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ABSTRACT 

 

 

 
Examining the Application of Conway-Maxwell-Poisson Models for Analyzing Traffic 

Crash Data. (December 2008) 

Srinivas Reddy Geedipally, B.E., Osmania University;  

M.Sc., Linköpings University  

Chair of Advisory Committee: Dr. Dominique Lord 

 

 

 
Statistical models have been very popular for estimating the performance of highway 

safety improvement programs which are intended to reduce motor vehicle crashes. The 

traditional Poisson and Poisson-gamma (negative binomial) models are the most popular 

probabilistic models used by transportation safety analysts for analyzing traffic crash 

data.  The Poisson-gamma model is usually preferred over traditional Poisson model 

since crash data usually exhibit over-dispersion. Although the Poisson-gamma model is 

popular in traffic safety analysis, this model has limitations particularly when crash data 

are characterized by small sample size and low sample mean values. Also, researchers 

have found that the Poisson-gamma model has difficulties in handling under-dispersed 

crash data. The primary objective of this research is to evaluate the performance of the 

Conway-Maxwell-Poisson (COM-Poisson) model for various situations and to examine 

its application for analyzing traffic crash datasets exhibiting over- and under-dispersion. 

This study makes use of various simulated and observed crash datasets for accomplishing 

the objectives of this research. 

 

Using a simulation study, it was found that the COM-Poisson model can handle under-, 

equi- and over-dispersed datasets with different mean values, although the credible 

intervals are found to be wider for low sample mean values. The computational burden of 

its implementation is also not prohibitive. Using intersection crash data collected in 

Toronto and segment crash data collected in Texas, the results show that COM-Poisson 

models perform as well as Poisson-gamma models in terms of goodness-of-fit statistics 
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and predictive performance. With the use of crash data collected at railway-highway 

crossings in South Korea, several COM-Poisson models were estimated and it was found 

that the COM-Poisson model can handle crash data when the modeling output shows 

signs of under-dispersion. The results also show that the COM-Poisson model provides 

better statistical performance than the gamma probability and traditional Poisson models. 

Furthermore, it was found that the COM-Poisson model has limitations similar to that of 

the Poisson-gamma model when handling data with low sample mean and small sample 

size. Despite its limitations for low sample mean values for over-dispersed datasets, the 

COM-Poisson is still a flexible method for analyzing crash data. 
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CHAPTER I 

INTRODUCTION 

 

 

The primary objective of this research is to introduce a new statistical model for  

analyzing traffic crashes - a model that develops a relationship between traffic crashes 

and factors associated with their occurrence such as traffic flow, geometric design of road 

sections, horizontal curvature, vertical grade, lane width, and shoulder width among 

others (Abdel-Aty et al., 2004; Maycock and Hall, 1984; Miaou, 1994, Maher and 

Summersgill, 1996; Poch and Mannering, 1996; Miaou and Lord, 2003; Lord et al., 

2005a; Lord and Bonneson, 2007). Statistical models are used to explain the process from 

which the crash data are extracted, screen variables, identify hazardous sites and for 

predictive capabilities. These models are further used in studying the factors that cause 

traffic crashes in order to implement potential counter-measures and to reduce the 

number of crashes and their severities. These statistical models are often referred to as 

“Accident Prediction models (APMs)”. Although models are developed after crashes 

occurred on the highway entities, the primary goal is to predict the crashes on newly built 

roads or on the roads which are to be upgraded so that the hazardous sites are properly 

identified and corrected before they are being used (Lord, 2000).  

 

Traffic safety plays an integral role in a sustainable transportation development strategy. 

Although transportation needs increase with the development of a nation, the main 

negative impact of modern road transportation systems is injury and loss of life as a result 

of road accidents. Out of all the transportation systems, the road transportation or 

highway network is the most complex and dangerous system. According to the report 

issued by World Health Organization (2004), an estimated 1.2 million people are killed in  

 

___________ 

This dissertation follows the style of Accident Analysis and Prevention. 
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road crashes each year and as many as 50 million are injured worldwide. The projections, 

according to the report, indicate that these figures will increase by about 65% over the 

next 20 years if the proper measures are not implemented. This, in turn, makes road 

traffic injuries to be the third leading contributor to the global burden of disease and 

unintentional injury by 2020. 

 

Traffic crashes cause significant economic and social costs. The economic cost of road 

crashes and injuries is estimated to be 1% of gross national product (GNP) in low-income 

countries, 1.5% in middle-income countries and 2% in high-income countries (World 

Health Organization, 2004). The global cost is estimated to be US$ 518 billion per year. 

Low-income and middle-income countries account for US$ 65 billion (World Health 

Organization, 2004). These costs are mainly due to the huge monetary and non-monetary 

costs caused by traffic accidents (Elvik, 2000). Monetary (or direct) costs relate to 

expenses for lost productivity due to disabilities and death, medical treatments, costs for 

repairing or replacing damaged vehicles, emergency and administrative service costs and 

expenditures on safety programs and equipment to reduce crash damages. Non-monetary 

(or indirect) costs can include pain, grief and suffering due to crash injuries and deaths 

(Miranda-Moreno, 2006). Thus, the traffic safety is one of the main priorities for many 

government agencies, private organizations and the society as a whole. 

 

Human error by road users (such as vehicle drivers and pedestrians) is the primary reason 

for the occurrence of motor vehicle crashes (Salmon et al., 2005). The application of 

proper traffic control devices, and good roadway design features can often reduce the 

probability and the severity of a crash occurrence. One can better understand the effect of 

these devices only by extensively analyzing crashes at the location where the measures 

are implemented. The success of traffic safety and highway improvement programs can 

be determined by the analysis of accurate and reliable traffic accident data in a systematic 

and scientific approach. The development of statistical models using traffic crash data is 

one of the most important among the different approaches.  
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This chapter is organized as follows. The first section gives the problem statement. The 

second section presents a brief discussion of the importance of statistical models. Third 

section gives the objectives of this research, which is then followed by the outline of the 

dissertation.  

 

1.1 Problem Statement 
 

The traditional Poisson and Poisson-gamma (or Negative Binomial or NB) models are the 

most common probabilistic structure of the models used by transportation safety analysts 

for modeling motor vehicle crashes. In fact, Poisson-gamma models are usually preferred 

over Poisson regression models since crash data have often been shown to exhibit over-

dispersion (see Lord et al., 2005b), meaning that the variance is greater than the mean.  

 

Although the Poisson and NB regression models possess desirable distributional 

properties to describe motor vehicle accidents, these models are not without limitations 

(Oh et al., 2006). These limitations include the biased goodness-of-fit (GOF) statistics, 

improper estimation of dispersion parameter and biased parameter estimates when the 

crash data are characterized by low sample mean (LSM) and small sample size (SSS). 

The other important limitation associated with NB models is the mis-specification of the 

probability density function (PDF) when the data exhibits under-dispersion, the condition 

in which the mean is greater than the variance. 

 
To overcome some difficulties described above, researchers have proposed the use of 

zero-inflated models (Lord et al., 2005b; Shankar et al., 1997 and 2003; Qin et al., 2004) 

and gamma probability models (Oh et al., 2006). It is important to note that these models 

work as a dual-state process, one of which is characterized by having a long-term mean 

equal to zero (Lord et al., 2005b; Warton, 2005; Wedagama et al., 2006; Kadane et al., 

2006). A dual-state process may not be appropriate for analyzing crash data. 

 

Recently, many new methods have been introduced in traffic safety research, such as the 

Beta-binomial model (De Lapparent, 2005; Tong and Lord, 2007), neural and Bayesian 

neural network models (Abdelwahab and Abdel-Aty, 2002; Xie et al., 2008), latent class 
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models (Depaire et al., 2008), and Support Vector Machine (SVM) models (Li et al., 

2007). But none of these methods proposed have been able to replace the traditional 

Poisson-gamma models for analyzing motor vehicle crashes. Given the limitations of the 

Poisson-gamma model, there is a need to evaluate whether alternative count data models 

could be used for modeling motor vehicle crashes. 

 

1.2 Importance of Statistical Models 

 

Statistical models play a vital role in traffic safety analysis. The aim of statistical models 

is to explain observed and random variations of accidents across sites based on the 

available information on traffic flows and site-specific attributes. They serve one or more 

of the three purposes given below: 

 
1. Explaining the process: Developing a statistical model gives important 

information about the process or the system from which data are extracted. The 

covariates included in the model development will reflect the attributes of the 

“system”.  

2. Screening Variables: Another important application of developing statistical 

models is to know the specific or significant effects of the variables on the risk of 

the collision. Examining the sign or the significance of a variable is a vital step 

during the model development process and its application is exploratory in nature. 

3. Prediction: The third application aims at developing statistical models for most 

predictive capabilities. These models could be used with data collected as part of 

the model development or with a completely new dataset. 

 

Peltola (2000) describes a process which is solely dependent on injury crashes. Crash 

prediction models are of great use in that process. The process described in the study 

calculates the change in accidents and fatalities due to the implementation of a 

countermeasure. Initially, the accident history for the last five years is used for predicting 

the number of crashes. With the change in traffic and land use, but without measure, 

crashes predicted before are corrected. Later, the effect of the countermeasure is counted 
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by applying a coefficient on the predicted number of crashes. Thus, (from figure 1.1) it is 

very clear that the statistical models have great importance in the road safety 

improvements. 

 

 

 

 
Figure 1.1: TARVA, organizational diagram for the modeling procedure (Peltola, 2000) 

 

 
1.3 Research Objectives 

 

The primary objective of this research is to evaluate the performance of the COM-

Poisson distribution and describe the application of its generalized linear model (GLM) 

for analyzing motor vehicle crashes. In doing so, the following objectives are addressed 

in this research. 

Current number of 
accidents 

Change in safety 
situation 

Forecast of the 
number of crashes 

Measure and its 
impact coefficient 

Accident 
reduction 

Average accident severity in 
road conditions in question 

and its change 

Traffic fatality 
reduction 

Average accident 
rate and its variation 

on a road section 

Injury accidents on a 
road section 

(5 years) 
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1. Assess the performance of Conway-Maxwell-Poisson distribution for datasets with 

different sample means and levels of dispersion. This analysis will be done in a 

Bayesian framework. This analysis will include testing datasets which are under-

dispersed, equi-dispersed and over-dispersed. This objective primarily deals in   (a) 

characterizing the parameter estimation accuracy of the Markov Chain Monte Carlo 

(MCMC) implementation of the COM-Poisson GLM, (b) estimating the 

computational burden of this MCMC implementation, and (c) investigating the 

degree of inaccuracy in using the asymptotic mean approximation proposed by 

Shmueli et al. (2005). 

 

2. Examine the application of the COM-Poisson GLM for analyzing motor vehicle 

crashes. Compare the performance of the COM-Poisson models with the standard 

Poisson-gamma model, which is frequently used in analyzing traffic crash data, 

usually characterized by over-dispersion. The comparison analysis will be carried out 

using the most common functional forms employed by transportation safety analysts, 

which link crashes to the entering flows at intersections or on segments. 

 

3. Evaluate the performance of the COM-Poisson GLM for analyzing the crash data 

exhibiting under-dispersion, in cases where Poisson and Poisson-gamma models 

cannot be used and then compare its performance with the Gamma probability models 

which have already been used for an under-dispersed crash dataset (Oh et al., 2006).  

 

4. Evaluate the performance of the COM-Poisson distribution in terms of stability and 

presence of biasedness for data characterized by small sample size (SSS) and low 

mean problem (LMP). The bias in the estimation of model’s coefficients will be 

investigated for these extreme conditions. The effect of using different prior 

distributions for the shape parameter will also be investigated.  

 

5. Develop recommendations for implementing the COM-Poisson distribution in traffic 

safety research. Propose different directions for future research. 
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1.4 Dissertation Outline 

 

The outline of this dissertation is as follows: 

 

Chapter II gives a brief description about the different highway entities and functional 

forms used for modeling crash mean, which is followed by the description related to 

Poisson, negative binomial, zero-inflated, gamma probability and COM-Poisson models. 

This chapter also provides a discussion about limitations of some of those models and a 

brief summary of the methods for estimating the parameters. 

 

Chapter III describes the performance of COM-Poisson GLM for simulated datasets for 

different mean values and levels of dispersions. The results concerning the parameter 

estimation accuracy of the Markov Chain Monte Carlo (MCMC) implementation of the 

COM-Poisson GLM, computational burden, and the degree of inaccuracy in using the 

asymptotic mean approximation are also presented. 

 

Chapter IV investigates the performance of COM-Poisson for analyzing traffic crash data 

exhibiting over-dispersion. The results concerning the comparison of COM-Poisson with 

the NB models are also presented. This chapter further investigates the marginal effects 

of each parameter and gives the comparative analysis of the crash predictions with these 

two models. 

 

Chapter V summarizes the results of the COM-Poisson GLM for analyzing the crash data 

exhibiting under-dispersion. The comparison results of COM-Poisson models with 

traditional Poisson and gamma probability models are also summarized. In doing so, the 

crash predictions with each of these models will be presented. 

 

Chapter VI evaluates the performance of COM-Poisson for crash data characterized by 

low sample mean and small sample size in terms of stability and bias. It further 

investigates the effect of various prior distributions on the shape parameter and 
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summarizes the results. The recommended sample size for a given sample mean for 

COM-Poisson will be proposed in this chapter. 

 

Chapter VII gives a brief discussion and concluding remarks of this research. It also 

documents different directions for future work. 
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CHAPTER II 

BACKGROUND 

 

 

As discussed in Chapter I, the success of traffic safety and highway improvement 

programs can be determined only by the systematic analysis of crash data. The statistical 

models play vital role in the systematic analysis of traffic crash data.  

 

This chapter is divided into eight sections. Section 2.1 lists the definition of 

transportation elements and the next section presents different functional forms used for 

modeling the crash mean. A brief description of the Poisson and NB models with their 

limitations are presented in section 2.3. An overview of the dual state models and few 

other statistical models that are used in traffic safety literature is presented in section 2.4 

and 2.5 respectively. Section 2.6 presents a brief description of COM-Poisson distribution 

and its GLM framework.  A brief note about the estimation methods is given in section 

2.7. The last section summarizes the topics presented in this chapter. 

 
 
2.1 Definition of Transportation Elements 

 

Traffic safety analysts are primarily interested in analyzing the crashes occurring on the 

roadway network. Elements of the road network could include signalized intersections, 

unsignalized intersections, interstates, state highways, arterials and collectors that are 

located in urban and rural areas. 

 

Intersections between highway segments and other primary roads (e.g., major and minor 

arterials, or major collectors) and where traffic volumes (Average daily traffic or ADT) 

are available on all approaches are usually referred as major intersections (Lord et al., 

2008a). The intersections between the facility being analyzed and minor collectors, local 

roads, access driveways, or any intersection for which traffic volumes are not available 

on approaches intersecting the facility being analyzed are referred as minor intersections.  
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A homogenous section of a road which is delimited by major intersections or significant 

changes in the roadway cross-section (such as ADT), geometric characteristics (such as 

lane width, shoulder width, median presence and median width, side slope) of the facility, 

or the surrounding land uses is referred as a segment. The segments can be either 

undivided or divided depending on the presence of a median.  

 
Crashes occurring within or near the intersection are referred as intersection crashes, and 

all other crashes are referred as segment crashes. Crashes that have already been defined 

as intersection or intersection-related in the accident report and that occurred within 250 

ft (76 m) of the intersection center are assigned to the intersection (Lord et al., 2008a). 

Also the crashes that are not identified as intersection or intersection-related, but occurred 

within 250 ft from the middle of the intersection are also assigned to that intersection. 

Figure 1.2 gives a pictorial description of a segment and an intersection. 

 
 
 

Segment Length

Intersection Crashes

Segment Crashes

Minor IntersectionsMajor Intersection Major Intersection

 

Figure 2.1: Definitions of intersections and segments (Lord et al., 2008a) 

 

 

 

The input variables are different for analyzing intersection crashes and segment crashes. 

The segment crashes are classified as divided and undivided segment crashes and each 

has their own subset of variables. The crash analysis can also be done according to their 

severities (e.g. injury crashes), occurrence time (e.g. night time crashes) and causing 
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factors (e.g. runoff road crashes) depending on the availability of the data. It may not be 

possible to include the traffic variations over time for any particular site because of 

prohibitive costs that are involved for collecting those data. 

 
Input data variables for intersections are {yi, Fmaj_i, Fmin_i, Xki, ti} 

 
Input data variables for segments are {yi, Fi, Li, Xji, ti} 

where, 

             yi = the mean number of crashes per year for site i ; 

 _Maj i
F  = entering flow for the major approach (average annual daily traffic or 

AADT) for intersection i ;  

 _Min i
F  = entering flow for the minor approach (average annual daily traffic or 

AADT) for intersection i ; 

  Fi = flow traveling on segment i (average annual daily traffic or AADT); 

  Li = length in miles for segment i;  

Xki = a vector of intersection-specific covariates such as lighting condition,    

         left/right turn lane etc.; k = 1,………….,K; 

Xji = a vector of segment-specific covariates such as median width,    

         shoulder width etc.; j = 1,…………..,J; 

i = 1,………….,n; 

K, J = total number of covariates;  

             n = total number of sites; and 

ti - time period of observation for site i, 0>t  

  

2.2 Functional Form for Modeling the Crash Mean 

 

Several functional forms can be used for modeling the crash mean ( itλ ) to capture the 

relationship between the crashes and the traffic flow. The functional form is different for 

analyzing intersection crashes and segment crashes. The typical flow-only functional 

forms that are used for analyzing intersection crashes are (Miaou and Lord, 2003): 
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)exp()()( min_3min__0
21

iiimajit FFF ββλ ββ=      (2.5) 

 

Out of the five functional forms mentioned above, the second functional form is the most 

common and extensively used. It follows the logic of ‘“no traffic flows, no crashes,” and 

allows a non-linear relationship between crashes and traffic flows. Two advantages with 

this functional form are (1) the logic of having proper “boundary values,” (when the flow 

at both approaches is close to zero or when the flow at minor approach is close to zero) 

(2) not a logical one, but rather one that is based on previous experiences working with 

different data sets using a combination of visual inspections and statistical tests (Miaou 

and Lord, 2003). 

 

The most common functional form that incorporates the site specific covariates in 

addition to the traffic flow in intersection models is often defined as follows: 

 

).....exp()()( 33min__0
21

niniiimajit XXFF βββλ ββ +=             (2.6) 

 

For analyzing segment crashes, the segment length needs to be included in the regression 

model. There has been much discussion about the effect of segment length on crashes and 

it is usually believed that segment length has a linear effect on the crashes (Lord and 

Bonneson, 2007; Fitzpatrick et al., 2008).  Thus the segment length is often included as 

an offset rather than as a covariate. The commonly used functional form for segment 

crashes without covariates (general average annual daily traffic (AADT) model) is given 

as: 
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0

β
βλ iiit FL=               (2.7) 

 

When the covariates are included in the segment model, then the following functional 

form is often defined as follows: 

 

).....exp( 220
1

niniiiit XXFL βββλ
β

+=     (2.8) 

 

2.3 Overview of Poisson and NB Models 

 

This section gives a brief overview of Poisson and NB models followed by the limitations 

associated with these models. 

 

2.3.1 Poisson model 

 

Crashes are rare, discrete and independent events. The crash data are best characterized 

as Bernoulli trials with unequal crash probabilities that vary across drivers, vehicles, 

roadways, and environmental conditions (Lord et al., 2005b). Because of the very low 

probability of a crash and the large number of trials, these Bernoulli trials can be well 

approximated as Poisson trials. Thus the traditional Poisson distribution is considered to 

be the starting point for analyzing traffic crash data. The structure of the Poisson models 

is given as: 

 

The number of crashes ‘Yi’ for a particular ith site when conditioned on its mean iλ  is 

assumed to be Poisson distributed and independent over all sites and time periods 

 

 )(~ ititit PoY λλ        (2.9) 

The mean number of the crashes itλ  is commonly specified as the exponential function of 

the covariates as 

 

);( βλ Xfit =         (2.10) 
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 where, 

             β = β0.....βk are the vector of regression coefficients, and 

             X’s are the vector of traffic flow and site specific covariates,  

 

The probability density function (PDF) of the Poisson distribution is given by the 

following equation: 

 

                      
!

);(
it

y

it

itit
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e
yf

itit λ
λ

λ−

=        (2.11) 

The mean and variance of the Poisson distribution is given by 

 

  itityE λ=)(         (2.12) 

  itityVar λ=)(         (2.13) 

 
The important restriction with the traditional Poisson model is the equality of crash mean 

and crash variance as given above in Equations (2.12) and (2.13). This restriction is often 

violated by the crash data because of the existence of over-dispersion (and sometimes 

under-dispersion). Although, fitting the Poisson distribution to such data will not 

significantly influence the mean of regression coefficients, it will have a significant effect 

on the standard errors of the coefficients. The Poisson distribution underestimates the 

standard errors and in turn produces inflated t-values and confidence intervals of the 

coefficients when the data exhibit over- or under-dispersion (Miranda-Moreno, 2006). 

 

The primary reason for observing over-dispersion is that the available covariates do not 

account for the full amount of individual heterogeneity. Also this ‘extra’ variation is 

thought to arise from unobserved differences across sites (Washington et al., 2003) and 

by some unmeasured uncertainties associated with the unobserved or unobservable 

variables, resulting in the omitted variable problem (Lord and Park, 2007). Furthermore, 

the over-dispersion  is usually observed due to implicit randomness or impressions such 

as inaccuracy of traffic volumes, lack of information on other relevant site attributes, 

unmeasured variations in weather conditions, visibility, driver behavior, etc (Hauer, 
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1997). Finally, over-dispersion can also be attributed to the more random process related 

to the Bernoulli trials with non-equal success probabilities (Lord et al., 2005b).  

 

2.3.2 Negative binomial model  

 

The Poisson-gamma (or NB) distribution is the most common distribution used in the 

traffic safety literature, despite its limitations documented in the next section. This 

distribution is preferred over other mixed-Poisson distributions since the gamma 

distribution is the conjugate prior for the Poisson distribution. Also, as stated in Hauer 

(1997), the NB model offers a simple way to accommodate the over-dispersion and the 

mathematics to manipulate the relationship between the mean and the variance structures 

is relatively simple. Also, the likelihood function of NB model is readily available in 

statistical software programs, such as SAS (SAS, 2002), R (Venables et al., 2005) and 

Genstat (Payne, 2000). NB models can also be easily estimated in WinBUGS 

(Spiegelhalter et al., 2003) using a Bayesian modeling framework. The Poisson-gamma 

model has the following model structure (Lord, 2006): 

 
The number of crashes ‘Yit’ for a particular ith site and time period t when conditioned on 

its mean itµ  is Poisson distributed and independent over all sites and time periods 

 

)(~ ititit PoY µµ           i = 1, 2, …, n and t = 1, 2, …, T  (2.14) 

 

The mean of the crashes itµ  is structured as  

 

)exp( ititit ελµ =         (2.15) 

 

It is usually assumed that the )exp( itε ’s are independent and gamma distributed with a 

mean equal to 1 and a variance  α   for all i  and t . 

 

)/1,/1(~)exp( αααε gammait      (2.16) 
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                                 and ),(~ bagammaα       (2.17) 

where itλ  is the function of covariates );( βXf ,  

           itε  is the model error term independent of covariates, 

           α is the dispersion parameter, 

a and b are the shape and scale parameters respectively which need to be 

specified. 

