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ABSTRACT 
 

Foolproof Completions for High Rate Production Wells. (December 2007) 

Slavko Tosic, B.S., University of Belgrade 

Chair of Advisory Committee: Dr. Christine A. Ehlig-Economides 

 

Operators, especially those managing production from deepwater reservoirs, are striving to produce 

hydrocarbons at higher and higher rates without exposing the wells to completion failure risk. To avoid 

screen failures, recent studies have favored gravel pack (GP) and high rate water pack (HRWP) 

completions over high-permeability fracturing (HPF), known in the vernacular as a frac&pack (FP) for 

very high rate wells. While a properly designed GP completion may prevent sand production, it does not 

stop formation fines migration, and, over time, fines accumulation in the GP will lead to increasing 

completion skin. Although, and not always, the skin can be removed by acidizing, it is not practical to 

perform repeated acid treatments on deepwater wells, particularly those with subsea wellheads, and the 

alternative has been to subject the completion to increasingly high drawdown, accepting a high skin effect. 

A far better solution is to use a HPF completion. Of course the execution of a successful HPF is not a 

trivial exercise, and frequently, there is a steep learning curve for such a practice. 

 

This work explains the importance to HPF completions of the well trajectory through the interval to be 

hydraulically fractured, for production, not execution, reasons.  A new model quantifies the effect of the 

well inclination on the connectivity between the fracture and the well via perforations. Guidelines based 

on the maximum target production rate, including forecasts of multiphase flow, are provided to size the 

HPF completion to avoid common completion failures that may result from high fluid rate and/or fines 

movement. Skin model will be developed for both vertical and deviated wells. Once the HPF is properly 

designed and executed, the operators should end up with a long term low skin good completion quality 

well. The well will be safely produced at the maximum flow rates, with no need for well surveillance and 

monitoring. 
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CHAPTER I 
 

INTRODUCTION  
 

1.1 Research Problem 

 

In the last decade the need for downhole completion stability has became paramount. It is not uncommon 

for a new deepwater completion to produce over 30,000 STBOPD or more than 100 MMSCFD from 

reservoirs less than 100 ft thick. Typically high rate wells have high permeability and the formations 

usually require sand control to avoid production of formation fines. Sand control is achieved either by GP 

or FP, and today HRWP is a frequently used GP technology that ensures successful placement of the 

gravel in perforation tunnels and the entire annulus between the GP screen and the well casing. Many GP 

and FP wells have been lost, reportedly due to destabilization of the annular pack,1 erosion or collapse 

of the gravel pack screen2, and/or formation compaction.3 

 

The current emphasis in the literature is on controlling the well flow rate to avoid exceeding estimated 

velocity or drawdown limits. This is a form of sand management when what is really needed is reliable 

sand exclusion at target production rates. In general, deepwater reservoirs are capable of delivering high 

rates with very little drawdown when the completion skin is less than or equal to zero, and the estimated 

velocity or drawdown limits are highly dependent on the completion design and execution. The problem is 

how to design a fool proof completion that can sustain target rates without failing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

_________________________ 

This thesis follows the style and format of the SPE Journal.  
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1.2 Research Objectives  

 

Instead of focusing on determining the maximum rate at which a well can flow based on the velocity limit 

calculation and well monitoring, a reactive approach that yields undesirable choices, the objective of this 

work is to show how to design a high permeability fracture well completion that will ensure safe well 

operation for the target design flow rate, and will not require considerable reservoir surveillance, if any. 

Based on the reservoir, fluid, rock properties, and the reservoir geology, the indicated completion design 

will ensure that the well is safely produced at the target flow rates.  In this work special attention will be 

paid to the angle between the well trajectory and the far field HPF plane orientation dictated by regional 

stresses, and hence the connectivity of the fracture to the wellbore.  
 

1.3 Previous Work 

 

The industry has been focused more on clarification and solution of existing problems and their possible 

causes, than on the root of the problem and its avoidance.  Nearly all work related to this topic in the 

literature was about the drawdown and downhole velocity guidelines for high rate well producers. 

 

The fracture will initiate in the plane of the wellbore in response to drilling induced near wellbore stresses. 

Then the fracture will turn in the span of a few wellbore radii to align normally to the minimum stress 

direction.3 In this work the term fracture plane refers to the main fracture plane that is aligned with far 

field or regional stresses.  

 

Veeken et al.5 emphasized the importance of close alignment between the wellbore axis and the far field 

fracture plane. Unless the well is deliberately drilled to align with the fracture plane, their experiments 

showed that the well would have limited entry effects and reduced productivity due to poor 

communication between the wellbore and the hydraulic fracture. They stated that communication between 

the fracture and wellbore is determined by the orientation of wellbore and perforations with respect to the 

in-situ stresses. There is also a possibility of forming of multiple fractures. Furthermore, they did a 

combined theoretical and experimental study to investigate key parameters for well-to-fracture 

connectivity. Their findings were compelling and highly relevant to this work even though their study 

emphasized aspects of the hydraulic fracturing execution, while this study is focused on production 

implications.  

