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ABSTRACT

Modeling Planar 3-Valence Meshes. (December 2007)

Ozgur Gonen, B.A., Istanbul Bilgi University

Co–Chairs of Advisory Committee: Dr. Ergun Akleman
Dr. Vinod Srinivasan

In architectural and sculptural practice, the eventual goal is constructing the

shapes that have been designed. Due to fabrication considerations, shapes with planar

faces are in demand for these practices.

In this thesis, a novel computational modeling approach to design constructible

shapes is introduced. This method guarantees that the resulting shapes are planar

meshes with 3-valence vertices, which can always be physically constructed using

planar or developable materials such as glass, sheet metal or plywood. The method

introduced is inspired by the traditional sculpture and is based on the idea of carving

a mesh by using slicing planes. The process of determining the slicing planes can

either be interactive or automated.

A framework is developed which allows user to sculpt shapes by using the in-

teractive and automated processes. The framework allows user to cut a source mesh

based on its edges, faces or vertices. The user can sculpt various kinds of developable

surfaces by cutting the parallel edges of the mesh. The user can also introduce in-

teresting conical patterns by cutting different vertex, edge, face combinations of the

mesh.
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CHAPTER I

INTRODUCTION AND MOTIVATION

In architecture and sculptural modeling, we eventually want to build the shapes

that we have designed. This leads us to consider fabrication issues that might be

challenging due to the physical limitation of fabrication material and the possible

restrictions of the fabrication process.

With the current improvements in rapid prototyping, most of the manifold polyg-

onal models can be printed in 3D. However this process is limited to a single fabrica-

tion material. It is also impossible to print models at larger scales.

The most common fabrication materials used in architectural free form design

such as glass, sheet metal or plywood are suitable for constructions at large scale.

Although these materials can be bent into curved panels, it is highly cost effective

to use them as planes. This essentially limits the models to be meshes with planar

faces.

A few approaches have been presented to address this limitation address this

limitation. One of them is the concept of conical meshes, which are quadrilateral

meshes with planar faces [1]. The use of planar faces makes it suitable for the design of

freeform glass structures. Cutler [2] developed an algorithm that remeshed a NURBS

or subdivision surface into planar panels by an iterative clustering method.

The methods above suggest a planar approximation to a given source mesh by

the designer. However, in this approach, the designer’s control on the final product is

mostly dominated by the remeshing algorithm. In this thesis, as opposed to develop-

ing an approximation algorithm for creating planar meshes, a computational method

The journal model is IEEE Transactions on Automatic Control.
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for designing shapes with planar faces is directly introduced. The designer is more

involved in the design process in this method.

The method in this thesis is inspired by traditional sculpture and is based on

the idea of removing chunks of mesh out of an initial mesh. The mesh is sculpted by

cutting slices off the mesh by a using a slicing plane. This method ensures that all

the new faces introduced are planar faces with valence-3 vertices.

The method in this thesis is implemented in TopMod software [3, 4]. The imple-

mentation presents an intuitive framework for the designer to sculpt planar meshes

with the provided artist tools. Using this framework it is very easy to come up with

interesting planar meshes.

An innovative feature of the method is the variety of patterns that can be intro-

duced in the design, which could not be obtained by a regular remeshing algorithm.

This gives the designer freedom to break the regular triangular or quadrilateral pat-

terns that are common in glass structures. Using this method, it is also possible to

model various D-forms, which are a recently invented type of developable sculptures.
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CHAPTER II

BACKGROUND

In this chapter, various types of planar meshes relevant to this research is mentioned.

Some remeshing methods to create planar meshes are also briefly explained.

A. Triangulation

The simplest method of converting an arbitrary mesh into a planar mesh is triangu-

lation. Any arbitrary surface can easily be represented by triangles. This method is

relatively easy and included in most of the modeling packages. The modern roof of

the British Museum in London is an example for a regular triangulation applied to

a curved surface (see Figure 1a). The surface of the roof is tiled with triangles with

vertices of valence 6.

