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ABSTRACT 

The Role of Wnt8 in Posterior Mesoderm Formation. 

 (December 2008) 

Cathryn Renee Kelton, B.S., Emory and Henry College 

Chair of Advisory Committee: Dr. Arne Lekven 

 

 The formation of vertebrate mesoderm relies on the integration of positional 

information provided by several intercellular signaling pathways, including the Wnt and 

Bone Morphogenic Protein (Bmp) pathways. Zygotic Wnt signaling has been shown in 

multiple vertebrate systems to perform two functions: to restrict the size of the dorsal 

mesoderm structure known as the organizer, and to promote the development of 

posterior mesoderm that populates the trunk and tail.  Importantly, the organizer is a 

source of secreted Bmp antagonists that regulate Bmp-dependent ventral and posterior 

mesoderm patterning.  Because the organizer impacts Bmp signaling activity, it is not 

clear whether functions attributed to zygotic Wnt signaling are in fact indirectly due to 

reduced Bmp activity.  

 The objective of this thesis is to test the hypothesis that zygotic Wnt signaling 

plays two critical functions: to restrict the size of the organizer and to promote posterior 

mesoderm development in a Bmp-independent manner. To test this hypothesis, we 

characterized in depth the phenotypic defects of zebrafish embryos lacking Wnt8, the 

central ligand involved in zygotic Wnt-dependent mesoderm patterning.  To identify 

Bmp-independent functions of Wnt8 signaling, we used double loss-of-function 
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conditions to elevate Bmp signaling in embryos lacking Wnt8 function. Embryos were 

analyzed for the expression of a comprehensive set of mesoderm markers indicative of 

cell fates found in all spatial positions of the embryo. 

 Our results show that, in addition to posterior mesoderm precursors being 

drastically reduced in Wnt8 morphants, anterior fates are disrupted as well.  We found 

that increasing Bmp signaling largely has no effect on the Wnt8 morphant phenotype. 

However, slight rescue was observed in pronephric, heart tube, and vasculature 

precursors. We believe these results support the hypothesis that Wnt signaling maintains 

mesoderm progenitor cell populations, while Bmp signaling patterns mesoderm cell 

fates.  Accordingly, Wnt8 signaling will appear to be epistatic to Bmp signaling during 

vertebrate axis patterning. 
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NOMENCLATURE 

 

APC Adenomatous Polyposis Coli 

Bmp Bone Morphogenic Protein 

Cmlc2 Cardio Myosin Light Chain 2 

Chd Chordin 

Dvl Dishevelled 

Eve1 Even-Skipped 1 

Fsta Follistatin a 

GSK3β Glycogen Synthase Kinase 3β 

MHB Midbrain Hindbrain Boundary 

MO Morpholino 

MO4 Morpholino for Wnt8 

Morphant Embryo that has been injected with morpholino(s) 
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CHAPTER I 

INTRODUCTION 

 

Wnt signaling 

 The Wnt/Wingless/Int family of proteins is a large family of secreted proteins 

that control embryonic patterning and cell-fate decisions in development (Eastman et al., 

1999). Wnt signaling can stimulate two downstream pathways, the canonical and the 

non-canonical pathways. The focus of this study is the canonical Wnt/β-catenin 

pathway, which is named for the downstream effector β-catenin. In the absence of Wnt 

signaling, β-catenin is sequestered from entering the nucleus and activating TCF/LEF 

transcription factors by a complex made up of Axin, glycogen synthase kinase 3β 

(GSK3β), CK1, and adenomatous polyposis coli (APC). This complex causes β-catenin 

to become phosphorylated, ubiquitinated, and destroyed (Clevers, 2006).  

In the presence of Wnt signaling, Wnts bind to their receptor Frizzled (Fz), a 

seven-pass transmembrane protein (Bhanot et al., 1996). After a Wnt protein binds to Fz, 

the receptor then interacts with the coreceptor LRP5/6 in vertebrates or Arrow in 

Drosophila, and activates the signaling cascade. Fz causes Dishevelled (Dvl) to become 

activated, and Axin is recruited to the LRP5/6 receptor thus breaking apart the β-catenin 

destruction complex. Once the complex is destroyed; β-catenin is free to enter the  
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nucleus and activate TCF/LEF transcription factors (Clevers, 2006) by displacing 

Groucho, a repressor of TCF/LEF proteins, and interacting with the amino terminus of 

TCF/LEF transcription factors (Eastman et al., 1999), which turn on downstream genes 

important for cell proliferation and mesoderm patterning (Figure 1). Embryos lacking 

Wnt8 signaling exhibit a disruption in ventrolateral and posterior mesoderm formation 

(Lekven et al., 2001).  

 

 

Figure 1: Canonical Wnt pathway. Binding of a Wnt ligand to its receptor Frizzled leads 
to the recruitment of Axin to the LRP co-receptor, breaking apart the β-catenin 
destruction complex. β-catenin is then free to enter the nucleus and activate TCF/LEF 
transcription factors. (Taken from He, 2004). 
 

 

Bmp signaling  

 Along with Wnt8 signaling, Bmp (Bone Morphogenic Protein) signaling is also 

important for mesodermal patterning. Bmps are a part of the TGF-β family of cytokines 

that regulate cellular processes that include cell proliferation, cell differentiation, cell 

fate, and migration (Ross and Hill, 2008). Bmp ligands bind to the extracellular domains 

of type I and type II Bmp receptors, which are transmembrane proteins with intracellular 
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serine/theronine kinase domains (Schier and Talbot, 2005). In zebrafish, the ligand 

bound receptors phosphorylate three Smad transcription factors; Smad 1, 5, and 8 (Ross 

and Hill, 2008). Once phosphorylated, these transcription factors form a complex with 

Smad 4 and are able to translocate to the nucleus and regulate gene expression 

(Kimelman, 2006) (Figure 2). 

 It has been shown that Bmp signaling is required for global dorsoventral 

patterning during early gastrulation in zebrafish, and regulates tail development from 

mid-gastrulation to early somitogenesis (Stickney, 2007). Embryos lacking Bmp2b and 

Bmp7 have expanded trunk somitic fates, loss of tail, reduced vasculature, blood, and 

pronephros (Dick et al., 2000; Imai et al., 2001; Kishimoto et al., 1997; Nguyen et al., 

1998; Schmid et al., 2000; Shimizu et al., 2002; Stickney et al., 2007). 

