
n∑

i=1

`αααα(x, y)

=
n∑

i=1

[
µαααα(x)

σ2(x)

(
y − x−∆µ(x)

)− ∆(3µ2
αα + 4µαµααα)(x)

σ2(x)

]
.

From this, it’s easily derived from Lemma 21 and 22, that

n∑
i=1

`α(x, y) ≈
[∫ T

0

µα

σ
(Xt)dWt −

√
∆

2

∫ T

0

(
µ·α −

µασ·
σ

)
(Xt)dVt

]

n∑
i=1

`β(x, y) ≈
[√

2

∆

∫ T

0

σβ

σ
(Xt)dVt

+
2

(3∆)1/4

∫ T

0

(
σ·β −

σβσ·
σ

)
(Xt)

√∣∣∣∣
√

2

3
Vt +

1√
3
Zt

∣∣∣∣dUt

]

which proves the first part of the proposition, and also from Lemma 21, 22 and 2, we

have

n∑
i=1

`αα(x, y) ≈
[
−

∫ T

0

µ2
α

σ2
(Xt)dt +

∫ T

0

µαα

σ
(Xt)dWt

−
√

∆

2

∫ T

0

(
µ·αα −

µαασ·
σ

)
(Xt)dVt

]

n∑
i=1

`αβ(x, y) ≈
[
− 2

∫ T

0

µασβ

σ2
(Xt)dWt

+
√

2∆

∫ T

0

(
2µασβσ·

σ2
− µ·ασβ

σ
− µασ·β

σ

)
(Xt)dVt

]

n∑
i=1

`ββ(x, y) ≈
[
− 2

∆

∫ T

0

σ2
β

σ2
(Xt)dt +

√
2

∆

∫ T

0

(
σββ

σ
− 3σ2

β

σ2

)
(Xt)dVt

]
.

I omit the results for J and K here. Note that for `αα term, the second term will be

of smaller order from Assumption 5 when T → ∞ and ∆ → 0, but when T is fixed,

both the first term and the second term will be the leading term in the asymptotics.

It’s also easy to extend the vector case by applying these lemmas elementwise. As
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for the diagonality, since

w = diag
(√

Tκµακ−1
σ (ν(T )),

√
T/∆κσβ

κ−1
σ (ν(T ))

)

it’s easy to check that H0(θ0) will be block diagonal from

√
∆

T
κ−1

µα
κ−1

σβ
κ2

σ(ν(T ))

∫ T

0

µασβ

σ2
(Xt)dWt

=

√
∆

T
κ−1

µα
κ−1

σβ
κ2

σ(ν(T ))Op

(√
Tκµακσβ

κ−2
σ (ν(T ))

) →p 0

as T →∞ and ∆ → 0.

Part 2: Milstein ML Case

It’s straightforward from the functional form of the score and Hessian functions, using

Lemma 1-12, 14, 21 and 22. The basic procedure is same as the Euler case, but I’ll

not go in detail for each case here. For example, for the score function with respect

to the drift term parameter,

∂`i

∂α
=

(
e+ − e−

e+ + e−

) √
∆µα

σ′B
+

µα

σσ· +
∆2σσ·µα

B2

where B =
(
∆ σ(σ + ∆ σσ·2 + 2 σ·(Xi∆ − X(i−1)∆ − ∆ µ))

)1/2
, suppressing all the

arguments for the functions. Note that for the term containing e+−e−
e++e− , it’s same as

finding the limiting distribution without e+−e−
e++e− from Lemma 12, and for the terms

with B, they can be taken care of by Lemma 14, and as a result, we get the following

terms.

n∑
i=1

∂`i

∂α
=

n∑
i=1

µα

σ2
(Xi∆ −X(i−1)∆ −∆ µ)

−3

2

n∑
i=1

µασ′

σ3

[
(Xi∆ −X(i−1)∆ −∆ µ)2 −∆σ2

]
+ Op(∆κT )
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So the rest of the step is to find the asymptotic expansions of each terms, and we get

n∑
i=1

∂`i

∂α
≈

[∫ T

0

µα

σ
(Xt)dWt −

√
∆

2

∫ T

0

(
µ·α +

2µασ·
σ

)
(Xt)dVt

]

using Lemma 21 and 22.

2. Proof of Theorem 2 and 3

We begin this proof from (3). Following the notations in Appendix, note that

S(θ) =



Sα(θ)

Sβ(θ)


 and H(θ) =



Hαα′(θ) Hαβ′(θ)

H′
αβ′(θ) Hββ′(θ)


 ,

and for J (θ), jth k × k block of this k2 × k matrix is

Jj(θ) =



Jαα′αj

(θ) Jαβ′αj
(θ)

J ′
αβ′αj

(θ) Jββ′αj
(θ)


 ,

for 1 ≤ j ≤ k1 where αj is the jth element of α, and

Jj(θ) =



Jαα′βj

(θ) Jαβ′βj
(θ)

J ′
αβ′βj

(θ) Jββ′βj
(θ)


 ,

for k1 + 1 ≤ j ≤ k where βj is the (j − k1)th element of β. Note that, for example,

Jαα′αj
(θ) is the jth k × k block of Jαα′⊗α(θ), i.e.,

Jαα′⊗α(θ) =




Jαα′α1(θ)

...

Jαα′αk1
(θ)




.
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Now applying the following block matrix inversion formula to H(θ)−1




A B

C D




−1

=




(
A−BD−1C

)−1 −A−1B
(
D − CA−1B

)−1

−(
D − CA−1B

)−1
CA−1

(
D − CA−1B

)−1




and arranging the terms based on the ∆ orders, we can find the first order term of

DT becomes

−1

2
Hαα′(θ0)

−1
(
Ik⊗(α̂− α0)

′)Jαα′⊗α(θ0)(α̂− α0)

≈ −1

2
H−1

αα,1

(
Ik⊗S ′α,1H

−1
αα,1

)
Jααα,1H

−1
αα,1Sα,1

for the α part, and

−1

2
Hββ′(θ0)

−1
((

Ik⊗(α̂− α0)
′)Jαα′⊗α(θ0)(α̂− α0) (A.16)

+
(
Ik⊗(β̂ − β0)

′)Jββ′⊗β(θ0)(β̂ − β0)
)

+
1

2
Hββ′(θ0)

−1H′
αβ′(θ0)Hαα′(θ0)

−1
(
Ik⊗(α̂− α0)

′)Jαα′⊗α(θ0)(α̂− α0)

≈ − ∆

2
H−1

ββ,1

((
Ik⊗S ′α,1H

−1
αα,1

)
Jααα,1H

−1
αα,1Sα,1 +

(
Ik⊗S ′β,1H

−1
ββ,1

)
Jβββ,1H

−1
ββ,1Sβ,1

)

+
∆

2
H−1

ββ,1H
′
αβ,1H

−1
αα,1

(
Ik⊗S ′α,1H

−1
αα,1

)
Jααα,1H

−1
αα,1Sα,1

for the β part.

For CT , denoting

H(θ0) ≈




Hαα,1 +
√

∆Hαα,2 Hαβ,1 +
√

∆Hαβ,2

H ′
αβ,1 +

√
∆H ′

αβ,2
1
∆

Hββ,1 + 1√
∆

Hββ,2




and

S(θ0) ≈




Sα,1 +
√

∆Sα,2

1√
∆

Sβ,1 + 1
∆1/4 Sβ,2


 .
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Applying the block matrix inversion formula again, we have

−H(θ0)
−1S(θ0)

≈



−H−1

αα,1Sα,1 −
√

∆H−1
αα,1

(
Hαα,2H

−1
αα,1Sα,1 + Sα,2 −Hαβ,1H

−1
ββ,1Sβ,1

)

−√∆H−1
ββ,1Sβ,1 −∆3/4H−1

ββ,1Sβ,2




eliminating all the higher order terms which are smaller than the second term. Now

arranging the terms again, we have

α̂− α0 ≈ −H−1
αα,1Sα,1 − 1

2
H−1

αα,1

(
Ik⊗S ′α,1H

−1
αα,1

)
Jααα,1H

−1
αα,1Sα,1

−
√

∆H−1
αα,1

(
Hαα,2H

−1
αα,1Sα,1 + Sα,2 −Hαβ,1H

−1
ββ,1Sβ,1

)

= A1T + A2T +
√

∆A3T

β̂ − β0 ≈ −
√

∆H−1
ββ,1Sββ,1 −∆3/4H−1

ββ,1Sβ,2

=
√

∆B1T + ∆3/4B2T

since (A.16) is of smaller order than ∆3/4B2T .

The proof of Theorem 3 is the same as the one of Theorem 2, but ignoring the

∆ order terms. Beginning rom (4), since we are ignoring ∆ order terms, it’s easy to

see that all the higher order terms of AT are coming from −H−1
αα,1Sα,1, and also the

higher terms of BT come from

−1

2
H−1

αα,1

(
Ik⊗S ′α,1H

−1
αα,1

)
Jααα,1H

−1
αα,1Sα,1.