 

A key conclusion in the work by Veeken et al.5  was a recommendation that the wellbore trajectory be 

drilled to align normal to minimum horizontal stress, either by drilling vertically through the productive 
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interval or by turning the inclined well to this alignment. Since then many operators and service providers 

have rejected this advice for various reasons. Cleary, et al.6 have recommended pumping strategies that 

tend to avoid multiple fractures. Also, many of the operators simply overlooked well trajectory importance 

altogether.  

 

Furgier et al.7 boast that they were able to place the fracture planes in highly deviated wells, as though that 

were the sole objective, but they also report skins that are consistently well above zero. Furthermore, 

Furgier et al.7 concluded that FP completions are common practice in 65° deviated wells and good 

completion efficiency is achieved (mechanical skin less than 5). This paper is focused only on hydraulic 

fracture execution and does not indicate the production rates at which the wells have been flowed, or 

whether the wells must be monitored to avoid completion failures.  

 

Behrmann et al.8 concluded that fractures initially unaligned with the far field stress become aligned within 

one wellbore diameter. They also stated that in order for fractures to initiate at a perforation and then to 

extend, the perforation must be oriented at a small angle to the plane normal to the minimum far field 

stress. Based on the testing that they performed this angle should be less than 10°.  

 

Abass et al.9 listed possible causes of formation sand failure. They categorized sand formations that 

potentially exhibit sand failure and sand production. They concluded that a short conductive fracture 

alleviates formation sand failure and sand production. In most cases the formation sand failure is caused 

by poor completion (e.g. excessive drawdown, high flow velocity). Although formation sand failure is not 

by itself a completion failure, it greatly impacts the completion stability. Destabilization of the near 

wellbore region results in fines movement leading to gravel pack plugging, skin increase, and well 

productivity loss.  

 

By estimating an average skin for various completion strategies, Welling10 recommended the best 

completion practices based on the reservoir permeability. Claiming that only a few perforations per foot 

may have to carry all of the flow from the fracture in the FP case, or from the reservoir in the GP case, 

Welling10 concluded that the HRWP and open hole gravel pack (OHGP) completions are preferred if the 

reservoir permeability is above 900 md for oil or 600 md for natural gas. This decision was based on 

calculation of an average normalized pressure drop of 257 psi for HRWP wells compared to 322 psi for 

the FP oil wells. Fig. 1.1 (from Welling10) shows the typical fracture-to-well connection.  Welling10 stated 

that the field matches showed that in general 0.7 to 2.3 shot per foot (SPF) are in connection with the 

fracture. Fig. 1.2 (from Welling10) shows the HRWP with radial flow to all perforations providing on 

average 5 SPF.   
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Figure 1.1 Schematic of typical fracture-to-well connection, 30 degree perforation phasing, 12 rows of 

holes, fracture half length=40ft, fracture width=0.2 ft, and shot patter for 7” casing, 12 SPF, 30 ° phasing 

(from Welling10) 

 

 

 

 
Figure 1.2 HRWP model, radial flow to all perforations (from Welling10) 
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The following table summaries Welling10 completion selection for oil and gas wells, based on the reservoir 

permeability, k, and the gas rate, Q, for gas wells. 

 

 

Table 1.1 Optimum completion ranges for varying reservoir permeabilities and flow rates 

 FP OHGP HRWP 

Oil Wells k<900 md k>900 md  

Gas Wells 

(Q <200 MSCFD) 

k<300 md  k>300 md 

Gas Wells 

(Q >200 MSCFD) 

k<200 md  k>200 md 

Gas Wells 

(Q >500 MSCFD) 

k<150 md k>600 md k>150 md 

 

 

 

Tiffin et al.3 moved from the “old school” drawdown guidelines to downhole velocity limits across the 

annulus packed area, and the screen. The Tiffin et al.3 work focused on case studies of failed completions 

and what remedial or surveillance action should have been taken. This paper detailed a method for 

determining maximum safe production rates for sand control wells. The method was developed from a 

thorough compilation of data from over 200 sand control wells. The authors offered a simple method to 

optimize and safely operate sand control wells (cased-hole FP and cased-hole GP completions) based on a 

function of flux through the screen. The flux definition in this case, and in this work, is defined as a 

volumetric rate per unit area of screen.  Furthermore, the authors3  stated that too high a rate results in an 

unacceptable well failure rate and too low a rate results in lost production.  

 

Fig. 1.3 (from Tiffin et al.3) is a valuable input for this work.  It shows a database of 160 wells. The 

selected wells were pre screened and only the wells with good completion quality were selected. From this 

figure it can be seen that drawdown does not correlate with the well failure. Some wells had a drawdown 

of 2,500 psi and did not fail, while the other failed with a drawdown of only 250 psi.  
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Figure 1.3 Drawdown data and well failure from 200 wells database (from Tiffin et al.3) 

 

 

Tiffin et al.3 concluded that drawdown applied in this way does not help predict safe operating conditions; 

nor can it be used to optimize production rates. Their analysis of screen failures indicated that screen 

erosion was by far the most common completion failure mechanism even with a good completion quality. 