Mesoderm formation results in two domains with progenitors that differentiate in 

spatially restricted ways 

 Immediately after fertilization, the zebrafish embryo undergoes a series of 

synchronous cell divisions which produces a ball of uncommitted cells, called 

blastomeres, which sit atop the yolk (Kimmel, 1995). At approximately six hours after 

fertilization, the embryo undergoes gastrulation, in which the uncommitted blastomeres 

start to differentiate and segregate into three germ layers; the endoderm, mesoderm, and 

ectoderm.  The endoderm forms the gut lining and associated organs such as the liver 

and pancreas; mesoderm forms organs including blood, body muscles, kidneys, heart, 

and vasculature; the ectoderm will ultimately give rise to the central nervous system and 

epidermis.  
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In the zebrafish, the precursors for mesoderm and endoderm comprise a mixed 

population of cells at the embryonic margin at the onset of gastrulation. Because of this 

cellular arrangement, it is often referred to as “mesendoderm” prior to segregation of the 

germ layers (Dougan, 2003).  

 

 

 

Figure 2: Bmp signaling. A Bmp ligand binds to Type I and Type II Bmp receptors 
which phosphorylate Smads 1, 5, and 8. The phosphorylated Smad proteins form a 
complex with Smad4, enter the nucleus and regulate target genes (adapted from 
Kimelman, 2006©). 
 

 

Mesendoderm progenitors form above the yolk syncytial layer (YSL), an 

extraembryonic tissue located between the developing embryo and the yolk that plays 

important roles in mesoderm induction and in driving the morphogenetic movements of 
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epiboly during gastrulation (Figure 3) (Kimmel and Law, 1985; Solnica-Krezel and 

Driever 1994; Kimelman et al., 2000; Kimelman and Griffin, 2000 Kimmel; Chen et al., 

2006).  

 

 
 Figure 3: Fate map of mesoderm and endoderm precursors. Mesoderm precursors (red) 
are distinct from endoderm precursors (green) in Xenopus embryos, while in zebrafish 
both groups of precursors are mixed along the margin. (Adapted from Kimelman, 
2006©). 

 

 Mesoderm induction in zebrafish occurs in response to signals secreted by the 

YSL (Kimelman, 2006). Upon induction, the mesoderm is divided into two gross 

domains referred to as dorsal and ventrolateral domains (Figure 4A). The dorsal domain 

will differentiate into axial structures such as the notochord.  The ventrolateral domain 

comprises progenitors for mesoderm structures that form away from the dorsal axis, such 

as blood, kidney and body muscles (Kimmel et al., 1990).  The dorsal mesoderm domain 

contributes to a visible thickening of the zebrafish embryonic margin, called the 

embryonic shield, at the onset of gastrulation.  The shield corresponds to the zebrafish 
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equivalent of the amphibian dorsal blastopore lip, also known as “Spemann’s 

Organizer”.  Previous embryological experiments discovered that the organizer regulates  

embryonic axis patterning because it secretes antagonists to Wnt and Bmp ligands 

(Ramel et al., 2004; Sokol et al., 1999; Xanthos et al., 2002). Interactions of antagonists 

secreted by the organizer and Wnt and Bmp ligands expressed on the opposite side of the 

embryo establish positional information that is responsible for guiding the differentiation 

of mesoderm progenitors into position-specific cell fates (Kimelman, 2006) (Figure 4B). 

 

 

Figure 4: Fate map of ventral lateral domains. Ventrolateral mesoderm, also called the 
margin, yellow, gives rise to more posterior fates. Dorsal mesoderm, red, gives rise to 
more anterior fates (A). A fate map of an embryo after gastrulation. Mesoderm is 
organized into D/V domains and A/P domains. Anterior domains are in blue (B). 
(Adapted from Schier and Talbot, 2005©). 
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Embryonic axis patterning is regulated by zygotic Wnt and Bmp signaling 

Early studies on the organizer showed that cell fate specification in the 

anteroposterior axis is intertwined with patterning of the dorsoventral axis. For example, 

in zebrafish, the absence of Wnt8 signaling results in an expanded organizer 

(dorsoventral patterning defect) and a shortened body axis (anteroposterior patterning 

defect) (Hoppler et al., 1996; Lekven et al, 2001). Likewise, zebrafish embryos lacking 

Bmp2b and Bmp7 have expanded trunk somites, reduced vasculature, blood, and 

pronephros (dorsoventral patterning defects) and loss of tail (anteroposterior patterning 

defect) (Dick et al., 2000; Imai et al., 2001; Kishimoto et al., 1997; Nguyen et al., 1998; 

Schmid et al., 2000; Shimizu et al., 2002; Stickney et al., 2007). Thus, Wnt and Bmp 

signaling are essential to both dorsoventral and anteroposterior axis patterning. 

Wnt signaling regulates dorsoventral patterning through the organizer 
 

The organizer secretes both Wnt and Bmp antagonists. These antagonists create a 

gradient of Wnt and Bmp signaling that is higher in the ventral domain of the embryo 

and lower in dorsal domain. Wnt antagonists secreted by the organizer can be classified 

into two families based on how they perform. The first group consists of the secreted 

Frizzled-related proteins (sFRPs) which include frzb-1, sFRP-2 and crescent. These 

proteins inhibit Wnt signaling by binding to the Wnt ligands and preventing 

ligand/receptor interactions.  The second group includes the Dkks, which interact with 

the LRP5/6 coreceptor to prevent Wnt binding and activation (reviewed in De Robertis 

et al., 2000). Overexpression of Wnt antagonists produces embryos that have a 

dorsalized phenotype such as enlarged eyes, enlarged head, expansion of the organizer, 
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and a shortened tail (Glinka et al., 1998; Hoppler et al., 1996; Leyns et al., 1997). 

Chordin, Noggin, and Follistatin are all Bmp antagonists which, like the Wnt 

antagonists, produce a dorsalized phenotype when overexpressed. Thus, Wnt signaling 

restricts organizer size and thereby limits the expression of Wnt and Bmp antagonists 

from the organizer.  As a consequence, this function may impact both dorsoventral and 

anteroposterior embryo axis patterning. While these observations show that 

anteroposterior and dorsoventral patterning are coordinately regulated, whether 

anteroposterior and dorsoventral fate specification are an output of separable molecular 

mechanisms has not been determined. 