 

With this characteristic, it can be shown that itY , conditional on itλ  and α , is distributed 

as a Poisson-gamma random variable with a mean itλ  and a variance  
2

itit αλλ +  

respectively. Although a large number of variance functions exist for Poisson-gamma 

models, they are not used in highway safety analysis (The reader is referred to Cameron 

and Trivedi (1998) and Maher and Summersgill (1996) for a description of alternative 

variance functions). The probability density function (PDF) of the Poisson-gamma 

structure described above is given by the following equation: 
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The mean and variance of the Poisson-gamma random variable is given by 

 

  itityE λ=)(         (2.19) 

2
)( ititityVar αλλ +=        (2.20) 

 

Note that as α → 0, the crash variance equals the crash mean and this model converges to 

the standard Poisson regression model  

 

The term α is usually defined as the "dispersion parameter" (note that in some published 

documents, the variable α  has also been defined as the “over-dispersion parameter”) of 

the Poisson-gamma distribution. This term has traditionally been assumed to be fixed and 
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a unique value is applied to the entire dataset in the study. As described above, the 

dispersion parameter plays an important role in safety analyses, including the 

computation of the weight factor for the Empirical Bayes (EB) method (Hauer, 1997; 

Lord and Park, 2007) and the estimation of confidence intervals around the gamma mean 

and the predicted values of models applied to a different dataset than the ones employed 

in the estimation process (Geedipally and Lord, 2008). 

 

Hauer (2001) first raised the issue of varying dispersion and reported that the dispersion 

parameter of Poisson-gamma models should be dependent upon the length of a highway 

segment. On the other hand, Heydecker and Wu (2001) attempted to estimate varying 

dispersion parameters as a function of sites’ covariates, such as AADT, lane and shoulder 

widths among others. They asserted that the Poisson-gamma model with a varying 

dispersion parameter can better represent the nature of the crash dataset than the 

traditional Poisson-gamma model with a fixed dispersion parameter. The approach 

proposed by Heydecker and Wu (2001) was also used by Lord et al. (2005a) for modeling 

the safety performance of freeways as a function of traffic flow characteristics. Miaou 

and Lord (2003) have also noted that the dispersion parameter can be dependent upon the 

entering flows of crash-flow predictive models, suggesting that the variance function has 

an unobserved structure. Mitra and Washington (2007) suggested that a model with mis-

specified mean function will have the variance function dependent upon the covariates of 

the models and concluded that the varying dispersion parameter may not be needed when 

the functional form describing the mean function contains several covariates.  

 

Recently, Miranda-Moreno et al. (2005) reported that Poisson-gamma models with a 

varying dispersion parameter performed better than traditional models for identifying 

hazardous sites. El-Basyouny and Sayed (2006), on the other hand, indicated that this 

type of model offered better a statistical fit, but did not improve the hazardous site 

identification process. Lord and Park (2007) supported this finding and noted that 

Poisson-gamma models with a varying dispersion parameter influenced the EB estimates 

for multi-year analyses, but not for the identification of hazardous sites.  
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Poisson-gamma models with a varying dispersion parameter use the same PDF shown in 

equation (2.18) and estimate the same number of crashes for each observation, like the 

traditional Poisson-gamma model. However, instead of estimating a fixed dispersion 

parameter, these models use a varying dispersion parameter that can be estimated using 

the following expression (Heydecker and Wu, 2001; Mitra and Washington, 2007; Smyth, 

1989): 

( )titit Z δα ×= exp         (2.21) 

where,  

it
Z = a vector of secondary covariates (not necessarily have to be the same as the 

covariates in estimating the mean function itµ ), 

tδ = regression coefficients corresponding to covariates 
it

Z . 

With equation (2.21), the model can be used for estimating a different dispersion 

parameter according to the sites’ attributes (i.e., covariates). If there are no significant 

secondary covariates for explaining the systematic dispersion structure, the dispersion 

parameters will only contain a fixed value (i.e., constant term), resulting in a traditional 

Poisson-gamma regression model. 

 

2.3.3 Limitations of the Poisson and NB model 

 

Several studies have documented important limitations associated with the Poisson and 

NB model. The primary issue when dealing with the crash data analysis is the problem 

associated with the SSS and the LSM biases. The problem related to small sample sizes 

can be attributed to expensive costs of collecting crash data and the variables related to 

their occurrence in the field (Lord and Bonneson, 2005). There is a significant amount of 

ongoing research on these topics in the traffic safety literature. Maher and Summersgill 

(1996) defined the issue as “Low Mean Problem (LMP)” for such datasets. The problem 

of LMP was first raised by Maycock and Hall (1984) and later on carried out by 

Fridstrøm et al. (1995). For instance, it has been shown that when the sample mean value 

becomes small, traditional methods used to assess the goodness-of-fit (GOF) of 
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generalized linear models (GLMs) estimated using the maximum likelihood estimating 

(MLE) method (both for Poisson and NB) can be highly unreliable and provide a biased 

estimate of the fit (Maycock and Hall, 1984; Maher and Summergill, 1996; Wood, 2002; 

Lord, 2006). In fact, it was shown that the Pearson’s 2Χ  and the scaled deviance 2
G  are 

no longer 2χ distributed when the data are characterized by low mean values (Maher and 

Summersgill, 1996; Agrawal and Lord, 2006). Maher and Summersgill (1996) proposed a 

new test statistic as  )(/ 22 GEG  for the GOF tests. Later, Wood (2002) showed that this 

new statistic still fails for low mean values and proposed a grouped 2
G  test statistic to 

estimate the fit of the models for the data characterized by a low mean value. More 

recently, Ye et al. (2008) proposed a power divergence test statistic for the Poisson 

models with low mean, but concluded that the more complex grouped test statistic still 

performs better for Poisson-gamma models. 

 

Using simulated data, Clark and Perry (1989) reported that the Method of Moments 

(MM) and Maximum Quasi-Likelihood method become biased when sample mean 

(µ)≤3.0 and sample size (n)<20. In another study, Piegorsch (1990) reported that the 

MLE of NB model was slightly less accurate for small sample sizes than the Quasi-

likelihood estimators. Dean (1994) reported that the MLE produced a biased estimate and 

influenced the standard errors of the coefficients of the models as the sample size 

decreased. Toft et al. (2006) showed that the MLE method did not provide a reliable 

estimate of the parameters for the extreme conditions. Using the other simulation study, it 

was found that the use of Gibbs sampler with vague proper priors can lead to inaccurate 

posterior estimates of NB models when the data are characterized with low or moderate 

sample size (Natarajan and McCulloch, 1998). NB models have also been shown to be 

unable to handle data with extremely low mean values, which often produces sample data 

with many zeros. 

 

Recent studies have also shown that the inverse dispersion parameter of NB models, φ = 

1/α, can be significantly mis-estimated when the sample size is small and the sample 

mean value is low. This characteristic was observed both for MLE (Clark and Perry, 
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1989; Piegorsch, 1990; Lord, 2006; Lloyd-Smith, 2007) and Bayesian (FB) NB models 

(Airoldi et al., 2006; Lord and Miranda-Moreno, 2007). Using a simulation study, Lord 

(2006) reported that the MM, MLE and Weighted Regression estimators for estimating 

the dispersion parameter is very likely to be mis-estimated when the data are 

characterized by extreme conditions. Saha and Paul (2005) proposed a Biased-Corrected 

Maximum Likelihood (BCML) estimator for estimating the dispersion parameter (α) of a 

NB regression model and reported that the BCML also showed a biased result for the 

extreme conditions. Later, Lord and Miranda-Moreno (2007) used a Bayesian approach 

and reported that the dispersion parameter of Poisson-gamma models will be significantly 

biased when the data are characterized by LSM and SSS. These results in turn negatively 

influence the EB estimates for hot spot identification (Hauer and Persaud, 1987) and also 

the prediction of confidence intervals for comparing the safety performance of different 

highway design alternatives (Agrawal and Lord, 2006; Geedipally and Lord, 2008).  

 

Although very rare, there is a possibility for the traffic crash data to exhibit under-

dispersion when they are used in a context of generalized linear model (Oh et al., 2006; 

Park and Lord, 2007). This phenomenon is less convenient to model (Oh et al., 2006). 

The NB GLM could theoretically handle under-dispersion, since the dispersion parameter 

can be negative ( ( ) 2( )Var Y µ α µ= + − ). However, in this case, the mean of the Poisson 

is no longer gamma distributed because this latter distribution cannot have negative 

parameters (i.e. )/1,/1( ααgamma ). In addition, researchers who have worked on the 

characterization of the NB distribution and GLM have indicated that a negative 

dispersion parameter could lead to a mis-specification of the PDF (when 

( )1 max of counts α− < ) (Clark and Perry, 1989; Saha and Paul, 2005). In summary, the 

NB GLM cannot or has difficulties converging with the datasets exhibiting under-

dispersion and datasets that contain intermingled over- and under-dispersed counts (for 

dual-link models only, since the dispersion characteristic is captured using the covariate-

dependent dispersion parameter).  

 

 



  21 
 

2.4 Dual-State Models 

 

This section presents a brief discussion of zero-inflated models and gamma probability 

model with their limitations. 

 

2.4.1 Zero-inflated models 

 

Over-dispersion is often characterized by “excess zeros”, that is the number of zeroes 

exceeds what is commonly expected under a normal Poisson process (Lord et al., 2005b). 

For the data with preponderance of zeros, the traditional Poisson and NB models will 

produce biased estimates. Recently, researchers have proposed the use of “Zero -inflated” 

or “Zero altered” probability models (Lord et al., 2005b; Shankar et al, 1997 and 2003; 

Qin et al, 2004) to model motor vehicle crashes. This dual-state process involves a zero-

count state and a non-zero state (e.g., Shankar et al, 1997 and 2003; Qin et al, 2004). The 

zero count state includes sites defined as with a “perfect” safe condition which has the 

probability of accident occurrence of zero or very low that always generate zero 

accidents. The non-zero state includes locations at which the accident occurrence follows 

a Poisson (or NB) distribution (this state also includes zero count sites). The most 

common Zero-altered probability processes used in the traffic safety literature are the 

zero-inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB). These zero-

inflated models have great flexibility (in a statistical sense) in uncovering processes 

affecting accident frequencies on roadway sections observed with zero accidents and 

those with observed accident occurrences (Shankar et al, 1997). 

 

For a Zero-Inflated Poisson (ZIP) process, let Y be the number of crashes that has 

occurred on a particular road segment and δ  be the probability that the road section will 

have a zero crash state and δ−1  be the probability that the crashes follow a Poisson 

distribution , then the probability density function (PDF) of ZIP models has the following 

structure: 

 

0;)1()( =−+= − YeYP λδδ        (2.22) 
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Similarly for a Zero-Inflated Negative Binomial (ZINB) process, let Y be the number of 

crashes that hasoccurred on a particular road segment and δ  be the probability that the 

road section will have a zero crash state and )1( δ−  be the probability that the crashes 

follow a true negative binomial distribution. Then the PDF of ZINB models has the 

following structure: 
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where α  corresponds to the dispersion parameter and λ corresponds to the mean of the 

site. 

 

These models have been shown to be inappropriate for modeling crash data, since the 

crash data do not exhibit two distinct generating processes, one of which is characterized 

by having a long-term mean equal to zero (Lord et al., 2005b; Warton, 2005; Wedagama 

et al., 2006). 

 

2.4.2 Gamma probability model 

 

The gamma probability model can be used for analyzing under-dispersed and over-

dispersed data. Oh et al. (2006) analyzed crashes occurring at railway-highway crossings 

using a gamma probability model where the data were suspected to have under-dispersion 

(which is uncommon with the traffic crash data). They found that the gamma probability 

model provided a good fit for the railway-highway crossing crash data. The gamma 

probability model for the count data is given by: 

 

),(),()( iii kGammakGammakyP λααλα +−==    (2.26) 
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where iλ  is the mean of the crashes at ith site and is given by )exp( ii Xβλ =  

 

1),( =ikGamma λα  if k=0;      (2.27) 
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),(    if k>0;    (2.28) 

 

where α  is the dispersion parameter; for α >1, it is under-dispersion; for α <1, it is over-

dispersion; for α =1, it is equi-dispersion which means that the gamma model reduces to 

a Poisson model. 

 

Also, it is important to note that the gamma probability model works as a dual-state 

model similar to zero-inflated models. As noted in previous section, a dual-state process 

may not be appropriate for analyzing crash data. 

 

2.5 Overview of Other Crash Prediction Methods 

 

Recently, there are many other statistical models which have been introduced to analyze 

motor vehicle crashes, either to establish relationships or for predicting crashes. These 

models include Poisson-lognormal model (Lord and Miranda-Moreno, 2007; Park and 

Lord, 2007), Beta-binomial model (De Lapparent, 2005; Tong and Lord, 2007), neural 

and Bayesian neural network models (Abdelwahab and Abdel-Aty, 2002; Xie et al., 

2008), latent class models (Depaire et al., 2008), and Support Vector Machine (SVM) 

models (Li et al., 2007) are among the few. The univariate modeling framework has 

commonly been used in developing crash prediction models over the last few decades, 

but more recently the multivariate modeling framework has been used in crash data 

analysis (Tunaru, 2002; Miaou and Song, 2005; Song et al., 2006; Park and Lord, 2007).  
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2.6 Conway-Maxwell-Poisson Model  

 

Given the important limitations above with various distributions that were used to 

analyze crash data, there is a need to evaluate other alternative models. Among those, the 

Conway-Maxwell-Poisson (COM-Poisson) model is the one that is evaluated in this 

research. Since the Conway-Maxwell-Poisson generalized linear model (COM-Poisson 

GLM) has the ability to handle under-dispersed data, it might prove to be advantageous 

over the traditional Poisson-gamma models. The COM-Poisson distribution has been 

used in many studies such as analyzing word length (Shmueli et al., 2005), birth process 

models (Ridout and Besbeas, 2004), prediction of purchase timing and quantity decisions 

(Boatwright et al., 2003), quarterly sales of clothing (Shmueli et al., 2005), internet 

search engine visits (Telang et al., 2004), the timing of bid placement and extent of 

multiple bidding (Borle et al., 2006), modeling electric power system reliability 

(Guikema and Coffelt, 2008) and modeling motor vehicle crashes (Lord et al., 2008b). 

Only Guikema and Coffelt (2008) and Lord et al. (2008b) have used the COM-Poisson in 

a regression setting. 

 

2.6.1 Distribution 

 

The COM-Poisson distribution is a generalization of the Poisson distribution and was 

originally developed in 1962 (Conway and Maxwell, 1962) as a method for modeling 

both under-dispersed and over-dispersed count data with a single link. It was then 

“rediscovered” by Shmueli et al. (2005), where many of the properties of the distribution 

were also first derived. The COM-Poisson belongs to the exponential family as well as to 

the two-parameter power series family of distributions. This distribution introduces an 

extra parameter ν  which governs the rate of decay of successive ratios of probabilities. It 

nests the usual Poisson (ν  = 1), geometric (ν  = 0) and Bernoulli (ν  = ∞) distributions.  

The COM-Poisson distribution allows for both thicker and thinner tails than those of the 

Poisson distribution (Boatwright et al., 2003; Shmueli et al., 2005).  The conjugate priors 

for the parameters of the COM-Poisson distribution have also been derived (Kadane et 

al., 2006).  
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The COM-Poisson distribution is a two-parameter extension of Poisson distribution that 

generalizes some well-known distributions including the Poisson, Bernoulli, and 

geometric distributions (Shmueli et al., 2005). It also offers a more flexible alternative to 

distributions derived from these discrete distributions (i.e. the binomial and negative 

binomial distributions). The COM-Poisson distribution can handle both under-dispersion 

(variance less than the mean) and over-dispersion (variance greater than the mean). The 

PDF of the COM-Poisson for the discrete count Y is given by Equations (2.29) and 

(2.30). 
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where λ  is a centering parameter that is related directly to the mean of the observations 

and ν  is the shape parameter of the COM-Poisson distribution. The condition ν >1 

corresponds to under-dispersed data, ν <1 to over-dispersed data, and ν =1 to equi-

dispersed (Poisson) data. Several common PDFs are special cases of the COM-Poisson 

with the original formulation. Specifically, setting ν = 0 yields the geometric distribution, 

λ < 1 and ν→∞ yields the Bernoulli distribution in the limit, and ν = 1 yields the Poisson 

distribution. This flexibility greatly expands the types of problems for which the COM-

Poisson distribution can be used in modeling count data. 

 
The asymptotic expressions for the mean and variance of the COM-Poisson derived by 

Shmueli et al. (2005) are given by Equations (2.31) and (2.32) below. 
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The COM-Poisson distribution does not have closed-form expressions for its moments in 

terms of the parameters λ and ν. However, the mean can be approximated through a few 

different approaches, including (i) using the mode, (ii) including only the first few terms 

of Z when ν is large, (iii) bounding E[Y] when ν is small, and (iv) using an asymptotic 

expression for Z in Equation (2.30). Shmueli et al. (2005) used the last approach to derive 

the approximation in Equation (2.33). 

 

[ ] 1 1 1

2 2
E Y

νλ
ν

≈ + −        (2.33) 

 

Using the same approximation for Z as in Shmueli et al. (2005), the variance can be 

approximated as: 

 

[ ] 11
Var Y

νλ
ν

≈        (2.34) 

 

These approximations may not be accurate for ν>1 or 101 <νλ  (Shmueli et al. 2005).  

 

Despite its flexibility and attractiveness, the COM-Poisson has limitations in its 

usefulness as a basis for a GLM, as documented in Guikema and Coffelt (2008). In 

particular, neither λ nor ν provide a clear centering parameter. While λ is approximately 

the mean when ν is close to one, it differs substantially from the mean for small ν. Given 

that ν would be expected to be small for over-dispersed data, this would make a COM-

Poisson model based on the original COM-Poisson formulation difficult to interpret and 

use for over-dispersed data. 

 

Guikema and Coffelt (2008) proposed a re-parameterization using a new parameter µ  = 

νλ /1 to provide a clear centering parameter. This new formulation of the COM-Poisson is 

summarized in Equations (2.35) and (2.36) below: 

 



  27 
 

( )
( )

1

, !

y

P Y y
S y

ν
µ

µ ν

 
= =  

 
      (2.35) 

( ) ∑
∞

=








=

0 !
,

n

n

n
S

ν
µ

νµ        (2.36) 

 

By substituting 1/νµ λ=  in equations (4), (5), and (41) of Shmueli et al. (2005), the mean 

and variance of Y are given in terms of the new formulation as [ ]
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 with asymptotic approximations [ ] 1 2 1 2E Y µ ν≈ + − and 

[ ]Var Y µ ν≈  especially accurate once µ>10. With this new parameterization, the 

integral part of µ  is the mode leaving µ  as a reasonable centering parameter. The 

substitution 1/νµ λ= also allows ν  to keep its role as a shape parameter. That is, if ν  < 1, 

the variance is greater than the mean while ν  > 1 leads to under-dispersion. 

 

This new formulation provides a good basis for developing a COM-Poisson GLM. The 

clear centering parameter provides a basis on which the centering link function can be 

built, allowing ease of interpretation across a wide range of values of the shape 

parameter. Furthermore, the shape parameter ν  provides a basis for using a second link 

function to allow the amount of over-dispersion, equi-dispersion or under-dispersion to 

vary across measurements. 

 

2.6.2 Generalized linear model 

 

Guikema and Coffelt (2008) developed a COM-Poisson GLM framework for modeling 

discrete count data using the reformulation of the COM-Poisson given in equations (2.35) 

and (2.36). This dual-link GLM framework, in which both the mean and the variance 

depend on covariates, is given in equations (2.37-2.38), where Y is the count random 

variable being modeled, xi and zj are covariates. There are p covariates used in the 

centering link function and q covariates used in the shape link function. The sets of 



  28 
 

parameters used in the two link functions do not need to be identical. If a single-link 

model is desired, the second link given by equation (2.38) can be removed allowing a 

single ν  to be estimated directly.  

 

∑
=

+=
p

i

ii x
1

0)ln( ββµ        (2.37) 

∑
=

+=
q

j

jj z
1

0)ln( ααν        (2.38) 

 

The GLM described above is highly flexible and readily interpreted. It can model under-

dispersed datasets, over-dispersed datasets, and datasets that contain intermingled under-

dispersed and over-dispersed counts (for dual-link COM-Poisson models only). The 

variance is allowed to depend on the covariate values, which can be important if high (or 

low) values of some covariates tend to be variance-decreasing while high (or low) values 

of other covariates tend to be variance-increasing. The parameters have a direct link to 

either the mean or the variance, providing insight into the behavior and driving factors in 

the problem, and the mean and variance of the predicted counts are readily approximated 

based on the covariate values and regression parameter estimates.  

 

Parameter estimation in the COM-Poisson GLM presented above is challenging. The 

likelihood equation for the COM-Poisson GLM is complex, making analytical and 

numerical maximum likelihood estimation difficult. By the time this dissertation was 

written, Sellers and Shmueli (2008) developed the code for maximum likelihood 

estimation. The Bayesian estimation provides an attractive alternative for estimating the 

coefficients of the model. Guikema and Coffelt (2008) implemented the COM-Poisson 

GLM in WinBUGS using a custom-coded COM-Poisson distribution whereas the other 

coding is available for COM-Poisson GLM implemented in MATLAB® 7.1.0 R14 (The 

Mathworks Inc , Natick, MA).  
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2.7 Estimation Methods 

 

This section gives a brief description about the maximum likelihood estimation and 

Bayesian estimation.  

 

2.7.1 Maximum likelihood estimation (MLE) method 

 

The maximum likelihood estimation approach is the most popular technique and has 

traditionally been used by many researchers for estimating the model coefficients.  

 

The following steps give the procedure for MLE: 

If kYY ,....,1  are an iid sample from a population with PDF ),,...,( 1 kyf ββ  the likelihood 

function is defined by 

).,.....,(),....,.....,()(
1 111 ∏ =

==
n

i kink yfyyLyL βββββ   (2.39) 

 

Definition of MLE: For each sample point y , let )(ˆ yβ be a parameter value at which 

)( yL β  attains its maximum as a function of β , with y  held fixed. A maximum 

likelihood estimator (MLE) of the parameter based on a sample Y  is )(ˆ yβ (Casella and 

Berger, 2001). 

 

If the likelihood function is differentiable (in iβ ), the MLE of kββ ,...,1  are obtained by 

maximizing )( yL β . The MLE of kββ ,...,1  are the simultaneous solutions of k equations 

such that 

kiyL
i

,....,1,0)( ==
∂

∂
β

β
      (2.40) 

 

The desirable properties of maximum likelihood estimators are (Engineering statistics 

handbook, 2008): 

1. they become unbiased minimum variance estimators as the sample size increases.  
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2. they have approximate normal distributions and approximate sample variances 

that can be calculated and used to generate confidence bounds.  

3. likelihood functions can be used to test hypotheses about models and parameters. 

 

2.7.2 Bayesian methods 

 

Over the last five to ten years, researchers have shifted their interests to applying 

Bayesian methods in traffic safety (Miranda-Moreno et al, 2007; Miaou and Song, 2005; 

Lord and Miranda-Moreno, 2007).  The two main approaches that are within the class of 

Bayesian methods are full Bayes (FB) and Empirical Bayes (EB) approach. The main 

difference between these two approaches is in the way the prior parameters are 

determined. 