For the leading term of CT , we can check that it is

−1

6
H−1

αα,1

(
Ik⊗S ′α,1H

−1
αα,1

)
Kαααα,1

(
H−1

αα,1Sα,1⊗H−1
αα,1Sα,1

)
.
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3. Useful Lemmas

Lemma 14. Define

Z∆
t =

6

∆3/2

(
j−1∑
i=1

∫ i∆

(i−1)∆

(
i∆− s− ∆

3

) ∫ s

(i−1)∆

dWudWs

+

∫ t

(j−1)∆

(
i∆− s− ∆

3

) ∫ s

(j−1)∆

dWudWs

)

for t ∈ [(j − 1)∆, j∆), j = 1, . . . , n + 1. Then

Z∆ →p Z

for a standard Brownian motion Z which is independent of W and V . Also,

Z∆
t − Zt = Op

(
(∆T )1/4

)
.

Proof. Clearly, Z∆ is a continuous martingale with quadratic variation given by

[Z∆]t =
36

∆3

[
j−1∑
i=1

∫ i∆

(i−1)∆

(
i∆− s− ∆

3

)2

(Ws −W(i−1)∆)2ds

+

∫ t

(j−1)∆

(
i∆− s− ∆

3

)2

(Ws −W(j−1)∆)2ds

]

for t ∈ [(j − 1)∆, j∆), j = 1, . . . , n + 1. We have

[Z∆]t − t =
36

∆3

j−1∑
i=1

∫ i∆

(i−1)∆

(
i∆− s− ∆

3

)2 [
(Ws −W(i−1)∆)2 − (s− (i− 1)∆)

]
ds

+
36

∆3

∫ t

(j−1)∆

(
i∆− s− ∆

3

)2 [
(Ws −W(j−1)∆)2 − (s− (j − 1)∆)

]
ds

+ O(∆) (A.17)

for t ∈ [(j − 1)∆, j∆), j = 1, . . . , n + 1, uniformly in t ∈ [0, T ]. Therefore, ignoring
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O(∆) term in (A.17) that is unimportant, it follows that

E
(
[Z∆]t − t

)2
(A.18)

=
362

∆6

j−1∑
i=1

E

(∫ i∆

(i−1)∆

(
i∆− s− ∆

3

)2 [
(Ws −W(i−1)∆)2 − (s− (i− 1)∆)

]
ds

)2

+
362

∆6
E

(∫ t

(j−1)∆

(
i∆− s− ∆

3

)2 [
(Ws −W(j−1)∆)2 − (s− (j − 1)∆)

]
ds

)2

for t ∈ [(j − 1)∆, j∆), j = 1, . . . , n + 1, due to the independent increment property

of Brownian motion. However, by Cauchy-Schwarz inequality, we have

E

(∫ i∆

(i−1)∆

(
i∆− s− ∆

3

)2 [
(Ws −W(i−1)∆)2 − (s− (i− 1)∆)

]
ds

)2

≤ ∆

∫ i∆

(i−1)∆

(
i∆− s− ∆

3

)4

E
[
(Ws −W(i−1)∆)2 − (s− (i− 1)∆)

]2
ds =

11∆8

2835

(A.19)

for i = 1, . . . , n. Moreover, we may deduce from (A.18) and (A.19) that

E
(
[Z∆]t − t

)2

≤ 362

∆6

n∑
i=1

E
(∫ i∆

(i−1)∆

(s− (i− 1)∆)2
[
(Ws −W(i−1)∆)2 − (s− (i− 1)∆)

]
ds

)2

=
362

∆6
n

11∆8

2835
=

176

35
∆T → 0

under our assumption. Consequently, it follows that

sup
0≤t≤T

E
(
[Z∆]t − t

)2 → 0

in our asymptotic framework. This implies that

Z∆ →p Z,

where Z is the standard Brownian motion.
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We now prove that Z is independent of V . For this, we note that

[Z∆, V ∆]t =
6
√

2

∆2

[
j−1∑
i=1

∫ i∆

(i−1)∆

(
i∆− s− ∆

3

)
(Ws −W(i−1)∆)2ds

+

∫ t

(j−1)∆

(
i∆− s− ∆

3

)
(Ws −W(j−1)∆)2ds

]

for t ∈ [(j − 1)∆, j∆), j = 1, . . . , n + 1. It follows that

E
(
[Z∆, V ∆]t

)2
=

72

∆4

[
j−1∑
i=1

E
(∫ i∆

(i−1)∆

(
i∆− s− ∆

3

)
(Ws −W(i−1)∆)2ds

)2

+ E
(∫ t

(j−1)∆

(
i∆− s− ∆

3

)
(Ws −W(j−1)∆)2ds

)2
]

(A.20)

for t ∈ [(j − 1)∆, j∆), j = 1, . . . , n + 1, due to the independent increment property

of Brownian motion and to that

E
[∫ i∆

(i−1)∆

(
i∆− s− ∆

3

)
(Ws −W(i−1)∆)2ds

]
= 0.

Moreover, we have by Cauchy-Schwarz

E
(∫ i∆

(i−1)∆

(
i∆− s− ∆

3

)
(Ws −W(i−1)∆)2ds

)2

≤ ∆

∫ i∆

(i−1)∆

(
i∆− s− ∆

3

)2

E(Ws −W(i−1)∆)4ds =
2∆6

45
(A.21)

for i = 1, . . . , n. Therefore, it can be deduced from (A.20) and (A.21) that

E
(
[Z∆, V ∆]t

)2
=

72

∆4

[
j−1∑
i=1

E
(∫ i∆

(i−1)∆

(
i∆− s− ∆

3

)
(Ws −W(i−1)∆)2ds

)2

+ E
(∫ t

(j−1)∆

(
i∆− s− ∆

3

)
(Ws −W(i−1)∆)2ds

)2
]

≤ 72

∆4
n

2∆6

45
=

16

5
∆T → 0,
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and that

sup
0≤t≤T

E
(
[Z∆, V ∆]t

)2 → 0

in our asymptotic framework.

To prove that Z is independent of W , note that

[Z∆,W ]t =
6

∆3/2

j−1∑
i=1

∫ i∆

(i−1)∆

(
i∆− s− ∆

3

)
(Ws −W(i−1)∆)ds

+
6

∆3/2

∫ t

(j−1)∆

(
i∆− s− ∆

3

)
(Ws −W(i−1)∆)ds

and

E
(
[Z∆,W ]t

)2
=

36

∆3

j−1∑
i=1

E
[ ∫ i∆

(i−1)∆

(
i∆− s− ∆

3

)
(Ws −W(i−1)∆)ds

]2

+
36

∆3
E

[ ∫ t

(j−1)∆

(
i∆− s− ∆

3

)
(Ws −W(i−1)∆)ds

]2

≤ 36

∆2

j−1∑
i=1

∫ i∆

(i−1)∆

(
i∆− s− ∆

3

)2

E(Ws −W(i−1)∆)2ds

+
36

∆2

∫ t

(j−1)∆

(
i∆− s− ∆

3

)2

E(Ws −W(i−1)∆)2ds

≤ ∆2n = ∆T → 0

For the last statement, note that Z∆
t can be represented as a time changed

Brownian motion Z[Z∆]t from the DDS representation. Thus we have

Z[Z∆]t − Zt√∣∣[Z∆]t − t
∣∣
√∣∣[Z∆]t − t

∣∣ = Op(1)

√∣∣Op(
√

∆T )
∣∣ = Op

(
(∆T )1/4

)
.

Lemma 15.

[V ∆]t − t =
2
√

2

3

√
∆Vt +

2

3

√
∆Zt + Op(∆

3/4T 1/4)
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Proof. From

[V ∆]t − t =
2

∆

j−1∑
i=1

∫ i∆

(i−1)∆

[
(Ws −W(i−1)∆)2 − (s− (i− 1)∆)

]
ds

+
2

∆

∫ t

(j−1)∆

[
(Ws −W(i−1)∆)2 − (s− (i− 1)∆)

]
ds

=
4

∆

j−1∑
i=1

∫ i∆

(i−1)∆

(i∆− s)

∫ s

(i−1)∆

dWrdWs +
4

∆

∫ t

(j−1)∆

(i∆− s)

∫ s

(i−1)∆

dWrdWs

=
4

3

j−1∑
i=1

∫ i∆

(i−1)∆

∫ s

(i−1)∆

dWrdWs +
4

∆

j−1∑
i=1

∫ i∆

(i−1)∆

(
i∆− s− ∆

3

) ∫ s

(i−1)∆

dWrdWs

+
4

3

∫ t

(j−1)∆

∫ s

(i−1)∆

dWrdWs +
4

∆

∫ t

(j−1)∆

(
i∆− s− ∆

3

) ∫ s

(i−1)∆

dWrdWs

=
2
√

2

3

√
∆V ∆

t +
2

3

√
∆Z∆

t

it easily follows from Lemma 10 and Lemma 14.

Lemma 16. Define

U∆
t =

∫ t

0

V ∆
s − Vs√
|[V ∆]s − s|dWs.

Then

U∆ →p U,

where U is a standard BM independent of V , Z and W .

Proof. Note that U∆ is a continuous martingale with quadratic variation given by

[U∆]t =

∫ t

0

(
V ∆

s − Vs√
|[V ∆]s − s|

)2

ds.
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We have

E
(
[U∆]t − t

)2
= E




∫ t

0

[(
V ∆

s − Vs√
|[V ∆]s − s|

)2

− 1

]
ds




2

=

∫ t

0

∫ t

0

E

[(
V ∆

s − Vs√
|[V ∆]s − s|

)2

− 1

][(
V ∆

r − Vr√
|[V ∆]r − r|

)2

− 1

]
dsdr.