Wnt8 is expressed in ventrolateral mesoderm 

Wnt8 is expressed in the ventrolateral embryonic margin of zebrafish (Kelly et 

al., 1995).  Wnt8 signaling is required to maintain high levels of vent, vox and ved 

expression in the ventrolateral margin during gastrulation (Ramel and Lekven, 2004). 

Vent, Vox, and Ved act as repressors to prevent the expression of dorsal genes in the 

ventral region of the embryo (Melby et al., 2000; Imai et al., 2001; Shimizu et al., 2002; 

Ramel et al., 2004; and Ramel et al., 2005). Thus, Wnt8 regulates dorsoventral 

patterning through Vent, Vox and Ved-dependent organizer regulation.  This leaves open 

the question of whether Wnt8 signaling has a direct role in specifying anteroposterior 

mesoderm fates. 

There is evidence that in addition to regulating dorsoventral fates, Wnt8 plays a 

direct role in patterning anteroposterior fates. It has been found that sp5l, a gene that 

functions in tail development, is downstream of wnt8 (Thorpe et al., 2005).  
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Interestingly, expression of the posterior genes cdxla and cdx4 was reduced in wnt8 

mutants, but not Bmp mutants (Shimizu et al., 2005). This evidence suggests that Wnt8 

has a separate anterior-posterior patterning function that is independent of Bmp-

dependent dorsoventral patterning. 

Summary and focus of research 

 How dorsoventral and anteroposterior patterning is controlled by Wnt8 signaling 

in the zebrafish embryos is poorly understood.  It is known that Wnt8 and Bmp play a 

role in patterning dorsoventral mesoderm. Mutants deficient in wnt8 and bmp lack 

various structures that arise from dorsoventral mesoderm. Interestingly, there is evidence 

that these genes have different functions when it comes to anteroposterior patterning.  

Zebrafish embryos that lack wnt8 signaling show a dramatic loss of posterior 

mesodermal structures. To gain a better understanding of Wnt8 function, various 

mesodermal markers were analyzed by in situ hybridization in wild type and Wnt8 loss-

of-function embryos produced by morpholino antisense oligonucleotide (MO) gene 

knockdown.  

The research presented here was designed to test the hypothesis that Wnt8 

signaling regulates Bmp-dependent and Bmp-independent patterning.  Embryos lacking 

Wnt8 have expanded organizers that secrete elevated levels of Bmp antagonists that 

reduce Bmp signaling.  Thus, wnt8 mutants have reduced Wnt8 signaling as well as 

reduced Bmp signaling.  As a consequence, to reveal Wnt8-specific fate specification, it 

is necessary to restore Bmp signaling activity within wnt8 loss-of-function embryos.  
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Mesoderm fates that fail to be specified under these conditions must require Wnt8 

signaling but not Bmp. 

We have taken a double loss-of-function approach to restore Bmp signaling 

activity in embryos lacking Wnt8.  The Bmp antagonist Chordin (chd) is produced from 

the organizer. We used morpholino antisense oligonucleotides to simultaneously reduce 

both Wnt8 and Chordin expression, and then we analyzed the effect on multiple 

mesoderm markers. Our results show that, in addition to posterior mesoderm precursors 

being drastically reduced in Wnt8 morphants, anterior fates are disrupted as well. We 

found that increasing Bmp signaling largely has no effect on the Wnt8 morphant 

phenotype. However, slight rescue was observed in pronephric, heart tube, and 

vasculature precursors. These results support the hypothesis that Wnt signaling 

maintains mesoderm progenitor cell populations, while Bmp signaling patterns 

mesoderm cell fates.  Accordingly, Wnt8 signaling will appear to be epistatic to Bmp 

signaling during vertebrate axis patterning. 
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CHAPTER II 

MATERIALS AND METHODS 

 

Fish maintenance and strains 

 Fish were maintained as described in (Westerfield, 2000). Fish used in this study 

were AB x TL.  To generate AB x TL fish, AB wild-type fish were crossed with TL 

wild-type fish. Progeny were raised and crossed to produce embryos used in this study. 

Injections and morpholinos 

 A combination of four morpholinos (MOs; Genetools, LLC) was used to block 

splicing of wnt8 pre-mRNA. The sequence of each morpholino has been previously 

described (Ramel et al., 2005).  The chordin (chd) MO has been previously described 

(Nasevicius and Ekker, 2000). MOs were diluted in 1X Danieau’s buffer and injected 

into one to four cell stage wild-type embryos. To generate wnt8MO;chdMO embryos, each 

MO was individually injected into the same wild-type embryo. In all injections, the 

volume of MO injected per embryo was approximately 3 nL.  

In situ hybridizations and probes 

 In situ hybridizations were essentially preformed as described in (Jowett, 2001). 

The probes used were: cardiac myosin light chain-2 (cmlc2; Huang et al., 2003), even-

skipped-1 (eve1; Joly et al., 1993), fli1 (Brown et al., 2000), follistatin a (Bauer et al., 

1998), gata1 (Dietrich et al., 1995), hgg1 (Vogel and Gerster, 1997), myf5 (Rescan, 

2001), myoD (Weinberg et al., 1996), neurogenin-1 (Blader et al., 1997), pax2.1 

(Abdelilah et al., 1996), and T-box24 (tbx24; Nikaido et al., 2002). 
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CHAPTER III 

CLASSIFYING THE WNT8 PHENOTYPE 

 

Wnt8 is required to promote the development of posterior mesoderm fates 

 To better understand the role Wnt8 plays in patterning, wild-type embryos were 

injected with wnt8 morpholinos, fixed at the 5 to 9 somite stage (approximately 12 to 13 

hours after fertilization) and analyzed by in situ hybridization to detect several 

mesodermal markers. The morpholinos used are a cocktail of four morpholinos designed 

to block splicing of wnt8 pre-mRNAs (Ramel et al., 2005; embryos injected with this 

morpholino cocktail are referred to as wnt8MO4 embryos).  Because the wnt8 phenotype 

is characterized by a severe lack of posterior mesoderm, we began by examining the 

expression of four paraxial and presomitic mesoderm markers: myf5, myoD, mesogenin, 

and tbx24. In all cases, the expression domains of these markers were decreased in 

length and width in the majority of the morphants (Figure 5 A-H).  This result suggests 

that Wnt8 is required for the maintenance or specification of presomitic mesoderm 

progenitors. 