(a) (b)

Fig. 1. (a) Example for a regular triangulation: British Museum, London [5]. (b)

Example for an irregular triangulation: Fiera Milano, Italy [6]

Irregular triangulation can be used to create more complex surfaces. Fierra

Milano by Jorg Schlaich demonstrates a striking usage of this approach as shown in
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Figure 1b where the building structure is defined by the flexibility of an irregular

pattern. The continuous ribs that carry the forces from the roof down to foundation

are formed by the carefully arranged edges of triangles.

B. PQ Meshes

The study of quad meshes with planar faces, called PQ meshes were first system-

atically addressed by R. Sauer [7], as summarized in his monograph on difference

geometry. PQ meshes are observed as a discrete counterpart of conjugate curve net-

works on surfaces.

(a) (b)

Fig. 2. Examples of glass constructions with planar quads: (a) Kyoto Terminal Sta-

tion, Japan [8]. (b) Chadstone Mall, Australia [9]

PQ meshes appear in the mathematics literature under the name of quadrilat-

eral meshes, which actually means that they are quad meshes with the additional

property that all the quads are planar [10]. They are also suitable for freeform archi-

tectural construction (see Figure 2). Gehry Partners [11] and Schlaich Bergermann

and Partners [12] argue that freeform glass structures with planar quadrilateral facets

are preferable over structures built from triangular facets or non-planar quads and



5

their work also shows a few simple ways to construct quad meshes with planar faces.

There have been other contributions to quadrilateral remeshing which do not try

to achieve planarity. Alliez [13] presented the computation of quad meshes based on

smoothed principal curvature lines. The faces of these meshes are not exactly planar,

however it is expected that the are at least approximately planar.

C. Developable Surfaces

Mathematically, a developable surface is a surface with zero Gaussian curvature [14].

It is a surface that can, by definition, be flattened onto a plane without distortion

(i.e. stretching, compressing, tearing). Oppositely, it can be made by transforming a

plane (i.e. folding, bending, rolling, cutting, and gluing).

All developable surfaces embedded in 3D space are ruled surfaces [14]. A ruled

surface is a surface that can be swept out by moving a line in space [15]. A developable

surface can be represented as an arrangement of n planar quads in a single row. The

surfaces that can be realized in 3D space are as follows:

• Cylindrical Surfaces When the ruling is done in parallel, the geometry is called

a cylinder. More generally, it is a generalized cylinder where the cross-section

is not necessarily a circle and can be any smooth curve.

• Conical Surfaces When the rulings pass through a single point in space, the

resulting geometry is a cone. The cross section can be any smooth curve.

• Tangent Surfaces When the rulings are tangent to a curve in space, the surface

type is a tangent surface.

Developable surfaces are useful since they can be made out of sheet metal or

paper by rolling a flat sheet of material without stretching it [16]. Most large-scale
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objects such as airplanes and ships are constructed using un-stretched sheet metal.

In ship or airplane design, the problems usually stem from engineering concerns and

in engineering design there has been a strong interest in developable surfaces. For

instance, modeling packages such as Rhino provide developable surface analysis [16,

17].

Although it is easy to physically construct developable surfaces using sheet metal

or paper, it is not that easy to provide computational models to represent developable

surfaces. Sun and Fiume developed a technique for constructing developable surfaces

[18], but their method is useful only to represent ribbons and is hard to use to represent

general developable surfaces. Chu and Sequin introduced developable Bézier patches

[19]. Haeberli recently introduced a method to represent a shape with piecewise

developable surfaces and implemented it in his Lamina Design Software [20]. The

current results seem to be limited but Haeberli’s approach has great potential for

developable surface design. Mitani and Suzuki introduced a method to approximate

any given shape using developable surfaces to create paper models [21]. Because of

the approximate nature of their models, there exist gaps between individual pieces

and therefore, their method is not suitable for engineering application.