Screen erosion is caused by fluid flow through the screen and is aggravated by even a small amount of fine 

sand particles. 

 

Drawdown limits were changed from 750 psi to the maximum calculated flux at the screen base-pipe and 

then corrected using skin calculations to estimate partial penetration and percent wellbore area flowing. By 

applying these new flux-based limits they were able to successfully increase production without 

completion failures in a number of wells.  

 

The following equation (from Tiffin et al.3) shows a C factor (erosion factor) where mixture density, ρm, is 

in pounds/cubic foot and perforation velocity, Vpmax, is in ft/sec; 

maxpm VC ρ=                                                                                                                                       (1.1) 
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Mixture density is obtained by weighting each phase density by its volume percent of flow. The resulting 

C factor is basically the square root of the kinetic energy of the fluids that carry sand into the screen.  

 

Tiffin et al.3 indicated that downhole fluid flow rates are relatively easy to determine from the surface 

rates, but that many assumptions are required to calculate the actual area of the screen taking most of the 

fluid flow. They therefore concluded that it is not realistically possible to analytically calculate flux 

through a downhole screen, and advocated instead use of a sand detector to warn of any sand production 

and a downhole pressure gauge and well test analysis to monitor the flux directly.  

 

Wong et al.1 presented their work at the same time as Tiffin et al.3.  Their work is based on the same 

approach as Tiffin et al.3, but they provided more elaboration on the flux calculation method. The 

proposed well surveillance method was fully developed for cased-hole GP and FP completions assuming 

the gravel-filled perforations dominate flow within the completion. Their well surveillance method 

monitors downhole flowing velocity and completion pressure drop to operate the well without introducing 

unnecessary completion impairment and sand control risks. Fig. 1.4 (from Wong et al.1) shows the 

completion components of cased-hole-gravel packs and depicts the production flow path through the 

system.  

 

 

 
Figure 1.4 Completion components and flow schematics for cased-hole gravel packs (from Wong et al.1) 
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Fig. 1.4 illustrates the highest flowing velocity is through the perforations where the flow converges. The 

average flowing velocity exiting the perforation at the casing inside diameter (ID) is labeled as Vc, and the 

flowing velocity on the screen surface directly across the perforation is labeled as Vs. Wong et al.1 stated 

that the destabilization of the annular pack is an instability failure that occurs when the perforation 

velocity at the casing ID (Vc) is high enough to “fluidize” the granular pack in the annular region around 

the perforations. They recommended a conservative maximum velocity limit of 10 ft/sec to avoid 

destabilization of the annular pack, and 1 ft/sec for a maximum velocity to avoid screen erosion. Although 

the Wong et al.1 study was about GP and FP completions only, in this work the approach for computing Vc 

can be considered for HPF as well. Wong et al.1  then calculated downhole flowing velocity with a realistic 

completion model that describes the flow in the dominant failure mode. However, these computations are 

not straightforward tasks, numerous assumptions are needed, the result and outcome are almost always 

subjective, and they depend on the empirical data. It is though true that the industry does not have many 

choices. For the existing wells they can either use a flux surveillance method based on the velocities over 

different areas, or they can apply “old school” drawdown practices. The flux surveillance method is useful 

to predict whether and where fines will be moving. It is useful also for estimating the theoretical skin.  

 

Keck et al.11 mentioned that they measured mechanical skin from build-ups in Na Kika wells in deepwater 

Gulf of Mexico (GOM), but here the meaning of mechanical skin is the total skin determined from 

pressure transient analysis (PTA), not a component of the total skin. While well “productivity quality” 

could be measured by skin, the well completion quality requires more (especially completion hardware). 

For these wells, a low skin factor did not always guarantee a good completion, and vice versa. Keck et 

al.11 mentioned that the well deviation for Na Kika wells had no correlation with skin. Moreover, they 

mentioned that the well failure generally could not be correlated with the skin. 

 

1.4 Summary 
 

The eight studies mentioned in this introduction all focus on modern sand exclusion completion practices, 

but each ends with suboptimal recommendations. Welling10 looked only at inclined wells and concluded 

that because OHGP completions will have the most perforations taking the flow from the reservoir to the 

wellbore this should be the completion choice for highest rate wells. Tiffin et al.3  developed a flux criteria 

for determining the safe well production rate based on the flow velocity through perforation tunnels. Wong 

et al.1 spelled out the way to compute the flow velocity needed for the flux criteria. None of these studies 

addresses a way to design a completion that avoids the need to monitor flux. This work will show that a 

properly designed HPF is the best choice for high rate wells, and that it will maintain target rates through 

the life of the well.    
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CHAPTER II 
 

COMPARISON BETWEEN IDEAL GRAVEL PACK AND HIGH 

PERMEABILITY FRACTURE COMPLETIONS 

 

2.1 Preliminary Discussion 

 

As the deepwater operations evolve, operators are trying to produce wells at maximum rates and achieve 

payback in a minimum time. Many wells are still GP completed, and this is concerning as several authors 

already demonstrated that GP is not an optimum choice by far. Dusterhoff et al.12 mentioned that the GP 

wells inherently create the damage situation and thus lower the potential production in most instances.  