Note here that

(
V ∆

s − Vs√
|[V ∆]s − s|

)2

∼ χ2
1

for any s and ∆ so

E

[(
V ∆

s − Vs√
|[V ∆]s − s|

)2

− 1

][(
V ∆

r − Vr√
|[V ∆]r − r|

)2

− 1

]

is a covariance between two χ2
1 random variables. Thus,

∣∣∣∣∣∣
E

[(
V ∆

s − Vs√
|[V ∆]s − s|

)2

− 1

][(
V ∆

r − Vr√
|[V ∆]r − r|

)2

− 1

]∣∣∣∣∣∣
≤ 2

for any s, r and ∆, and for any s 6= r, (shown in Part A)

∣∣∣∣∣∣
E

[(
V ∆

s − Vs√
|[V ∆]s − s|

)2

− 1

][(
V ∆

r − Vr√
|[V ∆]r − r|

)2

− 1

]∣∣∣∣∣∣
= O(∆T )

So we have

∫ t

0

∫ t

0

E

[(
V ∆

s − Vs√
|[V ∆]s − s|

)2

− 1

][(
V ∆

r − Vr√
|[V ∆]r − r|

)2

− 1

]
dsdr

≤
∫ t

0

∫ t

0

[
2·1{t=s} + O(∆T )

]
dsdr

= O(∆T 3) → 0
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if ∆T 3 → 0. Thus we have

sup
0≤t≤T

E
(
[U∆]t − t

)2 → 0

and this proves

U∆ →p U,

where U is a standard Brownian motion.

Part A. Let’s denote

A∆ =

(
V ∆

s − Vs√
|[V ∆]s − s|

)2

− 1 and B∆ =

(
V ∆

r − Vr√
|[V ∆]r − r|

)2

− 1.

Then

EA∆B∆ ≤ 2

∫ ∞

−∞
(1− F∆

s (x))f∆
r (x)dx

where F∆
s and f∆

s are distribution and density functions of [V ∆]s, and similarly for

F∆
r and f∆

r with [V ∆]r. The above inequality is because it’s a probability that A∆

and B∆ will be dependent. To deal with this integral, let’s divide it by

∫ ∞

−∞
(1− F∆

s (x))f∆
r (x)dx

=

∫ c1

−∞
(1− F∆

s (x))f∆
r (x)dx +

∫ c2

c1

(1− F∆
s (x))f∆

r (x)dx

+

∫ ∞

c2

(1− F∆
s (x))f∆

r (x)dx

= A + B + C
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where r < c1 < s < c2 . Then

A ≤
∫ c1

−∞
1·f∆

r (x)dx = F∆
r (c1)

B ≤
∫ c2

c1

(1− F∆
s (c1))f

∆
r (x)dx = (1− F∆

s (c1))

∫ c2

c1

f∆
r (x)dx ≤ 1− F∆

s (c1)

C ≤
∫ ∞

c2

1·f∆
r (x)dx = 1− F∆

r (c2).

For B and C,

B ≤ 1− F∆
s (c1) = P{[V ∆]s ≥ c1} ≤ P{

∣∣[V ∆]s − s
∣∣ ≥ c1 − s}

≤ E
(
[V ∆]s − s

)2

(c1 − s)2
= O(∆T )

C ≤ 1− F∆
r (c2) = P{[V ∆]r ≥ c2} ≤ P{∣∣[V ∆]r − r

∣∣ ≥ c2 − r}

≤ E
(
[V ∆]r − r

)2

(c2 − r)2
= O(∆T )

since c1 > s and c2 > r. For A,

A ≤ F∆
r (c1) = P{[V ∆]r ≤ c1} ≤ P{

∣∣[V ∆]r − r
∣∣ ≥ r − c1}

≤ E
(
[V ∆]r − r

)2

(r − c1)2
= O(∆T )

since r > c1. So we have

EA∆B∆ = O(∆T )

Part B.

Independency 1. (U independent of W )

[U∆,W ]t =

∫ t

0

V ∆
s − Vs√
|V ∆

s − s| ds
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We have

E[U∆,W ]2t =

∫ t

0

∫ t

0

E

(
V ∆

s − Vs√
|V ∆

s − s|
V ∆

r − Vr√
|V ∆

r − r|

)
dsdr

≤
∫ t

0

∫ t

0

[
1{s=r} + O(∆T )

]
dsdr

= O(∆T 3) → 0

if ∆T 3 → 0. For the second line, let’s denote

A∆ =
V ∆

s − Vs√
|[V ∆]s − s| and B∆ =

V ∆
r − Vr√
|[V ∆]r − r| .

Then the rest steps are the same as in Part A.

Independency 2. (U independent of V )

[U∆, V ]t =

∫ t

0

V ∆
s − Vs√
|[V ]∆s − s| d[W,V ]s = 0

since

V ∆
s − Vs√
|[V ]∆s − s| = Op(1).

Note that

∫ t

0

V ∆
s − Vs√
|[V ]∆s − s| d[W,V ]s ≤

√∫ t

0

(V ∆
s − Vs)2

|[V ]∆s − s| ds

∫ t

0

[W,V ]2ds

= Op(
√

t) · 0 = 0
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and

∫ t

0

V ∆
s − Vs√
|[V ]∆s − s| d[W,V ]s ≥ −

∫ t

0

|V ∆
s − Vs|√
|[V ]∆s − s| d[W,V ]s

≥ −
√∫ t

0

(V ∆
s − Vs)2

|[V ]∆s − s| ds

∫ t

0

[W,V ]2ds

= Op(
√

t) · 0 = 0

Independency 3. (U independent of Z) Same as above replacing V with Z.

Lemma 17.

1

∆1/4

∫ T

0

f(Xt)(V
∆
t − Vt)dWt ≈

√
2

3

∫ T

0

f(Xt)

√∣∣√2Vt + Zt

∣∣dUt

where U is a standard BM independent of V and W .

Proof. With an equi-spaced partition (t0, t1, · · · , tn) with t0 = 0 and tn = T , let

δ = ti − ti−1. Denoting

M∆
t =

∫ t

0

V ∆
s − Vs√
|[V ∆]s − s|dWs

we can rewrite

1

∆1/4

∫ T

0

f(Xt)(V
∆
t − Vt)dWt =

∫ T

0

f(Xt)

√
|[V ∆]t − t|

∆1/4

V ∆
t − Vt√
|[V ∆]t − t|dWt

= plim
δ→0

n∑
i=1

f(Xti−1
)

√|[V ∆]ti−1
− ti−1|

∆1/4
(M∆

ti
−M∆

ti−1
)

from the definition of the Itô integral since

dM∆
t =

V ∆
t − Vt√
|[V ∆]t − t|dWt.

From Lemma 16,

M∆
ti
−M∆

ti−1
=

∫ ti

ti−1

V ∆
s − Vs√
|[V ∆]s − s|dWs →p Uti − Uti−1
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and from Lemma 15,

√|[V ∆]ti−1
− ti−1|

∆1/4
→p

√
2

31/4

√∣∣∣∣
√

2

3
Vti−1

+
1√
3
Zti−1

∣∣∣∣,

and the both convergences are uniform in i, so we can exchange the limits

lim
∆→0

plim
δ→0

n∑
i=1

f(Xti−1
)

√|[V ∆]ti−1
− ti−1|

∆1/4
(M∆

ti
−M∆

ti−1
)

= plim
δ→0

lim
∆→0

n∑
i=1

f(Xti−1
)

√|[V ∆]ti−1
− ti−1|

∆1/4
(M∆

ti
−M∆

ti−1
)

= plim
δ→0

√
2

31/4

n∑
i=1

f(Xti−1
)

√∣∣∣∣
√

2

3
Vti−1

+
1√
3
Zti−1

∣∣∣∣(Uti − Uti−1
)

=

√
2

31/4

∫ T

0

f(Xt)

√∣∣∣∣
√

2

3
Vt +

1√
3
Zt

∣∣∣∣dUt

Lemma 18.

∫ T

0

f(Xt)(V
∆
t − Vt)dt = Op(∆

3/8T 13/8κf (ν(T )))

Proof. Part A.

