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ABSTRACT

Asymptotics for the Maximum Likelihood Estimators
of Diffusion Models. (December 2008)
Minsoo Jeong, B.A., M.A., Seoul National University

Chair of Advisory Committee: Joon Y. Park

In this paper I derive the asymptotics of the exact, Euler, and Milstein ML
estimators for diffusion models, including general nonstationary diffusions. Though
there have been many estimators for the diffusion model, their asymptotic properties
were generally unknown. This is especially true for the nonstationary processes, even
though they are usually far from the standard ones. Using a new asymptotics with
respect to both the time span T and the sampling interval A, I find the asymptotics
of the estimators and also derive the conditions for the consistency. With this new
asymptotic result, I could show that this result can explain the properties of the
estimators more correctly than the existing asymptotics with respect only to the
sample size n. I also show that there are many possibilities to get a better estimator
utilizing this asymptotic result with a couple of examples, and in the second part of
the paper, I derive the higher order asymptotics which can be used in the bootstrap

analysis.
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CHAPTER I

INTRODUCTION

The diffusion model was originally designed and has long been used to model the
stochastic dynamics arising in physics and biology. In recent decades, however, it
also has gotten much attention from the financial and economics fields, and they ap-
plied the diffusion to the various financial and economics problems. Merton (1971)
and Black and Scholes (1973) are the most popular and significant works which es-
tablished the foundation of option pricing theory in finance. Vasicek (1977) and
Cox, Ingersoll and Ross (1985) are also well known works which have considered
the diffusion processes to model the interest rate term structure. Nowadays most of
the financial theories are written in terms of the continuous time framework, so the
importance of the diffusion model cannot be emphasized more.

As representing the importance and the popularity of the model, numerous es-
timation methods have been proposed, among which the main consideration in this
paper is the maximum likelihood estimation. Unlike the discrete time model estima-
tion, the main difficulties in the estimation of the diffusion model arises from the fact
that we cannot obtain the transition density in a closed form solution in most of the
cases, so we need to approximate it to do the estimation. The Euler scheme is the
most easiest and simplest way of the approximation, while the Milstein scheme gives
us a finer result with a higher order approximation of the data generating process.
There are also other various approximation methods proposed by many literatures,
and among them, Ait-Sahalia (2002)’s method is one of the most popular methods in

practice.

The journal model is Econometrica.



For each of those estimation methods, the corresponding asymptotic theories
were also provided, but mostly they could only deal with the stationary cases with
a few exceptions. We were mostly interested in the stationary processes in the past,
but in recent years people are getting more and more doubtful about the stationary
assumption even for the basic financial processes such as the interest rate or the
exchange rate processes. Moreover, the existing asymptotics with respect to the
number of samples is not enough to deal with the continuous time processes such as
the diffusion model. For example, it has been long been noted that there is a huge
magnitude of bias in the drift term parameter estimation of the diffusion models, but
it was just a well known phenomenon without reasonable asymptotic theory that can
explain it. In this paper, I propose a new asymptotic theory that can address this
problem, also without a restrictive stationary assumption. The basic concept for this
new asymptotics has mostly come from the ideas in Park and Phillips (2001), Ait-
Sahalia and Park (2008a) and Ait-Sahalia and Park (2008b). For the introduction
and the background theories of the diffusion processes, readers are recommended to
refer to Karlin and Taylor (1981), Revuz and Yor (1999) and Karatzas and Shreve
(1991).

In Chapter II, I derive the first order asymptotics of the exact, Euler and Milstein
maximum likelihood estimator of the diffusion models, and in Chapter III, I derive
the higher order asymptotics for the estimators. Various examples for the popular
diffusion models in finance and economics are also illustrated. In the Appendix, the
proofs for the theorems in the paper and other useful lemmas to derive them are

introduced.



CHAPTER II

ASYMPTOTICS FOR THE MAXIMUM LIKELIHOOD ESTIMATORS OF
DIFFUSION MODELS
In the first chapter, I deal with the first order asymptotics of the Maximum Likelihood

estimators of diffusion models.

A. Background
Consider the time-homogeneous stochastic differential equation
dXt = /,I/(Xt7 Oé)dt -+ O'(Xt7 ﬁ)th (2].)

where ;1 and o are the drift and diffusion functions, respectively. I will denote 6 =
(o, 3") hereafter. I let D = (z,z) denotes the domain of the diffusion process X;.

The Euler approximation of this SDE is
Xia — Xg-na ~ w(Xi—1)a)A + o(Xu—1ya) (Wia — Wi-nya)

and the closed-form solution of this approximated transition density from x to y with

an interval A is given by

pe(z,y) = S — exp | — (v = = Bua))”
LA V2rAo(x) 2A02(x)

suppressing the parameter arguments for each function. Milstein approximation of

this SDE is

Xia — Xg-na ~ w(Xi—1)a)A + o(Xu—nya) (Wia — Wi-nya)

1
+ 500" (X-1a) [(Wia = Wiiya)® = A



where f'(x,0) denotes a derivative 9/0z f(x,0). We denote fy(z,0) as a derivative
with respect to the parameter, /00 f(x,0). In the case of the Euler approximation,
the approximated transition density is the normal distribution, but in the case of the
Milstein approximation, the approximation error is reduced more with a mixture of a
normal and a chi-squared distribution, and the approximated transition density from
x to y with an interval A is given by,

) (exp |:_(7-(x7y) + a(x))Q] . [—(T(x,y) - O(x))QD ,

P, y) = N 2Ac202(z) 20A0%02(x)

where

T(z,y) = [0*(z) + AcPo? () + 200 (2)(y — v — A p(z))] 1/2

suppressing the parameter arguments for each function.
With a sample of time span T" and the sampling interval A, the Euler and Milstein
ML estimator 6 is defined as an estimator which minimizes the log-likelihood function
L(0) = Z log p(w(i-1)a; Tia, 0)
i=1
over § € O, where n = T/A, i.e.,

0 = argmin £(6).
90

Here p represents either p, or p,,. We assume that © is compact and convex, and 6,
is an interior point of ©. The Milstein ML estimation method was first proposed in
Elerian (1998). Replacing p with the true transition density p, we can perform the
exact ML estimation, but it is only restricted to the cases when we know the true
transition density in a closed-form, such as Ornstein-Uhlenbeck, Feller’s square root,
and Brownian motion with drift.

Letting S = 9L£/90 and H = 9>L/900¢', the asymptotic distribution of 6 can be



obtained from the first order Taylor expansion of §, which is written as
S(0) = S(60) + H(9)(0 — bo)

where 6 lies in the line segment connecting 6 and 6. If the following conditions hold
as T — oo and A — 0 for some appropriate matrix sequence w, (w is a function of

both 7" and A but I will suppress the subscript for the simplicity.)
AD1: w™t8(6y) = O,(1).
AD2: wH(0p)w™" = O,(1) and w'H ™ ()w= O,(1).
AD3: There is a sequence v such that vw~=! — 0, and such that

sup [0~ (H(0) — H(0))v™"] =, 0.

where N'= {0 : [v/(0 — 6y)| < 1}. (v is also a function of both 7" and A.)

we can derive the asymptotic leading term of the estimator. Wooldridge (1994) shows

that AD3 together with AD1 and AD2 implies®
AD4: S (é) = 0 with probability approaching to one as T"— oo and A — 0.
AD5: w (H(0) — H(0p))w™V = 0,(1) and w'(0 — ) = O,(1).

Thus, with these conditions, we have

wS(0) = w S (6o) + w H(Go)w VW' (8 — 0p) + w (H(0) — H(6o))w™"w' (6 — bo)
= w™LS(6o) + w H(Bo)wMw' (6 — 65) + 0,(1)
'Weak dependency is originally assumed to show the asymptotic normality of the

estimator, but it turns out that without the weak dependency condition, we can still
show AD4 and AD5 as long as we can find a proper normalizing sequence w.



so with probability approaching to one, w™'S (é) =0 and

A~

’ll)l(e — 90) = — U)/H<00)718(90> + Op(l).

So the rest of the steps are just to find the leading terms of H(6p) and S(6y).

B. Assumptions

1. Assumption Set 1

This set of assumptions to show the asymptotics of the Euler and Milstein ML Esti-

mators. We assume the following assumptions to make AD1 - AD3 hold.

Assumption 1. p(z, ) has its derivatives up to 6th order, and o(x, 3) has its deriva-
tives up to the 7th order, w.r.t. x on D. p(x,a) and o(x,3) and their derivatives

w.r.t. © have their deriwatives up to the 6th order, w.r.t. 8 on the interior of ©.

Assumption 2. Letting f(x) be each of those functions in Assumption 13 or o= (z),
f(z) is locally bounded on the domain D, and there exists a positive nondecreasing

function k¢ such that

sup |f(Xy)] —, 0
ke(T) te[O,T]| ( t)’ P

T7Pre(T) — 0
as T'— oo for some p < co. We call Ky as the asymptotic function of f.

This assumption is to get proper bounds for the remainder terms which appears in the
derivation of the asymptotic terms. This can be guaranteed by the limit theorems of
the extremal process of diffusions, together with the appropriate boundary conditions
of the function f. For the properties of the extremal process of diffusion models, one

can refer to Berman (1964), Davis (1982), and Stone (1963), and for the properties



for the function f, if f is regularly varying at both boundaries of D then it often is
possible to verify Assumption 2, as we will discuss further below.

To see more about this, note that the asymptotic property of sup,cin ‘ f (Xt)‘
is determined by the asymptotic properties of sup,cpo ‘Xt‘ and the supremum of
the properly centered reciprocal of X;, together with the boundary properties of the

function f, so firstly we can use the following result in Davis (1982),

T
lim |P( sup |X;| <uw —ex — )| =0
T*OO' (te[O,IC)F]| | < T) p( S(uT)M(D)>‘

for any upr — Z, for the positive recurrent processes. S is the scale function and
M is the speed measure of the process X;. If we assume that p(z) and o(z) are
regularly varying at both boundaries, taking u;y = T+ for ¢ > 0, we always have
T/S(ur) = O(1) so the extremal process normalized with such ur always degenerates
to zero, or has a non-degenerating distribution. For the properties of the reciprocal of
X, we can apply [t0’s lemma to get the drift and diffusion function of the transformed
process first, and then we can apply the above result with the same manner. We will
explain more about this in the examples later. For null recurrent processes, the
derivation mostly depends on each case, but one can refer to Stone (1963) and Cline,
Jeong and Park (2008) for the most general cases. Once we know the asymptotics of
the suprema, rest steps are easy with the regular variation property of function f. It

will be more explained in the examples later.

Assumption 3. There exist positive nondecreasing functions w, and wg such that
2 r :u2 2 r 0-%
w_ (T “L(Xydt and wz (T —(Xy)dt
2 [ ) 2 [ S

converge in distribution to some almost surely positive definite random variables as

T — 0.



This can be easily shown for the positive recurrent processes with w, (7)) and ws(7T)
being /T, and for other cases, we can get reasonable conditions for it to hold as
in Cline, Jeong and Park (2008), which utilizes the result in Stone (1963), Kasahara
(1975) and Hoépfner and Locherbach (2003). It will be more dealt with in the examples

and in Cline, Jeong and Park (2008). We let w = Diag(wa(T'), A™/?ws(T)) hereafter.
Assumption 4. o%(z) > 0 for any z € D.

This is to guarantee the existence of the integrals of the function of the process, for

example,

T
pog
/0 ?(Xt)dt < 00,

which appears in the asymptotic expansions. The key point here is that what is in
the denominator is always o(X), so the existence of the integral is guaranteed by the
continuity of the process X;, together with the local boundedness of ; and ¢ and
their derivatives.

For Ornstein-Uhlenbeck process and Brownian motion, we can easily check this

since the diffusion function is constant as o(z) = (3, so the above integral becomes

" u(X)
/o ,uﬁg) dt < oo,

which is guaranteed from the continuity of X, local boundedness of p(x), and o?(z) >

0. As for CEV or Feller’s square root process, the above integral becomes

T
/ M(Xt)lfg(Xt)dt <
0 X

?

which is again guaranteed by the continuity of X;, local boundedness of pu(z), and

o?(x) > 0.



Assumption 5. The asymptotic functions satisfy,

AT — 0

A1/4/£1 (THQ(T)) — 0

asT — oo and A — 0, where k1 and ko represent any combinations of the asymptotic

functions in Assumption 2.

This Assumption requires that A should decrease fast enough as T increases. This
is a technical condition for the proofs and it does not restrict the model. Though it
seems to require a bunch of complicated conditions for the all possible combinations
of k1 and kg, it turns out that we only need to check this condition for the fastest

increasing function xy among others and it is not difficult to check.

Assumption 6. As T — oo, we have

A(T)

e

for any e > 0, where k represents one of the asymptotic function ky in Assumption 2,
and K represents corresponding asymptotic function of the derivative of f with respect

to the parameter.

This requires that the order difference between the derivatives is not too big, and
it is of course satisfied by many functional classes, such as the power functions and
the logarithmic function. It is also not difficult to check this condition since we only
need to check for one or two functional classes which are related with the model. Any
diffusion processes having polynomial drift and diffusion functions, such as Ornstein-
Uhlenbeck, Feller’s square root, Brownian motion with drift, CEV and AS-CEV of

course satisfy this condition. More will be shown in the examples later.
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Assumption 7. Defining Npa = {60 : |v'(0 — 0p)| < 1} with v satisfying vw™ — 0,

we have

k(T, 6y)
k(T 0)

GGNT,A
as T — oo subject to Assumption 5, where k represents one of the asymptotic func-

tions in Assumption 2. Hereafter I suppress the subscript such as N for the simplicity.

This is also satisfied by many functional classes, including the power functions and
the logarithmic function. Examples for these Assumption 6 and 7 will be dealt with
more in Example 2. For Assumption 5-7, it looks as if at the first glance that it
will be very complicated and troublesome to check all the conditions, but as in the
Example 2, it turns out that we only need to check a few extremal cases for most of
the diffusion models used in practice, and we only need to check the conditions for a

functional class.

Example 1. (Ornstein-Uhlenbeck): Consider a process
dXt = Oég(Oél — Xt)dt + 6th

with ay > 0, 8> 0 and D = (—o00,00). It is easy to see that both the drift function
p(x) = as(ay — x) and the diffusion function o(z) = [ satisfy the differentiability
condition in the domain of the process D. For Assumption 5, they are conditions for

the decreasing rate of A, and it is satisfied if
AT* — 0

as T — oo and A — 0. For Assumption 6, it is easy to check that

i) _ 1,

T =1

=
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Here, Assumption 7 is also obvious since in this Ornstein-Uhlenbeck case, all the

asymptotic order functions do not depend on the parameter value.

Example 2. (CEV): Consider a process
dX, = az(aq — X,)dt + B X dW,

with ag > 0, ag > 0, 1 > 0, 5 > 1/2 also satisfying Assumption 4, and D = (0, 00).
It is also easy to see that both the drift function p(z) = as(ay — z) and the diffusion
function o(z) = Bi2™ satisfy the differentiability condition in the domain of the
process D, and they all satisfy Assumption 2. Borkovec and Kliippelberg (1998)
shows some examples of the properties of the extremal processes of the commonly
used diffusion models, and we can check that the supremum of the CEV process can
be bounded with a sequence v(T) = T. (The actual rate of v(T) is different for
each parameter setting, but here I only consider the biggest order for the simplicity.)
Applying It6’s lemma, we can easily check that this also holds with the reciprocal of

the process, that is, sup,c(o 1 ‘Xt_l‘ = O,(T) for By > 1/2, since
dY; = (oY; — araaY? + B2Y 72 dt — 3 YR dws,

denoting ¥; = X;'. So Assumption 2 is satisfied for each y and o and their derivatives

since they are all regularly varying at both boundaries. For example, if f(z) = 22,

2
sup ‘Xﬂ < < sup ’Xt’) :OP(T2)
te[0,7) t€[0,T

so riy(z) = 2% and if f(z) = 1/23,

3
sup }Xt_3| < ( sup |Xt_1|> = 0,(T?)

te[0,T] te[0,T]

so rif(z) = 2. For Assumption 3, refer to Cline, Jeong and Park (2008).
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For Assumption 5, it is enough to check with the biggest order xy. When 1/2 <

By < 7/2, the biggest order becomes log(T)T7~%2 thus the condition is satisfied if
A4 1og® (log®(T)T®P2) (log®(T)T®* )"~ — 0

as T — oo and A — 0. When (3, > 7/2, the biggest order is log(T)5T% so the

condition becomes
AY*1ogb (1og®(T)T%1) (log®(T)T* )% — 0

as T — oo and A — 0. Note again that these are just the technical conditions for the

proof, to deal with the remainder terms. For Assumption 6, we have, for example,
T—E ,{052 <T) — T—e log(T)Tﬂ2 — IOg(T)
Ko (T) T52 Te

— 0

as T'— oo for any € > 0. For Assumption 7, it suffices to show it holds for a power
function, for example, (T, 3) = T?. To check this, note first that w = 7"/? for this

CEV model, and for large enough 7" > 1,

o | HT5)
BeN H(TaﬁO)

= sup ‘Tﬂ—ﬁo‘ < sup }T|5—50|’ = sup T18—0ol < T
BeN BeN BEN

by choosing v = T/27¢ for some ¢ > 0, and also,

sup ‘Tﬁ—ﬁo‘ > sup ‘T—Iﬁ—ﬂol‘ = sup T =18=Pol > inf T—18=Pol > T
BEN BEN BEN BEN

for some € > 0. We have both 77" — 1 and 7-7 ° — 1 so the assumption is satisfied

for this case.

Example 3. (AS-CEV): Consider a process

dX; = (o0 + Xy + a3 X7 + X1 dt + (61 + B2 X + 63Xf4)dm
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living on D = (0,00). With a condition a3z < 0, 34 > 0 and a4y > 3% together with
(1 >0, B2 > 0 and (33 > 0, we can show that this process satisfies Assumption 2 with
SUD¢eo,17] | Xi| = Op(T) and SUP¢e(0,7] ‘Xt_l‘ = O,(T), since
aY = [ Y770 4 28,5577 + 23,8077 — a3 — aY,s
+ (52(52 —201) — 041)Yt2 + (6} — 064)5/;3] dt + (ﬁQYQ + BY7 + 535/;2754)th
where Y; = X; !, For 2ay < —33? case, it can be also dealt with with the result in

Cline, Jeong and Park (2008), and it is also not difficult to show that it satisfies the

rest of the assumptions.

2. Assumption Set 2

This set of assumptions is to show the asymptotics of the exact ML estimator. We
denote £(z,y, A) = log p(x,y, A), where p is the true transition density of the diffusion

model. Parameter arguments are suppressed here.

Assumption 8. /(x,y,A) and its derivatives w.r.t. the parameters, y, and A up to

the third order satisfy Assumption 2 and 5-7.

Assumption 9. The following derivatives of the log-likelihood function ¢ satisfy

lo(z,2,0) =0 loor (2,2,0) =0
loory(z,2,0) =0 lop (z,2,0) =0

flo 4
oy (,2,0) = ~3(2) lg(z,3,0) = —;%)

iimo Algyy(z, 2, A) = @(:U) iim0 VALygy(x,2,A) =0

o3
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and
1 o
EQA(JZ', xZ, O) + §gayy(x7x7 O)O’2(.I') = 'u:g (x)
1 a Ia
gao/A(xv Z, 0) + §€aa/yy('x’ Z, 0)0'2(.%) - _%(x)
' A 2040
lim [gﬂﬁ'(xal’, A) + Egﬂﬁ’yy(qu7A)a2($)} =T ?()

iin%) {\/Zfag%(:mx, A) + gfaﬁfyy(%l’, A)U2($)1 =0.

Assumption 8 and Assumption 9 are the crucial conditions so that the estimators have
the proper limit distributions. The following assumptions are technical conditions to
deal with the remainder terms deriving the asymptotic first order terms.

ED1: There exists Kra such that )", f(Xu—1)a,0) = Op(Kr,a) and

n

sup > (f(X—na, A) — f(X-1a,0)) = 0p(K1.a)
0<A<A ;=1
as T'— oo and A — 0 satisfying Assumption 5.

ED2: There exists My a such that Y"1, f(Xi—1a, Xo-1)a, A)(XiA—X(i,l)A)z

Op(MT7A) and

n

sup (f(X(z‘q)A, Ui A) - f(X(z‘A)A, X(ifl)Ay A))<Xi - X(ifl)A)2
i—1 9i€[X@-1)a,Xial

= 0p(Mr )

as T'— oo and A — 0 satisfying Assumption 5.
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Assumption 10. Denoting f(x,A) as each of the following functions,

lonn(z,2,A), loya(z, 2, N)o(x), Loya(x, 2, A)p(z), Loyya(,x, A)o?(x),
Uoa(w, 7, A), Loya(z, 2, D)o (@), Loya(w, o, A)pu(w), Loyyalr, v, A)o*(2),
Caonn (T, 2, A); Loaya (2,2, A)o(2), Loaya (T, 7, A) (), Logyya(z, 2, A)o?(z),
lopa(, 2, A), Cogya (@, 2, A)o (), Logya(w, 2, A)p(z), Logyyalz, z, A)o*(2),

EaﬁAA<x7 z, A)7 EaﬁyA(x7 x, A)U(I)a éa,@yA(xv z, A)M(ZE), gaﬁyyA(I7 x, A)O-Z(x)7
it satisfies ED1.

Assumption 11. Denoting f(x,y,A) as each of the following functions,

gayy(l'a Y, A)a gﬁyy(za Y, A); gozayy(xa Y, A)a gﬁﬂyy(xv Y, A), gaﬁyy@:; Y, A)?
it satisfies ED2.