Tiner et al.13 noted that one of the major production companies has estimated that over 50 % of their 

production capability is lost through GP completions.   

 

The flow geometries for GP and HPF wells are different and will cause different drawdown and different 

flow velocity for the same flow rate. Also, the resulting skin in HPF wells should be negative while a GP 

completion will always have positive skin. All of the above mentioned points will greatly impact the well 

productivity index and overall well performance and completion stability. Clearly the lower skin will give 

better well performance. Lower velocity at the annulus pack and the screen will have lower risks for well 

failure. This chapter explains the fundamentals of different completion types and shows the skin and 

velocity calculation for an ideal GP and HPF wells. The possible completion failure mechanisms will also 

be addressed.  

 

2.2 Gravel Pack and High Rate Water Pack Completions 

 

The execution of a GP should be a straightforward process. In cased-hole well completions, gravel is 

placed in the perforations and in the annular area between the screen and the casing. In OHGP completions 

the gravel is placed between the screen and the open borehole. From the production point of view there 

may be significant differences in the well performance for cased-hole and OHGP wells because flow into 

the cased-hole gravel pack must pass through the perforations. To avoid creating a fracture during the GP 

execution, the formation fracture gradient must not be exceeded.  
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The rationale for GP completions is to prevent production of fines into the well. Operators dealing with 

subsea flowlines cannot tolerate even minimal fines production. Reasons include possibilities of fines 

build up, erosion of subsea chokes and hardware, and in severe instances even flowline plugging. Complex 

flow assurance will worsen these problems. Remediation of any of these problems would require an 

expensive workover.  

 

If there was a need for sand control in the first place, over time formation fines will gradually collect in the 

GP and will cause an increasing pressure drop (skin) across the GP. The tendency for fines to accumulate 

in perforation tunnels is dependent on drawdown and flux in the formation around the perforations. 

Generally, a flow rate low enough to avoid fines movement into the perforations will be too low to be 

economic. Therefore, gradual increase in skin over time is to be expected and is a sign of a successful and 

necessary GP completion. Acid stimulation can dissolve accumulated fines in the GP and restore the well 

productivity. However, acid treatments can be detrimental in reservoirs with zeolite content, and for this 

reason they are not usually recommended for deepwater GOM reservoirs. Also, most of the wells in 

deepwater GOM have wet trees where complex completion hardware making acid stimulation very 

challenging and not always feasible.  

 

It should be relevant to note that a successful GP filtering function begins at the perforation cavities. As 

fines collect in the perforation cavities it is easy to see that this is the likely source of increasing GP skin. 

However, perforation cavities do not plug uniformly, and over time fewer and fewer perforations may be 

open to flow. Continued production at the same high flow rate will cause increasing flux across fewer 

perforations as the completion skin increases. Excessive drawdown and/or flux can cause destabilization 

of the annular pack or screen collapse.1 This happens when the pack is damaged over time causing the 

expected increase in skin, but the operator continues to produce at high rate, causing failure due to 

excessive drawdown. A critical element in a GP performance is a proper sizing of the gravel and a screen. 

Even a perfect GP will accumulate fines over time, and remedial work is considered necessary. 

 

Many problems in GP wells with excessive sand production, high skin, gravel plugging, and completion 

failure motivated introduction of the high rate water pack (HRWP) completion method. HRWP 

completions are GP completions packed at a high rate to ensure that gravel is placed in all of the 

perforation tunnels, and all “debris” is pushed away in the reservoir. This is no small matter because 

without high rate gravel placement, it is difficult to pack all the perforation tunnels, particularly in over 

pressured formations, and those left unpacked will soon be plugged with fines once the well is put on 

production. For this reason historically gravel packs had very high skins, and modern HRWP’s have much 

lower skins. However, it has been commonly reported that over time well productivity declines in HRWP 
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completions.13 Therefore, remedial work is required for all GP completions, including HRWP’s.  In the 

case of subsea wells with wet trees the workover would cost in the range of 20 million USD, and as 

already said, the procedure would not always be successful. 

 

Based on the author’s information from different service companies, the number of acid jobs has fallen 

drastically since the FP became a trend in GOM. This fact supports a conclusion that the even perfect GP 

will plug over time and that FP’s do not accumulate fines.  

 

2.3 High Permeability Fracture Completions 

 

Originally FP’s were GP’s with fracture geometry. In a FP, a fracture plane is formed by injecting gravel 

at pressures above the formation fracture gradient. Aggour14 stated that FP completions allow for more 

complete zonal coverage which can be beneficial in laminated reservoirs and non-perforated zones.  