E
( ∫ T

0

f(Xt)(V
∆
t − Vt)dt

)2

=

∫ T

0

∫ T

0

E
[
f(Xt)f(Xs)(V

∆
t − Vt)(V

∆
s − Vs)

]
dtds
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Note that

E
[
f(Xt)f(Xs)(V

∆
t − Vt)(V

∆
s − Vs)

]

= E
(
E

[
E

(
V ∆

t − Vt|V ∆
s − Vs

)
(V ∆

s − Vs)
∣∣f(Xt)f(Xs)

]
f(Xt)f(Xs)

)

≤
√
E

((
E

[
E

(
V ∆

t − Vt|V ∆
s − Vs

)
(V ∆

s − Vs)
∣∣f(Xt)f(Xs)

])2
)
E

(
f 2(Xt)f 2(Xs)

)

≤
√
E

(
sup

0≤t,s≤T

∣∣f 2(Xt)f 2(Xs)
∣∣
)
×

√
E

((
E

[
E

(
V ∆

t − Vt|V ∆
s − Vs

)
(V ∆

s − Vs)
∣∣f(Xt)f(Xs)

])2
)

Thus

∫ T

0

∫ T

0

E
[
f(Xt)f(Xs)(V

∆
t − Vt)(V

∆
s − Vs)

]
dtds

≤
√
E

(
sup

0≤t,s≤T

∣∣f 2(Xt)f 2(Xs)
∣∣
)
×

∫ T

0

∫ T

0

√
E

((
E

[
E

(
V ∆

t − Vt|V ∆
s − Vs

)
(V ∆

s − Vs)
∣∣f(Xt)f(Xs)

])2
)
dtds

= Op(∆
3/4T 13/4κ2

f (T
r))

Note that E
(
V ∆

t − Vt|V ∆
s − Vs

)
= Op(

√
∆T ) (shown in Part B) and V ∆

s − Vs =

Op

(
(∆T )1/4

)
, thus

√
E

((
E

[
E

(
V ∆

t − Vt|V ∆
s − Vs

)
(V ∆

s − Vs)
∣∣f(Xt)f(Xs)

])2
)

= Op(∆
3/4T 5/4)

and

E
(

sup
0≤t,s≤T

∣∣f 2(Xt)f
2(Xs)

∣∣
)

= Op

(
κ2

f (ν(T ))
)

Thus

∫ T

0

f(Xt)(V
∆
t − Vt)dt = Op(∆

3/8T 13/8κf (ν(T ))).
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Part B. Since

E
(
E

(
V ∆

t − Vt|V ∆
s − Vs

)2
)
≤ E

(
E

(
(V ∆

t − Vt)
2|V ∆

s − Vs

))

= E
(
(V ∆

t − Vt)
2
)

≤ 2T

we have

E
(
E

(
V ∆

t − Vt|V ∆
s − Vs

)2
)
≤ 2T

∫ ∞

−∞
(1− F∆

s (x))f∆
r (x)dx = Op(∆T 2)

from the same steps as in the proof of Lemma 16 since E
(
V ∆

t −Vt|V ∆
s −Vs

)
= 0 when

V ∆
t − Vt and V ∆

s − Vs are independent. Thus

E
(
V ∆

t − Vt|V ∆
s − Vs

)
= Op(

√
∆T ).

Lemma 19.

√
2

∆

n∑
i=1

f(X(i−1)∆)

∫ i∆

(i−1)∆

∫ s

(i−1)∆

dWudWs

≈
(∫ T

0

f(Xt)dVt + ∆1/4

√
2

3

∫ T

0

σf ′(Xt)

√∣∣√2Vt + Zt

∣∣dUt

)

where V is a standard Brownian motion independent of W , and U is a standard

Brownian motion independent of W and V .
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Proof. Part 1.

√
2

∆

n∑
i=1

f(X(i−1)∆)

∫ i∆

(i−1)∆

∫ s

(i−1)∆

dWudWs

=

∫ T

0

f(Xt)dVt +

∫ T

0

f(Xt)d(V ∆ − V )t

−
n∑

i=1

∫ i∆

(i−1)∆

(
f(Xt)− f(X(i−1)∆)

)
dV ∆

t

=

∫ T

0

f(Xt)dVt + AT + BT .

For AT , note that

AT = f(XT )(V ∆
T − VT )−

∫ T

0

(V ∆
t − Vt)df(Xt)− [f(X), (V ∆ − V )]T

= A1T − A2T − A3T

from integration by parts exploiting the notation for the quadratic covariation term.

Under suitable conditions, we can show (in Part 2)

BT = Op(
√

∆Tκσκf ′(ν(T )))

and

A3T = Op

(√
∆Tκσκf ′(ν(T ))

)
.

For this, note that

f(Xt) = f(X0) +

∫ t

0

(
µf ′ +

σ2f ′′

2

)
(Xs)ds +

∫ t

0

σf ′(Xs)dWs

and W and V are independent of each other, [f(X), (V ∆ − V )]T is same as the

quadratic covariation of

∫ t

0

σf ′(Xs)dWs
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and

V ∆
t =

√
2

∆

(
j−1∑
i=1

∫ i∆

(i−1)∆

∫ s

(i−1)∆

dWudWs +

∫ t

(j−1)∆

∫ s

(j−1)∆

dWudWs

)

as in the definition of V ∆
t . So we have

[f(X), (V ∆ − V )]T =

√
2

∆

n∑
i=1

∫ i∆

(i−1)∆

σf ′(Xs)

∫ s

(i−1)∆

dWuds.

To obtain its order, note that

n∑
i=1

∫ i∆

(i−1)∆

f(Xs)

∫ s

(i−1)∆

dWuds

=
n∑

i=1

f(X(i−1)∆)

∫ i∆

(i−1)∆

∫ s

(i−1)∆

dWuds

+
n∑

i=1

∫ i∆

(i−1)∆

(
f(Xs)− f(X(i−1)∆)

) ∫ s

(i−1)∆

dWuds

=A1T + A2T .

We have

A1T =
n∑

i=1

f(X(i−1)∆)

∫ i∆

(i−1)∆

(i∆− u)dWu

and this is a martingale with a quadratic variation bounded by

∆2

n∑
i=1

f 2(X(i−1)∆)

∫ i∆

(i−1)∆

du = ∆3

n∑
i=1

f 2(X(i−1)∆) = Op(∆
2Tκ2

f (ν(T )))

from Lemma 1. For A2T ,

A2T =
n∑

i=1

∫ i∆

(i−1)∆

∫ s

(i−1)∆

(
µf ′ +

σ2f ′′

2

)
(Xu)du

∫ s

(i−1)∆

dWuds

+
n∑

i=1

∫ i∆

(i−1)∆

∫ s

(i−1)∆

σf ′(Xu)dWu

∫ s

(i−1)∆

dWuds

=A21T + A22T .
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and

A21T ≤
n∑

i=1

∫ i∆

(i−1)∆

∫ s

(i−1)∆

∣∣∣∣µf ′ +
σ2f ′′

2

∣∣∣∣ (Xu)duds

=Op(∆Tκµκf ′(ν(T ))) + Op(∆Tκ2
σκf ′′(ν(T )))

from Lemma 2. For A22T ,

A22T ≤
√√√√

n∑
i=1

∫ i∆

(i−1)∆

(∫ s

(i−1)∆

σf ′(Xu)dWu

)2

ds

n∑
i=1

∫ i∆

(i−1)∆

(∫ s

(i−1)∆

dWu

)2

ds.

Note that

n∑
i=1

∫ i∆

(i−1)∆

(∫ s

(i−1)∆

σf ′(Xu)dWu

)2

ds = Op(∆T 2κ2
σκ

2
f ′(ν(T )))

since

∫ s

(i−1)∆

σf ′(Xu)dWu = Op(
√

∆Tκσκf ′(ν(T ))),

so

A22T = Op

(√
∆Tκσκf ′(ν(T ))

)
Op

(√
∆T

)
= Op(∆T 3/2κσκf ′(ν(T ))),

and the order of quadratic covariation becomes

[f(X), (V ∆ − V )]T = Op

(√
∆
√

Tκσκf ′(ν(T ))
)

+ Op

(√
∆Tκµκσκf ′′(ν(T ))

)

+ Op

(√
∆Tκµκσ′κf ′(ν(T ))

)
+ Op

(√
∆Tκ2

σκσ′κf ′′(ν(T ))
)

+ Op

(√
∆Tκ3

σκf ′′′(ν(T ))
)

+ Op

(√
∆Tκ2

σκσ′′κf ′(ν(T ))
)

+ Op

(√
∆Tκ2

σκf ′′(ν(T ))
)

+ Op

(√
∆Tκσκσ′κf ′(ν(T ))

)

+ Op

(√
∆

√
Tκ2

σκf ′′(ν(T ))
)

+ Op

(√
∆

√
Tκσκσ′κf ′(ν(T ))

)
.
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For A1T ,

f(XT )(V ∆
T − VT ) ≈ 2∆1/4V̄

31/4

√∣∣∣∣
√

2

3
Vt +

1√
3
Zt

∣∣∣∣f(XT )

= Op

(
(∆T )1/4κf (ν(T ))

)

where V̄ ∼ N(0, 1), and for A2T ,

∫ T

0

(V ∆
t − Vt)df(Xt) =

∫ T

0

(V ∆
t − Vt)

(
µf ′ +

σ2f ′′

2

)
(Xt)dt

+

∫ T

0

(V ∆
t − Vt)σf ′(Xt)dWt

= A21T + A22T .

For A21T ,

A21T = Op

(
∆3/8T 13/8(κµκf ′ + κ2

σκf ′′)(ν(T ))
)

from Lemma 18. For A22T ,

A22T = Op(∆
1/4T 3/4κσκf ′(ν(T )))

From Lemma 17. Note that A22T cannot be of smaller order than BT or A1T no

matter how, so we need to find the exact asymptotic distribution of A22T .