 The reduction in somitic progenitors observed would be predicted to result in 

smaller somites.  At the 5 to 6 somite stage, follistatin a (fsta) expression marks anterior 

somites.  Consistent with the above results, the expression domain of fsta was reduced in 

50% of wnt8MO4 embryos, (Figure 6 A-D, n=24), and was barely visible or undetectable 

in 41% of the embryos. The results of these in situs indicate that Wnt8 is required for 

normal presomitic and somitic mesoderm development.   
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Figure 5:  Absence of wnt8 causes a reduction in paraxial and presomitic mesoderm. All 
views are posterior views, all embryos were fixed at the 5-9somite stage. Wild type 
expression of myf5 (A).  Expression of myf5 in wnt8 morphant is reduced (B). Wild type 
expression of myoD (C).  Reduction of expression of myoD in wnt8 morphant (D). Wild 
type expression of mesogenin (E). mesogenin expression is reduce in the absence of 
wnt8 (F). Wild type expression of tbx24 (G).  Reduction of tbx24 in wnt8 morphant (H). 
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Figure 6:  Expression of follistatin a  at 5-6 somites. Expression of Follistatin is reduced 
in wnt8 morphants at the 5-6 somite stage. Anterior/Posterior view (A,B). Dorsal view 
(C,D). Wild-type embryos (A,C). Wnt8 morphants (B,D). 
 

 Posterior mesoderm comprises several tissues in addition to somites, including 

intermediate and lateral plate mesoderm. In zebrafish, intermediate mesoderm 

encompasses hematopoietic and pronephric progenitors (Rohde et al., 2007).  To 

determine whether Wnt8 signaling regulates all posterior mesoderm fates equivalently, 

we examined the expression of intermediate mesoderm markers in wnt8MO4 embryos.  

 To examine the fate of red blood cell progenitors, we assayed the expression of 

gata1, the first red blood cell specific marker to be expressed (Lyons et al., 2002, Rohde 

et al., 2004). A reduction in gata1 expression was observed in 62% of wnt8MO4 embryos, 

and gata1 expression was totally absent in 32% of the injected embryos (Figure 7 A-D, 

n=32). 

To examine hematopoietic precursors, we assayed scl, which is expressed earlier 

than gata1 in bilateral stripes that represent both blood and endothelial precursors 

(Rohde et al., 2004). In addition to the posterior expression domains, scl is expressed 
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Figure 7: Wnt8 morphants show a disruption in blood precursors. Wild type posterior view of 
gata1 expression at 5-6 somites (A). Lateral view, anterior to left, of reduced gata1 expression, 
between arrows, in wnt8 morphants (B). Wild type lateral view of gata1 expression, anterior to 
left (C). Posterior view of reduced gata1 expression in wnt8 morphant (D).  Wild type scl 
expression at 5-6 somites (E,G,I). Lateral view, anterior to left, (E) Anterior view, (G) Posterior 
view (I). Disrupted scl expression in wnt8 morphants (F,H,J). Lateral view, anterior to left.  
Notice reduction of posterior domain and expansion of rostral blood islands around the middle of 
the embryo (F). Anterior view of rostral blood islands (H). Posterior view (J). 

 

in bilateral stripes in anterior lateral plate mesoderm that represent the rostral blood 

islands, which comprise myeloid precursors (Hogan et al., 2006), . The anterior and 
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posterior expression domains of scl are separated by a gap and do not touch.  Consistent 

with the reduction of gata1 expression, a reduction in the posterior expression domain of 

scl was observed in wnt8MO4 embryos. In contrast, the expression marking the rostral 

blood islands, normally restricted to the anterior end of the embryo, expanded almost to 

the posterior pole of wnt8MO4 embryos. This phenotype was observed in 67% of the 

morphants (Figure 7 E-J, n=28). Thus, wnt8MO4 embryos display reduced paraxial and 

intermediate mesoderm progenitors, and this is accompanied by a significant expansion 

of anterior lateral plate mesoderm progenitors. 

 We next examined expression of pax2.1 at the 5 to 6 somite stage. At this stage, 

pax2.1 is expressed in pronephric progenitors in the intermediate mesoderm, the 

presumptive eye field, the midbrain-hindbrain boundary and the otic placode (Abdelilah 

et al., 1996). wnt8MO4 embryos fell into three phenotypic classes. The strongest class 

(33%, n=13) showed a loss of pronephric and otic placode pax2.1 expression.  The 

midbrain-hindbrain boundary had formed a ring around the posterior end of the embryo, 

and the presumptive eye field was significantly expanded and not separated into two 

discrete domains (Fig. 8D,H). The second phenotypic class was slightly less severe than 

the first, with some pronephric pax2.1 expression present and a narrower neural plate 

than in the strongest class (Fig. 8C,G, n=16). The third phenotypic class (23% of total) 

was the weakest, and was close to the wild-type phenotype (Fig. 8B,F, n=9).  

 

 
 



 

 
 
 

17

 
Figure 8: Pax2.1 expression in Wnt8 morphants. Lateral view of wild type embryo (A). 
Lateral view of Wnt8 morphants (B,C,D). Dorsal view of wild type embryo (E).  Dorsal 
view of Wnt8 morphants (F,G,H). 
 
 
 
Wnt8 is required for cardiac progenitor specification 

The previous results showed that Wnt8 promotes posterior mesoderm 

development and antagonizes anterior lateral plate mesoderm and neurectoderm 

specification.  The cardiogenic mesoderm is situated between anterior and posterior 

mesoderm. Recent studies have shown that myocardial specification in zebrafish is 

under both positive and negative regulation by Wnt signaling (Ueno et al., 2007): Wnt 

signaling prior to gastrulation promotes cardiogenic mesoderm specification while Wnt 

signaling during and after gastrulation antagonizes cardiogenic mesoderm. We predicted 

that Wnt8 may be responsible for the early heart-promoting activity.  