 

High permeability fracturing (HPF) are generally FP completions employing a tip screenout (TSO) design 

to control the fracture length and width, and using high conductivity proppant instead of gravel. Today, it 

is understood that the fracture can be designed with a flow area large enough to keep the flow velocity at 

the fracture face below the critical sand flow velocity. Therefore, instead of gravel pack material designed 

to stop formation fines from flowing into the wellbore, high permeability proppant can be used to 

maximize the fracture conductivity. As such, the term high permeability fracture is more descriptive of 

modern hydraulic fractures in high permeability formations. The main distinction between the HPF and FP 

wells is that FP in early times used gravel with grain sizes like what would be used in a gravel pack, and 

HPF now uses high permeability proppant without concern for stopping formation fines.  In effect, the 

HPF is desirable as a means to eliminate sand production at high production rates.  

 

The HPF is intended both to provide sand control and to extend past drilling and completion damage. If 

this is not achieved then damage will not be bypassed and the well will have a higher skin. It has been 

shown15 that when the fracture half length extends beyond the radial damage skin due to drilling mud 

filtrate invasion or a certain type of completion fluids invasion, there will be no contribution from this 

component to the overall HPF skin. 

 

The flow geometry is different in GP and HPF wells. With a HPF well, reservoir fluids flow linearly to the 

fracture plane, and from there to the wellbore in a slab of high permeability. Fig. 2.1 shows the inflow 
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geometry for the HPF completions. In contrast, flow to a GP or HRWP well is radial, as was shown in Fig. 

1.2. 

 

 

 

 

 

 

 

 

Figure 2.1 HPF completion flow geometry  

 

 

Furthermore, there is very likely a radial zone of reduced permeability in high permeability reservoirs 

(gray radial zone in Fig. 2.1). Radial flow to a GP must pass through this lower permeability zone, thereby 

causing additional pressure drop or skin near the wellbore. In contrast, with sufficient half-length, flow 

through the fracture bypasses the near wellbore radial skin.  

 

Modern HPF should be based on unified fracture design (UFD).16 HPF execution in high permeability 

reservoirs should employ the TSO procedure. TSO enables propagating the fracture to the design fracture 

half length, and then inflating it to the designed conductivity. Field experience indicates that the TSO can 

be difficult to model and detect.15 The problem is that an apparent TSO may be only a halo effect. The so-

called halo effect occurs when some of the proppant forms an annulus between the cement and the 

formation, as diagrammed in Fig. 2.2 (red dots are perforations). What may happen instead is that most of 

the injected proppant ends up in the halo, with little in the fracture, and unfortunately, this can appear to 

show an injection history characteristic of TSO.17  The halo effect may be limited mainly to 

unconsolidated formations, such as are common in the GOM.  

 

2.4 Formation Face Flow Velocity Comparison for Ideal GP and HPF Completions 

 

Fig. 1.2 shows the radial flow from the reservoir to the wellbore in GP and HRWP wells. The flow area at 

the formation face is less than the area of a cylinder with radius equal to the wellbore radius and height 

equal to the drilled length of the productive interval because in reality flow to the well is only through the 

perforations.  As it can be seen from Fig. 2.1 in HPF completions flow from the formation to the fracture 

Damage zone  
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is linear. In this case the flow area is the product of four times the fracture half length times the fracture 

height. Since the flow velocity is simply the flow rate over the flow area, it is obvious that the formation 

flow velocity in HPF wells is much smaller than in GP wells.  

 

 

 

 
Figure 2.2 Halo effect interpretation (Modified Welling10 Figure)  

 

 

The following example will clarify the benefits of HPF completions. If we use a field example with a 

perforated interval 100 ft thick, having 16 SPF, wellbore radius of 0.3 ft, with an average perforation 

diameter of 1 in, and the perforation length of 1 ft, the total cylindrical perforation area would be 418.9 ft2 

(Eq. 2.2). This example was extremely conservative assuming that all perforations were initiated and were 

open for flow. In reality this will not be the case. Some of the shots will be misfired; some will not be 

created, and some will get plugged. For the HPF completions the fracture face area will be completely 

open for flow. If the fracture height is 90 ft and the fracture half length of 30 ft (typical for soft reservoirs), 

the surface of the fracture flow would be 10,800 ft2 (Eq. 2.4). The outcome is compelling. The flow area 

for HPF completion in this example is 25 times more than the flow area for GP or HRWP completions. 

The velocity for GP or HRWP completions in this example will be higher for 25 times than for HPF 

completions. Since this was an oil well making 10,000 STBOPD, the flow velocity for the HPF case 

would be 0.00006 ft/sec, while for the GP or HRWP case the flow velocity would be 0.00155 ft/sec. For 
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this particular formation the core test reveled that the critical velocity to initiate fines movement is 

0.00095 ft/sec. The flow velocity for HPF completions calculated above will not likely move any fines. 

However, if this well was HRWP completion, with the same rate fines would have been moved. This 

would mean that the well could not have been making 10,000 STBOPD without formation fines 

movement.  

 

The linear flow will cause much smaller pressure drop in the formation than the radial flow due to the 

higher flow area for the linear flow. Also, by comparing Fig. 1.1 and Fig. 2.1 (radial vs. linear flow to the 

wellbore) it is apparent that much less turbulence occurs in HPF wells than in GP wells because the HPF 

avoids convergent radial flow. This is especially important for gas wells. 