A22T ≈


√

2∆1/4

31/4

∫ T

0

σf ′(Xt)

√∣∣∣∣
√

2

3
Vt +

1√
3
Zt

∣∣∣∣dUt



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Part 2. For BT ,

BT =
n∑

i=1

∫ i∆

(i−1)∆

∫ t

(i−1)∆

(
µf ′ +

σ2f ′′

2

)
(Xs)dsdV ∆

t

+
n∑

i=1

∫ i∆

(i−1)∆

∫ t

(i−1)∆

σf ′(Xs)dWsdV ∆
t

= B1T + B2T

from Itô’s lemma. For B1T , note that

n∑
i=1

∫ i∆

(i−1)∆

∫ t

(i−1)∆

f(Xs)dsdV ∆
t

is a martingale with a quadratic variation

n∑
i=1

∫ i∆

(i−1)∆

(∫ t

(i−1)∆

f(Xs)ds

)2

d[V ∆]t

=
n∑

i=1

∫ i∆

(i−1)∆

∫ t

(i−1)∆

f(Xu)

∫ u

(i−1)∆

f(Xs)dsdud[V ∆]t

=
n∑

i=1

∫ i∆

(i−1)∆

(
[V ∆]i∆ − [V ∆]u

)
f(Xu)

∫ u

(i−1)∆

f(Xs)dsdu

≤
√√√√

n∑
i=1

∫ i∆

(i−1)∆

(
[V ∆]i∆ − [V ∆]u

)2
du×

√√√√
n∑

i=1

∫ i∆

(i−1)∆

f 2(Xu)

(∫ u

(i−1)∆

f(Xs)ds

)2

du

=B11T B12T .

Since the order of
∑n

i=1

∫ i∆

(i−1)∆

(
[V ∆]i∆ − [V ∆]s

)2
ds is the same as the order of its

expectation being a positive process, we can consider the order of the expectation
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instead. We have

E

(
n∑

i=1

∫ i∆

(i−1)∆

(
[V ∆]i∆ − [V ∆]s

)2
ds

)

= E

(
4

∆2

n∑
i=1

∫ i∆

(i−1)∆

(∫ i∆

s

(Wu −Ws)
2du

)2

ds

)
(A.22)

= E

(
4

∆2

n∑
i=1

∫ i∆

(i−1)∆

E(i−1)∆

(∫ i∆

s

(Wu −Ws)
2du

)2

ds

)
.

and since

E(i−1)∆

(∫ i∆

s

(Wu −Ws)
2du

)2

≤ (i∆− s)

∫ i∆

s

E(i−1)∆(Wu −Ws)
4du

= (i∆− s)4,

we have

E

(
n∑

i=1

∫ i∆

(i−1)∆

(
[V ∆]i∆ − [V ∆]s

)2
ds

)
≤ 4∆2T

and

B11T = Op(∆
√

T ).

For B12T ,

n∑
i=1

∫ i∆

(i−1)∆

f 2(Xu)

(∫ u

(i−1)∆

f(Xs)ds

)2

du ≤ ∆2T sup
0≤t≤T

∣∣f 2(Xt)
∣∣ sup

0≤t≤T

∣∣f(Xt)
∣∣2

= Op(∆
2Tκ4

f (ν(T ))),

so

B1T = Op(∆
√

T )Op(∆
√

Tκ2
f (ν(T ))) = Op(∆

√
Tκf (ν(T ))).
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For B2T , note that

n∑
i=1

∫ i∆

(i−1)∆

∫ t

(i−1)∆

f(Xs)dWsdV ∆
t

is a martingale with a quadratic variation

n∑
i=1

∫ i∆

(i−1)∆

(∫ t

(i−1)∆

f(Xs)dWs

)2

d[V ∆]t

=
n∑

i=1

∫ i∆

(i−1)∆

∫ t

(i−1)∆

f 2(Xs)dsd[V ∆]t

+ 2
n∑

i=1

∫ i∆

(i−1)∆

∫ t

(i−1)∆

f(Xs)

∫ s

(i−1)∆

f(Xu)dWudWsd[V ∆]t

=B21T + 2B22T .

For B21T ,

B21T =
n∑

i=1

∫ i∆

(i−1)∆

(
[V ∆]i∆ − [V ∆]s

)
f 2(Xs)ds

≤
√√√√

n∑
i=1

∫ i∆

(i−1)∆

(
[V ∆]i∆ − [V ∆]s

)2
ds

n∑
i=1

∫ i∆

(i−1)∆

f 4(Xs)ds.

so

B21T = Op(∆
√

T )Op(
√

Tκ2
f (ν(T ))) = Op(∆Tκ2

f (ν(T ))).

For B22T ,

B22T =
n∑

i=1

∫ i∆

(i−1)∆

(
[V ∆]i∆ − [V ∆]s

)
f(Xs)

∫ s

(i−1)∆

f(Xu)dWudWs
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and this is a martingale with a quadratic variation

n∑
i=1

∫ i∆

(i−1)∆

(
[V ∆]i∆ − [V ∆]s

)2
f 2(Xs)

(∫ s

(i−1)∆

f(Xu)dWu

)2

ds

≤
√√√√

n∑
i=1

∫ i∆

(i−1)∆

(
[V ∆]i∆ − [V ∆]s

)4
ds

n∑
i=1

∫ i∆

(i−1)∆

f 4(Xs)

(∫ s

(i−1)∆

f(Xu)dWu

)4

ds.

Note that

∫ s

(i−1)∆

f(Xu)dWu = Op(
√

∆Tκf (ν(T )))

since it’s a martingale with a quadratic variation

∫ s

(i−1)∆

f 2(Xu)du = Op(∆Tκ2
f (ν(T ))),

and since

f(Xs) = Op(κf (ν(T ))),

we have

n∑
i=1

∫ i∆

(i−1)∆

f 4(Xs)

(∫ s

(i−1)∆

f(Xu)dWu

)4

ds = Op(∆
2T 3κ8

f (ν(T )))

and

n∑
i=1

∫ i∆

(i−1)∆

(
[V ∆]i∆ − [V ∆]s

)4
ds = Op(∆

4T )

since

E(i−1)∆

(∫ i∆

s

(Wu −Ws)
2du

)4

≤ (i∆− s)2E(i−1)∆

(∫ i∆

s

(Wu −Ws)
4du

)2

≤ (i∆− s)3

∫ i∆

s

E(i−1)∆(Wu −Ws)
8du

= 21(i∆− s)8
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with the same way as in (A.22). So

B22T = Op(∆
√

Tκf (ν(T )))

and we can check that BT has a smaller order than AT .

Lemma 20. For a three times differentiable function f with asymptotically homoge-

neous derivatives,

n∑
i=1

f(X(i−1)∆)(Wi∆ −W(i−1)∆) =

∫ T

0

f(Xt)dWt −
√

∆

2

∫ T

0

σf ′(Xt)dVt

+ Op(∆
3/4T 3/4κσ(κσκf ′′ + κσ′κf ′)(T

γ))

Proof. By Itô’s lemma,

n∑
i=1

f(X(i−1)∆)(Wi∆ −W(i−1)∆)

=

∫ T

0

f(Xt)dWt −
n∑

i=1

∫ i∆

(i−1)∆

(f(Xt)− f(X(i−1)∆))dWt

=

∫ T

0

f(Xt)dWt −
n∑

i=1

∫ i∆

(i−1)∆

∫ t

(i−1)∆

σf ′(Xs)dWsdWt

−
n∑

i=1

∫ i∆

(i−1)∆

∫ t

(i−1)∆

(µf ′ +
σ2f ′′

2
)(Xs)dsdWt

=

∫ T

0

f(Xt)dWt − AT −BT

Note that

BT = Op(∆Tκµκf ′(ν(T ))) + Op(∆Tκ2
σκf ′′(ν(T )))
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from Lemma 2 and

AT =
n∑

i=1

σf ′(X(i−1)∆)

∫ i∆

(i−1)∆

∫ t

(i−1)∆

dWsdWt

+
n∑

i=1

∫ i∆

(i−1)∆

∫ t

(i−1)∆

(
σf ′(Xs)− σf ′(X(i−1)∆)

)
dWsdWt

= A1T + A2T

We have

A2T =
n∑

i=1

∫ i∆

(i−1)∆

∫ t

(i−1)∆

∫ s

(i−1)∆

[
µ(σf ′′ + σ′f ′)

+
σ2(σf ′′′ + 2σ′f ′′ + σ′′f ′)

2

]
(Xu)dudWsdWt

+
n∑

i=1

∫ i∆

(i−1)∆

∫ t

(i−1)∆

∫ s

(i−1)∆

σ(σf ′′ + σ′f ′)(Xu)dWudWsdWt

= Op(∆
3/2
√

T (κµ(κσκf ′′ + κσ′κf ′) + κ2
σ(κσκf ′′′ + κσ′κf ′′ + κσ′′κf ′))(ν(T )))

+ Op(∆
√

Tκσ(κσκf ′′ + κσ′κf ′)(ν(T )))

from Lemma 2 and

A1T =

√
∆

2

∫ T

0

σf ′(Xt)dVt + Op(∆
3/4T 3/4κσ(κσκf ′′ + κσ′κf ′)(ν(T )))

from Lemma 19. Thus,

n∑
i=1

f(X(i−1)∆)(Wi∆ −W(i−1)∆) =

∫ T

0

f(Xt)dWt −
√

∆

2

∫ T

0

σf ′(Xt)dVt

+ Op(∆
3/4T 3/4κσ(κσκf ′′ + κσ′κf ′)(ν(T )))
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Lemma 21.

n∑
i=1

f(X(i−1)∆)(Xi∆ −X(i−1)∆ −∆µ(X(i−1)∆))

=

∫ T

0

σf(Xt)dWt −
√

∆

2

∫ T

0

σ2f ·(Xt)dVt

+ Op(∆
3/4T 3/4κσ(κ2

σκf ′′ + κσκσ′κf ′ + κσκσ′′κf + κ2
σ′κf )(ν(T )))

Proof. Note that

Xi∆ −X(i−1)∆ −∆µ(X(i−1)∆) =σ(X(i−1)∆)(Wi∆ −W(i−1)∆)

+

∫ i∆

(i−1)∆

∫ t

(i−1)∆

(µµ· + σ2µ··
2

)(Xs)dsdt

+

∫ i∆

(i−1)∆

∫ t

(i−1)∆

σµ·(Xs)dWsdt

+

∫ i∆

(i−1)∆

∫ t

(i−1)∆

(µσ· + σ2σ··
2

)(Xs)dsdWt

+

∫ i∆

(i−1)∆

∫ t

(i−1)∆

σσ·(Xs)dWsdWt.