Assumption 12. There exists a sequence v such that vw™' — 0, and such that

sup [0~ (H(0) — ()0~ | =,

where N = {0 : |v'(6 — 6p)| < 1}.

It is only a matter of time to check these conditions and one can easily check

them for the models with known transition densities.

Example 4. (Ornstein-Uhlenbeck): Consider a process
dXt = @2(0&1 — Xt)dt + ﬂth

with ag > 0, 6> 0 and D = (—o00,00). Checking Assumption 10-12 is not difficult
but can be tedious since we should apply almost same steps to the various given

functions. Here I will only check a couple of functions among the whole conditions as
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an example. Application to other functions is straightforward. For Assumption 10,

consider the following example,

2 a2 A
205¢€

sl &)= Gaems 1

Here, Kra = T/A since

a2 B Ta3 _
E Loyyn(,0) E 2ﬁ2 N O0,(T/A)
We have

n 3 - 202028 o3
Z(goqu(z? A) - EalyA(x70)) = Z (62(602A + 1)2 N 2;2>

=1
Xn: 252 46a2A ( asA + 1)2)
B 234 (ec2A 4 1)2

" oAA2 5
— 322 L 0,(TA%) = 0,(TA) = 0,(Kr.s)

since A < A, satisfying Assumption 10. For this Ornstein-Uhlenbeck process, As-
sumption 11 becomes obvious since there is no ¢ in any of the functions in the con-
dition. For Assumption 9, let us take a look at the second derivative with respect to

1. Note that

20&2 (€a2A — 1)

loyon (2,9, A) = T R(eA 1)



Thus, taking v = T~/?*¢ for some £ > 0,
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204270(6062’0A — 1)

sup
0eEN

=1

= sup

142 - 20‘2(6a2A —1)
2 Be=d +1)

2 o2
T25 <% . ﬂ) 4 Op<T25A)

0eN 62 ﬁ(Q)
N 2 Qo082 = 33) — B(03 — a3 )
= sup |T' V)

0eN 5 50

_ T250p<T—1/2) + Op(TQEA)

+ Op(T2€A)’

so we can choose any 0 < € < 1/4 to make it converge to zero. For Assumption 12,

2a5e22 2
eoz ) 7A = O A N
1y(x Z ) 6(6“2A—|—1)
for example, so we have
Qa2 Hay (LL‘)
Lo ,2,0) = —
13/(‘1? Z ) 52 0'(33)

satisfying Assumption 12.

C. First Order Asymptotics

If the conditions AD1 - AD3 hold, we can easily derive the following result from the

steps described in Section 2. Hereafter, A ~ B denote that A — B is of smaller order

than B.

Theorem 1. With Assumptions 1 to 7, the asymptotic first order terms of Euler,

and Milstein ML estimators are obtained as the following, and with Assumptions 8 to
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12, the asymptotic first order distribution of the exact ML estimator is obtained as

& — aw(/ Maﬂa(Xt)dt)_l/oT%(Xt)th
b-pw \f( Uﬁaﬁ Xt)dt)l/OT?(Xt)dv;

as T — oo and A — 0 under Assumption 5, where V' is a standard Brownian motion

independent of W.

Proof of this theorem is omitted here since it easily follows from the following propo-

sitions with the same steps already described at the end of the previous section.

Proposition 1. For Euler, and Milstein ML estimators, with Assumptions 1 to 7,
AD1 and AD2 hold with S(0y) having its leading term as the following, and for the

exact ML estimator, the same holds with Assumptions 8 to 9,

T Ll 2 T op
/0 ?(Xt,QO)th and Z/O' ;(Xt,eo)dv;g

for the drift term parameters and the diffusion term parameters, respectively, and

also, H(6y) having its leading term as

. 2 [T 0y
/ Hoblo (x poydt  and = / 7075 (X, Bt
0 o O

o2

for the drift term parameters and the diffusion term parameters, respectively. Also,
the leading term of H(0y) becomes a block diagonal matriz in probability as T — oo

and A — 0 under Assumption 5.

Proposition 2. For the Euler and Milstein ML estimators, with Assumptions 1 to
7, AD3 holds.

Example 1. (Ornstein-Uhlenbeck): For the Ornstein-Uhlenbeck process

dXt = 052(041 - Xt)dt + ﬂth,
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with ap > 0, note that the drift function is p(z, oy, as) = as(a; —x) and the diffusion
function is o(z, f) = 3. Applying these functions to the asymptotic distribution in

Theorem 1, we have

a1 — « %ﬁﬁ
1 1 0y T
T -1 .7
Qg — g = ﬁ (/ (Ckl - Xt)2dt> / (Ckl - Xt)th
0 0
A Vr
B~y S0o

thus
VT(61 — a1) —a N(0, 32/a3)
ﬁ(éég — 042) —d N(O, 2062)

for the drift term parameters, and

VT/A(B = B) =4 N(0,5°/2)

for the diffusion term parameter as T' — oo and A — 0, since Ornstein-Uhlenbeck
process is stationary. Note here that the leading terms of &; and B is normal even
in finite 7', while the leading term of ¢&» is non-normal in finite T". Figure 1 shows
the difference between the normal distribution and the first order term obtained from
Theorem 1. Even for this simplest stationary Ornstein-Uhlenbeck process, we can see

that the distributions are quite different.

Example 2. (Geometric Brownian Motion): For the geometric Brownian motion

dXt = O(Xtdt + 6Xtth,
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T =5 (as = 0.25, &y = 0 and 3 = 0.02)
(Dotted line is the density function of N(0,2a2/vT).)

1.0 1.1 1.2 1.3

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 0.1

Fig. 1.— First Order Distribution of ay — ap

we can log transform the process to have

2
dlog X; = (a — %) dt + BdW,.

For this transformed process, we have p(z, a*) = oz for the drift function denoting
a* = a—[(%/2, and o(z, 3) = Bz for the diffusion function. Applying these functions

to Theorem 1, we have
VT(6" = a*) =4 N(0, %)
for the drift term parameter, and
VT/A(G = ) —a N(0, 5°/2)

for the diffusion term parameter.
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Example 3. (Feller’s Square Root): For Feller’s square root process
dXt = OéQ(Oél - Xt)dt + ﬂ\/ Xtth

with 2aq00 > 32, we have

haasi — hiasg
2

hi1hog — hlg

hi1s2 — hi2s;

hi1hag — hiy

5 A Vr
B~y S07

CAtl—CKl%

dg—agz

where

T 2 T
062 (O[l — Xt> / 062(051 — Xt)
/ ax ) T E R G

X
51 —/ 1/2th, S2 :/ 1/;th
5 X o HX

Note that we have

f Xt 20(20(1 52
1 /T 0 =Xy

1 (71 2

- dt — a2

T 0 Xt 2&20&1 ﬁ2

since X, is stationary for 2as0; > 32, so

ﬁ(dl — (1/1) —d N (0, Oé1ﬂ2/043)

VT (g — ) —4 N (0, 20
as ' — oo.

Example 4. (CEV - Constant Elasticity of Variance): For a positive recurrent CEV
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process
dX, = as(oq — X,)dt + B X AW,
we have
G — v A hi1s2 — hiasy
2T hatha — b,
b — o S haas1 — hi12s2
1~ R
hi1hos — hi,
32 — By~ /é hs3sq — h34;3
@_@%Jé@@;@$7
2 ]’L33h44 — h34
where
T 2 T 2 T
a a; — X as(ay — X,
fu = / sl = / O / ot
0 61Xt 0 61Xt 0 51Xt
T T
- X
S1 :/ a2ﬂ th, So :/ e 3 tth
0o X} 0o 4X?
and
T T 1 [T
has = —5, hu = / log?(X,)dt, hsy = — / log(X,)dt
1 0 B1 Jo
V T
S3 = —T, S4 :/ log(X;)dV;.
B 0

Corollary 1. With Assumptions 1 to 7, the asymptotic first order terms of the t-
statistics of the Euler, and Milstein ML estimators are obtained as the following, and

with Assumptions 8 to 12, the asymptotic first order distribution of the t-statistics of
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the exact ML estimator is obtained as

o[ ([ o) [ essa] /[([bessa) ]
o= ([ enm) " [ /([ “Foom) ]

as T — oo and A — 0 under Assumption 5, where V is a standard Brownian motion

independent of W. ay, is the k’th element of a vector a, and Ay is the (k, k) element

of a matriz A.

Example 5. (Ornstein-Uhlenbeck): For a process
dXt = Oég(Oél — Xt)dt + 6th

with as > 0, we have

Note that we have also t(dy) —4 N(0,1) as T" — oo. Figure 2 shows the standard
normal density function, actual histogram of ¢(&s) obtained from the simulation, and
the distribution of the leading term obtained from Corollary 1. We can see that
the actual histogram of the t-statistic is closer to the limit distribution than to the

standard normal density function.

Example 6. (CEV - Constant Elasticity of Variance): For a positive recurrent CEV

process

dX, = as(ay — X,)dt + B X2 dW,



24

T =5 (az=0.25 a3 =0 and = 0.02)

(Dotted line is the standard normal density function.)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Fig. 2.— First Order Distribution and the Histogram of ¢(as) — OU

we have

hi1s2 — hi2s;
9 \11/2
[hu(hnhm - h12>]
haasi — hiasg

[h22(h11h22 - h%g)]
AN h33s4 — h3yss

t(f2) ~
i [h33 (hazhas — h§4)] 2

t(é{g) ~

t(OAél) ~

1/2

t(Bl) ~ hayss — h34§4
[h44(h33h44 - h34)]

1/2°

where each term is defined as same as above. Figure 3 shows the standard normal
density function, actual histogram of #(d&s) obtained from the simulation, and the
distribution of the leading term obtained from Corollary 1. As in the Ornstein-
Uhlenbeck case, the distribution of the leading term explains the actual histogram

quite well.
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T =5 (az =0.09, oy =0.08, 51 = 0.8 and B = 1.5)

(Dotted line is the standard normal density function.)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Fig. 3.— First Order Distribution and the Histogram of ¢(ds) — CEV

1. Consistency and the Convergence Rate of the Estimator

From Theorem 1, we can check that the Milstein ML estimator is consistent as long

as

T I
/ Holla (Xt)dt — OO
0

o2

for the drift term parameters and

1 [T ooy
Z\/O o2 (Xt)dt — 00

for the diffusion term parameters, and also these determine the convergence rate. To

understand more about this in a specific case, let us consider the CEV model first,

dX, = ao(y — Xy)dt + 31 X2 dW,.
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For the CEV case, note that these conditions are

T _ 2 T
/ (1 =) g~ oo, / X2 dt — oo,
0 X, 0

T, I )
— By “dt — oo, —/ log(X;)“dt — oo.
A/0 ' A Jy (%)

With suitable parameter restrictions as in the example above, these convergence rates
become VT, VT, \/T/_A and \/T/_A, and we can easily see that the drift term
parameters will not be consistent unless 7' — oo, while for diffusion term parameter
estimators, they will be still consistent if A — 0. This is an interesting property of the
diffusion process estimation. This property of the diffusion estimator is well known
among those who study the diffusion process, but here, I present this theoretical result
in an explicit expression of the asymptotic distribution. For the Brownian motion

with drift
dX; = adt + BdW,,
the above conditions become

T 1 (T
/ B72dt — oo and —/ B2dt — oo
0 A Jy

for o and 3, respectively, so the convergence rates for each parameters are /7T and
/T /A. In this case also, the convergence rate of the drift term parameter does not
depend on the sampling interval A, while the convergence rate of the diffusion term

parameter depends on both 7" and A.
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2. Mixed Normal Property of the Estimator

Since X and W are not independent of each other, the distribution of the drift term

T / -1 T
a—an~ ( /0 “Z’ja (Xt)dt) /O %(Xt)th

is very non-standard and far from normal distribution in general. On the other hand,

estimator

for the diffusion term estimator, X and V' are independent of each other, so we can

show that the leading term of the diffusion term estimator is mixed normal as,

RS \/>( Jﬂ% Xt)dt> 1/0T%(Xt)dvt
N (0, %(/OT 7% (Xt)dt) 1) |

From this, we can expect that the diffusion term parameter estimator will behave

in more standard way than the drift term parameter estimator, and moreover, since
this is the mean-zero mixed normal distribution, we can expect that it will suffer less
from the bias problem.

For a single diffusion term parameter model, the leading term of the t-statistic

of the diffusion term parameter estimator is

([ For) [ oo Buoe) "
B (/OT ZZ (Xt>dt) - /0 T av;

~ N(0,1)

so we can check that it follows the standard normal distribution even if the process

is nonstationary.
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D. Monte Carlo Study

1. Performance Comparison

In this section, I perform Monte Carlo simulations to assess the performance of the
Milstein ML estimator. The simulations are designed for two goals.

Firstly I consider the performance of the estimator in different time span 7" and
different sampling interval A. From the asymptotic result illustrated in Section 4,
we expect that the estimator will perform better as the time span increases and
the sampling interval decreases, but if we only focus on the drift term parameters,
decreasing the sampling interval will not help much to estimate them more accurately.
Thus, with this theoretical background, we may be able to say that obtaining intra-
day high frequency data will only give a marginal help on estimating the drift term.
So if we are only interested in the drift term estimation, and if we suspect that the
high frequency data is contaminated with the microstructure errors, then we can just
use the daily or monthly data for the estimation without worrying about the loss of
the information. This property of the diffusion estimator is shown in the following

MSE comparison. For this simulation, I generated process with the CEV model
dX, = az(oq — X,)dt + B X AW,

To increase the accuracy of the data generation, I generated the process with the
Milstein approximation, with finer sampling interval A = A /1000, and resampled it
to make a data of the sampling interval A. The simulation iterations are set to be
1000. As expected from the asymptotic result, while the MSEs decrease drastically
as the time span T increases in the first part of Table I, in the second part of Table I,
the MSEs for the drift term parameters stay almost still at a fixed level even though

the sampling interval is getting smaller and smaller.
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Table I.
MSE Comparison for Various Time Span T and Sampling Interval A
Qg = 1, a1 = 1, 61 = 01, ﬂg =11

A =0.01
(e%)) (0%} ﬁl 62

T=1 50197 7.071x1073 1.027x10~* 3.313

T=2 11.794 4.549x1073 4.397x107° 1.104

T=4 2627 2425x107% 1.877x107° 0.480
Qg = 1, ] = 1, 61 = 01, ﬁg =1.1

7 =10
[6%) a ﬁl 52

A=0.2 0412 9427x107* 2.268x107* 1.726

A =0.05 0348 9.113x107* 4.181x10~° 0.470
A=0.02 0393 8785x10"% 1.399x107° 0.261

Our next Monte Carlo simulation is for the performance comparison with the
estimation method introduced in Ait-Sahalia (2002). This is one of the most widely
used among other estimation methods, so I picked this for the comparison. While this
is a good estimator, I show that the Milstein ML estimator is as good as this in the
estimation performance. Moreover, the ease of application is a lot less complicated
than that, and also the computation time is a lot less than that. The computation
time for each estimator also depends on the parameter settings, but in the follow-
ing simulation, the calculation time was almost 10 times longer than the Milstein

estimator.

The simulation settings for this is T = 5, 20, and A = 0.005, 0.025, 0.1,
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Table II.
Performance Comparison (7' = 5)

IQR50 (012 = 009, a1 = 008, ﬁl = 0.8 and ﬁg = 15)

T=5 aq %) B B2
Euler 0.03379 1.1496 0.3648 0.1787
Daily Milstein 0.03382 1.1495 0.3642 0.1775

Ait-Sahalia  0.03459 1.1865 0.3522 0.1697

Euler 0.03452 1.1677 0.8353 0.4217
Weekly  Milstein 0.03442 1.1637 0.8249 0.4118
Ait-Sahalia  0.03460 1.1891 0.8632 0.4052

Euler 0.03667 1.1924 1.6001 0.8290
Monthly Milstein 0.03646 1.1901 1.6098 0.7940
Aft-Sahalia  0.03689 1.3037 1.9914 0.7649

representing 5 and 20 years of data observed in daily, weekly, and monthly basis.
The parameter settings are based on the estimation result in Ait-Sahalia (1999). The
comparison criteria is IQR5o. IQR5 is defined as IQRs50=|qr5 — qo5| where ¢; is the
1-th quantile of the empirical distribution, and it helps to assess the performance
of estimators when the estimators suffers from possible outliers. As shown in Table
IT and Table III, between Milstein ML and Ait-Sahalia’s estimators, neither one
dominates the other and it is hard to tell which one performs better. As for the Euler
and Milstein ML estimators, we can also check that Milstein ML estimator generally
performs better than Euler ML estimator, especially when the sampling interval is
relatively large. Table IV is the outlier counts for each estimators. We can see that

the method in Ait-Sahalia (2002) suffers from outliers of big magnitude.
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Table ITI.
Performance Comparison (7" = 20)

IQR50 (012 = 009, a1 = 008, ﬁl = 0.8 and ﬁg = 15)

T =20 (651 6%)] 51 52
Euler 0.03018 0.3198 0.1197 0.0567
Daily Milstein 0.03036 0.3201 0.1182 0.0567

Ait-Sahalia  0.03033 0.3167 0.1172 0.0554

Euler 0.03057 0.3164 0.2633 0.1280
Weekly  Milstein 0.03057 0.3170 0.2617 0.1260
Ait-Sahalia  0.03034 0.3183 0.2602 0.1242

Euler 0.03174 0.3182 0.5031 0.2644
Monthly Milstein 0.03167 0.3168 0.4990 0.2601
Aft-Sahalia  0.03178 0.3239 0.5289 0.2567

2.  Hypothesis Testing

From the form of the asymptotic distribution of the parameter estimates, one question
easily arises about the hypothesis testing. If the limiting distribution is not normal,
and still we use the critical values obtained under the normality, then it is obvious
that the size of the test will be very different from the actual size. For example, the

t-statistics for as and «ay of the CEV model have the following limiting distributions,

haasi — hiase

#(én) ~ (2.2)
[has(harhay — h2)] 2
R hi1182 — hi2s
t(dg) ~ 1122 1271 (2.3)

1/2°

[hu(hnhm - h%g)]
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Table IV.
Outlier Comparison

Outliers greater than 10 x IQR;, (out of 10000)

T=5 T =20
(O 5eY 51 52 a1 Q2 51 ﬁ2
Euler 0 0 0 0 0 0 0 0

Daily Milstein o o0 o 0 0 0 0 0

Ait-Sahalia 9 0 70 2 0 63 0
Euler o 0 0 0 0 0 0 O
Weekly  Milstein o 1 0 O 0 0 0 O
Ait-Sahalia 4 0 32 1 2 1 12 0

Euler 0o 0 0 0 0 0 0 O
Monthly Milstein r 2 0 0 0 0 1 0
Ait-Sahalia 6 5 40 0 O O 4 O

where

T 2 T 2 T
— X - X
h11:/ 20(22162dt7 h22:/ (0412 26? p hmz/ ozz(C;1 - t)dt
0 51Xt 0 61Xt 0 ﬁlXt
T T
- X
S1 :/ %th, So :/ Oél—ﬁztth,
0o Xy o BX;

so we can hardly expect that it will follow the standard normal distribution. We can

check this from the simulation and Figure 4 shows the simulated distributions for
each random variable (2.2) and (2.3).
So unless we know the exact limiting distribution, we can only use the critical

values for the normal distribution so this problem can be applied to any cases when
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T =5 (g =0.09, @y = 0.08, f; = 0.8 and [, = 1.5)

(Dotted lines are for the standard normal density function.)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40

Fig. 4.— First Order Distributions of ¢(&;) and t(dz2)

we are estimating diffusion processes. In Table V and Table VI, we present the
simulation results showing the discrepancies between the actual and the simulated
size of the tests, and also show that this property of the estimator is not only for
the Milstein ML estimator, but also same for other diffusion estimators such as Ait-
Sahalia (2002)’s closed-form ML estimator. Table VII shows the comparison result
between the standard normal, bootstrap and the limit distribution obtained in (2)
and (3). For the limit distributions, I used estimated parameter values. As we can see
here, both bootstrap and first order limit distribution performed better than standard

normal critical values.

E. Application to the Estimation

This limit theorem for the diffusion estimators can be used to enhance the performance

of the estimators. Followings are a couple of examples.
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Table V.
Size of t-Statistics — Milstein ML estimation
T =5, A=0.005
051 0% B 2

1% 0.07 0.129  0.000  0.016

One-sided 5% 0.107  0.384  0.010  0.055
10% 0.129  0.554  0.052  0.101

1% 0.405 0.109  0.041  0.010
Two-sided 5% 0498  0.306  0.083  0.061
10%  0.541 0.452  0.121  0.112

1. Time Change Bias Correction Method

Assume that we have the following process
dXt = [,L(Xt, Oé)dt + O'(Xt, ﬁ)th

As illustrated in the previous examples, the estimator for o usually produces a big
bias even for the simple stationary processes such as the Ornstein-Uhlenbeck process.

Choi and Park (2008) shows that, from the idea that & has the following leading

. Tl (X, @) )_1 T pa (X4, @)
—ar = - ————2dW,,
“-e (/o 02(Xt75) ! /0 U(Xt,ﬁ)

we can think of a time change to make the denominator a constant ¢, so that,

ATe o au T Mi(Xt,a) ) e ,ua(Xt; a) - 1 Te ua(Xt,a)
@ o (/0 o2(X,, B) dt /0 (X0 3) dW, = C/o (X, ) dw,.

term,



Table VI.