To test this, we examined the myocardial markers nkx2.5 and cmlc2 at the 21 

somite stage (~19 hours post fertilization). Myocardial progenitors comprise bilateral 

fields of cells that migrate to the dorsal midline and fuse to form the heart tube. cmlc2 is 

expressed throughout the heart tube in zebrafish (Yelon et al., 1999). In wild type 

embryos proper tube patterning is represented by a circle of cmlc2 expression just 
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ventral to the developing hindbrain. This pattern of expression was significantly 

disrupted in wnt8MO4 embryos (Fig. 9). 42% of wnt8MO4 embryos displayed bilateral 

cmlc2, which indicates the failure of heart progenitors to merge and form the heart tube 

(Figure 9 A, B, n=40). In 53% of morphants, cmlc2 was also expressed in bilateral 

domains but the expression level was at most barely detectable. Similar results were 

obtained when we examined nkx2.5 (Keegan et al., 2005) expression: 64% of the 

morphants exhibited unfused bilateral myocardial domains (Figure 9 C, D, n=35). 

 

Figure 9: Loss of Wnt8 causes reduction in heart and vasculature precursors. Cmlc2 
expression (A,B). Nkx2.5 expression (C,D).  
 

 

Wnt8 promotes anterior paraxial mesoderm specification 

The results presented above, with previously published results, suggest Wnt8 

signaling is essential for establishing a balance within the mesoderm between anterior 

and posterior progenitor fates: Wnt8 promotes posterior fate specification and 

antagonizes anterior mesoderm specification. To extend this analysis, we examined 
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hgg1, a marker for the anterior prechordal plate, and follistatin a, a marker for cephalic 

paraxial mesoderm during gastrulation.  

 At bud stage (~10 hours post fertilization), the anterior prechordal plate is an oval 

shaped group of cells at the anterior pole of the embryo (Figure 10 A). wnt8MO4 embryos 

fell into two phenotypic classes. In the more severe class, hgg1 expression expanded to 

encircle the embryo (54%, n=18; Fig. 10D).  In the less severe class, the hgg1 expression 

domain was slightly widened (33%, n=11; Fig. 10B,C). This result is consistent with 

previous observations of gsc expression, which marks an overlapping population of axial 

mesoderm cells (Ramel and Lekven, 2004; Ramel et al., 2005). 

Considering the expanded domains of anterior prechordal plate (hgg1) and 

anterior lateral plate mesoderm (scl) in wnt8MO4 embryos, we predicted that cephalic 

paraxial mesoderm would show a similar response to Wnt regulation.  To test this, 

wnt8MO4 embryos were fixed at 90% epiboly (~9 hours post fertilization), and in situ 

hybridizations were preformed to detect follistatin a (fsta). In contrast to our 

expectations, we found that there was an overall decrease in the intensity of fsta 

expression, and the area encompassing fsta expressing cells shifted from its normal 

location in the anterior half of the embryo to a ring around the middle of the embryo 

(Figure 10 E-H). Thus, paraxial mesoderm appears to require Wnt8 signaling throughout 

the anteroposterior axis. 

Summary and conclusions 

To better understand the role Wnt8 plays in mesoderm patterning, we 

characterized the wnt8MO4 phenotype with a panel of cell fate markers. The data from  
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Figure 10: Hgg1 and follistatin expression in Wnt8 morphants. Hgg1 (A,B,C,D), 
Follistatin (E,F), lateral view (G,H). 
. 
 
 
these in situ hybridization experiments suggest that Wnt8 signaling is required for 

specification of paraxial mesoderm progenitors throughout the anteroposterior axis.  

Further, intermediate mesoderm fates in the posterior embryo are positively regulated by 

Wnt8 signaling.  Of anterior mesoderm fates, axial mesoderm and lateral plate 

mesoderm progenitors are antagonized by Wnt8 signaling, thus these populations expand 

in the absence of Wnt8 signaling.  
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 These results lead to several unanswered questions. What is happening to the 

mesoderm progenitors that would normally be fated to contribute to the posterior 

embryo? There is clearly a reduction, but is it because fewer posterior mesoderm 

progenitors are specified, because the cells die early, or because they undergo fewer 

rounds of cell division? Because the dorsoventral axis is established before the 

anteroposterior axis, are the patterning defects we see in wnt8MO4 embryos due to an 

earlier defect in dorsoventral patterning? Clearly any of these possibilities would result 

in fewer cells contributing to the posterior mesoderm. In the next chapter, I describe 

experiments that test whether reduced Bmp signaling lies behind the reduction in 

posterior mesoderm specification in wnt8MO4 embryos. 
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CHAPTER IV 

IDENTIFYING BMP-INDEPENDENT FUNCTIONS OF WNT8 

 

Introduction 

It can be suggested that the reason there is an anterior/posterior patterning defect 

in Wnt8 morphants is because there is an early dorsoventral patterning defect. That is, 

embryos lacking Wnt8 have expanded organizers that secrete elevated levels of Bmp 

antagonists, such as Chordin, that reduce Bmp signaling levels. Thus, the full extent of 

the effects of wnt8 loss of function may be masked by Bmp-dependent effects.  To 

ascertain if reduced Bmp signaling contributes to the wnt8 loss-of-function phenotype, 

we simultaneously knocked down Wnt8 and the Bmp antagonist Chordin with 

morpholino antisense oligos.  Reducing Chordin protein levels should promote elevated 

Bmp activity in the context of Wnt8 loss of function.  If the phenotype of the double 

morphants looks like a wild-type embryo, then it would suggest that increased Bmp 

signaling can compensate for the loss of Wnt8, and a defect in early Bmp signaling 

might explain at least part of the Wnt8 loss-of-function phenotype. 

Chd knockdown partially suppresses the wntMO4 phenotype 

 To begin, we injected wild type embryos with morpholinos targeting wnt8 and 

chordin, and then examined morphological phenotypes at 24 hours post fertilization. 

wnt8MO4 embryos fall into phenotypic classes that can be categorized according to a 

classification scheme devised for Bmp mutants (Kishimoto et al., 1997).  According to 

this scheme, C4 and C5 represent the most severe phenotypes and are characterized by 
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an absent yolk extension, severe axis truncation and severe head disorganization. C3 

embryos also fail to make a yolk extension but show only a mildly disorganized head 

and only moderate axis truncation. C2 embryos form a partial yolk extension, head 

development is relatively normal, and the tail is only slightly shortened but lacks the 

ventral tail fin. C1 embryos lack the ventral tail fin but are otherwise wild-type. wnt8MO4 

embryos typically show a range of phenotypes (Table 1) including C4/C5 (strongly 

dorsalized) to C3/C2 (moderately/weakly dorsalized). Knockdown of Chordin 

consistently produces embryos that phenocopy chordin genetic mutants (97% of 

embryos). Simultaneous knockdown of Wnt8 and Chordin resulted in no significant  

 

Table 1: Phenotypes of single Wnt8 MO and Chd MO and double Wnt8 + Chd injected 
embryos. 
 