 

Full Bayes (FB) approach 

The following steps give the procedure adopted for FB approach 

 

Let kYY ,....,1  are an iid sample from a population with PDF or PMF ),...,( 1 kyf ββ  

In a Bayesian framework, a prior distribution on the parameter iβ  is first assumed, 

denoted as π ( iβ  |η), where η is a vector of prior parameters. This prior information is 

then combined with the information brought by the sample into the posterior distribution, 

represented by p ( iβ | iy  ). The posterior distribution of iβ  is given as (Carlin and Louis, 

2000): 

)(

)()(
),(

η

ηβπβ
ηβ

i

iii

ii
ym

yf
yp =      (2.41) 

 

where )( iiyf β  is the likelihood and the quantity )( ηiym  is the marginal distribution of 

iy  and is defined as  

 

∫ ∂= iiiii yfym βηβπβη )()()(      (2.42) 
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After the rediscovery of Markov Chain Monte Carlo (MCMC) methods by statistician, 

there has been an increased interest in applying hierarchical Bayes method for modeling 

motor vehicle crashes (Tunaru, 2002; Miaou and Song, 2005; Song et al, 2006; Miranda-

Moreno et al, 2007; Qin et al, 2004; Miaou and Lord, 2003). The FB method is often 

preferred over the EB method because of its extensive flexibility in modeling traffic 

crashes (Miranda-Moreno, 2006). Not only the space-time variations are incorporated for 

modeling geographical and/or time dependence but also the consideration of randomness 

is given in FB models (Miranda-Moreno, 2006). The important issue related to the FB 

method is the specification of prior distributions (prior knowledge) in the modeling 

framework. The specification of the hyper-priors for the hyper-parameters has been 

discussed by many statisticians (see, e.g., Gelman et al, 2003; Rao, 2003). In crash data 

analysis, “vague” or “diffuse” hyper-priors are commonly recommended with the idea 

that these types of priors would reduce the influence of hyper-priors on the posterior 

distributions (Miranda-Moreno et al, 2007; Miaou and Song, 2005). Only recently did 

researchers showed interest in incorporating prior knowledge in Bayesian analysis (Lord 

and Miranda-Moreno, 2007).  In a recent study, Miranda-Moreno et al. (2007) stated that 

there is a lack of methodologies for building informative hyper-priors as a potential 

solution to the LSM and SSS problems in the traffic safety literature. They proposed an 

informative prior and found that these priors perform well when compared to that of 

vague priors.  

 

Empirical Bayes (EB) approach 

EB method is not used in the parameter estimation process but to smooth the random 

fluctuation of crash counts and generate a more accurate estimate of the long-term mean 

at a given site. The prior parameters are estimated using maximum likelihood technique, 

weighted regression or method of moments involving the use of the accident data and the 

estimates depend only on the data. The EB method was initially introduced into the 

traffic safety literature by Hauer and Persaud (1984). Due to the less complicated 

construction, the EB method has been widely applied for identifying hotspot locations 

(Hauer and Persaud, 1987; Hauer, 2001; Persaud et al, 1999; Heydecker and Wu, 2001; 

Lord and Park, 2007). The EB method provides a better long-term estimate for a given 
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site and reduces the regression-to-the mean bias (RTM). Also, the EB method is used to 

simplify the computational burden of the full bayes approach (the full bayes approach is 

described in the next part of this section). The main disadvantage noted with the EB 

method is related to its extensive data requirements (Hauer and Persaud, 1984; Persaud et 

al., 1999) and its assumption about estimating the dispersion parameter without 

uncertainty (Carlin and Louis, 2001). Also the EB approach has been advocated to 

perform poorly in the presence of data with low sample mean and small sample size 

(Lord 2006). 

 

2.8 Summary 

 

There are different definitions for defining the intersection and segment crashes. The 

definition followed in this research is that crashes that have already been defined as 

intersection or intersection-related in the accident report and that occurred within 250 ft 

(76 m) of the intersection center are assigned to the intersection. Crashes other than 

intersection-related and not occurred within 250 ft (76 m) of the intersection center are 

defined as segment crashes. There are different functional forms proposed for modeling 

the crash mean in the traffic safety literature. In the first and second section, a brief note 

about the definition of highway entities and the functional forms adopted for modeling 

the crash mean were presented. The most commonly used functional forms are given in 

equations (2.2) and (2.7) for developing general AADT models. For covariate models, the 

most common functional forms are given in equation (2.6) and (2.8) for intersection and 

segment models respectively. 

 

A wide variety of statistical models have been used in the traffic safety analysis and 

Poisson-gamma (NB) is the most popularly used model for modeling motor vehicle 

crashes. Although the NB model possesses interesting desirable properties, it is not 

without limitations. A brief literature study on the limitations of NB model, a discussion 

about commonly used models and their limitations was presented in this chapter. A 

detailed discussion about the COM-Poisson distribution and its GLM framework was 

also given in the chapter. The last section gave a brief note and a short literature review 
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on the estimation methods of the regression parameters. The following chapters give the 

results of this research. 
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CHAPTER III 

PERFORMANCE OF THE COM-POISSON GLM  

 

 

This chapter describes the performance of COM-Poisson regression models. The COM-

Poisson distribution is known to handle both the under-dispersed and over-dispersed data. 

It is important to evaluate the performance of the COM-Poisson distribution for different 

situations such as high, moderate and low sample mean values which are frequently 

exhibited by crash datasets. All the computations in this chapter will be evaluated under 

the Bayesian setting with the inclusion of non-informative priors for the model 

parameters.   

 

Guikema and Coffelt (2008) introduced a generalized linear model built on the COM-

Poisson. The COM-Poisson GLM of Guikema and Coffelt (2008) is a full Bayesian 

model implemented in WinBUGS. This chapter evaluates the estimation accuracy and 

computational burden of the COM-Poisson GLM for datasets characterized by over-, 

under- and equi-dispersion with different means. It also characterizes the accuracy of the 

asymptotic approximation of the mean of the COM-Poisson suggested by Shmueli et al. 

(2005).  

 

This chapter is organized as follows: First, the research methodology used in this chapter 

is presented. Second, the results of the computational study are given. Third, a brief 

discussion of the results is presented followed by a brief summary of the chapter. 

 

3.1 Methodology 

 

To test the estimation accuracy and computational burden of the MCMC implementation 

of the COM GLM of Guikema and Coffelt (2008), a number of datasets were simulated 

from the COM GLM with known regression parameters that correspond to a wide range 

of mean and variance values. The regression parameters of the COM GLM were 
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estimated using the MCMC implementation. The estimated parameters were then 

compared to the known parameter values, and the computational burden of the MCMC 

was assessed in all the cases. In this section, details of the various steps involved were 

given.  

 
3.1.1 Data simulation 
 

In order to characterize the accuracy of the parameter estimates from the COM GLM, 

five different datasets were randomly generated for each of nine different scenarios. The 

nine scenarios include simulated datasets of under-dispersed, equi-dispersed and over-

dispersed data. For each level of dispersion, three different sample means were used: high 

mean (~ 20.0), moderate mean (~ 5.0) and low mean (~ 0.8). Due to the high 

computational time and lack of readily available software, the analysis was restricted to 

five simulation runs (or datasets) for each scenario. Each of these five datasets was then 

used as input for the COM GLM, and the resulting parameters estimates were compared 

to the known parameters values that had be used to generate the datasets.  

 

The 1,000 values of the covariates X1 and X2 were simulated from a uniform distribution 

on [0, 1]. The centering parameter λ   and shape parameter ν  were then generated 

according to Equations (2.37) and (2.38) with known (assigned) regression parameters. 

Note that the same covariates are used for both the centering and shape parameters.  

Realizations from the COM-Poisson are then generated using the inverse CDF method 

(Devroye, 1986). 

 

The regression parameter values were selected in such a way that the shape parameter ν  

was always set between 0 and 1 for simulating the over-dispersed datasets, above 1 for 

the under-dispersed datasets and approximately 1 for the equi-dispersed datasets. The 

parameters that were assigned in simulating the datasets are given in the table below. 

Note that a single-link model was assumed by assigning values of zero to α1 and  α2, 

respectively. However, these parameters were left in the MCMC COM GLM in order to 

test both (1) the computational burden of the full dual-link model and (2) the ability of 
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the COM-Poisson model to accurately estimate zero values for these two parameters. 

Table 3.1 summarizes the characteristics of the simulation scenarios. 

 
 
 

Table 3.1: Assigned parameters of the simulated datasets 

 Over-dispersed data Under-dispersed data Equi-dispersed data 

 High 
mean 

Moderate 
mean 

Low 
mean 

High 
mean 

Moderate 
mean 

Low 
mean 

High 
mean 

Moderate 
mean 

Low 
mean 

β0 3.0 1.3 -2.0 3.0 1.7 0.2 3.0 1.7 0.2 

β1 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

β2 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 

α0 -0.4 -1.3 -1.3 1.0 1.0 1.2 0 0 0 

α1 0 0 0 0 0 0 0 0 0 

α2 0 0 0 0 0 0 0 0 0 

All the simulations were carried in MATLAB® 7.1.0 R14 (The Mathworks Inc, Natick, 
MA) 
 
 
 
3.1.2 Testing protocol 
 
The MCMC implementation of the COM GLM proposed by Guikema and Coffelt (2008) 

was used for the model estimation process. The coefficients of the COM GLM were 

estimated using WinBUGS. Non-informative priors (i.e., N (0,100) priors) were utilized 

for the parameters of COM GLMs. A total of 3 Markov chains were used in the model 

estimation process with 50,000 iterations per chain and no thinning. The first 25,000 

iterations (burn-in samples) were discarded. The remaining 25,000 iterations were used 

for estimating the coefficients. The Gelman-Rubin (G-R) convergence statistic was used 

to verify that the simulation runs converged properly. The convergence was known when 

the G-R statistic was below 1.1. 

 

3.2 Results 
 

This section first describes the selection of the error term used in approximating the 

normalizing term (S) in the COM-Poisson distribution (see Equation (2.36)). This is 

followed by an assessment of the performance of COM-Poisson for the nine scenarios 

mentioned above. The results concerning the accuracy of the asymptotic approximation 
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of the mean of the COM-Poisson suggested by Shmueli et al. (2005) and the 

computational burden of COM-Poisson in WinBUGS are then discussed.  

 
3.2.1 Error term 
 
The S term in the COM-Poisson distribution is the sum of an infinite series. However, the 

contributions of new terms in the series decreases as more terms are added in the series. 

In order to approximate S, an iterative approach was used in which the change in S was 

monitored as new terms were added. The series was truncated when the contribution of 

new terms dropped below a predefined threshold, given as a fraction of the previous 

series value. This threshold is referred as the relative error ε. Four levels of error were 

considered in this study: ε= 0.1, 0.01, 0.001, and 0.0001. The first set of runs of the 

COM-Poisson MCMC was performed to determine the effect of ε on both the 

computational burden of the process and the parameter estimates. These runs were 

accomplished using an over-dispersed high mean dataset on a computer with a 1.50 GHz 

Pentium 4 CPU and 512 MB of RAM. As seen in Figure 3.1, the error term does not have 

much effect on the parameter estimation accuracy. The estimated parameters were almost 

the same at all error levels. 

 
 
 

 
Figure 3.1: Parameter estimation accuracy versus relative error 
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The computational time was also not much different from one error level to another, as 

shown in Figure 3.2. Note that the computational time depends on the computer system 

configuration on which the simulations were performed. An error term of 0.01 was 

chosen in this analysis, although choosing a different error term value would not affect 

the results substantially.  

 
 
 

 
Figure 3.2: Simulation time for different error terms of COM-Poisson distribution 

 
 
 
3.2.2 Parameter estimation accuracy 
 
The estimated parameters and their 95% credible intervals were plotted and compared 

with the true parameters as shown in Figures 3.3-3.5. Each figure corresponds to a 

specific dispersion present in the data and each subplot corresponds to different sample 

mean value of the dataset. Figure 3.3 shows the plot for the over-dispersed datasets. It 

shows that the true parameters lie in the 95% credible interval for all cases and are 

generally close to the estimated posterior mean of the parameters. The credible intervals 

were found to be wider at low mean values for both the centering and shape parameter 

coefficients. 

 
Figure 3.4 gives the plots for the under-dispersed datasets. Similar to the result above, the 

true parameters lie in the 95% credible interval for all cases and are generally close to the 
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estimated posterior mean of the parameters. The credible intervals of the parameters were 

found to be wider (as expected) for low mean values for both centering and shape 

parameters.  

 

Figure 3.5 shows the similar characteristics for the equi-dispersed datasets as that of other 

datasets. Except in one or two cases, all plots show that the true parameter lies inside the 

95% credible intervals of estimated parameters. Although the problem with these 

exceptional cases was unknown yet, it could be attributed to the randomness in the 

datasets. Also, the credible intervals of the parameters were found to be wider for the low 

mean values for both centering and shape parameters.  

 

3.2.3 Bias of the parameters 
 
The bias of an estimator is defined as the difference between an estimator's expected 

value and the true value of the parameter being estimated. If the bias is zero then the 

estimator is said to be unbiased. The bias of an estimator θ̂  is calculated as θθ −
∧

)(E  

where θ  is the true value of the parameter and the estimator 
∧

θ  is a function of the 

observed data. 

 

The bias of β and α parameters is calculated as the difference between their average 

values from 5 samples and the true (or assigned) value in each scenario.  

 

The bias of centering parameter ‘µ’ is calculated as  

 

22211100 )ˆ()ˆ()ˆ()( XXE ββββββµµ −+−+−=−
∧

   (3.1)  
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a) High mean over-dispersed datasets 

 

 
b) Moderate mean over-dispersed datasets 

 

Figure 3.3: Parameter estimates of over-dispersed datasets 
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c) Low mean over-dispersed datasets 

 

Figure 3.3: Continued 

 

 

 

 
a) High mean under-dispersed datasets 

 

Figure 3.4: Parameter estimates of under-dispersed datasets 
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b) Moderate mean under-dispersed datasets 

 

 
c) Low mean under-dispersed datasets 

 

Figure 3.4: Continued 
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a) High mean equi-dispersed datasets 

 

 
b) Moderate mean equi-dispersed datasets 

 
Figure 3.5: Parameter estimates of equi-dispersed datasets 
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c) Low mean equi-dispersed datasets 

 
Figure 3.5: Continued 

 

 

 

The bias of centering parameter ‘ν’ is calculated as  

 

22211100 )ˆ()ˆ()ˆ()( XXE αααααανν −+−+−=−
∧

   (3.2) 

where )ˆ( ii ββ −  and )ˆ( ii αα −  are the bias in the parameters and iX  is the average 

value of the independent variable, which is expected to be 0.5 since the independent 

variables are randomly simulated between 0 and 1. As seen from Figure 3.6, with the 

exception of the under-dispersed data, the bias increased as the mean values decreased. 

The bias did not change significantly for the under-dispersed data from one mean to 

other. The bias becomes worse for the over-dispersed datasets at low mean values. 
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Figure 3.6: Bias

2
 of the parameters 

 



  46 
 

The biases in the mean values are plotted and are shown in Figures 3.7-3.9. Figure 3.7 

gives plots of the estimated and true mean values for the over-dispersed datasets. For the 

true mean, first the true µ and ν parameters were calculated from the true (or assigned) 

parameters. The 100,000 random counts were then simulated from the COM-Poisson 

distribution for the given µ and ν. The mean of these random variables gives the true 

mean for each sample. Similarly, the predicted µ and ν parameters were calculated from 

the estimated parameters for each of the five samples. Again, 100,000 random counts 

were simulated from the COM-Poisson distribution for the given µ and ν. The mean of 

these random variables gives the predicted mean for each sample. The second subplot 

corresponds to the combined effect of all five samples. Instead of the parameters 

estimated for each sample, the average of the estimated parameter is considered in 

calculating the predicted mean in these plots. 

 
The COM-Poisson distribution performs better for high and moderate mean for all three 

categories of dispersion. For over-dispersed and equi-dispersed datasets, the performance 

is worse for all low sample mean values. The COM-Poisson distribution works well for 

all sample mean values for the under-dispersed datasets. However, the results in Chapter 

V about the application of COM GLM for analyzing motor vehicle crash data exhibiting 

under-dispersion (conditional on the mean) showed that the estimated mean is an 

unreliable estimate of traffic crashes at extremely low sample mean values (~0.3) for  ν 

>1. The centering parameter of the distribution was itself found to be a preferable 

estimate for predicting crashes. 

 

3.2.4 Difference between true mean and predicted mean 
 
This section gives the percentage difference between the true mean and predicted mean 

for all types of dispersions. The percent difference is calculated as: 

 
Percent difference = (True mean-Predicted mean)*100 / True mean 
 
Figure 3.10 gives the percent difference of the over-dispersed datasets. Similar to the 

results above, this figure shows that the performance of COM-Poisson distribution is 

good for high mean data and worse for low mean datasets. 
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High mean over-dispersed data 
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(a) Individual sample effect 

High mean over-dispersed data 
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(b) Combined effect 

Moderate mean over-dispersed data
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(a) Individual sample effect 

Moderate mean over-dispersed data
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(b) Combined effect 

Low mean over-dispersed data
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(a) Individual sample effect 

Low mean over-dispersed data
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(b) Combined effect 

Figure 3.7: Prediction accuracy for over-dispersed datasets 
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High mean under-dispersed data 
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(a) Individual sample effect 

High mean under-dispersed data 
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(b) Combined effect 

Moderate mean under-dispersed data
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(a) Individual sample effect 

Moderate mean under-dispersed data
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(b) Combined effect 

Low mean under-dispersed data
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(a) Individual sample effect 

Low mean under-dispersed data
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(b) Combined effect 

Figure 3.8: Prediction accuracy for under-dispersed datasets 
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High mean equi-dispersed data 
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(a) Individual sample effect 

High mean equi-dispersed data 
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(b) Combined effect 

Moderate mean equi-dispersed data
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(a) Individual sample effect 

Moderate mean equi-dispersed data
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(b) Combined effect 

Low mean equi-dispersed data
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(a) Individual sample effect 

Low mean equi-dispersed data
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(b) Combined effect 

Figure 3.9: Prediction accuracy for equi-dispersed datasets 

 
 
 
 
 



  50 
 

High mean over-dispersed data
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Moderate mean over-dispersed data
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Low mean over-dispersed data
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Figure 3.10: Percent difference between true mean and predicted mean for over-dispersed datasets 

 
 
 
Figure 3.11 gives the percent difference of the equi-dispersed datasets. As seen, the 

performance of COM-Poisson distribution becomes worse from high mean to low mean 

for all equi-dispersed datasets.  
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High mean equi-dispersed data
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Moderate mean equi-dispersed data
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Low mean equi-dispersed data
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Figure 3.11: Percent difference between true mean and predicted mean for equi-dispersed datasets 

 
 
The percent difference for the under-dispersed datasets is given in Figure 3-12. The 

COM-Poisson performs well for under-dispersed data when compared to over-dispersed 

and equi-dispersed datasets. Similar to other dispersions, the COM-Poisson performs well 

for high mean datasets and worse for low mean datasets. 
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High mean under-dispersed data
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Moderate mean under-dispersed data
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Low mean under-dispersed data
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Figure 3.12: Percent difference between true mean and predicted mean for under-dispersed datasets 

 
 
 
3.2.5 Accuracy of the asymptotic mean approximation  
 

The centering parameter µ is believed to adequately approximate the mean when µ >10 

based on the asymptotic approximation developed by Shmueli et al. (2005). However, the 

deviation of µ  for mean values below 10 (µ < 10) has not been investigated. One sample 

from each of the nine scenarios was chosen as a basis for estimating the accuracy of the 

asymptotic mean approximation. First, the µ and ν parameters were calculated from the 

estimated parameters. The goodness of this approximation was examined by simulating 

100,000 random values from the COM-Poisson for a given µ and ν. The mean of the 

simulated values against the asymptotic mean approximation ( [ ] 1 2 1 2E Y µ ν≈ + − ) was 

then plotted.  
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The results showed that the asymptotic mean approximates the true mean accurately even 

for 10 > E[Y] > 5. As the sample mean value decreases below 5, the accuracy of the 

approximation drops. As seen in Figure 3.13, the asymptotic approximation holds well 

for all datasets with high and moderate mean values irrespective of the dispersion in the 

data. The approximation is also accurate for low sample mean values for under-dispersed 

datasets. The accuracy drops significantly for the low sample mean values for over-

dispersed and equi-dispersed datasets. There is not much difference between the 

asymptotic mean approximation  and the true mean for E[Y] > 10. Ιt starts to deviate at 

the moderate mean values although the difference is not high. The difference can clearly 

be observed for the low sample mean values, particularly for the over-dispersed and equi-

dispersed datasets. This shows that one must be careful in using the asymptotic 

approximation for the mean of the COM GLM to estimate future event counts for 

datasets characterized by low sample mean values. 

 
3.2.6 Computational time 

 

The computational time needed for the WinBUGS MCMC implementation of the COM 

GLM was also investigated. The COM-Poisson MCMC model was ran on a computer 

with a 1.5GHz Pentium 4 processor and 512 MB of RAM. Each run consisted of 3 chains 

of 50,000 replications each. The computational times for all of the datasets were plotted 

against the mean values of the counts in those datasets and are shown in the Figure 3.14. 

Datasets with higher sample means required more computational time for a given number 

of replications than datasets with low sample mean. This is mainly attributable to the 

convergence of the ‘S’ term. The centering parameter causes the numerator to be large for 

high sample mean values, requiring that more terms be included in the approximation to 

achieve suitable convergence of the approximation of the series. Also, it is important to 

note that the over-dispersed datasets required more computational time than the other 

type of datasets. The shape parameter plays vital role in the convergence of the S term. 

Lower values for the shape parameter require higher amounts of computational time. All 

the computations are performed using a computer with a 1.50 GHz Pentium 4 CPU and 
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Figure 3.13: Mean versus asymptotic approximation 

 
 
 
512 MB of RAM. However, using different computers with more processing speed and 

RAM would cut the time by two thirds. 
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Figure 3.14: Computational time for the WinBUGS MCMC implementation 

 
 
 
3.3 Discussion 
 
This study shows that the COM-Poisson GLM is flexible in handling count data 

irrespective of the dispersion in the data. The following results are drawn from this 

analysis: 

 

• First, the true parameters lie in the 95% credible interval for nearly all cases and 

are generally close to the estimated posterior mean of the parameters. The 

credible intervals were found to be wider for the low mean values for both the 

centering and shape parameters. The bias in the prediction of the parameters and 

the mean also increases as the data sample mean values decreases. Even at the 

low sample mean values, the bias is considerably less for under-dispersed datasets 

than for over-dispersed and equi-dispersed datasets. Despite its flexibility in 

handing count data with all dispersions, the COM-Poisson distribution suffers 

from important limitations for low mean over-dispersed data. This similar 

behavior is also exhibited by Negative Binomial (Poisson-gamma) models (Lord, 

2006).  
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• Second, the asymptotic approximation of the mean suggested by Shmueli et al 

(2005) approximates the true mean adequately for E[Y] > 5. This value found 

through numerical analysis of the COM-Poisson GLM is substantially lower than 

the lower bound value of 10 suggested by Shmueli et al. (2005). As the sample 

mean value decreases, the accuracy of the approximation becomes lower. The 

asymptotic approximation is accurate for all datasets with high and moderate 

sample mean values irrespective of the dispersion in the data. The approximation 

is also accurate for low sample mean values for under-dispersed datasets. 

