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ABSTRACT

Constrained Expectation-Maximization (EM), Dynamic Analysis, Linear Quadratic

Tracking, and Nonlinear Constrained Expectation-Maximization (EM) for the

Analysis of Genetic Regulatory Networks and Signal Transduction Networks.

(December 2008)

Hao Xiong, B.S.,University of Houston

Chair of Advisory Committee: Dr. Yoonsuck Choe

Despite the immense progress made by molecular biology in cataloging and

characterizing molecular elements of life and the success in genome sequencing, there

have not been comparable advances in the functional study of complex phenotypes.

This is because isolated study of one molecule, or one gene, at a time is not enough by

itself to characterize the complex interactions in organism and to explain the functions

that arise out of these interactions. Mathematical modeling of biological systems is

one way to meet the challenge.

My research formulates the modeling of gene regulation as a control problem and

applies systems and control theory to the identification, analysis, and optimal control

of genetic regulatory networks. The major contribution of my work includes biologi-

cally constrained estimation, dynamical analysis, and optimal control of genetic net-

works. In addition, parameter estimation of nonlinear models of biological networks

is also studied, as a parameter estimation problem of a general nonlinear dynamical

system. Results demonstrate the superior predictive power of biologically constrained

state-space models, and that genetic networks can have differential dynamic proper-

ties when subjected to different environmental perturbations. Application of optimal

control demonstrates feasibility of regulating gene expression levels. In the difficult

problem of parameter estimation, generalized EM algorithm is deployed, and a set
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of explicit formula based on extended Kalman filter is derived. Application of the

method to synthetic and real world data shows promising results.
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CHAPTER I

INTRODUCTION

A. Research Objectives

A living individual is more than a conglomeration of cells, more than a sum of its

parts; it is a complex biological system. It consists of many interrelated, interact-

ing, and interfering components. It should be studied as it exists, as a whole, for

it can be studied not only in terms of the mechanistic, molecular-level components

but also in terms of integrated operations [1]. Phenotype, the outwardly visible and

measurable characteristics of individuals, is often the emergent property of complex

interactions between genes, proteins, and other biochemical elements. Most pheno-

typic variations, including those involved in complex diseases and differential drug

responses, are generated by integrated actions of multiple genetic and environmental

factors that are organized into a hierarchical biological network through dynamic,

epigenetic, and regulatory mechanisms [2]. Concentrations of metabolites, genes or

proteins, and their dynamics largely determine the phenotype of the cells and are the

fingerprints of cellular physiology. Germline or somatic mutations lead to subsequent

transcriptional and translational alterations which will affect the phenotype of the

cells and cause diseases. Therapeutic interventions such as radiation, drug, and gene

therapy try to alter metabolites, proteins, and expressions of genes from an unde-

sired state or abnormal state to a desired or normal state. Designing efficient drugs

that have few side-effects and that can improve production of food, animal feed, en-

zymes, advanced biopolymers, chemicals, and pharmaceuticals require us to perform

systems identification on dynamic biological networks, study their dynamic behaviors

The journal model is IEEE Transactions on Automatic Control.
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such as stability and controllability, analyze their steady-state and transient response,

and to develop rules for optimally controlling the response and behavior of biological

systems.

The goal of this dissertation is to develop computational models and algorithms

for systems identification of genetic regulatory networks and signal transduction net-

works, to investigate the networks’ dynamic properties, and to design strategies for

control systems to optimally alter gene expressions. The specific objectives are as

follows:

1. Apply linear state-space models to the study of genetic regulatory networks, and

develop new system identification methods that produce biologically motivated

constrained models of genetic regulatory networks. The reason for performing

system identification first is to firmly ground all my subsequent studies in real

world data in order to have real world significance.

2. Apply differential dynamical analysis of genetic networks under different envi-

ronmental perturbations as a means to uncover the differential dynamical be-

haviors of genetic regulatory networks. The working hypothesis is that diseased

cells are fundamentally different from healthy cells in their dynamic behaviors.

3. Formulate genetic-regulatory-network therapy as a linear quadratic optimal

tracking problem and apply optimal control to the problem.

4. Develop and apply nonlinear parameter estimation methods to models of signal

transduction networks and/or genetic regulatory networks, which could be sub-

jected to time-delays, in order to obtain hard-to-meausure reaction rates and

constants.
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B. Significance of the Proposed Objectives

Because genes code proteins and proteins largely determine cells’ functioning, a

genome-wide expression profile is a nice window into the biochemical state of cells.

With the completion of human genome project and the availability of an increasing

number of organisms’ genome maps, microarrays can offer genome-wide expression

profiles for an increasing number of organisms. Gene regulations can be seen as of-

fering a bird’s-eye view of the biochemical state of cells. Therefore, a lot of effort in

systems biology has concentrated on studying genetic regulatory networks, particu-

larly the dynamical models of genetic networks.

Costrained estimation: I will discuss the rational for my choice of modeling

framework in the next chapter, so I will just note here that it is driven by our lim-

ited knowledge of mechanisms of gene regulation and biochemical reactions of cells in

general. But even for coarse-grained models, there still are not enough data to defi-

nitely learn a predictive model, even for a small system. One way we can deal with

this is by augmenting available data with additional biological knowledge to restrict

search space. The biologically motivated constraint I chose is the known structure of

genetic networks, which is usually gathered through direct experiments. This forces

dynamical models to be sparse and therefore a large number of parameters become

constants. This work also fits into the general structure learning framework of dynam-

ical Bayesian networks, where the parameter estimation is predicated on the current

structure, and the best structure is the one that generates best estimated parameters.

In other words, my constrained parameter estimation method can serve as the inner

loop of any structure learning algorithm for dynamical Bayesian networks.

Dynamical analysis: Although model learning garners the attention of many

researchers, dynamical analysis of learned models is also attracting attention [3, 4, 5,
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6]. However, comparative study of dynamical gene regulation has not drawn the same

degree of interest as its static counter-part, the differential expression of genes and

genetic networks. Differentially expressed genes are a valuable tool in genetic study.

Much of what we know about contributions of genes to diseases or physiological traits

comes from the comparative study of healthy and sick cells’ gene expression profiles;

it is a giant field in genetics. It is expected that dynamical differential analysis can

offer even more insights. People have used dynamical property for dynamical analysis

[4, 7], and I propose we analyze differential dynamical properties to uncover different

dynamical behaviors of sick and healthy cells. We know that healthy and sick cells

are fundamentally different, and that the difference would manifest itself dynamically.

Uncovering differential dynamical behaviors is one more step toward understanding

the role of gene regulation dynamics in pathogenesis.

Optimal control: Even with dynamical analysis, treatment through genes is a

daunting challenge, as the recent high-profile failures of gene therapy demonstrated

[8, 9]. The big problem is that gene regulation is complex, interacting, and interfering.

Targeting one or few genes is usually not efficacious and is often riddled with debil-

itating side-effects. Instead, we should target a genetic network. I propose to apply

optimal tracking (manipulation of inputs in order to have outputs track a reference

trajectory) to the manipulation of genetic networks. If a sick genetic network can

be made to behave like a healthy one, that should be an effective treatment. I chose

a particular framework, optimal control, because it has many tools so that we can

adapt mathematical formulation to the particular situation and its peculiar require-

ments. If we want to minimize dosage, we can incorporate that into the performance

index; or if we have hard limits on dosage, that can be considered a constraint on

feasible inputs. The flexibility and versatility of optimal control makes it a potentially

powerful tool in systems biology.
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Nonlinear parameter estimation: Linear models of gene regulation have the

virtue of simplicity and analytic tractability, but they lack fine-grained details and

offer poor mechanistic insights. As our biological knowledge grows, our available data

become more plentiful, we inevitably want to have detailed, mechanistic models of

genetic regulatory networks, as well as other biological networks such as signal trans-

duction networks or metabolic networks. In fact, signal transduction networks tend

to be modeled as nonlinear ordinary differential equations [10, 11, 12, 13]. Nonlin-

ear state-space dynamic models can model the nonlinear biochemical reactions when

there are many hidden variables difficult or impossible to measure directly. Nonlinear

state-space models can also make possible more detailed models of genetic regulatory

networks, such as those that take into account transcriptional factors binding. How-

ever, because functional activities of cells tend to be compartmentalized and ordinary

differential equations (ODEs) presume all elements are well mixed, time-delays some-

times need to be introduced into models to account for the transport process. For

example, transcription takes place in the nucleus for eukaryotic cells, but translation

takes place in the cytoplasm, so mRNAs need to travel out of the neucleus before

translation can take place. Nonlinearity and time-delay are hurdles we must face as

we seek ever more detailed, mechanistic understanding of biological networks.
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CHAPTER II

BACKGROUND

Biology and mathematics are no strangers. Wiener considered his cybernetics to be a

unifying work of engineering and biology, and Kalman alluded to biological analogies

in his work [14]. The field of mathematical biology has been laboring on metabolic

pathways, heart electrical patterns, and neural and circadian oscillations [14]. As

for the current wave of quantitative studies in systems biology, the tipping point

was genome sequencing, which enabled high-throughput experimental methods like

microarrays [15], protein arrays [16], mass spectrometry [17], and nuclear magnetic

resonance (NMR) [18, 19], while yeast two-hybrid assay or chromatin immunoprecip-

itation allowed the detection of protein-protein or protein-DNA interactions [20, 5].

Then there are promising breakthroughs such as nanopore gene sequencing [21] or

nanotechnology that enable experimental methods to examine the physiological func-

tions [22].

A. Background on Gene Regulation

In this section, I will briefly discuss some basic terms about genes and gene regulation,

since they will be used repeatedly throughout this proposal.

DNA can be seen as a string of symbols (A, T, G, C) that carry genetic informa-

tion. To decode this genetic information, cells translate different parts, or regions, of

DNA into different proteins; the sequence of the amino acids which make up the end-

product, the protein, depends on the sequence of symbols in the generating region of

DNA. An intermediate product of DNA as it is translated into protein is RNA, and

the process of generating RNA from DNA is called transcription. For our purpose,

we will consider the specific region of DNA that is involved in producing a protein to



7

be one gene. In the human genome, there are about 20,000 to 25,000 genes.

In a living cell, if a gene is generating RNA, or being transcribed, then it is

being expressed. Whether a gene is expressed or not depends on the biochemical

needs within the cell and external signals from outside the cell. When and how

much a gene is expressed is tightly controlled by an intricate cellular machinery, and

this tight control is called gene regulation. Microarrays are one method to measure

how much a gene is expressed, in terms of concentration levels of RNAs, also called

expression levels.

A gene can regulate another gene by producing proteins that facilitate or inhibit

the other gene’s transcription and/or translation, by being in close proximity of each

other, or by competing for key proteins that are involved in transcription or transla-

tion. Some genes are auto-regulatory, that is, they regulate themselves. Except for

auto-regulatory genes, gene regulation has direction, so that if gene A regulates gene

B, there is no automatic guarantee that gene B also regulates gene A. In addition

to direction, there is also intensity to gene regulation, where one gene can strongly

or weakly impact another gene’s expression levels. The result of gene regulation is

fluctuation in the expression levels of regulated genes, which means we can consider a

gene to be a time-varying variable whose values determine the gene’s expression lev-

els. If we represent the regulatory relations of a group of genes as a directed graph,

where each gene is a vertex and each directed edge represents gene regulation with

the regulatory intensity as the edge’s value, we get a transcriptional network, also

called a genetic regulatory network.
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B. Two Approaches to Modeling

There are many approaches to dynamic modeling of biological systems, but they

can be broadly classified into two classes: the top-down or the bottom-up approach

[23, 24]. The bottom-up approach starts from the bottom with basic biochemical

reactions that are often represented as reaction kinetics. This approach is popular in

modeling signal transduction networks, some of which have been studied for decades

and are relatively well characterized. The reaction equations are usually ordinary

differential equations (ODEs) that approximate the discrete, stochastic, biochemical

reactions by assuming that there are enough molecules for a continuous approximation

and that the reactants are well mixed to have near uniform concentration. Kinetic

parameters are best directly measured, and when direct measurements are impossible,

the parameters can be estimated, although the estimated values are not entirely

trusted by some scientists. For example, one project, the Silicon Cell initiative,

does not accept estimated parameters for their models [25]. But regardless of the

source of kinetic parameters, the objective of the bottom-up approach is to discover

novel systematic properties and to predict system behavior. As more experiments

are performed and more data are generated, mechanistic models of subsystems can

be merged into larger systems, where the ultimate goal is to derive a mechanistic,

experimental model of biological systems.

There are two principle drawbacks to the bottom-up approach that prevents its

application everywhere in biology. One is that the bottom-up approach requires a lot

of information which is not available for most biological systems. To begin, it requires

a complete list of biochemical elements participating in the system, and then it needs

complete stoichiometric information and the kinetic parameter values. Second, the

number of reaction equations increase so dramatically as the modeled system gets
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larger, that simulating even a fraction of the approximately 25,000 genes and 100,000

proteins in a human cell would overwhelm the most powerful computer today and in

the foreseeable future. However, as Bornholdt noted [26], “we do not have to retrace

all the details of the biochemistry. ... a clever way to throw away details may be the

most important part of model building.” Bottom-up approach does not model every

detail of biochemical reactions, and the top-down approach throws out even more.

If the bottom-up approach to biological modeling is considered to be mecha-

nistic, then the top-down approach should be considered to be causal modeling or

“phenomenological,” that is, only causal relations and the observed phenomena are

modeled, not the underlying mechanisms. The advent of the top-down approach can

be associated with the availability of high-throughput data and the increasing avail-

ability of complete genome sequences for diverse organisms. Starting with genome-

wide measurements, often concentrations of mRNAs, the bottom-up approach seeks

to discover novel correlations or causal relations between genes and/or proteins, or in-

sights about the relations. There is no pretense that the causal relationships represent

any kind of mechanistic, direct molecular reactions. Often the causal relationships are

modeled as networks, as gene regulations are modeled as genetic regulation networks.

The top-down approach also differs from the bottom-up approach in the choice of

the underlying models. While the bottom-up approach often uses ODEs, the top-

down approach has seen many kinds of models from Boolean networks to Bayesian

networks to nonlinear ODEs. The particular choice depends on the kind of questions

the researcher wants to ask and the kind of available data the researcher has, but

among models using differential or difference equations, “the linear functions have

proved to be the most versatile . . . because they reduce the number of parameters

and avoid problems with overfitting” [24]. For the exact reason as quoted above, the

genetic networks models in this dissertation are all linear (the nonlinear parameter
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estimation chapter uses only signal transduction networks or artificial systems).

The next two subsections will briefly discuss some existing models of genetic

networks and existing efforts in estimating the parameters of these models.

C. Comparison of Models in Systems Biology

This subsection outlines some popular quantitative models of genetic regulatory net-

works. They include the state-space model, Boolean networks, Bayesian networks,

ordinary and partial differential equations.

1. State-space Models

The state-space model as defined in control/systems theory is different from the

state space model defined in computer science or graph theory. The key here is

the definition of states. It is defined as the information needed at time t0 such that,

together with all subsequent input for t > t0, the output can be uniquely determined

[27]. Define any systems by their inputs, denoted by µ, outputs, denoted as Y , and

states, X, and the general form of a state space model can be defined as

Ẋ(t) = f(t,X(t), µ(t))

Y (t) = g(t,X(t), µ(t)),

where f and g are functions of time, states, and inputs. A special case where f and

g are linear and t only appear as a variable of X and µ is called linear time-invariant

system (LTI), which will be treated in chatper III. If the inputs and outputs are

both continuous-time, then the model is a continuous-time model; if the inputs and

outputs are both discrete-time, then it is a discrete-time system. All the systems in

this dissertation are causal, which means all subsequent states depend only on the
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current and previous inputs.

The state-space model confers great flexibility. The states can be as ethereal as

biological influences or as concrete as mRNA concentrations. The level of mechanistic

details depends on data and research objective, while the model imposes no arbitrary

restraints. Nonlinear ODEs popular in the bottom-up approach are often state-space

models, and in theory, a state-space model originally conceived in a top-down ap-

proach effort can be expanded and augmented by mechanistic details to become a

model useful in a bottom-up effort.

2. Boolean Networks

Boolean networks can be seen as a kind of state-space model or as a dynamical

Bayesian network. Each node can only have 0’s and 1’s as valid states; and state

transition, given states at time t determine the states at time t + 1, only occur in

discrete time intervals using a Boolean function; thus, it cannot be used to model

transient behaviors [28, 24]. Assuming the Boolean networks are of a finite size, there

should be finite number of possible states. Given enough time steps repetition of

states are bound to occur. Those states that repeat in sequence, which includes the

steady states such as a sequence of one, are called attractors. States that are not

part of the attractors are transient states, and the attractors along with the transient

states that lead to the attractors are called the basin of attraction.

Learning Boolean networks also requires a lot of data, 2N if there are N genes in

the network and assuming full connectivity. Sparsity can reduce the data requirement

but the requirement remains considerable and this results in large increase in com-

putational complexity because all plausible sparse networks need to be generated in

order to pick the optimal network. An equally taxing problem is discretization. Given

the noisiness of data it is very hard to come up with a good scheme that balances
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false positive and false negative rates. This obstacle appears to be poorly addressed

by the literature [24].

An interesting application of Boolean networks is discovering global properties

of large scale systems. Kauffman [29] randomly generated graphs of n nodes, each of

which is connected to k other nodes which are inputs. For low k and certain kind

of state transition functions, the number of attractors on average is
√
n. Kauffman

argued that this agreed with observation that the number of cell types is roughly

square root of the number of genes, if attractors are interpreted as cell types.

Boolean networks make strong assumptions in order to be able to analyze large

systems. The assumptions that states are Boolean variables and state transition occur

synchronized are not always true in biological systems. In fact, rarely do biological

systems change states in lock step [14].

3. Bayesian Networks

Bayesian networks (BN) and its relative dynamical Bayesian networks (DBN) combine

the intuition of graphs with the rigor of probability theory. BN cannot cope with

the feedback ubiquitous in biology, and that is remedied by DBN. There are many

instances of using DBN to estimate a biological systems, and they will be discussed

in the next subsection, where systems identification is treated in more details.

4. Ordinary Differential Equations

ODE is detailed, has a good biochemical foundation (for an introduction in its use in

metabolic processes see [30, 31, 6]), and nonlinear ODEs in particular are prevalent

in the bottom-up modeling and have proven very successful. Bifurcation analysis can

uncover the sensitivity of steady states and limit cycles to variations in parameters.

Borisuk and Tyson [7] used bifurcation analysis along with numerical simulation to
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study the control of mitosis in the Xenopus oocyte, in which a rich variety of phys-

iological states could be discerned, including some that were previously unknown.

Also, in a series of remarkable papers [32, 33], researchers found that a purely neg-

ative feedback loop could only have one steady state, but a positive feedback loop

tends to have two stable states and the initial condition determines in which state the

systems end up. Thomas [34, 35] conjectured that a necessary condition for stable

periodicity is a negative feedback loop and multistationarity a positive feedback loop

This was later proved [36, 37]. The stable periodicity of negative feedback loops can

be interpreted as homeostasis, and multistationarity as differentiation [38].

Because kinetic parameters are hard to come by (see [39, 40] for efforts in this

regard), and because for the most part there is no analytic solution to the kind of

ODE’s that arise from kinetics (for numerical solutions see [41, 42], and see [11, 7,

43] for those with bifurcation analysis), nonlinear ODEs have not seen widespread

deployment in top-down modeling effort. There is one instance in kinematic modeling

presented in subsection 2 of this section. In general current methods are very much

inadequate and much hard work remains to be done. See [13] for some discussion on

this matter.

5. Partial Differential Equations

In eukaryotic cells genes and proteins are not diffused everywhere but are compart-

mentalized in organelle and nucleus, so ODEs are not always appropriate. Introducing

time delays into ODEs approximate diffusion and transport and can thus alleviate

the problems a little. However, for multiple-cells modeling or embryogenesis where

concentration gradients are vital, time delayed ODEs are still inappropriate, partial

differential equations (PDEs) are needed instead.
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Partial differential equations (PDEs) can be written in general as:

∂xi
∂t

= fi(~x) + δi
∂2xi
∂l2

where xi is the expression level of gene i, ~x a vector of all relevant concentrations,

δi a parameter, l a spatial measurement, and fi is a function of ~x. Add boundary

conditions to the above and it becomes a complete specification of PDEs. In general,

there is no analytic solution to PDEs, and numerical simulation is tricky, more difficult

than ODEs. In special cases, there are certain properties which can be obtained

without an explicit solution, and analysis was done for example on the segmentation

patterns of Drosophila embryos [44]. The result of that analysis could reproduce

the segmentation patterns but only for chosen parameters and boundary conditions,

contrary to biological observations that wide variation in individuals nevertheless

produce the same patterns. In addition, scant experimental evidence has turned

up to support a prediction of the analysis: two concentration variables suffice to

explain the segmentation patterns. Those facts have cast doubts on the validity of

the analysis.

PDEs are more theoretical than practical in biological modeling. It is reasonable

to start with ODEs and go to PDEs later when the results are unsatisfactory with

ODEs and it is known that localization plays an important role. The same is true

of the chemical master equations (CME) which is stochastic and therefore even more

difficult than PDEs.

D. Identification Methods for Genetic Networks

Much work in modeling genetic regulatory networks has gone toward identifying the

networks, their structures, and their parameters. Parameter estimation is called sys-
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tems identification in engineering and estimation in statistics, while structure learning

can be classified as model selection. Boolean networks [45, 46, 47, 48] and variants

such as probabilistic Boolean networks [49, 49, 50] represent the simplest dynamical

models. Nonlinear differential or difference equations [51, 52] have also seen some in-

terest. Dynamical Bayesian networks (DBN) are quite flexible and state-space models

can be seen as one kind of DBN, as can Boolean networks or hidden Markov mod-

els, and a body of literature on learning DBN predates its application in biological

modeling. So it is no surprise that much interest exists in learning a DBN model of

genetic networks [53, 54, 55, 56].

In the subsequent subsections, some examples of learning genetic networks mod-

els are provided to illustrate existing approaching.

1. Dynamical Bayesian Networks (DBN)

Bayesian network (BN) is a familiar fixture in the machine learning community; it

is a marriage of graphical model with probability theory. A recent development is

the dynamical Bayesian network (DBN), which models time-series and can cope with

cycles in the network. An example of BN is shown below (left).

Notice that it has cycles, which means it cannot be modeled by regular Bayesian

networks. But the same influence model can be modeled by the graph at the right.
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Biological networks are full of cycles because feedback is ubiquitous in biology. A

rough sketch of the general learning procedure will be given before two examples of

applying DBN to learn genetic regulatory networks are given. The two examples both

use DBN but they diverge so much in details that they are instructive on how flexible

dynamical Bayesian networks can be.

Every node in a Bayesian network, dynamical or not, is a random variable (RV)

and edges represent influence. A RV is considered conditionally independent of all of

its nondescentants given its parents. For expression profile study, the RVs, represented

by lower case x, are gene expressions, and upper case X is a vector of these RVs. In

this subsection we will be concerned with expression profiles. The value of a node

or its random variable is called a state. If there are n time points and vector Xi

represents all states at time i, then the conditional independence property can be

written mathematically as:

P (X1, . . . , XN) = P (X1)P (X2|X1) . . . P (Xn|Xn−1). (2.1)

Assuming the network structure remains stable throughout all time points, we can

write for each time point

P (Xi|Xi−1) = P (xi1|pi−1,1) . . . P (xip|pi−1,p) (2.2)

where lower case pi−1,j is the parents of jth gene at time i−1, and xip the expression

level of pth gene at time i.

After this, one needs to specify, for continuous cases, density function for the

conditional distribution of states given their parents and the criterion for judging the

goodness of a particular model. For inference on parameters, maximum posterior

probability is sought with a prior distribution on parameters for Bayesian, or max-

imum likelihood for frequentists, and that serves as the inner loop for the learning
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structure, which in theory traverses all possible models to find the best one. In prac-

tice this is prohibitively expensive computationally, and heuristics like hill climbing

are used to find the best structure. In biological applications biological restrictions

are placed on candidate models to further cut down on the running time.

2. Kinematic Modeling

Nachman et al. [57] decided to get down to the biochemical level and give a kinetic

model. They used the nonlinear Michaelis-Menten form of reaction speed

g(H, β) = β
γH

1 + γH

where H is the concentration of regulator protein, β the maximum transcription

rate of the gene, and γ the ratio of association and disassociation constants. This

formula have some presuppositions, among which are: the system is at equilibrium,

the association rate is much greater than the transcription rate, and the concentration

of regulator protein is much less than that of the genes or the polymerase.

For two regulators and two binding sites, they defined the following quantities

for fours cases of regulators occupying the binding sites:

S−.− =
1

Z
no binding S−.H2 = γ2H2/Z binding on 2nd site

SH1.− = γ1H1/Z binding on 1st site SH1.H2 = γ1H1γ2H2/Z both binding

where Z = (1+γ1H1)(1+γ2H2) is a normalizing constant, H is protein concentration

level, and the regulator function can be defined as weighted sum over all possible

binding states:

g(H1, H2 : ~α, β, γ1, γ2) = β(α−.−S−.− + α−.H2S−.H2 + αH1.−SH1.− + αH1.H2S
H1.H2)

(2.3)



18

where ~α is the vector that has all the various cases of α and each α is an indicator

variable that can take on only values 0 or 1 depending on the presence or absence,

respectively, of the binding pattern. In [57] only binary values are assigned to α’s, so

for non-cooperative activators α−.− is 0 and all other α’s are 1. This method can be

easily extended to more than two regulators, so they will not be elaborated here.

Nachman et al. modeled the regulators at time t+1, H t+1
i , from time t, H t

i , with

the persistence equation:

H t+1
i = H t

i + εt+1
hi

where εt+1
hi is normally distributed noise with zero mean and variance σi. The con-

ditional distribution for genes is different. For example, for genes regulated by two

regulators the conditional distribution of transcription rate Rt
k given regulator activ-

ities of H1 and H2 is

Rt
k = g(H t

1, H
t
2 : ~αk, βk, γk,1, γk,2)(1 + εtrk)

where εtrk is a Gaussian noise variable with zero mean and variance σk and g(·) is as

defined by equation (2.3).

A common problem with modeling at such a low level is that reaction rates are

modeled but microarrays provide only expression levels, so Nachman et al. decided to

model the mRNA changes as well, with rtk−δketk = d
dt
etk, where rtk is the transcription

rate, etk is the expression level of gene k at time t, and δk is the decay constant of gene

k. By solving this differential equation transcription rate rtk is obtained. It should be

noted that estimating rates from expression levels is extremely unreliable in general.

The likelihood function can be written from the above equations, but to compen-

sate for the tendency of maximum likelihood overfitting, a penalty term consisting

of Nparam

2
log(T ) where Nparam is the number of parameters and T is the number of
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time points, is subtracted. This is called Bayesian information criterion (BIC) score.

Another salient point is that Nachman et al. did not use hill climbing but something

called structural EM by Friedman et al. [58] for learning structures.

3. Nonparametric Regression for Nonlinear Modeling

Kim et al. [54] wanted to model nonlinear dynamics of genetic regulation and decided

to use nonparametric additive regression model with Gaussian noise as the conditional

densities. The density function at time i given its previous states is

fi(xi|xi−1) = gi(xi1|pi−1,1) . . . gp(xip|pi−1,p)

(note that boldface x represents a vector of variables and xip their components) for

p genes, and the full dynamical Bayesian network model can be described by the

following density functions:

f(x11, . . . , xnp) = f1(x1)

p∏
j=1

{
n∏
i=2

gj(xij|pi−1,j)

}
,

where

gj(xij|pi−1,j) =
1√

2πσ2
j

e


−

(xij−µ(pi−1,j))
2

2σ2

ff
,

and µ(pi−1,j) (a vector function) is the mean and a linear combination of basis func-

tions of jth gene’s parents’ expression levels at time i− 1. The basis functions in this

case are B-splines.

The posterior probability of the network is proportional to

π(G)

∫
f(x11, . . . , xnp)π(θG|λ)d θG,

where π(G) is the prior probability of network G, and π(θG|λ) a prior distribution

on parameters θG and λ a vector of hyperparameters. But this involves an integral



20

which is hard to compute so Kim et al. decided to use the Laplace approximation for

integrals to obtain the following criterion:

−2 log π(G)− r log(
2π

n
) + log |Jλ(θ̂G)| − 2nlλ(θ̂G|X)

where r is the dimension of θG,

lλ(θG|X) =
log f(x11, . . . , xnp; θ)

n
+

log π(θG|λ)

n
,

Jλ(θG) = −∂
2{lλ(θG|X)}
∂θG∂θTG

.