Size of t-Statistics — Ait-Sahalia’s method

T =5, A=0.005

ay 0% B 2
1% 0.082 0.084 0.000 0.006
One-sided 5% 0.134 0.314 0.008 0.060
10%  0.156 0.502 0.056 0.098
1% 0.304 0.052 0.004  0.002
Two-sided 5% 0.392 0.192 0.018 0.032
10%  0.440 0.330 0.036 0.078

Since this is a martingale which is mean-zero, we can expect that this estimator will

have no bias, and we can construct an estimator utilizing this fact. One can refer to

Choi and Park (2008) for more on this.

2. Bias Correction Using the Rate of Convergence

Note that for a positive recurrent process, we have

! / Xt s /D F(@)p(a)ds

=(/ Pyl )i ) —a N0,
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Table VII.
Size Adjustment
Size of t-statistics — Milstein ML estimation

T =5, A =0.005

t(dl) t(dZ)

Std. Nor. Bootst. Lim. Dist. Std. Nor. Bootst. Lim. Dist.

1% 0.065 0.049 0.053 0.136 0.062 0.047
One-side 5% 0.106 0.104 0.087 0.389 0.169 0.158
10% 0.133 0.133 0.116 0.569 0.267 0.256
1% 0.408 0.191 0.361 0.121 0.122 0.098
Two-side 5% 0.505 0.286 0.423 0.313 0.186 0.178
10% 0.551 0.382 0.467 0.461 0.257 0.241

Critical values based on:

Std. Nor. — standard normal distribution
Bootst. — parametric bootstrap method

Lim. Dist. — limit distribution simulated with the estimated parameter values

for some constant ¢, where p(z) = m(x)/M (D), with proper conditions. (See Khas-

minskii (2001).) From this, we can check the order of the bias of the estimator,

E(Gd — a) ~ E(/OT “—3(Xt)dt> B /OT Ho  x,yaw,

o

C 7 pa N0, ¢) [T pta .
:Ef/o 7(Xt)dvthP:Tg/QCZ/0 Ko (X)W, + 0,(T)

=0+ Op(T_1)7
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where C' = ( [, ‘O‘_—‘Q;(x)p(x)dx)_l. Now using this information, we can think of a

method to correct the bias by setting up the following simple regression relationship,

c
Eqa —a=— i
« o Ti+€

for each different T;. We can estimate ¢ by subsampling with different time span Tj,

and the bias corrected estimator & becomes

jo3

I

joN

|
SIS

Table VIII is the simulation table with this correction method. If we have null-

Table VIII.
Performance Comparison (o)
CEV (a; = 0.08, s = 0.09, 1 = 0.8, By = 1.5)

T =5 A=0.005
Median bias IQRsg

Original 0.949 1.133
Bias corrected 0.209 0.981

recurrent diffusion processes (with suitable conditions), the convergence rate of the
bias will become T~'/2 not T, since the integral in (2.4) will converge to a random
variable, not to a constant, so in this case, we can also apply this fact to the above

correction method.
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CHAPTER III

ASYMPTOTIC EXPANSIONS FOR THE MAXIMUM LIKELIHOOD
ESTIMATORS OF DIFFUSION MODELS
In this chapter, I deal with the second and the higher order asymptotics of the max-

imum likelihood estimators of diffusion models

A. Background
Consider a time-homogeneous stochastic differential equation
dXt = /,I/(Xt7 Oé)dt -+ O'(Xt7 ﬁ)th (3].)

where 1 and o are the drift and diffusion functions, respectively. We will denote
0 = (o/, ') hereafter. We let D = (z,z) denotes the domain of the diffusion process

X;. Euler approximation of this SDE is
Xia — Xg-na ~ (Xi—1)a)A + o(Xu—1ya) Wia — Wi-nya)

and the closed-form solution of this approximated transition density is given by

pe(T,y) = N exp | — (v = = Apa)”
e V2rAo(x) 2A0%(x) ’

denoting x = X(;_1)a and y = X, and suppressing the parameter arguments for

each function. Milstein approximation of this SDE is

Xia — X—na >~ u(Xi—pya)A + o(Xi—ya) (Wia — Wia)

1
+ 500.(X(i—1)A) [(Wia = Wiina)? = A]
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where a'(z,0) denotes a derivative 0/0za(x,0) (I define a (x,0) as a derivative
0/00 a(x,0)). In the case of the Euler approximation, the approximated transition
density is a normal distribution, but in the case of the Milstein approximation, the
approximation error is reduced more with a mixture of a normal and a chi-squared

distribution, and the approximated transition density is given by,

o) — 1 o —(7‘(96, y) + U(x))2 o —(T(:v,y) — 0(3:))2
Pa(2:9) = V2 AT(z,y) ( P { 2A0%02(x) ] T exp [ 2A0202(x) }) ’

where

T(z,y) = (0*(z) + Ac’c(z) + 200" (z)(y — x — Au(x)))l/z

denoting x = X(;_1)a and y = X, and suppressing the parameter arguments for
each function.
The Euler and Milstein ML estimator 6 is defined as an estimator which mini-
mizes the log-likelihood function
L(0) = Z log p(X(i-1)a, Xia, 0)
i=1
over § € O, i.e.,

0 = argmin £(6).
0cO

Here p represents either p, or p,,. We assume that © is compact and convex, and 6,
is an interior point of ©. The Milstein ML estimation method was first proposed in
Elerian (1998). Replacing p with the true transition density p, we can perform the
exact ML estimation, but it is only restricted to the cases when we know the true

transition density in a closed-form, such as O-U, Feller, and BM with drift.
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B. Assumptions

Here I adopt Assumptions 2-4 and 6-7 from Part 1. For the following assumptions,
they are basically same as Assumption 1 and 5 in Part 1, but only requires higher

order conditions.

Assumption 13. p(z,«) has its derivatives up to Tth order, and o(x,[3) has its
derivatives up to the 8th order, w.r.t. x on D. u(x,a) and o(x,3) have their deriva-
tives up to the 7th order, w.r.t. 0 on the interior of ©. (We assume only piecewise

differentiability.) These functions satisfy the conditions in Assumption 2, 6 and 7.

Assumption 14. The asymptotic order functions satisfy,

AT? =0

AR (Tr2(v(T))) — 0

as T — oo and A — 0, where k1 and ko represent any combinations of the order

functions in Assumption 13.

C. Asymptotic Higher Order Expansions

Let us denote S = 9L/90, H = 0*L£/000" and J = 9*L/00®66'. Then by the Taylor

expansion of the score function around 6y, we have

S(0) = 8(00) + H(6)(0 — o) + 1 (1o —0)) T~ ). (32
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where 0 is a value in the line segment connecting 6, and 6. Here, J is the derivative

of H represented by a k% x k matrix (where k is the number of parameters), i.e.,
J1(0)

J(0) = : ,  where J;(0) =
T (0)

aH(0)
20,

Rewriting the second term of the above expansion as the following,

(6 — 00) T1(0) (0 — 0y) (0 — 00) T1(00) (0 — 0y)

(6 — 60)'T1(8)(8 — 6o) (6 — 60)'T(80) (6 — 60)

(0 — 00) (F1(8) — T1(60)) (0 — 60)

(6 = 60)' (T(8) = T(60)) (6 — b0)

= AT -+ BT-
If Br is of smaller order than Ar, we can get the following approximation
~ ~ 1 A~ , A~
S(0) ~S(0y) + H(0p)(0 — bp) + 5(&@(9 —6p) )7(90)(9 —6p)

replacing 7 (A) with 7 (6y). This can be shown from the following conditions,
SD1: p; ' Ji(00)p; ¥ = O,(1) for each i = 1,... .k
SD2: There is a sequence p; such that g;p;” ' — 0, and such that

sup o7 (Ji(0) — Ji(60))0; V| =5 0
0eN

foreach i =1,... k, where N = {6 : |0l(6 — 6y)| < 1}.
From Wooldridge (1994), SD1 and SD2 together with AD1 and AD2 in Part 1 implies
SD3: p; ' (J:(0) — Jil6o)) pi M = 0.
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Thus, with SD1 and SD2, the above approximation becomes valid.
Now going back to the Taylor approximation above, with the first order condition

S(#) = 0 for the maximum likelihood estimation, we have

~

0 — 0o~ —H(0)*S(6) — %H(Qo)‘l(]k@)(é —00)") T (00)(6 — o) (3.3)

- CT+DT-

To get the second order expansion of the estimator, it is enough to get the first order

term from Dp, while we need to obtain both the first and the second order term from

Cr.

Proposition 3. For Fuler, and Milstein ML estimators, the first and the second
order terms of S(6y) and H(6y), and the leading terms of J(6y) are as shown in the

Appendiz 1 and Appendiz 2, respectively.
Note that this proposition also accounts to SD1.

Proposition 4. For Euler, and Milstein ML estimators defined above, SD2 holds.

The proof of Proposition 2 is omitted here since the same steps can be applied as in
the proof of Proposition 1 in Part 1, replacing H with J.

Now combining the above results together, we have the following result,

Theorem 2. The asymptotic expansions of Fuler, and Milstein ML estimators are

obtained as

1
& —ag~ —Hyy S0 — Hon 1 (1e®Sh 1 Hon 1) Jacan Hog 1 Sa

ao,l 5 2 ao,l ao,l aa,l

~ VAHLy (Hawa Hid S + Saz = Hap Hih S5

ao,l

B— By~ _VZH[;;lsm - A3/4H@—g,lsﬂ,2

where each term is defined in Appendiz 1 and Appendix 2, respectively.
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We can also only consider the case when A is small enough to make the A-order

terms negligible. By the Taylor expansion of the score function around 6y, we have

S(0) = S(00) + H(60)(0 — 80) + 5 (10 — ) T (00) (6 — o)

~ ~ A~ ~

+ é(]k@)(@ —00)")K(0)((0 — 6o) (0 — o)),

where 6 is a value in the line segment connecting 6, and 0. Here, J is as defined in
the above, and K is the derivative of J represented by a k? x k? matrix (where k is

the number of parameters), i.e., K = 9*£/000'®00’. We can represent this as

Ki(0) -+ Ku(0) )
_ . : oy OTH(O)
K(9) = : . : . where [K;;(0) = T

With the same type of the conditions for £;;,
SD1": p;;'Kij(60)p;;" = Op(1) for each i, j =1,... k

SD2': There is a sequence g;; such that Qijp[jl — 0, and such that
sup | 05! (Ki; (0) — Kij(60)) 05" | —p 0
0eN

for each 4,7 =1,... k, where N' = {0 : |¢};(0 — 6p)| < 1}.
we have

SD3": pi;' (Kiy(6) — Kij(60)) pi" — 0,
which makes the following approximation valid,

~

§— 0y ~ — H(09) 'S (60) — %H(@O)l(lk@)(é —00)) T (60)(6 — 6y)
- %H(Go)_l (1 (6 — 00 )K(00) (6 — 6,)5 (6 — 6,)) (3.4)

:AT+BT—|—CT.
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Now the rest of the steps are to get the third order asymptotic expansion of A, the
second order asymptotic expansion of B, and the first order asymptotic expansion
of Cr. Note that the higher order terms containing A order becomes negligible in
this setup, so we only need to consider the terms without A. For this, we need the

following assumptions instead of Assumption 13-14.

Assumption 15. p(z,«) has its derivatives up to 8th order, and o(x,(3) has its
derivatives up to the 9th order, w.r.t. x on D. u(x,a) and o(x, ) have their deriva-
tives up to the 8th order, w.r.t. 0 on the interior of ©. (We assume only piecewise

differentiability.) These functions satisfy the conditions in Assumption 2.
Under these additional assumptions, we have the following result,

Proposition 5. For Fuler, and Milstein ML estimators, the first and the second
order terms of J(0y), and the leading terms of K(60y) are as shown in the Appendiz 1

and Appendix 2, respectively.

Theorem 3. The asymptotic expansions of Fuler, and Milstein ML estimators are

obtained as

A 1 -
a— 0y = — aalsal QHaa1<Ik®S/ aal)Jafml ac, 150‘1

1
_6Haa1<lk®8, ;al)Kaoaan( aalS 1® aalSOél)

B — B = \/_ ﬁﬁ 156 1
where each term is defined in Appendix 1 and Appendix 2, respectively.
Followings are examples.

Example 1. (Ornstein-Uhlenbeck): For the Ornstein-Uhlenbeck process

dXt = 052(041 - Xt)dt + ﬂth,
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note that the drift function is u(x, oy, as) = as(ag — x) and the diffusion function is

o(x,) = (. Applying these functions to the asymptotic distribution in Theorem 2,

we have
A1 — o A 51 [(h121 + hi122)S2
' ' hll L h11h22
B 'azh22h%27181 — hag.1(83h11 + haos?) — hiaa(352hiy + 2hgys?)
- axh3yht
Qg — Qg &2 52 + _h12,181] {SQ(h%Q,l _4h%2,2)]
9 — Qg Y ——— — ,
hao [ hiihas hi1h3,
where
o 1 [T a2
S1 = ﬁWT’ Sg = B/ (o1 — X3)dWy, hyp = —6—§T,
0
1 [T o [T W
haz = _@/0 (a1 - Xt)2dt7 higq = _ﬁ_z/o (Oé1 — Xt)dt, higo = #

Note that the order of these terms are 7Y%, T—' and T—3/2, respectively. If we
consider the case when the decreasing rate of A is fairly slow to make all the higher

T-order terms negligible, we have

A 52 $2.d
Go— s~ —— — /A

has has’

where s94 = ~Vr/V2.

Example 2. (Feller’s Square Root): For the process

dX; = ag(ay — Xp)dt + 1/ XedW,,
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we have
& o A h2281 h12 152 (h12,182 h2281)(h12 151 — h1182)}
1— 0 = —
hathay — hia, ag(hirhas — i)
n 062h11h22h12,2<3h1152 —+ 2h2281) -+ h11h127182<5h228% — hns%)
a3 (hithag — hiy)*
n 042h11h22h%2,1h12,2(7h11S% + Ohaast) — h3 haghia182(h11535 + 16ha2s7)
a3 (hithay — hiy)?
O[2h12 2(4h11h12 282 —|— 9h22h12 28 ) 5042h‘;)2 1h12 282:|
a3 (hi1hay — hiy)?
Go — a1 h1132 - h12 151
? 2 h11h22 - h12 1
n [042(4]111]122]1%2,252 - 6h11h£112,1h%2,232 + 2h?2,1h%2,251 + 2h11h22h%2,1h%2,231)
a3(hiihay — iy )?
_ 6a2h%1h22h1271h12’2(husg + hQQS%) + Qh%Ih%ZlSQ(hHSQ + 4h228%):|
az(hirhay — higq)* ’
where
T T 2 ,T
ag 1 1 a; — X, % 1
——dW,, dWy, hi1 = —— —dt,
o= X b= 51 0 VX poH ﬁ% 0o Xi

t
1 T(al—Xt) a2 o =X 1 Tl

Note that the order of these terms are T7-'/2, T=1 and T—3/2 for ay, while those are

T-1/2 and T73/2 for ay since the T~! order term vanishes. If we consider the case

when the decreasing rate of A is fairly slow to make all the higher T-order terms



negligible, we have

h2281 h12 152
h11h22 h12 1
n \/Z{fhm [(h33h44 - h34)52,d + (h24h234 — hashys)ss — (hashss — h23h34)84]
(hirha — hiy ;) (hsshas — h3y)
B Do [(h33h44 - h§4)81,d + (h14h34 - h13h44)83 - (h14h33 - h13h34)84]}
(h11ho — h12 1) (haghys — h 1)

ap—og =

hi182 — h12 151
h11h22 - h12 1
X \/Z|:h12,1 [(h33h44 h34)81 d+ (h14h34 - h13h44)83 - (h14h33 - h13h34)84]
(hi1haa — h12 1) (hazhay — h 1)
_ hiy [(h33h44 - h§4)52,d + (h24h34 - h23h44)83 - (h24h33 - h23h34)34]}
(hithas — B3y 1) (hashas — h3y) ’

6[2—042%

for the Milstein ML estimation case, and

By — By~ \/Zh4453_h34’184 L A2 hsa154.4
1— P01~ =

hashas — h3y, hashas — h3,
A hasss — has S hass
. ~ _\/Z 3394 34,123 —A73/2 3394,d ’
62 52 h33h44 - h§4,1 h33h44 - h§471
where
oT T 2 [T
hss = ——5, hay = —2 / log(X;)2dt, hsy = 5 / log(X,)dt,
1 0 1J0
2
adz“}” dwwﬁd Vh”/ Vo= V2V,
0
2 (. a
&::351/ )Qzlﬂdw,34zzvr“1/“lmxXQX'Qlﬂdw,
B Jo B Jo
3ay [T log(X,) 3oy [T 1 3 /T a — X,
hiy = dt, h —dt h dt
” 2% X, BTog ), X0 P T 28, X,

du;.

3 (7 (041 - Xt) 10g(Xt) 203 —1/2
hu—gé 4 Sa = 31/4/ Vit &

47



48

For the Euler ML estimation case, we have

~ haasy — h12,182 h2281,d - h12,182,d
ap — Qo ) — — VA
hi1hay — h? hi1has — h?
117622 12,1 117622 12,1
& o A hi1s9 — h12,151 \/Z h1152,d - h12,131,d
2 i hey — 2 hiihay — h2
117122 12,1 117622 12,1

with the followings replaced as

T a; [T1 1
— [ —adV, — —=Vy.
N2 o Xi ' 22T

Example 3. (CEV - Constant Elasticity of Variance): For a positive recurrent CEV

Qg

2 [ sy = —
S1,d 2\/§ 0 Xt ty S2.d

process
dX; = an(ar — Xy)dt + B X2 dW,,
we have
Gy — ay ~ _h2281 - h12,182 _ (h12,182 - h2281)(h12,181 - h1182)}
hihas — h3, vz (hrhay — hiy )2
N a2hi 1 h3oh12,2(3h1155 + 2haasT) + hurhiy 52(5haosT — hy1s3)
a3 (hirhay — hiy)*
. 012h11h22h%2,1h12,2(7h11S% + 9hoos7) — hihaohios2(hi1s3 + 16hagst)
a3 (hiihas — hiy)*
Oé2h%272(4h11h12,283 + Ohoohigos?) — 504%h?271h%27282:|
- a3 (hiihas — hiy)*
by — iy & _h1132 - h12,151
h11h22 - h%z,l
n 0‘%(4h§1h§2h%2,252 - 6h11h4112,1h%2,252 + 2h?2,1h%2,251 + 2h11h22h:f2,1h%2,251)

a(hithas — hiyy)?
- 60(2h%1h22h12’1h12’2(hlng + hggS%) + 2h%1h%2’182(h1182 + 4h228%):|

a3(hiihgy — hiy )?
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where
T 2 T
052 1 1 / Xt 052/ 1
s —dW,, s LWL, h =2 [ gt
A / xR xp v T g | x
1 T (ay — X;)? a2 a =X, 1t

Note that the order of these terms are T2, T—1 and T—3/? for oy, while those are
T2 and T-3/2 for ao since the T—1 order term vanishes. If we consider the case
when the decreasing rate of A is fairly slow to make all the higher T-order terms

negligible, we have

h2281 h12 152
hi1has — h12 1
n \/Z[fhm [(h33h44 - h34)82,d + (h24h234 - h23h44)53 - (h24h33 - h23h34)84]
(hithas — hiy 1) (hashas — h3y)
B hao [(h33h44 h34)31 d+ (h14h34 h13h44)53 - (h14h33 - h13h34)84]}
(hirhog — h12 1)(hashas — h3,)

ap—og =

_h1132 - h12,151
h11h22 - h%z 1
h hssh h hishss — hash — (h1ahss — hish
X \/Z{ 12,1 [( 331044 — 34)31 d+ ( 147134 13 44)83 ( 147133 13 34)84}
(h1rhas — h12 1) (h3zhas — h 1)
_ h11 [(h33h44 - h§4>52,d + (hoahss — hoshas)ss — (hoahss — h23h34)54]}

Qg — g &~

(h11h22 - h12 1)<h33h44 - h, )

for the Milstein ML estimation case, and

A hiss3 — haus hass
. ~ _\/Z 4493 3494 + A_3/2 34°4,d
b= b hashas — i, hashas —

A hs3ss — hs3as Rans
_ ~ _\/Z 3324 34°3 o A_g/g 3354,d 7
oo hsshas — h3, hashas — h2,
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where

2T
=,
1

T 1 1+ 26,
s1a=V2a / —dV;, s90 =12 —dV, — ——=Vp,
1,d 22 X, ty S2.d 152 X, t \/5 T

2 (T 2 T
83=£ / X0y, 5y = “;“ / log(X,) X2~ dV;,
1 0

T log(Xy) 304252 352 - X
hiy = dt, h —dt, h dt
14 = 30232 /0 X, 13 = / X, 23 = /0 X, ;

T P
has = 36, /O (o X;()tlog(Xt) S1a = ;51 / \/ '\[ Vi + Zt

For the Euler ML estimation case, we have

T 2 T
hss = — hay = —2/ log(X,)*dt, hsy = 5 log(X;)dt,
0 1 Jo

du,.