However, the accuracy drops substantially for low sample mean values for over-

dispersed and equi-dispersed datasets.   

 

• Third, datasets with higher sample mean values required more computational time 

for a given number of replications than the low mean datasets did. Similarly, it is 

important to note that the over-dispersed datasets required more computational 

time than the other type of datasets.  

 
3.3 Summary 
 
There exist various distributions for analyzing the count data. Out of all, only few 

distributions have the capability of handing under-dispersed and over-dispersed datasets 

and the COM-Poisson distribution is one among them. This chapter has documented the 

performance of COM-Poisson GLM for datasets characterized by different variances and 

sample mean values.  

 

The first section gave a brief methodology about data simulation and testing protocol. 

The second section presented the results concerning the error term, prediction accuracy, 

accuracy of the asymptotic approximation of the mean and computational effort required 

for the MCMC implementation of the COM-Poisson GLM. The results of this study 

showed that the COM-Poisson GLMs can handle under-, equi- and over-dispersed 

datasets with different mean values, although the credible intervals are found to be wider 

for low sample mean values. Despite its limitations for low sample mean values for over-

dispersed datasets, the COM-Poisson GLM is still a flexible method for analyzing count 
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data. The asymptotic approximation of the mean is accurate for all datasets with high and 

moderate sample mean values irrespective of the dispersion in the data, and it is also 

accurate for low sample mean values for under-dispersed datasets. Furthermore, the 

computational effort required for the MCMC implementation of the COM-Poisson GLM 

is not prohibitive. The last section presented a brief discussion about the results. Finally, 

from the results of this chapter, it is concluded that the COM-Poisson GLM is a 

promising, flexible regression model for count data. The next chapter describes the 

application of the COM-Poisson GLM for analyzing crash data exhibiting over-

dispersion. 
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CHAPTER IV 

APPLICATION OF THE COM-POISSON GLM TO TRAFFIC 

CRASH DATA EXHIBITING OVER-DISPERSION 
*
 

 

 

It is clear from the results of Chapter III that the COM-Poisson GLM is a promising, 

flexible regression model for count data. Also from the literature review in Chapter II, it 

is seen that several studies have documented important limitations associated with 

Poisson and NB models. Thus, there is a need to evaluate whether COM-Poisson models 

could be used for modeling motor vehicle crashes. 

 
The objectives of this chapter are to evaluate the application of the COM-Poisson GLM 

for analyzing motor vehicle crashes and compare the results with those produced from 

the NB model. Nobody has so far examined how the COM-Poisson GLM could be used 

for modeling crash data using common functional forms linking crash data to traffic flow 

variables (often referred to as general Annual Average Daily Traffic or AADT models). 

Although traffic-flow only models could suffer from omitted variables bias, they are still 

the most popular type of models developed and used by transportation safety analysts 

(Hauer, 1997; Persaud et al., 2001). They are often preferred over models that include 

several covariates because they can be easily re-calibrated when they are developed in 

one jurisdiction and applied to another (Persaud et al., 2001; Lord and Bonneson, 2005). 

In fact, this type of model will be the kind of model used for estimating the safety 

performance of rural and urban highways as well as for intersections in the forthcoming 

Highway Safety Manual (HSM) (Hughes et al., 2005). 

 

                                                 
* Part of this chapter is reprinted with permission from “Application of the Conway-
Maxwell-Poisson generalized linear model for analyzing motor vehicle crashes” by Lord, 
D., Guikema, S., Geedipally, S.R., 2008. Accident Analysis & Prevention, 40 (3), 1123-
1134. Copyright [2008] by Elsevier Ltd. 
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This chapter is organized as follows: The first section presents the summary statistics of 

the two datasets. The second section summarizes the results of the comparison analysis. 

The third section provides a discussion about the application of COM-Poisson GLMs in 

highway safety. The last section presents a summary of the analysis carried out in this 

chapter.  

 

4.1 Methodology 
 
This section describes the methodology used for estimating and comparing the two types 

of model. For each dataset, COM-Poisson GLMs and NB models were initially estimated 

using the entire dataset. Then, five samples, which consisted of 80% of the original data, 

were randomly extracted. The models were developed using the subsets and were then 

applied to the remaining 20% to evaluate their predictive performance.  

 
The functional form used for models were the following (see Eq. (2.2 & 2.7) above): 

 

Toronto intersection data: 1 2

0 _ _i Maj i Min iF F
β βµ β=    (4.1) 

 

Texas segment data: 1

0j jLF
βµ β=      (4.2) 

 

where, 

 
i

µ  = the mean number of crashes per year for intersection i ; 

 
j

µ  = the mean number of crashes per year for segment j ; 

 _Maj i
F  = entering flow for the major approach (average annual daily traffic or 

AADT) for intersection i ;  

 _Min i
F  = entering flow for the minor approach (average annual daily traffic or 

AADT) for intersection i ; 

 
j

F  = flow traveling on segment j  (average annual daily traffic or 

AADT) and time period t ; 

 L  = length in miles for segment j ; and, 
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 0 1 2, ,β β β   = estimated coefficients. 

 

The functional forms described above are very frequently used by transportation safety 

analysts. Although they are not considered the most adequate functional form (see Miaou 

and Lord, 2003), since they under-perform near the boundary conditions (at least for 

intersections), they are still relevant for this study, as they are considered established 

functional forms in the highway safety literature.  

 

Several methods were used for estimating the GOF and predictive performance of the 

models. The methods used in this research include the following: 

 

4.1.1 Deviance information criterion (DIC) 

 

The DIC is defined as  

DpDDIC +=
_

        (4.3) 

where LD log2
_

−=  represents the posterior mean of the deviance of the un-standardized 

model where L is the mean of the model log likelihood;   )(
_

θyDDpD −=  represents the 

penalty for the number of effective model parameters where )( θyD  is the point estimate 

of deviance for the posterior means θ . 

 

4.1.2 Mean absolute deviance (MAD) 

 

MAD provides a measure of the average mis-prediction of the model (Oh et al, 2003). It 

is computed using the following equation: 

 

Mean Absolute Deviance (MAD) = ii

n

i

yy
n

−∑
∧

=1

1
   (4.4)  

 



  61 
 

4.1.3 Mean squared predictive error (MSPE)  

 

MSPE is typically used to assess the error associated with a validation or external data set 

(Oh et al., 2003). It can be computed using Equation (4.5): 

 

Mean Squared Predictive Error (MSPE) = 

2

1

1








−∑

∧

=
ii

n

i

yy
n

  (4.5) 

 

The coefficients of the COM-Poisson GLMs and FB NB models were estimated using the 

software WinBUGS (Spiegelhalter et al., 2003) and the coefficients of MLE NB models 

were estimated using the software SAS (SAS, 2002) (note: to distinguish between the 

Bayesian and the MLE methods, FB NB refers to a model estimated using a Bayesian 

approach while MLE NB refers to a model estimated using the Frequentist approach). 

Vague or non-informative hyper-priors were utilized for the COM-Poisson GLMs and FB 

NB (described below). A total of 3 Markov chains were used in the model estimation 

process with 35,000 iterations per chain and the thinning parameter was set to 1. The first 

20,000 iterations (burn-in samples) were discarded. Thus, the remaining 15,000 iterations 

were used for estimating the coefficients. The Gelman-Rubin (G-R) convergence statistic 

was used to verify that the simulation runs converged properly. In the analysis, the G-R 

statistic was less than 1.1. For comparison, Mitra and Washington (2007) suggested that 

convergence was achieved when the G-R statistic was less than 1.2. 

 

4.2 Data Description 
 
To accomplish the objectives of this chapter, NB and COM-Poisson GLMs were 

developed and compared using two datasets. The first dataset is an urban 4-legged 

signalized intersection data set collected from Toronto, Ontario for the year 2005. This 

dataset had been used in many studies so far (Lord, 2000; Miaou and Lord, 2003). As 

stated in Miaou and Lord (2003), crashes in this dataset include both intersection and 

intersection-related crashes as reported by the police that are located within about 15 m 

(50 ft) from the center of the intersection and does not include crashes involving 

pedestrians, animals, and cyclists. This dataset consisted of 868 4-legged signalized 
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intersections with a total of 10030 crashes for the year 1995. To evaluate the performance 

of COM for different datasets with varying properties, 5 random samples each of 694 

intersections (80% of total data) were collected for fitting the COM-Poisson and NB 

models. The remaining samples of 174 intersections were used as the predicting data so 

as to know the performance of the models for predicting crashes for a new dataset. The 

properties of the Toronto data set and the random samples are given in Table 4.1.  

 

The second dataset constituted of crashes on Texas 4-lane undivided and divided 

segments from the year 1997 to 2001. Only the crashes that are non-intersection related 

were considered in this analysis. There were 3220 segments which are used in this study. 

Similar to the first dataset, 5 different random samples each of 2576 segments were 

collected for fitting the COM-Poisson and NB models. The remaining 644 segments were 

used to know the performance of the models for predicting crashes for a new dataset. The 

detailed description of each of the dataset is given in Table 4.2. Although there are many 

variables that influence the occurrence of crashes, only traffic flow is considered in this 

analysis.   

 

4.3 Modeling Results 

 

This section presents the modeling results for the COM-Poisson GLMs as well as for the 

FB and MLE NB models and is divided into three parts. The first part explains the 

modeling results for the Toronto data. The second part provides details about the 

modeling results for the Texas data. The last part documents the marginal analysis used 

for examining the regression coefficients. 

 

4.3.1 Toronto data 
 
Table 4.3 summarizes the results of the COM-Poisson GLMs for the Toronto data. This 

table shows that the coefficients for the flow parameters are below one, which indicates 

that the crash risk increases at a decreasing rate as traffic flow increases. It should be 

pointed out that the 95% marginal posterior credible intervals for each of the coefficients 

did not include the origin. 



  63 
 

Table 4.1: Description of variables for Toronto dataset and random samples  

  Fitting data Predicting data 

  Min. Max. Average Total Min. Max. Average Total 

Crashes 0 54 
11.56 

(10.02) 
10030 -- -- -- -- 

Major 
AADT 

5469 72178 
28044.81 
(10660.4) 

-- -- -- -- -- Full 
data 

Minor 
AADT 

53 42644 
11010.18 
(8599.40) 

-- -- -- -- -- 

Crashes 0 54 
11.49 
(9.94) 

7974 0 51 
11.82 

(10.33) 
2056 

Major 
AADT 

5469 72178 
28097.36 
(10656.9) 

-- 9622 67214 
27835.21 
(10702.5) 

-- Sample1 

Minor 
AADT 

71 41288 
10904.03 
(8421.3) 

-- 53 42644 
11433.55 
(9289.40) 

-- 

Crashes 0 54 
11.50 
(9.96) 

7983 0 48 
11.76 

(10.28) 
2047 

Major 
AADT 

5469 67214 
27946.05 
(10490.5) 

-- 7361 72178 
28438.69 
(11335.8) 

-- Sample2 

Minor 
AADT 

53 42644 
10862.04 
(8532.00) 

-- 877 41029 
11601.03 
(8863.55) 

-- 

Crashes 0 53 
11.67 

(10.07) 
8099 0 54 

11.10 
(9.84) 

1931 

Major 
AADT 

5469 72178 
28115.98 
(10824.1) 

-- 5967 56623 
27760.95 
(10005.6) 

-- Sample3 

Minor 
AADT 

71 42644 
11169.03 
(8678.03) 

-- 53 36002 
10376.61 
(8272.24) 

-- 

Crashes 0 54 
11.63 

(10.02) 
8074 0 50 

11.24 
(10.02) 

1956 

Major 
AADT 

5469 68594 
28072.28 
(10652.6) 

-- 7361 72178 
27935.25 
(10721.7) 

-- Sample4 

Minor 
AADT 

465 42644 
11119.84 
(8749.1) 

-- 53 41288 
10572.82 
(7983.41) 

-- 

Crashes 0 54 
11.69 

(10.08) 
8113 0 44 

11.02 
(9.79) 

1917 

Major 
AADT 

5469 72178 
28103.95 
(10641.9) 

-- 5967 56697 
27808.91 

(10761.52) 
-- Sample5 

Minor 
AADT 

71 42644 
11104.99 
(8712.5) 

-- 53 34934 
10632.03 
(8145.70) 

-- 
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Table 4.2: Description of variables for Texas dataset and random samples (1997-2001) 

  Fitting data Predicting data 

  Min. Max. Average Total Min. Max. Average Total 

Crashes 0 108 
4.89 

(8.45) 
15753 -- -- -- -- 

AADT 42 89264 
8639.27 

(6606.57) 
-- -- -- -- -- Full 

data 
Length 
(miles) 

0.1 11.21 
0.80 

(1.02) 
2576.18 -- -- -- -- 

Crashes 0 108 
4.94 

(8.75) 
12722 0 52 

4.71 
(7.16) 

3031 

AADT 42 89264 
8704.98 

(6715.86) 
-- 420 52294 

8376.39 
(6147.98) 

-- Sample1 

Length 
(miles) 

0.1 11.21 
0.80 

(1.02) 
2054.91 0.1 8.319 

0.81 
(1.04) 

521.269 

Crashes 0 108 
4.93 

(8.72) 
12703 0 48 

4.74 
(7.31) 

3050 

AADT 42 89264 
8699.58 

(6681.18) 
-- 266 52294 

8398.03 
(6298.54) 

-- Sample2 

Length 
(miles) 

0.1 11.21 
0.80 

(1.03) 
2063.87 0.1 8.517 

0.80 
(0.96) 

512.313 

Crashes 0 108 
4.91 

(8.21) 
12655 0 97 

4.81 
(9.38) 

3098 

AADT 158 89264 
8645.19 

(6685.83) 
-- 42 53714 

8615.58 
(6284.50) 

-- Sample3 

Length 
(miles) 

0.1 8.548 
0.81 

(1.02) 
2076.86 0.1 11.21 

0.78 
(1.01) 

499.318 

Crashes 0 108 
4.94 

(8.44) 
12731 0 97 

4.69 
(8.53) 

3022 

AADT 42 89264 
8646.10 

(6619.57) 
-- 158 53714 

8611.93 
(6559.38) 

-- Sample4 

Length 
(miles) 

0.1 11.21 
0.80 

(1.01) 
2073.67 0.1 8.517 

0.78 
(1.04) 

502.51 

Crashes 0 108 
5.00 

(8.69) 
12891 0 53 

4.44 
(7.43) 

2862 

AADT 42 89264 
8700.86 

(6712.74) 
-- 264 52294 

8392.89 
(6162.47) 

-- Sample5 

Length 
(miles) 

0.1 8.548 
0.81 

(1.02) 
2091.04 0.1 11.21 

0.75 
(1.02) 

485.143 
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Table 4.3: Modeling results for the COM-Poisson GLMs using the Toronto data 

Estimates† Full data Sample1 Sample2 Sample3 Sample4 Sample5 Average 

Ln(β0) -11.53 

(0.4159)‡ 

-11.7589 

(0.742) 

-11.7252 

(0.560) 

-11.2626 

(0.487) 

-11.2033 

(0.729) 

-11.1643 

(0.709) 
-- 

β1 0.6350 

(0.04742) 

0.6527 

(0.076) 

0.6641 

(0.055) 

0.6078 

(0.049) 

0.6071 

(0.072) 

0.5949 

(0.066) 
-- 

β2 0.795 

(0.03101) 

0.7999 

(0.029) 

0.7854 

(0.029) 

0.7960 

(0.031) 

0.7912 

(0.030) 

0.8010 

(0.027) 
-- 

ν 0.3408 

(0.02083) 

0.3333 

(0.023) 

0.3454 

(0.023) 

0.3359 

(0.023) 

0.3497 

(0.024) 

0.3499 

(0.024) 
-- 

DIC 4953.7 3974.34 3953.69 3981.33 3953.66 3956.85 -- 

MADfit 4.129 4.141 4.075 4.156 4.132 4.074 4.118 

MSPEfit 33.664 34.433 33.102 34.108 33.508 33.176 33.665 

MADpred -- 4.082 4.3003 4.034 4.106 4.316 4.168 

MSPEpred -- 30.529 34.695 32.339 34.059 34.663 33.257 

† The coefficient estimates are based on the  mode (posterior value) (see discussion above) 

‡ Posterior credible standard error 

 
 
 
Table 4.4 summarizes the results of the FB NB models for the Toronto data. This table 

exhibits similar characteristics as for the COM-Poisson GLMs in terms of GOF statistics 

and predictive performance despite the fact that the coefficients are a little bit different. 

Nonetheless, this difference did not affect the fit and predictive capabilities of the 

models. A comparison of the models’ output is presented below. 

 

Table 4.5 summarizes the results of the MLE NB models for the Toronto data. This table 

shows exactly the same results as for the FB NB. This is expected since a vague prior was 

used for the FB NB models. The results indicate that the FB NB models are relatively 

stable and can, therefore, be compared with the COM-Poisson GLM. 
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Table 4.4: Modeling results for the FB NB models using the Toronto data 

Estimates Full data Sample1 Sample2 Sample3 Sample4 Sample5 Average 

Ln(β0) -10.11 

(0.4794) 

-9.862 

(0.4018) 

-10.48 

(0.4359) 

-9.799 

(0.5509) 

-10.14 

(0.5256) 

-9.87 

(0.5272) 
-- 

β1 0.6071 

(0.046) 

0.5788 

(0.039) 

0.6459 

(0.044) 

0.5775 

(0.052) 

0.6057 

(0.051) 

0.5787 

(0.055) 
-- 

β2 0.6852 

(0.021) 

0.6903 

(0.022) 

0.684 

(0.025) 

0.6848 

(0.023) 

0.6902 

(0.024) 

0.6918 

(0.023) 
-- 

φ 7.12 

(0.619) 

6.898 

(0.669) 

7.256 

(0.721) 

7.045 

(0.687) 

7.388 

(0.734) 

7.567 

(0.756) 
-- 

DIC 4777.59 3821.9 3817.8 3836.35 3811.16 3824.74 -- 

MADfit 4.141 4.174 4.094 4.168 4.145 4.096 4.136 

MSPEfit 32.742 33.503 32.104 33.271 32.527 32.354 32.750 

MADpred -- 4.024 4.379 4.058 4.121 4.346 4.186 

MSPEpred -- 29.594 35.091 30.855 33.331 33.989 32.572 

 

 

 

Figure 4.1 compares the estimated number of crashes from the COM-Poisson and NB 

models for three minor AADT flows ( MinF ). The figure illustrates that the estimated 

values are slightly different, especially when MinF  is equal to 500 veh/day, with the 

COM-Poisson output being always lower than the NB output. For Min 500F = , the 

maximum absolute difference is about 0.9 crash per year. At the other end of the 

spectrum, the maximum absolute difference is about 2 crashes per year for Maj 70000F =  

and Min 3000F = . Although this difference appears to be large, the relative difference is 

about 17%. It should be pointed out that when the posterior mean value is used for the 

COM-Poisson model rather than the centering parameter µ (e.g., assuming µ is the 

predicted mean), both curves get closer for all minor flow values. For Min 3000F = , the 

absolute maximum difference becomes less than 1 crash per year. Thus, both models 

could be used for analyzing this dataset. 
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Table 4.5: Modeling results for the MLE NB models using the Toronto data 

Estimates Full data Sample1 Sample2 Sample3 Sample4 Sample5 Average 

Ln(β0) -10.2458 

(0.465) 

-10.1664 

(0.525) 

-10.4031 

(0.520) 

-9.7398 

(0.513) 

-10.2040 

(0.513) 

-9.8473 

(0.511) 
-- 

β1 0.6207 

(0.046) 

0.6079 

(0.051) 

0.6393 

(0.051) 

0.5707 

(0.051) 

0.6119 

(0.051) 

0.5778   

(0.051) 
-- 

β2 0.6853 

(0.0211) 

0.6910 

(0.0241) 

0.6826 

(0.024) 

0.6860 

(0.024) 

0.6905 

(0.024) 

0.6903 

(0.0234) 
-- 

α† 0.1398 

(0.0122) 

0.1443 

(0.014) 

0.1372 

(0.014) 

0.1410 

(0.014) 

0.1349 

(0.0134) 

0.1315 

(0.0134) 
-- 

AIC 5077.3 4068.8 4052.6 4080.5 4045.2 4054.3 -- 

MADfit 4.142 4.170 4.092 4.168 4.146 4.096 4.136 

MSPEfit 32.699 33.444 32.127 33.264 32.517 32.370 32.737 

MADpred -- 4.026 4.374 4.062 4.117 4.348 4.185 

MSPEpred -- 29.547 34.973 30.898 33.271 34.002 32.538 

† Note: 1α
φ

=  

 
 
 
4.3.2 Texas data 

 

Table 4.6 summarizes the results of the COM-Poisson models for the Texas data. Similar 

to the first dataset, the 95% marginal posterior credible intervals for each of the 

coefficients did not include the origin. In addition, the coefficients do not vary 

significantly between the different samples.   
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a) Minor AADT = 500 veh/day 
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b) Minor AADT = 3,000 veh/day 
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c) Minor AADT = 5,000 veh/day 

Figure 4.1: Estimated values (crashes/year) for the Toronto data: NB and COM-Poisson models 
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Table 4.6: Modeling results for the COM-Poisson GLMs using the Texas data 

Estimates† Full data Sample1 Sample2 Sample3 Sample4 Sample5 Average 

Ln(β0) -8.235 

(0.242)‡ 

-8.442 

(0.267) 

-8.333 

(0.284) 

-7.877 

(0.223) 

-8.155 

(0.234) 

-8.338 

(0.249) 
-- 

β1 1.081 

(0.025) 

1.102 

(0.028) 

1.089 

(0.030) 

1.044 

(0.023) 

1.074 

(0.025) 

1.092 

(0.026) 
-- 

ν 0.3608 

(0.012) 

0.3504 

(0.014) 

0.3465 

(0.013) 

0.3699 

(0.014) 

0.3701 

(0.015) 

0.36 

(0.013) 
-- 

DIC 13325.6 10688.8 10711.2 10673.9 10652.6 10710.6 -- 

MADfit 2.385 2.433 2.435 2.369 2.371 2.415 2.401 

MSPEfit 21.985 24.297 23.708 18.970 20.050 22.938 21.991 

MADpred -- 2.240 2.242 2.388 2.413 2.283 2.313 

MSPEpred -- 14.462 16.650 31.748 28.745 18.835 22.088 

† The coefficient estimates are based on the mode (posterior value) (see discussion above) 

‡ Posterior credible standard error 

 
 
 
Table 4.7 summarizes the results of the FB NB models for the Texas data. This table 

indicates that FB NB models estimate a slightly lower value for the coefficient for the 

traffic flow variable than for the COM-Poisson GLMs. Similar to the Toronto data, the 

COM-Poisson GLMs offer the same statistical performance as for FB NB models.  

 

Table 4.8 summarizes the results of the MLE NB models for the Texas data. This table 

shows exactly the same results as for the FB NB.  

 

Figure 4.2 shows the comparison results between the estimated number of crashes per 

mile per 5-year of the COM-Poisson and NB models for the Texas data (full dataset). 