θ̂G is the mode of lλ(θG|X), and Jλ(θG) is a Hessian matrix. The prior on parameters

will not be introduced here. Suffice it to say, it involves a lot of symbols in what is

basically a Gaussian distribution. It will be noted that parameters are assumed to

be independent.

4. Boolean Networks

Boolean networks consist of directed graphs where nodes take on binary values of

0 and 1, and Boolean functions that detail state transition given parents’ states. In

theory, Boolean networks are also Bayesian networks, but the difference is pronounced

enough that the learning algorithms are completely different. A simple extension of

Boolean network is probabilistic Boolean network (PBN), in which each node has a

collection of possible Boolean functions and the choice of which function is used is

probabilistic. But the example I chose to present below is deterministic, not only

because it is from one of the most cited papers, but also that PBN learning builds on

learning deterministic Boolean networks.

Boolean networks are learned using data from the steady-state expression levels

of genes after some perturbations. The perturbation can be gene knockout, gene over-
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expression, or physical or biochemical stress such as radiation, temperature changes

or drug treatment. Learning a Boolean network takes a lot of data. A network of

size N if fully connected requires 2N samples, an impossible requirement in practice,

so people try to take advantage of the sparse nature of genetic networks to pare back

those hefty requirements. Ideker et al. [45] has the following algorithm to learn a

Boolean network and, if data is not enough to uniquely determine a network, new

experiments to get more is suggested.

Suppose the following is a collection of data so far. There are four genes and 5

perturbation samples. The first row denote gene names and the rest are the data,

one row per sample, starting with sample 0 to sample 4. The symbols and + denote

the levels artificially set by the experimenter, of low and high, respectively, while 0

and 1 also represent low and high levels but they are from measurements.

x0 x1 x2 x3

1 1 1 0 sample 0

1 0 1 sample 1

1 0 0 sample 2

1 1 1 sample 3

1 1 1 + sample 4


The algorithm consists of three steps for each gene:

1. For gene xn, find all pairs of samples where xn’s values differ, except where xn

is artificially set. For instance, x3 in the example has sample pairs (0, 1), (0, 3),

(1, 2), (2, 3) with different x3 values. Sample 4 is excluded since x3 is artificially

set. Then, from each pair, discover all genes whose expressions differ between

the two samples except the original gene that generated the pair. Sample pair

(0, 1), denoted by S01 has (x2, x0) different, and S12 = (x0, x1), S23 = (x1); but
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no x3 because different x3 values generated these pairs..

2. Find a minium set, Smin, of genes such that each Sij collected from step 1 has

at least one gene in Smin. This is an NP-complete problem and Ideker et al.

suggested a branch and bound algorithm, which leads to long running time for

large-sized networks. One good thing about the branch and bound algorithm

however is that it can discover all the minimum Smin networks, but since all of

them must be kept around, and since this is done for every gene the number of

candidate networks can grow quickly. Smin = (x1, x2) for the example.

3. For gene xn, a truth table is constructed by taking expression levels of Smin’s

members directly from data samples. In the example we have used so far, x3

has (1, 1), (1, 0), and (0, 1), from which we can construct a partial truth table.

This produces the most parsimonious network, and given a list of suggested pertur-

bation experiments one could use information theory to find out which perturbation

prunes the number of candidate networks the most. It goes like this: given a per-

turbation, there are totally S distinct states for L candidate networks, and for each

state set s there are ls networks, so we compute

Hp = −
S∑
s=1

ls
L

log2

(
ls
L

)
for each perturbation and choose the one that generates maximum Hp.
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CHAPTER III

CONSTRAINED SYSTEMS IDENTIFICATION

A. Introduction

Genetic regulatory networks, often abbreviated as genetic net-works, help us untangle

the intricate interactions of multiple genes under different environmental conditions.

Recent developments in microarray technologies allow scientists to simultaneously

measure expressions of thousands, even tens of thousands of genes, over time. The

time course of gene expression data can be used to reconstruct genetic networks.

In the past decade, a wide variety of models have been developed to study genetic

networks. They include Boolean networks [59, 60], differential equations [27, 61] and

dynamic Bayesian networks [62, 63, 64, 65].

A special subclass of dynamic Bayesian networks (DBN) is linear dynamical sys-

tems (LDS) [66, 62, 67, 68], also known as linear state-space models. LDS assumes

that observations depend on unobservable states that evolve under Markovian dy-

namics, i.e., future states are probabilistically determined only by the current state.

The state-space approach can provide a general framework for the design of genetic

networks in synthetic biology; how-ever, to date, most efforts in estimating an LDS

have tried to estimate parameters without considering structural constraints. Wu et

al. [69] proposed to use LDS to explore large time-course data. While they used

hidden, unobserved variables as the states and modeled expression profiles as the

output, they did not consider noise, and they estimated states from the output using

maximum likelihood factor analysis. The number of states in estimated models was a

variable estimated using the Bayesian information criterion (BIC), and the state tran-

sition matrix was estimated using least square methods. Wu et al. [69] considered the



24

state transition matrix as the key parameter that embodies genetic interaction, and

the stability or instability of this matrix was cited as supporting evidence for their

method. One limitation of Wu’s approach is that factors have no obvious biological

counterpart.

Later, Yamaguchi and colleagues [70, 71] also tried to use similar linear state-

space system to model genetic networks, where a state was defined as a module of

interacting genes. The parameters in the model measured quantitative relationships

between modules. The dimension of the states was determined by BIC and the

parameters were estimated by the EM algorithm.

Rangel and her colleagues, on the other hand, in a series of papers [72, 73, 74],

modeled individual gene interactions using linear state-space models. Their estima-

tion method consisted of two parts. The inner part was the expectation-maximization

(EM) algorithm with full connectivity assumed and therefore no structural con-

straints. To avoid over-modeling, they first estimated the dimension of hidden states

using cross-validation. To avoid over-fitting, they augmented their objective function

with terms that favor sparsity. In the outer loop, a bootstrapping method was used to

estimate the confidence intervals for all the parameters. Presence or absence of con-

nection between the genes in the network depends on whether the confidence inter-val

includes zero or not, which added up to be the structure of the network. The final

result of their method was a connectivity matrix, but no dynamical model resulted

since none of the estimated models agreed with the inferred connectivity matrix. Our

work seeks to estimate parameters that agree completely with a given connectivity

matrix.

Another approach is to separate the task of parameter estimation and model

selection and perform them separately, as Gennemark and Wedelin [10] did for S-

system models of genetic networks, where parameter estimation was done under the
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constraint of currently estimated structure. This is useful also when connectivity is

available from the literature [75, 76, 77] in which case only parameters need to be

estimated. Rangel et al. [72] recognized imposing constraints on parameters as a

possible extension of their work and suggested it in the discussion, and we will be

following that lead precisely in this report.

The purpose of this report is to develop state-space representations of genetic

networks with known structures. The method we propose is to combine linear dynam-

ical modeling with structural constraints to produce biologically realistic models that

can predict the dynamic behaviors of genetic networks. The motivation for imposing

structural constraints is as follows: Any genetic network has a structure specifying in-

teractions between the genes represented as connections. Not all genes are connected,

and in fact, every evidence points to genetic networks being sparse. The network

structures can often be determined from experiments by biologists, or they can be

roughly inferred by model selection. In linear dynamical models, the structure of the

genetic network is mainly reflected in the elements of the system matrices. If there are

no connections between the genes or connections between the gene and the external

stimuli, their corresponding elements in the system matrices should be equal to zero.

Without such constraints the models cannot take the structure of the network into

account. Therefore, to ensure that estimated models agree with a known structure,

constraints must be imposed on parameters. A popular method for the estimation of

parameters in state-space models is the expectation-maximization (EM) algorithm.

However, conventional unconstrained EM algorithms cannot be applied to models

with constraints, so modifications must be made. Incorporating network structure

into the state-space model of genetic networks will lead to imposing constraints on

the parameter space. Although constrained EM algorithms have been proposed in

the engineering literature [78, 79], the proposed constrained EM algorithms require
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iterative numerical solutions to equations derived in the M-step of the EM algorithm.

This iterative solution inside an already iterative method would make computation

time intolerably long. While generalized EM algo-rithms like the one Wu et al. [80]

used avoid iterative nu-merical solutions, they have slower convergence speed. There-

fore, in this report, we present a new type of constrained EM algorithm that admits

analytical and decoupled solution and thus preserves EM’s speed while not resorting

to numerical solutions or generalized EM. In the DBN community, this problem of

structural constraint is called the known structure and partial observability for the

learning of Bayesian networks [81]. Since structures of some genetic networks can

be gleaned from the literature or discovered through ChIP-on-chip experiments [82],

they should be taken into account whenever available [83]. Application to synthetic

data and real world SOS data show that our method significantly outperforms con-

ventional EM and that structural constraints are important in the reverse engineering

of genetic networks.

B. Methods

1. Linear Dynamical Systems

We have adopted the linear state-space model as the underlying model for genetic

networks, in particular the linear time-invariant (LTI) model. LTI is a linear state-

space model where parameters do not change over time [84]. A linear state-space

model of a dynamical system can be written as

xt+1 = Axt +But + w

yt = Cxt +Dut + v

(3.1)
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where xt is the state vector, yt the output vector, ut the input vector, all at time t ;

w and v are independent noise terms assumed to be white Gaussian with zero mean

and covariance Q and R respectively; matrix A is called the state transition matrix,

B the input matrix, C the output matrix, and D the feed-forward matrix. Matrices

A, B, C, D and covariance matrices Q and R together make up the parameters of the

dynamical system. Of all the matrices, A is the most important, as its eigenvalues

determine the stability of LTI. The system is stable if all eigenvalues are inside the

unit circle in the complex plane and unstable otherwise. The states represent the

biological forces that regulate gene expression. They describe the behaviors of gene

transcription but are hidden. The outputs denote the gene expression levels and are

measured by microarrays or green fluorescent proteins (GFPs): The expression level

is determined by the states of the regulated gene. The inputs can be any external

stimuli that influence gene regulation, such as drugs, proteins, RNAs, or expression

levels of connected genes.

The linear state-space model represented in equation (3.1) is quite general and

can represent more than simple exponential growth and decay, for it can represent

higher order dynamics, which we will look at next.

2. Higer Order Dynamics

If we stick with one gene for one state, then the system represented in equation (3.1)

only will have first order dynamics associated with all the genes, which is exponential

decay or growth, but since oscillation is widely observed in biology at least second

order should be considered in models of genetic networks. We will give a simple

derivation of how to add second order dynamics for the individual nodes of the net-

works using the principle of continuous to discrete conversion. This is similar to

d’Alch-Buc’s method [85]. Of course third or higher order dynamics can be similarly
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modeled, but care must be taken to avoid over-fitting. Suppose we have a second

order linear differential equation describing the dynamics of a node:

ẍ+ λ1ẋ+ λ2x =
∑
j

wjzj,

where x is the state of the node we are interested in,zj is the expression level of node

j and wj its corresponding weight, and λ1 and λ2 parameters. Let

x1 = x, x2 = ẋ.

Then we get  ẋ1

ẋ2

 =

 x2∑
j

wjzj − λ1x2 − λ2x1


=

 0 1

−λ2 −λ1


 x1

x2

 +

 0 · · ·

w1 · · ·


 z1

...

 .

(3.2)

If the steps are uniform, i.e.δt = 1 , then we can represent the derivatives as

dx

dt
≈ ∆x

∆t
, which becomes ∆x = x(k + 1)− x(k),

where k is the time step and the equation (3.2) becomes x1(k + 1)

x2(k + 1)

 =

 x1(k) + x2(k)∑
j

wjzj(k)− (λ1 − 1)x2(k)− λ2x1(k)


=

 1 1

−λ2 1− λ1


 x1(k)

x2(k)

+

 0 · · ·

w1 · · ·


 z1(k)

...

 .

(3.3)

The ones and zeros in equation (3.3) are fixed except in 1− λ1 where the whole term

is variable. An interesting observation is that all interactions and inputs are in the
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second order term x2.

We will apply this conversion to just one gene in the SOS network, lexA. But

first we need to derive the constrained EM algorithm.

3. Expectation-Maximization

Expectation-maximization (EM) is a well known method in sys-tems identification

[86, 87, 88, 89]. EM is a Maximum-Likelihood (ML) estimator of unobserved states

and unknown parameters and it operates in an iterative fashion. Each iteration

consists of two steps: the E-step and the M-step. In the E-step, states are estimated

using Kalman smoother with previous estimates of parameters as model parameters.

In the M-step, parameters are estimated using the estimated states obtained in the

E-step, and parameters are calculated as to maximize the likelihood. We will focus

on our modification to the M-step where network structure constraints are taken into

account. We will follow the notations in Gibson and Ninness [88], while Kailath et

al. [90] is a good source on Kalman filter. Rewriting equation (3.1) as xt+1

yt

 =

 A B

C D


 xt

ut

+

 w

v

 ,

while adopting the following definition for the sake of convenience:

zt =

 xt

ut

 ξt =

 xt+1

yt

 , Γ =

 A B

C D

 Π =

 Q 0

0 R

 . (3.4)

So equation (3.4) becomes

ξt = Γzt +

 w

v

 ,

 w

v

 ∼ N

 0

0

 ,Π
 .
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We also shall denote all the observations (or outputs) asY, all the inputs as U, and

all the states as X.

4. E-step

E-step needs to figure out the conditional expectation

Q(θ, θ′) = Eθ′ [logPθ(X,Y|U)|Y,U]

where θ is a vector of model parameters, θ′ is the current estimate of the parameters

and all the outputs are represented as Y, all the inputs as U , and all of the states

as X. First, the likelihood function for one time series is

Pθ(Yτn ,Xτn+1|Uτn) = Pθ(x1)
τn∏
t=1

Pθ(xt+1, yt|xt, ut), (3.5)

where τnis the number of time points of the time series, Yτn and Uτn are all the ob-

servations and inputs for a particular time series, distribution Pθ(x1) is N (µ,P1) and

distribution Pθ


 xt+1

yt


∣∣∣∣∣∣∣xt, ut

 is N (Γzt,Π); the equation is obtained through

noises being uncorrelated and Gaussian. Expand equation (3.5) and take logarithm

to get

−2 logPθ(Yτn ,Xτn+1|Uτn) = log |P1|+ (x1 − µ)TP−1
1 (x1 − µ)

+τn log |Π|+
τn∑
t=1

(ξt − Γzt)
TΠ−1(ξt − Γzt) .

(3.6)
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Define the following notations for N time series.

Υ =
N∑
n=1

τn, Φ =
1

Υ

N∑
n=1

τn∑
t=1

Eθ′{ξnt (ξnt )T |Yn
τn ,U

n
τn},

Ψ =
1

Υ

N∑
n=1

τn∑
t=1

Eθ′{ξnt (znt )T |Yn
τn ,U

n
τn},

Σ =
1

Υ

N∑
n=1

τn∑
t=1

Eθ′{znt (znt )T |Yn
τn ,U

n
τn},

(3.7)

where τn is the number of time-points in time series n, assuming there are N time

series and the superscript denotes the nth time series. EM needs the expectation of

the log-likelihood function, so we take expectation of equation (3.6) to obtain

−2Q(θ, θ′) = log |P1|+ trace{P−1
1 Eθ′{(x1 − µ)T (x1 − µ)}+ Υ log |Π|

+Υtrace
{

Π−1
[
Φ−ΨΓT − ΓΨT + ΓΣΓT

]}
.

(3.8)

Equation (3.8) are made up of terms defined in equation (3.7), which in turn can be

found from these expectations:

Eθ′{ytxTt |Yτn ,Uτn} = ytx̂
T
t|τn

Eθ′{xtxTt |Yτn ,Uτn} = x̂t|τnx̂
T
t|τn + Pt|τn

Eθ′{xtxTt−1|Yτn ,Uτn} = x̂t|τnx̂
T
t−1|τn +Mt|τn ,

where x̂t|τn = E [xt|Yτn ,Uτn ] , Pt|τn = var [xt|Yτn ,Uτn ] ,

Mt|τn = cov [xt, xt−1|Yτn ,Uτn ] ,

and τn is the number of time-points in the nth time series, Yτn and Uτn are the obser-

vations and inputs for the time series. They can be otained from Kalman smoother



32

[91]

Jt = Pt|tA
TP−1

t+1|t

x̂t|τn = x̂t|t + Jt[x̂t+1|τn − Ax̂t|t −But −R−1yt]

Pt|τn = Pt|t + Jt[Pt+1|τn − Pt+1|t]J
T
t

Mt|τn = Pt|tJ
T
t−1 + Jt[Mt+1|τn − AP t|t]JTt−1

where x̂t|t, Pt|t, Pt|t−1 are calculated from Kalman filter

Pt|t−1 = APt−1|t−1A
T +Q

Gt = Pt|t−1C
T (CPt|t−1C

T +R)−1

Pt|t = Pt|t−1 −GtCPt|t−1

x̂t|t−1 = Ax̂t−1|t−1 +But−1

x̂t|t = x̂t|t−1 +Gt(yt − Cx̂t|t−1 −Dut)

t = 1, ..., τn,

Mτn|τn = (I −GτnC)APτn−1|τn−1.

The Kalman filter, which is essentially recursive least-square and is an optimal

linear estimator, progresses forward in time, and the Kalman smoother, which mathe-

matically can be proved by conditioning normal distributions, goes backward in time,

hence they are also called forward-backward algorithm.

5. M-step

Reuse the notation defined in equation (3.7), for all N time series needed for the

M-step. Here the superscript denotes the nth time series.

The conventional EM would have the M-step as

µ = x̂1|τn , P1 = P1|τn , Γnew = ΨΣ−1, Πnew = Φ−ΨΣ−1ΨT , (3.9)
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where µ is the estimated mean of x1 and P1 the estimated variance. We note here that

the last two equations in (3.9) are de-coupled and everything on the right hand side

can be computed from the E-step results; thus the M-step in conventional EM has an

analytic solution and is very fast. This feature of con-ventional EM is one reason for

its popularity, but it may be lost if constraints are imposed on parameters because

structural constraints force some parameters to be zeros while leaving others free to

change. In that case, equation (3.9) is no longer valid due to structural constraints,

and numerical solution may be required for maximization. Having an iterative solver

within an already iterative method will significantly increase computation time. Gen-

eralized EM, another solution that can permit constraints on parameters however, it

is known to have slower convergence. Since parameter estimation could become the

inner loop of a bigger model selection algorithm, we want to strive for decoupled and

analytic solutions. Fortunately, with a mild assumption on the type of noise, that it

has diagonal variance, we are able to obtain an analytic solution.

6. Structural Systems Identification

Given a network whose structure is known, for example if a pair of genes is represented

by two states and they have no interaction, then the corresponding entry in matrix A

should be zero. Similarly, if an input has no influence on a gene that is represented as

a state, then the corresponding entry in B should be zero. The same goes for entries

in C that describe how measurements depend on the states. Matrix D is usually all

zeros because genes do not impact other genes’ expression level instantaneously.

Take for example the SOS network in Figure 1. The sole input is the gene recA,

so input vector u is a scalar, and matrix B is a vector whose entries are all zeros

except for the first element. Among the rest of the genes, only lexA interacts with

other genes so matrix A only has the first column and the diagonal entries as nonzero
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recA

lexA

polB umuD uvrD uvrA uvrY ruvA

Fig. 1.: This is a diagram of eight essential genes of the SOS DNA repair networks

[92].

for a first order system. The matrix diagonal entries are nonzero because, in general,

genes impact their own expression levels. Since we measure all the genes’ expression

levels directly, we set C to be an identity matrix. D is a zero matrix as explained

above. So putting all this together, we have parameters A, B, C, and D initially

determined as follows:

A =



a11 0 0 0 0 0 0

a21 a22 0 0 0 0 0

a31 0 a33 0 0 0 0

a41 0 0 a44 0 0 0

a51 0 0 0 a55 0 0

a61 0 0 0 0 a66 0

a71 0 0 0 0 0 a77



B =



b1

0

0

0

0

0

0
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C =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



, D = 0.

But in initial estimations, we discovered that first order dynamics does not adequately

describe the time series, so we increased the order of the lexA gene to two and that

proved successful. Accordingly, the parameters A, B, C, and D are changed to

A =



1 1 0 0 0 0 0 0

a21 a22 0 0 0 0 0 0

a31 0 a33 0 0 0 0 0

a41 0 0 a44 0 0 0 0

a51 0 0 0 a55 0 0 0

a61 0 0 0 0 a66 0 0

a71 0 0 0 0 0 a77 0

a81 0 0 0 0 0 0 a88



B =



0

b2

0

0

0

0

0

0



C =



1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



, D = 0.
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Here we expanded gene lexA to have second order dynamics, resulting in two scalar

states, x1 and x2, where x2 is the derivative of x1 discretized, while x1 represents lexA’s

expression level. Matrix B is changed because all interactions are on the second order

term, and C is changed to reflect the fact that we do not have measurement for x2

(column 2 is all zeroes). We also assume Π to be diagonal since we have no reason to

believe that noise in each state or measurement is correlated. This also is a standard

assumption unless there is specific evidence that contravenes the assumption. Making

Π diagonal also makes the analytic form of M-step possible.

Incorporating structural constraints results in an M-step that is more complicated

than the M-step in the conventional EM algo-rithms:

[ΓnewΣ−Ψ] ◦M = 0 (3.10)

Πnew =
{

Φ−ΨΓTnew − ΓnewΨT + ΓnewΣΓTnew

}
◦ I (3.11)

where I is an identity matrix of appropriate size and M is a constraint matrix of

Γ so that if an entry of Γ is constrained, the corresponding entry of M is 0, and

1 otherwise. The notation ◦ represents element-wise product, also known as the

Hadamard product. Equations (3.10) and (3.11) are quite general, so the formulas

admit nonzero constrained values.

Equation (3.11) looks more complicated, but the calculation is actually explicit

as long as we have Γnew from equation (3.10). Equation (3.10) can be solved row-wise

by the following procedure:

Explicit solution for Γ in [ΓΣ ◦M = 0] can be obtained by:

1. for each row of Γ, Γj, suppose rj= indices of con-strained elements of Γj ;

2. delete all elements of Γj and Ψj , the ith row of Ψ , whose indices are in rj;
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3. delete all rows and columns of Σ whose indices are in rj;

4. solve [Ψj]mod − Σmod[Γj]
T
mod where the notation []mod denotes respective vectors

and matrices after deletion in step 2 and 3.

Therefore the procedure above and equation (3.11) plus the first two equations in

equation (3.9) constitute the modified M-step.

7. Data Source

First, the synthetic data was generated by a system that had four states and four

outputs and the parameters were as follows:

A =



0.8 0 0.8 0

0 0.8 0 0.8

0 0 0.8 0

0.8 0 0 0.8


B =



−1

−1

−1

−1


C =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


D = 0.

We generated 200 time points for cross-validation. Since C is fixed in estimation as

an identity matrix, no equivalent system exists by similarity transformation, and this

system is identifiable.

Second, to validate our method with real-world data, we chose the SOS DNA

repair network of the Escherichia coli with 8 essential genes. The SOS network is a

highly conserved system and is a well studied network [93, 94]. It consists of about

30 genes, the master regulator being the lexA gene. Gene lexA inhibits all the rest of

the SOS network’s gene under normal condition, and when DNA damage is sensed,

the normally suppressed genes become active. A diagram of SOS network with 8

essential genes is shown in Figure 1.

The experimental data for the SOS system can be downloaded from Uri Alon’s

homepage. Ronen et al. [92] used green fluo-rescent proteins (GFP) to track 8
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Fig. 2.: This diagram of a simulated system from Zak et al. [83] shows a biologically

inspired system driven by ligand binding. This figure illustrates the relative expression

levels when the ligand is high.

genes of the SOS network as they react to different irradiation levels, 5Jm−1 and 20

Jm−1; each level has two samples and each sample has 50 evenly spaced time points.

They monitored eight genes: uvrD, lexA, umuD, recA, uvrA, uvrY, ruvA, and polB.

They performed extensive data preprocessing on the raw data using hybrid Gaussian

median filter and polynomial fit for smoothing. They also assumed that the rate

of accumulation of GFP was proportional to transcript production. We shall make

the same assumption. To test our method on more complex models, we decided to

use a biologically inspired artificial system by Zak et al. [83]. They used stochastic

simulation to simulate gene expressions and protein interactions. The data had 550

time points, but very few time-course data currently available are that long. So we

sampled one time point out of every five consecutive time points to obtain a time
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series of 110 time points. A complete diagram of the artificial system is shown in

Figure 2, and the parameters are constrained as follows:

A =



a11 0 0 a14 0 0 0 0 0

a21 a22 0 0 0 0 0 0 0

a31 0 a33 0 a35 0 0 0 0

0 0 a43 a44 0 0 0 0 0

0 0 a53 0 a55 0 0 0 0

0 0 0 0 a65 a66 0 0 0

0 0 0 0 0 a76 a77 0 0

0 0 0 0 a85 0 0 a88 0

0 0 0 0 0 0 0 a98 a99



B =



b11 0

0 b22

0 0

0 0

0 b52

0 0

0 0

0 0

0 0



C =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


D = 0.

C. Results

To examine the consistency of the constrained EM approach and to test its biolog-

ical applicability, we applied our new method to two sets of synthetic data and the
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Fig. 3.: These are the histograms of standardized residuals of outputs y1, y2, y3, y4,

for the synthetic data. They resemble standard normal distribution.

SOS DNA repair network data. We first examined the distributions of standardized

residuals (or errors) of the Kalman filter for the synthetic data and found that they

largely resemble Gaussian distributions. For the synthetic data sets, we compared

the predictive power and estimation precision of our constrained EM and the uncon-

strained EM through prediction errors and confidence intervals. For the SOS data,

two replications were not enough for bootstrapping so no confidence interval could

be derived.

1. Errors Distribution

To examine the consistency of the constrained EM and to test their biological ap-

plicability, we have applied our new method to synthetic data and real SOS DNA

repair network data. For the synthetic data, we first examine the distribution of

the standardized residuals (or errors) in the Kalman filter results. This is a com-

mon way to perform diagnostics on model assumption and the estimation itself. The
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Fig. 4.: Histograms of standardized residuals for Zak and colleagues’ data are super-

imposed with estimated Gaussian distribution. The histograms are largely Gaussian

with some expceptions. There are two possible causes for non-Gaussian residuals.

One is that Zak’s data has long periods of zero as steady states which are then re-

flected in zero residuals. Another is model mismatch, that is, noise was not Gaussian.
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panels of Figure 3 show the histograms of the residuals of the Kalman filter for our

synthetic data with a standard normal plot superimposed. From Figure 3 we can

see that the four residuals’ histograms approximate standard normal distributions

well. This adds confidence to the correctness of our algorithm. We also examined

the standardized residuals of an estimated model from Zak and colleagues’ data and

the histograms are plotted in the panels of Figure 4. The histograms are largely

Gaussian with some notable exception. While numerically this could be accounted

by the fact that long sequences of zeros exist in Zak’s data as steady states, which

is not likely in the real world data and may be due to unrealistic stochastic noise

assumption made in the simulation, there could be some model mismatch. However,

from prediction error comparisons we know that constrained EM still could predict

much better than unconstrained EM, therefore, even when Gaussian assumption of

model noises is violated, constrained EM can still have good predictive power.

2. Prediction Errors

To compare the predictive power of identified models from conventional EM and mod-

els from our constrained EM, we used cross-validation. For our synthetic data, we

generated a sample of 200 time points, of which the first 100 were used for pa-rameter

estimation, and the rest for prediction. Of Zak’s data, we selected 110 time points,

out of which the first 80 time points were used for estimation and the remaining 30

for validation. The error in prediction is defined to be the difference between the mea-

sured gene expression levels and the predicted gene expression levels by the estimated

model. Using constrained EM, the error in prediction for four gene expression data

in the artificial network from t = 101 to t = 200 were calculated (Figure 5). In Figure

5, for comparison, we plotted the error in prediction by conventional EM. From the

plots, we can see that conventional EM starts off with small errors, and sometimes
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Fig. 5.: These are the errors in the predicted outputs of y1 and y2, using conventional

EM (dashed) and constrained EM (solid), for the synthetic data. The errors are the

differences between the predictions of the estimated model and the observed values.

We can see that conventional EM produces models that have large prediction errors

and thus poor predictive power.
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Fig. 6.: The plot on the top is the prediction errors of gene J for the model estimated

by the constrained EM, and the three panels on the bottom are the prediction errors

of the same output for the model estimated by unconstrained EM. The reason for

plotting the three separate panels on the bottom is that the latter errors become too

large and completely obscure the earlier errors.

it produces smaller errors initially than our method. But very quickly it strays into

wrong directions with larger and larger errors, which makes models estimated from

conventional EM having little predictive power. This is even more striking with Zak’s

data. The constrained EM algorithm yields models with prediction error at worst

around 100%, with the output of the worst error plotted in the top panel of Figure

6, while unconstrained EM generates models whose prediction error grows without

bound as seen in the bottom panels of Figure 6. In fact, we were forced to cut the plot

into three panels so that later values would not obscure earlier ones. This demon-

strates that conventional EM, which does not take into account the structure, tends

to over-fit.