 

One of the most important objectives in HPF design is to determine what fracture half length will ensure 

that the formation flow velocity opposite the fracture face will not exceed the velocity at which formation 

fines would flow. The importance of the flux at the formation face is to determine whether formation fines 

will move. Depending on the formation sand type (particularly sand mineralogy and sand consolidation) 

different flow velocities are needed to initiate fines movement. Each reservoir has a unique flow rate at 

which it starts migrating fines. The minimum required flow velocity for the fines movement can be 

determined from a lab test. However, if fines move, they will be stopped by a properly designed GP, 

probably in the perforations and thereby plugging them. The HPF can be designed to supply sufficient 

flow area to ensure that the formation flux is never great enough to flow formation fines. In that case, the 

HPF well will never be plugged over time. In fact, while the GP grain size distribution must ensure that 

formation fines will not flow through the GP to the screen, the HPF proppant grain size distribution need 

not stop the fines because they will never flow in the first place. Hence, modern HPF designs are using 

very large proppant diameters without concern.  

 

Flow velocity at the formation sand face for GP or HRWP wells will be; 

GP

5

A
qB106.5 −⋅=SFv                                                                                                                                     (2.1) 

where qB is the downhole flow rate in BOPD, and AGP is the flow area at the sand face in ft2. While in the 

GP or HRWP completion the flow area is a cylindrical perforation area, in reality perforation tunnel is a 

cone like area but for simplicity cylindrical area will be used in this work.  

For GP and HRWP wells the flow area, AGP, will be;  

SPFLrA ppGP π2=                                                                                                                                    (2.2) 

where rp is perforation radius, and Lp is the perforation length.  
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The function of the GP is to prevent the formation fines from flowing into the wellbore. However, this 

velocity is expected to be large enough to flow formation fines into the GP, especially after water 

breakthrough since the relative permabillites will be changed. This will mean that GP will be doing its job 

and the formation fines are being moved and produced. Consequently, the completion skin will increase.  

 

For HPF wells the flow velocity at the fracture face should always be lower than a critical flow velocity 

for fines movement. To avoid formation fines movement and bypass near wellbore damage, the following 

criteria should be applied for HPF wells:  

 

1. The critical flux velocity for single phase liquid, vc,SF,, must be determined for the formation in 

question. This velocity can be determined from the core lab test or based on the analog reservoirs. 

The sand face velocity, vSF, must be less than the critical flux velocity; 

SFc
HPF

SF v
A

qB
v ,

5105.6 <⋅=
−

                                                                                                                        (2.3) 

where qB is the downhole flow rate in BOPD, and AHPF is the flow area of the fracture faces, which for 

HPF wells is given by; 

ffHPF hxA 4=                                                                                                                                           (2.4) 

where xf is  fracture half length, and hf is fracture height.  

2. The velocity at the fracture face is given by; 

SFc
ff

SF v
hx

qB
v ,

5

4
105.6 <⋅=

−
                                                                                                                 (2.5) 

3. The fracture half length must be longer that the radius of drilling and completion induced 

damage, rd,;  

fx  dr>                                                                                                                                                    (2.6) 

4. The fracture flow area, xfA, must be sufficient that the formation flux is less than what would 

induce fines movement at the fracture face; 

SFc
fA hv

qB
x

,

5

4
105.6 −⋅>                                                                                                                                     (2.7) 

5. Given the target flow rate, q, the critical flux velocity inducing fines movement, and a margin of 

error in the velocity of 2, and the minimum fracture half length should be the larger of the criteria 

in Eq. 2.3and Eq. 2.4; 

)2,max( fAdf xrx ≥                                                                                                                                   (2.8) 
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According to the UFD, optimal productivity for a fracture length that is small compared to the radius of 

the drainage area occurs for dimensionless conductivity, CfD, of; 

6.1==
f

f
fD kx

wk
C                                                                                                                                       (2.9) 

where w is average fracture width, kf is average fracture permeability, and k is average reservoir 

permeability.  

 

Therefore, the fracture width should be; 

f

f

k

kx
w

6.1
=                                                                                                                                              (2.10) 

 

In an ideal HPF the halo effect will enable all perforations to contribute equally to flow to the wellbore 

whenever the well trajectory has been drilled in the plane normal to the minimum stress direction. Fracture 

execution is judged by whether the fracture reaches its design length before TSO, after which injection 

continues in order to reach the design fracture width and, therefore, conductivity, given by the product of 

the fracture width with the fracture conductivity estimated from the proppant selection. However, if only 

an expanded GP (EGP) has been created, it could easily fail to extend past the drilling and completion 

damage radius. For the case that most or all of the proppant ends up distributed radially around the 

wellbore, the radius of the EGP, regp, can be estimated by the following equation by solving for regp;  

 

pwegpi hrrV )( 22 −= π                                                                                                                              (2.11) 

Where Vi is injected proppant volume,  rw is wellbore radius, and hp is perforated interval. 