Developable surfaces are frequently used by contemporary architects to design

new forms. However, the design and construction of large-scale shapes with devel-

opable surfaces requires extensive architectural and civil engineering expertise. Only

a few architectural firms such as Gehry Associates have been able to take advantage

of the current graphics and modeling technology to construct such revolutionary new

forms [11].
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1. D-Forms

D-forms are recently introduced sculptures invented by the London based designer

Tony Wills [22] and first introduced by John Sharp to the art and math community

[23]. D-forms are created by joining the edges of a pair of sheet metal or paper with

equal perimeters [23, 22] (see Figure 3).

(a) (b) (c)

Fig. 3. (a) D-forms examples created by Tony Wills [22]. (b) A wireframe of a D-form.

(c) A circle and a rippled shape with equal perimeters to create the D-form in

(b).

D-forms can be approximated using thin planar quadrilaterals with valence-3

vertices. The research community has also been exploring D-forms. For instance,

Pottman and Wallner introduced two open questions involving D-forms [24, 25].

Sharp introduced anti-D-forms that are created by joining the holes [26]. Ron Evans

invented another related developable form called Plexagons [27]. Paul Bourke has

recently constructed computer generated D-forms and plexagons [28, 27].

The method introduced in this thesis provides an alternative computational ap-

proach to physical D-form construction where the D-forms can be modeled directly

and the construction is not limited to two pieces.
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(a) (b)

Fig. 4. (a) Offsetting a conical mesh results in the same connectivity. (b) A possible

glass structure which is a conical mesh

D. Conical Meshes

A planar mesh is said to have conical property if all vertices in have the property that

offsetting all the face planes incident with the vertex by a constant distance leads to

planes which intersect again in a common point [1]. This is equivalent to the property

that the planes, consistently oriented via the connectivity of the mesh, are tangent

to an oriented cone of revolution.

The most common planar meshes in computer graphics, triangular and quadri-

lateral meshes, do not guarantee conical property. Wallner [1] introduced a method

for approximating smooth surfaces with valence 4 planar quadrilateral meshes that

satisfy conical property (see Figure 4).

The method in this thesis introduces planar faces with valence three vertices.

Since these vertices satisfy the conical property [29], the shapes designed using this

method can be easily constructed at larger scales.
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CHAPTER III

SCULPTING WITH PLANES

Planar mesh modeling has been an interesting research area in geometric modeling

due to the increasing demand in architectural freeform design. Much of the research

in this area focuses on developing algorithms for planar approximation of a given

curved surface as in [1] and [2]. In this thesis, I introduce a different approach by

allowing the designer to model the planar mesh directly. This method, unlike the

previous methods, gives direct control to the designer on the final product.

In this method, the designer is expected to work like a sculptor. The term

“sculptor” here is a critical word which guides us to observe the methodology of

traditional sculpting. A traditional sculptor creates his work of art by carving a

source mass such as stone or marble. This approach is expressed in Michelangelo’s

famous quote as “I saw the angel in the marble and carved until I set him free”[30].

The same idea can be applied when modeling developable surfaces if the required

tools are provided to the designer in the modeling environment. This crucial point is

the foundation for the methodology of this research. Based on this,an algorithm that

cuts a source mesh by a plane has been developed.

A. Cutting Algorithm

The cutting algorithm is the fundamental algorithm of this work. It is based on

the idea of chopping a mesh by a given plane, called “slicing plane” in this context.

The slicing plane is defined by a location and a normal vector in world space. The

algorithm traverses all the edges of the mesh and tests if the edge is intersected with

the slicing plane. The portion of the mesh that remains in the normal side of the

plane is deleted.
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A slicing plane, determined by a point P0 and a normal n0, divides the 3D space

into negative and positive regions by the function f(Pi) = n0 · (Pi − P0) where Pi is

any given point in the 3D space. To test the intersection status of an edge, the value

of the function f(Pi) needs to be computed for the position Pi of every vertex vi. The

value of f(Pi) is greater than zero if Pi is on the normal side and less than zero if Pi

is in the reverse side of the plane. The decision for intersection status of an edge is

done by checking f(Pi) and f(Pj) where Pi and Pj are the positions of the two end

vertices of the edge. There are three possible cases for an edge in this situation:

• f(Pi) > 0 and f(Pj) > 0; both vertices are in the normal side of the plane and

the edge needs to be deleted.