To further test our method we considered the variation in the estimated values.

Since many parameter values could fit data equally well, confidence intervals are usu-

ally preferred over a single estimation. Using bootstrapping, we were able to estimate
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Fig. 7.: The plots are the errors in the predicted outputs of gene lexA, polB, umuD,

uvrY, uvrD, and ruvA of the SOS DNA repair network, for conventional (dashed)

and constrained EM (solid). The differences between predicted values and measured

values are large for the model estimated by the conventional EM.
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Table I.: This table compares 95% confidence intervals for our constrained EM and the

conventional EM, both using our simulated data. For our system, both constrained

and unconstrained methods could estimate eigenvalues with some fidelity, keeping

in mind that the true eigenvalues are all 0.8. However, our constrained methods

have very tight bounds around the true value while the unconstrained EM has wider

intervals.

Confidence Intervals of the Eigenvalues of Our Simulated System

Lower Bound -0.0073 0.5636 0.5612 0.2598

Upper Bound 0.9717 0.9934 0.9892 0.9697
Unconstrained EM

Lower Bound 0.7856 0.7781 0.7843 0.7820

Upper Bound 0.9073 0.8169 0.8236 0.8312
Constrained EM
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Fig. 8.: The errors in the predicted outputs of gene uvrA of the SOS DNA repair

network, for conventional (dashed) and constrained EM (solid).
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Table II.: This table compares 95% confidence intervals for our constrained EM and

the conventional EM, using Zak’s data. For Zak’s model, unconstrained EM has one

very wide interval which is mostly outside the unit circle and therefore implies that

the estimated system is unstable. But as we fail to see any unstable behavior in Zak’s

data while observing the wildly incorrect predictions of the unconstrained model, we

suspect these eigenvalues were not correctly estimated. Our constrained EM yielded

much tighter bounds and from them we think the underlying system is mostly likely

to be stable, at worst marginally unstable.

Confidence Intervals of the Eigenvalues of Zak’s Model Using Unconstrained EM

Lower Bound -14.4193 -1.7669 -0.4093 0.0339 0.1385 0.2048 0.2943 0.2110 0.1722

Upper Bound 13.3590 3.2895 1.466 1.2113 1.0416 1.0077 0.9934 0.9661 0.9681

Confidence Intervals of the Eigenvalues of Zak’s Model Using Constrained EM

Lower Bound 0.8914 0.9907 0.9796 0.9454 0.9818 0.5402 0.8477 0.8241 0.52

Upper Bound 0.9037 1.0075 0.9918 0.9695 0.9912 0.9971 0.9972 0.8890 0.8890
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95% confidence intervals for all free parameters and the eigenvalues of the estimated

system (same as the eigenvalues of matrix A in equation (1)). The idea is that tighter

intervals are better than wide intervals and that the estimation methods need to get

eigenvalues roughly right, since they are invariant to similarity transformation and

they determine important dynamical properties. We found that for almost all free

parameters, our constrained EM produced much tighter bounds than those produced

by unconstrained EM (see Table III for selected parameters), and for all eigenvalues,

our method uniformly produced better bounds (presented in Table I and II). As we

can see from Table I and II, estimated eigenvalues for our simulated model all include

the true eigenvalues 0.8, but our method has much tighter bounds. For Zak’s model,

unconstrained EM resulted in one eigenvalue having wide interval while con-strained

EM all have tight bounds. That wide interval, much of it outside the unit circle, could

be a sign of a misestimated eigenvalue, since it could account for the unbounded pre-

diction error we observed. A misestimated eigenvalue is a serious concern because

the trajectory of an LTI system largely depends on its eigenvalues.

To examine the biological applicability of our method and to evaluate its perfor-

mance with real world data, we applied our constrained EM to the SOS DNA repair

network data. Since there are only 50 time points available, we used the last 10 time

points for validation purpose. The error in prediction of the seven-gene expression

data in the SOS DNA repair network by the constrained and the conventional EM are

plotted in Figure 7 and 8. Two features of the plots can be observed. First, the errors

oscillate within a certain range rather than blow up in one direction. This suggests

that with fewer time points conventional EM performs better than with more data, a

classic sign of over-fitting. Second, the constrained EM’s estimated model has much

smaller deviation from measurement than conventional EM’s estimated model, once

again demonstrating constrained EM’s merits. The figures show that the constrained
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Table III.: This table presents a comparison of 95% confidence intervals of diagonal

entries of matrix A in our model. For our simulated system, the confidence intervals

of our constrained EM are tight around the true value 0.8, while unconstrained EM

shows much higher variability. While we do not have the true value for Zak et al.’s

model, our constrained EM yield much smaller intervals than unconstrained EM, and,

therefore, better estimates.

Confidence Intervals of Diagonal Entries of Matrix A of Our Simulated System

Lower Bound -1.3862 -1.4586 -1.9220 -1.3095

Upper Bound 2.8322 3.3041 3.3422 2.6551
Unconstrained EM

Lower Bound 0.7843 0.7856 0.7820 0.7781

Upper Bound 0.8236 0.9073 0.8312 0.8169
Constrained EM

Confidence Intervals of Diagonal of Matrix A of Zak’s Model Using Unconstrained EM

Lower Bound -25.59 -26.71 -22.2107 -35.2 -29.1 -22.0 -25.38 -23.4 -20.3

Upper Bound 25.51 25.7647 27.6785 23.1 30.4192 24.0750 22.65 29.1 30.1

Confidence Intervals of Diagonal of Matrix A of Zak et al.’s Model Using Constrained EM

Lower Bound 0.521 0.8914 0.8608 0.9778 0.799 0.9796 0.991 0.9818 0.95

Upper Bound 0.596 0.9037 0.8864 1.003 0.883 0.9918 1.0 0.9912 0.97
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EM better approximates the true model of the SOS DNA repair network and generate

models with superior predictive power.

D. Discussion

It is increasingly recognized that dynamics of genetic networks can impact pheno-

types, and the study of dynamics can provide new insights into diseases and potential

treatments for the diseases [95]. But before we can analyze genetic networks and

propose possible treatments, we need a quantitative model that can predict, with

reasonable accuracy, the dynamical behaviors of the genetic network. In this report,

we proposed a new method that can learn such a model, a linear state-space system,

and tested on both synthetic and real ex-perimental data.

Researchers so far have used the linear state-space model primarily in two ways.

Either they are used in black-box dynamical modeling or in inferring a genetic net-

work’s structure. Wu et al.’s [69] is representative of the first approach, where the

internals of the model is not important but only the dynamical behaviors is, where

the number of states is a parameter depending on the data, and where the states have

no biological interpretation. This black-box approach is perfectly valid when we have

little information regarding the mechanistic details. However, some-times we have

structural information for some genetic networks, either through existing knowledge

in the literature or ChIP-on-chip experiments, in which case parameter estimation

should take the known structure into account to get a better model. A better model

is in the sense that the estimated model in the end does not contradict known biolog-

ical facts represented by the structure and possess better predictive power. Another

use of linear state-space modeling is to infer a genetic network’s structure. Using the

linear model for network inference is especially appealing because the structure and
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the parameters have a simple relationship: there is a straightforward mapping be-

tween parameters and edges in the network. A naive approach would be to estimate

a model with all parameters free to be estimated and to consider those parameters

whose values are below a threshold as really being zeros and thereby signifying no

interaction. We have seen that conventional EM tends to over-fit and produce a

model that has limited predictive power. One approach to alleviate over-fitting is to

enforce sparsity on the parameters [85]. Another approach is to separate parameter

estimation and structural inference, to incorporate structural constraints into param-

eter estimation, as in Gennemark and Wedlin [10]. Our method can be seen as the

parameter estimation part of the overall system identification, which also infers struc-

ture. In order to incorporate structural constraints into an identifica-tion of genetic

networks in this report, we presented a framework where certain parameters are fixed

while others remain variable. Imposing constraints on parameters lead to a set of

nonlinear equations to be solved in the M-step. In order to have fast convergence,

we intentionally avoided generalized EM (which is slower than our method) or using

iterative solutions to the set of nonlinear equations in the M-step (which can also be

very slow). Instead, with only mild assumptions about noise, we obtained a closed-

form, decoupled, explicit solution to the equations arising from the maximization of

likelihood in the M-step. To evaluate the performance of our new method, we applied

it to two synthetic data sets and a real world SOS DNA repair network data set. From

the results, we can see positive features of incorporating structural constraints in gen-

eral and constrained EM in particular. First, by incorporating known connectivity

between genes, we have better biological realism along with a biological interpreta-

tion for the identified model. Second, a state-space model with structural constraints

exploits the sparse nature of genetic networks to reduce the number of parameters

that need to be estimated. We know that reverse engineering of genetic networks is
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a grossly underdetermined task, and that we have too few data for a fully connected

network. However, the problem can be alleviated if we can effectively incorporate

more information by imposing structural constraints. Increasingly, connectivity in-

formation is becoming available for more genetic networks [75, 76, 77], and it becomes

necessary for us to use this information. Third, by using analytic, explicit solution

to the maximization of likelihood, we have fast computation, so that our method can

be easily incorporated into larger structural inference algorithms. The last and the

most important feature of our work is that by incorporating structural constraints

into an identified model we identify models that are not prone to over-fitting, that

have better predicative power than unconstrained models, and, therefore, are closer

to the true model. Cross-validation using both the synthetic data and the SOS data

demonstrated this point. With better predictive power, the identified model can then

be used for the analysis of dynamical properties or for the design of control strategies

for the genetic network under study. There is considerable work that remains. On the

modeling front, our method does not take into account the signs of parameters, which

represent whether regulation is activation or inhibition. This is crucial information

that should be incorporated as another set of constraints. A problem of a more theo-

retical nature is that we have as yet no principled way to determine the order of each

gene, as too high an order can result in over-fitting and too low an order leaves too

much unmodeled dynamics. Finally, as LDS is only a linear approximation of gene

regulation systems, care must be exercised in extrapolating results presented here to

real world expression data. Much more work on diagnostics and model validation

remains as well.
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CHAPTER IV

DYNAMICAL PATHWAY ANALYSIS

A. Backgroup

Cell functions are complex temporal processes and should be studied as complex dy-

namical processes rather than only in their individual steady states. It is increasingly

recognized that it is the dynamics and the internal structures of the biological sys-

tems that give rise to the functioning of cells [96]. Currently, uncovering co-expressed

genes and discovering differentially expressed genes are the primary methods for dis-

covering the role of genes in disease pathogenesis [97], but these methods offer only

static views and steady-state explanations and thus fail to account for the transient

behaviours that influence phenotypes. Genetic regulatory networks seek to model

complex interactions and dynamics of gene regulations. Genetic networks should be-

have differently in sick cells vs. healthy cells because genes that cause diseases behave

fundamentally differently, and that difference should be reflected in their dynamical

properties. Dynamical properties of genetic networks such as their response time have

been studied mostly in the context of network motifs [98, 99], but now I propose that

they be investigated for their difference in normal vs. abnormal cells.

In this chapter I studied four dynamical properties: stability, relative stability,

controllability, and transient behaviours (overshoot, settling time, and rise time).

Stability governs how a system responds to internal noise and external perturbation

and determines whether the system returns to steady states and whether the effect of

noise and perturbation diminishes over time. Biologically, an unstable cellular system

is very brittle and the slightest disturbance can drive the system beyond tolerance

and possibly result in cell death. Prill et al. [100] used stability as a criterion to
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discern network motifs and their organizing principles, and synthetic biologists are

beginning to pay close attention to the stability of their artificial networks [101].

Furthermore, the stability of the system under pure gain feedback control can be

analyzed by the root-locus method and the result can be interpreted as a measure of

relative stability. In control theory, the root-locus method is a design tool but it is

also used as an analytic tool, to see how large a gain can drive the system unstable

with feedback loops: the larger margins of stabilizing gains, the better. Related to

feedback control, controllability is another pivotal concept in control theory. It and

its dual property, observability, were originally conceived as solutions to existence and

uniqueness problems of optimal control [102], and the controllability of a dynamical

system roughly refers to the ability to move the states of the system around the state

space with reasonable efforts. Although controllability is a binary question, there is

a measure of the degree of controllability, the idea being that the more controllable a

system is the less effort is needed to move the system. Less theoretical than stability

and controllability are transient behaviours like settling time and overshoots, which

have also received attention from systems biologists [98, 99, 93]. These four dynam-

ical properties are determined by the parameters of the dynamical system and the

unknown parameters of biological systems need to be estimated.

Parameter estimation must be done under a particular modelling framework.

Several modelling frameworks have been proposed: Boolean networks [59, 103, 104,

60], differential equations [27], S-system [105, 106], and dynamical Bayesian networks

[62, 64]. A special case of dynamical Bayesian networks is the state-space model,

which has been used to model genetic regulatory networks [69, 72, 73, 107, 67]. A

state-space model has states, inputs, and outputs, where hidden states contain com-

plete information of the system driven by the inputs, and the outputs are the mea-

surements made by scientists. In the state-space models of genetic networks, states
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Fig. 9.: The diagram of SOS DNA repair network.

are the regulatory elements, and the inputs and the outputs can be environmental

stimuli or expression levels. Because genetic networks have many unknown quantities,

state-space models can serve as a good modelling framework.

In this chapter, the parameters in state-space models were estimated from the

time course of gene expressions using Kalman filter and the constrained expectation-

maximization (EM) algorithm (a modified EM algorithm that incorporates prior

knowledge about the structure of genetic networks). The regular EM algorithm is

commonly used to estimate parameters in the presence of hidden quantities, and

they comprise two steps, E-step (expectation) and M-step (maximization), where the

E-step estimates the hidden states, and the M-step the parameters [91]. I applied

EM algorithm to three sets of time course data and estimated three genetic net-

works for analysis. The first network I used is the SOS DNA repair system. The

SOS network is a highly conserved system [93, 94] and consists of about 30 genes,

the master regulator being gene lexA. The lexA gene inhibits the rest of the SOS
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Fig. 10.: The diagram of GSH redox cycle.

 

Fig. 11.: The diagram of MAPK network.
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network’s genes under normal conditions, but when DNA damage is sensed, protein

LexA is cleaved and the genes normally suppressed are activated. A diagram of the

SOS network with 8 essential genes is shown in Figure 9. Shown in Figure 10 is the

second system I modelled, the glutathione (GSH) redox cycle with one gene from the

urea cycle that interacts with the redox cycle [108]. The data are from Sciuto et al.

[109] who investigated the differential gene expressions in mice lung cells exposed to

either carbonyl chloride (phosgene) or normal air. They found elements of the GSH

redox cycle differentially expressed, which is not surprising given that the redox cycle

is heavily involved in protecting organisms from reactive oxygen species, that it is

heavily present in the lung, and that phosgene causes massive lung damages. The

third system I investigated is the mitogen-activated protein kinase (MAPK) network

in cell lines disturbed by either the wild type HIV type I Vpr or the mutant type

R73A or the mutant type R80A. HIV-1 Vpr is an important protein in promoting the

pathogenesis of AIDS by facilitating apoptosis and cell cycle stall at G2. Yoshizuka

et al. [110] studied the effects of Vpr on MAPK-network-related genes in stalling cell

cycle, so they obtained cell lines that can express wild type or mutant Vpr under a

tetracycline-inducible promoter. They found that many genes related to the MAPK

network differentially expressed when subjected to different types of Vpr. The MAPK

network used for this chapter is shown in Figure 11. All those data sets compare the

organism’s reactions to different environmental perturbations, and from estimated

genetic networks I hope to discover the differential dynamical properties of genetic

networks under stress.

I applied our framework to three real-world time series datasets above and found

differential stability, transient responses, and controllability of genetic networks in

normal vs. abnormal cells.
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B. Method

1. Data Sources

To test the method on real-world data, I obtained three data sets: E. coli under

radiation, mice lung cells exposed to the normal air and a toxin, and mammalian cell

lines under the influence of various types of Vpr. They were chosen because they all

have time course data of organisms reacting to different perturbations and therefore

could embody differential dynamical properties.

Ronen et al. [92] irradiated E. coli and used green fluorescent protein (GFP) to

obtain the rate of transcription of various genes in the SOS network. Ronen et al.

tracked 8 genes of the SOS network as they reacted to different irradiation levels,

5Jm−2 and 20Jm−2. Each level had two samples and each sample had 50 time points.

They monitored eight genes: uvrD, lexA, umuD, recA, uvrA, uvrY, ruvA, and polB.

They performed extensive data pre-processing on the raw data using hybrid Gaussian

median filter and polynomial fit for smoothing. They also assumed that the rate of

accumulation of GFP was proportional to transcript production, so I shall make the

same assumption.

Sciuto et al. [109] measured the effects of carbonyl chloride (phosgene) on mice

lung. They exposed the mice to either normal air or phosgene for 20 minutes at a

concentration of 32-42mg/m3 and sacrificed some of the mice at each time point. Each

time point had 3 samples for air or phosgene and two replications. All experimental

data were collected using Affymetrix Mouse 430A oligonucleotide arrays. The raw

data were transformed by adding a constant first, and then they performed a log

transformation.

Yoshizuka et al. [110] observed the effect of viral protein R (Vpr) on cell cycles.

They transfected plasmids that expressed wild type Vpr and mutated Vpr (R73A and



59

R80A) into mammalian cells. The microarrays (Hs Operon V2) containing 22,434

oligonucleotide (60- to 70-mer) spots on a glass slide were used to generate the data.

There were three replications for each time point.

The analysis in this chapter was done exclusively on the three data sets above.

2. Transfer Functions and Dynamical Properties

A transfer function is a Laplace transform of a linear ordinary differential equation of

constant coefficients with zero initial conditions. A single transfer function represents

a single-input-single-output (SISO) system and one can obtain a series of transfer

functions from a state-space representation of a dynamical system and vice versa

[111]. The zeroes are roots of the numerator. The characteristic equation of the

transfer function is the denominator equal to zero, and it determines a lot of the

dynamical properties of the system. In particular, the roots of the characteristic

equation are the poles of the system, which determine the stability of the system and

have great influence over other dynamical properties.

a. Stability analysis

For discrete linear time-invariant systems, the system is stable (its steady states do

not diverge) if and only if all of the eigenvalues of the state transition matrix or

all of the poles of all the transfer functions have magnitude less than 1 [102]. For

continuous systems the requirement is that all eigenvalues or poles have negative real

part. The simplicity of determining stability belies its importance, for it is one of

the most important, best analyzed, and best known dynamical property. Feedback

control’s first task is to ensure stability and robust control spends a great deal of

efforts to ensure stability for uncertain models [112, 113].
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b. Root-locus plots

The root-locus method graphically illustrates how the poles of the closed-loop system

change as the gain of a pure gain controller is varied. Later it is generalized to

show how the roots change as any parameter of the characteristic equation varies.

The parameters must be in the form of 1 + KG(s) = 0 where K is the gain (or

the parameter), G(s) is a transfer function, and s is a complex variable. The gain

is required to be non-negative but this is not a problem because I could just make

−G(s) the new nominal system. I only need two criteria to determine the trajectory

|KG(s)| = 1

6 KG(s) = 180◦ + k360◦

where k is some integer. The root-locus plot lies in the complex plane. The path of

roots starts at the open-loop poles and ends at the open-loop zeros, and if part of the

path lies on the real axis, then it lies to the left of an odd number of poles [111].

c. Controllability

Controllability is a concept central in systems theory. It is about the ability of a

system to move from any initial state to any final state with final control in finite

time. The controllability matrix is defined as H = [BABA2B · · · ] for a linear time

invariant system (LTI) of ẋ = Ax+Bu where u is m×1 an vector, x an n×1 vector,

matrix, A an n × n, and B an n × m matrix. If the controllability matrix has full

rank, then LTI is controllable; otherwise it is uncontrollable. Another way of saying

that a matrix is not full rank is that it is singular, and due to numerical inaccuracy

of digital computers and model uncertainty, condition number is used to measure

how close to singularity a matrix is. The condition number of a matrix is defined
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to be ‖H‖ · ‖H−1‖ where ‖·‖ is any matrix norm. I used 2-norm in this chapter.

The condition number of the controllability matrix can be seen as a measure of the

degree of controllability. The larger the condition number is, the greater the inputs

are needed to reach a target state, even though reaching nearby states requires no

great efforts.

d. Unit-step signal and step-response plots

A unit-step signal is a constant signal of strength one. The step response is the

output of a dynamical system in response to a unit-step input. The step-response plot

graphically gives much information about the dynamical properties of a system. The

most important property the step response manifests is stability. A stable systems

plot will converge to a steady state while an unstable system will diverge or oscillate.

Step-response plots also show settling time, rise time, and percent overshoot. Settling

time measures how fast the system achieves the steady state and rise time how quickly

the system responds to perturbation. Rise time is defined to be the time for the output

to go from 10% to 90% of the steady state. Settling time is defined to be the time

for the output to reach and stay within a 2% neighborhood of the steady-state value.

Percent overshoot or undershoot is the percentage of the maximum or minimum minus

the steady state and divided by the steady state. Rise time is generally associated

with the speed of the dynamics, that is, how fast the system responds to inputs, while

overshoot and settling time measure how close the transient responses stay within the

vicinity of the steady states. They are also inversely related in nature, that is, both

rise time and settling time cannot be kept small: decrease in one necessitates increase

in the other if nothing else changes. The root-locus technique is one way to use

feedbacks to design a closed-loop system with better rise time, better settling time,

and better overshoot.
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e. Parameter estimation

The issue of paramter estimation for linear state-space dynamic model of genetic

regulatory networks with structural constraints has been dealt with in the previous

chapter, so it will not be treated here again.

C. Results

1. Models of Genetic Networks and Their Application to Real Data Sets

I modeled genetic networks as dynamical systems, more specifically as linear state-

space systems. A linear state-space model of dynamical systems can be written as

x(t+ 1) = Ax(t) +Bu(t) + w

y(t) = Cx(t) +Du(t) + v

where x(t) is the state vector, y(t) the output vector, and u(t) the input vector,

all at time t; w and w are independent noise terms assumed to be white Gaussian

with zero means and covariance Q and R respectively. Matrix A is called the state

transition matrix, B the input matrix, C the output matrix, and D the feed-forward

matrix. Matrices A, B, C, D and covariance matrices Q and R together make up the

parameters of the dynamical system.

The states represent the biological forces that regulate gene regulation; they

describe the behaviours of gene transcription but are hidden. The outputs denote

the gene expression levels and are measured, and it is assumed that the expression

level of a gene is determined by the state of the regulated gene. The inputs can be

any external stimuli that influence gene regulation: substances like drugs, proteins,

RNAs, or expression levels of other genes.
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2. Estimated System

For the SOS system, x2 is the discretized first derivative of x1, whereas x1 is the

expression level of gene lexA, x3 gene polB, x4 gene umuD, x5 gene uvrD, x6 gene

uvrA, x7 gene uvrY, and x8 gene ruvA. The outputs are the measured expression

levels of the seven genes listed above, and the input is gene recA. In Figure 12 and

Figure 13, I included the estimated outputs and the measured outputs superimposed

into one plot, as well as estimation errors in a separate panel for each gene. From

the plots I can see that the estimated trajectory largely follows measured values. The

estimated system parameters are listed below for the low level of radiation:

x1(t+ 1) = x1(t) + x2(t)

x2(t+ 1) = −0.17x1(t) + 0.59x2(t) + 0.084u(t)

x3(t+ 1) = 0.009x(t)1 + 0.81x3(t)

x4(t+ 1) = 0.037x1(t) + 0.74x4(t)

x5(t+ 1) = −0.007x1(t) + 0.964x5(t)

x6(t+ 1) = −0.037x1(t) + 0.965x6(t)

x7(t+ 1) = 0.008x1(t) + 0.697x7(t)

x8(t+ 1) = 0.009x1(t) + 0.621x8(t).

y1(t) = x1(t)

y2(t) = x3(t)

y3(t) = x4(t)

y4(t) = x5(t)

y5(t) = x6(t)

y6(t) = x7(t)

y7(t) = x8(t).
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For the high level of radiation, the estimated system is

x1(t+ 1) = x1(t) + x2(t)

x2(t+ 1) = −0.242x1(t) + 0.329x2(t)− 0.014u(t)

x3(t+ 1) = 0.008x1(t) + 0.832x3(t)

x4(t+ 1) = 0.051x1(t) + 0.653x4(t)

x5(t+ 1) = 0.01x1(t) + 0.889x5(t)

x6(t+ 1) = −0.366x1(t) + 1.22x6(t)

x7(t+ 1) = 0.002x1(t) + 0.906x7(t)

x8(t+ 1) = 0.001x1(t) + 0.629x8(t).

y1(t) = x1(t)

y2(t) = x3(t)

y3(t) = x4(t)

y4(t) = x5(t)

y5(t) = x6(t)

y6(t) = x7(t)

y7(t) = x8(t).

For the GSH redox cycle there are two inputs, gene ALD2A1 as u1 and GPX4 as u2.

All the states were modelled with second order dynamics so the last four states x5, x6,

x7, and x8 are the discretized first derivatives of x1, x2, x3, and x4, respectively. Here,

gene GCLC is x1, gene GCLM x2, gene GSS x3, and gene IDH2 x4. The estimated

system for exposure to normal air is

x1(t+ 1) = x1(t) + x5(t)

x2(t+ 1) = x2(t) + x6(t)

x3(t+ 1) = x3(t) + x7(t)

x4(t+ 1) = x4(t) + x8(t)

x5(t+ 1) = −0.37x1(t)− 0.39x5(t) + 0.814u1(t)

x6(t+ 1) = −0.429x2(t)− 0.006x6(t) + 0.632u2(t)

x7(t+ 1) = 0.095x1(t)− 0.015x2(t)− 0.217x3(t)− 0.128x7(t)

x8(t+ 1) = 0.753x3(t)− 0.409x4(t)− 0.867x8(t) + 0.017u2(t).

y1(t) = x1(t)

y2(t) = x2(t)

y3(t) = x3(t)

y4(t) = x4(t).
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For exposure to phosgene, the estimated model is

x1(t+ 1) = x1(t) + x5(t)

x2(t+ 1) = x2(t) + x6(t)

x3(t+ 1) = x3(t) + x7(t)

x4(t+ 1) = x4(t) + x8(t)

x5(t+ 1) = −0.141x1(t) + 1.95x5(t) + 0.77u1(t)

x6(t+ 1) = −0.076x2(t)− 1.09x6(t)− 0.13u2(t)

x7(t+ 1) = 0.05x1(t)− 0.161x2(t)− 0.09x3(t)− 0.705x7(t)

x8(t+ 1) = 0.336x3(t)− 0.179x4(t)− 1.126x8(t) + 0.103u2(t).

y1(t) = x1(t)

y2(t) = x2(t)

y3(t) = x3(t)

y4(t) = x4(t).

As for the MAPK system, the inputs are gene BRAF as u1 and gene RAF1 as u2.

The states x1, x2, x3 and x4 are genes MAP2K1, MAP2K2, MAPK1, and MKNK2,

respectively; the other four states are the discretized first derivatives as in the system

for the GSH redox cycle. The estimated system for the wild type Vpr is

x1(t+ 1) = x1(t) + x5(t)

x2(t+ 1) = x2(t) + x6(t)

x3(t+ 1) = x3(t) + x7(t)

x4(t+ 1) = x4(t) + x8(t)

x5(t+ 1) = −1.48x1(t)− 1.32x5(t) + 0.14u1(t) + 0.2u2(t)

x6(t+ 1) = −0.098x2(t)− 0.52x6(t)− 0.079u1 − 0.314u2(t)

x7(t+ 1) = 0.498x1(t) + 0.052x2(t)− 0.215x3 − 0.618x7(t)

x8(t+ 1) = 0.123x3(t)− 0.169x4(t)− 0.602x8(t),

y1(t) = x1(t)

y2(t) = x2(t)

y3(t) = x3(t)

y4(t) = x4(t),
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and for the R73A mutant

x1(t+ 1) = x1(t) + x5(t)

x2(t+ 1) = x2(t) + x6(t)

x3(t+ 1) = x3(t) + x7(t)

x4(t+ 1) = x4(t) + x8(t)

x5(t+ 1) = −1.098x1(t)− 1.087x5(t) + 0.068u1(t)− 0.23u2(t)

x6(t+ 1) = −0.76x2(t)− x6(t)− 0.06u1(t)− 0.03u2(t)

x7(t+ 1) = 0.073x1(t) + 0.5x2(t)− 0.355x3(t)− 0.647x7(t)

x8(t+ 1) = 0.79x3(t)− 0.876x4(t)− 1.179x8(t),

y1(t) = x1(t)

y2(t) = x2(t)

y3(t) = x3(t)

y4(t) = x4(t),

and for R80A mutant

x1(t+ 1) = x1(t) + x5(t)

x2(t+ 1) = x2(t) + x6(t)

x3(t+ 1) = x3(t) + x7(t)

x4(t+ 1) = x4(t) + x8(t)

x5(t+ 1) = −0.582x1(t)− 0.821x5(t) + 0.082u1(t)− 0.085u2(t)

x6(t+ 1) = −0.28x2(t)− 0.836x6(t)− 0.149u1(t)− 0.009u2(t)

x7(t+ 1) = −0.019x1(t) + 0.273x2(t)− 0.056x3(t)− 0.249x7(t)

x8(t+ 1) = 0.112x3(t)− 0.467x4(t)− 1.248x8(t).

y1(t) = x1(t)

y2(t) = x2(t)

y3(t) = x3(t)

y4(t) = x4(t).