This figure illustrates that both estimates are indeed very close. 
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Table 4.7: Modeling results for the FB NB models using the Texas data 

Estimates Full data Sample1 Sample2 Sample3 Sample4 Sample5 Average 

Ln(β0) -6.512 

(0.227) 

-6.701 

(0.264) 

-6.488 

(0.211) 

-6.356 

(0.221) 

-6.449 

(0.209) 

-6.618 

(0.204) 
-- 

β1 0.9206 

(0.025) 

0.9403 

(0.029) 

0.9178 

(0.023) 

0.9046 

(0.024) 

0.9134 

(0.023) 

0.932 

(0.022) 
-- 

φ 3.229 

(0.177) 

3.155 

(0.189) 

3.073 

(0.184) 

3.235 

(0.198) 

3.253 

(0.198) 

3.328 

(0.200) 
-- 

DIC 12408.7 9882.13 9908.99 9988.68 9964.02 9983.94 -- 

MADfit 2.437 2.466 2.508 2.430 2.424 2.453 2.453 

MSPEfit 20.699 22.758 22.487 18.070 18.284 21.651 20.658 

MADpred -- 2.297 2.143 2.509 2.464 2.378 2.358 

MSPEpred -- 12.929 13.307 31.162 29.854 17.369 20.924 

 

 

 

Table 4.8: Modeling results for the MLE NB models using the Texas data 

Estimates Full data Sample1 Sample2 Sample3 Sample4 Sample5 Average 

Ln(β0) -6.5605 

(0.199) 

-6.6293 

(0.224) 

-6.4570 

(0.224) 

-6.4266 

(0.222) 

-6.4652 

(0.220) 

-6.6163 

(0.220) 
-- 

β1 0.9260 

(0.022) 

0.9324 

(0.025) 

0.9143 

(0.025) 

0.9125 

(0.025) 

0.9151 

(0.024) 

0.9318 

(0.024) 
-- 

α† 0.3095 

(0.017) 

0.3172 

(0.019) 

0.3255 

(0.020) 

0.3094 

(0.019) 

0.3075 

(0.019) 

0.3009 

(0.018) 
-- 

AIC 13375 10674 10724 10773 10741 10749 -- 

MADfit 2.440 2.463 2.506 2.434 2.424 2.453 2.453 

MSPEfit 20.766 22.654 22.439 18.190 18.289 21.647 20.664 

MADpred -- 2.293 2.141 2.510 2.463 2.378 2.357 

MSPEpred -- 12.856 13.282 31.146 29.861 17.365 20.902 

† Note: 1α
φ

=  
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Figure 4.2: Estimated values (crashes/5-year) for the Texas data: NB and COM-Poisson models 

 
 
 
4.3.3 Marginal effects 

 

An important issue in developing or using a regression model is the interpretation of the 

coefficients. Computing the marginal value of a particular variable can provide valuable 

information about how the regression coefficient related to that variable influence the 

expected mean value. For this exercise, the calculations of the marginal effect are slightly 

more complicated for the COM-Poisson distribution than for the NB distribution, which 

is usually straightforward. This is attributed to the fact that the parameter µ for the COM-

Poisson is a centering parameter, as opposed to the expected mean value typically found 

in NB models.   

 

The relative marginal effect of a particular variable or covariate iX  can be estimated 

using the following equation (Cameron and Trivedi, 1998): 
i

i

i X

XYE

XYE ∂

∂ ][

][

1
. In 

estimating the relative marginal effect of the variables, the mean approximation 

[ ] 1 2 1 2E Y µ ν≈ + −  can be used for the COM-Poisson models. 
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As seen in Figure 4.3a, the relative marginal effect of the major flow for the COM-

Poisson model depends on the major and minor entering flows. This figure shows that the 

relative marginal effect on the expected mean for a unit increase in major flow remains 

nearly constant for lower minor flow volumes (e.g., 100 veh/day) and the rate of 

curvature increases with the increase in minor flows. On the other hand, the relative 

marginal effect of the major flow for the NB model is only independent of the minor 

flow. With a unit increase in major flow, the relative marginal effect on the expected 

mean value decreases. This decrease is smaller for higher major flows. Similar results can 

be seen for both COM-Poisson and NB models for the marginal effect related to the 

minor flow (Figure 4.3b). 

 
Figure 4.4 shows that the relative marginal effect on the expected mean value decreases 

with a unit increase in flow for both COM-Poisson and NB models. In this figure, the y-

axis is formatted under the logarithmic scale. In Figure 4.4, it can be seen that the 

marginal effect of traffic flow is higher for the NB model than for the COM-Poisson 

GLM. For the NB model, there is a sharp decrease in the marginal effect at lower flows 

and the curve decreases slightly for flows above 10,000 vehicles per day.  
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i) Marginal effect of major flow with COM-Poisson  ii) Marginal effect of major flow with NB 

a) Marginal effect of the major flow 

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

1
0

0

5
0

0

9
0

0

1
3

0
0

1
7

0
0

2
1

0
0

2
5

0
0

2
9

0
0

3
3

0
0

3
7

0
0

4
1

0
0

4
5

0
0

Fmin(Veh/day)

R
e

la
ti

v
e

 m
a

rg
in

a
l 

e
ff

e
c

t

F1=5000
F1=20000
F1=40000
F1=60000
F1=90000

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

1
0

0

5
0

0

9
0

0

1
3

0
0

1
7

0
0

2
1

0
0

2
5

0
0

2
9

0
0

3
3

0
0

3
7

0
0

4
1

0
0

4
5

0
0

Fmin(Veh/day)

R
e

la
ti

v
e

 m
a

rg
in

a
l 

e
ff

e
c

t

 

i) Marginal effect of minor flow with COM-Poisson  ii) Marginal effect of minor flow with NB 

b) Marginal effect of the minor flow  

Figure 4.3: Marginal effect of the traffic flows for the Toronto model 
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Figure 4.4: Marginal effect of traffic flow for the Texas model 

(Note: y-axis is formatted under a logarithmic scale) 

 
 
 
4.4 Discussion 

 

This chapter has shown that the COM-Poisson GLM offers potential for modeling motor 

vehicle crashes. The following results are observed in this chapter: 

 

• First, the model performs as well as the NB model (FB and MLE) for the 

functional form that only includes traffic flow as covariates. As detailed in the 

modeling results, both models provided similar GOF statistics and predictive 

performance. Guikema and Coffelt (2008) have reported similar comparison 

results between the COM-Poisson GLM and the FB NB model. The models used 

in Guikema and Coffelt (2008) included six covariates in both the centering and 

shape links. Hence, it is expected that COM-Poisson GLMs developed with 

several covariates, such as lane and shoulder widths, should work as well as the 

NB model. The performance of COM-Poisson with various covariates is shown in 

Chapter V. 

 

• Second, although almost all crash datasets have been shown to exhibit over-

dispersion (see Lord et al., 2005b), it has been documented that some crash 
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datasets can sometimes experience under-dispersion (Oh et al., 2006). The NB 

GLM could theoretically handle under-dispersion, since the dispersion parameter 

can be negative ( ( ) 2( )Var Y µ α µ= + − ). However, in this case, the mean of the 

Poisson is no longer gamma distributed because this latter distribution cannot 

have negative parameters (i.e., ( ),gamma φ φ ). In addition, researchers who have 

worked on the characterization of the NB distribution and GLM have indicated 

that a negative dispersion parameter could lead to a mis-specification of the PDF  

(when ( )1 max of counts α− < ) (Clark and Perry, 1989; Saha and Paul, 2005). On 

the other hand, the COM-Poisson distribution has been shown to easily handle 

such datasets (Shmueli et al., 2005; Kadane et al., 2006; Geedipally et al., 2008; 

Guikema and Coffelt 2008; Lord et al., 2008c). The fact that the model handles 

under-dispersed data makes it more useful than the NB model, which has 

difficulty coping with this kind of data (as described above). Although not a good 

analysis approach, a transportation safety analyst could theoretically not have to 

worry about the characteristics of the dispersion in the data, since the COM-

Poisson GLM can handle both over- and under-dispersed data, and a combination 

of both, if the data are characterized as such. The results about COM-Poisson 

handling an under-dispersed crash data is presented in the next chapter. 

 

• Third, as discussed above, crash data can sometimes be subjected to very low 

sample mean values, which create data characterized by a large number of zeros 

(with the hypothesis that the space and time scales have been appropriately used, 

see Lord et al., 2005b). Consequently, NB models do not perform well with such 

datasets since they may tend to under-predict zero values (or over-estimate non-

zero count values). To overcome this problem, some researchers have suggested 

the use of zero-inflated Poisson and NB models (Shankar et al., 1997). However, 

these models have been shown to be inappropriate for modeling crash data, since 

this kind of data does not exhibit two distinct generating processes, one of which 

is characterized by having a long-term mean equal to zero (which is not feasible 

for crash data) (Lord et al., 2005b; Warton, 2005; Wedagama et al., 2006). 
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Depending upon the specification of the parameters λ  and ν , the COM-Poisson 

model can predict more zeros than the NB model for the same mean value. 

However, both models should not be used as a direct substitute to zero-inflated 

models (when they are warranted) (see Kadane et al., 2006). The performance of 

COM-Poisson distribution with the data characterized by SSS and LSM is shown 

in Chapter VI. 

 

• Fourth, the COM-Poisson model is not significantly more difficult to implement 

than the FB NB model once the code for the maximum likelihood estimation is 

available. Sellers and Shmueli (2008) developed the code for MLE by the time 

this dissertation was written. Guikema and Coffelt (2008) developed the code 

needed to implement the COM-Poisson GLM in WinBUGS. For the models 

produced in this work, non-informative or vague priors were used for the 

regression coefficients. For the β coefficients, Normal (0,100) priors were used, 

for ν, a gamma (0.03, 0.1) prior was used, and for φ  a gamma (0.1, 0.1) prior was 

used. The experimentation with other non-informative priors showed that the 

priors did not significantly affect either GOF of the models or the posterior 

parameter estimates. In addition, the difference in computational times for these 

models was not enormous. For example, for the full Toronto data set, a run of the 

COM-Poisson model with 35,000 replications took about 5 hours while a run of 

the FB NB model with 35,000 replications took between 1 and 1.5 hours; the 

absolute difference seems large, but some simulation runs can sometimes take up 

to two or three days in WinBUGS to converge depending on the complexity of the 

model hierarchical structure. Overall, implementing the COM-Poisson model is 

not significantly more difficult than implementing the FB NB model once the 

code for the COM-Poisson model is available. 

 

4.5 Summary  

 

The COM-Poisson distribution has the capability of handling the under-dispersed and 

over-dispersed count data. Crash data often exhibits over-dispersion. This chapter has 



  77 
 

documented the application of the COM-Poisson GLM for analyzing motor vehicle crash 

data exhibiting over-dispersion. The comparison between the COM-Poisson GLM with 

the NB model commonly used for analyzing motor vehicle crashes was also presented. 

The comparison analysis was carried out using the most common functional forms used 

by transportation safety analysts, which link crashes to the entering flows at intersections 

or on segments. Several methods were used to assess the statistical fit and predictive 

performance of the models. 

 

The first section gave a brief methodology about the functional form used for modeling 

the crash mean and goodness-of-fit statistics used in the comparative analysis. The 

second section gave the description of the data used in this study. There were two 

datasets used in developing and comparing models. The first dataset contained crash data 

collected at 4-legged signalized intersections in Toronto, Ont. The second dataset 

included data collected for rural 4-lane divided and undivided highways in Texas. The 

third section gave the results of this study. The results showed that COM-Poisson GLMs 

perform as well as FB NB models in terms of GOF statistics and predictive performance. 

This result is supported by another recent study on this topic (Guikema and Coffelt, 

2008). The estimated values with COM-Poisson and NB models are slightly different, 

with the COM-Poisson output being always lower than the NB output. The relative 

marginal effect of the major flow for the COM-Poisson model depends on the major and 

minor entering flows. The relative marginal effect on the expected mean for a unit 

increase in major flow remains nearly constant for lower minor flow volumes (e.g., 100 

veh/day) and the rate of curvature increases with the increase in minor flows. On the 

other hand, the relative marginal effect of the major flow for the NB model is only 

independent of the minor flow. With a unit increase in major flow, the relative marginal 

effect on the expected mean value decreases. This decrease is smaller for higher major 

flows. Similar results can be seen for both COM-Poisson and NB models for the marginal 

effect related to the minor flow. The last section presented a brief discussion of the 

results. The next chapter describes the application of COM-Poisson GLM to crash data 

exhibiting under-dispersion. 
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CHAPTER V 

APPLYING THE COM-POISSON GLM TO CRASH DATA 

EXHIBITING UNDER-DISPERSION 

 

 

From Chapter IV, the results show that the COM-Poisson models have capability of 

handling crash data exhibiting over-dispersion. Although very rare, there is a possibility 

for the traffic crash data to exhibit under-dispersion when they are used in a context of 

generalized linear model (Oh et al., 2006; Park and Lord, 2007) and this phenomenon is 

less convenient to model (Oh et al., 2006). Many studies have demonstrated that the 

Poisson and NB models have significant difficulties handling (or cannot handle) data 

characterized by under-dispersion (Clark and Perry, 1989; Saha and Paul, 2005). The 

results of the Chapter III show that the COM-Poisson distribution is capable of handling 

under-dispersed data easily. Only a handful of studies have applied the COM-Poisson 

distribution and GLM to observed or simulated data characterized by under-dispersion 

(Kadane et al., 2005; Sellers and Shmueli, 2008; Guikema and Coffelt, 2008; Geedipally 

et al., 2008). 

 
The objective of this chapter is to evaluate the performance of the COM-Poisson GLM 

for analyzing crash data exhibiting under-dispersion, in cases where Poisson and Poisson-

gamma models cannot be used. To accomplish the objective of this study, several COM-

Poisson models were estimated using crash data collected at 162 railway-highway 

crossings (RHX) in South Korea between 1998 and 2002. This dataset has been identified 

as being characterized by under-dispersion when the observations were modeled using 

regression methods (Oh et al., 2006). To model such dataset, Oh et al. (2006) have 

proposed the gamma probability model. The results will show that the COM-Poisson 

GLM can handle crash data when the modeling output shows signs of under-dispersion. 

The results also show that the model provides better statistical performance than the 

gamma probability and the traditional Poisson model.  
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The chapter is organized as follows: The first section describes the methodology used for 

estimating and comparing the various models. The second section presents the 

characteristics of the data used in this chapter. The third section summarizes the results of 

the parameter estimates and comparison analysis. The fourth section provides a useful 

discussion about the results. The last section gives the summary of this chapter.  

 
 
5.1 Methodology 
 

This section briefly describes the methodology used for comparing the different models. 

The same functional form used by Oh et al. (2006) was utilized for fitting all the models: 

 

))ln(exp(
1

10 ∑
=

++=
n

j

jjii xF βββµ      (5.1) 

where, 

 iµ = the mean number of crashes for site i; 

 iF = average daily vehicle traffic on site i (vehicles/day); 

 j
x

= estimated covariates such as average daily railway traffic, detector distance 

etc; and, 

 iβ = estimated regression coefficients. 

 

Different methods were used for evaluating the goodness-of-fit (GOF) and predictive 

performance of the models. The methods used in this study include the Deviance 

Information Criterion, Mean Absolute Deviance and Mean Squared Predictive Error. A 

brief explanation of these methods is given in Chapter IV. 

 

The coefficients of the COM-Poisson GLMs were estimated using the software 

WinBUGS (Spiegelhalter et al., 2003). Vague or non-informative hyper-priors were 

utilized for the COM-Poisson GLMs. A total of 3 Markov chains were used in the model 

estimation process with 5,000 iterations per chain and the thinning parameter was set to 

1. The first 2,500 iterations (burn-in samples) were discarded. Thus, the remaining 2,500 

iterations were used for estimating the coefficients. The Gelman-Rubin (G-R) 
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convergence statistic was used to verify that the simulation runs converged properly. In 

this analysis, the G-R statistic fell below 1.1 for all model parameters. 

 
 
5.2 Data Description 
 

This section provides an overview of the characteristics of the dataset used in this study. 

This dataset was previously used to develop Poisson and gamma probability models by 

Oh et al. (2006). The characteristics of the dataset used in this study are described in 

Table 5.1. It should be noted that looking at the raw observations, the crash data exhibit 

over-dispersion (mean=0.33, variance=0.36). The under-dispersion is in fact noticed 

when the observed values are modeled conditional on the mean, as described in the next 

section.   

 

 

 

Table 5.1: Summary statistics of the dataset (Oh et al., 2006) 

Variables Min. Max. 
Average 

(std. dev) 
Frequency 

Crashes 0 3 
0.33 
(0.6) 

162 

AADT 10 61199 
4617 

(10391.57) 
162 

Average daily railway traffic 32 203 
70.29 

(37.34) 
162 

1 (yes) -- -- -- 149 (91.98%) 
Presence of commercial area 

0 (no) -- -- -- 13 (8.02%) 

Train detector distance 0 1329 
824.5 

(328.38) 
162 

Time duration between the activation of 
warning signals and gates 

0 232 
25.46 

(25.71) 
162 

1 (yes) -- -- -- 134 (82.72%) 
Presence of speed hump  

0 (no) -- -- -- 28 (17.28%) 

1 (yes) -- -- -- 113 (69.75%) Presence of track circuit 
controller 0 (no) -- -- -- 49 (30.25%) 

1 (yes) -- -- -- 126 (77.78%) 
Presence of guide  

0 (no) -- -- -- 36 (22.22%) 
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Figure 5.1 below gives the comparison of the actual crash data distribution with the 

predicted values by Poisson distribution. The Poisson model predicts slightly lesser 

number of sites with zero and two crashes but more number of sites with one crash when 

compared to that of actual data.  
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Figure 5.1: Observed crash data versus values estimated using the Poisson distribution 

 

 

 

5.3 Results 

 

This section describes the results of the analysis. Several models were estimated using the 

variables documented in Oh et al. (2006). They are described in Table 5.1. To evaluate 

the characteristics of the variance function, a Poisson-gamma model was first estimated 

using the six variables that were reported to be significant by the gamma probability 

model in the original study (Oh et al., 2006). Figures 5.2 and 5.3 show the output of the 

Poisson-gamma models for the MLE and Bayesian estimating methods, respectively. For 

the MLE, Figure 5.2 illustrates that the Poisson-gamma model cannot handle the data 

very well, as determined by the negative value of the dispersion parameter and its 

confidence interval (e.g., ( ) 2
Var Y µ αµ= + , where α = the dispersion parameter of the 

Poisson-gamma model). In addition, the model provides unreliable parameter estimates, 

since all the variables are not significant at the 5% level. For the Bayesian model, Figure 
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5.3 shows that the inverse dispersion parameter of the Poisson-gamma model becomes 

unstable and tends towards infinity (i.e., converges to a Poisson model), both when vague 

( )01.0,01.0(~ gammaφ ) and non-vague hyper-priors ( )1.0,2.0(~ gammaφ ) are used. 

Similar to the MLE, most of the parameter estimates were not significant at the 5% level. 

In sum, these plots confirm that the modeling results are characterized by under-

dispersion when the model is estimated using the six original explanatory variables or 

covariates. 

 
 
 

 
Figure 5.2: SAS Output of the Poisson-gamma model 
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b) Vague hyper-prior )01.0,01.0(~ gammaφ ; 50.78 (70.78)φ =   

Figure 5.3: WinBUGS output (history for inverse dispersion parameter) 

of the Poisson-gamma model 

 
 
 
As an initial step, a COM-Poisson model was developed with all eight explanatory 

variables documented in Table 5.1. In the subsequent step, individual models were 

developed by only considering the variables that were found to be significant for the 

Poisson and gamma probability models, respectively (all the variables are not the same). 

As seen in Table 5.2, Model 1, which contains the largest number of variables, is not the 

best model since the DIC penalizes models with a large number of parameters. Using this 

criterion, Model 2 is considered to be the best amongst all the models.  

 
 

 

Table 5.2: Initial model comparison using COM-Poisson GLMs 

Model Type
a
 DIC with COM-Poisson model 

Model 1  201.520 

Model 2 197.592 

Model 3 205.309 
a Model 1: significant variables identified by the Poisson and gamma models in Oh et al. (2006). 

      Model 2: significant variables identified by the Poisson model in Oh et al. (2006). 
       Model 3: significant variables identified by the gamma probability model in Oh et al. (2006). 
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Table 5.3 contains the parameter estimates and their associated standard errors for the 

three COM-Poisson GLMs. By including all eight variables, the COM-Poisson model 

shows that the modeling output is actually Poisson distributed, i.e. equi-dispersed 

(conditional on the mean). On the other hand, the model output shows signs of under-

dispersion when the six variables found significant for the Poisson model are used. All 

the variables that were found to be significant with Poisson model in Oh et al. (2006) 

were also found to be significant for the COM-Poisson GLM. Interestingly, the COM-

Poisson model output shows signs of over-dispersion when the same six variables that 

were found to be significant for the gamma model are utilized. More detailed 

comparisons between the models are described later.  

 
 
 

Table 5.3: Parameter estimates of COM-Poisson models 

Variables Model 1 Model 2
a
 Model 3

b
 

Constant -5.859 (2.252)c -4.616 (1.395)c -6.131 (1.79)c 

ADT 0.4295 (0.152) 0.4037 (0.109) 0.3631 (0.145) 

Average daily railway traffic 0.0028 (0.004) -- 0.0032 (0.006) 

Presence of commercial area 0.9244 (0.459) 0.8966 (0.468) 1.108 (0.685) 

Train detector distance 0.0016 (0.0009) 0.0012 (0.0006) 0.0014 (0.0008) 

Time duration between the activation 
of warning signals and gates 

0.0032 (0.004) -- 0.0057 (0.006) 

Presence of track circuit controller -0.8361 (0.444) -0.9068 (0.433) -- 

Presence of guide -0.5869 (0.454) -0.6414 (0.430) -- 

Presence of speed hump -0.9933 (0.514) -1.039 (0.506) -1.077 (0.732) 

Shape Parameter (ν0) 0.9578 1.177 0.7876 

Deviance 193.8 192.0 200.6 

DIC 201.520 197.592 205.309 
a Based on the Poisson model documented in Oh et al. (2006). 
b Based on the gamma probability model documented in Oh et al. (2006). 
c Posterior standard error. 

 
 
 
Table 5.4 summarizes the direct comparison between the Poisson model developed in Oh 

et al. (2006) and the COM-Poisson model. This table shows that the COM-Poisson model 

is found to provide a slightly better statistical fit than the traditional Poisson model using 

the DIC. As seen from the shape parameter of COM-Poisson distribution ( 0ν ), the model 

output exhibits under-dispersion. With the exception of the magnitude of the parameter 
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estimates, all the variables in both models have similar effect on the predicted values. As 

seen in Table 5.4, the GOFs are calculated using the mean and the centering parameters 

of Shmueli et al. (2005) and Guikema and Coffelt (2008), respectively. 