 

 

change in the percent of strongly dorsalized embryos from Wnt8 knockdown alone, but 

the class of moderately to weakly dorsalized embryos observed upon Wnt8 knockdown 

was not observed in the double knockdown group.  Instead, a new phenotypic class 

emerged characterized by a curled-up tail, absent yolk extension and ventral tail fin and 

a conspicuous cell mass on the side of the yolk opposite the embryo (“yolk cell mass”) 
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(Figure 11 A-D). This result suggests the strongest wnt8MO4 phenotype cannot be altered 

by elevated Bmp signaling, but embryos with low levels of Wnt8 signaling are 

responsive to elevated levels of Bmp. 

 

 

Figure 11: 24 hour phenotype of Din/MO4 morphants. WT 24 hour phenotype (A). Chd 
24 hour phenotype (B). MO4 24 hour phenotype (C). Double morphant 24 hour 
phenotype exhibiting yolk cell mass (D). Hgg1 at 24 hours (E,F). Gata1 at 24 hours 
(G,H). Eve1 at 24 hours (I,J). Neurogenin1 at 24 hours (K,L). 
 

 

To determine the identity of cells contributing to the yolk cell mass, we 

performed a series of in situ hybridizations on this new class of embryos. The first gene 

we examined was hgg1, a marker of the hatching gland, a structure found on the anterior 

end of the embryo that secretes enzymes that help dissolve the corion. While a few cells 

expressed hgg1, the majority of the cell mass did not (Figure 11 E, F).  We then 

examined gata1, a blood cell marker, eve1, a tail bud progenitor marker, and 

neurogenin, a neural marker. None of these genes were expressed in the yolk cell mass 
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(Figure 11 G-L). While the identity of these cells remains undetermined, they may be 

similar to a smaller population of apoptotic cells found ventral to the yolk extension of 

chordin mutant embryos (Hammerschmidt et al., 1996). 

Paraxial mesoderm is compromised in wnt8MO4;chdMO embryos 

We fixed wnt8MO4;chdMO embryos between the 5 and 9 somites stages and 

performed in situ hybridizations using the posterior paraxial mesoderm markers, myf5, 

myoD, and tbx24 to ascertain the effects of increased Bmp in a wnt8 loss of function 

background. All three genes are markers of presomitic mesoderm but are not expressed 

in tailbud progenitors.  Thus, their expression at the 5-6 somite stage marks paraxial 

mesoderm that will contribute to the trunk somites (Holley and Takeda, 2002).  All three 

genes show reduced expression in wnt8MO4 and chdMO embryos at the 5-6 somite stage.  

In wnt8MO4 embryos, this may be explained by a role for Wnt8 in promoting paraxial 

mesoderm formation in general (Yamaguchi, 2001).  In chdMO embryos, reduced 

expression of presomitic mesoderm markers may reflect the diversion of trunk paraxial 

mesoderm progenitors toward a tail fate (Szeto and Kimelman, 2006), since cells that 

express myf5, myoD and tbx24 at the 5-6 somite stage will contribute to trunk somites, 

not tail somites.  

 myf5 expression was reduced in the wnt8 morphants, but still showed some 

somite expression. It was also reduced in the chd morphants; however somite expression 

had been lost. tbx24 expression was similarly reduced in wnt8MO4, chdMO and 

wnt8MO4;chdMO embryos (Figure 12).  myoD is expressed in somites and adaxial cells.  

wnt8MO4 embryos showed decreased myoD expression, but still had somite expression, 
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while the chdMO embryos showed no somite expression and light expression in the 

adaxial stripes (Figure 12).  The double morphants showed an additive phenotype: no 

somite expression as in chdMO embryos but short adaxial stripes as in wnt8MO4 (Figure 

12E-H). 

�

 

Figure 12: Posterior markers in Chd/MO4 morphants. All views are posterior. Myf5 
expression (A,B,C,D). MyoD expression (E,F,G,H). Tbx24 expression (I,J,K,L). 
 
 
Intermediate mesoderm patterning is rescued in wnt8MO4;chdMO embryos 

We next examined whether Chordin knockdown could rescue intermediate 

mesoderm fate specification in wnt8 morphants.  As shown in Chapter III, pax2.1-

expressing intermediate mesoderm is either absent or almost absent in wnt8MO4 embryos 

(Figure 8 , Figure 13).  Because pax2.1 is also expressed in the neural plate and otic 

vesicles at the 5-6 somite stage, we could also use its expression to evaluate the extent of 

neural induction in the knockdown conditions.  

Chd MO4 Chd/MO4 WT 
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 Embryos deficient in Wnt8 showed a loss of pronephric expression and otic 

placode, the midbrain hindbrain boundary (MHB) thinned and expanded into a ring 

encircling the embryo (Figure 13), and the forebrain expression was disorganized 

(Figure 13 A,B,F,G). In chdMO embryos, pax2.1 expression domains are present but are 

shifted in the anterior embryo toward the dorsal midline.  This shift reflects suppressed 

neural induction by elevated Bmp (in the neural plate) and the consequence of reduced 

trunk paraxial mesoderm that separates intermediate mesoderm from the dorsal midline. 

In contrast, the pronephric region of the embryos had widened around the posterior end 

(Figure 13 C,H), reflecting increased numbers of tail mesoderm progenitors.  

 

 

Figure 13: pax2.1 expression in Chd/MO4 morphants. Lateral view (A,B,C,D,E). 
Dorsal/Posterior view (F,G,H,I,J). Wild type (A,F). wnt8MO4 (B,G). chdMO (C,H). 
Double morphants (D,E,I,J). Arrows show very slight return of pronephric expression. 
 

 

wnt8MO4;chdMO embryos could be classified into two phenotypic groups. The 

weakly affected group resembled very closely the chdMO phenotype: a relatively normal 

anterior end, slightly reduced otic placode expression, a slightly narrower midbrain-

hindbrain boundary (MHB), and diminished expression in the pronephric region. 