Although the number of parameters is small compared with the number of states,

which agrees with the knowledge that genetic networks are sparse [85], it is still hard

to see at a glance whether they differ in any fundamental way. For that, I must apply

systematic analysis to the estimated systems.
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Table IV.: Differential stability of the SOS network

Low Dosage High Dosage

0.8117 0.8321

0.7367 0.6530

0.9637 0.8893

0.9652 1.2216 (unstable)

0.6969 0.9062

0.6219 0.6291

0.7952 + 0.3630i 0.6647 + 0.3597i

0.7952 - 0.3630i 0.6647 - 0.3597i

3. Differential Stability of Systems under Different Perturbations

Stability is a very important property of a biological system, for an unstable system

puts great stress on neighbouring systems and may even lead to cell death. A system

is stable if it will converge to steady states after disturbance; it is unstable otherwise.

The stability of a discrete linear system can be determined by the eigenvalues of its

state transition matrix A: if all the eigenvalues are within the unit circle in the com-

plex plane, then the discrete system is stable. The eigenvalues of the three analyzed

networks are listed in Table IV, V,and VI, and their implications discussed below.

I analyzed the SOS DNA network under low and high dosage of radiation and

discovered that the network was stable for low dosage and unstable for high dosage.

I found that the eigenvalues of SOS network under low dosage of radiation to have

the eigenvalues’ norm all less than one, and therefore the network was stable. On

the other hand, the SOS network was unstable under high dosage of radiation, as the

norm of one of its eigenvalues was greater than one.
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Table V.: Differential stability of GSH redox cycle

Normal Air Phosgene

-0.6141 2.0830 (unstable)

0.1177 -1.0383 (unstable)

0.4803 + 0.3199i -0.7561

0.4803 - 0.3199i 1.0512 (unstable)

0.7467 0.9120

0.7542 0.8696

0.4972 + 0.4196i 1.0470 + 0.2711i

0.4972 - 0.4196i 1.0470 - 0.2711i

I also analyzed the redox cycle in mice lung cells that were exposed to either

carbonyl chloride (phosgene), an industrial toxin, or normal air; and I found that

GSH redox system in normal lung cells was stable – all eigenvalues were within the

unit circle, and that the network exposed to toxin was unstable – some eigenvalues

were outside the unit circle. Whether the unstable detoxification system contributed

to the death of mice exposed to phosgene is not yet known, but Sciuto et al. [109]

speculated that the poison might have overwhelmed the detoxification system.

I also analyzed the activity data from the MAPK network in mammalian cells

that expressed either wild type Vpr, mutant R73A Vpr, or mutant R80A Vpr; and

I found that both the wild type and R73A produced stable behaviours, and R80A

caused the network to become unstable. A stable MAPK network helps the virus

most, for Yoshizuka et al. [110] found the HIV virus uses MAPK network to cause

cell cycle G2 arrest, and over-expression of MAP2K2 reversed the arrest.
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Table VI.: Differential stability of the MAPK network

Wild type R73A R80A

0.8527 0.7448 -1.0169 (unstable)

0.8862 -0.0437 + 0.0925i -0.4078

-0.1615 + 0.3646i -0.0437 - 0.0925i -0.2023

-0.1615 - 0.3646i -0.6472 0.5867

-0.4884 -0.3913 0.9534

-0.4601 0.4680 0.7685

0.9324 0.4877 -0.6676

-0.4477 -0.4916 0.8315

4. Differential Relative Stability Analyzed via Root Locus

The relative stability of genetic networks is also important; it is a measure of ro-

bustness. I studied relative stability by examining the stability margins of pure gain

feedback loops through root-locus plots. Given a dynamical system, one forms a

feedback loop from the output to the input through only a pure gain controller.

Depending on whether the control signal is negated as it is fed into the input, the

feedback can be positive (not negated) or negative (negated). The original system

is called the open-loop system, and its zeros and poles are the open-loop zeros and

poles; the zeros and poles of the overall system are called the closed-loop zeros and

poles. A dynamical system’s zeroes are the roots of the numerator of the transfer

function (for an explanation of the transfer function, see Methods), and the poles are

the roots of the denominator. The stability of closed-loop systems depend on the

closed-loop poles. The root-locus method generates a plot that traces the closed-loop

poles as the gain of the controller is varied, and the portion of gains that make the



74

closed-loop stable is called the stability margin. In the root locus plot, the open-loop

zero is represented by a circle (©), the open-loop pole by a cross (×), and if there is

a zero-pole cancellation I will see a circle and a cross on top of each other (
⊗

). The

root-locus method can only study systems with single input and single output (SISO),

but the dynamical properties of SISO systems is a reflection of the overall system’s

dynamical properties, so that the performance of the SISO system will manifest itself

in the overall system’s performance.

In the SOS DNA repair network, the recA to uvrA SISO system showed differen-

tial root-locus plots, depending on radiation levels. Their respective root-locus plots,

for both negative and positive feedbacks, are shown in Figure 14. Under low level

of radiation, I found that the SISO system was comfortable with positive feedback,

which had larger margin of stabilizing gains, whereas negative feedback allowed far

narrower choices. Under high level of radiation, the opposite was true: positive feed-

back had no stabilizing gain whereas negative feedback had a large margin. The need

for positive feedback loop in low radiation level is an interesting discovery from our

root-locus analysis, because it runs counter to the common perception that negative

feedback loop promotes stability and positive feedback loop leads to instability. Per-

haps under low radiation level, the SOS network is not sufficiently stimulated and

positive feedback fully activates the network which then leads to overall stability.

In the GSH redox network, I discovered that the ALDH2A1 to IDH2 SISO system

showed a simpler but more striking difference under different environmental condi-

tions. When exposed to normal air, the SISO system was stable and the root-locus

plot in Figure 15 shows that sizeable gain values do not destabilize the closed-loop

system, which represents a nice scenario, because the subsystem can sustain a lot of

stress. But, as I can see in Figure 15 and Figure 15, the same SISO system, when

exposed to toxin, not only had an unstable open-loop system, but the closed-loop sys-
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c                      d 

   

Fig. 14.: Root locus plots of recA to uvrA SISO system. These plots trace the poles of the closed-loop system
as the gainis varied from zero to infinity. The trajectories start at the open-loop poles which are represented by the
cross, and could end at the open-loop zeros which are represented by an open circle, or they could go on infinitely
in some direction. The different colours represent distinct trajectories of different closed-loop poles. a. This is the
root locus plot of recA to uvrA system under low level of radiation with negative feedback, where the locus on the
real axis goes out of the unit circle quickly and therefore shows small stability margins. (The dotted circle is the unit
circle.) b. This is the root locus plot of recA to uvrA system under low level of radiation with positive feedback,
with some stability margins. c. This is the root locus plot of recA to uvrA system under high level of radiation
with negative feedback, where a good portion of all three loci stays within the unit circle and therefore exhibits large
stability margins. d. This is the root locus plot of recA to uvrA system under high level of radiation with positive
feedback, which has no stability margin.
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tem also remained unstable no matter what value of the gain was, positive or negative.

This means that not only the ALDH2A1 to IDH2 SISO system was very unstable, but

that a higher order controller must be used to produce a stable closed-loop system, a

sign of very serious damage.

I also found that MAPK network in mammalian cell lines subject to different

versions of Vpr of HIV type I virus had similarly different root locus plots, which

are shown in Figure 16. The RAF1 to MKNK2 SISO system was stable under both

the wild type and the R73A mutant Vpr perturbation, and both showed comfortable

margin of gain values for which the closed-loop system was stable. The SISO system

under R80A mutant protein exhibited a stable closed-loop system with only a small

margin of gain with positive feedback and none with negative feedback. If that small

margin does not include a gain that can produce a closed system with satisfactory

performance, then a higher order controller is called for.

5. Differential Degree of Controllability

Since one goal of systems biology is to aid the development of therapeutic treatments,

which in the context of genetic networks is to bring the network from undesirable

states to healthy states by manipulating inputs, the relative ease of moving around in

the state space is an important issue. The ability to move a system from one point in

the state space to another in finite time with only finite inputs is called controllability,

which is a pivotal concept in linear time systems theory [102]. Controllability can

be tested by the rank of controllability matrix; if the controllability matrix is of full

rank, then the system is controllable, otherwise uncontrollable. Beyond the binary

test (controllable or not) there are also degrees of controllability. The condition

number of the controllability matrix can be considered as a measure of the degree

of controllability, the bigger the number the less the controllability. A system with
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Fig. 15.: Root locus plots of recA to uvrA SISO system. a. Root locus plot of

ALDH2A1 to IDH2 system exposed to normal air with negative feedback is shown,

with large stability margins. b. Root locus plot of ALDH2A1 to IDH2 system exposed

to poisonous air with negative feedback, where the locus on the positive real axis

is entirely outside of the unit circle and therefore it has no stability margin. c.

Root locus plot of ALDH2A1 to IDH2 system exposed to poisonous air with positive

feedback, showing no stability margin because of the locus at the right.
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Fig. 16.: Root locus plots of RAF1 to MKNK2 SISO system. a. Root locus plot of

RAF1 to MKNK2 system perturbed by wild type Vpr with negative feedback where

a large portion of the locus can be seen within the unit circle. b. Root locus plot

of RAF1 to MKNK2 system perturbed by R73A mutant Vpr with negative feedback

showing very good stability margins. c. Root locus plot of RAF1 to MKNK2 system

perturbed by R80A mutant Vpr with negative feedback, where there is basically no

stability margin due to the two loci on the real axis. d. Root locus plot of RAF1

to MKNK2 system perturbed by R80A mutant Vpr with positive feedback and small

stability margins.



79

less controllability may require much greater inputs to achieve the desired final state,

which could be a problem as the inputs for biological systems are drugs, radiation

therapy, things in limited supply and subject to cost factors. As I will see, different

systems could have radically different degrees of controllability.

Although I found all the three genetic regulatory networks controllable under

all circumstances, their condition numbers differed, for one significantly. I discovered

that the SOS DNA repair system under high dose of radiation had a condition number

of 2.8 × 109 for its controllability matrix, and that under low dosage the condition

number was 2.6×109. The similarly large condition numbers suggest the SOS system

under study is difficult to control; whether this is due to radiation is not known. On

the other hand, in mice lung exposed to normal air I saw that the redox system had

a condition number of 567 for its controllability matrix, and that those exposed to

toxin had 70267. The different condition numbers peg the redox system as much more

difficult to control after exposure to poison, perhaps due to damages or the fact that

the network was being overwhelmed by the effects of the toxin. The third network,

the MAPK network in mammalian cell lines, was found to have a condition number

of 62.15 when exposed to the wild type Vpr, 88.5 for those exposed to the R80A

mutant, and 285.4 for the R73A mutant. It is obvious that R73A mutant results in a

stodgier MAPK network than other variants, but overall the MAPK system retains

good controllability, making it a good target for treatment.

6. Differential Transient Responses

To study cell functions as temporal processes means I must take stock of transient

behaviors in addition to steady states. One way to characterize transient behaviors

is through the transient response of the dynamical system to inputs like step input

and impulse input, but because the step responses and impulses responses give same
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information for linear systems, I will concentrate on the step input responses. A step

input is a constant input, a unit step, a constant unity. The rise time is a measure

of the speed of the dynamics, and the settling time and the overshoot gauge how

close to the steady state the transient behaviors are. Of course, systems that exhibit

differential stability will have different transient responses, but because differential

stability is addressed earlier, I will disregard any difference in transient responses due

to stability difference.

The transient responses are by their nature studied as input-output pairs, also

called a single-input-single-output (SISO) system. Although I will look at individual

SISO system extracted from multiple-input-multiple-output (MIMO) systems, the

transient responses are still the intrinsic properties of the original system, and differ-

ential transient responses suggest fundamentally different dynamical behaviors of the

original system in response to external perturbations.

The SOS DNA repair network has only one SISO system, besides those due to

differential stability, that exhibited differential rise time and settling time, the recA

to uvrD system. The SISO system, when exposed to high radiation dosage, was

almost twice as fast as the system exposed to low dosage of radiation, to reach their

respective steady states. This suggests that the SOS system needs uvrD to respond

faster to, and therefore has faster dynamics under, higher levels of radiation. With

no overshoot in both cases and a smaller settling time for a higher dosage, the recA

to uvrD system under high radiation level stayed closer to the steady states. The rise

time and settling time are listed in Table VII.

The MAPK network in mammalian cells exhibited differential transient responses

to three types of Vpr of HIV type I virus. The BRAF to MAP2K2 SISO system

displayed slower dynamics and were more distant from the steady state under the

wild type than both mutants, and among the mutants, R73A had faster dynamics
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Table VII.: Different transient responses of the SOS network

recA to uvrD

RiseTime:58.1993
Low Radiation Dosage

SettlingTime:108.1459

RiseTime:17.9888
High Radiation Dosage

SettlingTime:35.8853

and better ability to stay close to the steady state. On the other hand, the BRAF to

MAPK1 systems transient behaviors in response to the wild type Vpr were dominated

by a overshoot, and with its long settling time the systems transient responses were

far from the steady state. The system perturbed by the wild type protein also had

faster dynamics due to its smaller rise time, and the R73A mutant produced a system

that had relatively fast dynamics and transient response closer to the steady state.

The R80A mutant resulted in a system with slow dynamics and transient responses

distant from the steady state with its relative large rise time and settling time and no

overshoot. The respective rise time, settling time, and overshoots are in Table VIII.

Although overshoot is generally considered undesirable in engineering (whether

fast dynamics or staying close to the steady states are good or bad depends on the

circumstances and cannot be determined a priori;) a large overshoot can be a fast way

of signalling, or it can be an unbearable disturbance to cells. But being aware of the

difference in transient responses is the first step toward devising treatment strategies

that shape biological systems dynamics to our liking.
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Table VIII.: Different transient responses of the MAPK network

BRAF to MAP2K2 BRAF to MAPK1

RiseTime:31.5 RiseTime:0.26

Wild type SettlingTime:56.5 SettlingTime:76.1

Overshoot:0 Overshoot:440.4

RiseTime:2.6 RiseTime:8.2

R73A Mutant SettlingTime:5.8 SettlingTime:17.0

Overshoot:0 Overshoot:0

RiseTime:11.7 RiseTime:48.5

R80A Mutant SettlingTime:21.7 SettlingTime:90.2

Overshoot:0 Overshoot:0

D. Discussion

Discovering differentially expressed genes and clustering co-expressed genes into func-

tional groups have given researchers hints about the role of genes in pathogenesis.

However, with increasing recognition that cell functions are temporal processes and

that the dynamics of gene expression levels and gene interactions play a vital role

in determining the health of the organism [96, 114], there is a need to distinguish

peculiar dynamical behaviors that result in sickness from those that do not. Dynami-

cal properties succinctly characterize dynamical behaviors, and differential dynamical

properties of gene networks can be seen as a natural extension of differentially ex-

pressed genes.

In this chapter I analyzed the dynamical properties of genetic networks, such as

their stability, their closed-loop stability embodied in the root-locus plot, their step

responses, and their controllability. First, I estimated the state-space models of three
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genetic networks: the SOS DNA repair network, the GSH redox cycle system, and

the MAPK network; then I performed analysis on the estimated models. From the

preliminary results, I found that significant differences in dynamical properties exist

in all three networks.

All three genetic networks exhibited differential stability. Stability is a funda-

mental dynamical property in any dynamical system. A dynamical system is unstable

if it diverges or oscillates after being subjected to perturbations. An unstable system

is sensitive to perturbation or noise, and it will have erratic behaviors, possibly caus-

ing irreparable cell damage, leading to impairment of cell functions and maybe even

cell death. A stable genetic network on the other hand confers a degree of robust-

ness against noise on the overall organism. Recently Hornstein and Shomron [115]

proposed that miRNAs play a stabilizing role for a number of genetic networks and

the stability was necessary for the proper functioning of organisms. It would be in-

teresting to see whether restoring stability to an organisms genetic networks restores

the organisms health.

Besides stability, I also studied relative stability. Root-locus plots track the

stability of the closed-loop system under the influence of a pure gain controller for

single-input-single-output (SISO) systems, and they can be seen as a measure of the

relative stability of the SISO system. As biological systems are often under control

of other, bigger systems, wide margins of stabilizing gains give more leeway to, and

can sustain some stress from, the controlling systems, and therefore they are more

relatively stable than those with narrow margins. The redox cycle system in mice

lungs is the clearest example. Exposed to normal air, the ALDH2A1 to IDH2 system

was itself stable and the closed-loop system was stable for all possible gains, which

makes this SISO system robust in normal tissues. But when exposed to toxin, not only

was it unstable in itself, but no gain value could make the closed-loop system stable,
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which makes the system brittle. Systems that change from high relative stability to

low relative stability can be considered for association with diseases, because they

impact the outer loop systems and could make the overall system unstable. However,

relative stability is not the only thing root-locus plots can show. In the recA to uvrA

SISO system of the SOS network, positive feedback enabled a lot of stabilizing gains

for the SISO system exposed to low level of radiation, as opposed to the same system

exposed to high level of radiation, which needed negative feedback for large margins

of stabilizing gains. This may portend drastic changes in the outer loops, as changing

from promotion to inhibition is not easy for biochemical reactions, and it could be a

major sign that this system is associated with unhealthy conditions.

The last dynamical property I looked at was controllability. Therapeutic treat-

ments can be seen as pushing gene expression levels from unhealthy states to healthy

states, and controllability is a theoretical guarantee that there are possible inputs that

can achieve healthy states. Although I found all systems to be controllable, I did find

different degrees of controllability. The condition number of the controllability matrix

was taken as a measure of degree of controllability and the redox cycle system in mice

lung exhibited over 100 times difference in its condition number, suggesting a much

higher possibility that unacceptably large inputs are required to move the system into

desired states.

Of course much work remains. So far in this chapter I have only analyzed a

small number of dynamical properties while many more remain. Robustness is an

important property that some consider an organizing principle of complex biological

system [116, 117], yet I have not investigated it. There is also the issue of the ro-

bustness of estimation. Due to inherent noise in measurements, there are inevitable

uncertainties in any parameter estimation. In general, increasing the sample size will

increase the reliability of the results for dynamic properties. Another way to deal
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with this is to obtain confidence intervals for estimated parameter values. However,

confidence intervals on individual parameters do not directly translate into confidence

intervals for dynamical properties, especially because I have imposed constraints on

the parameter space. This should be a topic for further study.

On the issue of scalability, it is known that the number of floating point opera-

tions roughly grows to the cubic power of the number of states [91], assuming that

the number of states is larger than either the number of inputs or that of outputs. I

have implemented our method in Matlab and for the systems studied in this chapter

computation time is around ten minutes on a 1.6GHz Core Duo laptop, so I expect

our program to have no difficulty with a network with dozens of genes. For large

systems, I should investigate hierarchical system identification method [118].

E. Conclusion

Dynamical properties are considered to be pivotal in determining cellular functions

such as apoptosis, cell division, proliferation, etc. [119], and it follows that differential

dynamical properties can serve as important indicators for discovering the role of

specific biological processes in causing the malfunction of cells. Only by comparing

fundamentally different dynamical behaviours between normal and abnormal cells can

I begin to untangle the complex interactions and roles of genes in pathogenesis. This

will not only add to our understanding of diseases but could also be a step toward

effective treatments.
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CHAPTER V

OPTIMAL LINEAR QUADRATIC CONTROL OF GENETIC NETWORKS

A. Introduction

Study of optimal control of genetic regulatory and signal transduction networks serves

two purposes:

1. Unravel the underlying design principles of cells in an evolutionary context

[93, 120, 121],

2. Design the treatment strategies for curing diseases [122, 123, 124, 125, 126].

Evolution is long thought as optimizing a fitness measure that balance competing

pressures [120], and if the fitness measure is dynamic behavior, then evolution can be

seen as solving a dynamic optimization problem. Although that is a new and promis-

ing research problem, this chapter of my dissertation is concerned with the second

purpose, optimal control of genetic regulatory and signal transduction networks for

treatment strategy.

Expression profiles of genes or proteins are closely related to the phenotype of

cells and are the fingerprints of cellular physiology [127, 128]. Germline or somatic

mutations lead to subsequent transcriptional and translational changes which in turn

will change the dynamic behaviors of genetic networks, and finally affect the pheno-

type of cells and cause diseases. Therapeutic interventions such as radiation, drug,

gene therapy, and small RNA interference try to alter gene expressions from an unde-

sirable or abnormal state to a desirable or normal state. Gene regulation is a complex

biological system that is highly organized into genetic networks and must accomplish

complex tasks with high accuracy. To change individual genes’ expression and to
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prevent and control the undesirable dynamic behavior of genetic networks are funda-

mental to therapeutic treatment using genetics [129]. Our ultimate goal is to be able

to design medical treatments directly intervening in biological networks and altering

their dynamic behaviors.

In the past several years, researchers in optimal control of genetic regulatory and

signal transduction networks have focused on using variants of Boolean networks as

their models [130, 131, 132, 122, 124, 133]. Boolean network models assume that each

gene has discrete states, often limited to two states, ON or OFF. If the gene is ex-

pressed then it takes the value ON, otherwise, it takes the value OFF. Optimal control

of a Boolean network approach is formulated as minimizing a performance index over

a period of time by external control signals. A disadvantage of the Boolean network is

its inability to include many of the details of cellular processes [134]. A more detailed

approach is the rate-equation approach, in which ordinary differential equations are

used to model chemical kinetics of reactions [135, 136]. The rate-equation approach

allows a more accurate physical representation of biological networks, and it permits

a large body of analytical techniques of dynamic systems theory to be applied to the

analysis of the dynamics of biological networks [137]. In fact, a majority of works

on signal transduction networks uses the rate-equation approach. However, the rate-

equation approach is computationally intensive and requires kinetic parameters which

are often difficult to obtain outside of the few well-studied networks.

A linear dynamic system is simpler than rate equations but still retains con-

siderably more details of biological networks than Boolean networks. Therefore, we

formulate the control of genetic regulatory and signal transduction networks as a

optimal linear quadratic control problem in modern control theory, which is very

popular in engineering [138]. Optimal linear quadratic control is based on state-space

models. We already note the manifold advantages of the state-space models in the
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introduction, so we will belabor the point here. Instead, we just reiterate here that

the development of RNA interference for repression of gene expression [139, 140] and

synthetic biology in designing artificial regulatory circuits [141, 134, 142, 143] will

open a new avenue for targeted gene therapy [144] and that the state-space models

are particularly suitable for modeling these therapeutic strategies.

Gene expression patterns embody the fundamental state of cells and can be used

to characterize genetic manipulations, drug actions, and cellular responses to various

environmental stimuli. Changes in expression levels of genes and proteins often lead

to transition of cells from being normal to being abnormal and therefore differentially

expressed genes may serve as drug targets [145]. It is hypothesized that the disease

is caused by germline or somatic mutations such as point mutations or insertions or

deletions or chromosomal translocations that result in the subsequent transcriptional

and translational alterations [146, 147]. The purpose of drug actions is to compensate

for the resulting molecular changes.

One way to do so is to transform cells from an undesirable state to a desirable one

by altering gene or protein expressions [148]. This implies that a drug development

problem can be formulated as a control problem of a complex biological system. A

dynamic control system involves three types of variables: input, output, and state

variables [149, 150]. In the drug development problem, the variables that determine

the states of genetic regulatory system can be taken as the state variables. Therapeu-

tic interventions such as radiation, chemo-therapy, siRNA and gene therapy provide

tools to influence the states and can therefore be taken as inputs. The expression

levels of the gene and proteins which can be measured are the outputs.

The control problem of the biological system (or specifically, gene regulatory

system) is to choose the input values to be fed to the biological system so that

the performance of the system (e.g. desired states of gene expressions, the steady-



89

state and transient response of genetic networks, etc.) are optimum (or satisfies pre-

specified condition) with respect to a performance criterion [151]. In this dissertation,

I choose a quadratic function as the performance index and a linear state-space model

to study the dynamic behavior of the genetic regulatory and signal transduction

networks. This chapter is organized as follows. In section B, we formulate the control

problem of genetic regulatory and signal transduction networks as an optimal tracking

control problem and provide the necessary background for finite time-horizon and

infinite time-horizon optimal quadratic tracking control problems. In section C, the

proposed optimal tracking control of genetic networks is applied to three real data

sets. In section D, we discuss and summarize the results and address further research

issues.

B. Methods

1. Formulation of Optimal Control of Genetic Regulatory and Signal Transduction

Networks

This section closely follows Lewis and Syrmos’ book. [149]

The task of gene regulation and signal transduction is to control production of

mRNA and protein. In order to reduce the complexity of the problems, we formulate

the control of genetic regulatory and signal transduction networks as an optimal

control problem of linear deterministic systems with quadratic performance index and

bounded controls [138]. In general, a controlled system consists of three components:

the states of the system, the outputs and external control signals also called inputs.

The outputs of the genetic regulatory and signal transduction networks here are the

expressions of the genes in the networks. The environmental stimulus, drugs, small

RNA interference can be taken as external inputs. The goal of the controller is to find
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an admissible control function that minimizes the performance index starting with

given initial states.

Consider the following continuous-time linear dynamic system for modeling ge-

netic regulatory and signal transduction networks:

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t)

x(t0) = x0,

(5.1)

where x(t) is an n-dimensional state vector that describes the behavior of gene regula-

tion, but is hidden; u(t) is a r-dimensional input vector that influence gene regulation,

things like environmental forces, drugs, proteins, RNAs, or expression levels of con-

nected genes or nutrition; y(t) is an m-dimensional output vector, for example, gene

expressions and intermediate phenotypes; and A(t) ,B(t), and C(t) are n× n, n× r,

and m × n matrices, respectively. Matrix A(t) is called a state transition matrix

whose elements denote the regulatory strength of one gene on another gene, B(t),

input to state matrix whose elements quantify the effects of the inputs on the states

of the system, and C(t), state to output matrix whose elements describe the relations

between the states and measured gene expression levels. This is a time-varying sys-

tem because the parameters A(t), B(t), and C(t) are functions of time. Performance

index is defined as

J = Φ[x(tf ), tf ] +

∫ t

t0

L(x(t), u(t), t)d t

which measures deviation of states from the desired conditions or the errors between

the current abnormal states and desired normal states of the systems. Here, func-

tion Φ(·) penalizes the final state while L(·) penalizes the interior states. We will

discuss specific functional form of Φ(·) and L(·) in the specific problems in the next

two sections. The optimal control problem is to find the optimal control u(t) and
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the corresponding state trajectory x(t), 0 ≤ t ≤ tf satisfying equations (5.1) that

minimizes the performance index J , which could lead to the transition of the system

from undesirable states to desirable states. In general, the performance index J can

be any nonlinear function of states and inputs, but in this dissertation, I will focus

on the quadratic performance index.

2. The Continuous-Time Linear-Quadratic Regulator

We will discuss the regulator first because it is the simpler problem than optimal

tracking and may serve as a gentle introduction to tracking. The goal of a regulator

is to maintain the system at a desired equilibrium state. To achieve this goal, the

quadratic performance index is

J =
1

2
xT (tf )Fx(tf ) +

1

2

∫ tf

t0

[xT (t)Q(t)x(t) + uT (t)R(t)u(t)]d t (5.2)

where F is a real symmetric positive semidefinite matrix, Q(t) is a real symmetric

positive semidefinite matrix, and R(t) is a real symmetric positive definite matrix.

Our goal is to select control input u(t) for minimizing the performance index J .