Using this radius, the formation flow velocity into the EGP, VEGP, is computed as;  

 

pegp
EGP hr

q
V

π2
=                                                                                                                                     (2.12) 

 

Solving a previous field example with a fracture height of 90 ft and fracture half length 30 ft, and with 

fracture width of 1 in, the injected volume would be 450 ft3. If, the same injected volume winds up as 

entirely a halo effect EGP, the EGP radius will be 1.31 ft. The flow area will be 740 ft2, and for a target 

flow rate of 15,000 STBOPD the formation flux will be 0.0013 ft/sec. If, instead the same injected volume 

created the fracture with half-length of 30 ft, and the height of 90 ft, the flow area would be 10,800 ft2, and 

for the same target flow rate the formation flux into the fracture is 0.00009 ft/sec, more than 10 times less. 

Certainly, the higher flow rate in GP case would easily exceed the critical velocity for fines movement.  
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A major additional factor to consider is that the sand in a GP will have a particle size distribution designed 

to stop fines migration, but an EGP will probably be filled with proppant that would not stop formation 

fines. Hence, if an intended HPF ends up as essentially an EGP, and if this is not evident from the 

injection pressure record during fracture pumping, the operator would not know to limit the well flow rate, 

and there would be a strong likelihood that fines would be produced. The last section of this chapter 

addresses mechanisms for completion failure, including screen erosion. Normally fines would not be 

produced through an HPF, but if the HPF is essentially an EGP, formation fines could go right through it.  

 

The above flux calculations assume that all of the GP perforations are flowing. Only in ideal GP 

completions will all perforations contribute to flow. Welling10 (Fig. 1.2) concluded that the flow is radial 

to all perforations. However, not all perforations will be created and also not equally packed and opened 

for flow, and even HRWP completions are likely to have a number of non-flowing perforations. HRWP 

completions may have all perforations opened for flow in early well life, but for conventional GP’s often 

this is not the case. If most of the perforations are poorly packed and become plugged with formation 

fines, the flow will be concentrated over a smaller area, and the flux at the sand face can be much greater.  

 

2.5 Skin Comparison for Ideal GP and HPF Completions 

 

Wellbore damage can be caused by many mechanisms such as mud filtrate invasion during drilling, 

completion fluids contamination, asphaltene flocculation, perforation damage, wax precipitation, etc. 

Unlike the GP, the HPF is designed to bypass near wellbore damage and the total skin factor will be 

notably less than in GP or HRWP wells. Some of the damage mechanisms mentioned above are 

unavoidable and do not depend on the completion type. It has been already said that the skin in GP and 

HRWP wells will gradually increase with time while this is not the case for properly designed HPF wells.  

Not only the fracture should bypass any near-wellbore created damage but also should insure good 

reservoir-to-wellbore connectivity.  

 

Welling10 provided theoretical quantification for various components of the total skin for GP and HPF in 

gas and oil wells. Starting with the OHGP, Welling10 computed the total skin, St, as; 

 

grplcakeflt sssss +++=                                                                                                                       (2.13) 

 He computed the fluid loss skin, Sfl, as; 
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cake

fl

fl
fl r

r

k
k

S ln)1( −=                                                                                                                          (2.14) 

where kfl is  fluid loss zone permeability, rfl is fluid loss radius, and rcake is filter cake radius.  

 

 

He computed the filter cake skin, Scake, as; 

w

cake

cake
cake r

r
k

k
S ln)1( −=                                                                                                                        (2.15) 

where kcake is filter cake permeability, and rw is wellbore radius.  He computed the partial completion skin, 

Spl, as; 

)2))(ln(1( −−=
w

tot

of

tot
pl r

H
H
H

S                                                                                                                 (2.16) 

where Htot is total thickness, and Hof is open flow length. Finally, he computed the gravel skin, Sgr, as; 

oc

g

gr
gr r

r

k
k

S ln)1( −=                                                                                                                             (2.17) 

where kgr is gravel permeability, rg is under reamed radius, and roc is outside screen radius.  

 

For the HRWP oil wells, Welling10 computed the total skin as the sum of the perforation tunnel pressure 

drop given by; 

µqB
DPkh

S HRWP 2.141
=                                                                                                                                 (2.18) 

Where DP is delta pressure drop through the perforation tunnel and it has two components, the linear 

pressure drop, DPlin, and the turbulent pressure drop, DPtur.  

The total pressure drop and its components are given by; 

turlin DPDPDP +=                                                                                                                                  (2.19) 

aqDPlin =                                                                                                                                                (2.20) 

2bqDPtur =                                                                                                                                             (2.21) 

Laminar pressure drop factor, a, in reservoirs without skins is; 

NAk

BL
a

pp

g µ888
=                                                                                                                                          (2.22) 

where Lg is the connection flow length (difference between drilled radius and screen radius), kp is the 

perforation permeability, Ap is the perforation cross sectional area, and N is the number of perforations 

connecting the fracture and the wellbore. 