We have

n∑
i=1

σf(X(i−1)∆)(Wi∆ −W(i−1)∆) =

∫ T

0

σf(Xt)dWt −
√

∆

2

∫ T

0

σ(σ·f + σf ·)(Xt)dVt

+ Op(∆
3/4T 3/4κσ(κ2

σκf ′′ + κσκσ′κf ′ + κσκσ′′κf + κ2
σ′κf )(ν(T )))
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from Lemma 20, and

∑
f(X(i−1)∆)

∫ i∆

(i−1)∆

∫ t

(i−1)∆

σσ·(Xs)dWsdWt

=
∑

σσ·f(X(i−1)∆)

∫ i∆

(i−1)∆

∫ t

(i−1)∆

dWsdWt

+
∑

f(X(i−1)∆)

∫ i∆

(i−1)∆

∫ t

(i−1)∆

(
σσ·(Xs)− σσ·(Xs)

)
dWsdWt

=

√
∆

2

∫ T

0

σσ·f(Xt)dVt + Op(∆
√

Tκf (σσ·2 + σ2σ··)(ν(T )))

from Lemma 11 and Lemma 2. The rest of the terms can be shown to be of smaller

order, thus combining these results, we have the stated result.

Lemma 22. For a four times differentiable asymptotically homogeneous function f ,

n∑
i=1

f(X(i−1)∆)
[
(Xi∆ −X(i−1)∆ −∆µ(X(i−1)∆))2 −∆σ2(X(i−1)∆)

]

≈
[√

2∆

∫ T

0

fσ2(Xt)dVt + ∆3/4 2√
3

∫ T

0

σ(σ2f ′ + 2σσ′f)(Xt)

√∣∣√2Vt + Zt

∣∣dUt

]

Proof. Denoting V ∆
i∆ − V ∆

(i−1)∆ =
∫ i∆

(i−1)∆

∫ t

(i−1)∆
dWsdWt, we can write as

Xi∆ −X(i−1)∆ −∆µ(X(i−1)∆)

= σ(X(i−1)∆)(Wi∆ −W(i−1)∆) + σσ′(X(i−1)∆)(V ∆
i∆ − V ∆

(i−1)∆) + Ri,

where Ri is a remainer term, from the first equation of the proof of Lemma 3. Re-
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placing this into the following, we have

n∑
i=1

f(X(i−1)∆)
[
(Xi∆ −X(i−1)∆ −∆µ(X(i−1)∆))2 −∆σ2(X(i−1)∆)

]

=
n∑

i=1

f(X(i−1)∆)
[
(σ(X(i−1)∆)(Wi∆ −W(i−1)∆) + σσ′(X(i−1)∆)(Vi∆ − V(i−1)∆) + Ri)

2

−∆σ2(X(i−1)∆)
]

=
n∑

i=1

f(X(i−1)∆)
[
σ2(X(i−1)∆)(Wi∆ −W(i−1)∆)2

+ 2σ2σ′(X(i−1)∆)(Wi∆ −W(i−1)∆)(V ∆
i∆ − V ∆

(i−1)∆)

+ σ2σ′2(X(i−1)∆)(V ∆
i∆ − V ∆

(i−1)∆)2 + R∗
i

−∆σ2(X(i−1)∆)
]
,

where R∗
i denotes the terms multiplied by Ri. From Lemma 19,

n∑
i=1

fσ2(X(i−1)∆)[(Wi∆ −W(i−1)∆)2 −∆] (A.23)

≈
[√

2∆

∫ T

0

fσ2(Xt)dVt +
2∆3/4

31/4

∫ T

0

σ(σ2f ′ + 2σσ′f)(Xt)

√∣∣∣∣
√

2

3
Vt +

1√
3
Zt

∣∣∣∣dUt

]

and

n∑
i=1

fσ2σ′(X(i−1)∆)(Wi∆ −W(i−1)∆)(V ∆
i∆ − V ∆

(i−1)∆) = Op(∆Tκfκ
2
σκσ′(ν(T )))

n∑
i=1

fσ2σ′2(X(i−1)∆)(V ∆
i∆ − V ∆

(i−1)∆)2 = Op(∆Tκfκ
2
σκ

2
σ′(ν(T )))

by the same steps in the proof of Lemma 3 from the independent increments of the

Brownian motion and E
(
(Wi∆ − W(i−1)∆)(V ∆

i∆ − V ∆
(i−1)∆)

)
= 0, and the remainder

term
∑n

i=1 f(X(i−1)∆)R∗
i can be also shown to be of smaller order by Lemma 3.
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D. Asymptotic Expansions of the Log-Likelihood Derivatives

1. Euler ML Estimator Asymptotics

For the scores of the Euler approximated log-likelihood function, we have

Sα(θ) =
n∑

i=1

`α(x, y) ≈
[∫ T

0

µα

σ
(Xt)dWt −

√
∆

2

∫ T

0

(
µ·α −

µασ·
σ

)
(Xt)dVt

]

=
[
Sα,1 +

√
∆Sα,2

]

Sβ(θ) =
n∑

i=1

`β(x, y) ≈
[√

2

∆

∫ T

0

σβ

σ
(Xt)dVt

+
2

(3∆)1/4

∫ T

0

(
σ·β −

σβσ·
σ

)
(Xt)

√∣∣∣∣
√

2

3
Vt +

1√
3
Zt

∣∣∣∣dUt

]

=

[
1√
∆

Sβ,1 +
1

∆1/4
Sβ,2

]

and for the Hessians, we have

Hαα′(θ) =
n∑

i=1

`αα′(x, y) ≈
[
−

∫ T

0

µαµ′α
σ2

(Xt)dt +

∫ T

0

µαα′

σ
(Xt)dWt

−
√

∆

2

∫ T

0

(
µ·αα′ −

µαα′σ·
σ

)
(Xt)dVt

]

=
[
Hαα,1 +

√
∆Hαα,2

]

Hαβ′(θ) =
n∑

i=1

`αβ′(x, y) ≈
[
− 2

∫ T

0

µασ′β
σ2

(Xt)dWt

+
√

2∆

∫ T

0

(
2µασ′βσ·

σ2
− µ·ασ′β

σ
− µασ·′β

σ

)
(Xt)dVt

]

=
[
Hαβ,1 +

√
∆Hαβ,2

]

Hβα′(θ) =
n∑

i=1

`βα′(x, y) ≈ [
H ′

αβ,1 +
√

∆H ′
αβ,2

]
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Hββ′(θ) =
n∑

i=1

`ββ′(x, y)

≈
[
− 2

∆

∫ T

0

σβσ′β
σ2

(Xt)dt +

√
2

∆

∫ T

0

(
σββ′

σ
− 3σβσ′β

σ2

)
(Xt)dVt

]

=

[
1

∆
Hββ,1 +

1√
∆

Hββ,2

]
.

Moreover,

Jαα′⊗α(θ) =
n∑

i=1

`αα′⊗α(x, y) = −3

∫ T

0

µα¦µαα′

σ2
(Xt)dt +

∫ T

0

µαα′⊗α

σ
(Xt)dWt

+ Op

(√
∆T (κµ.

αα′⊗α
+ κµαα′⊗α

κσ./κσ)(ν(T ))
)

= Jααα,1 + Op

(√
∆T (κµ.

αα′⊗α
+ κµαα′⊗α

κσ./κσ)(ν(T ))
)

where

µα¦µαα′ =
(
µα ⊗ µαα′ + µαα′ ⊗ µα + µ′α ⊗ vec(µαα′)

)
/3.

Also,

Jαα′⊗β(θ) =
n∑

i=1

`αα′⊗β(x, y) = 2

∫ T

0

(
µαµ′α ⊗ σβ

σ3

)
(Xt)dt− 2

∫ T

0

µαα′ ⊗ σβ

σ2
(Xt)dWt

+ Op(
√

∆T (κσκµ.
αα′
⊗ κσβ

+ κσ.κµαα′⊗ κσβ
+ κσκµαα′⊗ κσ.

β
)/κ2

σ(ν(T )))

= Jααβ,1 + Op(
√

∆T (κσκµ.
αα′
⊗ κσβ

+ κσ.κµαα′⊗ κσβ
+ κσκµαα′⊗ κσ.