To design a regulator, we first construct the system Hamiltonian:

H(x(t), u(t), λ(t)) =
1

2
xT (t)Q(t)x(t) +

1

2
uT (t)R(t)u(t) + λT (t)[A(t)x(t) +B(t)u(t)]

where λ(t) is an n × 1 adjoint vector, also known as the Lagrange multiplier. The

reason to include λ(t) is to make sure that the systems equations in equation (5.2) are

obeyed for the optimal solution. Q(t) and R(t) are parameters chosen by designers to

balance the importance of minimizing states and minimizing inputs. The minimum
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principle requires that

∂H

∂u
= R(t)u(t) +BT (t)λ(t) = 0 (5.3)

dλ(t)

dt
= −∂H

∂x
= −Q(t)x(t)− AT (t)λ(t) (5.4)

with terminal condition λ(tf ) = Fx(tf ). Solving equation (5.3), the optimal control

is given by

u(t) = −R−1(t)BT (t)λ(t). (5.5)

We assume that the n-dimensional state and adjoint vectors can be related by the

following linear transformation:

λ(t) = P (t)x(t). (5.6)

Lewis and Syrmos call P (t) the solution to the Riccati differential equation that will

be defined below, and according to Bryson and Ho [152], it can also be derived if one

assumes possession of a set of linearly independent solutions for x(t) and λ(t). In any

event, the functional form assumed above lends itself to the sweep method for solving

ordinary differential equations. Substituting equation (5.6) into equation (5.5) yields

u(t) = −R−1(t)BT (t)P (t)x(t). (5.7)

It follows from equations (5.1) and (5.7) that

ẋ(t) = [A(t)−B(t)R−1(t)BT (t)P (t)]x(t). (5.8)

Substituting equation (5.7) into equation (5.4), we obtain

Ṗ (t)x(t) + P (t)ẋ(t) = −Q(t)x(t)− AT (t)P (t)x(t). (5.9)



93

Substituting equation (5.8) into equation (5.9), we have

Ṗ (t)x(t) + P (t)[A(t)−B(t)R−1(t)BT (t)P (t)]x(t) = −[Q(t) + AT (t)P (t)]x(t),

which implies that

[Ṗ (t) + P (t)A(t) + AT (t)P (t)− P (t)B(t)R−1(t)BT (t)P (t) +Q(t)]x(t) = 0. (5.10)

Since x(t) 6= 0, then we have the following matrix Riccati differential equation:

−Ṗ (t) = P (t)A(t) + AT (t)P (t)− P (t)B(t)R−1(t)BT (t)P (t) +Q(t). (5.11)

Combining the terminal condition λ(tf ) = FX(tf ) and equation (5.6), we obtain

P (tf ) = F.

This is the boundary condition for the Riccati differential equation, and we “sweep”

backward from the terminal point to the starting time, similar to treating every time-

point as a terminal point, so solution P (t) is like carrying the terminal condition

backward in time. In summary, these are the steps to obtaining the optimal control

sequences:

1. Solve matrix Riccati differential equation,−Ṗ (t) = P (t)A(t) + AT (t)P (t) −

P (t)B(t)R−1(t)BT (t)P (t) +Q(t) with boundary condition P (tf ) + F ;

2. Solve the differential equation ẋ(t) = [A(t)−B(t)R−1(t)BT (t)P (t)]x(t), x(t0) =

x0;

3. the input u(t) is given by u(t) = −R−1(t)BT (t)P (t)x(t); and

4. the optimal performance index is given by J = 1
2
xT (t0)P (t0)x(t0).
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3. Optimal Linear Quadratic Tracking (LQT)

The aim of optimal linear quadratic tracking is to force the system to track a desired

trajectory. Assume that yr(t) is the desired output. Let

e(t) = yr(t)− y(t).

The performance index is defined as

J =
1

2
eT (tf )Fe(tf ) +

1

2

∫ tf

t0

[eT (t)Q(t)e(t) + uT (t)R(t)u(t)]dt. (5.12)

Optimal linear quadratic tracking is to find a control signal that minimizes the per-

formance index J . To achieve this, we first construct the system Hamiltonian:

H(x(t), u(t), λ(t)) =
1

2
eT (t)Q(t)e(t) +

1

2
uT (t)R(t)u(t) + λT (t)[A(t)x(t) +B(t)u(t)].

The minimum principle requires

∂H

∂u
= R(t)u(t) +BT (t)λ(t) = 0 (5.13)

dλ(t)

d t
= −∂H

∂x
= CT (t)Q(t)[yr(t)− C(t)x(t)]− AT (t)λ(t), (5.14)

with the boundary condition

λ(tf ) = CT (tf )F [C(tf )x(tf )− yr(tf )]. (5.15)

Solving equation (5.13), we have the input signal

u(t) = −R−1(t)BT (t)P (t)x(t).

Note that the state and adjoint vectors can be related by the following linear trans-

formation:

λ(t) = P (t)x(t)− g(t), (5.16)
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where g(t) is an additional to account for the reference trajectory in the performance

index and the terminal condition, which makes λ(t) an affine function of state instead

of a linear function as in LQR. Substituting equation (5.16) into equation (5.14), we

obtain

dP (t)

d t
x(t) + P (t)

dx(t)

d t
− d g(t)

d t

= CT (t)Q(t)yr(t)− CT (t)Q(t)C(t)x(t)− AT (t)[P (t)x(t)− g(t)]

(5.17)

However,

dx(t)

d t
= A(t)x(t) +B(t)u(t)

= [A(t)−B(t)R−1(t)BT (t)P (t)]x(t) +B(t)R−1(t)BT (t)g(t).

(5.18)

Substituting equation (5.18) into equation (5.17) yields[
dP (t)

d t
+ P (t)A(t) + AT (t)P (t)− P (t)B(t)R−1(t)BT (t)P (t) + CT (t)Q(t)C(t)

]
+P (t)B(t)R−1(t)BT (t)g(t)− d g(t)

d t

= −AT (t)P (t)x(t) + AT (t)g(t) + CT (t)Q(t)Yr(t),

(5.19)

which implies that

−dP (t)

d t
= P (t)A(t) + AT (t)P (t)− P (t)B(t)R−1(t)BT (t)P (t) + CT (t)Q(t)C(t)

(5.20)

−d g(t)

d t
= [A(t)−B(t)R−1(t)BT (t)P (t)]Tg(t) + CT (t)Q(t)Yr(t), (5.21)

with boundary conditions

P (tf ) = CT (tf )FC(tf )
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and

g(tf ) = CT (tf )FYr(tf ).

In summary, the steps to obtaining the optimal inputs are:

1. Solve differential equations

−dP (t)

d t
= P (t)A(t) + AT (t)P (t)− P (t)B(t)R−1(t)BT (t)P (t) + CT (t)Q(t)C(t)

−d g(t)

d t
= [A(t)−B(t)R−1(t)BT (t)P (t)]Tg(t) + CT (t)Q(t)Yr(t)

P (tf ) = CT (tf )FC(tf )

g(tf ) = CT (tf )FYr(tf ),

where P (t) carries backward the terminal condition and g(t) is the additional

term to account for the reference trajectory in the performance index and the

terminal condition;

2. Solve differential equation

dx(t)

d t
= [A(t)−B(t)R−1(t)BT (t)P (t)]x(t) +B(t)R−1(t)BT (t)g(t)

with initial condition

x(t0) = x0

; and

3. Calculate the optimal input siganl by u(t) = −R−1(t)BT (t)[P (t)x(t)− g(t)].

If we assume that all the parameters matrices, A, B, C, D, Q, and R are constant,

then when tf →∞, we have

PA+ ATP − PBR−1BTP + CTQC = 0

g = [PBR−1BT − AT ]−1CTQyr
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u(t) = −R−1BTPx(t) +R−1BTg

dx

d t
= [A−BR−1BTP ]x(t) +BR−1BTg

x(t0) = x0.

C. Experiments and Results

In this section, three real world examples are given to illustrate how to use optimal

linear quadratic tracking for optimal control of genetic regulatory and signal trans-

duction networks. All data are gene expressions although the methods can also be

applied to other genetic and molecular biology problems.

1. Scleroderma Fibroblasts in Response to Perturbation of Environmental Stimuli

Diseases are believed to arise from dysregulation of biological systems (pathways)

perturbed by environmental triggers. It is systems dynamics that play an essential

role in giving rise to cellular function/dysfunction such as growth, differentiation, di-

vision and apoptosis. As a proof of principle, we examine TGFβ signal transduction

pathways in human fibroblasts from the autoimmune fibrosing disease, scleroderma

(SSc) in response to perturbation by silica. SSc is a typical complex disease in which

fibrosis occurs in multiple organs. The major source of fibrosis in SSc is from produc-

tion of collagens from fibroblasts. Fibroblasts obtained from SSc patients appear to

be genetically engineered to produce more collagens and cytokines [153]. The biolog-

ical system of fibroblasts reacting to silica exposure must involve complex regulations

and coordination of molecules to maintain their desired status. I will design a lin-

ear quadratic tracking of TGFβ pathway to reduce the concentration of COL1A2,

COL3A1. I will study a subnetwork of TGFβ pathway as shown in Figure 17, where

the expression levels of the genes in the normal and SSc fibroblasts are shown with-
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TGFB

SPARC (1)
0.84603 (0.63654)

CTGF (4)
-0.3028 (1.00586)

CoL3A1 (3)
0.23997 (1.10627) CoL1A2 (5)

0.66237 (1.46736)

TIMP3 (2)
0.32847 (0.78374)

Silicon

Fig. 17.: Scheme of TGFβ pathway
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out and within parentheses, respectively. Let x1, x2, x3, x4, and x5 be the expression

levels of genes SPARC, TIMP3, COL3A1, CTGF and COL1A2, respectively. Let u1

and u2 be the expression of the TGFBR1 and silicon. The differential equations that

were estimated from real time PCR experiments in SSc using my constrained EM

algorithm and converted to a continuous system are given below,

dx1

d t
= −0.4518x1 + 0.3123u1 + 0.6091u2

dx2

d t
= −0.2437x2 + 0.0872u1 + 0.1259u2

dx3

d t
= −0.7101x1 + 0.1013x3 + 0.4181x4 + 0.0937u1 + 0.4218u2

dx4

d t
= −0.0823x1 + 0.0059x4 + 0.0111u1 + 0.0286u2

dx5

d t
= −0.8163x1 + 0.2368x4 + 0.3835x5 + 0.1033u1 + 0.4180u2

(5.22)

and all the gene expression levels are directly observable. The mean gene expressions

in SSc fibroblasts are taken as the initial states of the differential equation (5.22) with

values

x0 = [0.6365, 0.7837, 1.1063, 1.0059, 1.4674]T.

The required states of the system is the mean expression levels of the genes in the

TGFβ pathway in the normal fibroblasts and are given by

yr = [0.8460 0.3285 0.2400 - 0.3028 0.6624]T.

Both finite and infinite horizon linear-quadratic tracking controller (LQT) are used

to determine the optimal expression level of the gene TGFβ and concentration of the

silicon for reducing the expressions of the genes COL1A2 and COL3A1 to the desired

normal levels. We know that in general, the infinite time-horizon LQT problem does

not have a solution in the strict sense due to the possible divergence of the performance

index. However, for applications, if the reference signal is generated by an asymptot-
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ically stable system, in broad sense, the problem is well defined and approximately

has an optimal solution [154]. Figures 18(a),18(b),18(c),18(d), and 18(e) show the ex-

pression levels of genes SPARC, TIMP3, COL3A1, CTGF and COL1A2 as a function

of the time, which are the trajectories of the states in optimal LQT. Figures 19(a)

and 19(b) show the trajectories of the control inputs, TGFβ expression and Silicon

dosage. The final expression levels of the genes SPARC, TIMP3, COL3A1, CTGF

and COL1A2 at the time point 50 are 0.9262, 0.2002, 0.4332, -0.0529, and 0.4144,

respectively. The major cause of fibrosis in SSc is over-production of COL3A1 and

COL1A2 from fibroblasts. Although genes COL3A1 and COL1A2 do not reach their

desired values 0.2400 and 0.6624 (the mean expression levels of the genes COL3A1

and COL1A2), they are much reduced from their over-expressed values 1.1063 and

1.4674 in SSc.

Next we consider the infinite horizon LQT controller for TGFβ pathway. Figures

20(a) and 20(b) plot the trajectories of five genes SPARC, TIMP3, COL3A1, CTGF

and COL1A2 and control signals. LQT controller aims to reduce the expression

levels of the genes COL3A1 and COL1A2. To achieve this goal, at the beginning we

see oscillation of the expressions of the five genes in the network. As control process

proceeds, the expressions of all five genes are steadily reduced. The expression of gene

COL3A1 converges to value 0.6225, which is higher than the reference value 0.2400,

but still much lower than the initial, undesired high value 1.1063. After it oscillated

for a while, the expression of the gene COL1A2 decreases to the value 0.1370, which

is much lower than the initial high value of 1.4674. Changes of three other genes

SPARC, TIMP3, CTGF follow similar patterns as gene COL1A2. It is noted that

optimal LQT can also improve the dynamic properties of the TGFβ pathway. Table

IX shows the eigenvalues of the original system and the new system of infinite time-

horizon LQT. Transition matrix A for the SSc has three positive eigenvalues, but real
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Fig. 20.: Trajectories and inputs of TGFβ pathway in infinite time-horizon LQT.

All the genes show improvements over their over-expressed values, although no one

is able to reach reference values and stay there. The inputs go toward zeros as time

goes on, which is good because we do not want non-zero inputs for infinite horizon

control problems.
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Table IX.: Eigenvalues of matrix A of the state-space model for the TGFβ pathway

for the original SSc fibroblasts and in infinite time-horizon LQT.

SSc fibroblasts Infinite Horizon LQT

-0.4518 -0.7746 + 0.4977i

0.3835 -0.7746 - 0.4977i

-0.2437 -0.3835

0.1013 -0.2437

0.0059 -0.0447

parts of all eigenvalues of the same matrix for in the infinite time-horizon LQT are

negative. This demonstrates the stability of TGFβ pathway in infinite time-horizon

LQT is much improved. Figures 21(a) and 21(b) show the step response curves of

the TGFβ pathway to perturbation of silicon in the SSc fibroblast and to synthesized

control signal g in the infinite horizon LQT. We can see from Figures 21(a) and 21(b)

that the expressions of all five genes after perturbation of external signal in LQT

quickly reach the steady states, but the expressions of COL1A2 and COL3A1 in the

SSc fibroblasts after perturbation of silicon were unstable and will never reach the

steady-state values, thus LQT improves the stability of the overall system.

2. Glutathione Redox Cycle in Mice Lung Cells Exposed to Carbonyl Chloride

The Glutathione (GSH) redox cycle in mice lung cells exposed to phosgene (another

name for Carbonyl Chloride) involves six genes ALD2A1,GPX4, GCLC, GCLM, GSS

and IDH2 as shown in Figure 22. A state-space model is used to model the response

of the GSH redox cycle in mice lung cells to the perturbation of phosgene. Two genes

ALD2A1 and GPX4 are modeled as inputs u1 and u2, respectively. All four other
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Fig. 21.: Step response of TGFβ pathway to perturbation of silicon. The pathway

shows improvements in stability for the overall system after the pathway is placed

under LQT controller. The top panel is the pathway without any controller, showing

unstable step responses, while the bottom panel is the step responses of the overall

system, showing stable step responses.
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Fig. 22.: The scheme of GSH redox cycle.

genes are taken as the states of the system and are modeled by state-space equations.

Here, gene GCLC is denoted by x1 , gene GCLM x2 , gene GSS x3 , and gene IDH2 x4.

The observed expressions of the genes GCLC, GCLM, GSS and IDH2 are denoted by

y1, y2, y3 and y4. I used EM algorithms to estimate the parameters of the model. The

continuous model describing GSH redox cycle in mice lung cells exposed to phosgene,

as estimated by the constrained EM algorithm, is given by

dx1

d t
= −0.4385x1 + 4.5356u1

dx2

d t
= −0.5082x2 + 1.8522u1

dx3

d t
= 0.0672x1 − 0.1358x2 − 0.092x3 − 0.0259u1

dx4

d t
= −0.0575x1 + 0.1178x2 + 1.3707x3 − 1.0518x4 + 0.0294u1 + 0.1437u2

y1 = x1, y2 = x2, y3 = x3, y4 = x4.

(5.23)

The initial values are the mean expressions of genes GCLC, GCLM, GSS and IDH2

(1615.7, 341.1, 124.7, and 287.9) when the GSH redox cycle in lung cells exposed
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to phosgene. The desired nominal values are their expressions (279.763, 180.5685,

122.5685, and 311.65) when lung cells are exposed to air. The aim of LQT is to make

the expressions of the genes GCLC, GCLM, GSS and IDH2 in the GSH redox cycle

in mice lung cells exposed to phosgene track as closely as possible their corresponding

values in mice lung cells exposed to air. The control signals are the expressions of genes

ALD2A1 and GPX4. The optimal expressions of gene GPX4 in the unconstrained

LQT are always a negative function of the time, so the expressions of the gene GPX4

is represed to zero in the below analysis. Figures 23(a), 23(b), 23(c),and 23(d) show

optimal expressions of the genes GCLC, GCLM, GSS and IDH2 in finite horizon LQT.

Observe that the expressions of GCLC and GCLM almost monotonically decrease and

the expression of the gene GCLC all run higher than the desired expression, but at

the end of the time period, they are very close to the desired nominal values. The

expression of the gene GCLM crossed the desired nominal line before the end of the

period and reachs the value close to 100. The trend of the expression of the gene GSS

is that it decreases although there is a short period of time to increase its expression.

The expression of the gene IDH2 quickly reach its stable value, but all run much lower

than the desired nominal value due to small impact of the control signal ALDHA1

on the expression of the gene IDH2. Figure 24 plots the curve of the control signal.

The optimal way to change the expressions of the four genes from undesired values

to desired values calls for extremely high expression of the gene ALDHA1. This

demonstrates the difficulty of optimal LQT for repairing damages of GSH redox cycle

in mice lung cells exposed to poisonous phosgene and may be related to the relative

high value of the condition number of the controllability matrix of the system noted

in the previous chapter. Figure 25(a) plots the trajectories of the expressions of

genes GCLC, GCLM, GSS, and IDH2 in infinite horizon LQT. At the beginning the

expressions of all four genes rapidly decreased. Then, they quickly reach the values
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(a) GCLC’s trajectory
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(b) GCLM’s trajectory

0 5 10 15 20 25 30 35 40 45 50
95

100

105

110

115

120

125

130

135

140

145

Time

G
en

e 
E

xp
re

ss
io

n

 

 

GSS
Desired Value

(c) GSS’s trajectory
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(d) IDH2’s trajectory

Fig. 23.: Various trajectories of GSH redox cycle in finite time-horizon LQT.
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Fig. 24.: Input (gene ALDHA1) in finite time-horizon LQT.

344.6551, 121.4521, 63.8734, and 79.0345 and then stay there. Figure 25(b) shows the

control input (expression of the gene ALDH2A1) in infinite horizon LQT. It starts

with the rapid increase of the gene ALDH2A1 to force the reduction of genes GCLC

and GCLM’ expression levels. When the expression of gene ALDH2A1 reached value

33.2740 it stays there to maintain the expressions of the four controlled genes around

their stable values.

3. LQT for MAPK Pathway in Cell Lines Disturbed by Wild Type and Mutant

Type R80A HIV Type I Vpr Protein

HIV-1 Vpr protein is an important protein in promoting the pathogenesis of AIDS by

facilitating apoptosis and cell cycle stall at G2. HIV-1 Vpr protein influences the ex-

pressions of the genes in the MAPK pathway. Yoshizuka and colleagues [110] observed

that different genotypes of the gene HIV-1 Vpr caused differential expressions of the
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Fig. 25.: Trajectories and inputs of GSH redox cycle in infinite time-horizon LQT.
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Fig. 26.: The scheme of MAPK pathway.

genes in the Mitogen-activated Protein Kinase (MAPK) pathway. MAPK pathway is

shown in Figure 26. We study whether we can change the expressions of the genes in

the MAPK pathway in cell lines expressing HIV-1 Vpr mutant types to their values

in cell lines expressing wild type HIV-1 Vpr by LQT. The gene BRAF and RAF1 are

taken as inputs and denoted by u1 and u2, respectively. Let x1, x2, x3, x4 and y1, y2,

y3, y4 denote the expression levels of genes MAP2K1, MAP2K2, MAPK1, MKNK2

and their observed expressions, respectively. Let x = [x1, x2, x3, x4]T , u = [u1, u2]T

and y = [y1, y2, y3, y4]. I used EM algorithm to fit the data from the experiments per-

formed by Yoshizuka et al. [110]. The resulting linear state-space model for MAPK
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pathway in the cell lines expressing HIV-1 Vpr mutant type is given by

dx1

d t
= −1.4159x1 − 0.1756u1 − 0.1279u2

dx2

d t
= −0.6505x2 − 0.3127u1 + 0.0876u2

dx3

d t
= −0.4009x1 + 0.0534x2 − 0.2494x3 − 0.0168u1 − 0.0194u2

dx4

d t
= −0.0006x1 + 0.0001x2 − 0.0025x3 − 0.0974x4

y1 = x1, y2 = x2, y3 = x3, y4 = x4.

(5.24)

The initial conditions of the state variables are the mean expression values of genes

MAP2K1, MAP2K2, MAPK1, MKNK2 in the cell lines expressing HIV-1 Vpr mutant

types and are given by

x0 = [0.0735, 0.1719,−0.3227, 0.0419]T .

The desired nominal values are the mean expression of the genes MAP2K1, MAP2K2,

MAPK1, MKNK2 in the in cell lines expressing HIV-1 Vpr wild types and are as

follows:

yr = [0.0542,−0.5601,−0.1440,−0.8013]T .

The goal of LQT is to change the expressions of genes MAP2K1, MAP2K2, MAPK1,

MKNK2. Both finite and infinite horizon LQT analyses were performed. Figures

27(a), 27(b), 27(c), and 27(d) plot the trajectories of genes MAP2K1, MAP2K2,

MAPK1, and MKNK2 in finite time-horizon LQT. At the beginning the expression

of the gene MAP2K1 rapidly decreases from the initial value 0.0735 to -0.08 then

increases and converges to value 0.0427, which is less than the desired value 0.0542.

Starting to decrease from the initial value 0.1719, the expression of gene MAP2K2

rapidly converges to the value -0.4648, which is higher than the desired value -0.5601

and then stayed there during the remaining time of the planning period. The expres-
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(a) MAP2K1’s trajectory
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(b) MAP2K2’s trajectory
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(c) MAPK1’s trajectory
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(d) MKNK2’s trajectory

Fig. 27.: Trajectories of genes in MAPK pathway in finite time-horizon LQT.
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(a) BRAF’s trajectory
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Fig. 28.: Trajectories of two inputs of the MAPK pathway in finite time-horizon LQT.

sion of gene MAPK1 monotonically increases from -0.3227 to -0.1079, which is larger

than the desired value -0.1440. The expression of gene MKNK2 converged to 0.0057,

which is much larger than the desired value, -0.80131. From Figure 27(d) we can

observe that the expression of gene MKNK2 is almost constant during the planning

period. Gene MKNK2 is farther removed than other genes in the MAPK pathway,

and the linear state-space model (5.24) shows that regulatory effect of gene MAPK1

on MKNK2 is very small. Therefore, changing the expressions of the genes BRAF

and RAF1 does not have much impact on MNKK2 and hence it is difficult to regulate

the expression of gene MKNK2 by control signals BRAF and RAF1. Figures 28(a)

and 28(b) plot the control signals (expressions of the genes BRAF and RAF1) in the

finite time-horizon LQT. Figures 29 and 30 show the trajectories of the expressions

of MAP2K1, MAP2K2, MAPK1, and MKNK2 and control signals in infinite time-

horizon LQT of MAPK pathway. The expressions of MAP2K1, MAP2K2, MAPK1

and MKNK2 quickly converge to values 0.0543, -0.4329, -0.1127, and 0.0029. The ex-

pressions of genes MAP2K1, MAP2K2, MAPK1 are moved close to the desired values,
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Fig. 29.: Trajectories of genes MAP2K1, MAP2K2, MAPK1, and MKNK2 of MAPK

pathway in infinite time-horizon LQT.
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Fig. 30.: Inputs (genes BRAF and RAF1) of MAPK pathway in infinite time-horizon

LQT.

0.0542, -0.5601, and -0.1440, but the expression of the gene MKNK2 is far away from

the desired value, -0.8013. This again demonstrates the difficulty in regulating the

downstream genes in the pathway by LQT.

D. Discussion

In this chapter, regulating gene expression levels in genetic regulatory and signal

transduction networks using finite and infinite time-horizon LQT was formulated.

To date, only Boolean-network-based controllers have been proposed to regulate the

gene expressions. But as Boolean networks gloss considerable biological details, linear

state-space models should also be studied for the purpose of regulating gene expres-

sions. Although LQT has been widely used in engineering, to ensure its successful

application to gene regulation, I have addressed several important issues that are dif-
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ferent from its applications in engineering through adapting of the finite and infinite

horizon LQT to regulate TGFβ, GSH, and MAPK pathways.

The first issue is the choice of target trajectory. The purpose of LQT for ge-

netic networks in the abnormal cells is to drive diseased genetic networks to go from

undesirable states to desirable states. The undesirable states are, in general, expres-

sions of the genes in abnormal cells. These genes in the abnormal cells are either

over-expressed or under-expressed when compared with those in the normal cells. In

other words, the genes are differentially expressed. The observed gene expressions

are the mean values of the gene expressions in a large number of cells in microarrays.

In addition, due to constant perturbations of internal and external environments,

gene expression levels are stochastically changed in both space and time. Therefore,

the mean expression levels in the abnormal cells is a good value as the initial values

of the differential equations in LQT and mean expression levels in the normal cells

is a good value as the reference trajectory. This is also related to the precision of

control in biological networks. It is not necessary, nor practical, to precisely control

the expression levels to be equal to the target values. It is more practical to drive

the expression levels to be close to the reference values. Applications of the LQT to

three real experimental datasets show that it is difficult to precisely reach the desired

levels, but that it is feasible to be close.

Because the genetic regulatory and signal transduction networks are complex,

there may be very indirect paths from the control signals to the target genes. The

examples of GSH and MAPK pathway indicate that it is difficult to control the ex-

pressions of the far away genes in the pathway. In constrast, the example of TGFβ

pathway demonstates that drugs may simultaneously target several genes in the net-

works, including distant genes, and to much better result. In other words, we can use

LQT to control the expressions of directly controlled genes to desired levels, but it
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can be much difficult on indirectly controlled genes. This observation has important

implication in practice, for the fact that remote control of target genes is likely to be

ineffective for treatments means potential treatment methods such as gene therapy,

small RNA interference, and antisense treatment must directly target diease-causing

genes in addition to taking into account the response of the networks on a system

level.

My results are still preliminary. In this dissertation, constrained optimal control

and nonlinear control method have not been developed. In practice, the constraints

should be imposed on the states and the control signals. Development of constrained

optimal control method will have great implications in both theory and practice.

In addition, I have also not considered the impact of stochastic forces in the gene

regulatory and signal transduction networks. In the future, application of robust

control which takes system and measurement noise into account in gene regulation

should be investigated.
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CHAPTER VI

PARAMETER ESTIMATION OF NONLINEAR STATE-SPACE MODELS

A. Introduction

So far I have used linear state-space dynamic models to study genetic regulatory

networks. Linear models are popular in studying genetic regulatory networks [69,

74, 61, 72, 155] because of its analytic tractability and because a lot of details of

gene regulation are still murky and need to be glossed over, but there are attempts

at nonlinear modeling of gene regulations [57, 27] that tend to incorporate details of

transcriptional factor binding, which can be approximated by nonlinear Hill equations

[156]. But in truth, nonlinear state-space modeling is much more common in signal

transduction network studies [10, 96, 76, 10, 11, 28], where a bottom-up, mechanistic

modeling effort often results in nonlinear ordinary differential equations. Metabolic

networks are often studied under a linear approximation scheme called flux-balance

analysis [157, 158, 159], although nonlinear dynamic modeling is also possible [160,

161, 162]. A nonlinear approximation approach called S-systems has also been used to

study various biological networks [163, 105, 106]. Nonlinear models should be closer

to the underlying biochemical reactions because biochemical reactions are nonlinear,

and as we collect more data and gain more insights into the various reactions in the

cell, there will be more opportunities and more needs for nonlinear modeling.

But no matter whether the model is linear or nonlinear, there are still two key

aspects of biological networks, parameter values and structure, that need to be known

before the model can be of use. Since nonlinear state-space dynamic modeling tends

to be deployed in detailed, mechanistic studies about well studied cellular systems,

structures are usually assumed known; Nachman et al. [57] is an exception where they
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estimated both parameters and structure. This chapter also assume structures are

known and that only parameters need to be estimated.