N h2251 h12 152 |:h2231d - h12 132d]
4] — « — VA ’

! 1 h11h22 - h12 1 h11h22 - h12 1
~ h1182 h12 151 {hnsm - h12 151 d:|
Qo — @ — VA :

2 2~ h11h22 - h12 1 h11h22 - h12 1

with the followings replaced as

O{QﬁQ r 1 04162 B 62
= — —dV; dV — V.
Sl,d \/§ /0‘ Xt ty SZ,d \/— Xt t \/i T
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CHAPTER IV

CONCLUSION
In this paper, I introduced a new asymptotics for the diffusion model estimation, and
derived the asymptotic first and the higher order terms according to this asymptotics.
As mentioned in the introduction, I could show where the big bias for the drift term
parameter estimator comes from using this asymptotics, and could also show that we
have very different characteristics for the drift and diffusion parameters. As we know
the source of the bias and the distortion of the distribution, we can also think of many
ways to correct them. In this paper I suggested a couple of correction methods which
could successfully reduce the bias of the estimator and could get a more correct size
for the hypothesis testing. Though the correction methods are in the baby steps now,
I expect that there are many possibilities to utilize this new asymptotic result to get

more efficient estimators and better test statistics with a correct size.
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APPENDIX A

PROOFS, LEMMAS, AND THE ASYMPTOTIC EXPANSIONS

A. Proofs and Useful Lemmas for Chapter II

I assume Assumptions 1-7 for the following lemmas. Here, E; denotes a conditional

expectation with information given up to time ¢. Hereafter, I define

Vo2(z) + Ac?o2(z;) + 200 (z:) (y; — 2 — AM(%)))

6+($z‘,yi) = eXp ( Aag-Q(m)
e (ws,ys) = 1/et (xs, 1),

for the simplicity.

1. Proof of Proposition 1

Part 1: Euler ML Case
Denote x; = X(;_1)a and y; = X;a. Note that we have the scores of the likelihood £

as 8(60) = Z?:l (ga(xiayi>7€5(mia yi))/7 where

lo(Tiy i) = gzgz; (yz —T; — A,u(m))

and for the Hessians, we have

n

H(e ) Z gaa’ (xh yz> gaﬁl ('ri’ yl)
0 p—
i=t \ Lo (i yi) oo (@i, Y1)



where

— :uao/(xi) (yl - A/L(SCZ)) B Aﬂa//a('ri)

loo (T4, yi) = o2(z7) 2(1;)
faﬁ/(xmyi) = —%igi)(yi —X; — AM(,I’Z))

Lo (i, y;) = ﬁ(%) [(Uagg/ (x;) — SUga'ﬁ(xi)) [(yZ —x; — Au(xi))Q _ AUQ(xi)]

— 2A02050IB($¢)} :
Thus,it’s easily derived from Lemma 9 and 10, that

S tale ) = /0 Ko (X)W, + Op(VET (s, — it 1) (T)

- [2 (To /4
Zé@(ﬂfl,’!ﬁ) = K/O ?ﬁ(Xt)d% + Op(A 1/4 CFaﬁa*:s(T))
=1

and this proves the first part of the proposition. Note that, for example,

/T %(Xt)th = Oy (VT h, i1 (T)

0

and

VAT (K, — Kpo kg kg—1)(T) — 0

o6



o7

from Assumption 15. From Lemma 9, 10 and 1, we have

S laar (@i ys) = — / Fale (X,)dt + / Hoo! (X aw,
i=1 0 0

g

+ O, (VAT (k,,

[e7e%

n T /
HaO
St =2 [ 2 g
i=1 0

7 Bt i g1 )(T)

+ OP( v AT(K’N@K/ZTQHU_I - 25#&"{;’5%0./{:3’71 + Kﬂa/ﬁ;;"ﬁﬁa_l>(T))

= 2 (T opo; /T
Zﬂgﬂ/ (75, v3) = _Z/o Ozﬂ(Xt)dt + O, ( Z(/@U/{Uﬁﬁ,— 3%[3/@;6)/@3_1@)) .
i=1

Note that for /., term, the second term will be of smaller order from Assumption 6

when 7" — oo and A — 0, but when T is fixed, both the first term and the second
term will be the leading term in the asymptotics. It’s also easy to extend the vector

case by applying these lemmas elementwise. As for the diagonality, it’s easy to check

that Hy(6y) will be block diagonal from

T "ok o2 og

VA , , Y
= Tngm#i(T) Op(ﬁﬁuaﬁgﬁﬁi—l(T>) Kk, M(T) —, 0

VA o gy /0 " Ha%h e awn k(T

as T — oo and A — 0. (The inverse operator is elementwise, for the notational

convenience. )

Part 2: Milstein ML Case
Here I also denote x; = X(;_1)a and y; = Xja. It’s straightforward from the func-
tional form of the score and Hessian functions, using Lemma 1-11 and 13. The basic

procedure is same as the Euler case, but I will not go in detail for each case here. For



o8

example, for the score function with respect to the drift term parameter,

Olfwi, yi) _ (6*(%%) - 6_(%7%)) N

da et (2, y:) +e (2,y:)) oG

A%200 iy

Ho
T(%’, Yi)

(w5, y:) + ;(%7%’) +

where G(z;,y;) = (Ao () (o(z;) + Aoo?(z;) + 20 (2:)(y; — v — A,u(xi))))lm, sup-

pressing all the arguments for the functions. Note that for the term containing

et (zy)—e (

ety () r)
ey tezy) O

Ty (o) it’s same as finding the limiting distribution without

Lemma 11, and for the terms with B(x,y), they can be taken care of by Lemma 13,

and as a result, we get the following terms.

004, Yi) N Ha
;a—a_i1 ;(xz)(yz r — A p(x;))
3 o= [la0"

2 4 o3
=1

(@) [(ys — 2 — A p(:))? — Ao? ()]
+O0p(AVT K i (T))
So the rest of the step is to find the limiting distribution of each terms, and we get

S oy / " B (X NdW, + 0y(V BTy iy iy (T))

— Oa o
using Lemma 8§ and 10.

Part 3: Exact ML Case

For the score terms w.r.t. a, what we want to show is

g

E:EQ(%%,A)%/ Fe (X)W, (A1)
i=1 0

Since the function ¢, is not only a function of x, but also a function of y and A, we
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can consider the following Taylor expansion
Z£a<xiayi7 A) = Zga(xia zi, A) + Zfay(%, i, A)(yi — ;)
i=1 i=1 i=1
1 n
+ 5 Zgayy(aji; 23, A)(yi — 25)° + Op(Ry(r,n))
i=1

for some order Ry(ra). (Hereafter, I will denote the order of the remainder term as
Ryra).) Note that Ry a) will be of smaller order from Assumption 11. Denoting

W, = Wian — Wi;_1ya for the simplicity, we can replace (y; — x;) with
Yi — v = Ap(xg) + o (z) Wi + R;
where R; is a remainder term, and we have
i Ca(@i,yi, A) = i Cay(@i, xi, A)o () WV;
i=1 i=1
+ i Co(miy iy A) + A i Coy (4, iy A) pu(4)
i=1 i=1
+ % iﬁayy(xi, x5, A)o? (2)WFE + Op(Ry(1,))
i=1

= Ar+ Br + Op(RQ(T,A))-

Note that Ry becomes of smaller order by Assumption 8. To make (A.1) hold, we

should have
!
Ap ~ / Ko (X)W, (A2)
0

and Br should be of smaller order than Ar. To show (A.2), we can do the Taylor

expansion w.r.t. A again, then

AT = Zgay(xiv Ly O)O-<:C>Wz + A ZgayA(xia Ti, O)U(xz)wz + Op(RZS)

i=1 i=1
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and from the following condition in Assumption 12,
gay<xi7xi70) = —2(1'@),

we can check that (A.2) holds. Note that Rj is of smaller order by Assumption 10.
Similarly, applying Taylor expansions w.r.t. A for each term in By, and using the

following condition,

1 o
lan(wi, ;,0) + §£ayy(xiyxi7 0)02@@') = %(ml)

with ¢, (z;, x;,0) = 0, we can be sure that By is of smaller order than Az. Thus, with

the following conditions,

o
loy (4, 24,0) = ;(751’)

1 o
lan(wi, ;,0) + §£ayy(xiaxi7 0)02(%) = %(ml)

Ea(l'i, €y, 0) =0

we can show that (A.1) holds. For the scores w.r.t. 3, we want show

- 2 (Mo
i=1 o @

and following the similar steps, it can be shown under the following conditions as in

Assumption 12,

93

lg(ws,24,0) = —;(%)
2
Algyy (i, 2, A) — i?)ﬂ(xl) as A — 0.
o

For the Hessian terms w.r.t. o, we want to show

0

Z&m(ﬂci,yuﬁ):—/ g—%(Xt)dt (1+0,(1)),



and similarly, the conditions to make this leading term is

gaa(xivxh 0) =0
gaay(xiv T,y 0) =0

1
gaaA(xiamia O) + §£ao¢yy(xiaxi7 0)02(1‘2) = __(xl)

as in Assumption 12. For the Hessian w.r.t. 3, we want show

bt )= [ B
= B6 Ly Yis ~ _A 0 02 t )
and the conditions are

A 202

lag(x;, xi A) + Efﬂﬁyy(%;%‘, A)o*(z;) — ——2(z;) as A — 0.

o2

For the off-diagonal blocks of the Hessian, we should have

lop(xiyx;,0) =0

\/Zﬁagy(mi,xi,A) —0 asA—0
VA

——Llapyy(Ti, T, A)Uz(ﬂh‘) —0 asA—0

\/ZgagA(l'i, Xy, A) + 9

to make them asymptotically negligible.

2. Proof of Proposition 2
Part 1: Euler ML Case

We need to show

Sg\g v (H(9) — H(@O))v_ll‘ —, 0

61

where N'= {6 : [v/(0 — 6y)| < 1}. Here, I let w as defined in AD2, and v = T *w for
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some ¢ > 0, so that it satisfies vw~™' — 0. To prove this, note that we have

sup (v~ (H(0) — H(QO))U’II

sup = sup |[v 1T (0) ((6 — 6o) ® v’ll)

0eEN

< v 'sup ‘J(@)KD ® v_ll)
eN

where 6 is a value in the line connecting 6 and 6y, K is the number of the parameters,
i.e., the length of a vector 6, J(0) = Zvec(H(0)), and v = diag(v™"). To show
that this converges to 0, I will first show that the order difference between H(6,)
and J () is small enough compared to o, and next, that supgcy |7 (€)] has the same
asymptotic order as J(6y). And after that, the rest is just an application of these
results, to show

v tsup | T(0)| (v @ v_ll) —, 0.
0eN

as T' — oo and A — 0. Hereafter, I will denote x; = X(;_1)a and y; = X;a for the
simplicity.

Step 1. To check the difference of the order between H(6y) and J(6y), let’s first
consider the order of H(6). Denoting (j,!) element of H () as hj; = >, hi i, note

that h; j has the following form,
hiji(0) =A% (y; — 2 — Ap(as, 9))Ta(xi, 0) + A*2b(x;,0)

with » = 1,2. On the other hand, we have

0

%hmlw) = AS1 (yz — Ty — A[L(.TZ, 9))TCL9($¢, 0) + Aszbg(lﬂi, 9)

+ rAlerl(yi —xz; — Ap(xy, 6’))T_1CLM9($1'7 0).

Note that the derivative has a same form as h; j;(6) but only with derivatives of each
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function, so it’s easy to check that
v T (0o) (v ® v’ll) =T*w™ ' T (6) (0 @ w’ll)

and w = diag(wil). Since there exists a > 0 such that T%w —, 0 and we can choose

£ < a/3, we have
T*w™ ' T (6) (0 ® w_ll) < T w ' T (6) (1 ® w‘ll) —, 0

for large enough 7' from Assumption 6, where ¢; is k by 1 one vector and k is the
number of rows in w.
Step 2. We will next show that J(6y) and supge | J(#)| have the same asymptotic

order, i.e., if we have

nJ (60) (T®n') = Oy(1),

with an appropriate matrix and a vector n and 7, then we also have

sup [nJ (0) (1@ n')| = Oy(1).
0eEN

For this, denoting B{f(@) as (j,lk) element of J(#) and nil as its corresponding con-

vergence rate, it’s enough to show that,

sup /A (6)] = O, (1)
0eEN

when we have 7/'hl'(6) = O,(1), for each k, j and I. We will suppress all the
superscripts hereafter for the simplicity, that is, h = ﬁff and n = nil. Note that h also

has the following form as previously denoted,

n

h(d) = Z A% (yZ —x; — Ap(xy, 9))ra(xi, 0) + A%b(x;,0).

i=1
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Denoting 1(6) as the order of h(6), i.e.,

note that 7(f) has a form A*'T*?k (T, 6), where k, is a product of some asymptotic
order functions which appear in Assumption 13. Explicitly denoting n = n(6y) as a

function n(6) evaluated at 6y, we have

sup |1(60)h(8)| = sup |n(6o)n(6)'n(0)h(0)|
0eN 0eN
=sup |7(6o)n(0) | Op(1).
0eN
If we only consider the case of one function for the simplicity, we have
n(0) =T'rs(T,0)

and we have

/{f(T, 90)

sup ‘77(90)77(9)_ ‘ =sup m

0eN 0eN

_}p

by Assumption 7. Generalization for multiple product is also not difficult. So now I
showed that supycar | J(0)| has the same order as J (), and the rest steps are same

as already described in the beginning.

Part 2: Milstein ML Case

We need to show

ng\g v (H(0) — H(@g))v_ll‘ —, 0

where N' = {6 : [v/(0 — 6y)| < 1}. Here, I let w as defined in AD2, and v = T *w for
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some ¢ > 0, so that it satisfies vw~™' — 0. To prove this, note that we have

sup (v~ (H(0) — H(QO))U’II

sup = sup |[v 1T (0) ((6 — 6o) ® v’ll)

0eEN

< v 'sup ‘J(@)KD ® v_ll)
eN

where 6 is a value in the line connecting 6 and 6y, K is the number of the parameters,
i.e., the length of a vector 6, J(0) = Zvec(H(0)), and v = diag(v™"). To show
that this converges to 0, I will first show that the order difference between H(6,)
and J () is small enough compared to o, and next, that supgcy |7 (€)] has the same
asymptotic order as J(6y). And after that, the rest is just an application of these
results, to show

v tsup | T(0)| (v @ v_ll) —, 0.
0eN

as T' — oo and A — 0. Hereafter, I will denote x; = X(;_1)a and y; = X;a for the
simplicity.

Step 1. To check the difference of the order between H(6y) and J(6y), let’s first
consider the order of H(6). Denoting (j,!) element of H () as hj; = >, hi i, note

that h; j has the following form,
hiju(0) = Z [A(Iu Yi)'r B, ;) AT (yz —x; — Ap(x, 9))Wd(17i, 0)x
r=1
[a(zi,0) + Ab(z;,0) + (y; — 2 — Ap(wy, 0))c(w, 0)]ur]

for some 7 < 0o, where

et (i, yi) — e (i, yi) 1
y Ji i Ji and B 20, Y;) = :
et (@i, yi) + e (24, ¥i) (72,9:) et (@, yi) + e (24, 4:)

A(%w%) =

Pr, Gr, W, being non-negative (possibly zero) integers and s,., u, being possibly negative

real numbers. As for this functional form, one can check this by looking at the actual
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derivatives of log-likelihood function in Appendix II. For this function h; j;, here I will
only focus on the terms with ¢, = 0 since it can be shown from the proof of Lemma
11 that those terms with positive ¢, will be of smaller order than the other terms.
Now with this functional form, and assuming that we have the biggest order term for

r =r*, we can write h; ;;(0) as, ignoring all the smaller order terms,

hiji(0) = Az, y:)P A% (i — x — Ap(xy, 0)) " d(z;, 0)
[a(xi’ 0) + Ab([l?“ 0) + (yi — & — Aﬂ([ﬂi, 9))0(9317 0)}% (1 + Op(1)>

= As*h(l‘i, Yi, Av 9) (1 + Op(l))>

where the subscript , denotes the corresponding values for r = r*. By Lemma 12, we
have
(o) AT h(wi,yi, A, 6y) = Oy(1)
i=1
where v(6y) ™! is the order of

A SO (w0 00) = A% S ol 0)a (2, 0).
i=1 i=1
Note that from Assumption 13, v(x;,0)a"*(x;, ) will have the following form of the

product of several functions, but here, I will only consider when there are 2 functions

only, such that,
’U(l’i, Q)CLU(ZL’Z" 0) - f(xza Q)pg(x“ Q)Q

for some asymptotically homogeneous functions f and ¢ and real numbers p and q.

Also, in this case, if we think about [J(0), a derivative of H(6) w.r.t. the parameters,
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the biggest order term will be

Sr - a * Sr - a u
A %h (Ii,eo) =A ;%’U(mi;eO)a (CIIZ‘,H())

i=1

"0
=AY o (@i, 00) g i, 0o)"
=1

=AY Z (pf(i,00)"" f (21, 00) + q9(x:,00)" "¢’ (24, 60))

=1

and from Assumption 15, it’s obvious that

K
> IO (pev) =, 0.
k=1

A generalization for the cases that consists of multiple product of functions is also
straightforward.
Step 2. We will next show that J(6y) and supgen | J(#)| have the same asymptotic

order, i.e., if we have

nJ (60) (7@ 1) = O,(1),

with an appropriate matrix and a vector 1 and 7, then we also have

sup [1.7(0) (1 @ 1) | = Op(1).
0eN

For this, denoting h'(8) as (j,1k) element of J(6) and /' as its corresponding con-

vergence rate, it’s enough to show that,

sup ol 1. (0) = 0,(1)
eN
when we have 7'k (6y) = O,(1), for each k and (j,1). We will suppress all the

superscripts hereafter for the simplicity, that is, h = ﬁff and n = nil. Note that h;
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(h=>"7" | h;) also has the following form as previously denoted,

hi(0) =3 [A2 B A (g — s — Al 0) " 0(:,0)

r=1

[a(zi,0) + Ab(z,0) + (y; — 2 — Ap(wy, 0))c(w, 9)]ur].

We will only focus on the terms with ¢. = 0 with the same reason as before. Again,
we can express h(f) as
B(Q) =A™ Z h(x'm Yis A7 0)7
i=1

and by Lemma 12,
n(0)A™ > " h(wi,yi, A, 0) = Oy(1)
i=1

where () is the order of

A% Z h*(z;,0) = A® Zv(ﬂfu 0)a" (z;,0).
i=1 i=1

So, since 7 is the order of A®* > h*(x;, 0), explicitly denoting n = n(6) as a function

n(0) evaluated at 6y, we have

sup [1n(60)R(8)| = sup [n(0o)n(0) "' n(0)1(0)|
0eN 0eN

=sup [1(60)1(0) 7| Op(1).
0eEN

Note that from Assumption 13, v(z,8)a" (z,0) also consists of the product of the

functions, so if I only consider the case of one function,

v(z,0)a" (x,0) = f(x,0)
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and in this case, we have
n(0) =Trxs(T,0)

and we have

ks (T, 6o)
k(T,0)

sup 1(d)n(8) | = sup

—p
0eN 0eN

by Assumption 6. So now I showed that supye, |7 (6)] has the same order as J(6y),

and the rest steps are same as already described in the beginning.

3. Useful Lemmas

Lemma 1. Let f be a twice differentiable function, and let f and its derivatives

satisfy Assumption 2. Then,

Zf X na)A = / FX)dt + Oy (AT(kurey + k26 )(T)) + Op(AVT ko (T)).

=1

P'I"OO;.
— " t ‘<t ;( i—1 d

:/0 f(Xt)dt—Z/i /( (uf‘ + ng--) (X;)dsdt
/“)A/@ RCAC L

T
_ / F(X,)dt + Ar+ Br
0
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by Itd’s lemma.

n

ar=3" 7 =m0 (w4 ) s

= Ji-na 2
O_Qf..

T
SA/
0 2

= O, (AT kurip(T)) + Oy (ATkgkp-(T)).

pf+

’ (Xy)dt (A.3)

Also,

By — Z/ (s — (i — DA)o f(X.)dW,
and this is a martingale whose quadratic variation is bounded by
T
A2 /O o2 FA(X,)dt = O, (A*Tw2 2 (T)).
So the remainder terms are of order

Ar + Br = Oy (AT Kty (T)) + Op (AT g s4-(T)) + O, (Aﬁ’iaﬁf (7).

Lemma 2. For g and f satisfying Assumption 2,
(a) if the following repeated integrations only consist of the time (dt) integtation,
n [7AN s
S olXena) [ [ OO = 08 Ty (1))
p— (i—1)A (i—1)A

where k is the number of the repeated integrations,

(b) and otherwise,

n 1A s
> 9(X-na) / ' / FX)dr - dWy = O (AR D2V T ko (T))
— (i-1)A (i-1)A

where ki is the number of integrals w.r.t. the time, and ko is the number of integral

w.r.t. the Brownian motion. Here, though I could not write appropriately, in the
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expression for the repeated integration, the integral can be with respect to either time
(dt) or the Brownian motion (dW;) with any combinations of the two, which has at

least one dW; term.

Proof. (a) Applying the same technique in the proof of Lemma 1, we can show that

(i—1 i—1)A
A
=Y (X lA)/ (r— (i — A (X, )dr
(i-1)A
n A
< AMY g(Xna)l ’ 1)AIJ”(Xr)!d?“
=1 =

< AFIT sup ‘g (Xy) ‘ sup ‘f (Xy) ‘
0<t<T 0<t<T

= Op(AF 1Tk iy (T)).

(b) First, note that we can make the most outer integration w.r.t. the Brownian

motion by change of the integration, to have

B GA =)k

Zg (i-1)A / —/ / f(X,)dr - - dW,dW,
(i-1)A k! (i—1)A (i-1)A

where k is the number of dt integrations at the most outer side. This is a martingale

with a quadratic variation bounded by

n [7AN U 2
— (i—DA \J(@-1)A (i-1)A

and since this is a positive process, its order is the same as the order of its expectation.