 
 
 

Table 5.4: Comparison of parameter estimates between the Poisson and the COM-Poisson model 

Variables Poisson Estimates
a
 

COM-Poisson Estimates 

(Model 2) 

Constant -5.406 -4.616 

ADT 0.460 0.4037 

Presence of commercial area 0.975 0.8966 

Train detector distance 0.0016 0.0012 

Presence of track circuit controller -0.917 -0.9068 

Presence of guide -0.613 -0.6414 

Presence of speed hump -1.063 -1.039 

Shape Parameter (ν0) -- 1.177 

Deviance 203.5 192.0 

DIC 211.444 197.592 

Using µ 0.361 

Using λ 0.346 MAD 0.354 

Using E[Y] 0.312 

Using µ 0.241 

Using λ 0.254 MSPE 0.243 

Using E[Y] 0.253 
a Parameter estimates are directly taken from Oh et al. (2006); no standard errors were provided. 

 
 
 
Figure 5.4 compares the estimated values of the Poisson and COM-Poisson models with 

the change in traffic flow. These values were estimated using the average value for the 

train detector distance, and the absence of commercial area, track circuit controller, guide 

and speed hump. An important point to note is that the mean of the COM-Poisson GLM 

(E[Y]) was not used for estimating the number of crashes. This is attributed to the fact 

that the mean of the COM-Poisson distribution is always zero for µ<0.3. Since a long-

term mean equal to zero is not feasible for crash data analysis (see Lord et al., 2005b & 

2007), the centering parameter is used for estimating the number of crashes. As seen in 

Table 5.4, the model fit is not much different when the centering parameter or the 

posterior mean is utilized. Figure 5.4 shows that the predicted values are always lower for 

the COM-Poisson model than for the Poisson model. 



  86 
 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10000 20000 30000 40000 50000 60000

Flow

C
ra

s
h

e
s
/y

e
a
r

Poisson Estimate

COM Estimate - µ

COM Estimate - λ

 
Figure 5.4: Estimated values from the Poisson and the COM-Poisson GLM 

 

 

 

The direct comparison between the gamma probability and COM-Poisson models is 

summarized in Table 5.5. Out of the six variables that were found to be significant with 

the gamma probability model, only four variables were significant for the COM-Poisson 

GLM. Surprisingly, the COM-Poisson model shows that the modeling output exhibits 

over-dispersion whereas the gamma probability model output shows under-dispersion. 

This disparity is explained by the differences in the mean values between both models. 

Since the characteristics of the dispersion are conditional on the mean, different mean 

values (estimated by the model) will lead to different degrees of dispersion. The GOF 

statistics show that the COM-Poisson model provides better statistical fit than the gamma 

probability model. By visually examining the rate of change, it can be observed that the 

marginal effect of each variable is larger for the COM-Poisson model than that of the 

gamma probability model. 

 
 

 

 

 

 

 

 

 

 



  87 
 

Table 5.5: Comparison of parameter estimates between the gamma probability and the COM-

Poisson model 

Variables Gamma Estimatesa 
COM-Poisson Estimates 

(Model 3) 

Constant -3.438 -6.131 

ADT 0.230 0.3631 

Average daily railway traffic 0.004 0.0032b 

Presence of commercial area 0.651 1.108 

Train detector distance 0.001 0.0014 

Time duration between the 
activation of warning signals and 
gates 

0.004 0.0057b 

Presence of speed hump -1.58 -1.077 

Shape Parameter  2.062 0.788 

Using µ 0.331 

Using λ 0.355 MAD 
0.459 

 
Using E[Y] 0.325 

Using µ 0.305 

Using λ 0.287 MSPE 
0.308 

 
Using E[Y] 0.301 

a Parameter estimates are directly taken from Oh et al. (2006); no standard errors were provided. 
b Not found to be significant at the 5% confidence level.   

 
 
 

As discussed above, the centering parameters (λ and µ) were used for the COM-Poisson 

GLM for estimating the number of crashes. The estimated values produced by the gamma 

probability model and COM-Poisson models are compared with the change in traffic flow 

and are shown in Figure 5.5. These values are estimated using the average value for the 

train detector distance, daily railway traffic, warning time duration, and the absence of 

commercial area, and speed hump.  Figure 5.5 illustrates that the estimate µ is very 

similar to the mean values estimated by the gamma probability model. 
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Figure 5.5: Estimated values for the gamma and the COM-Poisson GLM 

 

 

 

5.4 Discussion  
 

The results of this study show that the COM-Poisson GLM is quite flexible for handling 

crash data exhibiting under-dispersion (when conditional on the mean). They support 

other studies on this topic (Guikema and Coffelt, 2008; Geedipally et al., 2008; Sellers 

and Shmueli, 2008), which shows that COM-Poisson GLM can both handle over- and 

under-dispersion. Given this outcome, the results of the analysis presented above still 

raise a few important topics that merit further discussion. 

 

• First, the COM-Poisson model performs well for the typical functional forms that 

have been used by traffic safety analysts (e.g., 1

0
i ix

F e
ββµ β ∑= ). This study has 

shown that the COM-Poisson models provide better statistical performance than 

the Poisson and gamma probability models when under-dispersion is observed in 

the data. Furthermore, as discussed above, the gamma probability model works as 

a dual-state model. Although this model can handle under- dispersion (and over-

dispersion), it may not be appropriate for analyzing crash data (Lord et al., 2005b, 

2007). Consequently, the COM-Poisson GLM offers a more defensible approach 

for modeling under-dispersed data, since it does not assume a dual-state data 

generating process. 
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• Second, with the inclusion of all eight significant variables, the COM-Poisson 

GLM shows that the modeling output exhibits near equi-dispersion. This 

characteristic has also been documented in Miaou and Song (2005), who proposed 

complex multivariate hierarchical predictive models for analyzing crash data. 

They showed that by significantly improving the mean function, one could almost 

eliminate the over-dispersion. In this study, when the two non-significant 

variables were removed, the COM-Poisson model clearly showed signs of over-

dispersion. On the other hand, when the same six variables used in the Poisson 

model were utilized for the COM-Poisson model, the modeling output showed 

signs of under-dispersion. This unusual characteristic (i.e., changes from under-

dispersion to over-dispersion or vice-versa by including or removing explanatory 

variables) is attributed to the very low sample mean value (0.33 crash per year) of 

the dataset. Under this condition, this illustrates that the predicted mean values 

can significantly influence the variation found in the data. 

 

• Third, the COM-Poisson GLM is very sensitive to the selection of the model’s 

parameters. During the modeling process, some simulation runs took up to two 

days for the MCMC replications to properly converge (as discussed above, the G-

R Statistic fell below 1.1 for all parameters); hence, the number of iterations was 

limited to 5,000. The length of the simulation can be greatly influenced by the 

selection of the hyper-priors (location of the upper and lower boundaries). Thus, 

the analyst must be careful in defining the appropriate hyper-priors, especially 

when the sample mean value is very small (this was also discussed in Lord and 

Miranda-Moreno, 2008). It is anticipated, however, that the computational time 

will be decreased significantly when the likelihood function of the COM-Poisson 

distribution becomes available. Sellers and Shmueli (2008) are currently 

developing a likelihood formulation for this distribution. Despite the 

computational time advantage, the MLE does not provide the full posterior 

distributions for the regression parameters nor does it allow expert knowledge to 

be incorporated through the use of informative priors (see, e.g., Washington and 

Oh, 2006, and Miranda-Moreno et al., 2008, for additional information about how 
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expert knowledge can improve the performance of Bayesian models in highway 

safety).   

 

5.5 Summary  
 

Although very rare, crash data sometimes exhibit under-dispersion. There are numerous 

reasons for data to show under-dispersion, one of which is the existence of large number 

of zeros, which in turn have a low sample mean value. The COM-Poisson distribution has 

the capability of handling under-dispersed data easily. The objective of this chapter was 

to evaluate the performance of the COM-Poisson GLM for analyzing crash data 

exhibiting under-dispersion (when conditional on the mean). The modeling results of the 

COM-Poisson were then compared to those produced from the Poisson and gamma 

probability models documented in Oh et al. (2006). 

 

The first section gave a brief methodology about the functional form for modeling the 

crash mean and the testing protocol used in the study. The second section presented data 

description. Crash data collected at 162 railway-highway crossings in South Korea 

between 1998 and 2002 was used in this study. This dataset has been shown to exhibit 

under-dispersion when models linking crash data to various explanatory variables are 

estimated. The third section gave the results of the study. The results showed that the 

COM-Poisson GLM can handle crash data when the modeling output shows signs of 

under-dispersion. They also showed that the model analyzed in this study provides better 

statistical performance than the gamma probability and the traditional Poisson models, at 

least for this dataset. Similarly, the COM-Poisson GLM offers a more defensible 

approach than the gamma probability model, since the former does not assume that the 

observed data follow a dual-state generating process. Given the changes in the nature of 

the variance function when variables are included or excluded, it is possible that such 

datasets could contain intermingled over- and under-dispersed counts. The last section 

presented a brief summary of the results. The next chapter describes the effect of low 

sample mean and small sample size on the parameter estimates of the COM-Poisson 

distribution. 
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CHAPTER VI 

EFFECTS OF SMALL SAMPLE SIZE AND LOW SAMPLE MEAN 

ON PARAMETER ESTIMATES OF THE COM-POISSON 

DISTRIBUTION 

 

 

Crash data are often characterized by small sample size and low sample mean. It is a 

usual practice for traffic safety analysts to develop statistical models using the limited 

number of observations where data can be collected (Lord, 2000 and Oh et al., 2003). 

This small sample size problem is usually attributed to the prohibitive costs involved in 

collected the crash data and the variables influencing the crash occurrence (Lord and 

Bonneson, 2005).  Due to the existence of large number of zeroes, crash data usually 

exhibit a distribution with a low sample mean.  

 

There are numerous studies explaining the effects of data characterized by low sample 

mean on NB models in the traffic safety literature.  The results concerning the goodness-

of-fit, dispersion parameter, parameter estimates and confidence intervals may be biased 

for the NB models when the data are characterized by small sample size and low sample 

mean values. It is clear from the Chapter III that the COM-Poisson models do not 

perform well when the data are characterized by the low sample mean. It is important to 

determine potential bias in the estimation of the parameters of COM-Poisson models 

when the data are characterized by the low sample mean and small sample size. 

 

The first objective of this research is to know whether the centering parameter (µ) and 

shape parameter (ν) are properly estimated when the data are characterized by LSM and 

SSS. The bias in the parameter estimation will be then calculated. Secondly, the influence 

of the assumption of various prior distributions on the shape parameter in the posterior 

estimation is evaluated.  To do this, initially a log-normal distribution is assumed, and 

then followed by a gamma distribution for the shape parameter.  The third objective 
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consisted of determining the recommended minimum sample size for developing COM-

Poisson models subjected to low sample mean values and small sample size. This 

recommendation is to reduce unreliable estimation of the posterior mean of the centering 

and shape parameter. To accomplish the objectives, a series of COM-Poisson 

distributions were simulated using different values describing the centering parameter, 

the shape parameter, and the sample size. 

 

This chapter is organized as follows: First section gives a brief note on the simulation 

framework used in this study. The second section presents the simulation results with 

both the log-normal prior and gamma prior for shape parameter. It also gives the 

recommended sample size for a given sample mean. The third section gives a brief 

discussion about the results. The last section summarizes the chapter. 

 

6.1 Simulation Framework 

 

This section briefly describes the simulation study that illustrates the effects of LSM and 

SSS on the prediction of centering and shape parameter of COM-Poisson models. The 

centering parameter is simulated from the log-normal distribution and the shape 

parameter is simulated from log-normal distribution and gamma distribution for two 

different scenarios. The data are then simulated from the PDF of COM-Poisson 

distribution. The sample size and sample mean were chosen in such a way that they 

represented normal conditions and extreme conditions (SSS and/or LSM).  

 

The following steps give brief overview of the simulation framework: 

 

1. Generate a centering parameter (µi) for an observation i from a fixed value µ.  

µi = µ 

2. Generate a shape parameter (νi) for an observation i from a fixed value ν. 

νi = ν 

3. Select an appropriate relative error ε (ε = 0.01 is considered in this study) 
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4. Generate a discrete value (Yi) for an observation i from a COM-Poisson distribution 

with centering parameter µi, shape parameter νi  and relative error ε 

Yi ∼ COM-Poisson (µi, νi, ε) 

5. Repeat steps 1 to 4 for ‘n’ number of times where ‘n’ refers to the required sample 

size. 

 

The simulation was carried out in the MATLAB® 7.1.0 R14 (The Mathworks Inc, 

Natick, MA). The following are the scenarios considered in the simulation study: 

Expected sample mean E (Yi) ≅  0.5, 1.0, 10 

Shape parameter (ν) = 0.4, 0.6, 0.8 

Sample size (n) = 50, 100, 1000 

 

The number in the bold character represents the extreme values characterized by low 

sample mean and/or small sample size. Since the expected mean value cannot be directly 

given as an input in the COM-Poisson distribution for simulating discrete values, the 

centering and shape parameters were properly selected so as to generate the approximate 

sample mean value. Table 6.1 gives the centering and shape parameter values that were 

used to generate the above mentioned sample means: 

 
The MCMC implementation of the COM GLM proposed by Guikema and Coffelt (2008) 

was used for the model estimation process. Non-informative log-normal priors (i.e., Log-

N (0,100) priors) were utilized for the centering and shape parameters of COM GLMs in 

the first scenario. Non-informative log-normal prior (i.e., Log-N (0,100) prior) for the 

centering parameter and a non-informative gamma prior (i.e., gamma (0,100) prior) for 

the shape parameter were utilized in the second scenario. A total of 3 Markov chains with 

50,000 iterations were used initially to check the convergence. A satisfactory 

convergence was achieved for 50,000 iterations. Then, a single chain with 100,000 

iterations and a thinning of 10 were used in the model estimation process. The first 

50,000 iterations (burn-in samples) were discarded. The remaining iterations were used 

for estimating the coefficients. For each combination of sample size, centering parameter, 

and shape parameter, the simulation was replicated 100 times. At the end of replications, 
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the statistics such as minimum value, maximum value, mean and standard deviation were 

computed.  

 
 
 

Table 6.1: Centering and shape parameters for a specified sample mean 

Centering parameter Shape parameter Sample mean 

µ = 10 E (Yi) ≅  10 

µ = 1.0 E (Yi) ≅  1.0 

µ = 0.5 

ν = 0.8 

E (Yi) ≅  0.5 

µ = 10 E (Yi) ≅  10 

µ = 0.8 E (Yi) ≅  1.0 

µ = 0.3 

ν = 0.6 

E (Yi) ≅  0.5 

µ = 10 E (Yi) ≅  10 

µ = 0.5 E (Yi) ≅  1.0 

µ = 0.14 

ν = 0.4 

E (Yi) ≅  0.5 

 
 
 
6.2 Simulation Results 

 

This section summarizes the simulation results for both the scenarios. The first section 

summarizes the results for the assumption of log-normal prior for the shape parameter. 

The second section gives the results for the assumption of gamma prior for the shape 

parameter.  

 

6.2.1 Log-normal prior 

 

This section presents the results for the assumption of log-normal prior for the shape 

parameter during the posterior estimation.  
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To test the precision in the estimation of the parameters, the simulation runs were 

performed for a sample mean of 10 initially and the results are presented in Table 6.2 

below. For the sample size of 1,000, all the parameters are accurately estimated and the 

theoretical value of each parameter is almost equal to its predicted value. For the sample 

size of 100 and 50, the theoretical value of each parameter is accurately predicted but the 

standard deviation in the prediction becomes larger when compared to sample size of 

1,000. In other words, as the sample size decreased the standard deviation increased. The 

minimum and maximum values of each parameter became noticeable when the sample 

size decreased to 50. 

 
 
 

Table 6.2: Results of parameters for 10][ ≅YE  (log-normal prior) 

 N=1000 N=1000 N=1000 

 µ µ µ µ = 10 νννν = 0.8 E[Y]=10.05 µ µ µ µ = 10 νννν = 0.6 E[Y]=10.14 µ µ µ µ = 10 νννν = 0.4 E[Y]=10.55 

Mean 9.8887 0.7748 9.9083 9.8031 0.6151 9.9331 9.8385 0.4211 10.3554 

Std.dev 0.1050 0.0393 0.0989 0.1294 0.0280 0.1247 0.1755 0.0218 0.1468 

Min. 9.5126 0.6650 9.5828 9.4022 0.5283 9.6156 9.3982 0.3631 9.9532 

Max. 10.2622 0.8869 10.2896 10.1762 0.6776 10.2617 10.4199 0.4894 10.8348 

 N=100 N=100 N=100 

Mean 9.8612 0.8015 9.8899 9.7646 0.6118 9.9311 9.7413 0.4234 10.2797 

Std.dev 0.3690 0.1222 0.3663 0.4094 0.0890 0.3760 0.6023 0.0669 0.5200 

Min. 8.9236 0.5290 8.9539 8.6515 0.4056 8.7789 8.1665 0.2733 8.8552 

Max. 10.9703 1.1756 10.9538 10.8474 0.9242 10.9251 11.3726 0.6472 11.5918 

 N=50 N=50 N=50 

Mean 9.8755 0.8080 9.9114 9.7141 0.6206 9.9235 9.6895 0.4207 10.2667 

Std.dev 0.5425 0.1744 0.5187 0.7046 0.1630 0.5965 0.8512 0.0925 0.7066 

Min. 8.3475 0.4695 8.5334 7.5712 0.2824 8.3772 7.1542 0.2494 8.3387 

Max. 11.0571 1.4233 11.2087 11.5747 1.1557 11.6667 11.6500 0.7261 12.3337 

 
 
 
The simulation results for the sample mean of 1 are presented in Table 6.3. The predicted 

values are slightly mis-estimated compared to the theoretical value for all the sample 

sizes. As the sample size decreased, the standard deviation increased. As expected, the 

value of standard deviation, minimum and maximum values of the posterior means 

became highly noticeable for the sample size of 50.  The change in the shape parameter 

value did not influence the estimation of centering parameter and sample mean. 
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Table 6.3: Results of parameters for 1][ ≅YE  (log-normal prior) 

 N=1000 N=1000 N=1000 

 µ µ µ µ = 1 νννν = 0.8 E[Y]=1.09 µ µ µ µ = 0.8 νννν = 0.6 E[Y]=1.07 µ µ µ µ = 0.5 νννν = 0.4 E[Y]=1.04 

Mean 1.0100 0.8598 0.9780 0.8906 0.7562 0.9376 0.7195 0.6346 0.9034 

Std.dev 0.0643 0.0576 0.0262 0.0724 0.0482 0.0283 0.0893 0.0636 0.0442 

Min. 0.8220 0.7073 0.9095 0.6999 0.6300 0.8732 0.3558 0.3510 0.8169 

Max. 1.2046 1.0756 1.0598 1.0485 0.8692 1.0005 0.9219 0.7703 1.0369 

 N=100 N=100 N=100 

Mean 0.7883 0.7419 0.9482 0.6245 0.5857 0.9126 0.3971 0.4076 0.9498 

Std.dev 0.3389 0.3164 0.1925 0.3652 0.3062 0.2655 0.3019 0.2439 0.2781 

Min. 0.0000 0.0593 0.0000 0.0000 0.0624 0.0000 0.0000 0.0637 0.0000 

Max. 1.4272 1.6961 1.5425 1.6149 1.6359 1.6719 1.1787 1.2473 1.7624 

 N=50 N=50 N=50 

Mean 0.6320 0.6428 0.9139 0.4605 0.4686 0.9007 0.3039 0.3474 0.9116 

Std.dev 0.4170 0.4038 0.2840 0.3894 0.3437 0.3483 0.3234 0.3017 0.3935 

Min. 0.0000 0.0509 0.0000 0.0000 0.0496 0.0000 0.0000 0.0572 0.0000 

Max. 1.5574 1.7742 1.5168 1.4384 1.6644 1.5276 1.5007 1.4116 1.5797 

 
 
 
Table 6.4 presents the simulation results for the sample mean value equal to 0.5. This 

table exhibits similar characteristics as those shown in Table 6.3. For the sample mean 

equal to 0.5, the estimators are highly unreliable. For the sample size of 50, most of the 

estimated values are not significantly different from zero. Also the minimum value for 

most of the estimators is very small and is almost equal to zero. 

 

Table 6.5 presents the results of bias in the prediction of the parameters. The bias of the 

centering parameter µ and shape parameter ν is calculated as the difference between their 

expected value and the theoretical value. This table shows that the bias in parameter 

estimation follows no specific trend with the change in sample size or sample mean 

value. 
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Table 6.4: Results of parameters for 5.0][ ≅YE  (log-normal prior) 

 N=1000 N=1000 N=1000 

 µ µ µ µ = 0.5 νννν = 0.8 E[Y]=0.53 µ µ µ µ = 0.3 νννν = 0.6 E[Y]=0.47 µ µ µ µ = 0.14 νννν = 0.4 E[Y]=0.46 

Mean 0.7173 1.5330 0.3504 0.5871 1.2898 0.3145 0.5364 1.1990 0.3021 

Std.dev 0.0502 0.1019 0.0192 0.0504 0.0899 0.0154 0.0552 0.0925 0.0129 

Min. 0.5819 1.2652 0.3090 0.4067 0.9851 0.2736 0.3666 0.9323 0.2653 

Max. 0.8446 1.8036 0.4762 0.7167 1.5424 0.4448 0.6600 1.4187 0.3311 

 N=100 N=100 N=100 

Mean 0.4489 1.0212 0.4026 0.3073 0.7950 0.3463 0.2505 0.6685 0.3655 

Std.dev 0.2670 0.5555 0.1375 0.2424 0.5336 0.1654 0.2278 0.4903 0.1805 

Min. 0.0000 0.0951 0.0000 0.0000 0.1003 0.0000 0.0000 0.1055 0.0000 

Max. 0.9468 2.4268 0.9824 0.9062 2.3888 0.8273 0.7826 2.5927 0.7655 

 N=50 N=50 N=50 

Mean 0.2901 0.7927 0.3892 0.2179 0.7071 0.3496 0.1756 0.5544 0.3441 

Std.dev 0.2610 0.7706 0.1813 0.2353 1.1507 0.2115 0.2217 0.6194 0.2074 

Min. 0.0000 0.1016 0.0000 0.0000 0.1016 0.0000 0.0000 0.0960 0.0000 

Max. 1.0927 6.9424 0.8533 0.9691 14.5515 0.8145 0.9046 5.2199 0.7849 

 
 

 

Table 6.5: Bias in the parameter estimation (log-normal prior) 
 

µ µ µ µ = 10 νννν = 0.8 
E[Y] =  

10.05 
µ µ µ µ = 10 νννν = 0.6 

E[Y] =  

10.14 
µ µ µ µ = 10 νννν = 0.4 

E[Y] =  

10.55 

N=1000 0.1113 0.0252 0.1417 0.1969 -0.0151 0.2069 0.1615 -0.0211 0.1946 

N=100 0.1388 -0.0015 0.1601 0.2354 -0.0118 0.2089 0.2587 -0.0234 0.2703 

10][ ≅YE

 

N=50 0.1245 -0.0080 0.1386 0.2859 -0.0206 0.2165 0.3105 -0.0207 0.2833 

 
µ µ µ µ = 1 νννν = 0.8 

E[Y] = 

1.09 
µ µ µ µ = 0.8 νννν = 0.6 

E[Y] = 

1.07 
µ µ µ µ = 0.5 νννν = 0.4 

E[Y] = 

1.04 

N=1000 -0.0100 -0.0598 0.1120 -0.0906 -0.1562 0.1324 -0.2195 -0.2346 0.1366 

N=100 0.2117 0.0581 0.1418 0.1755 0.0143 0.1574 0.1029 -0.0076 0.0902 

1][ ≅YE
 

N=50 0.3680 0.1572 0.1761 0.3395 0.1314 0.1693 0.1961 0.0526 0.1284 

 
µ µ µ µ = 0.5 νννν = 0.8 

E[Y] = 

0.53 
µ µ µ µ = 0.3 νννν = 0.6 

E[Y] = 

0.47 
µ µ µ µ = 

0.14 
νννν = 0.4 

E[Y] = 

0.46 

N=1000 -0.2173 -0.7330 0.1796 -0.2871 -0.6898 0.1555 -0.3964 -0.7990 0.1579 

N=100 0.0511 -0.2212 0.1274 -0.0073 -0.1950 0.1237 -0.1105 -0.2685 0.0945 

5.0][ ≅YE

 

N=50 0.2099 0.0073 0.1409 0.0821 -0.1071 0.1204 -0.0356 -0.1544 0.1159 

 
 
 
The mean squared error (MSE) of an estimator quantifies the amount by which an 

estimator differs from the theoretical value of the estimator being estimated. The MSE of 

the estimated centering parameter 
∧

µ  with respect to its theoretical value µ is defined as 

MSE (
∧

µ ) = Var (
∧

µ ) + (Bias (
∧

µ , µ)) 2 
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The bias of centering parameter ‘µ’ is calculated as µµ −
∧

)(E     

Similarly the MSE of the shape parameter estimator 
∧

ν  is defined as  

MSE (
∧

ν ) = Var (
∧

ν ) + (Bias (
∧

ν , ν)) 2 

The bias of shape parameter ‘ν’ is calculated as νν −
∧

)(E  

 
As seen from Table 6.6, the MSE increases as the sample size and sample mean 

decreases. There is always a systematic bias in the prediction of sample mean as the 

sample size decreased. This is not always true in case of centering and shape parameter. 