β
)/κ2

σ(ν(T )))

Jβα′⊗α(θ) =
n∑

i=1

`βα′⊗α(x, y) = 2

∫ T

0

(
σβ ⊗ µαµ′α

σ3

)
(Xt)dt− 2

∫ T

0

σβ ⊗ µαα′

σ2
(Xt)dWt

+ Op(
√

∆T (κσκσβ
⊗ κµ.

αα′
+ κσ.κσβ

⊗ κµαα′ + κσκσ.
β
⊗ κµαα′ )/κ

2
σ(ν(T )))

= JO
ααβ,1 + Op(

√
∆T (κσκσβ

⊗ κµ.
αα′

+ κσ.κσβ
⊗ κµαα′ + κσκσ.

β
⊗ κµαα′ )/κ

2
σ(ν(T )))
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Jαβ′⊗α(θ) =
n∑

i=1

`αβ′⊗α(x, y) = 2

∫ T

0

(
σ′β ⊗ vec(µαµ′α)

σ3

)
(Xt)dt

− 2

∫ T

0

σ′β ⊗ vec(µαα′)

σ2
(Xt)dWt

+ Op(
√

∆T (κσκ
′
σβ
⊗ vec(κµ.

αα′
) + κσ.κ′σβ

⊗ vec(κµαα′ ) + κσκ
′
σ.

β
⊗ vec(κµαα′ ))/κ

2
σ(ν(T )))

= JM
ααβ,1

+ Op(
√

∆T (κσκ
′
σβ
⊗ vec(κµ.

αα′
) + κσ.κ′σβ

⊗ vec(κµαα′ ) + κσκ
′
σ.

β
⊗ vec(κµαα′ ))/κ

2
σ(ν(T )))

Jββ′⊗α(θ) =
n∑

i=1

`ββ′⊗α(x, y) =

∫ T

0

(
6σβσ′β ⊗ µα

σ3
− 2σββ′ ⊗ µα

σ2

)
(Xt)dWt

+ Op(
√

∆T (κσ.κσβ
κ′σβ
⊗ κµα + κσ(κσβ

κ′σβ
⊗ κµ.

α
+ κσ.κσββ′⊗ κµα + κσβ

κ′σ.
β
⊗ κµα)

+ κ2
σ(κσββ′⊗ κµ.

α
+ κσ.

ββ′
⊗ κµα))(ν(T )))

= Jαββ,1

+ Op(
√

∆T (κσ.κσβ
κ′σβ
⊗ κµα + κσ(κσβ

κ′σβ
⊗ κµ.

α
+ κσ.κσββ′⊗ κµα + κσβ

κ′σ.
β
⊗ κµα)

+ κ2
σ(κσββ′⊗ κµ.

α
+ κσ.

ββ′
⊗ κµα))(ν(T )))

Jαβ′⊗β(θ) =
n∑

i=1

`αβ′⊗β(x, y) =

∫ T

0

(
6µα ⊗ σβσ′β

σ3
− 2µα ⊗ σββ′

σ2

)
(Xt)dWt

+ Op(
√

∆T (κσ.κµα⊗ κσβ
κ′σβ

+ κσ(κµ.
α
⊗ κσβ

κ′σβ
+ κσ.κµα⊗ κσββ′ + κµα⊗ κσβ

κ′σ.
β
)

+ κ2
σ(κµ.

α
⊗ κσββ′ + κµα⊗ κσ.

ββ′
))(ν(T )))

= JM
αββ,1

+ Op(
√

∆T (κσ.κµα⊗ κσβ
κ′σβ

+ κσ(κµ.
α
⊗ κσβ

κ′σβ
+ κσ.κµα⊗ κσββ′ + κµα⊗ κσβ

κ′σ.
β
)

+ κ2
σ(κµ.

α
⊗ κσββ′ + κµα⊗ κσ.

ββ′
))(ν(T )))
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Jβα′⊗β(θ) =
n∑

i=1

`βα′⊗β(x, y) =

∫ T

0

(
6µ′α ⊗ vec(σβσ′β)

σ3
− 2µ′α ⊗ vec(σββ′)

σ2

)
(Xt)dWt

+ Op(
√

∆T (κσ.κ′µα
⊗ vec(κσβ

κ′σβ
) + κσ(κ′µ.

α
⊗ vec(κσβ

κ′σβ
) + κσ.κ′µα

⊗ vec(κσββ′ )

+ κ′µα
⊗ vec(κσβ

κ′σ.
β
)) + κ2

σ(κ′µ.
α
⊗ vec(κσββ′ ) + κ′µα

⊗ vec(κσ.
ββ′

)))(ν(T )))

= JO
αββ,1

+ Op(
√

∆T (κσ.κ′µα
⊗ vec(κσβ

κ′σβ
) + κσ(κ′µ.

α
⊗ vec(κσβ

κ′σβ
) + κσ.κ′µα

⊗ vec(κσββ′ )

+ κ′µα
⊗ vec(κσβ

κ′σ.
β
)) + κ2

σ(κ′µ.
α
⊗ vec(κσββ′ ) + κ′µα

⊗ vec(κσ.
ββ′

)))(ν(T )))

and

Jββ′⊗β(θ) =
n∑

i=1

`ββ′⊗β(x, y) =
1

∆

∫ T

0

(
10σβσ′β ⊗ σβ

σ3
− 6σβ¦σββ′

σ2

)
(Xt)dt

+ Op(
√

T/∆(κσβ
κ′σβ
⊗ κσβ

+ κ2
σκσββ′⊗β

+ κσκσβ
¦κσββ′ )/κ

3
σ(ν(T )))

=
1

∆
Jβββ,1 + Op(

√
T/∆(κσβ

κ′σβ
⊗ κσβ

+ κ2
σκσββ′⊗β

+ κσκσβ
¦κσββ′ )/κ

3
σ(ν(T ))).

where

σβ¦σββ′ =
(
σβ ⊗ σββ′ + σββ′ ⊗ σβ + σ′β ⊗ vec(σββ′)

)
/3.

Lastly,

Kαα′⊗αα′(θ) =
n∑

i=1

`αα′⊗αα′(x, y) = −
∫ T

0

3µαα′ ⊗ µαα′ + 4µα¦̇µαα′⊗α

σ2
(Xt)dt

+

∫ T

0

µαα′⊗αα′

σ
(Xt)dWt + Op

(√
∆T (κµ.

αα′⊗αα′
+ κµαα′⊗αα′κσ./κσ)(ν(T ))

)

= Kαααα,1 + Op

(√
∆T (κµ.

αα′⊗αα′
+ κµαα′⊗αα′κσ./κσ)(ν(T ))

)
.

where

µα¦̇µαα′⊗α =
(
µ′α ⊗ µαα′⊗α + µαα′⊗α ⊗ µ′α + µα ⊗ µ′αα′⊗α + µ′αα′⊗α ⊗ µα

)
/4.



143

2. Milstein ML Estimator Asymptotics

For the scores of the Milstein approximated log-likelihood function, we have

Sα(θ) =
n∑

i=1

`α(x, y) ≈
[∫ T

0

µα

σ
(Xt)dWt −

√
∆

2

∫ T

0

(
µ·α +

2µασ·
σ

)
(Xt)dVt

]

=
[
Sα,1 +

√
∆Sα,2

]

Sβ(θ) =
n∑

i=1

`β(x, y) ≈
[√

2

∆

∫ T

0

σβ

σ
(Xt)dVt

+
2

(3∆)1/4

∫ T

0

(
σ·β −

σβσ·
σ

)
(Xt)

√∣∣∣∣
√

2

3
Vt +

1√
3
Zt

∣∣∣∣dUt

]

=

[
1√
∆

Sβ,1 +
1

∆1/4
Sβ,2

]

and for the Hessians, we have

Hαα′(θ) =
n∑

i=1

`αα′(x, y) ≈
[
−

∫ T

0

µαµ′α
σ2

(Xt)dt +

∫ T

0

µαα′

σ
(Xt)dWt

−
√

∆

2

∫ T

0

(
µ·αα′ +

2µαα′σ·
σ

)
(Xt)dVt

]

=
[
Hαα,1 +

√
∆Hαα,2

]

Hαβ′(θ) =
n∑

i=1

`αβ′(x, y) ≈
[
− 2

∫ T

0

µασ′β
σ2

(Xt)dWt + 3

∫ T

0

µασ′βσ·
σ2

(Xt)dt

+

√
∆

2

∫ T

0

(
2µ·ασ′β

σ
− µασ·′β

σ
− µασ′βσ·

σ2

)
(Xt)dVt

]

=
[
Hαβ,1 +

√
∆Hαβ,2

]

Hβα′(θ) =
n∑

i=1

`βα′(x, y) ≈ [
H ′

αβ,1 +
√

∆H ′
αβ,2

]
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Hββ′(θ) =
n∑

i=1

`ββ′(x, y)

≈
[
− 2

∆

∫ T

0

σβσ′β
σ2

(Xt)dt +

√
2

∆

∫ T

0

(
σββ′

σ
− 3σβσ′β

σ2

)
(Xt)dVt

]

=

[
1

∆
Hββ,1 +

1√
∆

Hββ,2

]
.