We have

iA u s 2
AR (Zg (-1)A / (/ / F(X,)dr - - ~dWU) du>
i-na \J@-1a (i—-1)A
iA u s 2
:AQkE ZQQ(X(i—l)A)/ E(i—l)A (/ c / f(Xr)dT te de) du | .
i=1 (i—1)A (i—1)A (i—1)A
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For the condition expectation part, we can change the order of the integrals to reduce
the number of integrations. When the most inner integral is w.r.t. the Brownian
motion, this is bounded by
n iA
At 21 9°(Xi-1a) /(i_l)A Eqnaf?(X,)dr = Oy (A 51T R3(T))
Note that this is also a positive process so the order is same as the expectation
iA

A2k1+k271E (Z g2<X(i—1)A)/

i—1 (i—1)A

= A?Mth-lg (Z QQ(X(il)A)/

py (i-1)A

E(i—1)Af2(Xr)d?”>

1A

f2(Xr)dr>
< A%ath-lpR ( sup ‘g2(Xt)| sup |f2(Xt)}>
0<t<T 0<t<T
= O, (A" I TR2E5(T)).
Also,

A t 2
A2k1+k2 3 Z g / E(i*l)A (/ f(XS)dS) dt
(i-1A (i—

has the same order as

n A t 2
A2k1+R2—3 (Z 92(X(i_1)A)/ (/ f(XS)ds> dt)
— (-na \J@-1a

2
< AZkitka =3 (Z sup 9 Xt ’/ (/ sup |f Xt |d8) dt)
0<t<T (i-1)A 0<t<T
S A2k1+k2—1TE < sup ’gQ(Xt)| sup |f(Xt)|2>

0<t<T 0<t<T

= O, (AT 212 (T))

when the most inner integral is w.r.t. the time. ]
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Lemma 3. Let A;; be one of the followings,

/ / s)dsdt

(i— 1) (i—1)A

/ / Xy)dsdW,
i—-1)A J(i-1)A

/ / AW, dt
(i—1)A J(i-1)A

/ / AW,
(i—1)A J(i-1)A

for f;’s satisfying Assumption 2, and B;; be the same integral without the function
£i(X,). Let Via = (Wia — Wuna )P T15, Bij.
(a) If EVA =0, we have

k

> 90X na)Wia = Wi nya)” [[ A = Op(k1aVTrghiy, - 55, (T))
=1 j=1

1/2

where k1a = (EVZ/A)
(b) Otherwise,

k
Zg (i-na)(Wia = Wi-na H Op(koaTkgtig, - k5, (T))

where kop = EVa/A.

3 3 1 1 3 3 1
(/flA — ClA2k1+k2+§k3+§k4+§kw*§ and Kop = 62A2k1+k2+§k3+§k4+§kw*1‘)

Proof. Replacing each f;(X;) with f;(X—1a)+ (f;(Xe) = f;(X@-1)a)) and arranging

them, we have

n k
ZQ<X(Z'—1)A)(VV1'A — Wi-na)? H Ay
i—1 =1

n k k
= > 9(Xana) | | fiX—nya) Wia = Wiya)’ | | By + R
( )
i—1 o1

j=1

where R represents a remainder term. When EVA = 0, the order of the leading term



can be obtained from the expectation of the square, that is,

n k k ’
E(Zg(Xu A H (X-na)Wia = Wiina ) ] | B )
i=1 j=1 =1
n k i
=E [ > o*(Xq H (X-1a)Eg-1a <(Wm ~Wenal]
i=1 j=1 =1

from the independent increment property of the Brownian motion, so

k
< (i—-1)A AZQ (i—1)A Hij(X(z‘—l)A)> ZOP(EVAZA 1752 lifl
j=1

When EV, # 0,
> 9(Xina)
i=1 j=1

n k
= EVAZQ(X@‘—I)A H Xii-1)a)
=1 =1

—-
=

k
Xi—1)a)(Wia — Wiz)a)? H B;;
j=1

k

n k
+ Zg(X(i—l)A H X@i-1a) <(Wm - W(i—l)A>pHBij -E
i=1 j=1

Jj=1

74

2
)

/-@?ck (T)) )

VA)

so the first term is of order O,(EVAA ™ Tkyky, -« ky, (T)) and it’s also easy to check

the order of the second term is smaller than the first term by taking expectation of

the square with the same steps as in the previous case. The order of the remainder

term R can be obtained using Lemma 2 and the Schwartz inequality, but here, I will

show a simple case as an example. For

ZQ(X(i DA / / deVVt/ / X)dsdW,
i=1 (i—1)A J(i-1)A i—1)A J(i-1)A
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we can rewrite it as

Zg i—1a) f1(Xa—na) fa(Xi-na / / deWt/ / dsdW;
(i—-1)A J(i—-1)A (i—-1)A J(i—-1)A
+ > 9(Xi-ya) filXa—na / / dsdW,; x
Z DA Y (i—-1)A J(i-1)A '

/ / (fQ(Xs) — fQ(X(i_l)A)) deWt
i—1)A J(i—1)A
+ 39X ona) o X / / dsdW,x

Z DAajJ2 ba (i—1)A J(i—-1)A t

/ / — fiX@-na )) dsdW,
i—1)A J(i-1)A

> 90X X)) = fi(Xina)) dsdWV,
+'i:1 9( ( 1)A)/(‘—I)A/(‘—l)A (fl( ) fl( ( UA)) 5 X

A +
/(il)A /(il)A (f2(XS) - fQ(X(i—l)A)) dsdW,

For the first term,

n A A A3
Zg(X(i—l)A)fl(X(i—l)A)fQ(X(i—l)A) </ tth/ tdW, — ?)
i=1 (i-1) (

i—1)A i—1)A

the order can be obtained from the expectation of the square,

n A A A?)
E (Z 9> (Xi—1ya) f£(X-na) f5 (X-1)a) Eg-na </ tth/ tdW; — ?)
i=1 (i-1) (

i—1)A i—-1)A
2N N, ) ,
=k T Zg (X(ifl)A)fl (X(i—l)A)f2 (X(iq)A)
i=1
=0 (A5TK’ Kf1Kf2(T))
while
AP )
3 Zg(X(i—l)A)fl(X(i—l)A)fQ(X(i—l)A) = Op(A*Trykip k1, (T))
i=1

so this will become the leading term. This is guaranteed from the order of the
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remainder terms,

n in
Zg(X(i—I)A)fl(X(i—l)A)/

t
/ dsdWy x
(i—1)A J@—1)A

/ / — fo(X(i-1)a)) dsdW,
g\zg (X—na) fF2(Xi-na (/<1 /@1 ddet) x

\ < /( /( — fo(X(i-1)a)) ddet) 2

= Op(AVT gty (T))Op( DYV Ty, (T))

= O0,(A Tk iy, Kotip, (1))

Note that

s

[2o(Xs) = fo2(Xi-1a) = /S (Mf' + %) (X¢)dt +/ of (Xe)dW,

(i-1)A Gi—1)A
and all terms can be taken care of by Lemma 2 and Schwartz inequality, and the

same thing can be done to show

gg(Xu /( /( — filX—1a)) dsdW;x

/ / (Fo(X0) = fo(Xipya)) dsdiV,
(i-1)A J@-1)A
= Op(A3T/£§/<g/4f-1 Ky (7))

Lemma 4. IfY; = O,(g(t)) as t — oo for some positive function g, then we have

[ viae=o,(m)



7

as T — oo, where G(z) = [* g(s)ds.

Proof. The condition means that for any € > 0, there exists M such that

{‘

T to T
/ Y}/dt‘ = / Y, dt +/ Y}/dt‘ <
0 0 to

Since we can always find M such that

to
P{ / Y.dt
0

>M} <e (A.4)

T
/ |Yt|dt' = Ar + Br.
to

to
/|mﬂ+
0
to
/ g(t)dt’} <e,
0

> M

we have

~ to
MSM/g@ﬁ
0

with probability 1 — e. Also, we have

T
&gM/gwﬁ
to

with probability 1 — ¢ from (A.4) and from these, we can find M that makes

P{ /OTYtdt‘ > M /OTg(t)dt'} <e,

which completes the proof. ]

Lemma 5. Let [ satisfy Assumption 2.
(a) If k > 0 is an odd number,

Z F(X—na)(Wia = Wi—na )k = Op(A* D2V Ty (T))
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(b) If k > 0 is an even number,
> F(Xona)(Wia = Wipa)® = Op(AF22 Tk (T)).
i=1
Proof. (a)
" 2
E (Z J(Xi—1a)(Wia — W(il)A)k)
i=1
=K <Z FA(X—na)Eg-1a(Wia — W(i—l)A)2k>
i=1
since (W;a — W(i_l)A)k and (W;a — W(j_l)A)k are independent for i # j.
E(i—l)A(VVi - W(Z'_l)A)2k — (2]{3 - 1)”Ak
SO
E ((Qk: — IA* Z fQ(X(i_l)A)> = Op(AM'TKY(T))
i=1

from Lemma 1. So

Y F(Xana)Wia = Wina)® = Op(A* D2V Tr(T))

i=1
(b) We rewrite the expression as

n

Z F(X—nya)Wia = Wi_na)® = AF2(k — 1) Z f(X@—1)a)
=1

i=1

+ ) F(Xamna) (Wia = Wi—pa)¥ — A2 (k = 1)11)
i=1

We can show

n

AP (k= DI f(Xaona) = Oy (A*22Tr,(T))

i=1
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from Lemma 1 and note that

E (Z F(Xa-na) (Wia = Wi—na)® — AF2(k — 1)”))

—F (z": FAX ) Ei—na [(Wia — Wimna)F — AF2(k — 1>”}2)
=1
Note that
B 1a[(Wia = Wina)® — AM2(k — D] = ((2k — 1)1 = ((k — 1)11)?) A"
SO

E (((Zk — N —((k— 1)!!)2)Aka2(X(i_1)A)) = Op(Ak_leff(T))

from Lemma 1. So the second term is of order O,(A*~Y/2\/Tk(T)) which is smaller

than the first term. O

Lemma 6. Define

D) Jj—1 A s t s
VA =4/~ / / AW dW, + / / AW, dW,
A —1 J(—1)A J(i-1)A G-DA J(G-1)A

2

forte[(j —1)A,jA), j=1,....,n+ 1. Then
VA -,V
for a standard Brownian motion V independent of W, and
VA Vi = 0,((AT)'4).

Proof. Clearly, V2 is a continuous martingale with quadratic variation given by

2

I nin t
V=3 |, O W Pise [ 0 W

— J-1a (G—1)A
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forte[(j — 1A, jA), j=1,...,n+ 1.
We have

N B 9 J=1 A ) ‘
% ]t—t_zi;/(i_m [(Wy = Wiinya)? — (s — (i — 1)A)] ds

+ % oo (W= Wiina)? = (s — (= DA)] ds + O(A)  (A5)

fort € [(j — 1)A,jA), j =1,...,n+ 1, uniformly in ¢t € [0,7]. Therefore, ignoring

O(A) term in (A.17) that is unimportant, it follows that
92 2 J—1 2
E ([V2), —t (A) ZE </ [(Ws = Wina)? — (s — (i — 1)A)] ds)
P )A

+ <%) E </(;—1)A [(Wy = Wi—pa)? = (s — (j — DA)] d5)2
(A6)

fort € [(j —1)A,jA), j =1,...,n+ 1, due to the independent increment property
of Brownian motion. However, by Cauchy-Schwarz inequality, we have
iA 2
E (/ (W = Wi_na)® = (s — (i — 1)A)] ds>
(i—-1)A

1A ) ' 9 2A4
<A /( oE (W= Wona) = (s— (i = DA ds = = (A7)

fori =1,...,n. Moreover, we may deduce from (A.18) and (A.19) that

E (V4] - 1)’ ( ) ZIE (/ (W, = Winya)? — (s — (i — 1)A)] ds>2

2\ 2A4
LI
(A)":a 3 .

under our assumption. Consequently, it follows that

sup E ([V2], — t)2 — 0

0<t<T
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in our asymptotic framework. This implies that
VA =,V

where V' is the standard Brownian motion. Now we show that V' is independent of

W. For this, we note that

j—1

J 1A t
Z/ (WS - W(i—l)A)dS + / (Ws - W(j—l)A)dS]
17 (

i—DA G—1A

2
A l/‘/ — _
V=W = A

i=

fort € [(j — DA, jA), j=1,...,n+ 1. It follows that

B[V, W2 (A.8)
9 j-1 iA 2 t 2
— X 1ZE([ e wieis) cm ([ v W)
A 22_1: (i—DA (G—DA '

fort € [(j —1)A,jA), 7 =1,...,n+ 1, due to the independent increment property

of Brownian motion. Moreover, we have by Cauchy-Schwarz

iA 2 iA
E (/ (WS - W(i_l)A)dS) S A E(Ws - W(i_l)A)zdS
(

i—1)A (i-1)A
A A?,

_ A/ (s—(i—1)A)ds==>  (A9)
(i-1)A 2

for i = 1,...,n. Therefore, it can be deduced from (A.20) and (A.21) that

9 M iA 2
E[VA, W2 < = E(/ W, — Wi ds)
[ Ji A; (i_m( (i—1)a)
2 A3

and that

sup E[VA, W2 -0

0<t<T

in our asymptotic framework. This proves that V' is independent of WW.

For the second statement, note that V;> can be represented as a time changed
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Brownian motion Vjyaj, from the DDS representation. Thus we have

\/[V;Aﬁ‘/ V2], — 1] = 0,(1)/|0,(VAT)| = 0,((AT)"4).

]

Lemma 7. Let f be a two times differentiable function and let f and its derivatives

satisfy Assumption 2. Then

Z f (i— I)A - W(i—l)A) == /0 f(Xt>th + Op(@ligl{f(T))

and

9 n 1A s
Y f( X / / AW dW
A zzl (K-pa) (i—1)A J(i-1)A

T
- /0 F(X)dV, + Op(AVATY154(T))
+ 0, (AT 2 k2(T))

+ Op(AYAT Mk by + K20 + \RpkpFip ko) (T)),

where V' is as defined in Lemma 16.
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Proof. For the first statement,
Z X Win = Wi-1)a)

n A
- / P, -3 / (J(X0) — [(Xs-pa))dW;

i—=1 Y (—DA

:iATﬂXQMM /;DA/;I f+-2f)( X,)dsdV,

/‘ / X,)dW.dW,
(i—1)A J(i— 1)A

- /oT F(X)dWs + Op(AT ki p (T)) + Op(AT kg sy (1)

O0,(VATkqkf(T)).

The last line is due to Lemma 3.

For the second statement,

\/>Zf Xi-na /z A /i—l)A Wil
:/ f(Xt)th—i—/ F(X)d(VE = V),
0 ' 0

n A A
- Z /( UL IR RN
T
:/ f(Xt)th + Ar + Br.
0

We will show the order of A7 in Part 1, and in Part 2, the order of By.

Part 1. For A, note that

Ar = F(Xp) (V2 — Vi) — / (VA Vdi (X)) — [F(X), (VA — V)l

from integration by parts exploiting the notation for the quadratic covariation term.

The orders of the first two terms can be easily obtained from the order of f(Xr),



VA — Vp, and from Lemma 4. For the first term,
FXr) (Vi = Vi) = Op(rs(T))0, ((AT)) = O, ((AT) x4 (T))

and for the second term,

[ o =viaroe = [ v (ur + TE) o
# [0 = ver e

= CT‘I'DT-

We have

Cr < \// vV th/OT (uf' + 025">2(Xt)dt

O, (AT [0, (VT iy (T)) + Op(VT w2 (1))

+ Op(y/Thytip g ia(T))]

= Op(AY' T ik (T)) + Op( AT 2 k(1))

+ O,(AYAT* Ji i pRopkio (T))

from Lemma 4, and D7 is a martingale with a quadratic variation

/0 (V2 = V)0 f2(Xy)dt < \// ~V 4dt/0To—4f'4(Xt)dt

= O,(AV2 X 20, (VT Kbk (T))

from Lemma 4 also, so

Dy = 0, (AVAT%422.(T)).
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For the last term [f(X), (V2 — V)], since

s = s+ [ (wr+ ) ceas+ o cea,

and W and V are independent of each other, [f(X), (V2 — V)]r is same as the

quadratic covariation of

/O o (X)W,

and

2 J—1 iA s t s
VA=< (Z / / AW, dW, + / / qudW5>
A i=1 Y (=1DA J(i-1)A G-nAJ(G-1)A

as in the definition of V2. So we have

F(X), (VA =V)]p = \/%il /(::A of (X,) /(:'_M dW,ds.

To obtain its order, note that

n 1A s
> / f(X,) / dW,ds
i=1 Y (E=1A (i—1)A

= Z F(Xi-) /( /( dW,ds
D3 /( U =5 [ s

i=1 (i—1)A

= Ay + Agr.

We have

n iA
Air =Y f(X—a) / (iA — w)dW,
i=1 (

i—1A



and this is a martingale with a quadratic variation bounded by

n A
Y P [ i A PXis) = OATT)

i—1)A

from Lemma 1. For Asr,

S (Mf ) o [ v

/ / w) AW, dW,ds
(i-1)A —I)A (i-1)A

=Agip + Agor.

and

' 0_2][-“
pf + 5

n iA s
Ay < E / /
— Ji-na Ji-na

—0,(AT K,k (T)) + Op( ATR2R - (T))

‘ (X, )duds

from Lemma 3. For Asor,

n A s 2 n
Agor < / (/ of (X, qu> ds
=t \l; (i-na \J@-1a (%) Z

(2

Note that

n [YAN s 2

> / | ( / o f‘(Xu)qu) ds = O,(AT*k2k%(T))

— J(@i-DA G—1)A
since

/ o (Xu)dW, = Op(VAT Kok s (T)),
(i—1)A

SO

Agyr = Oy (VAT kgrip (T)) Oy (VAT) = Op(AT* k- (T)),

1A s 2
/ (/ qu> ds.
7 Ji-na \J@a-1a

86
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and the order of quadratic covariation becomes

[F(X),(VA = W) = O, (VAVT kot (T)) + Op (VAT kg i (T))
+ Op(\/ZT@/fd kp(T)) + Op(\/ZT/igFLU' k- (T)) + Op(\/Kngﬁfm (T))
+ 0, (VATK2 kgt - (T)) + Op (VATK2 k- (T)) + Op (VAT Ky iyt - (T))

+ Op(\/Z\/ngfff-- (T)) + Op(\/Z\/Tffg/ia-/{f (T)).

Since these are all of smaller order than the previous, we have

Ap = O, (AT R 4(T)) + Op(AYA T 4,54 (T)) + Op(AYATY K254 (T))

+ OP(A1/4T5/4\/ Rukip kg he(T)) + Oy (A1/4T3/4’f§“3" (7))

as a result.

Part 2. For Br,

n 1A t O-Qf'- R
b= / / (Mf.+ )XstdV
' ; (i—DA J(i-1)A 2 (Xs) t
* / / o f (Xs)dW.dV,
i—1 Y (1A J(i-1)A ¢

= Bir + Bor

from It0’s lemma. For Byr, note that

n 1A t
3 / / F(X,)dsdV2
— Ji-na Ji-na
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is a martingale with a quadratic variation

2

i /(m (/ RE2OKIS!

(i-1)A
Zn: / (Xu) /( :)A f(X)dsdud[V2),

=1 7
u

/ (Vs = V1)1 [ F(Xdsda

(i—1)A
A N N ) n iA ) u 5
< VAalia—[V2].) d X, X,)d d
< ;/(“)A([ lia = [VA) u;/@lmf( )</(il)Af( )3) u
:BIITBIQT-

Since the order of > 7 , f ( [VAia — [VA], ) ds is the same as the order of its

expectation being a positive process, we can consider the order of the expectation

instead. We have

E (g /(::A (V3ia — [VA]S)QdS)
=F (% Z:: /(:)A (/:A(Wu — Ws)Qdu) 2 ds) (A.10)

4 n A iA ) 2
=E|-—= E,_ — d ds | .
A2 ; /(Z'l)A (=na (/s (W = W) u) ’

and since

we have



and
BllT - Op(Aﬁ)
For Biar,

n oA u 2
S [ rea ([ o) dos &t s [P00] s (700
(i-1)A (i—1)A 0<t<T 0<t<
= O,(A°Tky(T)),
SO
Bir = O,(AVT)O,(AVTKHT)) = O, (AVTr(T)).
For Bsyr, note that
/ / 5)dW,dV,A
—-1)A J(i-1)A
is a martingale with a quadratic variation
n 1A t 2
> / RURC: )dW) 4V,
(i—1)A
/ / X,)dsd[V2],
(Z (Z
i—1)A J (i—1)A (i—1)

=DBo117 + 2Baor.

89
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For BQlT,

Bar =3 /( T (Vs = VA)) (X )ds

1—

JZ/ » (VAL — [VA) dSZ/

Bur = O,(AVT)0,(VTRH(T)) = Op(ATKH(T)).

For Baor,
Bar = Z / (Vo) — (VA1) £(X.) /( S,

and this is a martingale with a quadratic variation

2

Z/ ([VAia — VA1) FA(X) (/(;)A f(Xu)qu) ds

<J > /( Z:A (IVa)a — [VA),) ds Z /( :A F4(X.) ( /( S_M f(Xu)qu)4 ds.