  
 
 

Table 6.6: MSE of the estimated parameters (log-normal prior) 

 
µ µ µ µ = 10 νννν = 0.8 

E[Y] =  

10.05 
µ µ µ µ = 10 νννν = 0.6 

E[Y] =  

10.14 
µ µ µ µ = 10 νννν = 0.4 

E[Y] =  

10.55 

N=1000 0.0234 0.0022 0.0299 0.0555 0.0010 0.0584 0.0569 0.0009 0.0594 

N=100 0.1554 0.0149 0.1598 0.2230 0.0081 0.1851 0.4297 0.0050 0.3434 

10][ ≅YE

 

N=50 0.3098 0.0305 0.2883 0.5782 0.0270 0.4027 0.8210 0.0090 0.5795 

 
µ µ µ µ = 1 νννν = 0.8 

E[Y] = 

1.09 
µ µ µ µ = 0.8 νννν = 0.6 

E[Y] = 

1.07 
µ µ µ µ = 0.5 νννν = 0.4 

E[Y] = 

1.04 

N=1000 0.0042 0.0069 0.0132 0.0135 0.0267 0.0183 0.0561 0.0591 0.0206 

N=100 0.1597 0.1035 0.0572 0.1641 0.0940 0.0953 0.1018 0.0596 0.0855 

1][ ≅YE
 

N=50 0.3094 0.1877 0.1117 0.2669 0.1354 0.1500 0.1430 0.0938 0.1713 

 
µ µ µ µ = 0.5 νννν = 0.8 

E[Y] = 

0.53 
µ µ µ µ = 0.3 νννν = 0.6 

E[Y] = 

0.47 
µ µ µ µ = 

0.14 
νννν = 0.4 

E[Y] = 

0.46 

N=1000 0.0497 0.5477 0.0326 0.0850 0.4839 0.0244 0.1602 0.6469 0.0251 

N=100 0.0739 0.3575 0.0351 0.0588 0.3227 0.0426 0.0641 0.3125 0.0415 

5.0][ ≅YE

 

N=50 0.1122 0.5939 0.0527 0.0621 1.3355 0.0592 0.0504 0.4075 0.0564 

 
 
 
Table 6.7 presents the values for the cutoff factor. This factor is used to know the 

approximate sample size for the given mean. Generally a threshold level of 85% or 90% 

is considered in most of the cases. The threshold level of 85% was considered in this 

research. The values above the given threshold level are retained. If the value falls below 

the threshold value then the sample size is increased for the given mean until the factor 

reaches the target significant level. The cutoff factor is defined as: 

 

Cutoff factor = 
Mean

MSEMean −
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Table 6.7: Cutoff factor of the estimated parameters (log-normal prior) 
 

µ µ µ µ = 10 νννν = 0.8 
E[Y] =  

10.05 
µ µ µ µ = 10 νννν = 0.6 

E[Y] =  

10.14 
µ µ µ µ = 10 νννν = 0.4 

E[Y] =  

10.55 

N=1000 0.9845 0.9397 0.9826 0.9760 0.9483 0.9757 0.9758 0.9278 0.9765 

N=100 0.9600 0.8476 0.9596 0.9516 0.8532 0.9567 0.9327 0.8326 0.9430 

10][ ≅YE

 

N=50 0.9436 0.7839 0.9458 0.9217 0.7352 0.9361 0.9065 0.7746 0.9259 

 
µ µ µ µ = 1 νννν = 0.8 

E[Y] = 

1.09 
µ µ µ µ = 0.8 νννν = 0.6 

E[Y] = 

1.07 
µ µ µ µ = 0.5 νννν = 0.4 

E[Y] = 

1.04 

N=1000 0.9356 0.9035 0.8824 0.8698 0.7838 0.8556 0.6707 0.6170 0.8411 

N=100 0.4931 0.5664 0.7478 0.3513 0.4766 0.6618 0.1966 0.4012 0.6922 

1][ ≅YE
 

N=50 0.1199 0.3260 0.6343 -0.1220 0.2147 0.5700 -0.2445 0.1184 0.5460 

 
µ µ µ µ = 0.5 νννν = 0.8 

E[Y] = 

0.53 
µ µ µ µ = 0.3 νννν = 0.6 

E[Y] = 

0.47 
µ µ µ µ = 

0.14 
νννν = 0.4 

E[Y] = 

0.46 

N=1000 0.6891 0.5173 0.4843 0.5035 0.4607 0.5032 0.2539 0.3292 0.4754 

N=100 0.3944 0.4145 0.5344 0.2109 0.2854 0.4038 -0.0107 0.1639 0.4424 

5.0][ ≅YE

 

N=50 -0.1546 0.0278 0.4100 -0.1432 -0.6343 0.3039 -0.2790 -0.1516 0.3098 

 
 
 
From the results of Table 6.7, for the sample mean value of 10, it is clear that a sample 

size of less than 50 is sufficient for proper estimation of parameters if the threshold level 

of 85% is considered. When the sample mean value equals 1, a sample size of nearly 

1,000 is sufficient for proper posterior estimation of parameters. For the sample mean 

value of 0.5, a sample size much greater than 1000 is needed. The exact sample size is 

known by performing extra simulation with different sample sizes. 

 

6.2.2 Gamma prior 

 

This section presents the results for the assumption of gamma prior for the shape 

parameter during the posterior estimation.  

 

Table 6.8 presents the simulation results for the sample mean of 10. When these results 

are compared to the results of Table 6.2, there is no noticeable difference. The 

assumption of different priors for the shape parameter has not much influence on the 

posterior estimates for the sample mean of 10. Similar to the results in Table 6.2, the 

parameters are accurately estimated and are close to their theoretical value. As the sample 

decreased, the standard deviation of the estimates increased, meaning that the confidence 

interval in the prediction of the estimates becomes wider with the decrease in sample 

size.     
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Table 6.8: Results of parameters for 10][ ≅YE  (gamma prior) 

 N=1000 N=1000 N=1000 

 µ µ µ µ = 10 νννν = 0.8 E[Y]=10.05 µ µ µ µ = 10 νννν = 0.6 E[Y]=10.14 µ µ µ µ = 10 νννν = 0.4 E[Y]=10.55 

Mean 9.8878 0.7794 9.9043 9.7949 0.6164 9.9183 9.8185 0.4230 10.3199 

Std.dev 0.0968 0.0459 0.0887 0.1115 0.0307 0.1110 0.1552 0.0221 0.1258 

Min. 9.5196 0.6836 9.5978 9.4955 0.5434 9.6475 9.4393 0.3706 10.0058 

Max. 10.1800 0.8902 10.2060 10.0446 0.6725 10.1642 10.2181 0.4702 10.5504 

 N=100 N=100 N=100 

Mean 9.8103 0.8009 9.8334 9.7722 0.6128 9.9435 9.7460 0.4260 10.2756 

Std.dev 0.3979 0.1162 0.3942 0.4212 0.0994 0.3726 0.5344 0.0661 0.4572 

Min. 8.8335 0.5472 8.8131 8.9412 0.4024 9.1332 8.3141 0.2887 8.9438 

Max. 10.7120 1.1466 10.7333 10.8118 0.9252 10.8637 11.1169 0.6417 11.6668 

 N=50 N=50 N=50 

Mean 9.7814 0.7757 9.8405 9.6683 0.6069 9.8728 9.6551 0.4157 10.2560 

Std.dev 0.5729 0.2000 0.5525 0.6360 0.1356 0.5756 0.8375 0.0917 0.7009 

Min. 8.2246 0.3980 8.2011 8.2901 0.2980 8.6048 7.3619 0.1935 8.3725 

Max. 10.8595 1.6108 10.9561 11.1157 1.1931 11.0261 11.8657 0.6317 12.0172 

 
 
 
The simulation results of the parameter estimates for the sample mean of 1 are presented 

in Table 6.9. The results presented in the table are much similar to the results in Table 

6.3. The parameters are mis-estimated for all sample sizes and the standard deviation 

became highly noticeable for the sample size of 50. The centering parameter for n=50 

and ν = 0.4 is not significantly different from zero. 

 

Table 6.10 presents the simulation results for the sample mean of 0.5. The parameter 

estimated are highly unreliable and biased for the sample mean of 0.5, similar to the 

results presented in Table 6.4. In most the cases, the minimum value of the estimates is 

negligible and is almost equal to zero. Even for low sample mean value, the assumption 

of different priors for the shape parameter has a negligible effect. 
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Table 6.9: Results of parameters for 1][ ≅YE  (gamma prior) 

 N=1000 N=1000 N=1000 

 µ µ µ µ = 1 νννν = 0.8 E[Y]=1.09 µ µ µ µ = 0.8 νννν = 0.6 E[Y]=1.07 µ µ µ µ = 0.5 νννν = 0.4 E[Y]=1.04 

Mean 1.0046 0.8585 0.9742 0.9025 0.7654 0.9434 0.7012 0.6199 0.9079 

Std.dev 0.0562 0.0511 0.0226 0.0643 0.0433 0.0300 0.1024 0.0763 0.0541 

Min. 0.8206 0.7100 0.9135 0.7206 0.6430 0.8753 0.2951 0.3227 0.8252 

Max. 1.1536 1.0115 1.0382 1.0371 0.8699 1.0743 0.9711 0.7790 1.0743 

 N=100 N=100 N=100 

Mean 0.8529 0.7855 0.9723 0.6544 0.6209 0.9419 0.4041 0.4150 0.9219 

Std.dev 0.2849 0.2569 0.1098 0.3282 0.2889 0.2025 0.2953 0.2480 0.2834 

Min. 0.0387 0.1375 0.7346 0.0000 0.0670 0.0000 0.0000 0.0612 0.0000 

Max. 1.4918 1.3930 1.2179 1.2969 1.4507 1.4971 1.0807 1.1991 1.5954 

 N=50 N=50 N=50 

Mean 0.5987 0.6211 0.9276 0.5203 0.5148 0.9405 0.3355 0.3670 0.9118 

Std.dev 0.4127 0.3927 0.2593 0.3793 0.3340 0.3185 0.3624 0.3151 0.3624 

Min. 0.0000 0.0654 0.0000 0.0000 0.0609 0.0000 0.0000 0.0637 0.0000 

Max. 1.3179 1.5501 1.5528 1.3733 1.4851 1.6097 1.3391 1.4114 1.7847 

 
 
 

Table 6.10: Results of parameters for 5.0][ ≅YE  (gamma prior) 

 N=1000 N=1000 N=1000 

 µ µ µ µ = 0.5 νννν = 0.8 E[Y]=0.53 µ µ µ µ = 0.3 νννν = 0.6 E[Y]=0.47 µ µ µ µ = 0.14 νννν = 0.4 E[Y]=0.46 

Mean 0.7132 1.5243 0.3478 0.5880 1.2920 0.3158 0.5346 1.1958 0.3016 

Std.dev 0.0428 0.0858 0.0124 0.0576 0.1029 0.0192 0.0540 0.0910 0.0126 

Min. 0.5909 1.2788 0.3174 0.4150 1.0020 0.2789 0.3745 0.9395 0.2683 

Max. 0.8083 1.7288 0.3789 0.7352 1.5789 0.4459 0.6847 1.4765 0.3375 

 N=100 N=100 N=100 

Mean 0.4538 1.0153 0.4078 0.3064 0.7768 0.3711 0.2460 0.6810 0.3576 

Std.dev 0.2554 0.5096 0.1269 0.2373 0.5014 0.1406 0.2108 0.5039 0.1426 

Min. 0.0000 0.1101 0.0000 0.0000 0.1125 0.0000 0.0000 0.1118 0.0000 

Max. 0.9744 2.1478 0.6481 0.8458 2.0120 0.7447 0.7448 3.3746 0.7564 

 N=50 N=50 N=50 

Mean 0.3524 0.8751 0.4145 0.2444 0.6935 0.3604 0.2090 0.6213 0.3614 

Std.dev 0.2772 0.6428 0.1632 0.2321 0.5683 0.1771 0.2215 0.5397 0.1843 

Min. 0.0000 0.1010 0.0000 0.0000 0.0997 0.0000 0.0000 0.0981 0.0000 

Max. 0.9125 2.4002 0.8291 0.9295 3.1123 0.7732 0.8567 2.3918 0.7740 

 
 
 
Tables 6.11 and 6.12 present the bias and MSE of the parameter estimation respectively. 

Although a clear systematic bias is not seen with the decrease in sample size, in almost 

all the cases, the MSE is always high for the sample size equal to 50. In general, as the 

sample size and sample mean decreased, the MSE increased. The results presented here 

are much similar to the results presented in Tables 6.5 and 6.6. 
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Table 6.11: Bias in the parameter estimation (gamma prior) 
 

µ µ µ µ = 10 νννν = 0.8 
E[Y] =  

10.05 
µ µ µ µ = 10 νννν = 0.6 

E[Y] =  

10.14 
µ µ µ µ = 10 νννν = 0.4 

E[Y] =  

10.55 

N=1000 0.1122 0.0206 0.1457 0.2051 -0.0164 0.2217 0.1815 -0.0230 0.2301 

N=100 0.1897 -0.0009 0.2166 0.2278 -0.0128 0.1965 0.2540 -0.0260 0.2744 

10][ ≅YE

 

N=50 0.2186 0.0243 0.2095 0.3317 -0.0069 0.2672 0.3449 -0.0157 0.2940 

 
µµµµ    = 1 νννν = 0.8 

E[Y] = 

1.09 
µ µ µ µ = 0.8 νννν = 0.6 

E[Y] = 

1.07 
µ µ µ µ = 0.5 νννν = 0.4 

E[Y] = 

1.04 

N=1000 -0.0046 -0.0585 0.1158 -0.1025 -0.1654 0.1266 -0.2012 -0.2199 0.1321 

N=100 0.1471 0.0145 0.1177 0.1456 -0.0209 0.1281 0.0959 -0.0150 0.1181 

1][ ≅YE
 

N=50 0.4013 0.1789 0.1624 0.2797 0.0852 0.1295 0.1645 0.0330 0.1282 

 
µ µ µ µ = 0.5 νννν = 0.8 

E[Y] = 

0.53 
µ µ µ µ = 0.3 νννν = 0.6 

E[Y] = 

0.47 
µ µ µ µ = 

0.14 
νννν = 0.4 

E[Y] = 

0.46 

N=1000 -0.2132 -0.7243 0.1822 -0.2880 -0.6920 0.1542 -0.3946 -0.7958 0.1584 

N=100 0.0462 -0.2153 0.1222 -0.0064 -0.1768 0.0989 0.2240 -0.2110 0.1024 

5.0][ ≅YE

 

N=50 0.1476 -0.3751 0.1155 0.2556 -0.1935 0.1096 0.2910 -0.1213 0.0986 

 
 
 

Table 6.12: MSE of the estimated parameters (gamma prior) 
 

µ µ µ µ = 10 νννν = 0.8 
E[Y] =  

10.05 
µ µ µ µ = 10 νννν = 0.6 

E[Y] =  

10.14 
µ µ µ µ = 10 νννν = 0.4 

E[Y] =  

10.55 

N=1000 0.0220 0.0025 0.0291 0.0545 0.0012 0.0615 0.0570 0.0010 0.0688 

N=100 0.1943 0.0135 0.2023 0.2293 0.0101 0.1774 0.3501 0.0050 0.2843 

10][ ≅YE

 

N=50 0.3759 0.0406 0.3492 0.5145 0.0184 0.4027 0.8203 0.0087 0.5777 

 
µ µ µ µ = 1 νννν = 0.8 

E[Y] = 

1.09 
µ µ µ µ = 0.8 νννν = 0.6 

E[Y] = 

1.07 
µ µ µ µ = 0.5 νννν = 0.4 

E[Y] = 

1.04 

N=1000 0.0032 0.0060 0.0139 0.0146 0.0292 0.0169 0.0509 0.0542 0.0204 

N=100 0.1028 0.0662 0.0259 0.1289 0.0839 0.0574 0.0964 0.0617 0.0942 

1][ ≅YE
 

N=50 0.3314 0.1862 0.0936 0.2221 0.1188 0.1182 0.1584 0.1004 0.1478 

 
µ µ µ µ = 0.5 νννν = 0.8 

E[Y] = 

0.53 
µ µ µ µ = 0.3 νννν = 0.6 

E[Y] = 

0.47 
µ µ µ µ = 

0.14 
νννν = 0.4 

E[Y] = 

0.46 

N=1000 0.0473 0.5320 0.0333 0.0863 0.4894 0.0242 0.1586 0.6415 0.0253 

N=100 0.0673 0.3060 0.0310 0.0563 0.2827 0.0296 0.0946 0.2984 0.0308 

5.0][ ≅YE

 

N=50 0.0986 0.5540 0.0400 0.1192 0.3604 0.0434 0.1337 0.3059 0.0437 

 
 
 
As mentioned above, the cutoff factor is used for knowing recommended sample size for 

a given sample mean. Table 6.13 gives the cutoff values for the parameters with the 

assumption of gamma prior for the shape parameter. In this research, the cutoff value for 

the sample mean for ν = 0.4 is used for determining the sample size. With the threshold 

value of 85%, the sample size less than 50 is sufficient for the sample mean of 10. The 

exact sample size for the sample mean of 10 will be determined by performing more 

simulation runs (not shown here). For the sample mean of 1, the sample size of 1000 is 

sufficient since the cutoff value is almost equal to the threshold value. For the sample 
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mean of 0.5, a sample size much greater than 1000 is required to reduce unreliable 

estimation of parameters. 

 
 
 

Table 6.13: Cutoff factor of the estimated parameters (gamma prior) 
 

µ µ µ µ = 10 νννν = 0.8 
E[Y] =  

10.05 
µ µ µ µ = 10 νννν = 0.6 

E[Y] =  

10.14 
µ µ µ µ = 10 νννν = 0.4 

E[Y] =  

10.55 

N=1000 0.9850 0.9354 0.9828 0.9762 0.9436 0.9750 0.9757 0.9246 0.9746 

N=100 0.9551 0.8550 0.9543 0.9510 0.8364 0.9576 0.9393 0.8333 0.9481 

10][ ≅YE

 

N=50 0.9373 0.7403 0.9400 0.9258 0.7762 0.9357 0.9062 0.7761 0.9259 

 
µ µ µ µ = 1 νννν = 0.8 

E[Y] = 

1.09 
µ µ µ µ = 0.8 νννν = 0.6 

E[Y] = 

1.07 
µ µ µ µ = 0.5 νννν = 0.4 

E[Y] = 

1.04 

N=1000 0.9439 0.9095 0.8789 0.8659 0.7766 0.8620 0.6781 0.6245 0.8428 

N=100 0.6241 0.6724 0.8344 0.4514 0.5335 0.7456 0.2317 0.4013 0.6670 

1][ ≅YE
 

N=50 0.0385 0.3053 0.6702 0.0941 0.3303 0.6345 -0.1865 0.1367 0.5784 

 
µ µ µ µ = 0.5 νννν = 0.8 

E[Y] = 

0.53 
µ µ µ µ = 0.3 νννν = 0.6 

E[Y] = 

0.47 
µ µ µ µ = 

0.14 
νννν = 0.4 

E[Y] = 

0.46 

N=1000 0.6951 0.5215 0.4751 0.5005 0.4585 0.5079 0.2550 0.3302 0.4730 

N=100 0.4281 0.4551 0.5679 0.2254 0.3155 0.5368 -0.2500 0.1979 0.5091 

5.0][ ≅YE

 

N=50 0.1086 0.1495 0.5178 -0.4130 0.1343 0.4222 -0.7496 0.1097 0.4218 

 
 
 
Similar to the results with log-normal prior, Table 6.13 shows that a sample size less than 

50 is sufficient for the sample mean value equal to 10. When sample mean equals 1, a 

sample size of 1,000 is sufficient for proper estimation of parameters. The sample size of 

much greater than 1,000 is needed when the data sample mean value equals 0.5. 

 

6.2.3 Recommended sample size 

 

Table 6.14 gives the recommended sample size for developing the COM-Poisson models. 

The recommended sample size are necessary to circumvent the problem of low sample 

mean and small sample size. If the sample size is less than the recommended sample size, 

then the parameter estimates is likely to become unreliable and biased. The sample sizes 

recommended below were confirmed by performing additional simulations (shown in 

Appendix A).  
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Table 6.14: Recommended sample size for minimizing the unreliable estimation of parameters 

Sample mean ][YE  Minimum Sample size 

10 25 

5 50 

2 150 

1 1000 

0.75 3000 

0.5 5000 

 
 
 
6.3 Discussion 

 

The results of this study show that the COM-Poisson models are affected by the low 

sample mean and small sample size. The results of the simulation study presented above 

raise few important points that merit further discussion. 

• First, the parameters of COM-Poisson models are estimated accurately 

irrespective of the sample sizes for a sample mean of 10. Although the estimated 

values are close to the theoretical value, the standard deviation of the estimates 

became large for the sample size of 100 and 50. The difference between the 

minimum and maximum value of the estimates increased as the sample size 

decreased. 

• Second, for the sample mean of 1 and 0.5, the parameter estimates started 

deviating from the theoretical value. When the mean is equal to 0.5 and sample 

size is 50, the estimates are highly unreliable and biased. Sometimes, the 

estimates are not significantly different from zero at these extreme cases. But it is 

clear from the simulation results that there is no systematic bias in the prediction 

of estimates. 