• f(Pi) ≤ 0 and f(Pj) ≤ 0; both vertices are in the reverse side of the plane. In

this case, the edge is skipped.

• ( f(Pi) ≤ 0 and f(Pj) > 0 ) or ( f(Pi) > 0 and f(Pj) ≤ 0 ); the vertices

lie on the opposite sides of the plane and consecutively the edge is intersected

by the plane. In this situation the edge is subdivided into two sub-edges. The

new vertex from subdivision is moved along the unit vector uij = (Pj − Pi)/ ‖

(Pj −Pi) ‖ by amount t to the point Pi + uijt where t is computed as n0 · (P0−

Pi)/(n0 · uij). This operation moves the new vertex to the slicing plane. The

sub-edge which remains in the normal side of the plane is marked for deletion.

When the traversing is completed, the new vertices are connected by edge inser-

tions and the edges that are marked as deleted are deleted. This cutting algorithm

cuts the mesh globally since it traverses all the edges as illustrated in Figure 5.

To localize the cutting operation, I have developed an algorithm which starts the

traversal from an initial vertex node and traverses the mesh recursively by visiting
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(a) (b)

Fig. 5. (a) The default cutting algorithm traverses all the edges and marks all edges

above the slicing plane for deletion.

(b) The result is a global cut operation.

each of the neighboring vertices of the current vertex in each iteration. The result

becomes a localized cut as seen in Figure 6. Whenever the edge between a neighboring

vertex and current vertex intersects with the slicing plane, the edge is subdivided and

the traversing is stopped for that node.

B. Determining the Slicing Plane

There exist only two parameters to determine a slicing plane in the 3D space; the

point P0 and the normal n0 . In this thesis, these two parameters are computed based

on the elements of the polygonal mesh such as edges, faces or vertices as described

bellow.

1. Edge Based Cutting

When the slicing plane is determined relative to an edge of the mesh, the cutting

algorithm operates like a planar edge truncation. The normal of the slicing plane is a
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(a) (b)

Fig. 6. (a) Local cutting starts traversing the mesh from a given element and continues

until the slicing plane is hit.

(b) The result is a local operation that does not touch the rest of the mesh

weighted average of the normals of the adjacent faces to the selected edge es as shown

in Figure 7. The position p0 of the slicing plane is computed as

n∑
i=0

(vit + v′
i(1− t))/n (3.1)

where vi and v′
i are the two vertices of each neighboring edge ei to the edge es.

In the equation, the vertex vi is the shared vertex between the edges e and ei. The

variable t is an offset value between 0 and 1.

2. Vertex Based Cutting

Determining the slicing plane relative to a vertex is very similar to determining it

relative to an edge. The approach is similar to the planar vertex truncation. The

location point p0 is computed the same way as the average of all edge points as illus-

trated in Figure 8. The vertex normal, which is an arithmetical mean of neighboring

face normals, is used as the normal of the slicing plane.
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(a) (b)

Fig. 7. Planar edge truncation:(a) The position and the normal of the slicing plane is

computed based on the selected edge. (b) The selected edge is truncated by

the computed slicing plan.

When planar vertex truncation is applied to a vertex, the vertex is truncated to

a face which is guaranteed to be planar and will have valence-3 vertices. Therefore

this operation is really handy for getting rid of the vertices with valences higher than

three in the mesh. It is generally used in combination with planar edge truncation.

3. Face Based Cutting

The existing face normal is used as a normal of the slicing plane. The position p0 is

again computed the same way as in the other operations as the average of all edge

points. Planar face truncation applied to a face guarantees a planar face with valence

three vertices around the face as seen in Figure 9.

This operation can be used for getting rid of non-planar faces. It also cleans up

vertices with valences higher than three.
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(a) (b)

Fig. 8. Planar vertex truncation: (a) The position and the normal of the slicing plane

is determined relative to the selected vertex. (b) The result is a planar vertex

truncation.