Note that

[, PRI = O, BTie(7)

since it’s a martingale with a quadratic variation

[, P = 08T ()

and since
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we have
n A s 4
S [ re ([ seeam) as— o)
— J(-1a (i—1)A
and
no A A
Z / ([V2]ia — [V2]s) ds = O,(A'T)
— J(i-1A
since

4 2

iA
EqG-1)a ( / (W, — Ws)Qdu)

iA
< (iA — 5)°Ei-1)a ( / (W, — W8)4du)
iA ’
< (A — 5)? / Eiya(Wa — W,)%du
= 21(iA — 5)®
with the same way as in (A.22). So
B22T = Op(Aﬁlif(T))
and we can check that By has a smaller order than Ap. O]

Lemma 8. For a positive integer k and for a four times differentiable function f, let

f and its derivatives satisfy Assumption 2. Then
i J(Xi-1a)(Xia — Xi—1)a — A,U(X(i—l)A))k =0, (A(kfl)ﬂﬁ/i’;ﬁf(T))
i=1
when k is odd and
i F(X-1a)(Xia — X-na — Au(X-na))* = 0, (A(k_2)/2T/£f,/£f(T))
i=1

when k is even.
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Proof. Note that, by Ito’s Lemma,
iA iA
XZ' — X(i—l)A :/ /L(Xt)dt + / O'(Xt)th
(i-1)A (i-1)A

=Apu(Xi-1a) + o(Xe-—na)Wia = Wi—nya)

! /(il)A(lu(Xt) — (X (i-1)a))dt

+ /( (0(Xy) — 0(X-1)a))dW;

i—1)A
and
Xin — X—na — Ap(Xa—1ya) =0 (Xi—1)a) (Wia — Wi—1)a)
A t 2
s [T T (s
(i-1)A J(i-1)A
A t
+/ op (Xs)dWdt
(i—1D)A J(i—1)A
1A t 2
+/ / (po™ + )(Xs)dsdW,
(i—)A JE-1)A
A t
+/ / oo (Xs)dWdW,
(i-1)A J(i-1)A
so we have

n

Z F(Xa-na)(Xia — X—na — Ap(X-1a))”

i=1
n

= Z f(X(zel)A)(Uk(X(iA)A)(WiA - W(ifl)A)k + R;)

=1

where R; are the cross products of each terms and

> f(Xmna)o* (X—na) (Wia = Wizna)® = Op (A2 Tkl ky(T))
=1
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when k is odd and
Z F(X1a)0"(X-a) (Wia = Wi-nya)® = Oy (A® 22 Twik,(T))
when £ is even from Lemma 5. And also,

> F(Xina)R
i=1

can be dealt with Lemma 3 and can be shown to be of smaller order. ]

Lemma 9.
Zf(X(ifl)A)(XiA - X(ifl)A - AM(X(ifl)A))
T
= / of(Xy)dW, + Op(\/ AT Ky Ky lif(T)) + Op(\/ ATnf,mf. (T))
0

Proof. The proof is same as the proof of Lemma 8 only with a difference that £ =1

and
T
Z fo(X Wia — Wi—a) = / o f(Xy)dW; + Op (VAT kg kg tif(T))
0
O0,(VATKZk 4 (T))
from Lemma 15 O

Lemma 10. For a four times differentiable function f, let f and its derivatives satisfy

Assumption 2. Then
Z f(X(i—l)A) [(Xm - X(i—l)A - AM(X(i—l)A))2 - AU2(X(i—1)A)]
=1
= \/2A/ F(X)dV;, 4+ O,(AYAFH(T))

for any ¢ > 0, where F¢(T) is a function of T as defined as in (A.11) and (A.12)

according to f, and V' is a standard Brownian motion independent of W.
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Proof. Denoting V.3 — V(Z.A_l)A = f(iﬁlm fé_l)A dW,dW,, we can write as

Xia — X@-1)a — AM(X(z‘—l)A)

= o(X(i1ya) Wia = Wina) + 00 (Xa-1a) (VA = Vit ya) + Ri,

where R; is a remainer term, from the first equation of the proof of Lemma 8. Re-

placing this into the following, we have

Zf(X(i—l)A) [(Xia — X-na — Ap(Xi-1a))® — Ac*(X-1)a)]
=1

= Z F(Xi—na) [(0(Xa—nya)(Wia = Wi—nya) + 00" (Xa—1ya)(Via — Viiena) + R;)?

=1

— Ac*(X(i—1)a)]

= F(Xpa) [0A(Xna) (Wia — Wiia)

i=1

+20%0" (X(—1ya) (Wia = Wi—na) (Via = Vi 1)
+0°0 % (Xi—na)(Via = Vi ya) + B
— Ac®(X(i-1)a)],
where R} denotes the terms multiplied by R;. From Lemma 15,
n T
D P (Xa1a)[(Wia = Wina)® — A = v QA/ fo*(Xy)dV;
i=1 0
+ O, (AT 1 12(T)) (A.11)

+ O, (AT (kb + 265k ) (T))

+ O, (AT F(T))



95

where

F(T) =k, (Fdf K2 +2 (26 Ko + ko) Ko 4 265K Ko + Ky (Ko p + 26Ky ) (A12)

+ (Rukio (Rotkiy + 26 1hq) (K big + 4 p Ko g + 26 1hg g + 21k, ))1/2> (1)
and

S F0%0 (Xana) (Waa = Wieiya) (VA = V2 1a) = Op( AT 25 (T)

n

> [P0 (X—na)(Via = Vi 1)a)® = Op(ATkr262(T))

i=1
by the same steps in the proof of Lemma 3 from the independent increments of the
Brownian motion and E((W;a — Wi—1)a)(Via VZ 1)A)) = 0, and the remainder

term ) ., f(Xu—1)a)R} can be also shown to be of smaller order by Lemma 3. O

Lemma 11. Let {Z;} be a sequence of random variables. Denoting x; = X(i—1a and

yi = X,;a, we have

~ (et (@iy) —e (@u)\ , N~ Tv
Z <€+($i,yi)+6_(1’myi)) ZZ_;Zz—'—Op( Aexp(A—1)>

i=1
for a finite integer p > 0, as A — 0 and T — oo, where v is a sequence satisfying

Z?:l Zi2 = Op(”)'

Proof. By expanding the terms and arranging them, we have

> (Sarreray) a=3: (- w4

— iy Yi) + e (i, yi

2e7 (w4, y5) g
1 Crd (6+($i7 yi) + e (4, ?Jz)) Zi

I
N
+
3
g
%S
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where C,, ; = (c;p) with cg; = min(j — 1,p — 7). For each term in the remainder,

27 n

- 2e (24, ;) 7 e (T4, ys 2
;CM <6+($z‘,yz') + egi(xia?/z’)> s Z ( @ayZ) + ey (@i, y1) ) Z €&
= /Op(nexp(=A71)0, (1)

Tv
:Op< Aexp(A—1)>

since

2¢” (i, y1) 2j_ exp(— A~
(e( )> = O, (exp(—A7")). (A.13)

+ L, y’b) + 6_(xi7 Yi
for each i. To show (A.13), we will first obtain the order of X;n — X(;_1)a in Part 1,
and will prove (A.13) by finding out the order of e~ (z;,v;) and e (x;,y;) in Part 2.

Hereafter, we will explicitly denote the arguments for et (z;,y;) and e~ (24, y;) such as

6+(X(i—1)A7XiA) (A14)

e” (X(—1)a, Xia).

Part 1. By [to’s lemma,

XZA - z A = AM (i— l)A / / < 2,“ ) (X )det
(i—1)A J(i-1)A
iA
(i—1)A J(i—-1)A (i—1)A

= A/L(X(i_l)A) + AT + BT + CT.

For Az, note that

A
/( FX)ds <A sup |G| <A sup |F(X)]

i—1)A SE[(i—1)A4A] s€[0,T)
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and

sup [ f(Xe)| = Op(k4(T)).

t€[0,T]

Thus we have

Ap = /(ZA (1A —s) (uu' + 025”) (X)ds

i—1)A

1A
<A /
(i—1)A

0'2,[['

2

pp +

[ears

Also,

iA
Br = / (1A — s)ou (Xs)dW;
(i-1)A

is a martingale whose quadratic variation is
iA
[Blr = /( (iA — 8)*0*u?(X,)ds = O, (A?’/{i/{i. (T)),
so we have
Br =0, (A3/2/€Uﬁu- (T)).

Also, Cr is a martingale whose quadratic variation is

Clr = /( T (Xt = O,(ARX(T)),

i—1)A

so we have

Cr = 0, (A5, (T)).



Combining these results, we have

Xi — X(i—l)A :A,LL(X(z—l)A) + OP(A2K/,U,/£,LL'<T)) -+ Op(AQF.}iK,N.. (T))

+ 0, (A3/2mg/<;”- (T)) + O, (A1/2/<;U(T))

—0, (A2, (T)).
Note that we have

f(Xa—na) < sup |f(Xy)] = Op(kg(T))

t€[0,T]
for each 1.

Part 2. From the order results in Part 1 and (A.15), we know that

1
AO_'Q(X(ifl)A)

is the biggest order term in (A.14), so we have
e"(Xi—na, Xia) = O, (exp(A™'k2_1 (1))
and
e (Xi—na, Xia) = O, (exp(—AT w21 (1)) .
From e~ (z;,y;)/ exp(—A™!) —, 0, we have

e (zi,y:) = Opexp(=A7Y)),

98

(A.15)
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and with this order, we can show by CMT,

2e” (w4, Y1) o 2e (i, y1)
et (i, yi) +e (i, y:) etz ) + 0p(1)
— 26_(:[1'7%') (1 +o (1))
et (i, yi) g

— O,(exp(—A™)).

Lemma 12. Let f be a function of a form of,
F(Xmnya, Xia, A) = (Xia — X-na — Ap(X-na)) d(Xi-1)a)

[0<X(i71)A) + Ab(X(z‘q)A) + (XiA — X(i—1)a — A,U(X(ifl)A))C(X(ifl)A)]u

with v = 0,1,2 and a real number u < 2, for b(x), c¢(x) and d(x) being four times
differentiable functions. These functions and their derivatives satisfy Assumption 2.

Let

v

F(Xana) = d(Xi-na)o(Xina)" (Xia = X-na — Ap(Xi-1)a))
If we have a decreasing sequence pr satisfying
NG i F (Xana) —=p A
i=1
for some A as T — oo and A — 0, we also have
,UTAS/Q zn: f(X(ifl)A7 Xia, A) —p A
i=1

asT — oo and A — 0.

Proof. Note that

f(Xi—na, Xia, A) = (Xia — X-a — Ap(X-pa)) d(X-1ya)o(Xa-1ya)" + R
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where R is the remainder term which is

R < (Xia = X-na — Ap(X-1)a)) d(X(i-1)a)
UU(X(i—l)A)uil (Ab<X(i—1)A> + (Xia — X—1a — A,U(X(i—l)A))C<X(i—1)A))
+[(Xia — Xi—1ya — Ap(X-1a)|"1d(X(i-1)a)]

Agup (Ab(X(i—l)A) + (Xin — Xi-na — AN(X(i—l)A>)C(X(i—1)A))2

where

u(u —1)

2 (U(Xt) + Ab(Xy) + (Xypn — Xy — AN(Xt»C(Xt))u_Q

Agyp = sup
t€[0,T]

u(u — 1)0u72(Xt>

+ sup 5

t€[0,T]

since a power function is monotonic. Thus,

n

D F(Xana, Xia, A) =) (Xia = Xna — Ap(X-1a)) d(X-1a)o(X-1a)"
=1

=1

+XR
where X R is the sum of the remainder terms, such that

YR < Z(Xm — Xi-na — Ap(Xi—1)a)) d(Xi—1a)

i=1

wo(X-pa)" " (Ab(X-1a) + (Xia = X-na — Au(X-na))e(X-1)a))

+ Asup D |(Xia = Xii-nya = Ap(X-na))[*1d(X-1)a)|

=1
(Ab(X(i_1)a) + (Xia — X-1ya — Au(X-1a))e(Xi-na))”

= Ar + Br
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It is easy to check

T =

{ Op(AY 2Tk kil Vko(T))  ifu< 1
O, (A2 TR kg (T)) i u > 1

when v + 1 is odd and

g

y { O, (AC=D2TRo4 g ikl "vk (T))  ifu < 1
T p—
O, (AW=D2Tgvbug k5 (T))  ifu > 1

when v + 1 is even from Lemma 8, and for By,

Br =

{ O, (A 2TV T2k2 7V kgr2(T))  if u < 2
O, (AY2Tr kw2 (T))  if u > 2

following the same steps in the proof of Lemma 11.

On the other hand,

n

D (Xia=Xa-na — Au(Xi—pa)) d(Xi-1a)o (Xi-1)a)"

i=1
{ Op(AV D2 TR kg (T))  ifu<0
O, (AV=D2/Trv+,(T))  if u > 0

when v is odd and

n

Z(XiA_X(ifl)A - AN(X(ifl)A))vd(X(ifl)A)U(X(ifl)A)u

i=1
{ Op(ACD2TrV kg (T)) ifu <0
O, (AC=D2Tgo+ug (T)) if u>0
when v is even. Under our condition, this becomes the leading term, which completes

the proof. O

Lemma 13. Let g be a power function g(x) = P and f be a four times differentiable
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function. Also let f and its derivatives satisfy Assumption 2. Denoting
D(X(i-1ya, Xia) = Ao ?(X-1a) + 20" (Xa-1a) (Xia — Xu-na — Au(Xi-1a))

we have

Zf(X(i—l)A)g(U(X(i—l)A) + D(X(i—l)Aa XiA))

i=1
n

= Z f(Xi-1)a) [Q(U(X(iq)A)) + ¢ (0(X4—1)a)) D(Xi—1ya, Xia) + -+

=1

+ 9 (o(X1)a)) DXy, Xia)*| + Op(R),

where R = AY?(VTrEk iy (T) + Trypw2(T)) when k is an even number, and R =
ACDT P ko (T) when k ds odd if p > 0. If p <0, R= AM2(VTk P ks (T) +
Tk P (T)) when k is even, and R = A*"V2Tx P k1, (T) when k is odd.

Proof. Let’s denote D; = D(X(;_1)a, X;a) for the simplicity hereafter.

Zf (X(Z DA )+Di)

+R

where R is a remainder term which is

& 1 SU
R < (=] 1)|f(X(ifl)A)g(kH_l)(U(X(ifl)A Dt 4 g i + ; (X(i—na)|[Dif*?
i—1 .
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where

Glup = sup. ‘g F2[0(X,) + Aoo?(Xy) + 207 (Xe) (Xpsa — Xo — Ap(X0))] )
te

+ sup ‘g k+2) (Xt)]‘
t€[0,T]

since a power function is monotone. With the same steps as in the proof of Lemma

12, we can show
{ O, (A*2\/TrE ki sk (T)) if p > 0
T pu—
Op(A*2NTK P ks, (T)) ifp<0
when k + 1 is odd and
y { O, (A* V2T ki, (T)) if p>0
T p—
Op(A*V2T, P k1, (T)) ifp<0
when k + 1 is even. Also

5 { O, (AF2Trk2(T)) if p >0
T pu—
Op(A¥2Tryk P (T)) ifp<0

So as a result,

Zf (0(X(i-1)a) + D)

ZZf(X(i—l)A)[Q(U(X(i—l)a))+g'(0(X(i—1)A))Dz‘+ +;,9(k)( (X(-1a))Df]

{ O (AR /TP ki sk (T)) + Op(A*?Tripr2(T)) if p > 0
+
Op(AF2 Tk P kpkiy (T)) + Op(AF?TrpkP(T)) if p <0



when k is even and

Zf(X(i—l)A)g(U(X(z’—l)A) +D;)

n

=3 f(Xi—na) [9(0(Xa-na)) + ¢'(0(X(—1)a))D; + - -

i=1
{ O, (AR V2T ki, (T)) if p> 0
Op(A*=V2TK P k1, (T)) if p<0

when k is odd.

B. Asymptotics of the Log-Likelihood Derivatives

1. Euler ML Estimator Asymptotics

—g" (0(X(i—1a))

1Y

For the scores of the Euler approximated log-likelihood function, we have

S.(0) = Zéa(xi,yi) = /0 %(Xt)dwt + Op (VAT (Kt Fpo i tig1)(T))

Sp(0) = Zgﬂ(xhyi) = \/%/0 ?(Xt)dvt + OP(A_IMFGM*?’(T))

104
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and for the Hessians, we have

+ Op(v AT(’%'&H;ﬁHU” - Hﬂaﬁlo'ﬁﬁg. Ko + ’Qua’i;b’%a—le))

- A
Hpar (0) = Zg,@o/(xi:yi) = _2/0 (X¢)dW,
i=1

o2
+ Op(VAT (Koy Ky Kot = Koyh, Ko a1 + Ko, g tia=1)(T)

- 2 (T oo
Hﬁg/(e) = Zﬁﬁﬁ/(%,yz) = _Z ; 0_26<Xt)dt
=1

T /
+ 0, (\/ Z(/@U/{%B, - 3ligﬁligﬁ)lig_1<T)>

2. Milstein ML Estimator Asymptotics

For the scores of the Milstein approximated log-likelihood function, we have
Sa(e) = Z£a<l’i, y1> = / f(Xt)th -+ Op(\/ AT(HMQ—F H‘ualidlio—l)(T))
i=1 0

Ss(0) = Zﬁﬁ(xi,yi) = \/%/0 ?(Xt)d% + OP(A—1/4FUH073(T))
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and for the Hessians, we have

n T / T
=Y tawlng) == [ PR gar s [ e xaw,
i=1 0 0

T / T =
Mo O a0 30
alg/ Zéaﬁ/ I‘,“yz = / 6(Xt>th +3/0 A (Xt)dt
+ Op (VAT (K, oy Kt — R by R K1 fiua/f:,-ﬁlfa—l)(T))

" o T osul o
Hmﬂﬂz}j%ﬂ%ﬂﬁz—{/ M“@@ﬂm+3/ ToleT_(x,)dt
i=1

o? 0 o?

+ Op(VAT (Koy Ky Kot = Koyhi, Ko Kot + Ko, g tia=1)(T)

O'gO'
H/BB/ Zgﬁﬁ’ :C’L:yz - A/ ﬁ Xt)d

T /
+0, (\/ Z(/@U/{%B, — 3ligﬁligﬁ)lig_1<T)>

C. Proofs and Useful Lemmas for Chapter 111

1. Proof of Proposition 3 and 5

Part 1: Euler ML Case

Denote r = X(;_1)a and y = X;a. Note that we have the scores of the likelihood £
as S(0) = >0, (Calz,y), s(, y))/, where

~—

lo(z,y) = Zg((i

(y—x — Ap(x))

~—

(o) = S (0= 2= o)) = M)
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and for the Hessians, we have

I ( loa,y) Lople,) )

i=1 \ Llag(z,y) Las(x,y)

where
bont) = 255 (g = ) - St
lop(z,y) = —2/?3?2(;6) (y x Au(x))

las(z,y) = ﬁ(m) [(aagﬁ(:v) — 302(:76)) [(y —r— A,u(x)) — AO’Q(:L')} — 2A020%(5L‘) )

Also we have

g@@@[(l‘, y) gaaﬂ<w7 y)
J(QO) _ - gaaﬂ(l‘: y) Eaﬁﬁ(l‘: y) 7
i=1 | Laap(x,y) Lags(2,9)
lagp(,y) Lops(z,y)
where
lona(T,y) = —ugzzygg) (y — o — Ap( )) - BA/:‘;—W
gaaﬁ(‘ra y) = _2M:.§Z£>(x) (y - T A,u(a:‘)) + mgg—éfﬁ)@
Copp(r,y) = e (3067(42)_ 753) (y — 2 — Ap(x))

Caps(,y) = ﬁ(a%ﬁﬁﬁ@) — 9003055(x) + 1203) [(y — = — Ap(z))? — Ac®(2)]

+ %@(1002@) — 6005055(2))
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and

aaaa 90 Zgaaaa z Z/

_ Z {/Laaaa o A,u(:v)) . A<3//Jaa t;‘f(ﬁ;jﬂaaa)(xq '

From this, it’s easily derived from Lemma 21 and 22, that

gﬁa(x,y) /Oﬁ‘a (X,)dW,; — \/>/ ( uw)(Xt)th
g%(x’y)% \/%/0 B(X,)av;
i, (-2 oo

which proves the first part of the proposition, and also from Lemma 21, 22 and 2, we

dU,

have
Zfaamy [ /M“(Xt)dtJr/ Hoa 5 )aw,

g
VE [ () o

a0
—2 / “Jf(Xt)th
0

Z gaﬁ (‘Ta y) ~
i=1

o

n 9 3a
Zgﬂﬁ(x’y) ~ T K/O 02 Xt dt +- \/ / (Uﬁﬁ ﬁ) (Xt)dv;:
=1

I omit the results for J and K here. Note that for /., term, the second term will be

e o0
+\/ﬂ/ (“05‘7 ““U" a 5) (X,)dV,

of smaller order from Assumption 5 when 7" — oo and A — 0, but when T is fixed,
both the first term and the second term will be the leading term in the asymptotics.

It’s also easy to extend the vector case by applying these lemmas elementwise. As
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for the diagonality, since

w = ding (VT v, (1), V T/ B, (1)

it’s easy to check that Hy(6p) will be block diagonal from

T Ha 03 "0 0-2

- ‘/_Zﬁ—l,@-—l,f(U(T))op(ﬁm“anaﬁn;Q(v(T))) —p 0

T po'Vog Vo

@mflﬁflf;?(u(r’)) /0 " o (X,)dW,

as T — oo and A — 0.

Part 2: Milstein ML Case

It’s straightforward from the functional form of the score and Hessian functions, using
Lemma 1-12, 14, 21 and 22. The basic procedure is same as the Euler case, but I'll
not go in detail for each case here. For example, for the score function with respect
to the drift term parameter,

ol; (et —e” VA, L e A%00 iy
O et+e ) o'B oo’ B2

where B = (Ao(oc 4+ Aoo? + 20 (Xia — X—1a — Au)))l/2, suppressing all the

e~
e

arguments for the functions. Note that for the term containing Zi; it’s same as

et—e~
et+e—

finding the limiting distribution without from Lemma 12, and for the terms

with B, they can be taken care of by Lemma 14, and as a result, we get the following
terms.