Moreover,

Jαα′⊗α(θ) =
n∑

i=1

`αα′⊗α(x, y) = −3

∫ T

0

µα¦µαα′

σ2
(Xt)dt +

∫ T

0

µαα′⊗α

σ
(Xt)dWt

+ Op

(√
∆T (κµ.

αα′⊗α
+ κµαα′⊗α

κσ./κσ)(ν(T ))
)

= Jααα,1 + Op

(√
∆T (κµ.

αα′⊗α
+ κµαα′⊗α

κσ./κσ)(ν(T ))
)
,

where

µα¦µαα′ =
(
µα ⊗ µαα′ + µαα′ ⊗ µα + µ′α ⊗ vec(µαα′)

)
/3.

Also,

Jαα′⊗β(θ) =
n∑

i=1

`αα′⊗β(x, y) =

∫ T

0

(
2µαµ′α ⊗ σβ

σ3
+

3µαα′ ⊗ σβσ·
σ2

)
(Xt)dt

− 2

∫ T

0

µαα′ ⊗ σβ

σ2
(Xt)dWt

+ Op(
√

∆T (κσκµ.
αα′
⊗ κσβ

+ κσ.κµαα′⊗ κσβ
+ κσκµαα′⊗ κσ.

β
)/κ2

σ(ν(T )))

= Jααβ,1 + Op(
√

∆T (κσκµ.
αα′
⊗ κσβ

+ κσ.κµαα′⊗ κσβ
+ κσκµαα′⊗ κσ.

β
)/κ2

σ(ν(T )))

Jβα′⊗α(θ) =
n∑

i=1

`βα′⊗α(x, y) =

∫ T

0

(
2σβ ⊗ µαµ′α

σ3
+

3σβ ⊗ µαα′σ·
σ2

)
(Xt)dt

− 2

∫ T

0

σβ ⊗ µαα′

σ2
(Xt)dWt

+ Op(
√

∆T (κσκσβ
⊗ κµ.

αα′
+ κσ.κσβ

⊗ κµαα′ + κσκσ.
β
⊗ κµαα′ )/κ

2
σ(ν(T )))

= JO
ααβ,1 + Op(

√
∆T (κσκσβ

⊗ κµ.
αα′

+ κσ.κσβ
⊗ κµαα′ + κσκσ.

β
⊗ κµαα′ )/κ

2
σ(ν(T )))
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Jαβ′⊗α(θ) =
n∑

i=1

`αβ′⊗α(x, y) =

∫ T

0

(
2σ′β ⊗ vec(µαµ′α)

σ3
+

3σ′β ⊗ vec(µαα′)σ·
σ2

)
(Xt)dt

− 2

∫ T

0

σ′β ⊗ vec(µαα′)

σ2
(Xt)dWt

+ Op(
√

∆T (κσκ
′
σβ
⊗ vec(κµ.

αα′
) + κσ.κ′σβ

⊗ vec(κµαα′ ) + κσκ
′
σ.

β
⊗ vec(κµαα′ ))/κ

2
σ(ν(T )))

= JM
ααβ,1

+ Op(
√

∆T (κσκ
′
σβ
⊗ vec(κµ.

αα′
) + κσ.κ′σβ

⊗ vec(κµαα′ ) + κσκ
′
σ.

β
⊗ vec(κµαα′ ))/κ

2
σ(ν(T )))

Jββ′⊗α(θ) =
n∑

i=1

`ββ′⊗α(x, y)

=

∫ T

0

(
3σβσ·′β ⊗ µα

σ2
+

3σ·βσ′β ⊗ µα

σ2
+

3σββ′ ⊗ µασ·
σ2

− 15σβσ′β ⊗ µασ·
σ3

)
(Xt)dt

+

∫ T

0

(
6σβσ′β ⊗ µα

σ3
− 2σββ′ ⊗ µα

σ2

)
(Xt)dWt

+ Op(
√

∆T (κσ.κσβ
κ′σβ
⊗ κµα + κσ(κσβ

κ′σβ
⊗ κµ.

α
+ κσ.κσββ′⊗ κµα + κσβ

κ′σ.
β
⊗ κµα)

+ κ2
σ(κσββ′⊗ κµ.

α
+ κσ.

ββ′
⊗ κµα))(ν(T )))

= Jαββ,1

+ Op(
√

∆T (κσ.κσβ
κ′σβ
⊗ κµα + κσ(κσβ

κ′σβ
⊗ κµ.

α
+ κσ.κσββ′⊗ κµα + κσβ

κ′σ.
β
⊗ κµα)

+ κ2
σ(κσββ′⊗ κµ.

α
+ κσ.

ββ′
⊗ κµα))(ν(T )))

Jαβ′⊗β(θ) =
n∑

i=1

`αβ′⊗β(x, y)

=

∫ T

0

(
3µα ⊗ σβσ·′β

σ2
+

3µα ⊗ σ·βσ′β
σ2

+
3µα ⊗ σββ′σ·

σ2
− 15µα ⊗ σβσ′βσ·

σ3

)
(Xt)dt

+

∫ T

0

(
6µα ⊗ σβσ′β

σ3
− 2µα ⊗ σββ′

σ2

)
(Xt)dWt

+ Op(
√

∆T (κσ.κµα⊗ κσβ
κ′σβ

+ κσ(κµ.
α
⊗ κσβ

κ′σβ
+ κσ.κµα⊗ κσββ′ + κµα⊗ κσβ

κ′σ.
β
)

+ κ2
σ(κµ.

α
⊗ κσββ′ + κµα⊗ κσ.

ββ′
))(ν(T )))
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= JM
αββ,1

+ Op(
√

∆T (κσ.κµα⊗ κσβ
κ′σβ

+ κσ(κµ.
α
⊗ κσβ

κ′σβ
+ κσ.κµα⊗ κσββ′ + κµα⊗ κσβ

κ′σ.
β
)

+ κ2
σ(κµ.

α
⊗ κσββ′ + κµα⊗ κσ.

ββ′
))(ν(T )))

Jβα′⊗β(θ) =
n∑

i=1

`βα′⊗β(x, y)

=

∫ T

0

(
3µ′α ⊗ vec(σβσ·′β )

σ2
+

3µ′α ⊗ vec(σ·βσ′β)

σ2
+

3µ′α ⊗ vec(σββ′)σ·
σ2

− 15µ′α ⊗ vec(σβσ′β)σ·
σ3

)
(Xt)dt

+

∫ T

0

(
6µ′α ⊗ vec(σβσ′β)

σ3
− 2µ′α ⊗ vec(σββ′)

σ2

)
(Xt)dWt

+ Op(
√

∆T (κσ.κ′µα
⊗ vec(κσβ

κ′σβ
) + κσ(κ′µ.

α
⊗ vec(κσβ

κ′σβ
) + κσ.κ′µα

⊗ vec(κσββ′ )

+ κ′µα
⊗ vec(κσβ

κ′σ.
β
)) + κ2

σ(κ′µ.
α
⊗ vec(κσββ′ ) + κ′µα

⊗ vec(κσ.
ββ′

)))(ν(T )))

= JO
αββ,1

+ Op(
√

∆T (κσ.κ′µα
⊗ vec(κσβ

κ′σβ
) + κσ(κ′µ.

α
⊗ vec(κσβ

κ′σβ
) + κσ.κ′µα

⊗ vec(κσββ′ )

+ κ′µα
⊗ vec(κσβ

κ′σ.
β
)) + κ2

σ(κ′µ.
α
⊗ vec(κσββ′ ) + κ′µα

⊗ vec(κσ.
ββ′

)))(ν(T )))

and

Jββ′⊗β(θ) =
n∑

i=1

`ββ′⊗β(x, y) =
1

∆

∫ T

0

(
10σβσ′β ⊗ σβ

σ3
− 6σβ¦σββ′

σ2

)
(Xt)dt

+ Op(
√

T/∆(κσβ
κ′σβ
⊗ κσβ

+ κ2
σκσββ′⊗β

+ κσκσβ
¦κσββ′ )/κ

3
σ(ν(T )))

=
1

∆
Jβββ,1 + Op(

√
T/∆(κσβ

κ′σβ
⊗ κσβ

+ κ2
σκσββ′⊗β

+ κσκσβ
¦κσββ′ )/κ

3
σ(ν(T ))).

where

σβ¦σββ′ =
(
σβ ⊗ σββ′ + σββ′ ⊗ σβ + σ′β ⊗ vec(σββ′)

)
/3.
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Lastly,

Kαα′⊗αα′(θ) =
n∑

i=1

`αα′⊗αα′(x, y) = −
∫ T

0

3µαα′ ⊗ µαα′ + 4µα¦̇µαα′⊗α

σ2
(Xt)dt

+

∫ T

0

µαα′⊗αα′

σ
(Xt)dWt + Op

(√
∆T (κµ.

αα′⊗αα′
+ κµαα′⊗αα′κσ./κσ)(ν(T ))

)

= Kαααα,1 + Op

(√
∆T (κµ.

αα′⊗αα′
+ κµαα′⊗αα′κσ./κσ)(ν(T ))

)
.

where

µα¦̇µαα′⊗α =
(
µ′α ⊗ µαα′⊗α + µαα′⊗α ⊗ µ′α + µα ⊗ µ′αα′⊗α + µ′αα′⊗α ⊗ µα

)
/4.
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