(a) (b)

Fig. 9. Planar face truncation: (a) The position and the normal of the slicing plane

is determined relative to the selected face. (b) The result is a planar face

truncation.
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CHAPTER IV

METHODOLOGY

The fundamental idea behind the method introduced in this thesis is cutting a source

mesh by a slicing plane. Determining the slicing plane becomes the main issue in this

methodology. This is analogous to how a sculptor uses his hammer.

Determining the slicing plane is the process of assigning the desired values to

the two parameters of the plane point P0 and normal n0. Technically, the user can

be given free control to adjust these parameters by using interface elements such as

sliders or rotation/translation handles. However, custom translation and rotation of

the slicing plane may not be comfortable for the end user.

Alternatively, the method introduced in this work determines the slicing plane

based on the elements of the mesh such as edges, vertices or faces. This is easily

turned into an intuitive interactive process where the user can select the elements of

the source mesh. In this approach, first the user is expected to select elements of the

mesh such as edges, vertices or faces. Then the slicing planes are computed based

on the selected elements. Finally, the cutting operation is performed by using the

computed slicing planes.

The process of determining the slicing planes is not restricted to user interaction

and can be automated by an algorithm as well.

A. Modeling Developable Surfaces

The interactive process provides a framework for users to design various developable

shapes. The interactive use of planar edge truncation plays an important role in

carving a developable surface. When the edges in a particular direction are contin-

uously truncated a planar approximation to a smooth developable surface can be
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obtained. Figure 10 shows how an edge of a cube is smoothed out by truncating it

in 3 consecutive iterations.

Fig. 10. The edge of a cube is smoothed out by truncating parallel edges.

B. Creating Patterns

Distinctive patterns can be created by selecting a series of edge and vertex combi-

nations from the source mesh by using the interactive process. The best aesthetic

patterns are achieved when the elements are selected by following a rule or symmetry

in the consecutive iterations. Figure 11 shows an interesting pattern created by using

the interactive process as mentioned above.

Fig. 11. A pattern created interactively by user
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Applying the same type of truncation to all elements of the mesh is another way

of creating patterns. Pattern variety can be increased by following different sequences

of truncations. The mesh in Figure 12a is generated by applying a honeycomb subdi-

(a) (b) (c)

Fig. 12. (a) A honeycomb subdivision and planar face truncation applied to a soccer

ball. (b) Planar vertex truncation applied to the shape successively. (c) Planar

edge truncation is applied to the shape

vision [31] to a soccer-ball mesh. Planar face truncation is applied to the subdivided

mesh to ensure planarity all over the mesh. When planar vertex truncation is applied

to this shape, the resulting pattern is as demonstrated in Figure 12b. The pattern in

Figure 12c is obtained by applying planar face truncation to the shape in Figure 12b.

Other interesting results created by using the same approach are shown in Figure 13.

Fig. 13. Other interesting results achieved by using the same approach on the shape

in Figure 12a
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1. Dual Convex-Hull by Automated Process

Selecting the slicing planes relative to the elements of the mesh is an intuitive and

interactive process. However, the selection process may not be restricted to the

element based selection methods. The process can be automated as well.

Dual Convex-Hull algorithm is an example of an automated determination of

slicing planes. The algorithm generates a planar dual for regular convex-hull of any

given point cloud. Since it is a dual shape, triangular faces of a regular convex-hull

become 3-valence vertices.

The algorithm takes a set of 3D points as an input. These points can be randomly

distributed or be the vertices of a given mesh, thus generating a convex-hull from the

points. Afterwards, a cube is generated as the initial mesh, whose faces are in contact

with the boundaries of the convex-hull. Next, for all the vertices of the convex-hull,

a slicing plane is determined by using the location and normal of each convex-hull

vertex. Finally, the initial cube is cut by the computed slicing planes. The process is

illustrated in Figure 14.

Dual convex-hull, as the name suggests, always gives a convex result. To create

concave shapes, the concave input shape can be subdivided into convex regions and

then processed by the algorithm. This subdivision can be both uniform or adaptive.