• Third, the log-normal prior or a gamma prior on the shape parameter did not have 

different effect on the results of parameter estimates.  
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6.4 Summary 

 

The objective of the study in this chapter was to examine the effects of low sample mean 

and small sample size on the parameter estimates of COM-Poisson models. The 

simulation study was used to quantify the prediction accuracy. Three different sample 

means: E[Y] ≅  10, 1.0 and 0.5, and three different sample sizes: n= 1000, 100, 50 were 

considered in the analysis. During posterior analysis, the estimation was carried out with 

a log-normal prior and a gamma prior for the shape parameter. 

 

The simulation results show that the parameter estimates are very close to the theoretical 

value for all the parameters of COM-Poison models for a sample mean of 10 irrespective 

of the sample sizes. However, the standard deviation increased with the decrease in the 

sample sizes. For the sample mean equal to 1 and 0.5, the parameters are mis-estimated. 

Although the posterior mean is close to the theoretical value for the sample mean of 1, 

the standard deviation and the difference between minimum and maximum value became 

larger compared to the sample mean equal to 10. For the sample mean of 0.5 and the 

sample size of 50 (i.e., extreme conditions), the estimates are highly unreliable and 

biased. Also, the assumption of either a log-normal prior or a gamma prior had a similar 

effect on the parameter estimates. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

 

 

There has been considerable research in the traffic safety literature which deals with the 

development of statistical models for analyzing motor vehicle crashes. The most common 

probabilistic structure of the models used by transportation safety analysts for modeling 

motor vehicle crashes are the traditional Poisson and Negative Binomial distributions. 

Although the Poisson and NB regression models possess desirable distributional 

properties to describe motor vehicle accidents, these models are not without limitations. 

These limitations include the biased goodness-of-fit statistics, improper estimation of 

dispersion parameter and biased parameter estimates when the crash data are 

characterized by low sample mean and small sample size. The other important limitation 

associated with NB models is the mis-specification of the probability density function 

(PDF) when the data exhibits under-dispersion, the condition that the mean is greater than 

the variance. Many new statistical methods have been proposed to overcome the 

difficulties that are raised by traditional Poisson and Poisson-gamma models. None of 

these new models were able to replace the NB models for analyzing traffic crash data.  

 

The primary objectives of this research were, to characterize the performance of COM-

Poisson distribution (an innovative distribution which is an extension of Poisson 

distribution), to introduce COM-Poisson GLMs for modeling different traffic crash 

datasets and finally to quantify the effect of small sample size and low sample mean on 

COM-Poisson models. 

 

This chapter first presents the summary of the research work and then describes proposed 

directions for future research work. 
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7.1 Summary of Work 

 

This section briefly presents the major contributions of this research. The contributions of 

this dissertation include characterizing the properties of the COM-Poisson distribution 

and knowing how this new distribution and its GLM could be used by the traffic safety 

community. 

 

7.1.1 Performance of the COM-Poisson GLM 

 

As discussed in Chapters II and III, though the COM-Poisson distribution was introduced 

a few decades ago, the statistical and probabilistic properties of this distribution were 

derived only recently. Although it was known that the COM-Poisson distribution handles 

count data, it is important to better understand its performance for the wide variety of 

situations. This need motivated to do a research study on this topic presented in Chapter 

III.  For the purpose of this research, nine different scenarios were evaluated.  These 

scenarios included under-, equi- and over-dispersed datasets with low, moderate and high 

sample mean values respectively. The simulation study was used to assess the 

performance of COM-Poisson distribution.  

 

The true (assigned) parameters for the centering and shape parameters were compared 

with the posterior estimates of MCMC runs using with graphical plots. The results of this 

study indicated that the true parameters is located in the 95% credible interval for nearly 

all scenarios and are generally close to the estimated posterior mean of the parameters. 

Though the true parameters were inside the credible intervals for all scenarios, these 

intervals were found to be wider for the low mean values for both the centering and shape 

parameters. The bias in the prediction of the parameters and the mean value also 

increased as the data sample mean values decreased. Even for the low sample mean 

values, the bias was considerably less for under-dispersed datasets than for over-

dispersed and equi-dispersed datasets. The other important finding from this study 

showed that despite its flexibility in handing count data with all dispersions, the COM-

Poisson distribution suffers from important limitations for low mean over-dispersed data.  
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The other motivation towards this study was to better understand how well the 

approximation for the mean and variance suggested by Shmueli et al (2005) works. It was 

found that the asymptotic approximation of the mean approximates the true mean 

adequately even for E[Y] > 5. This value determined through numerical analysis of the 

COM-Poisson GLM was substantially lower than the lower bound value equal to 10 

suggested previously. The accuracy of the approximation dropped as the sample mean 

value decreased. The asymptotic approximation was accurate for all datasets with high 

and moderate sample mean values irrespective of the dispersion in the data. The 

approximation was also accurate for low sample mean values for under-dispersed 

datasets. However, the accuracy dropped substantially for low sample mean values for 

over-dispersed and equi-dispersed datasets.   

 

Finally, it was also found that the datasets with higher sample mean values required more 

computational time for a given number of replications than the low mean datasets did. 

Similarly, it is important to note that the over-dispersed datasets required more 

computational time than the other type of datasets.  

 

7.1.2 Application to over-dispersed crash data  
 
The second part of this dissertation documented in Chapter IV was related to the 

application of the COM-Poisson GLM for analyzing motor vehicle crashes. This study 

was motivated by the fact that many researchers shifted their interests in applying new 

methods for analyzing crash data because of limitations associated with the commonly 

used NB models. The application of COM-Poisson for analyzing crash data was first 

investigated and then compared with the NB models.  The comparison analysis was 

carried out using the most common functional forms used by transportation safety 

analysts, which link crashes to the entering flows at intersections or on segments. This 

comparison was important since the foremost objective was to find whether COM-

Poisson GLM could replace NB models for analyzing traffic crash data.  

 

Using 4-legged signalized intersections crash data collected in Toronto and rural 4-lane 

divided and undivided highways crash data collected in Texas, several full Bayes (FB) 
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NB and COM-Poisson GLMs were developed. Several methods were used to assess the 

statistical fit and predictive performance of the models. The results of this study showed 

that COM-Poisson GLMs perform as well as FB NB models in terms of GOF statistics 

and predictive performance. The estimated values with COM-Poisson and NB models are 

slightly different, with the COM-Poisson output being always lower than the NB output.  

 

The important point noted, as documented in the literature, is that the NB GLM could 

theoretically handle under-dispersion, since the dispersion parameter can be negative 

( ( ) 2( )Var Y µ α µ= + − ). However, in this case, the mean of the Poisson is no longer 

gamma distributed because this latter distribution cannot have negative parameters (i.e., 

( ),gamma φ φ ). In addition, researchers who have worked on the characterization of the 

NB distribution and GLM have indicated that a negative dispersion parameter could lead 

to a mis-specification of the PDF (when ( )1 max of counts α− < ). 

 

The relative marginal effects of the covariates were also investigated. It was found that 

the relative marginal effect of the major flow for the COM-Poisson model depended on 

the major and minor entering flows. The relative marginal effect on the expected mean 

for a unit increase in major flow remained nearly constant for lower minor flow volumes 

(e.g., 100 veh/day) and the rate of curvature increased with the increase in minor flows. 

On the other hand, the relative marginal effect of the major flow for the NB model was 

independent of the minor flow. With a unit increase in major flow, the relative marginal 

effect on the expected mean value decreased. This decrease was smaller for higher major 

flows. Similar results were seen for both COM-Poisson and NB models for the marginal 

effect related to the minor flow.  

 
7.1.3 Application to under-dispersed crash data 
 
It was clear from the results of the Chapter IV that the COM-Poisson distribution 

performs as well as the NB distribution. The next objective was to verify if COM-Poisson 

distribution outperforms NB distribution in some way. The research was motivated by the 

fact that the COM-Poisson models can handle under-dispersed data easily (as detailed in 
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Chapters II, III and IV) whereas the NB models have difficulties in handling under-

dispersed data (as detailed in Chapter IV). In this research, a comparison was made 

between COM-Poisson model and traditional Poisson and gamma probability models. 

For each of these models, several methods were used to assess the statistical fit and 

predictive performance. 

 

Using crash data collected at 162 railway-highway crossings in South Korea between 

1998 and 2002, several COM-Poisson models were first estimated. The modeling results 

were compared to those produced from the Poisson and gamma probability models 

documented in Oh et al. (2006) and was documented in the Chapter V. This study has 

shown that the COM-Poisson models provide better statistical performance than the 

Poisson and gamma probability models when under-dispersion is observed in the data. 

Furthermore, the gamma probability model works as a dual-state model whereas COM-

Poisson does not assume a dual-state data generating process. Thus the COM-Poisson 

GLM offers a more defensible approach for modeling under-dispersed data. 

 

An interesting finding in this research was that with the inclusion of all eight significant 

variables, the COM-Poisson GLM shows that the modeling output exhibits near equi-

dispersion. This characteristic has also been documented in Miaou and Song (2005), who 

proposed complex multivariate hierarchical predictive models for analyzing crash data. 

They showed that by significantly improving the mean function, one could almost 

eliminate the over-dispersion. In this study, it was also found that when the two non-

significant variables were removed, the COM-Poisson model clearly showed signs of 

over-dispersion. On the other hand, when the same six variables used in the Poisson 

model were utilized for the COM-Poisson model, the modeling output showed signs of 

under-dispersion. This unusual characteristic (i.e., changes from under-dispersion to 

over-dispersion or vice-versa by including or removing explanatory variables) was 

attributed to the very low sample mean value (0.33 crashes per year) of the dataset. Under 

this condition, this illustrates that the predicted mean values can significantly influence 

the variation found in the data.  
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7.1.4 Effects of small sample size and low sample mean 
 

The effect of small sample size and low sample mean value on the parameter estimates of 

COM-Poisson models was then investigated. It was already clear from the literature 

review in Chapter II that the NB models suffer from important limitations when the data 

are characterized by low sample mean values and small sample size. A simulation study 

was used to better understand the effects on biases and parameter estimation of the COM-

Poisson distribution at these extreme conditions. The results of the simulation study 

showed that the COM-Poisson models are affected by the low sample mean value and 

small sample size. Also, it was found that there is no effect of the different prior 

distribution for the shape parameter on the posterior estimation and biases of the 

parameters. 

 

The following are findings of this simulation study with the sample mean of 0.5, 1 and 10 

and the sample sizes of 50, 100 and 1000: 

1. There was no change in the prediction of parameter estimates of COM-Poisson 

models for different sample sizes for the sample mean of 10. However, the 

standard deviation of the estimates increased with the decrease in sample size, 

although the predicted value was close to the theoretical value in all cases. The 

range between the minimum and maximum value of the estimates increased as the 

sample size decreased. 

2. It was found that the parameter estimates started deviating from the theoretical 

value for the sample mean of 1 and 0.5. At the mean of 0.5 and sample size of 50, 

the estimates are highly unreliable and biased. Sometimes, the estimates are not 

significantly different from zero at these extreme cases. There was large 

difference between the minimum and maximum values for the lower sample 

means. This difference increased with the decrease in sample size.  

3. The assumption of different priors for the shape parameter for the posterior 

estimation was also investigated. Two different priors: log-normal prior and 

gamma prior were examined. It was found that there was no major difference in 
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the prediction of the estimates and the standard deviations with the change in 

prior assumption.  

 

7.2 Directions for Future Research 

 

The following are the recommendations for future research: 

 

• As discussed in Chapter III, due to the high computational time and lack of 

readily available software, the analysis was restricted to five simulation runs (or 

datasets) for each scenario. It is recommended to conduct the simulations with 

large number of replications (around 100) for each of the nine scenarios. In 

addition to these simulations, it is recommended to conduct the research with 

datasets having sample mean value around 0.3. The RHX crash data documented 

in Chapter V had a sample mean value of 0.33. 

• It was clear from the results of Chapter III that the approximation proposed by 

Shmueli et al., (2005) worked well for all dispersions in the data with high and 

moderate mean. The approximation was considerably inaccurate for datasets with 

low mean and over-, and equi-dispersion. It is recommended to extend this 

research by conducting a simulation study on the datasets with sample mean 

between 0.8 and 5. It will be helpful in knowing exact cutoff of the sample mean 

value where the approximation starts to deviate by a large amount. 

• The EB method is now used commonly in highway safety analyzes for refining 

the parameter estimates, countermeasure analysis and hotspot identification 

(identifying road sites with an unacceptable high accident risk). The research can 

be extended by developing an EB modeling framework for the COM-Poisson 

model. 

• There are different varieties of models for identifying hazardous sites (also called 

as hotspot identification). It is recommended to conduct the research by 

developing the methods about how to use COM-Poisson GLMs for identifying 

hazardous sites. 
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• There have been discussions about the assumption related to the fixed dispersion 

for NB models (Hauer, 2001; Hydecker and Wu, 2003; Geedipally and Lord, 

2008). Recently, researchers have started using a covariate-dependent dispersion 

parameter for NB models for analyzing crash data. The COM-Poisson GLMS 

developed in Chapter IV and V used a fixed shape parameter (independent of 

covariates). Further research should be done to examine the effects of a covariate-

dependent shape parameter on COM-Poisson GLMs similar to that of NB GLMs 

for analyzing crash data. 

• The computational time for the posterior estimation of parameters was 

significantly long because of characteristics of the data (e.g., low mean) and the 

inclusion of large number of covariates in the study documented in Chapter V. It 

is anticipated, however, that the computational time will be decreased 

significantly when the maximum likelihood estimation of the COM-Poisson 

distribution is used. Despite the computational time advantage, the MLE does not 

provide the full posterior distributions for the regression parameters nor does it 

allow expert knowledge to be incorporated through the use of informative priors. 

Sellers and Shmueli (2008) developed a likelihood formulation for COM-Poisson 

distribution by the time this dissertation was written. It is recommended to 

estimate the parameters with MLE and then compare it with the estimates in 

Chapters IV and V. 

• It is possible that the dataset used in Chapter V could contain intermingled over- 

and under-dispersed counts given the changes in the nature of the variance 

function when variables are included or excluded. It is recommended that the 

COM-Poisson models with a dual link (covariate dependent shape parameter) are 

estimated for datasets exhibiting similar characteristics as the one used in Chapter 

V to see if different sites show different levels of dispersion. 

• The simulation analysis carried out in Chapter VI had covariate independent 

centering and shape parameters. The research can be extended by performing the 

simulation study on covariate-dependent parameters. Crash datasets having low 

sample mean and small sample size should be analyzed to validate the findings of 

the simulation study in Chapter VI. 
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• The procedure for correcting the bias of the parameters caused by low sample 

mean and small sample size should be developed for COM-Poisson models, 

similar to the one developed for NB models (Park and Lord, 2008). 

• As documented in Chapter IV, depending upon the specification of the parameters 

µ and ν, the COM-Poisson model can predict more zeros than the NB model for 

the same mean value. Nonetheless, both models should not be used as a direct 

substitute to zero-inflated models (when they are warranted). As stated in Shmueli 

et al., (2005), the COM-Poisson distribution’s structure allows for a variety of 

generalizations such as zero-inflated data and dependence. It is recommended to 

develop zero-inflated COM similar to zero-inflated Poisson (ZIP) and zero-

inflated negative binomial (ZINB) models (not for traffic safety applications). 

• It was found that the risk of a mis-estimated posterior mean caused by LSM and 

SSS can be greatly minimized when an appropriate non-vague prior distribution is 

used for NB models (Lord and Miranda-Moreno, 2007). A similar analysis 

comparing the influence of informative and non-informative prior can be done for 

COM-Poisson models. 
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APPENDIX A 

SIMULATION RESULTS FOR DETERMINING RECOMMENDED 

SAMPLE SIZE FOR MINIMIZING THE UNRELIABLE 

ESTIMATION OF PARAMETERS 

 
 
 

Table A.1: Results of parameters for different sample mean values 

10][ ≅YE  (µ µ µ µ = 10, νννν = 0.4, E[Y]=10.55) 

 N=20 N=25 N=30 

Mean 8.8182 0.4293 9.8369 8.9385 0.4211 9.9554 9.4660 0.4367 10.0537 

Std.dev 2.5119 0.2225 1.6251 1.1755 0.1818 1.1468 1.0552 0.1311 0.9272 

Min. 0.0000 0.0092 0.0000 4.3982 0.1631 4.9532 6.5344 0.2225 7.6459 

Max. 13.0485 1.1868 13.0655 12.4199 0.9894 12.8348 11.8769 0.8593 12.4953 

5][ ≅YE (µ µ µ µ = 4.3, νννν = 0.4, E[Y]=5.04) 

 N=50 N=70 N=100 

Mean 3.9053 0.4255 4.7021 4.0902 0.4185 4.7842 4.1238 0.4156 4.8033 

Std.dev 0.9552 0.1481 0.4937 0.6757 0.0930 0.4374 0.5321 0.0809 0.3558 

Min. 0.7463 0.0907 3.3813 1.3704 0.1296 3.6987 2.6513 0.2131 4.0010 

Max. 5.7709 0.8055 6.2277 5.5811 0.6345 6.0310 5.3873 0.6624 5.7769 

2][ ≅YE (µ µ µ µ = 1.3, νννν = 0.4, E[Y]=2.001) 

 N=100 N=150 N=200 

Mean 1.0353 0.3833 1.8570 1.1222 0.4029 1.8524 1.2146 0.4295 1.8484 

Std.dev 0.4866 0.1613 0.2935 0.3817 0.1486 0.1894 0.3006 0.0986 0.1250 

Min. 0.0000 0.0414 0.0000 0.4015 0.1412 1.3745 0.3879 0.1978 1.4910 

Max. 1.9551 0.8080 3.0475 1.9695 0.7821 2.3524 1.9397 0.6840 2.1444 

75.0][ ≅YE (µ µ µ µ = 0.3, νννν = 0.4, E[Y]=0.751) 

 N=1500 N=1800 N=3000 

Mean 0.6172 0.8225 0.5998 0.6149 0.8201 0.5945 0.5778 1.0046 0.8631 

Std.dev 0.0556 0.0575 0.0293 0.0493 0.0481 0.0186 0.0510 0.1975 0.0800 

Min. 0.4467 0.5462 0.5596 0.4818 0.6363 0.5585 0.4544 0.7559 0.7098 

Max. 0.7174 0.9201 0.7345 0.7406 0.9395 0.6938 0.7486 1.2981 1.0546 

5.0][ ≅YE (µ µ µ µ = 0.14, νννν = 0.4, E[Y]=0.46) 

 N=2000 N=2500 N=5000 

Mean 0.5421 1.1954 0.3043 0.5446 1.1962 0.3051 0.5355 1.1757 0.5515 

Std.dev 0.0376 0.0628 0.0086 0.0346 0.0577 0.0080 0.0204 0.0336 0.0163 

Min. 0.4550 1.0549 0.2854 0.4544 1.0489 0.2864 0.4926 1.1064 0.5489 

Max. 0.6241 1.3366 0.3239 0.6162 1.3181 0.3215 0.5811 1.2519 0.7073 
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Table A.2: Bias in the parameter estimation 

 µ µ µ µ = 10 νννν = 0.4 E[Y] = 10.55 

N=20 1.1818 -0.0293 0.7031 

N=25 1.0615 -0.0211 0.5846 
10][ ≅YE  

N=30 0.5340 -0.0367 0.4863 

 µ µ µ µ = 4.3 νννν = 0.4 E[Y] = 5.04 

N=50 0.3947 -0.0255 0.3379 

N=70 0.2098 -0.0185 0.2558 

5][ ≅YE

 

N=100 0.1762 -0.0156 0.2367 

 µ µ µ µ = 1.3 νννν = 0.4 E[Y] = 2.001 

N=100 0.2647 0.0167 0.1440 

N=150 0.1778 -0.0029 0.1486 
2][ ≅YE  

N=200 0.2647 0.0167 0.1440 

 µ µ µ µ = 0.3 νννν = 0.4 E[Y] = 0.751 

N=1500 -0.3172 -0.4225 0.1512 

N=1800 -0.3149 -0.4201 0.1565 75.0][ ≅YE

 N=3000 -0.2778 -0.6046 -0.1121 

 µ µ µ µ = 0.14 νννν = 0.4 E[Y] = 0.46 

N=2000 -0.4021 -0.7954 0.1579 

N=2500 -0.4046 -0.7962 0.1571 5.0][ ≅YE

 N=5000 -0.3955 -0.7757 -0.0893 

 
 
 

Table A.3: MSE of the estimated parameters 

 µ µ µ µ = 10 νννν = 0.4 E[Y] = 10.55 

N=20 7.7064 0.0504 3.1353 

N=25 2.5087 0.0335 1.6569 
10][ ≅YE  

N=30 1.3985 0.0185 1.0962 

 µ µ µ µ = 4.3 νννν = 0.4 E[Y] = 5.04 

N=50 1.0683 0.0226 0.3580 

N=70 0.5006 0.0090 0.2568 

5][ ≅YE

 

N=100 0.3142 0.0068 0.1827 

 µ µ µ µ = 1.3 νννν = 0.4 E[Y] = 2.001 

N=100 0.3069 0.0263 0.1069 

N=150 0.1773 0.0221 0.0580 
2][ ≅YE  

N=200 0.0976 0.0106 0.0389 

 µ µ µ µ = 0.3 νννν = 0.4 E[Y] = 0.751 

N=1500 0.1037 0.1818 0.0237 

N=1800 0.1016 0.1788 0.0248 75.0][ ≅YE

 N=3000 0.0798 0.4045 0.0190 

 µ µ µ µ = 0.14 νννν = 0.4 E[Y] = 0.46 

N=2000 0.1631 0.6365 0.0250 

N=2500 0.1649 0.6373 0.0247 5.0][ ≅YE

 N=5000 0.1568 0.6029 0.0082 
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Table A.4: Cutoff factor of the estimated parameters 

 µ µ µ µ = 10 νννν = 0.4 E[Y] = 10.55 

N=20 0.6852 0.4773 0.8200 

N=25 0.8228 0.5653 0.8707 
10][ ≅YE  

N=30 0.8751 0.6882 0.8959 

 µ µ µ µ = 4.3 νννν = 0.4 E[Y] = 5.04 

N=50 0.7353 0.6468 0.8728 

N=70 0.8270 0.7734 0.8941 

5][ ≅YE

 

N=100 0.8641 0.8018 0.9110 

 µ µ µ µ = 1.3 νννν = 0.4 E[Y] = 2.001 

N=100 0.4649 0.5768 0.8240 

N=150 0.6248 0.6313 0.8700 
2][ ≅YE  

N=200 0.7427 0.7604 0.8933 

 µ µ µ µ = 0.3 νννν = 0.4 E[Y] = 0.751 

N=1500 0.4783 0.4816 0.7432 

N=1800 0.4817 0.4844 0.7349 75.0][ ≅YE

 N=3000 0.5112 0.3669 0.8405 

 µ µ µ µ = 0.14 νννν = 0.4 E[Y] = 0.46 

N=2000 0.2550 0.3326 0.4801 

N=2500 0.2544 0.3326 0.4845 5.0][ ≅YE

 N=5000 0.2605 0.3396 0.8354 
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APPENDIX B 

PRESENTATION AT “DOCTORAL STUDENT RESEARCH IN 

TRANSPORTATION OPERATIONS AND TRAFFIC CONTROL”, 

87TH ANNUAL MEETING OF TRANSPORTATION RESEARCH 

BOARD 
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