"L 00, B “ P

36! o?

i=1 =1

(Xin — X(i-1)a — A p)

—= — [(XzA - X(i—l)A — A,u)2 - AO’ﬂ + OP(AH}T)
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So the rest of the step is to find the asymptotic expansions of each terms, and we get

gi [/O B x,yaw, — \/7/( 200 )(Xt)dv;

using Lemma 21 and 22.

2. Proof of Theorem 2 and 3

We begin this proof from (3). Following the notations in Appendix, note that

S(0) = S0 a H(0) = Hoa(6) Has (9) ,
Ss(0) o (0) Hpa (0)

and for J(0), jth k x k block of this k* x k matrix is

jao/ozj (9) jaﬁ’aj (9)
J;(0) = ;

agra; (0)  Tspra,(0)

for 1 < j < k; where «; is the jth element of «, and

jaoc’ﬂj (9) jaﬁ’ﬁj (0)
g6 =" o
Tows,(0)  Tspp,(0)
for k1 + 1 < j < k where (; is the (j — k1)th element of 3. Note that, for example,

Jaara; (0) is the jth k x k block of Jaawa(f), i.e.,

jaa’al (9>
jaa’@a(e) =
jaa’akl (6)
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Now applying the following block matrix inversion formula to H ()™

-1

A B (A—BD7'C)

-1 -1

~A'B(D -~ CA™'B)
—(D-cA'B)'cAt (D-cCcA'B)

and arranging the terms based on the A orders, we can find the first order term of

Dt becomes

1

_iHaa’<60)71 (Lc@(éé - Oé())/) jaa’@a(‘g(])(d - Oé())
1
~ _2Haa1(]k®sl (;oz 1)Jaaa 1Haa 1S
for the a part, and
1 A / ~
5 M (00) ™ (108 (& = a0)) Tawsa (00) (6 — a0) (A.16)

+ (Ie® (B = Bo)) Tspeas(00) (B — 50))
1
+ 5Haw (80) ™ ey (B0) Haw (60) " (1x2(& = a9)') Tawra (o) (& — o)
A - —_
~ o 2Hﬁ51 ((Ik@S/ a 1)‘]0104@ 1Haa 1SC11+ ([k®S//Bleﬁﬁl71)JB/BBI ﬁﬁlsﬂ 1)

A _
2HﬂﬁlH(/xﬁ 1Haa1(Ik®S/ aa, 1)J0€0&011Ho¢oc 15

for the (8 part.

For C7p, denoting

Haa,l + \/ZHaaQ Haﬂ,l + \/ZHCM,B,Q
H(eo) ~
H;[ﬁ’l + \/ZHézﬂ,Z %Hg@g + \/LZHgg,Q
and

Sa,l + \/ZSO(,Q
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Applying the block matrix inversion formula again, we have

—H(6) 'S ()
aalSOél \/_ aal( aaQHaa15a1+Sa2 a,@l /6515’31)

\/_ ﬁ,@lsﬂl A / Hﬁﬁlsﬁ,Q

eliminating all the higher order terms which are smaller than the second term. Now

arranging the terms again, we have

& —apg~ —Hiy 1501 — ;Haal(lms/ Hot 1) Jaaai Hon 1 S
~-VAH aal( Heoo2H o 1 San + Saz — Hapa 551%1)
= Avr + Aor + VAAzr
3_50 ~VAH 551Sﬁﬁ1 A/Hﬁﬁlsﬁ2

== \/ZBlT + A3/4B2T

since (A.16) is of smaller order than A%/ Byy.
The proof of Theorem 3 is the same as the one of Theorem 2, but ignoring the
A order terms. Beginning rom (4), since we are ignoring A order terms, it’s easy to

see that all the higher order terms of Ar are coming from — Sa,1, and also the

aal

higher terms of By come from
1 , _
_§Haa1(jk®8 o, 1)‘]0404061 aalSOél
For the leading term of C'r, we can check that it is

1
_EH;;J([IC@S, H., 1)Kaaaa71( aa, 0180,1® fmlSO‘ 1)
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3. Useful Lemmas

Lemma 14. Define

j—1 A s
IA—s— — / AW, dW
z T A2 < /z DA ( 3) (i—1)A

=1

t A S
+ / (ZA —s— —) / AW, dW,
G-1)A 3 /) Jg-na

forte[(j —1)A,jA), j=1,....,n+1. Then
78—, 7
for a standard Brownian motion Z which is independent of W and V. Also,
28 - 2, - O,((AT))

Proof. Clearly, Z» is a continuous martingale with quadratic variation given by

Z/ (ZA—S—%) (W, — Wii1ya)?ds

(i—1)A
t

. A\ )
+ iAN—s—— | (Wy=Wg;_1a)ds
(-1A 3

fort € [(j —1)A,jA), j=1,...,n+ 1. We have

A, 363~ [P A\’ ) |
Z ]t—t_E;/@M (1A—8—§) [(We = Wipa)? = (s — (i = 1)A)] ds

ZA—

+0(A) (A.17)

fort € [(j — 1A, jA), 5 =1,...,n+ 1, uniformly in ¢t € [0,T]. Therefore, ignoring
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O(A) term in (A.17) that is unimportant, it follows that
E (7%, —t)”
2 J—1 iA AN 2 2
_3 g / iA—s— 2} (W= Wna)? — (s — (i — DA)] ds
AS g 3
2
367 ' , A\’ 4
+ ——E / (zA — 85— —> [(Ws — W(j,l)A)Q —(s—(j— 1)A)] ds
A (G-1A 3
fort € [(j —1)A,jA), 7 =1,...,n+ 1, due to the independent increment property

of Brownian motion. However, by Cauchy-Schwarz inequality, we have

E ( [o (s ) [0~ Wina? (s - ) d3)2

(-1)A 2835
(A.19)
fori =1,...,n. Moreover, we may deduce from (A.18) and (A.19) that
E (7%, —t)°
362 n A 9
S A6 EE ( /( —1>A<S — (i = DA [(Wy = Wi—pa)® — (s — (i — 1)A)] ds)

362 11AS 176
_ 0 ~_ OAT S0
A6 0835~ 350

under our assumption. Consequently, it follows that
sup E ([Z2%]; — t)2 — 0
0<t<T

in our asymptotic framework. This implies that

7% =, Z,

where Z is the standard Brownian motion.
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We now prove that Z is independent of V. For this, we note that

Jj—1 iA A
S (a8 o

t A
+ / (ZA — S — —) (Ws - W(jl)A>2dS]
(-1)A 3

fort € [(j —1)A,jA), 7=1,...,n+ 1. It follows that

Jj—1 iA A 2
ZE </ (iA — 85— —) (W — W(z‘—l)A>2d5)
— (i—1)A 3

t A 2
([ (e 2wy )
(G-1)A 3

fort € [(j —1)A,jA), 7 =1,...,n+ 1, due to the independent increment property

(A.20)

of Brownian motion and to that

1A A
E |:/ <ZA — S — —) (WS - W(i_l)A)2d8:| = 0.
(i—1)A 3

Moreover, we have by Cauchy-Schwarz

iA A 2
E (/ (z’A —5— —) (Ws — W(z‘—l)A)2d3)
(i—1)A 3
' 2A5

iA A 2
< A/ (Z'A — s — —) E(W, — W(i_l)A>4dS = — (A.21)
(i—1)A 3 45

for i = 1,...,n. Therefore, it can be deduced from (A.20) and (A.21) that

—1 ; 2
E ([ZA VA]t>2 _e JX:E (/ZA (iA —5— é) (Ws — W('—l)A)2d3)
) A4 o (i—1)A 3 s q

t A 2

+ E </ (ZA — S — —> (WS — W(i_l)A)zdS) ]
(G-DA 3

6
n A 16,



116

and that

sup E ([Z2,V2],)" =0

0<t<T

in our asymptotic framework.

To prove that Z is independent of W, note that
6 A . A
[ZA7 W]t = m Z / (ZA - S5 — g) (WS - W(i_l)A)dS

6 t 4 A
+ A3/2 /('1)A ZA - S — g (WS — W(Z;l)A)dS

and

E([Z%,W],)* = % SEU(A (ZA —5— %) (W, — W(H)A)ds}2

i—1)A

36 t A 2
(] (2o
J—

Jj—1 A 2
<o Z/ (m — 5 §> E(W, — W_1ya)?ds

36

A 2
' A (G-1)A (ZA T 5) EW. - W(i_l)A)QdS
i

< An=AT -0

For the last statement, note that Z2 can be represented as a time changed

Brownian motion Zjza), from the DDS representation. Thus we have

m,/ (28], — t| = 0,(1)\/ |0, (VAT)| = O, ((AT)*).

Lemma 15.

2v/2 2 ,
VA, —t = —\?)/_\/th + §\/ZZ,5 + O, (AT
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Proof. From

N 2 Il A ) .
V2 —t= X ; /(1'1)A [(Ws = Wi_na)? — (s — (i — 1)A)]ds

_l’_
L] o

/ (W = Wi_pya)? = (s — (i — 1)A)]ds

—1
S 4 t S
/ (1A —s / AW, dWy + — / (1A — s) / dW,.dW,
T J 1A (i—1)A A G-1)A (i—1)A
4 j—1 A A s
/ / dW,dW, + > / (@A —5— —) / AW, dW,
P A~ Jia 3 ) Ji-1a

4 4 1 . A 5
+ - dW,.dW, + — 1A —s5— — dW,.dW,
3 Ji—1ya Ji-va A Jiz)a 3 ) Ji-1a

2
22 Ry 4 2vaz

k)

M

43
A <

| <.
Il

J

wl»-lk

it easily follows from Lemma 10 and Lemma 14. O

Lemma 16. Define

t A
UtA:/—VS — Y,
o VIIVAL — s

Then
Ut —, U,
where U is a standard BM independent of V', Z and W .

Proof. Note that U” is a continuous martingale with quadratic variation given by

s e Y
[U ]t_/()( r[VA1s—s|) !



We have

E([U%), )" =E (/t
[

2

() )
( Y:ﬂ) _1]

Note here that

for any s and A so

() | ()
V3, = Vel =

is a covariance between two x? random variables. Thus,

A 2 A 2
V3]s = 5] (VA =]
for any s, r and A, and for any s # r, (shown in Part A)
A 2 A 2
E (u) . 1] (u) ]| = oam
V3]s = 5] VA =]

So we have

[ [ ( V;S,)_l (_,V{;ALV_TH)_I]M

// 21{t s +O(AT )}dsdr

= O(AT?) — 0

118

2
VA -V,
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if AT® — 0. Thus we have
sup E([U%]; — t)2 —0
0<t<T

and this proves
Us —, U,

where U is a standard Brownian motion.

Part A. Let’s denote

va_v \’ va_v \’
AA = SA—S —1 and BA = TA—T — 1.
|[V ]S_3| |[V ]T_T|
Then

[e.e]

EAABAEQQ/)(l—ffﬂx»ﬁ?uym

where F2 and f2 are distribution and density functions of [V4],, and similarly for

FA and f2 with [V4],. The above inequality is because it’s a probability that Aa

T

and Ba will be dependent. To deal with this integral, let’s divide it by

| G-t
- [ a-rrap@de s [0 ) e

—00 c1

+ [ ) 2w

C2

— A+ B+C
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where r < ¢; < 8 < ¢y . Then

As / LA @)dr = FA(e)

o0

B < /02(1 — F2(c1)) fA (x)da = (1 — F2(cy)) /C2 JH@)de < 1= Fe)

C1

C< /00 1-fA(x)de = 1 — F2(cyp).

c2

For B and C,

B<1—FXc) =P{[V?, >} <P{|[V2]s = 5| > c1 — s}
E([VA], —3)2

= T a-ep
C<1- FTA(CQ) = P{[VA]T >t < P{HVA]T - T| > co— 1}
_E(VA, 1)’

(e —7)?

— O(AT)

= O(AT)
since ¢; > s and ¢ > r. For A,

A< FTA(CI) = P{[VA]T <} < P{HVA]T - 7“| >r—oc}
L B2, =)

(r—oc)?

= O(AT)
since r > ¢1. So we have
EAABA = O(AT)

Part B.

Independency 1. (U independent of W)

t VA _ ‘/s
U2 W], = s ds

Jo VA =]



We have

_ A
E[UA, W t_// Vo Vo=V ) goar
W“ sl VIVA =7
// 1{3 1+ O( AT)}dsdr

= O(AT?) — 0

if AT® — 0. For the second line, let’s denote

A A
PO SR o
V2] — ] (VA —r|
Then the rest steps are the same as in Part A.
Independency 2. (U independent of V)
t VA V
(U2, V], = =0
VI — s
since
VE -V,
A - Op(l)
(VIS = sl
Note that

[ [T [ v

— 0,(V1)-0=0

121
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and

t VA V t | V|

\/7_5 s2 7 \/7_5

\// 2 _; /[WV]st

:()p(\/%)-ozo

AW, V1

Independency 3. (U independent of Z) Same as above replacing V' with Z. O]

Lemma 17.

1 T 9 (T
m/o f(Xt)(ViA — Vi)dW; =~ \/;/0 f(Xt>\/ ’\/§W+Zt‘dUt

where U is a standard BM independent of V' and W.

Proof. With an equi-spaced partition (to,¢y,--- ,t,) with ¢, = 0 and ¢, = T, let

t VA _ Vs
Mf = / —— L dW,
o VI[VA]s — sl
we can rewrite

T /VAt_ A
! /Of(Xt)(V —V)dW, = /th Y

Al/4 Al/4 |[VA]t_ | t

0 =t; —t;_1. Denoting

- I;irélZf( tz;l) A1/4 ( ti— 1)
i=1

from the definition of the Ito integral since

VAV,
dMP = ——t_qw,.
V2] -1

From Lemma 16,
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and from Lemma 15,

VIIVA]L, —ti]
A1/14 —p 31/4 th 1 th 1

and the both convergences are uniform in i, so we can exchange the limits

)

im plim 3%, ) VA0 e s g

A—0"5_,0 — Al/4 i ti—1

5—0 A

—phm 31/4 Zf ti— 1 \/‘\/>VtZ 1 Ztl 1
W f(X0 \/'\[vt =2

(U, = Ury)

dU,

Lemma 18.
/T FX)(VA = Vi)dt = Oy (AT k4 (w(T)))
0

Proof. Part A.

E( /0 XA - W) dt) / / XV = V)(VA = V3)] dtds



Note that

E [f(X)f(X) (VS = V)(VE = V)]

~E(E[E( -

ViIIVA = V) (VA = V)| f(Xe)f
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(X)) (X F(X.))

IN

XS)‘)X

< \/E( sup |72 2
0<t,s<T

\/E((E[E(%A —VIVA = V) (VA -

VOLF(X)F (X)) E(f2(X0) (X))

\/]E<(E[E(V;A _

Thus

I

~V)(vE8

Vi VA — V) (VA

XS)}>><

— V£ £(X))))

—V,)] dtds

[ [V

_ O A3/4T13/4 2(T ))

Note that E(VtA —
O, ((AT)Y*), thus

- VVA -

V[VA —V,) = O,(VAT) (shown in Part B) and VA —

V(A = Vo) F(X)F(X,)])" ) drds

‘/S:

JE((EE v - v vs -

and

VOLF(X)F(X,)])7) = Op(a% 7o)

E( sup |f2(Xt)f2(Xs)|> = O, (K} (v(T)))

0<t,s<T

Thus

/0 FX)(VA = Vi)t = Oy (AT (1(T)).
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Part B. Since

]E(E(VtA —V|VA - VS)Q) < JE(JE((VtA ~ VPV — Vs))

=E((V - V)?)

<2T
we have
B(E(V? - ViIV2 - V.)) <27 [ (1= F2@)f3(@)de = O,(AT")

from the same steps as in the proof of Lemma 16 since E(V,2 — V;[VA —V;) = 0 when

VA —V, and VA — V, are independent. Thus

E(V;A = ViIVA = Vi) = O,(VAT).

Lemma 19.

9 n A s
— X AW, dW
\/;izlf( ( I)A)/(i—l)A/(i—l)A
T 2 T
~ ¢ t Va2 (X, t ¢ t
(/0 FX)dV; + A \/;/0 af(X)\/|\/§V+Z|dU)

where V' is a standard Brownian motion independent of W, and U is a standard

Brownian motion independent of W and V.
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Proof. Part 1.

2 n 1A s
NEA S / / AW, dW,
A ; ( ( I)A) —-1)A J(i—1)A

-/ v+ / LR - 1),
) IR E N
_ /OT F(X)dV; + Ap + Br.
For A, note that
e = S0 Vi)~ [ (VA 06— 100, (7 - V)

= AIT - AQT - AST

from integration by parts exploiting the notation for the quadratic covariation term.

Under suitable conditions, we can show (in Part 2)
Br = Oy(VAT kot ((T)))
and
Asy = Op (VAT sy (v(T))).

For this, note that

r) = 50+ [ (' + ZE) s+ [ opcea,

and W and V are independent of each other, [f(X), (V2 — V)]r is same as the

quadratic covariation of

/0 (X)W,
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and

2 Jj—1 [YAN s t s
VA=< (> / / AW, dW, + / / AW, dW,
A i=1 (i—l)A (i—l)A (j—l)A (j—l)A

as in the definition of V2. So we have

[f(X), (V2 = V)| = \/%é /:)A of'(Xs) /(;)A dW,ds.

To obtain its order, note that

zn: /( iAl)A F(X) / C dWds

=1

—Zf (14 /( /( AWV, ds
D3 /()A (F(Xs) = F(Xi-1a)) / AW, ds

=Air + Aor.

We have

n A
AIT = Z f(X(z—l)A) / (ZA - u)qu
i=1 (i

—DA

and this is a martingale with a quadratic variation bounded by

AQ Zfz(X(i—l)A) /(l du = Ag ZfQ (A2T"€f( (T)))

i—1)A

from Lemma 1. For Asr,

n 1A s (72f” s
A =) / / (u f+ ) (X,)du / AW,,ds
i=1 Y (—1)A J(@E-1)A 2 (i-1)A
n A s s
— Ji-na Ji-na (i-1)A

=Aorr + Asor.




and

2 f//

w0

=0, (ATk iy (V(T))) + Op(ATKZ K pr (v(T)))

wf' + X,)duds

from Lemma 2. For Asor,

n 1A s 2 n 1A s 2
Agor < / (/ Uf’(Xu)qu) ds / (/ qu) ds.
J ; (i—-1)A (i—1)A ; (i—1)A (i—1)A

7

Note that

Z/ (/ X, )dW, >2ds O, (AT?K2K2,(V(T)))

since
[ P, = O,/ AT sy (AT,
SO
Asr = O, (VAT ko (v(T))) Oy (VAT) = Op( AT tighip (v(T))),
and the order of quadratic covariation becomes

[f(X), (VA =WV)]p = Op(\/Z\/T/igﬂaf/(y(T))) + Op(\/ZTH“K/UKJfH(V(T)))
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+ Oy (VAT kyubigrti i (U(T)) + Op (VAT kigr i (v(T))) + Op (VAT K 1 pon (v(T)))
+ Oy (VATK2 kgt (U(T))) + Op (VATK2 150 (v(T))) + Oy (VAT g tigrticpr (v(T)) )
+ Op(\/Z\/ Tliglifﬂ(y(T))) + Op(\/z Tligligllif/<y(T))) .
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For A1T7

f(X7)

2011V
FO) VR - Vi) = 250 \/M Vit -2

= 0, ((AT)*k;(v(T)))

where V ~ N(0, 1), and for Ayr,

[ o =voacar = [ = (wr+ 7L o

T
n / (VA — Vo f'(X,)dWt
0

= Aoir + Aoar.
For Agir,
Agir = O, (A3/8T13/8<’<0u"ff’ + Hgﬁf”)(y(T)))
from Lemma 18. For Asor,
Agor = Op(A1/4T3/4’fa"¢f’(V<T)))

From Lemma 17. Note that Agyr cannot be of smaller order than Bz or A;r no

matter how, so we need to find the exact asymptotic distribution of Asor.

\/_A1/4
Agor = W Uf Xt Vt Zt
0

U,
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Part 2. For By,

n iA t 2 1
= Z/ / (uf’+ o/ ) (X,)dsdV;A
(i-1)A J(i-1)A 2
/ / ) dW,dV,A
(i—-1)A J(i-1)A

= Bir + Bar

from It0’s lemma. For Bir, note that

/ / alstA
(i—-1)A J(i—-1)A

is a martingale with a quadratic variation

Zz:; /(:Am (/(:M f<XS)d5) 2 (v,

n iA t .
- A
- Z1 /(il)A /(il)A f(Xu) /(il)A f(Xs)deud[V ]t

)

u

= / z (VA%a — [VA]L) F(X0) / F(X)dsdu

i=1 J(=1)A (i-1)A

IA

_—

Z/Z ([VA]a — [VA]U)Qdux

i=1 7/ ((=1)A

\ ; /(:)A P (/@:)A ! <Xs>d8> K

:BHTBHT-

Since the order of > 7 , A (VA4 = VA, ) ds is the same as the order of its

(11

expectation being a positive process, we can consider the order of the expectation
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instead. We have

n iA
’ (2 /(i—l)A (V=]ia — [VA]S)2d3>
- (% zn: /(:Al)A ([A(Wu - WS)2du) 2 ds) (A.22)

4 Zn ia iA 2 9
=E| — B, - |
A2 £ /(i_l)A (i—1)A (/5 (W, — W) du) ds

- (A=)
we have
n iA )
E (Z/ (V3ia = V2)) d8> < 4A?T
i=1 J(=1)A
and
Bur = O,(AVT).
FOI' BlQT,

) /iA F(X.) (/( f(Xs)d8>2dusA2T sup |£2(X0)] sup |FCX)[

=1 J(i—1)A i—1)A 0<t<T 0<t<T

= O,(A°Try3(v(T))),

Bir = Oy(AVT)O,(AVTRHW(T))) = Op(AVTr (v(T))).
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For By, note that

/ / &) dW,dVA
z 1 z 1

is a martingale with a quadratic variation

N

=1

/t f(X)dW, )2d[VA]t

(i-1)A

/(l /(l o )dsd[V 2],

+2 / / / F(X)dW, dW,d[VA],
i=1 Y (—DA J(E-1)A (i-1)A

=DBo17 + 2857

FOI‘ BZlT7

Borr —Z/ VA lia — [VA] )fZ(XS)ds

st /m ([VAJZ-A—[VAL)%S;”; / S P

(i-1)A (i—-1)A

Bair = OJ(AVT)O,(VTR(UT))) = O, (ATR((T))).