Figure 15 shows the dual convex-hulls of a model. The uniform subdivision is done by

a uniform clustering of the input points along one particular axis. For the adaptive

subdivision example, I separated the mesh to convex regions manually.
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(a) (b) (c)

(d) (e) (f)

Fig. 14. Step by step dual convex-hull algorithm. (a) Initial mesh. (b) Convex-hull

of the initial mesh. (c) Bounding box. (d) Cutting for the first vertex. (e)

Cutting for the 20th cutting vertex. (f) Final mesh.

(a) (b) (c)

Fig. 15. Dual convex-hull results with subdivison: (a) Input mesh. (b) Dual con-

vex-hull with uniform uniform clustering along y axis. (c) dual convex-hull

with manual subdivision.
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CHAPTER V

IMPLEMENTATION AND RESULTS

I have implemented the planar truncation operation in the topological mesh modeling

software, TopMod [3, 4]. I provide three different tools: Cut by Edge, Cut by Vertex,

and Cut by Face. Users can adjust the default parameters of the slicing planes.

Figure 16 shows a screenshot from the TopMod software.

Fig. 16. A screenshot from the implementation of the method in TopMod

The slider controlled “offset” value adjusts the offset amount used in the edge

point computations. Therefore it determines how deep the slicing plane is positioned

from the selected element.
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The “Bent” control enables the user to tilt the slicing plane in by changing

weights of the normals of the faces adjacent to the edge.

In the interactive process, the user is expected to mark elements of the initial

mesh such as edges, vertices or faces. The marking mode can be switched from

the dropdown menu. When the user presses the “perform cutting” button, all the

slicing planes are computed based on the marked elements and the respective cutting

function (global/local) is called for each slicing plane computed. The cutting function

can be optionally chosen from the interface.

The framework enables the user to sculpt developable surfaces in various shapes.

The best results are achieved when the truncation tools are used in consecutive it-

erations. The results of this work can be classified in two main categories: (A)

Developable Surfaces (B) Patterns.

A. Developable Surfaces and D-Forms

The basic interactive process enables the user to create various developable shapes.

Interactive use of planar edge truncation plays an important role in carving a devel-

opable surface.

Unusual variations can be introduced to the developable surface by truncation

of edges consecutively in different orientations. Figure 17 shows some interesting

surfaces created with this technique.

The framework also provides an alternative computational method to physical

D-form [22] construction. Despite its power to construct unusual shapes easily, there

are two problems with physical D-form construction. First, the physical construction

is limited to only two pieces. It is hard to figure out the perimeter relationships if

we try to use more than two pieces. The second problem with D-form construction
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Fig. 17. Some examples of developable surfaces with variations

is that the final shape is not known until it is physically constructed

Using the basic interactive process, it is possible to directly model D-forms which

are not limited to two pieces. Another advantage of the method is that since the user

actually sculpts the D-forms, the final shape can be visualized in each step before the

physical construction.

D-forms designed with this framework can be unfolded using Pepakura, a com-

mercially available polygonal unfolding software [32]. Once unfolded, the pieces can

be cut using a laser cutter and glued together to create physical D-forms. Using this

method, D-forms that were not known before were created.

Figures 18 and 19 show D-forms sculpted out of a dodecahedron by using our

planar truncation operation. The three piece case in Figure 18 is particularly inter-

esting since the long piece touches itself. This suggests that it may be possible to

construct a D-form using only one piece, although we have not been able to find one.

The D-form in Figure 20 is also interesting in the sense that both unfolded pieces

have a Y shape. Figure 21 shows some other unusual D-form examples that consist

of more than two pieces.
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Fig. 18. A dodecahedron constructed from 3 pieces. This D-form is particularly inter-

esting since the middle piece turns and touches itself.

Fig. 19. Three views of a D-form constructed using our method starting from a do-

decahedron. This shape is designed using our software by Ergun Akleman.

This D-form consists of two pieces. The computer designed and unfolded ver-

sions of this D-form are shown in Figure 18. Jonathan Penney combined the

unfolded pieces to create final physical D-forms.
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Fig. 20. Unfolding a D-form in Pepakura. This D-form is obtained from an octahedron.

Note the Y shape of unfolded pieces.