Chd/MO4 Chd MO4 WT 
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Interestingly, wnt8MO4;chdMO embryos display a MHB width midway between wild-type 

and the wnt8MO4 phenotype, but the distribution of pax2.1+ pronephric progenitors 

resembled that of chdMO embryos, although expression was significantly reduced (n=27).  

Thus, Chordin knockdown only slightly suppressed the expanded neural induction of 

Wnt8 knockdown, but rescued the patterning of intermediate mesoderm progenitors 

(Figure 13 D,E,I,J).   

 To extend this result to another intermediate mesoderm marker, we examined fli1 

expression, which labels both head and body vasculature, at the 17 somite stage in the 

double morphants. fli1 in Wnt8 morphants showed truncated posterior expression and 

the anterior expression domain formed one solid line of expression. Chordin morphants 

had relatively normal anterior expression, but the posterior expression domain had 

expanded from one line of expression down the axis of the embryo to a band of 

expression around the posterior end. The double morphants (n=22) exhibited anterior 

expression that was partially restored to normal, and the posterior expression resembled 

the pattern in the Chordin morphants (Figure 14 A-D).  

 

 

Figure 14: Fli1 expression in Chd/MO4 morphants. Wild type (A). MO4 (B). Chd (C). 
Chd/MO4 (D). 
 

Chd Chd/MO4 MO4 WT 
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Cardiac mesoderm is not rescued in wnt8MO4;chdMO embryos 

In the Wnt8 deficient embryos expression of cmlc2 was in bilateral stripes 

instead of the normal circular pattern, and in the most affected embryos, the expression 

of cmlc2 was completely gone. Likewise, the chd morphants showed expression in 

bilateral stripes and in the most affected embryos expression of cmlc2 was abolished 

altogether. The double morphants exhibited two groups of phenotypes, the first had faint 

bilateral stripes of expression (n=5), and the second group had scattered cells that 

expressed cmlc2 (Figure 15, n=22).  

 

 

Figure 15: Cmlc2 expression in Chd/MO4 morphants. All views are dorsal. Wild type 
(A). MO4 (B). Chd (C). Chd/MO4 (D,E). Arrows point to slight return of Chd 
expression, most severely affected MO4 and Chd morphants had no expression of 
Cmlc2. Circle shows scattered expression. 
 

 

Summary and conclusions 

 It was our goal to determine if increasing Bmp signaling would compensate for 

the loss of Wnt8 signaling. We double injected wild-type embryos with morpholinos 

designed against wnt8 and chd and performed whole mount in situ hybridizations to 

determine if there were any changes in expression in the double morphants versus the 

single morphants. We first examined the 24 hour phenotype of the double mutants and 

Chd Chd/MO4 MO4 WT 
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noticed that a peculiar cell mass developed on the bottom of the yolk. We tried to 

determine the nature of the cell mass by performing in situ hybridizations using the 

probes hgg1, gata1, eve1, and neurogenin1. While a few cells in the cell mass turned out 

to be part of the hatching gland, we did not find a marker that would label the entire or 

majority of the cells in the cell mass. These findings lead us to believe that the yolk cell 

mass probably consists of undifferentiated cells. 

 Next we tested the fates of anterior and posterior cell populations when we 

increased Bmp signaling by knocking down its antagonist chordin and knocked down 

Wnt8 signaling at the same time. We first examined the posterior markers myf5, myoD, 

and tbx24 and saw in each case that increasing Bmp signaling did not restore the wnt8 

phenotype. The case of myf5 and myoD the double morphants both have lost somite 

expression like that of the Din morphants, and the adaxial expression is still truncated 

like that of the Wnt8 morphants. We would have expected somite expression and longer 

adaxial expression if increasing Bmp would have restored some or all of the wnt8 

phenotype. When we examined tbx24 expression the double morphants’ expression 

looked very similar to both the individual morphants’ expression. If Bmp signaling could 

have restored tbx24 expression in a Wnt8 morphant, we would expect to see a larger area 

of expression in the double morphants.  

 We then examined pax2.1, cmlc2, and fli1, which mark anterior cell populations, 

and in the case of pax2.1, posterior cells as well. Interestingly, pax2.1 expression in the 

pronephros in Wnt8 morphants is completely absent.  In the double morphants, we saw 

very light pronephric expression. The only anterior cell population that still expressed 
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Pax2.1 was the MHB which had thinned and lengthened horizontally. Because of the 

light pronephric staining we believe that increasing Bmp signaling can slightly reverse 

the loss of pronephric cells due to a reduction in wnt8 signaling. We then looked at 

cmlc2 and fli1 markers for heart precursors and vasculature respectively.  

In both instances, the double morphants showed signs that the wnt8 phenotype is 

being reversed. In the single morphants, the heart tube is expressed as two bilateral lines 

instead of a nice round structure, in the most affected embryos; heart tube expression is 

completely absent. In the double morphants we saw two groups of embryos. The first 

group exhibited slight expression of cmlc2 in bilateral stripes, indicating that the increase 

in Bmp signaling can reverse the phenotype due to a loss of wnt8. Interestingly, in the 

second group, cmlc2 expression was discovered to be in scattered cells with no clear 

pattern. Whether this case represents embryos that did not get as much of the Din MO as 

the other ones, resulting in lesser amount of Bmp signaling so that a small amount of 

cells are being fated to become heart tube, is not clear and needs to be studied more.  

The last marker we examined was fli1. The MO4 injected embryos showed a loss 

of posterior and a disruption in anterior vasculature, while the Din morphants had 

relatively normal anterior expression, and expanded posterior expression. The double 

morphants showed a partial restoration of the anterior expression, and a gain of posterior 

expression. This leads us to believe that increasing Bmp signaling in the absence of wnt8 

can partially restore the wnt8 loss of function phenotype. 
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  CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

 It was the goal of this research to better characterize the wnt8 phenotype and to 

investigate if increasing Bmp signaling could restore the wnt8 phenotype to wild type. 

To accomplish these goals we first injected wild type embryos with a morpholino 

designed to knock down wnt8 signaling. We fixed embryos at various time points and 

examined several probes by whole mount in situ hybridization. Embryos deficient in 

wnt8 signaling lack the posterior region, because of this we first looked at various 

posterior markers, myf5, myoD, mesogenin, tbx24, follistatin, and gata1, to examine if 

expression was reduced or totally absent.  In all cases the markers were either severely 

reduced, or completely absent. It was apparent that wnt8 is essential for proper 

expression of paraxial mesoderm, presomitic mesoderm, and blood precursors. We next 

examined expression of pax2.1 which not only marks posterior pronephric mesoderm, 

but also structures derived from anterior mesoderm. In addition to pax2.1, we 

investigated expression of scl, which is a hematopoietic marker that has anterior and 

posterior expression.  