In this chapter, I will study the problem of parameter estimation for nonlinear

state-space dynamic systems with additive, white Gaussian noise. I choose this class

of systems because state-space systems offer great flexibility in the details of models

and approximation of biochemical reactions often lead to state-space forms [67, 70,

164, 66, 69]. The additive, white Gaussian noise is not general as arbitrary noises in

arbitrary functional form [165], but it is more tractable analytically, and Gaussian

sums can be used to approximate non-Gaussian noises [166].

State-space dynamic systems have hidden variables that cannot be directly mea-

sured. This facilitates our modeling efforts because many important quantities about

biochemical elements cannot be directly measured or observed, particularly within

cells. This is the reason I choose state-space systems. But the presence of hidden

states also complicates parameter estimation because hidden states also need to be

estimated in some way. The expectation-maximization algorithm (EM) divides esti-

mation in two steps: estimate states using the current estimate of parameters, and

estimate parameters using the current estimate of states. I have already used EM

algorithm to estimate parameters of linear systems in chapter III; now I will try to

do the same for nonlinear systems.

EM algorithm has two steps, the E-step, estimation of hidden states, and the M-

step, parameter estimation. These two steps are recursively and repeatedly executed

until a local maximum is found. There are a number of choices in state estimation.

Extended Kalman filter [167, 80] is an extension of linear Kalman filter by linearizing

states around the current best estimate of states. It has the advantage of being simple

but the disadvantage of sometimes worse performance than other methods. In this

chapter, state estimation is by extended Kalman filter (EKF), because EKF is the the
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most popular and also the simplest nonlinear extension of Kalman filter, a simplicity

that I will leverage when I derive an EM algorithm for systems with time-delays.

Unscented Kalman filter (UKF) is another extension of regular Kalman filter. UKF

approximates nonlinear state transition by a set of deterministically chosen points,

called sigma points [168]. Particle filter on the other hand is a sequential Monte

Carlo method that tries to approximate states by repeated sampling [169]. Particle

filter tends to be computationally expensive but reportedly it is most accurate of the

three nonlinear filters [170]. There is already work on parameter estimation using

EM algorithm and particle filter as the E-step [165].

The M-step of nonlinear EM algorithm is very different from the M-step for

linear systems. There is no longer the possibility of analytic solution because there

is no analytic solution to arbitrary nonlinear equations. Instead, numerical nonlinear

optimization methods such as gradient descent or Gauss-Newton’s method need to

be used to find local maximum. This is the approach Schön et al. [165] took, and the

one I will take. Particle filter can approximate nonlinear expectations so Schön et

al. used it to compute the gradient directly. EKF cannot do that. Instead, I have to

take the first order Taylor approximation of the gradient, just as EKF takes the first

order Taylor approximation of nonlinear state transition and output equations. The

result is a set of equations that will be detailed in the next section. This is different

from the first approach I tried, linearization of state transition and output equations,

which resulted in a very complicated set of equations involving multiple second order

derivatives.

Because ordinary-differential-equation model of biochemical reactions are actu-

ally an approximation of partial differential equations by neglecting to consider dis-

tance and pretending that everything is well mixed or at least at the same place, there

are often time-delays needed to compensate for the fact that molecules are actually
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compartmentalized in cells and need to be transported to their destinations. Short

of resorting to partial differential equations where transport processes can be explic-

itly modeled, we can introduce time-delays into ODEs as approximation. Parameter

estimation of nonlinear state-space dynamic model appears to be poorly addressed

in the literature, particularly regarding its application to biological systems. Quach

et al. [168] approximated time-delay with an indicator function in their state-space

model and Kim et al. [54] had time-delays but no hidden states.

B. Method

The main complication of nonlinear systems for EM is that the M-step has no ana-

lytical solution but must resort to gradient-based approach. We already noted in ap-

pendix B that EM can be broadly viewed as alternating improvement of log-likelihood

function by holding hidden states and then parameters constant; this is the view that

justifies the gradient-based approach.

Suppose we have state at k+ 1 as xk+1 and observation at time k as yk evolving

nonlinearly as

xk+1 = fθ(xk, uk) + wk

yk = hϕ(xk, uk) + vk,

(6.1)

where noise terms wk and vk are assumed to white Gaussian with zero means and

variance Q and R for all time, respectively; and the nonlinear function fθ(·) and hϕ(·)

depend on parameter vectors θ and ϕ, respectively. We need to estimate θ and ϕ.
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The complete-data probability is

P(XN+1,YN) = P(yN |XN+1,YN−1) P(XN+1,YN−1)

= P(yN |xN) P(xN+1|XN ,YN−1) P(XNYN−1)

= P(yN |xN) P(xN+1|xN) P(XN−1YN−1)

...

= P(x1)
N∏
k=1

P(yk|xk)
N∏
k=1

P(xk+1|xk).

(6.2)

Taking logarithm of equation (6.2) to have

log P(XN+1,YN) = log P(x1) +
N∑
k=1

log P(yk|xk) +
N∑
k=1

log P(xk+1|xk), (6.3)

and taking into account the Gaussian nature of noise and retaining only terms relating

to the parameters or the states, from equation (6.3) we get

log detP1 + (x1 − µ1)TP−1
1 (x1 − µ1) +

N∑
k=1

(yk − hϕ(xk, uk))
TR−1(yk − hϕ(xk, uk))

+N log detR +
N∑
k=1

(xk+1 − fθ(xk, uk))TQ−1(xk+1 − fθ(xk, uk)) +N log detQ. (6.4)

Parameters related to the initial state, µ1 and P1 (mean and variance, respectively,

of the initial state), are in the same functional form as in linear systems, so the

same method applies. But the rest of the parameters and all the states are nonlinear

functions, so we cannot simply take expectation because there is no general solution

for expectation of nonlinear functions. We could take first-order Taylor expansion of

linear equation (6.1) and proceed to estimate parameters in the linearized system,

which I did, but the resulting gradient is a very messy set of equations. So instead, I

decided to linearize the gradient of the conditional expectation in the E-step, which
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is the same as taking derivative under the integral in

Ex|y[log P(x,y)] =

∫
x

P(x|y) log(P(y,x))d x.

Let us make those definitions:

l1k = (xk+1 − fθ(xk, uk))TQ−1(xk+1 − fθ(xk, uk)) (6.5)

l2k = (yk − hϕ(xk, uk))
TR−1(yk − hϕ(xk, uk)), (6.6)

then their respective gradients are

G1(xk, uk) =
∂l1k
∂θ

= −2
∂fTθ
∂θ

Q−1(xk+1 − fθ(xk, uk)) (6.7)

G2(xk, uk) =
∂l2k
∂ϕ

= −2
∂hT

∂ϕ
R−1(yk − hϕ(xk, uk)). (6.8)

Taking Taylor expansion of G1(xk, uk) and G2(xk, uk) with respect to x̂k|k and x̂k|k−1

respectively, we have

G1(x̂k|k, uk) +
∂G1(xk, uk)

∂xTk

∣∣∣∣
xk=x̂k|k

(xk − x̂k|k) (6.9)

G2(x̂k|k−1, uk) +
∂G2(xk, uk)

∂xTk

∣∣∣∣
xk=x̂k|k−1

(xk − x̂k|k−1). (6.10)

Note that

∂G1(xk, uk)

∂xTk
=

∂2l1k
∂θ∂xTk

.

This is not a Hessian matrix but it is a matrix made up of second-order derivatives.

Following the steps outlined in appendix A, we will take the Jacobian of the gradient.
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Taking the differential first and we get

d
∂fTθ
∂θ

Q−1(xk+1 − fθ(xk, uk))

=
∂fTθ
∂θ

Q−1d (xk+1 − fθ(xk, uk)) + d

[
∂fTθ
∂θ

]
Q−1(xk+1 − fθ(xk, uk))

= −∂f
T
θ

∂θ
Q−1d fθ(xk, uk) + d vec

[
∂fTθ
∂θ

Q−1(xk+1 − fθ(xk, uk))
]

because
[
∂fTθ
∂θ
Q−1(xk+1 − fθ(xk, uk))

]
is a row vector, vec

[
∂fTθ
∂θ
Q−1(xk+1 − fθ(xk, uk))

]
=

vec
[
(xk+1 − fθ(xk, uk))TQ−1 ∂fθ

∂θT

]
, so the above is

= −∂f
T
θ

∂θ
Q−1d fθ(xk, uk) + d vec

[
(xk+1 − fθ(xk, uk))TQ−1 ∂fθ

∂θT

]
= −∂f

T
θ

∂θ
Q−1d fθ(xk, uk) + (Im ⊗ (xk+1 − fθ(xk, uk))TQ−1)d vec

∂fθ
∂θT

,

(6.11)

assuming there are m parameters in θ. The second term above can be written as
(xk+1 − fθ(xk, uk))TQ−1d ∂fθ

∂θ1

...

(xk+1 − fθ(xk, uk))TQ−1d ∂fθ
∂θm



=


(xk+1 − fθ(xk, uk))TQ−1 ∂fθ

∂θ1∂xT
d x

...

(xk+1 − fθ(xk, uk))TQ−1 ∂fθ
∂θm∂xT

d x



=


(xk+1 − fθ(xk, uk))TQ−1 ∂fθ

∂θ1∂xT

...

(xk+1 − fθ(xk, uk))TQ−1 ∂fθ
∂θm∂xT

 d x.

(6.12)
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Therefore,

∂2l1k
∂θ∂xTk

∣∣∣∣
xk=x̂k|k

= −∂f
T
θ

∂θ
(x̂k|k, uk)Q

−1 fθ
∂xTk

(x̂k|k, uk)

+


(xk+1 − fθ(x̂k|k, uk))TQ−1 ∂fθ

∂θ1∂xTk
(x̂k|k, uk)

...

(xk+1 − fθ(x̂k|k, uk))TQ−1 ∂fθ
∂θm∂xTk

(x̂k|k, uk)

 , (6.13)

and the conditional expectation of G1(x̂k|k, uk) + ∂G1(xk,uk)

∂xTk
|xk=x̂k|k(xk − x̂k|k) is equal

to

g1k = −2
∂fTθ
∂θ

(x̂k|k, uk)Q
−1(x̂k+1|N − fθ(x̂k|k, uk))

+ 2
∂fTθ
∂θ

(x̂k|k, uk)Q
−1

(
∂fθ
∂xTk

(x̂k|k, uk)

)
(x̂k|N − x̂k|k)− 2


tr[Q−1 ∂fθ

∂θ1∂xTk
Ψk]

...

tr[Q−1 ∂fθ
∂θm∂xTk

Ψk]

 , (6.14)

where

Ψk = E[xkx
T
k+1|YN ]− x̂k|NfTθ (x̂k|k, uk)− x̂k|kx̂Tk+1|N + x̂k|kf

T
θ (x̂k|k, uk).

In a similar way we can obtain for G2(xk, uk) the approximated conditional ex-

pectation as

g2k = −2
∂hTϕ
∂ϕ

R−1(yk − hϕ(x̂k|k−1, uk)) + 2
∂hTϕ
∂ϕ

R−1 ∂hϕ
∂xTk

(x̂k|N − x̂k|k−1)

− 2


tr[R−1 ∂hϕ

∂ϕ1∂xTk
Φk]

...

tr[R−1 ∂hϕ
∂ϕq∂xTk

Φk]

 , (6.15)
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assuming ϕ has q elements, and where

Φk = x̂k|Ny
T
k − x̂k|NhTϕ(x̂k|k−1, uk)− x̂k|k−1y

T
k + x̂k|k−1h

T
ϕ(x̂k|k−1, uk).

Therefore, the gradient of parameters

θ
ϕ

 is

∑N
k=1 g1k∑N
k=1 g1k

 , (6.16)

where g1k and g2k are defined in equation (6.14) and equation (6.15), respectively.

With gradient thus obtained we can use numerical optimization algorithms to itera-

tively estimate the parameters.

Variance matrices of the noise terms are also parameters and in theory should

be estimated too, but due to the stringent requirement that they both be symmetric,

positive definite, their estimation is not considered here. They are considered known.

1. Time-delay

Introduction of time-delays also introduce complications for state estimation and

parameter estimation. The approach I finally settled on is the augmentation of states

to include previous states, in order to recover the first-order Markov property. This is

a straightforward extension with a computational penalty due to the manifold increase

in state dimensions, but my attempts at finding a more efficient method made me

realize that time-delays result in exponential increase of terms in Kalman filter and

thus it is impractical to write a general formula.

Taking the original nonlinear model with additive noise and adding a time-delay
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term, we get

xk+1 = fθ(xk,xk−τ , uk) + wk

yk = hϕ(xk,xk−τ , uk) + vk,

(6.17)

where xk−τ is the state at time k − τ , and everything else remains same. I have put

only one time-delayed state in there to simplify formulas, and multiple time-delayed

states will require minor modification because the augmented state vector will include

every state between time k and k− τ . It is also not an undue restriction to have state

equation and output equation sharing the same time-delayed state, because when

they are different, simply choose the one with the largest delay and make that delay

τ , with the result that we have a multiple time-delayed state situation.

I will discuss state estimation of time-delay system first and the parameter es-

timation will follow that. From equation (6.17), I first take the first order Taylor

approximation of the state equation to get

xk+1 ≈ fθ(x̂k|k, x̂k−τ |k, uk) + F0,k(xk − x̂k|k) + F1,k(xk − x̂k|k) + wk

= F0,kxk + F1,kxk−τ + fθ(x̂k|k, x̂k−τ |k, uk)− F0,kx̂k|k − F1,kx̂k−τ |k + wk,

(6.18)

where

F0,k =
∂fθ
∂xk

∣∣∣∣ xk=x̂k|k
xk−τ=x̂k−τ |k

and F1,k =
∂fθ
∂xk−τ

∣∣∣∣ xk=x̂k|k
xk−τ=x̂k−τ |k

.
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The augmented state vector χk+1 then is equal to



xk+1

xk
...

xk+1−τ


=



F0,k 0 . . . 0 F1,k

I 0 . . .
... 0

0 I . . .
... 0

...
. . .

...
...

0 . . . 0 I 0





xk

xk−1

...

xk−τ



+



fθ(x̂k|k, x̂k−τ |k, uk)− F0,kx̂k|k − F1,kx̂k−τ |k

0

...

0



+



wk

0

...

0


,

(6.19)

which can be rewritten as

χk+1 = Fnewχk + fnew(χ̂k|k, uk) +Gwk, (6.20)

where Fnew, fnew and G are obvious from equation (6.19). This is the form that one

can directly plug in to the extended Kalman filter to estimate states for the state

equation.
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The output equation can be dealt with in exactly the same way to get

yk =

[
H0,k 0 · · · H1,k

]


xk

xk−1

...

xk−τ


+ h(x̂k|k−1, x̂k−τ |k−1, uk)−H0,kx̂k|k−1 −H1,kx̂k−τ |k−1 + vk,

(6.21)

where

H0,k =
∂hϕ
∂xk

∣∣∣∣ xk=x̂k|k−1

xk−τ=x̂k−τ |k−1

and H1,k =
∂hϕ
∂xk−τ

∣∣∣∣ xk=x̂k|k−1

xk−τ=x̂k−τ |k−1

.

Put the equation above into an augmented state form we have

yk = Hnewχk + h(χ̂k|k−1, uk)−Hnewχ̂k|k−1 + vk. (6.22)

The innovation is a simple equation:

ek = yk − h(x̂k|k−1, x̂k−τ |k−1, uk),

which is the same as regular extended Kalman filter except for the time-delay term

in h. I will not list the extended Kalman filter for augmented state χk because they

would look exactly the same as the regular Kalman filter. In fact, due to the pattern

of fnew, Fnew and Hnew one can write a program that takes fθ, F0,k, F1,k, hϕ, H0,k,

and H1,k and returns the augmented-state system with new fnew, Fnew, and Hnew, and

then feeds the new system to an existing extended Kalman filter program, which is

what I did.

After taking care of state estimation, parameter estimation is straightforward.
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First, let us redefine the augmented state

χk =

 xk

xk−τ

 .
(One can reuse the augmented state from the state estimation, but the only difference

is some additional zero matrices to deal with unwanted states between k and k − τ .)

Then everything in this section up to equation (6.14) remains valid if we replace

every occurance of xk with χk, and similiarly its estimators, x̂k|k and x̂k|N with

χ̂k|k and χ̂k|N . What does change is Ψk, because Ψk comes from the expectation of

(xk − x̂k|k)(xk+1 − f(xk, uk))
T . Replacing xk by χk and x̂k|k with χ̂k|k, we get xk − x̂k|k

xk−τ − x̂k−τ |k

 (xk+1 − f(χk, uk))
T

=

 (xk − x̂k|k)(xk+1 − f(χk, uk))
T

(xk−τ − x̂k−τ |k)(xk+1 − f(χk, uk))
T


=

 (xk − x̂k|k)(xk+1 − f(χk, uk))
T

xk−τx
T
k+1 − xk−τf(χk, uk)

T − x̂k−τ |kx
T
k+1 + x̂k−τ |kf(χk, uk)

T

 ,
(6.23)

and taking the conditional expectation of the equation above yieldsE[xkx
T
k+1|YN ]− x̂k|NfT (x̂k|k, uk)− x̂k|kx̂Tk+1|N + x̂k|kf

T (x̂k|k, uk)

E[xk−τx
T
k+1|YN ]− x̂k−τ |kx̂k+1|N − x̂k−τ |N x̂Tk+1|k + x̂k−τ |kx̂

T
k+1|k

 . (6.24)

Notice that I have replaced the occurrences of f(x̂k|k, uk) with x̂k+1|k, an equality that

comes from EKF. The term at the top is the old Ψk. The term at the bottom can

be computed from quantities available from augmented state estimation. Among the

estimates at the bottom term, x̂k−τ |k can be extracted from the filtered estimator at

time k; E[xk−τx
T
k+1|YN ] can be computed from the lag-on covariance returned from
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the extended Kalman smoother, because

cov





xk+1

xk
...

xk+1−τ





xk

xk−1

...

xk−τ


∣∣∣∣YN


=


cov(xk+1,xk|YN) · · · cov(xk+1,xk−τ |YN)

...
. . .

...

cov(xk+1−τ ,xk|YN) · · · cov(xk+1−τ ,xk−τ |YN)

 ,
(6.25)

and of course

E[xk−τx
T
k+1|YN ] = cov(xk−τ ,xk+1|YN) + x̂k−τ |N x̂k+1|N .

In a similiar way we can change Φk as well.

There is of course a price to pay for the augmentation of states in estimation,

and that is computational cost. Kalman filter runs roughly in cubic power of the

dimension of states [90], so one time step delay increases the computational time by

eight times. The storage cost also goes up, but that is not a major concern in the

days of cheap computer memory.

C. Experiments and Results

I applied the EM algorithm above to three datasets in order to gauge its effectiveness.

One is a synthetic dataset whose generating functions are taken from Will et al. [171],

and another synthetic dataset is generated using an estimated JAK-STAT pathway.

Synthetic data afford us flexibility in the amount of data available and an ability to

peek behind the curtain to know the true states and true parameters. But synthetic

data also has handicaps in that real-world data might be different, which is why

data from JAK-STAT pathway from Swameye et al. [172] as the second dataset. By

comparing estimated values with observations or with true values, it appears that the
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EM algorithm is able to estimate well.

1. Synthetic Data of a Simple System

The nonlinear system that generates the synthetic data is a simple one-state system:

xk+1 = axk +
xk

b+ x2
k

+ uk + wk

yk = cxk + dx2
k + vt,

(6.26)

where a, b, c, d are all parameters, uk is scalar input that is generated randomly

observing a normal distribution, N (0, 1), and wk and vk are white Gaussian noise

with means zero and variance 0.01; xk and yk are the state and output, respectively,

and they are both scalars. This is a nonlinear state-space model where parameters

do not all appear linearly in the model, and it has the functional form that one often

encounters in systems biology.

The true parameters are a = 0.7, b = 0.6, c = 0.5, d = 0.4. The estimated

parameters are â = 0.73, b̂ = 0.4, ĉ = 0.32, d̂ = 0.29, which are somewhat close

but cannot be said to have recovered the true values. Because this is synthetic data,

we have the true state values, so in Figure 31 I compare the estimated state values

against the true values. The errors, plotted in the bottom panel, are generally small,

and the estimated states track true states well. But that is on the training dataset,

which is the data used to estimate the model. A tougher test is how the model

handles fresh data. In Figure 32 I make the same comparison but use a fresh set of

data. The estimated states are computed using extended Kalman smoother and the

estimated model. We can see here that errors can be larger than those of the training

set, but not much larger, and the estimated states track true states well. In other

words, the true parameters are not recovered fully, but all the features of dynamics are

represented by the estimated model as evidenced by the ability of estimated states,
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Fig. 31.: Comparison of estimated states and true states on the training data. The

top panel has the estimated state values imposed on the plot of true state values. The

bottom panel is the plot of the errors of estimated state values. In general, estimation

is close to true values
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Fig. 32.: Comparison of estimated states and true states on a validating data. The

errors are relatively small and estimated states track well true states.

using the estimated model, to track true states well.

2. JAK-STAT Pathway

The Janus family of kinases (JAK)-signal transducer and activator of transcription

(STAT) signaling pathway is a well studied pathway that signals through multiple

cell surface receptors, of which the erythropoietin receptor (EpoR) is particularly

important. Hormone Epo binds to the receptor and activates the receptor-bound

tyrosine kinase JAK2, thus creating docking site for down-stream molecules such as

latent transcriptor factor STAT5. Once STAT5 is recruited by the activated receptor,

it is tyrosine phosphorylated; it then dimerizes and migrates to the nucleus where it

stimulates transcription of target genes. A diagram of the part of JAK-STAT pathway
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Fig. 33.: A part of JAK-STAT signaling pathway under study. STAT5 is recruited

by activated Epo receptor and is phosphorylated, and it dimerizes and migrates to

the nucleus to stimulate transcription of target genes [172].

under study is in Figure 33.

The dephosphorylated STAT5 monomer is x1, x2 is the phosphorylated STAT5,

x3 is phosphorylated STAT5 dimer, and x4 is STAT5 dimer in nucleus. According

to Swameye et al. [172], the states are governed by a set of continuous ordinary

differential equations, which upon simple discretization is taken to be:

x1(t+ 1) = x1(t)− k1x1(t)u(t) + 2k4x3(k − τ)

x2(t+ 1) = x2(t) + k1x1(t)u(t)− 2k2x2(t)2

x3(t+ 1) = x3(t) + k2x2(t)2 − k3x3(t)

x4(t+ 1) = x4(t) + k3x3(t)− k4x3(t− τ),

(6.27)

where the states at time t is represented by xi(t) for i = 1 . . . 4, and k1, k2, k3, k4

are parameters to be estimated. Additive noise terms are not explicitly represented

here but are assumed present. τ is a natural number representing time-delay of

approximately 6 minutes. The input u is the concentration level of EpoR.
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The outputs are the phosphorylated STAT5 (y1) and the total amount of STAT5

(y2), which are related to states by

y1(t) = k5(x2(t) + 2x3(t))

y2(t) = k6(x1(t) + x2(t) + 2x3(t)),

(6.28)

where again noise terms are implicitly assumed.

Gene expressing EpoR was introduced into BaF3 cells, which were starved for 3

hours and then stimulated with 5units/ml Epo. Immunoblotting provided measure-

ments, of which there were 16 time points, but only the first 11 were of uniform time

steps, so they are used in parameter estimation.

The data comes with estimate of variances for observation, which are uncorre-

lated and y1 has 0.08 and y2 with 0.1. The state-transition noise is taken to be identity.

Because time step is 2 minutes apart, the time-delay is 3 time steps. The estimated pa-

rameters are k1 = −0.018 k2 = 2.06 k3 = 0.04 k4 = 1.08 k5 = 1.05 k6 = 1.05,

which are different from those obtained by Quach et al. [168], but they did not em-

ploy a time-delay system and instead used a step-function which is zero until a certain

step, after which it becomes a regular state, so a direct comparison is not apt. But for

the observation equation, for which my version is the same as theirs, they had k5 and

k6 both as 1, which is close to 1.05, my estimated value for k5 and k6. In addition, we

can look at the estimated outputs and observed outputs. The plots of comparison of

both outputs y1 and y2 of the training dataset are in Figure 34 and 35, respectively.

From these we see that the estimated outputs closely follow the observed outputs,

thus the major features of observed dynamics are reproduced by the estimated model.
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Fig. 34.: Comparison of estimated y1 and observed values.

1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

E
rr

or
s

Time

1 2 3 4 5 6 7 8 9 10 11
0.5

0.6

0.7

0.8

0.9

1

C
on

ce
nt

ra
tio

n

Time

Total STAT5

 

 
Observed
Estimated

Fig. 35.: Comparison of estimated y2 and observed values.
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3. Synthetic Data Using JAK-STAT Model

I also tested my method on synthetic data generated using an estimated model of

JAK-STAT pathway. The model and code are supplied by Quach et al. [168] for their

paper on parameter estimation of biological networks published in Bioinformatics.

This gives me an opportunity to test on a more complex system with more data,

although biological application is likely to see far fewer time points than the 60 I

generated.

To ensure that my method performs satisfactorily under diverse noise conditions,

I tested it under varying ratio of system and observation noise. The system noise

observes a Gaussian distribution with mean zero and variance 0.01 × I, where I is

an identity matrix. The observation noise is also a Gaussian distribution with mean

zero but variance σ × I, where σ varies from 0.01 to 0.1.

Here I plot the estimated outputs and observed outputs at noise-ratio of 1, 5, and

10, as well as errors at these ratios. As we can see in Figure 36, for noise-ratio of 1,

the estimated values can track observed values well, with small errors. For noise-ratio

of 5, the plots in Figure 37 show that there is an increase in errors, but the estimated

values can still follow observed values relatively well. However, for noise-ratio of 10,

as seen in Figure 38, the errors are noticeable, with estimated values follow in the

direction of observed values but not closely in amplitude. This is in accordance with

expectation that in situation of high noise observations cannot be entirely trusted

and therefore not closely followed. This demonstrates that in situation of very high

observation noise, my method can produce models that reproduce the outline of

observed trajectory.

To compare the degradation of performance due to high noise, I also computed

the mean square error (MSE) of predicted values, ŷk|k−1, against observation, in other
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Fig. 36.: Comparison of estimated and observed y1 and y2 at noise-ratio of 1. The

estimated value track observed values pretty closely.
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Fig. 37.: Comparison of estimated and observed y1 and y2 at noise-ratio of 5. The

estimated value track observed values somewhat closely.
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Fig. 38.: Comparison of estimated and observed y1 and y2 at noise-ratio of 10. The

estimated value track observed values approximately with significant errors.
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Fig. 39.: MSE as noise ratio varies. In general, MSE increases as noise-ratio increases,

with some noticeable fluctuations.

words, innovation. Define MSE as

1

N

N∑
k=1

(yk − ŷk|k−1)Re−1
k (yk − ŷk|k−1)T ,

where Rek =< yk− ŷk|k−1, yk− ŷk|k−1 >. The inverse of variance is to normalize MSE

so that it is comparable under different noise conditions. The plot of MSE as noise

varies from 1 to 10 is plotted in Figure 39, where we can see that in general MSE

increases as noise-ratio increases, but there are some fluctuations.

D. Discussion

In this chapter I presented an expectation-maximization method that can estimate a

parameters of nonlinear state-space models. Due to the generality of nonlinear state-

space models, my method can be applied to detailed, mechanistic studies of genetic

regulatory networks, signal transduction networks, and metabolic networks. For in-
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stance, chemical rate-equations that are often used to model biochemical pathways

[172, 54, 11] can be handled by the method presented here. Of course, there is nothing

that would prevent its application outside of biological contexts. Wills et al. [171]

and Schön et al. [165] have already proposed EM method that use particle filters as

the state and gradient estimation method in engineering context. Compared to their

methods, I use the extended Kalman filter, which is simpler than the particle filter,

although sometimes at the expense of accuracy. Another recent paper by Quach et

al. [168] used unscented Kalman filter to simultaneously estimate states and param-

eters of biological networks. The benefits of simultaneous estimation of states and

parameters are speed and relative simplicity, while the weakness is inaccuracy.

Another benefit of extended Kalman filter is that it allows me to derive a ver-

sion for systems with time-delays. Time-delays occur in biological context because

molecules take time to travel inside and outside of cells, which can be modeled as time-

delays in ordinary differential equations [98, 173]. Parameter and state estimation for

time-delay systems are active research topics today in engineering [174, 175, 176], and

are novel in biological context for state-space models. By a relatively simple extension

of the extended Kalman filter, we are now able to handle models with known, con-

stant time-delays, and we can expect more use of time-delays in the future in systems

biology because time-delays in biological networks are mostly averages of Stochastic

events, thus constants.