Fig. 21. Some unusual D-forms that consist of more than two pieces.
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B. Patterns

Distinctive patterns can be created by selecting a series of edge and vertex combi-

nations from a source mesh. Applying the same type of truncation to all elements

of the mesh is another way of creating patterns. Pattern variety can be increased

by following different sequences of truncations. Tweaking the parameters like offset

value and normal bent will also introduce variations in the results.

(a) (b) (c)

(d) (e) (f)

Fig. 22. Step by step creation of a pattern: (a-c) Two iterations of Doo-Sabin sub-

divisions are applied to a cube. (d) Planar face truncation is applied with

0.75 offset value to all faces . (e-f) Planar vertex truncation is applied for 2

iterations with 0.75 offset value.

In Figure 22, starting from a cube, the creation of a pattern using this method

is illustrated step by step. Two iterations of Doo-Sabin subdivisions [33] are applied

to the cube create an initial mesh. Then planar face truncation is applied to all faces
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with a 0.75 offset value of edge points. Finally two consecutive iterations of planar

vertex truncation is applied to all vertices of the mesh with a 0.75 offset value to

create the final pattern.

(a) (b) (c)

Fig. 23. Other patterns based on the initial mesh in Figure 22e

Figure 23 demonstrates the variety of patterns that can be achieved by applying

different sequences of cutting operations to the same initial mesh. The pattern in

Figure 23a is created by applying planar edge truncation to all edges of the mesh

in Figure 22e with 0.75 offset value. Applying planar face truncation to all faces of

this pattern gives the result in Figure 23b. The pattern in Figure 23c is created by

applying two consecutive planar vertex truncations with offset value of 0.75 to all

vertices of the shape in Figure 22e as well.

In Figure 24 another initial mesh is prepared by using a honeycomb subdivision

scheme [31]. The pattern in Figure 24a is obtained when planar edge and vertex

truncations are sequentially applied to a cube that is subdivided using the honeycomb

scheme. When planar vertex truncation with offset of 0.5 and planar edge truncation

with offset of 0.25 is applied to this shape, the pattern in Figure 24b is obtained.

For creating the pattern in Figure 24c, a planar edge truncation with offset of 0.25

and honeycomb subdivision are applied to a cube. Then, planar vertex and edge
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(a) (b) (c)

Fig. 24. Some patterns which are based on an initial mesh subdivided by honeycomb

subdivision.

truncations with offset of 0.5 are successively applied to the shape.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

The new concept of conical meshes are particularly suitable for the design of freeform

glass structures. In this thesis, I have presented a computational method for modeling

conical meshes directly. The method mostly introduces valence three vertices with

planar faces all over the mesh which are proven to be always conical [29]. Moreover

valence three vertices are advantageous since they ensure a stable structural analysis

that matches the forces in the constructed frame.

The outcomes of this method can be classified in two main directions: when

the user marks parallel edges of the mesh in each iteration, the method provides

an alternative to physical D-form construction. The computer generated D-forms

can be unfolded using commercially available software and cut using a laser cutter.

Physical D-forms can be obtained by putting the unfolded metal or paper pieces

together. Using this method it is possible to create complicated D-forms that cannot

be constructed without a computer. One of the major advantages of our D-forms is

that they are created as conical meshes and can therefore be constructed at larger

scales even from thick and planar materials like glass or sheet metal.

The user can also introduce interesting conical patterns all over the mesh by

selecting the elements in a regular pattern. These aesthetically pleasing patterns can

show varieties in shape but can still be perceived as belonging to the same family due

to their distinctive look and feel.

A. Future Work

Currently this method works only for convex shapes. The ways of generalizing this

method to non-convex shapes and shapes with saddle points can be explored.
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The results of the method are heavily dependent on how the slicing plane is

determined. An interactive process that uses the elements of the mesh to determine

the slicing plane is introduced. The Dual Convex-Hull algorithm is given as an ex-

ample for an automated process. Yet, other ways of determining a slicing plane can

be explored. More interesting results can be achieved with different slicing plane

determination algorithms.
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