For Baor,

s

Bar = Z / (Vs = VA [ FX )W,

(i-1)A



133

and this is a martingale with a quadratic variation

n

Z/m (IVA%a = VA1) F2(Xs) (/( f(Xu)qu)st

— J(-1A i—DA
n [YAN n A S 4
INTREEL 7N S 4
<JZ /( o V2l =210 /( RGeS ( /( _DAf(Xu)qu) ds.

Note that

/(  F(X)dW, = Oy(VAT R (u(T)))

i—1)A
since it’s a martingale with a quadratic variation
S
2 2
[ P = 0yATH ()

and since

we have
; /(i—l)A FE) (/(i—l)A f<Xu>qu) ds = O (A’ T°k}(v(T)))
and
A VA@'A_VAs4d8:OpA4T
;/@_M([ s — [V2],) (A'T)

since

iA
E(i—l)A (/ (Wu — Ws)Qdu>

4 2

A
S (ZA — 8)2E(i_1)A </ (Wu - Ws)4dU)
A ’
< (iA - s)? / Eiya (W, — W,)%du

= 21(iA — 5)®
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with the same way as in (A.22). So
Boyr = Op(A\/T“f(V(T)))
and we can check that By has a smaller order than A;. O

Lemma 20. For a three times differentiable function f with asymptotically homoge-

neous derivatives,
T A T
Z FXna) Wia = Weena) = [ 50aw =[5 [ o (xan
0 0
+ OP(A3/4T3/4I{O—(/€UK,]M/ + I{J/I{f/)(T’y))
Proof. By Ito’s lemma,
Z f(X Wia = Wi—a)

no A
:/0 f(Xy)dW, — Z/ (F(X0) = f(Xo1ya))dW,

i=1 7 (= 1)A

T
0 (i—1)A J(i— 1)A

, O.2f//
— E / / (nf' 4+ =) (Xs)dsdW,
— Ji-1a Ji-na 2

T
- / f(Xt)th - AT — BT
0

Note that

Br = Op(ATkytip (v(T))) + Op(AT kg ki pr (v(T)))
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from Lemma 2 and

Ap = o (i— / / AW dW,
’ Z f DA (—-1)A J(i-1)A '
/ / Uf - Uf/(X(z‘A)A))dWdet

= Aip + Agr

We have

n A t s
AQT:Z/ / / [H(Uf//+0/f/)
— Ji-va Ja-na Ji-1)a

02(Jf///+20/f//+0_//f/)

(X0 dudWdW,

n A t s
+> / / / o(of" + o' f)(X,)dW,dW,dW,
i=1 Y (@—DA J(E-1)A J(i-1)A

= Op(APVT (Ky(Katign + Kortig) + K5 (Kakipn + bgrtign + Kgntipr)) (v(T))

+ Op(AVT kg (Kohipr + Fgrtip ) ((T)))

from Lemma 2 and

AT
Air =15 / 0 f'(X0)dVi + Op( AT iy (kg bign + kigrtipr) (v(T))
0

from Lemma 19. Thus,

Zf Wia — Wi1)a) /thth \f/ o/ (X)aV,

+ OP(A3/4T3/4:‘10—(I€UKJ]0// + lio-/lif/)(l/(T)))



Lemma 21.

Z f(X Xin — Xi—na — Ap(Xi—1)a))

_ /OT o F(X,)dW, — \/g/OT o2 (X)dV;

+ Oy (AT (K2 ki + Kohigrbip + Kokgntip + K2k ) (V(T)))
Proof. Note that

Xia — X(ifl)A - AH(X(z‘A)A) :O'(X(ifl)A)(WiA - W(ifl)A>

We have

=1

+ Op (AT (K2 ki + Kghigrtipr + Kgkigntip + K2k 7) (V(T)))

136

ZUf(X(i—l)A)(WiA — Wicna) = /0 f(Xe)dW, — \/7/ o f+of)(X)dV,
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from Lemma 20, and

A t
Zf(X(i—l)A>/(i_1)A /(i—l)A oo (Xs)dWdW,
1A t
= ZO’O’ f(X(z—l)A) /(i_l)A /(i_l)A dWdet
1A t
+) f(Xi-na) /( " /( " (00" (X,) — 00 (X)) dW,dW,
A T
_ \/; /0 00" f(X)dV; + O (AT k(00 + 0% ) (1(T)))

from Lemma 11 and Lemma 2. The rest of the terms can be shown to be of smaller

order, thus combining these results, we have the stated result. O

Lemma 22. For a four times differentiable asymptotically homogeneous function f,

Z F(XG—na) [(Xia = Xa-na — Au(Xi-1a))® — Ac*(Xi-1a)]
=1

M/OT fo?(Xy)dV; + A3/4% /OT o (o + 200" £)(X)\/|[V2V; + Z4|dU,

Proof. Denoting V.3 — V(ﬁl)A = f(iﬁlm f(i—l)A dW,dW,, we can write as

~
~

Xia — XA — A/L(X(z‘—nA)

= o(X(i-1ya)(Wia = Winya) + 00’ (X-a) (Via — Vita) + Ri,

where R; is a remainer term, from the first equation of the proof of Lemma 3. Re-
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placing this into the following, we have

Zf(Xa—l)A) [(Xia = X-1ya — Ap(X-na))? — Ao (X-1)a)]

n

= Z F(Xu—a) [(U(X(ifl)AXWiA — Wiya) + 00" (Xi—1)a) Via — Vii—iya) + Ri)2

i=1

— AO’2 (X(Zfl)A)]

= Z f(X(ifl)A) [UQ(X(iq)A)(VViA - W(ifl)A)z
i=1
+20%0" (X(i-1ya) (Wia = Wia)(Via = Vit i)a)
+0%0(Xapa)(Via = Vi ya)® + B
- A02<X(i—1)A)]a

where R} denotes the terms multiplied by R;. From Lemma 19,

Z o (X—na) [(Wia = Wi—na)? — A (A.23)

3/4
\/ﬂ/ fo*(Xe)dV; + 2§/4 /0 (UQf/—l-QUJ’f)(Xt)\/‘\/th + %Zt

dU,

and
> f0%0" (Xna) (Wia = Winya) (Via = Vi na) = Op(ATk k2 ko (v(T)))

Zf02 ?(X-0a)(Via = Vitnya)? = Op(AT ki 5, (v(T)))

by the same steps in the proof of Lemma 3 from the independent increments of the

Brownian motion and E((VV,-A — W(Z-,l)A)(Vﬁ — V(@'AA)A)) = 0, and the remainder

)

term > ", f(Xu-1a)R; can be also shown to be of smaller order by Lemma 3. [
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D. Asymptotic Expansions of the Log-Likelihood Derivatives

1. Euler ML Estimator Asymptotics

For the scores of the Euler approximated log-likelihood function, we have

_ iz:;ga(g;,y) ~ _/OT ’%(Xt)th - \/g/oT (u'a - “C;U.) (X,)dV,

:[ a1+\/_Sag]

Q):izn;ég(x,y) \/7/ UﬁXtht
i [ (o5 Yo

1
[ﬂsﬁﬁ AP }

and for the Hessians, we have

T / T
Zew (z,y) [ / Rale (Xdt + / Hoo! (X, dw,

\/7/ (uaa — foor? ) (Xi)dv;

= [Haoz 1+ \/ZHaa,Q}

2/ flo ﬁ(Xt)th
0 0-

T (2u,0%h0° e WO
+\/2A/ (” 87 _Fa%5 H B)(Xt)dv;
0

U,

a/g/ Z€a5/ x y

o2 o o

= [Hop1 + VAH,g5]

Hﬂa’(e) = Zgﬁa’ ((L’, y) ~ [H;zﬁ,l + \/KH&[?Q}
=1
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Moo (0) =Y Loy (2, y)
i=1

2 [T ogoy 2 [T (0ps 3opoj
s a3 (% T v

1 1
= |—H ——Hyggo|.
{ A 88,1 T N ﬂﬁz]

Q

Moreover,

i r alaa! r aa’ Qa
\7040/@04(0) = Z&xo/@oz(xa y) = _3/ Ha®ll (Xt)dt +/ Hao'e (Xt)th
i=1 0

o? 0 o
+ Op(V AT(/‘LMLM,@Q - /ﬁuw,mng./mg)(V(T)))

= Jooa1 + Op(\/ AT(/@LQ,m + /ﬂ?uaa,@)a/ﬂg.//ﬁa)(l/(T)))

where
Ha©taa! = (:uoz X Moo + Haa! ® Ha + :u:x ® vec(uw/))/&
Also,
9 - g fatle @ 0p d " ooy ® 9p d
Joarap(0) = ;gaa’®ﬁ($7y) =2 ; T 3 (Xy)dt —2 ; T(Xt) Wi

4+ Op(\/ AT(/{U%N‘Q&@ Kaog + K;0'>K;Maa/® Kog + "fa/{uaa/(g) KU[@)/KJ?;(V(T)))

= Jaag1 t Op( \% AT(%UI{M@/@) Koy t Ko Ky, /O Koy + Kokp,, & I{(,’.B)/KJZ(V(T)))

n T o5 ® N / TO' ® ol
Tpargall) = Zgﬂa’®a($7y) = 2/0 ([3—/%) (Xe)dt — 2/0 M(Xt)dwt
i=1

o3 02
+ Op( v AT(“U“GB® ’{M;m/ + /{J./{%@ Fopgar + ’{‘7’%%® K’um/)/’%i(y(T)))

— J(Zam + Op(VAT (Kghio,® B, + Ko Koy® Ky + Koo, ® liua&,)//ﬁli(y(T)))
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- T (05 @ vec(papty)
@m@:me@mﬂA<ﬁ )Mﬁ
=1

o3

(Xy)dW,

o2

) /T 0l @ vec(flaa’)
0

+ Op(VAT (Koky @ vec(ky. ) + KoKy @ Vec(ry, ) + Iigli/a.ﬁ(g) vec(ky, ) /ke(v(T)))

Dtl

A
=J af,1

«Q

+ Op(VAT (ko kiyy ® vec(ky ) + Koty ® vec(ky, ) + Iigli;.ﬁ@) vec(ky, ) /ke(v(T)))

o

n T 60‘ﬁ0-/ ® ,LLa 20— / ® ,LLa
Tral®) = 3 tamoalasy) = [ (00 - 202 Bhe ) o yaw,
i=1 0

+ Op(\/ﬁ(na.naﬁn;@ Fpo + Ko (Koghip @ Ky, + Ko Kg @ Ky, + /{Uﬁm;.ﬁ@) K, )
b2 (5 i + i 50 (AT))
= Japp,l
+ Op(VAT (K- i, K+ Fig (K15, @ i, - Ko gy @ By + iy ® i, )

12 (i iy + g, © 1)) ((T))

n T (6pa @ 0305 20 @ 0sa
Jopas(0) =Y lapep(T,y) = /0 < £ - = ) (Xy)dW,
=1

o3 o
/ ! /
+ Op(VAT (K- £, ® Koyhg, + Ko (Fp,® Kooy T Ko Kpo® Koy + Fu,® /{06/@%)

2 (R ® Ry 5 iy ) (V(T)))

A
- “YaBB,1
+ Op (VAT (K-, Kjgﬁlﬁlgﬂ + Ko (Fp,® Hgﬁli;ﬁ + Ko Kpo® Koy + Ky ® /ﬁaﬁmgb)

K2 (5, ® Ry + i ® g, ))(AT)))
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" T /6p, @ vec(ogoy) 24, @ vec(opy
Tsaw2p(0) =D Loaras(r,y) :/0 ( e ( ﬁﬁ)) (X¢)dW;
i—1

o3 o2
+ Op(VAT (KoK, ® vec(Kgy ki, ) + Ko (K, ® Vec(kgy ki, ) + Ko k), @ vec(kq, )

N W(T)))

+ K, @ vec(Kq, ki, - ) + K2(k), @ vec(ko,, ) + K, ®V6C(l{0ﬂ5/

= Jagp

+ Op (VAT (kg K, @ vec(kg ki, os) T Ko (K, @ vec(Kq,h, o5) T Fo Ry ® vec (Ko, )

K, @ Ve, )) + K2R, @ Vool ) + K, @ vec(iy, ) ((T))

Bp!

and

n 1 [T (10030 @05 6ogzooss
Topas(8) = ) _ lopas(@,y) = Z/o ( g - L5 ) (X,)dt
=1

o3 o
+ Op( \/ T/A(I{Uﬂﬁla'ﬂ® K’o'@ + K/(Q)—HUﬂﬁ/®6 + ,{UI{UﬁOK’UBB/)/K/g(V(T)))

1
= ngggg + O, (v T/A(/fag/‘f;ﬁ;@ Koy + /fczfl‘faw/@ﬁ + /{U,{U,BOHUQBI)/KS'(V(T)))'

where
05005y = (05 ® 0gp + 0gp @ 05 + 05 @ vec(opg)) /3.
Lastly,
3#040/ & Haa! + 4,uo¢<‘>,uo¢o/®o¢
Kaa ®acx Z loor '®aa’ *T y o2 (Xt)dt
n /0 @< X)W, + Oy (VAT (B, + Kyt [0 (1))
= Koaaa1 + Op(\/ AT(!{%D/@M/ + Bty fig./fig)(u(T))).

where

Naéﬂaa’@)a = (:u/a ® Moo’ @a + Moo @a @ M/a + Ha ® M;a’@a + Mixo/@a ® Ma)/4'
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2. Milstein ML Estimator Asymptotics

For the scores of the Milstein approximated log-likelihood function, we have

zgm,y)w[/ Fe (x,)aw, — \f/ ( 4 2ol )(Xadvz

= a1+\/_8a2]

Zéﬁmyzw /aﬁXtht
T
. O’g()’
(3A)1/4/ (Uﬁ p (Xt) \/'\/7‘4 Zt

[\/ZS“+ AP }

U,

and for the Hessians, we have

T
Zew z,) [ / Reln (dt+ [,

o

\/7/ (uw 2Maaa>(Xt)th

= [Haoz 1+ \/ZHaa,Z]

« T o o’
2/ a ﬁ(Xt>th+3/ Ha%5% )t
0

2 « a/ '
S (e
g

= [Hop1 + VAH,p5]

aﬁ’ Zeaﬁ’ :E y

Hﬁa’(e) - Zg,ﬁ'a’ ((L’, y) ~ [Hézﬁ,l + \/ZH;B,Q}
=1
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Moo (0) =Y Loy (2, y)
i=1

2 [T ogoy 2 [T (0ps 3opoj
A / oz Xty % / (7—7) (Xe)aV:

1 1
= |—H —H .
{ A 88,1 T N ﬂﬁz]

Q

Moreover,

B r alaa! T aa’ Qa
jao/@a(e) = Zgaoc’@a(x)y) = _3/ Haolt (Xt)dt +/ Hoo's (Xt)th
i=1 0

o? 0 o
+ Op(V AT(/@%a,m + /‘iuaa,@a/fg.//‘ig)(V(T)))

= Juaat + Op(VAT (K., + sy o [50) (V(T))),
where
faOllaas = (o @ Haa’ + oo @ fia + [y @ VeC(taar)) /3.
Also,
Fuwtonl) = 3 tuwsslay) = [ (Hobe 202y o BIY ()
i=1 0

g o
T
_ 2/ MO‘,—M(Xt)th
0

o2

+ Op(\/ AT(I{U’{M;X&/@ KRog + Iig-liuaa,@) Kog + /fa/f,uaa/® /{o'ﬁ)/’ig(y(T)))

= Jaag1 + Op(VAT (okiy, @ by + Ko Ky, @ Koy + Kobin, /@ Ka,) /1o ((T)))
n T ’ .
205 ® Halbe, 305 ® Moo’ O
jﬁa’@a(9> = E gﬂa’@a(‘xay) = / ( & + g (Xt)dt
i=1 0

o3 o2
T
_2/ M(Xt)dwt
0

o2
+ Op (VAT (Ko ko ,@ B, F Ko Koy® K, + Kok, ® ”uaa/)/ﬁg(’/<T)))

= Joop1 + Op(VAT (Kghig,® K., + Ko boy® Ky, + Koki,® K. )/ ke (v(T)))
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~ T 120) @ vec(laptl,) 307 @ vee(fiaa )0
Tural®) =3 tarsaten) = [ (2 + 2 ) (o
i=1

o3 o2

) /T 0l @ vec(flaa’)
0

o2

(Xy)dW,

+ Op(VAT (Koky @ vec(ky. ) + KoKy @ Vec(ry, ) + Iigli/a.ﬁ(g) vec(ky, ) /ke(v(T)))

Dtl
[e%

A
=J af,1

o

+ Op(VAT (ko kiyy ® vec(ky ) + Koty ® vec(ky, ) + Iigli;.ﬁ@) vec(ky, ) /ke(v(T)))

jﬁﬁ’@a(e) - Z Eﬂﬁ’@a(xa y)
=1

- 2 2 2

_ /T (3%0’5 Db | 39505 Ot | 309y @ a0’ _ 1597 ®”‘)‘U.> (X)dt
- t
0

o o o o3

T 16050 @ e 2044
n pIp O Ha 2055 & fia (X,)dW,
3 2
0 o o
+ Op(VAT (Ko gy @ Ky + Ko (Foghiy @ Ky + KoKy ® Ky + ligﬁli;b@) K )
K2y @ b + B @ ) (AT)))
= JaBp,1
+ Op(V AT(KU./QUB/@'%(X) Ky + /ﬁa(/-@%/ffm@) Ky + Ko Koy @ Ky + ﬁgﬁn;b@) Ko

12 (g ® B, + Fi © 50,)) (A(T)))

Japs(0) =Y lapap(t,y)
=1

o2 o2 o2 o3

B /T <3ua ® Jga'ﬁ' N e & 0/'3023 N 3le @ oggo 15pia & Jgaga'> (X,)di
— - t
0

T (6pe ®osoly  2u, ,
+/ ( 18 B9  4ft ®Uﬁ6>(Xt)th
0

o3 o?
+ Op(VAT (Ko £, ® Koghi, + Ko (K, ® Koghi, + Ko Ku,® Koy + Ku,® Koghly, )

L)) W(T)))

2
+ Ko (R, ® Koy + Kpo® Ko
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= JaAﬁm
+ Op (VAT (K- £, ® KJJB/{:,/B + Ko (K, ® /-eggm'aﬂ + Ko Fpa® Koy + K,® ffgﬁm;b)

+ g (K, ® Koy + 5u® Ko ) (V(T)))

Tsazp(0) =Y sarss(w,y)
=1

B T (3, @ vec(ogoy)  3uy, @vec(oz05)  3ul, @ vec(opp )0
~ 2 - 2 + 2

o o o

B 1541, ® vec(ogog)o

— ) (X,)dt
[ (Uheloon) 2 el
0

. - ) (X,)dW,
+ Op(VAT (Kg- 1y, @ vec(Koy iy, ) + Ko (K, ® vec(kg, g, ) + Kok, & vec(kq, )
+ £, ® Vec(fioﬁfi;ﬁ)) + mi(/i;,a@ vec(Kq,,, ) + K, @ Vec(mgw)))(y(T)))
_ v
- Yapp,1
+ Op(VAT (KoK, @ Vec(Koy k) + o (K, @ Vec(koy kg, ) + Koy, @ Vec(Kq, )

+ /@La® VeC(Iigﬁli;.ﬁ)) + ni(/{;a@) vec(/i%ﬁ,) + Ii;La® Vec(li%ﬁ/)))(y(T)))

and

& 1 [T (10030 ® 05  6Gogooss
Topas(0) =D lapas(r,y) = Z/o ( 2 — ) (X)dt
i=1

o3 o

+ Op( \/ T/A(,ia'ﬁﬁ/aﬂ@ K;O'B + liz—ﬁaﬁ/@/@ﬁ + KJO'K/O'QOK;UBﬁ/>/H;§'(V(T)))
1 e
= Zjﬂﬁﬂ,l + Op( T/A(I{O'BI{;/B® ’iag + Hgﬁaﬁﬁ/@)ﬁ + Haﬁoﬁo’iagﬁr)/’ii(V(T)))'

where

03083 = (Uﬁ &K ogg + gy & 0g + (72; ®Vec(055/))/3.



Lastly,

n T .
3/1Jaa’ ® Moo/ + 4///&0,“040/ «

Kao/@ao/(e) = Zgaa’(@aa’ (.’L’,y) = _A o2 = (Xt)dt

=1

T
+/ M(Xt)dwt+0p<VAT("fu~ ,
0

o ac’ Qaa

Y Bt [15) V(1))

= Noaaaa,l + OP( v AT(K“@M@aa’ + ’%uaa/@w/ ﬁa-/KU)(V(T») :

where

HaPlao/ @a = (:U/a ® Haa'®a T Haa/@a & :U/a + o ® u:xo/®oc + p/aa’tg)a ® /Loc)/4'
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