This chapter also represents a natural progression of model complexity from

linear state-space models, which are mostly used in top-down approach, to nonlinear

state-space models, which are more often seen in bottom-up approach. In our quest

for functional understanding of biological systems, it is inevitable that we want to

have a more detailed, mechanistic look at cells. The generality of state-space allows

us to add more details as more data and more knowledge become available, and
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the general applicability of the nonlinear EM algorithm presented in this chapter

means it can accompany us as model complexity increases and nonlinearity creeps into

models. For example, many people have tried to model transcriptional factor binding

in their genetic regulatory networks [177, 66, 178, 76], but because transcriptional

factor binding is a nonlinear biochemical process, linear models have difficulty to

capture all the features. Nachman et al. [57] is one of few who attempted a mechanistic

model of gene regulation, using dynamic Bayesian networks. Their rate-equations are

based on Michaelis-Menten equations for transcription factors, and they did not use

equations for protein production and degradation. The method presented in this

chapter is more general and can deal with protein production and degradation. In

fact, it can model signal transduction networks and metabolic networks, in addition to

genetic regulatory networks, as long as they are represented by ordinary differentiation

equations in state-space form. This opens up a vast range of possibility for models of

biological networks and for the possible details of those networks.

The technical contribution of this work is a new method for a demanding task.

Ljung, a highly respected researcher in systems identification and author of the refer-

ence book on systems identification, noted in [179], a 2006 survey paper on nonlinear

systems identification, that the maximum likelihood “approach is conceptually sim-

ple, but could be very demanding in practice, . . . ”. He only noted one paper, beside

one other using particle filter, that follows EM algorithm for parameter estimation,

which is published in the 14th IFAC Symposium on System Identification by Schön

et al. [165], and in their method the systems equations are affine functions of pa-

rameters. My method is more general in that systems equations can be arbitrary

nonlinear differentiable functions of parameters. Also, as my method differs from

Schön et al.’s method [165] in that they used particle filter for state estimation while

I use extended Kalman filter, which means that they can apply, unmodified, particle
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filter to gradient approximation while I need a fresh set of formulas, my method has

comparable technical contribution as Schön et al.’s paper.

E. Conclusion

The nonlinear EM method presented in this chapter can tackle general nonlinear

state-space models with additive noise. It can be applied to parameter estimation

in biological networks. Testing the method on synthetic datasets and a real-world

dataset demonstrated its ability to generate models that can reproduce major dy-

namic features of the observed outputs.

The problem of parameter estimation for nonlinear state-space models is a dif-

ficult one. As we see in the synthetic data case that multiple parameter values can

reproduce the same output trajectory, thus presenting the question of which one to

choose. Identifiability should be verified before attempting parameter estimation, but

it still does not guarantee a unique estimation. This is also related to the fact that

EM algorithm in general is local optimization, not global, so that no matter how

many initial values we try, we can never be sure that it is the best estimate. How to

take into account the locally optimal nature of EM and to produce a good interval

estimate with confidence measure is a worthwhile research topic.

EM algorithm is a local optimization method that could only find local maximum

of the log-likelihood function. There are also attempts at using global optimization

in parameter estimation [180]. Because nonlinear EM algorithm presented in this

chapter has a numerical optimization as the M-step, in theory global optimization

approaches such as simulated annealing or genetic algorithms can be used instead in

the M-step. But I have not addressed this topic in this dissertation.

Another problem is that extended Kalman filter (EKF) is not necessarily a stable
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estimator, unlike the regular Kalman filter, and therefore EKF could diverge depend-

ing on initial values for the initial state. This problem appeared a number of times

in the JAK-STAT pathway experiment, where time-delay causes some estimates to

diverge.

Also the problem of estimating variance matrices is not dealt with here. In

theory Kalman filter can estimate both the noise and their variance [181], but I

only have square-root version for the state-transition noise, not observation noise,

thus no way to guarantee their positive definiteness. Here square-root version refers

to obtaining the square-root of variance matrices, and then the variance matrices

themselves are obtained by squaring the square-roots together, thus guaranteeing the

positive definiteness of the result. This is also the way square-root version of Kalman

filter estimates variance matrices. Directly taking derivatives of variances offers no

guarantee either, unlike the linear case where an analytic, square-root solution exists.
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CHAPTER VII

CONCLUSION AND FUTURE WORKS

A. Conclusion

I started with constrained systems identification of the linear state-space models of

genetic regulatory networks. Dynamic models of genetic regulatory networks have

two properties that impact the networks’ dynamics: structure and parameters. Be-

cause linear model of genetic networks are coarse-grained models, their parameters

do not necessarily have physical meaning, so they are difficult to measure directly,

so parameter estimation is often a necessary first step in dynamic study of genetic

networks. A large number of approaches are proposed where parameter estimation

and structure learning are bound together. They usually start with full connectiv-

ity for a network of interest and estimate all possible parameters as being realized,

and then they prune their network by cutting away those links whose corresponding

parameters are near zero. This takes advantage of a simple correspondence between

parameters and structures of linear models, but it is prone to over-fitting. As I

demonstrated in my study, full parametrization results in smaller estimation errors

of observations for training data but larger errors for fresh, validating data. There is

an exception [10] to this joint approach, and in the same spirit, I tackled parameter

estimation of linear state-space models of genetic regulatory networks by assuming

that the structure is known, thus making it possible to separate parameter estimation

and structure learning for linear state-space models of genetic networks. I applied

my method to two synthetic datasets and a SOS DNA repair network dataset. In

general, fully parameterized estimation method returned worse prediction errors on

fresh, validating data than constrained EM algorithm. I further tested the perfor-
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mance of my method using bootstrapping and compared the intervals of estimated

parameters and the eigenvalues of estimated systems returned by two methods. The

intervals returned by constrained EM algorithm are tighter and, where the true values

are known, better centred around the true values. The constrained EM algorithm is

general enough that it can be applied to any linear state-space systems with con-

straints on the parameters, not just genetic regulatory networks, and in fields other

than systems biology.

Following parameter estimation, we obtain a dynamic model of genetic regula-

tory networks. I then asked whether the genetic networks’ dynamic properties are

differentially expressed in healthy vs. sick cells. Genes play an important role in

the health of cells, and genetic networks made up of those important genes should

behave differently in healthy vs. sick cells. I studied four dynamical properties, sta-

bility, relative stability, controllability, and transient behaviours (overshoot, settling

time, and rise time) in three genetic networks, the SOS DNA repair networks, the

glutathione (GSH) redox cycle, and the mitogen-activated protein kinase (MAPK)

network. I found considerable difference in their dynamic properties when they are

healthy compared to when they are sick.

The above suggests one way to treat diseases is to regulate key genetic regulatory

networks’ dynamics in sick cells so they behave more like they do in healthy cells.

So the third part in the dynamic study I applied linear quadratic tracking (LQT) to

genetic regulatory networks. I chose the average expression levels of genetic networks

in desirable states (healthy) as the target value, due to the inherent Stochastic nature

of gene expression. I found in general we could drive genetic networks to be close

to the target value but not the precise value. I also found it is difficult to regulate

genetic networks where inputs only directly influence a few genes at the top while the

outputs are a few rungs downstream. This could have impact on the choice of drug
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targets.

All the works above are about linear models of genetic networks whose compo-

nents are mostly genes, which in fact do not directly interact for the most part. If

we want to incorporate RNAs or proteins, through which genes regulate themselves

and cellular functions, linear models are no longer sufficient. Nonlinear ordinary dif-

ferential equations have long been used to study signal transduction networks, and

they can be used to study genetic regulatory networks too. So the last part of this

dissertation was about the parameter estimation of nonlinear state-space dynamic

models of biological networks, not just genetic networks, because nonlinear models

can also describe signal transduction networks or metabolic networks. I chose the

familiar generalized EM algorithm. The nonlinear EM algorithm still has two steps,

the E-step for state estimation, and the M-step for parameter estimation. The E-step

is performed by extended Kalman filter, a simple extension of linear Kalman filter.

The M-step is by gradient-based numerical optimization method, because there is

no analytic solution for general nonlinear optimization. When I tried to apply this

method to real world data, I found that some signal transduction networks need time-

delay to adequately describe observed dynamics and due to compartmentalization of

cells. Therefore, I augmented states in both extended Kalman filter and the M-step to

account for time-delays, to obtain an EM algorithm that can estimate parameters of

nonlinear state-space dynamic models with time-delay. The method is applied to two

synthetic dataset and a real world world dataset of JAK-STAT signaling pathway, to

verify the nonlinear EM algorithm.

In summary, I developed methods for, or applied existing method to, constrained

systems identification, dynamic analysis, and optimal control of linear state-space

dynamic models of genetic regulatory networks; and for parameter estimation of non-

linear state-space dynamic models of signal transduction networks, with or without
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time-delay. The main contributions are the novelty of the very proposal of dynamic

analysis of genetic networks, of the mathematical method of parameters estimation

with constraints and application of optimal control for linear state-space models, and

of the use of EM algorithm for parameter estimation of nonlinear systems, partic-

ularly for nonlinear systems with time-delay. I encountered practical problems in

my dynamic study of biological networks and I found practical solutions for these

problems. I expect the novelties of my work will further stimulate interest in the

separation of parameter estimation and structure learning of genetic networks for the

sake of improved fidelity, and in the dynamic analysis of biological networks and their

optimal control for treatment. I also expect that my different method of nonlinear

parameter estimation can add to the repertoire of methods for this difficult problem.

B. Future Works

I have already discussed future works in a lot of previous chapters depending on the

chapter’s topic, so I will not repeat them here. Instead, I will discuss a little about

continuous–discrete models, which have continuous state evolution but discrete-time

measurements.

Continuous–discrete models are very useful for irregularly observed longitudinal

data where data are collected at arbitrary time points. Stochastic differential equa-

tions are equally useful for continuous-discrete models. I plan to study statistical

methods for parameter and state estimation in Stochastic differential equations and

apply the developed methods to identification of biological networks and longitudinal

genetic epidemiology study.
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1. Linear Continuous–discrete Kalman Filter

This section follows mostly [182], although any book on Stochastic processes should

cover this material.

Consider a linear stochastic differential equation:

dX = F (t)X(t)dt+ u(t) + L(t)dβ(t)

where X(0) is distributed as N (m(0), P (0)), F (t) and L(t) are matrix-valued func-

tions that serve the same function as time-varying parameters in the discrete systems,

u(t) is a known non-random function and β(t) is a Brownian motion with diffusion

matrix QC(t). The observation equation is given by

Yk = CkX(tk) +Dkuk + vk, vk ∼ N (0, Rk),

where Ck and Dk are time-varying parameters relating states and inputs to the out-

puts. Informally, we have

d[e
−
R t
t0
F (s)ds

X] = −F (t)e
−
R t
t0
F (s)ds

X(t)dt+ e
−
R t
t0
F (s)ds

dX(t)

= e
−
R t
t0
F (s)ds

u(t) + e
−
R t
t0
F (s)ds

L(t)dβ,

which implies that

e
−
R t
t0
F (s)ds

X(t) = X(0) +

∫ t

t0

e
−
R τ
t0
F (s)ds

u(τ)dτ +

∫ t

t0

e
−
R τ
t0
F (s)ds

L(τ)dβ

or

X(t) = e
R t
t0
F (s)ds

X(0) +

∫ t

t0

e
R t
τ F (s)dsu(τ)dτ +

∫ t

t0

e
R t
τ F (s)dsL(τ)dβ. (7.1)

Taking expectation on both sides of equation (7.1), we obtain

m(t) = e
R t
t0
F (s)ds

m(0) +

∫ t

t0

e
R t
0 F (s)dsu(τ)dτ
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Similarly, we can obtain the variance matrix

Q(t) = e
R t
t0
F (s)ds

Q(0)e
R t
t0
FT (s)ds

+

∫ t

t0

e
R t
τ F (s)dsL(τ)Q(τ)LT (τ)e

R t
τ F

T (s)dsdτ ,

which will appear in the prediction part of the filter. Equation (7.1) can be rewritten

as

X(tk) = e
R tk
tk−1

F (s)ds
X(tk−1) +

∫ tk

tk−1

e
R tk
τ F (s)dsu(τ)dτ +

∫ tk

tk−1

e
R tk
τ F (s)dsL(τ)dβ.

Then, we have

mk|k−1 = E[X(tk)|Yk−1]

= e
R tk
tk−1

F (s)ds
mk−1|k−1 +

∫ tk

tk−1

e
R tk
τ F (s)dsu(τ)dτ

and

Pk|k−1 = cov[X(tk), X(tk)|Yk−1]

= e
R tk
tk−1

F (s)ds
Pk−1|k−1e

R tk
tk−1

FT (s)ds
+

∫ tk

tk−1

e
R tk
τ F (s)dsL(τ)Qc(τ)LT (τ)e

R tk
τ FT (s)dsdτ

However,

A(t) = e
R t
tk−1

F (s)ds

, the state-transition matrix between tk and tk−1, is the solution to the following

equation

dA(t)

dt
= F (t)A(t),

A(tk−1) = I.

Q(t) =

∫ tk

tk−1

e
R tk
τ F (s)dsL(τ)Qc(τ)LT (τ)e

R tk
τ FT (s)dsdτ
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is the solution to the following equation:

dQ(t)

dt
= F (t)Q(t) +Q(t)F T (t) + L(t)Qc(t)L

T (t),

Q(tk−1) = 0,

and

B(t) =

∫ t

tk−1

e
R t
τ F (s)dsu(τ)dτ

, the cumulative effect of inputs between tk−1 and tk, is the solution to the following

equation:

dB(t)

dt
= F (t)B(t) + u(t).

The continuous – discrete Kalman filter can be expressed as follows:

prediction

mk|k−1 = A(tk)mk−1|k−1 +B(tk)

Pk|k−1 = A(tk)Pk−1|k−1A
T (tk) +Q(tk−1)

filtering

mk|k = mk|k−1 +Kk(Yk − Ckmk|k−1 −Dkuk)

Kk = Pk|k−1C
T
k [CkPk|k−1C

T
k +Rk]

−1

Pk|k = (I −KkCk)Pk|k−1

Due to the prevalence of uneven time steps in measurements, continuous mod-

eling of biological networks is an important area of research, and I hope to move all

of my research results in the discrete systems into the realm of continuous–discrete

dynamic systems.
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APPENDIX A

MATRIX CALCULUS

In this appendix, some of basic matrix calculus definitions and theorems utilized

in the dissertation are listed so that the reader does not need to hunt for them in

other books and papers. No attempt at thoroughness is made, nor are we concerned

with mathematical rigor. For those who are interested in more detailed treatment,

these papers and books, [183, 184, 185], are recommended. Magnus and Neudecker

[186] is a book that demands considerable mathematical maturity, because the text

is concise and skips steps in proofs and derivations, but it is invaluable as a reference

for its reasonable completeness.

Before we start I should say a word about the definition of derivative for vectors

and matrices. The truth is there is no consensus about them. Derivative of a scalar

with respect to vectors can be either a column vector as in [149] or a row vector as

in [152], both of which enjoy popularity in the literature. But at least the difference

is a mere transpose. It is much worse for matrices. Although no disagreement exists

about the derivative of a scalar with respect to a matrix (except possibly a transpose),

several definitions of the derivative of a vector with respect to a matrix (see [187] for

an early summary and [188] for a more recent book), the equivalence of them being far

more complicated than mere transpose. The disagreement is about the arrangement

of partial derivatives as a matrix. Without getting into the strength and weakness of

the respective approaches, I will here only state the reason for the particular choice I

made.

The main reason I chose the differential approach to matrix calculus is because

this presents an easy-to-remember chain rule and a product rule. We can all recall
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the chain rule and product rule in single-variable calculus as simple and yet powerful

and fundamental to taking derivatives. I wanted to have something similar in matrix

calculus. So when each of the other definitions has slightly or not so slightly different

chain rules and product rules for different functions, the clarity and elegance of the

differential approach become attractive.

This appendix is organized to start with elementary vectors and matrices, which

are then used in proving some properties of vec and Kronecker product. With these

indispensable tools thus defined, we then proceed to define the differential of a func-

tion and associated derivatives. As examples, differentials and derivatives of common

functions such as traces, determinants, matrix inverses are provided. Finally, a for-

mula for the Hessian matrix of vector-valued functions is provided.

A vector that has zeroes everywhere except the ith element which is equal to 1

is called an elementary vector, i.e.,

ei =



0

...

1

...

0


.

We usually denote an elementary vector by a subscripted lower-case ei. An elemen-

tary matrix is a square matrix that also has only one element equal to1 and every

other element equal to zero. We can also define elementary matrix as a product of

elementary vectors as

Eij = ei × eTj ,

a matrix whose entries are all zero except the ijth element, which is equal to one.

Some immediate and obvious properties of elementary vector and elementary
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matrix are

δij = eTi ej, (A.1)

EijEkl = δjkEil, (A.2)

A =
∑
ij

aijEij, (A.3)

Ai· = eTi A, (A.4)

A·j = Aej, (A.5)

where δij is the Kronecker delta function (the Kronecker delta function returns 1 if

i = j, otherwise zero), and A is any matrix whose ith row is represented by Ai· and

jth column by A·j. Replacing matrix A with matrix product BC in (A.3) (A.4)(A.5)

results in the element-wise view, the row view, and column view of matrix product:

1. the ijth element of BC is the product of the ith row of B and jth column of C;

2. the ith row of BC is C multiplied by the ith row of B;

3. the jth column of BC is equal to B multiplied by the jth column of C.

Not as commonly known is a forth view of matrix product,

BC =
∑
i

B·iCi·, (A.6)

i.e., sum of corresponding row and column products. This involves rearranging terms,

but a direct proof is unintuitive, so, instead, we can use the fact that an identity

matrix

I =
∑
i

eie
T
i
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to get

BC = BIC = B(
∑
i

eie
T
i )C

=
∑
i

Beie
T
i C

=
∑
i

(Bei)(e
T
i C)

=
∑
i

B·iCi·.

(A.7)

Elementary vector and matrix are versatile and powerful tools (for its use in LU

decomposition see [189]) , but for the sake of space we will stop here.

Kronecker operation and vec product are related and are primarily used for

rearranging entries of matrices and vectors. We need it primarily to rearrange a

matrix into a vector, and others use it to rearrange the derivative operator. They are

more useful than one at first supposes.

Given a matrix A,

vecA =


A·1

A·2
...

 ,
that is, vecA is a vector with columns of A (represented by A·i) stacked in order.

It is clear vec is a linear operator, that is, it is closed under addition and scalar

multiplication. Kronecker product, on the other hand, requires two matrices, say B

and C, so that B ⊗ C is equal tob11C b12C . . .

...
. . .

...

 ,
that is, each element of B multiplied by C. It is clear that the Kronecker product is

defined for any two matrices, unlike the regular matrix product which requires com-
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forming dimensions. Kronecker product is associative and distributive with respective

to matrix sum:

(A+B)⊗ C = A⊗ C +B ⊗ C,

A⊗ (B + C) = A⊗B + A⊗ C,

A⊗ (B ⊗ C) = (A⊗B)⊗ C.

The so-called mixed product rule is fundamental to most of properties associated with

Kronecker product,

(A⊗B)(C ⊗D) = AC ⊗BD.

Its proof is tedious but straightforward, just multiplying both sides to find the ijth

element to be equal. An immediate consequence of mixed product rule is the inverse

of Kronecker product,

(A⊗B)−1 = A−1 ⊗B−1,

assuming the inverse exists, which by this formula is same as A and B are invertible.

The proof is one line

(A⊗B)(A−1 ⊗B−1) = AA−1 ⊗BB−1 = I.

The relation between vec and Kronecker product can be seen at the most basic

level when matrices are degenerate and in fact are vectors. Let x and y be vectors of

length greater than 1,

xyT = x⊗ yT = yT ⊗ x (A.8)

vecxyT = y ⊗ x. (A.9)

With these and elementary vector and matrix operations we can prove succinctly the
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following important formula:

vecAXB = (BT ⊗ A) vecX, (A.10)

because

vecAXY = vecA(
∑
ij

xijEij)B

= vec
∑
ij

xijAeie
T
j B

=
∑
ij

xij vec[(Aei)(e
T
j B)] by linearity of vec operation

=
∑
ij

xij(e
T
j B)T ⊗ (Aei) by equation (A.9)

=
∑
ij

xij(B
T ⊗ A)(ej ⊗ ei) by mixed product rule

= (BT ⊗ A)
∑
ij

xijej ⊗ ei

= (BT ⊗ A)
∑
ij

xij vec eie
T
j

= (BT ⊗ A) vec
∑
ij

xijeie
T
j

= (BT ⊗ A) vec
∑
ij

xijEij

= (BT ⊗ A) vecX,

assuming all matrix products involving comforming matrices.

The last useful formula we will list in this section is the vec version of trace,

trAB = (vecAT )T vecB.
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This can be proved by noting that trace of a matrix can be written as

∑
i

eTi Aei,

and therefore we can write

trAB =
∑
i

eTi ABei

=
∑
i

eTi AIBei

=
∑
i

eTi A(
∑
j

eje
T
j )Bei

=
∑
ij

eTi Aej(e
T
j Bej)

=
∑
ij

[A]ij[B]ji,

the last term above is the sum of products of corresponding elements of B with A

transposed, which can be written as a dot product of two vectors (vecAT )T and vecB.

There are a lot more about Kronecker product and vec operation we are not

covering here, in particular the eigenvalues and eigenvectors of Kronecker product,

which are very important. Please see Brewer’s excellent paper [183] for a summary.

This section only covers derivative of matrix and neglects integration, and then

only the very basics of derivative, mostly definitions with a few examples.

First we must make a note about notations, especially since notations tend to

be confusing in matrix calculus. We denote a differential by dX, and derivative of a

vector with respect to another vector as

dY

dXT
derivative of a column vector with respect to a row vector, (A.11)

dY T

dX
derivative of a row vector with respect to a column vector. (A.12)
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An immediate consequence of above definition is that(
dY

dXT

)T
=

dY T

dX
,

the transpose of derivative is equal to the derivative of both dependent and indepen-

dent variables transposed, and that if

dY = f(X)dX,

then the derivative is

dY

dXT
= f(X).

Now let us define differentials. The differential of a function of vectors or matri-

ces, f(X), is the linear part of f(X + dX)− f(X), assuming the higher order terms

vanish when divided by dX and dX → 0. This is a case of definition by Taylor

series. The differentials of some common functions are listed here:

dA = 0 A is constant (A.13)

dαX = αdX α is a scalar (A.14)

d trX = tr[dX] (A.15)

dXY = XdY + dXY product rule (A.16)

dX−1 = −X−1(dX)X−1 (A.17)

d |X| = |X| tr(X−1dX). (A.18)

The rule for inverse is simple to prove:

0 = d I = dXX−1 = (dX−1)X +X−1dX,

and equation (A.17) follows by rearranging terms. The differential of a determinant

is a little more complicated to prove.
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Here we shall use a definition of determinant that is not usually taught at un-

dergraduate level but is nevertheless very useful. The definition is mentioned in

[190] along with other definitions, and a particularly good exposition of it can be

found in Courant’s venerable book [191]. We shall define the determinant as a multi-

linear, alternating multivariable function. The multi-linear part is easy to understand:

f(x, y, z) is multi-linear function is f(·) is linear in one variable while other variables

are fixed. An alternating function is a function of at least two variables, say g(x, y),

that switches sign when two variables are switched, that is g(x, y) = −g(y, x). An

immediate consequence is that g(x, x) = 0 because g(x, x) = −g(x, x), but we digress.

The point is we write the determinant of X as a multi-linear, alternating function of

its columns (rows work too). The differential of a determinant then is

d |X| = d f(X·1, . . . , X·n)

= the linear part of f(X·1 + dX·1, . . . , X·n + dX·n)

=
∑
i

f(X·1, . . . , dX·n, . . . , X·n)

= f(X)
∑
i

f(X·1, . . . , dX·n, . . . , X·n)

f(X)
,

and by Cramer’s rule,

f(X·1, . . . , dX·n, . . . , X·n)

f(X)

is the ith diagonal element of X−1dX, so it continues

= f(X) tr[X−1dX] = |X| tr[X−1dX].

(A.19)

The rules and formulas in this section can be used to find gradiants and Jacobian

matrix. But if we have to deal with higher order derivatives, it is slightly more com-
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plicated. The second order differential of a function can be defined as the differential

of the first order differential. Likewise, the Hessian matrix packs all the second order

derivatives of a function, as the Jacobian matrix packs all the first order derivatives.

First, the second order differential of scalar functions. Because the first order

differential of a scalar function is still a scalar function, the second order differential

of a scalar function is also a scalar function. From multi-variable calculus we known

the third term of a Taylor expansion is

1

2
dxTHf(x)dx,

where Hf(x) stands for the Hessian matrix of f(x).

The second order differential of a vector-valued function is not so easy because

the first order differential is a vector and taking differential again should preserve the

dimension but there are a lot more terms we need park somewhere. The key turns

out to be taking the transpose of the first order differential and then take differential

again. This is same as treating each element of the first order differential as a scalar

and take differential element-wise; in other words, the second order differential of a

vector-valued function is equal to a vector of element-wise second order differential
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of the function:

d2f(x) =


d2f1(x)

...

d2fn(x)


=

 1
2
dxTHf1dx

...1
2
dxTHfndx



=
1

2


dxT 0 · · ·

0 dxT · · ·
...

. . .
...




Hf1

...

Hfn

 dx

=
1

2
(I ⊗ dxT )(Hf(x))dx,

(A.20)

assuming f(x) is a n-dimensional vector-valued function. On the other hand, if we

start with the first differential

d f(x) =
∂ f

∂ xT
dx,

then we have the problem that the Jacobian is a matrix and not a vector. The solution

is use vec operator. Recalling that the Hessian matrix is the Jacobian of the gradient,
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we take transpose first:

d vec d f(x)T = d vec d xT
∂ fT

∂ x

= d [(I ⊗ dxT ) vec
∂ fT

∂ x
]

= (I ⊗ dxT )d vec
∂ fT

∂ x

= (I ⊗ dxT )


d
∂ fT1
∂ x

...

d
∂ fT1
∂ x



= (I ⊗ dxT )


Hf1

...

Hfn

 dx,

(A.21)

which is same as equation (A.20) except constant 1/2.

One last thing before we conclude this appendix: the Hessian matrix is symmetric

if all the second derivatives are continuous, but no guarantee the matrix in equation

(A.20) is symmetric. So according to [186], we need B + (B)v to get the real Hessian

if we find B in the middle of equation (A.20), where

(B)v =



BT
1

BT
2

...

BT
n


,

and Bi for 1 ≤ i ≤ n is the n× n block of B in order from the top.
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APPENDIX B

EXPECTATION-MAXIMIZATION ALGORITHM

The expectation-maximization algorithm, abbreviated EM algorithm, is a popular

tool in statistics to deal with hidden variables. In the context of parameter estimation

for state-space models, it is usually represented as two steps, the E-step estimates

hidden states using existing estimated parameters, and the M-step estimates the

parameters using the estimated states in the E-step. While this is true for the regular

EM, there are variations on the basic EM that require a deeper understanding of EM

algorithm as a maximum likelihood method. So in this appendix, we will give an

outline of EM algorithm as maximizing a lower-bound function, and then, instead

of giving a standard version of EM in parameter estimation for linear state-space

models, we will give one with a time-delay in it. This problem turns out to be almost

the same as that for a linear model without time-delay.

This section closely follows Minka’s tutorial [192].

Before we start, we need to state Jensen’s inequality, which we will make use of

immediately. If f(·) is a convex function, then

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), 0 ≤ α ≤ 1.

For concave functions such as logarithm, ≤ is changed to ≥. Extending sum to

integrals we have

log

∫
f(x) P(x)dx ≥

∫
P(x) log[f(x)]dx, where

∫
P(x)dx = 1.

Suppose we wish to estimate the parameter vector θ in

Pθ(y) =

∫
x

Pθ(y,x)d x,
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with y as observations and x as hidden variables. In order to use Jensen’s inequality

we add a function q(x), ∫
x

Pθ(y,x)d x =

∫
x

Pθ(y,x)

q(x)
q(x)d x,

such that
∫
x
q(x)d x and q(x) 6= 0. By Jensen’s inequality, if we take logarithm we

have

log

∫
x

Pθ(y,x)

q(x)
q(x)d x ≥

∫
x

q(x) log

[
Pθ(y,x)

q(x)

]
d x. (B.1)

Equation (B.1) is a lower bound of the log-likelihood log
∫
x

Pθ(y,x)d x. But we want

to get close to the true likelihood, so we maximize the lower-bound.