 Not surprisingly, we saw a decrease in the posterior expression of pax2.1, but 

surprisingly we saw a disruption in anterior expression as well.  The otic placode was 

either reduced or completely missing; the forebrain expression had expanded from a 

tight formation to an unorganized field, and the MHB had thinned and had formed a ring 

that circled what was left of the posterior end. We saw similar results in the scl in situs 



 

 
 
 

33

as well. The anterior portion of expression was disrupted, and the posterior expression 

was absent. The disruption in the anterior region of the wnt8 morphants prompted us to 

examine other anterior mesoderm markers to determine if other anterior cell populations 

were disrupted as well. We first examined the heart and vasculature makers, cmlc2, 

nkx2.5, and fli1.  We saw improper heart tube formation, and a disruption in vasculature 

formation, indicating that not only is wnt8 important for posterior mesoderm, it is also 

important for cardiac mesoderm. The last two anterior markers we examined were hgg1 

and follistatin. They mark anterior prechordal plate and at an early stage presumptive 

head mesoderm respectively. In data that was consistent with our previous results, we 

saw a disruption in these anterior mesoderm precursors, leading us to conclude that not 

only is wnt8 important for forming posterior mesoderm, it is important for proper 

pattering of anterior mesoderm as well. 

 It is possible that the reduction in posterior fates is due to the cells being fated 

properly but dying early, or the cells might be undergoing fewer rounds of cell division. 

To answer these questions, TUNEL and BrdU assays can be performed to detect dying 

and proliferating cells. If the cells were being fated to become anterior precursors, we 

would expect to see an increase in anterior fates, which we did not. The anterior results 

were interesting and need further investigation to understand what is happening to these 

cells. One way we propose to understand what happens to posterior cells and why there 

are anterior patterning problems is to perform a series of fate mapping experiments to 

learn what happens to posterior mesoderm cells in Wnt8 morphants. Exactly how wnt8 

controls posterior mesoderm development is still unknown. It is known that fgf8 and 



 

 
 
 

34

fgf24 play important roles in patterning the posterior mesoderm, embryos deficient in 

both genes look remarkably similar to wnt8 mutants (Draper et al, 2003).  It also should 

be noted that the Fgf pathway and the Wnt pathway share a downstream effector, 

GSK3β (Dailey et al, 2005). Finding the relationship between Wnt and Fgf signaling 

pathways will help in understanding how wnt8 can pattern both dorsoventral and 

anteroposterior patterning.  

 It is known that Bmp signaling plays a role in dorsoventral patterning (Stickney, 

2007), and mutants lacking in Bmp signaling show a reduction in posterior fates (Dick et 

al., 2000; Imai et al., 2001; Kishimoto et al., 1997; Nguyen et al., 1998; Schmid et al., 

2000; Shimizu et al., 2002; Stickney et al., 2007). We next asked the question can over 

expressing Bmp signaling compensate for the loss of Wnt signaling. To answer this 

question we injected wild type embryos with MOs designed against Wnt8 and Din to 

create single controls. We then injected both MOs into the same embryos, fixed at 

various time points, and performed in situ hybridizations using various markers to 

ascertain any changes in different mesodermal precursors. We first examined the double 

morphants at 24 hours after fertilization to examine morphology changes. We saw an 

array of phenotypes; however, the majority of embryos exhibited a cell mass on the 

bottom of the yolk.  After performing in situ hybridizations using markers for hgg1, 

eve1, gata1, and neurogenin1 we failed to type the cell mass. This data lead us to believe 

that the cell mass consists mainly of undifferentiated cells. 

 We next examined expression of the posterior markers: myf5, myoD, and tbx24. 

We did not see a rescue of the wnt8 phenotype in any of the double morphants. We then 
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examined expression of pax2.1 which has anterior and posterior expression. The 

posterior pronephric expression is completely lost in Wnt8 morphants, but not in Din 

morphants. Interestingly, we saw a partial rescue of pronephric precursors when we 

examined pax2.1 expression in the double morphants. There was a slight return of 

pronephric expression in the double morphants. This result was exciting because it 

indicated that increasing Bmp signaling in the absence of Wnt8 can slightly reverse the 

wnt8 phenotype.  

We then examined expression of cmlc2 and fli1 which are markers for the heart 

tube and vasculature respectively. In both the individual morphants we saw a complete 

loss of cmlc2 expression in the most severely affected embryos, while the normally 

round heart tube structure had failed to form normally, instead was in two bilateral 

stripes in the lesser affected embryos. The embryos injected with both MOs showed one 

of two phenotypes. In the first we saw light bilateral expression, indicating a slight 

restoration of heart tube precursors. In the second group, the cmlc2 expressing cells were 

scattered around the embryo. Lastly, we examined expression of fli1, a marker for 

vasculature precursors. Again, we witnessed partial restoration of the wnt8 phenotype in 

the double morphants. The anterior region which was disrupted in the Wnt8 morphants 

was relatively normal in the double injected embryos, and the posterior region, which 

had mostly disappeared in the Wnt8 morphants, had returned, but had the phenotype of a 

Din morphant.  

Taken together we believe this data supports the theory that in general Wnts are 

involved in maintaining mesodermal states, and Bmps are responsible for patterning the 
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mesoderm (Kimelman, 2006). It has been found that Bmp functions during late blastula 

stage and early gastrula stage to pattern more dorsal mesoderm, and it functions during 

later gastrula stages to pattern more ventral mesoderm (Pyati et al, 2005; Tucker et al, 

2008). Because it is thought Wnts maintain mesoderm and Bmps pattern mesoderm, this 

could be why we do not see a better rescue of mesodermal fates by increased Bmp 

signaling in Wnt8 morphants. If wnt8 is not there to maintain the mesoderm, Bmp 

cannot pattern mesoderm that is not there. While our research sheds some light on how 

wnt8 functions to regulate mesoderm precursors, there are still many more questions that 

need to be answered. Further research needs to be performed to fully understand how 

wnt8 regulates posterior mesoderm development. 
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