First, we augment equation (B.1) with a Lagrange-multiplier term in order to

enforce
∫
x
q(x)d x = 1,

λ(1−
∫

x

q(x)d x) +

∫
x

q(x) log[Pθ(y,x)]d x−
∫

x

q(x) log[q(x)]d x. (B.2)

Take derivative of equation (B.2) with respect to q(x) to get

−λq(x) + q(x) log[Pθ(y,x)]− [q(x) log(q(x))− q(x)] = 0, (B.3)

but since q(x) 6= 0, we have the following two equations∫
x

q(x)d x = 1 (B.4)

−λ− 1 + log(Pθ(y,x))− log(q(x)) = 0. (B.5)
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From equation (B.5), we have

λ+ 1 = log
Pθ(y,x)

q(x)
, (B.6)

taking exponential to get eλ+1 =
Pθ(y,x)

q(x)
, (B.7)

which is same as q(x) =
Pθ(y,x)

eλ+1
(B.8)

taking integral, and we have 1 =

∫
x

q(x)d x =

∫
x

Pθ(y,x)

e−λ−1
d x =

∫
x

Pθ(y,x)d x

e−λ−1
,

(B.9)

taking logarithms to get λ+ 1 = log[

∫
x

Pθ(y,x)d x] (B.10)

plugging equation (B.10) into (B.5) to get

− log[

∫
x

Pθ(y,x)d x] + log(Pθ(y,x))− log(q(x)) = 0, (B.11)

and finally we have q(x) =
Pθ(y,x)∫

x
Pθ(y,x)d x

= Pθ(x|y) (B.12)

This means that function q(x) is indeed a probability density function, and because∫
x

q(x) log

[
Pθ(y,x)

q(x)

]
d x =

∫
x

Pθ(x|y) log Pθ(y)d x = log Pθ(y), (B.13)

we say the maximum lower-bound touches the true log-likelihood at the current value

of θ. The lower-bound can also be written as∫
x

q(x) log(Pθ(y,x))d x−
∫

x

q(x) log q(x)d x, (B.14)

of which only the first term has to do with observations y, so we retain that to get

the conditional expectation whence the E-step gets its name,∫
x

q(x) log(Pθ(y,x))d x = Ex|y log Pθ(x,y). (B.15)

The M-step maximize this bound by changing θ. From this, one can formulate an



194

alternative definition of EM algorithm [193]:

E-step maximize the lower-bound with respect to x while holding θ constant;

M-step maximize the lower-bound with respect to θ while holding x constant.

when maximization proves difficult, we need only to seek an improved estimated of x

and θ. This justifies the use of gradient method in EM [193].

Time delays introduce a great deal of complexity into a model. Here we are

going to derive EM algorithm for linear state-space models that have time-delays.

As it turns out for one kind of models with delays, the kind whose state transition

and output functions depend on same delayed states, the modification is minimal in

the M-step, with most of the added complexity residing in the E-step. Suppose the

system is defined as follows:

xk+1 = A0xk + A1xk−τ +Buk + wk (B.16)

yk = C0xk + C1xk−τ +Duk + vk, (B.17)

x1 ∼ N [µ1, P1], . . . ,x1−τ ∼ N [µ1−τ , P1−τ ] (B.18)

where the state at time k is represented by xk and x1 to x1−τ are the initial values

whose distributions are known Gaussian distributions; the output at the same time

are represented by yk; wk and vk are state and output noises assumed to be white

Gaussian, and all of the initial states’ mean and variances, B, D, A0, A1, C0, and C1

are parameters of the model along with the noise variance of wk and vk, which are Q

and R respectively. The inputs uk is assumed to be known constants and not random

variables, so we will not put it in the condition of the conditional probability below.

Let us denote all states from k = 1− τ to k = N as XN , and likewise for UN , but

for YN , it is 1 . . . N . For the sake of convenience we shall make following notational
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changes:

ξk =

xk+1

yk

 , zk =


xk

xk−τ

uk

 ,Γ =

A0 A1 B

C0 C1 D

 ,Π =

Q 0

0 R

 (B.19)

Starting with the joint probability,

P(XN+1,YN) = P(xN+1,yN|XN,YN−1) P(XN,YN−1)

= P(xN+1,yN|xN,xN−τ ) P(XN,YN−1)

...

= P(x1) P(x0) . . .P(x1−τ )
T∏
k=1

P(xk+1,yk|xk,xk−τ ).

(B.20)

Taking logarithm to get

log P(XN+1,YN) ∝ (x1 − µ1)TP−1
1 (x1 − µ1) + log detP1

+ . . .+ (x1−τ − µ1−τ )
TP−1

1−τ (x1−τ − µ1−τ ) + log detP1−τ

+
∑
k

(ξk − Γzk)TΠ−1(ξk − Γzk) +N log det Π. (B.21)

Defining more convenient notations,

Σ =
1

N

N∑
k=1

E[zkzk
T |YN], Φ =

1

N

N∑
k=1

E[ξkξk
T |YN],

Ψ =
1

N

N∑
k=1

E[ξkzk|YN],
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and the conditional expectation of equation (B.20) is equal to

log detP1 + tr[P−1
1 E((x1 − µ1)(x1 − µ1)T |YN)] + . . .+ log detP1−τ

+ tr[P−1
1−τ E((x1−τ −µ1−τ )(x1−τ −µ1−τ )

T |YN)] + tr[Π−1(Π−ΨΓT −ΓΨT + ΓΣΓT )].

(B.22)

Taking derivative with respect to µ1 and P1 to get the estimator of them,

µ1 = x̂1|N , P1 = P1|N .

The rest of the initial values are obtained in likewise manner, that is,

µ1−i = x̂1−i, P1−i = P1−i|N , 0 ≤ i ≤ τ.

Similarly, for Γ and Π, we have

Γ = ΨΣ−1, Π = Φ−ΨΣ−1ΨT .

The formulas for Γ and Π can be proved by the following steps:

tr[Π−1(Φ−ΨΓT −ΓΨT + ΓΣΓT )] = tr[Π−1((Γ−ΨΣ−1)Σ(Γ−ΨΣ−1)T + Φ−ΨΣ−1Ψ],

from which the minimizer Γ = ΨΣ−1 follows, then taking derivative of the remaining

terms involving Π,

d

d Π
log det Π +

d

d Π
tr[Π−1(Φ−ΨΣ−1Ψ)] = Π−1 − Π−1(Φ−ΨΣ−1Ψ)Π−1 = 0,

and Π = Φ−ΨΣ−1ΨT follows.

This set of updates look exactly the same to the M-step of regular EM algorithm

for linear dynamical systems. The main difficulty is in state estimation, or the E-step.

I presented one way to tackle this by augmenting states in chapter VI, an approach

that can be used as the E-step here.
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APPENDIX C

KALMAN FILTER AND SMOOTHER

The celebrated Kalman filter can take on many forms and disguises depending on

the circumstances. I understand it as a recursive least square. Unfortunately, the

complexity of formulas and involved derivation steps mask its simple nature, so I

will first give a version of Kalman filter in the deterministic least square context

and show the similarities between it and the more familiar version when used to

estimate states in linear state-space systems. This will also motivate the orthogonality

principle, which is rather abstract when we apply it to more general vector spaces.

The orthogonality principle also is part of geometric approach to least square and

Kalman filter, which is more intuitive and more visual and easier to understand and

remember.

In this appendix, I will give detailed derivation of Kalman filter and Kalman

smoother using the innovation approach. Let observations y be a vector and state be

another vector x, which we wish to estimate. Although y should be linearly related

to x by a design matrix A, which is known. But for whatever the reason, we have

y ≈ Ax.

In linear algebra terms, this says y is not in the range of A, or equivalently that

y = Ax has no solution. So we want to find ŷ so that the square of error e = y− ŷ is

minimized. To put that in familiar terms, we have the following optimizing problem:

min
for all feasible x

(y − Ax)T (y − Ax),

where x̂ is an estimate of x and x̂ is over some linear vector space, most likely an
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Euclidean space. This is the classical least-square problem. The solution can be

obtained through taking derivatives against x̂ and setting it to zero.

But a more direct method that will prove powerful is the projection theorem,

also called orthogonality principle. It states that the best estimate of a vector in a

subspace must have its error, the difference between the estimate and observation, be

orthogonal to the subspace. Here the subspace is the range of A and the vector is y.

Applying the orthogonality principle we get

AT (y − Ax̂) = 0.

Assuming ATA is invertible and we have the familiar solution to deterministic least-

square problem:

x̂ = (ATA)−1ATy.

An easy extension of the above solution is a weighted least-square, where the

objective function becomes

(y − Ax̂)TS(y − Ax̂),

where S is a symmetric positive definite matrix. Rather than going through tedious

derivation using derivatives, we can just take advantage of the generality of the or-

thogonality principle and define a new norm so that

(y − Ax̂)TS(y − Ax̂) = [ST/2(y − Ax̂)]T [ST/2(y − Ax̂)], (C.1)

where S = S1/2ST/2. The right hand side of equation (C.1) is in the form of regular

Euclidean norm. The solution to weighted least-square is then

x̂ = (ATSA)−1ATSy. (C.2)



199

If S happens to be block diagonal then we can partition A and y so that

A =



A1

A2

...

Ak


, y =



y1

y2

...

yk


, S =


S1 . . . 0

...
. . .

...

0 . . . Sk

 . (C.3)

Rewriting equation (C.2) as

x̂k =

(
k∑
i=1

ATk SiAi

)−1( k∑
i=1

ATi Siyi

)
, (C.4)

where x̂k is the estimate of x given k observations. If there are k + 1 observations,

then

x̂k+1 =

(
k+1∑
i=1

ATk SiAi

)−1(k+1∑
i=1

ATi Siyi

)

= Q−1
k+1

(
k∑
i=1

ATi Siyi + ATk+1Sk+1yk+1

)

= x̂k −Q−1
k+1(ATk+1Sk+1Ak+1)x̂k +Q−1

k+1A
T
k+1Sk+1

= x̂k +Q−1
k+1A

T
k+1Sk+1︸ ︷︷ ︸

Kalman gain

(yk+1 − Ak+1x̂k)︸ ︷︷ ︸
innovation

.

(C.5)

This is the form we will see for the Kalman filter: recursive update of estimate by

taking weighted sum of previous estimate and innovation. To continue to use the

geometrical formulation of projection and orthogonality with random variables, the

concepts of vector spaces must be expanded beyond the regular Euclidean spaces,

to cover vector-valued random variables. Here, we will only cover the basic defini-

tions and not be concerned with mathematical details and mathematical rigor. In

particular, we will not cover anything related to completeness of vector spaces or con-

vergence of vectors. These materials are covered by any functional analysis textbook.
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But rather, we will concentrate on one unique feature of this vector space: the inner

product is a square matrix.

Before proceeding, I will note here that all numbers are real in this dissertation,

not complex numbers like the treatment in [90]. The main complexity of complex

numbers for this work is in differentiation and complex-valued random variables,

neither of which is simple, nor is the complex number strictly necessary for this

work, so we take the practical approach and the simpler treatment is chosen. Even

Kailath et al. [90], a book renown for its complete coverage, only gives an outline

of differentiation of complex numbers and a short introduction to complex-valued

random variables, leaving more detailed treatments to other books.

In this section we follow Kailath et al. [90], especially the appendix of Chapter

4. Their choice of an unusual vector spaces whose inner products result in matrices

is very convenient, but, as they noted, uncommon in literature.

Suppose there is a ring of scalars, S, over which a vector space, V is defined. The

vector must be closed under vector addition and closed under scalar multiplication.

Furthermore, the addition and multiplication must obey the following rules:

∀x, y ∈ V , ∀α, β ∈ S,

x+ y = y + x (α + β)x = αx+ βy

(x+ y) + z = x+ (y + z) (αβ)x = α(βx)

α(x+ y) = αx+ αy 0 · x = 0; 1 · x = x,

where 0 and 1 designate the zero vector and identity vector, respectively.

The ring of scalars we will use is the n × n matrices of real numbers, n > 1.

The reason for this is so that we can define an inner product on vector space V that

yields elements of S. The elements of vector space V are n-dimensional vector-valued
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random variables.

The inner product then is the expectation of two random variable vectors:

∀x,y ∈ V , < x,y >= E xyT (C.6)

Every inner product must obey three rules:

Linearity:

< α1x1 + α2x2, y >= α1 < x1, y > +α2 < x2, y >

Reflexivity:

< y, x >=< x, y >T

Nondegeneracy:

‖x‖2 4=< x, x >= 0 if and only if x = 0,

which also serves the definition of inner products.

Of course, we could have defined the vector space as scalar random variables and

real numbers as the ring, which would make the resulting vector space more familiar,

but more difficult to work with in deriving Gramians.

The Gramian is usually defined for a collection of vectors v1, v2, . . . , vn as

[G]ij =< vi, vj > .

This is tedious, when we have to concatenate a series of inner products to obtain a ma-

trix. But instead of this piece-meal fashion, we could see that if V = [v1, v2, . . . , vn]T ,

then

G = EV V T =< V, V >,

a single inner product resulting in the Gramian.

We summarize the situation here because it can be confusing:
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• The elements of the vector space are multiple-dimensional random variables in

column form.

• The scalar result of an inner product of two vectors is a square matrix.

• The vector-valued random variables can also be multiplied by regular matrices

and vectors and real numbers to result in a new random variable.

• In particular, a random variable that is the product of a matrix and another

random variable can be part of an inner product that produces a new matrix.

Some simple properties concerning random variables (also vectors in the vector

space defined in this appendix) are very useful and used thorough out this dissertation:

• If random variables x and y are both zero mean, i.e., E x = 0 and E y = 0,

then their variances and covariances are inner products: var x =< x,x >,

cov(x,y) =< x,y >.

• Two independent random variables x and y whose means are both zero are

orthogonal: < x,y >= E xyT = (E x)(E yT ) = 0. Strictly speaking, we only

need one random variable’s mean to be zero for this to be true.

• From the orthogonality principle, the optimal vector in subspace Y that ap-

proximates vector x /∈ Y is x̂ = PY(x), the vector x projected onto Y , where

PY(·) is the projection operator for subspace Y .

It is already noted that Kalman filter in the deterministic case can be seen as a

recursive least square; now we will show that it can be seen as a recursive Stochastic

least square in the linear state estimation problem. The first step is to find the

answer to Stochastic least square, then the recursion; they are covered in the next

subsection. Both of these are relative simple, given the vector space defined above
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and the orthogonality principle, so the main materials of this section is the second

subsection where taking advantage of the state-space form to result in the actual

formulas is involved.

For two related (nothing to estimate if independent), zero-mean, random vari-

ables, x and y, of which y is observation, x the hidden variable to be estimated, the

best linear estimator is x̂ = Ky, for some matrix K. The orthogonality principle says

K must obey

< x− x̂,y >= 0,

< x−Ky,y >= 0,

< x,y >=< Ky,y >,

K =< x,y >< y,y >−1,

assuming Ry =< y,y > is invertible. The optimal estimator then is

x̂ =< x,y > R−1
y y.

If there are many independent observations y1, . . . ,yN , then

x̂ =
N∑
j=1

< x,yj > R−1
yj
yj.

In the real world observations are rarely independent, and for linear state-space mod-

els, they are pointedly not. There is a way to make a set of vectors orthogonal in

linear algebra, which is known as the Gram-Schmidt process. So now, thanks to

the vector space defined in this appendix, we can apply the same process to random

variables.

Suppose we have orthogonalized y1, . . . ,yi−1 into e1, . . . , ei−1 orthogonal vectors
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called innovations, with property

< ej, ek >= 0, j 6= k

then the next innovation

ei = yi −
i−1∑
j=1

< yi, ej > ‖ej‖−2ej. (C.7)

The initial value of this recursion is e1 = y1. The second part of equation (C.7) is

yi projected onto the subspace L{e1, . . . , ek−1} = L{y1, . . . ,yi−1}. Kalman filter of

course does not want y projected but x projected onto the subspace span by all the

observations, but the form is still the same. And that is the power of innovation

approach, its general applicability. Kalman et al. [194] used this approach in their

seminal paper, but somehow failed to notice the same approach can be used to derive

the smoother, with the result that their paper left smoothing as a future work.

The state-space model we will assume is

xi+1 = Fixi +Giwi (C.8)

yi = Hix + vi, (C.9)

for i = 1, . . . , N , and where xi is the state and yi is the observation, where Fi, Gi, Hi

are known parameters, and noises wi and vi are uncorrelated white Gaussian random

variables with zero means and variances Qi > 0 and Ri > 0, respectively. The

matrix Gi’s main purpose is to deal with the case that not all elements of state xi

are Stochastic, as when part of xi+1 linearly depends on part of xi, which we will

see an instance of when we deal with models with time delays. There is no input in

equations (C.8) and (C.9) but it is very easy to obtain estimates of states with inputs

from those without inputs, and inputs do not impact on variance estimates.
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Not obvious but very important is the property that

< xi,wj >= 0, < xi,vj >= 0, j ≤ i,

the state is always independent of current and future noises, and

< yi,wj >= 0, < yi,vj >= 0 j > i,

the observation is always independent of future noises. We could also denote the

independence by its vector space equivalent, orthogonality, so < xi,wj >= 0 is same

as xi ⊥ wj.

From equation (C.7), we have the innovation as

ei = yi − ŷi|i−1,

recall that the second term of equation (C.7) is yi projected onto L{e1, . . . , ek−1},

which is same as the estimator of yi given all observations before time i. By same

token, the estimator of state xi given all observations before time i is

x̂i+1|i =
i∑

j=1

< xi+1, ej > ‖ej‖−2ej.

Define Re,j = ‖ej‖2, the major assumption so far is that Re,j > 0, which can be

derived from Rj > 0. As it turns out, computing < xi+1, ej > when j < i is involved,

but if we split the term when j = i out from the rest, we get

x̂i+1|i =
i−1∑
j=1

< xi+1, ej > R−1
e,jej+ < xi+1, ei > R−1

e,i ei

= x̂i+1|i−1+ < xi+1, ei > R−1
e,i ei.

(C.10)

Now we must turn to state transition equation.
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< xi+1, ei > = Fi < xi, ei > +Gi < wi, ei >

= Fi(< xi, x̃i|i−1 > HT
i + < xi,vi >)+ < wi, x̃i > HT

i + < wi,vi >

= Fi(< x̃i|i−1, x̃i|i−1 > HT
i + 0) + 0 + 0

= FiPi|i−1Hi,

(C.11)

where Pi is the variance of state estimator x̂i and whose recursive estimation will be

discussed shortly. In addition,

Re,j =< ej, ej >

=< Hjx̃j|j−1 + vj, Hjx̃j|j−1 + vj >

= HjPj|j−1H
T
j .

(C.12)

Therefore, the state estimator is

x̂i+1|i = Fix̂i|i−1 + FiPiHi(HiPi|i−1H
T
i )−1ei.

If measurements go missing for one or more time steps, this scheme does not work,

so S.F. Schmidt at NASA came up with a decomposition of the state estimator into

a time update and a measurement update, so that if a measurement is missing, the

measurement update can be skipped for that particular measurement but the filter

can continue. The time update is simple:

x̂i+1|i = Fix̂i|i.

This simply projects equation (C.8) onto all the observations up to time k. The
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measurement update for state estimator is

x̂i|i = x̂i|i−1 + PiHi(HiPi|i−1H
T
i )−1ei.

This separate updates of state estimator is the most popular form of Kalman filter

we see today.

Kalman and Bucy [194] defined the variance of state estimator as

Pi|i−1 =< x̃i|i−1, x̃i|i−1 > .

Because of the popularity of separate updates for Kalman filter, here we will use that

form of variance update as well. The time update is again simple:

Pi+1|i = FiPi|iF
T
i +GiQiG

T
i .

The equation above comes from taking variance of equation (C.8). The measurement

update is more involved.

Pi|i =< x̃i|i, x̃i|i >

=< x̃i|i,xi > −Kf,i < ei,xi >

= Pi|i−1 −Kf,i(Hi < x̃i|i,xi > +0)

= Pi|i−1 −Kf,iHiPi|i−1

= Pi|i−1 − Pi|i−1H
T
i R
−1
e,iHiPi|i−1.

(C.13)

Thus completes the celebrated Kalman filter. Although there are different formula-

tions of the smoothing problem, here I refer to the so-called fixed-interval smoothing

problem, where given a sequence of observations y1, . . . , yN , we want to find out the

best estimator xi|N for i ∈ 1, . . . , N . As it turns out, the innovation approach gives

us a solution in a straightforward manner, using only the results from Kalman filter.
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First let us define a new notation,

Pi,j =< x̂i|i−1, x̂j|j−1 > .

Obviously, Pi,i = Pi|i−1. Again, by the orthogonality principle we have

x̂i|N =
N∑
j=1

< xi, ej > R−1
e,jej, (C.14)

which can be pulled into two parts as

x̂i|i−1 +
N∑
j=1

< xi, ej > R−1
e,jej.

Of course, we could have used filtered estimator x̂i|i instead of the predicted estimator

x̂i|i−1 with corresponding change in the second term, and the result would be valid

as well. Re,j remains unchanged from equation (C.12). The main change comes in

< xi, ej > where j ≥ i. Now let us look a closer look:

< xi, ej > =< xi, Hjx̃j|j−1 > + < xi,vj >

=< x̃i|i−1, x̃j|j−1 > HT
J + < x̂i|i−1, x̃j|j−1 > + < xi,vj >

= Pi,jH
T
j + 0 + 0,

(C.15)

where the first zero is become x̂i|i−1 is in the vector space span by the first i − 1

observations which is a subset of the vector space span by the first j−1 observations,

but x̃j|j−1 is orthogonal to the vector space span by the first j − 1 observations, and

the second zero is by assumption that state noises are uncorrelated with observation

noises. So now we need to compute Pi,j.

The key is a recursive relation of the error,

x̃i+1|i = Fp,ix̃i|i−1 +Giwi −Kp,ivi, (C.16)
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where

Fp,i = Fi −Kp,iHi and Kp,i = FiPiHi(HiPi|i−1H
T
i )−1.

By recursively expanding x̃j|j−1 and therefore decreasing j to i using the equation

above, we arrive at a simple formula for Pi,j as

Pi,j =< x̂i|i−1, x̂j|j−1 >= Pi|i−1F
T
p,iF

T
p,i+1 · · ·F T

p,j−1, j > i. (C.17)

Defining a convenience variable λi|N as

λi|N = Pi|i−1

N∑
j=i+1

F T
p,iF

T
p,i+1 · · ·F T

p,j−1H
T
j R
−1
e,jej,

and the smoother is

x̂i|N = x̂i|i−1 + Pi|i−1λi|N , (C.18)

and we also have the corresponding variance matrix as

Pi|N = Pi|i−1 + Pi|i−1Λi|NPi|i−1, (C.19)

where

Λi|N =< λi|N , λi|N >= F T
p,iΛi+1|NFp,i +HT

i R
−1
e, Hi, λN+1|N = 0. (C.20)

Here Λi|N is in recursive form and we can do the same for λi|N :

λi|N = F T
p,iλi+1|N +HT

i R
−1
e, ei, λN+1|N = 0. (C.21)

Although the smoother presented here is in recursive form, it is not recursive in x̂i|N

and Pi|N as in [91]. To do so, one simply uses the filter version of equation (C.18)

and (C.19) (they are the predicted version) to solve for λi|N and Λi|N and plug them

back into equation (C.18) and (C.19). I will do some of that in the next section on

lag-one covariance.
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Lag-one covariance is not part of regular Kalman smoother but is required for

parameter estimation. We include it here for coherence.

Define lag-one covariance as

Mi,i−1|N =< x̃i|N , x̃i−1|N > .

For the same of brevity we will refer to Mi,i−1|N as Mt|N .

The derivation of it is similar to Kalman smoother and in fact depends on some

of the results in the derivation of Kalman smoother. The first clue we use is that

instead of starting with lag-one smoother definition we start with Pi,i−1,

< x̃i|i−1, x̃i−1|i−2 > =< x̃i|N + Pi|i−1λi|N , x̃i−1|N + Pi−1|i−2λi−1|N >

=< x̃i|N , x̃i−1|N > + < x̃i|N , Pi−1|i−2λi−1|N >

+ < Pi|i−1λi|N , x̃i−1|N > + < Pi|i−1λi|N , Pi−1|i−2λi−1|N >

= Mi|N + 0 + 0 + Pi|i−1 < λi|N , λi−1|N > Pi−1|i−2

= Mi|N + Pi|i−1 < λi|N , F
T
p,i−1λi|N +HT

i−1R
−1
e,i ei−1 > Pi−1|i−2

= Mi|N + Pi|i−1(Λi|NFp,i−1+ < λi|N , H
T
i−1R

−1
e,i ei−1 >)Pi−1|i−2

= Mi|N + Pi|i−1(Λi|NFp,i−1 + 0)Pi−1|i−2,

(C.22)

therefore,

Mi|N = P T
i−1,i − Pi|i−1Λi|NFp,i−1Pi−1|i−2. (C.23)

Equation (C.23) is enough for computation with all necessary values available from

Kalman filter and smoother, and since lag-one covariance does not have to be sym-

metric positive definite, there is no square-root implementation either.

However, equation (C.23) is not in a recursive form and is not the way it usually

appears, for instance in [88]. To obtain the usual recursive form, we need a convenient
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notation. Define

Ji = Pi|iF
T
i P

−1
i+1|i.

Also important is a equality

Pi|i−1F
T
p,i = Pi|iF

T
i

when observation and process noise are uncorrelated, which gives

Ji = Pi|i−1F
T
p,iP

−1
i+1|i.

From equation (C.23) we have

Mi+1|N = P T
i,i+1 − Pi+1|iΛi+1|NFp,iPi|i−1. (C.24)

Taking advantage of recursive relation of Λi+1|N and Λi|N , we obtain

Mi|N = P T
i−1,i − Pi|i−1(F T

p,iΛi+1|NFp,i +HT
i R
−1
e,iHi)Fp,i−1Pi−1|i−2

= P T
i−1,i − Pi|i−1F

T
p,iP

−1
i+1|i(Pi+1|iΛi+1|NFp,iPi|i−1)P−1

i|i−1Fp,i−1Pi−1|i−2

− Pi|i−1H
T
i R
−1
e,iHiFp,i−1Pi−1|i−2

= (Pi−1|i−2F
T
p,i−1)T − Pi|i−1H

T
i R
−1
e,iHiFp,i−1Pi−1|i−2

− Pi|i−1F
T
p,iP

−1
i+1|i(P

T
i,i+1 −Mi+1|N)P−1

i|i−1Fp,i−1Pi−1|i−2

= Pi|i−1J
T
i−1 − Pi|i−1H

T
i R
−1
e,iHiPi|i−1J

T
i−1 + Ji(Mi+1|N − FiPi|i)JTi−1

= Pi|iJ
T
i−1 + Ji(Mi+1|N − FiPi|i)JTi−1;

the last equality uses the measurement update formula of Kalman filter. The initial
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condition of this recursive formula is less elaborate:

< x̃N |N , x̃N−1|N > =< x̃N |N ,xN−1 + x̂N−1|N >

=< x̃N |N ,xN−1 > +0

=< x̃N |N , x̃N−1|N−2 + x̂N−1|N−2 >

=< x̃N |N , x̃N−1|N−2 > +0

=< xN − x̂N |N , x̃N−1|N−2 >,

using the measurement update formula on x̂N |N to get

< xN − kf,NeN + x̂N |N−1, x̃N−1|N−2 >

=< x̃N |N−1, x̃N−1|N−2 > − < kf,NeN , x̃N−1|N−2 >

= FN−1PN−1|N−1 − kf,N < HN x̃N |N−1 + vN , x̃N−1|N−2 >

= FN−1PN−1|N−1 − kf,NHN < x̃N |N−1, x̃N−1|N−2 >

= FN−1PN−1|N−1 − kf,NHNFN−1PN−1|N−1

= (I − kf,NHN)FN−1PN−1|N−1.

(C.25)

Kalman filter and related topics fill volumes and in this short appendix I only

presented how some of the formulas used in this dissertation came about. Again,

Kailath et al. [102] is an excellent resource for its thoroughness and readability. In

there, one can find topics I have not included here, in particular, the square-root

implementation of Kalman filter and smoother. Because of numerical inaccuracy,

various variance matrices could become non-positive definite in the process of com-

putation, which is a major source of numerical instability in Kalman filter. One

solution is to propagate the square-root of the variance matrices, thus ensuring the

positive definiteness, but at the cost of more computational effort. Another way is

to turn all the update formulas into scalar updates. This is also discussed in Durbin
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and Koopman’s book [181].
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