Turbulent pressure drop factor, b, is; 
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281008.9

NA

BLx
b

p

mgg ρβ
=                                                                                                                       (2.23) 

where �goil is turbulence factor for gravel given by; 

996.0

4105.6

k

x
goil =β                                                                                                                                       (2.24) 

 

Welling10 stated that the turbulence factor for gravel was determined by in-house lab measurement.  

 

Welling10 computed the total skin for the HPF as the sum of the fracture skin and the perforation skin,  

where the fracture skin, Sf, was computed as; 

�
�

�

�

�
�

�

� +
=

f

FDw
f x

Cr
s

)2/1(
ln            (2.25) 

The perforation skin, Sp, was computed as the sum of a laminar flow term and a turbulent flow term. With 

negligible turbulent flow for single phase oil flow, the perforation skin is; 

NAk

khL
s

pp

g
p

π2
=     (2.26) 

The perforation skin for HPF well can be also computed using the same equations for HRWP wells.  

 

Welling10 also provided skin equations for gas wells for all three completion geometries. For OHGP gas 

wells the total skin is computed by using Eq. 2.13 and its components by using Eq.2.14 to Eq. 2.17.  

 

For HRWP and HPF gas wells Welling10 used the same equations as for oil wells but for the linear and 

turbulent pressure drop calculations he used different constants.  

 

In the case of the GP, there is a good chance the radius of damage is greater than the radius of GP, rgp, or 

even greater than the radius of EGP, regp, increasing further the overall GP skin. Welling10 did not account 

for this skin component.  

 

Neumann et al.17 in their study mentioned that the GP completions had disappointingly high skins even 

using the best completion practices. Then they started using FP completions and the resulting skin was 

much lower. They observed that a bad FP job was always better or, at least, as good as a good GP in 

Campos Basin soft formations.  
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The current industry trends show an average skin of +3 for HPF wells and more than +20 for GP wells. It 

is not uncommon for GP wells to have a positive skin of 40.13  

 

The following two equations from Wong et al.1 are being used for the flux calculation. The main 

parameter for quantifying the completion is the skin (S); 

skinp
qB

kh
S ∆=

µ2.141
                                                                               (2.27) 

where B is formation volume factor, and µ is fluid viscosity.  

 

The pressure drop due to skin ( skinp∆ ) is determined from the PTA.  

Generally, skinp∆  could be separated into different components; 

otherskinlgeometricaskinmechanicalskinskin pppp −−− ∆+∆+∆=∆                                             (2.28) 

 

The lgeometricaskinp −∆  is attributed to the geometry of the wellbore such as partial penetration, hole 

deviation angle etc. Wong et al.1 stated that this skin component does not impact the completion failure 

mechanism even though it affects the total completion performance. However, in deviated FP wells with 

misaligned fracture and wellbore this skin component may play major role in completion failure. If there is 

a misalignment the fluid will be forced to flow through only a few perforations causing a high flow 

velocity and the screen erosion may occur.  

 

The otherskinp −∆  is the part of the pressure drop that is not directly attributed to the completion failure 

mechanism. It includes all phase and rate dependant effects such as reduction of the relative permeability 

if the bubble point is crossed, or a condensate banking where liquid is formed around the well in 

retrograde condensate reservoirs.   

 

According to Wong et al.1 mechanicalskinp −∆   is the main part of the completion pressure drop that directly 

impacts the completion failure mechanism in question. This skin component is the damage skin. Since the 

damage occurs near the wellbore region the greatest pressure drop will be around the wellbore for GP 

wells. The pressure drop due to friction between the pressure gauge and the perforations should be 

deducted from this skin component.  

 

If we use the previous example from this chapter assuming that the well was drilled properly (along the 

maximum horizontal stress direction) where most of the perforations are connected to the fracture the total 

skin for HPF completion should be negative 3.3 (Eq. 2.25). Perforation tunnel pressure drop will be 



 21 

negligible if the perforation gravel permeability is not significantly reduced by some damage. The GP or 

HRWP completion will have a skin as low as 3 (assuming all perforations are open for flow and well 

packed) and as high as 30 if 10 percent of perforations are open for flow.  

 

Clearly, the higher the formation flow velocity the faster and more fines movement. Consequently, GP and 

HRWP wells will result in the skin increase over time, while HPF wells skin will remain the same over a 

well life. As already mentioned the screen failure is caused by high fluid velocity and fines movement. Yet 

again, HPF completions should not have any fines and hence the screen erosion should not occur.  

 

One more advantage of FP completions is the occurrence of high turbulence for high rate gas wells. It is 

not uncommon to have reservoirs with more than 200 STBOPD/ft or 1 MMSCFD/ft. With these high rates 

the turbulence is dominant in the gas wells, and also in high rate oil wells. Wang et al.19 concluded that to 

combat the strong turbulence that plagues high rate gas wells, extensive hydraulic fracturing is a must. If 

the reservoir permeability is more than 5 md, turbulence overwhelms practically all other factors, 

including damage. The turbulence effect is more pronounced in GP and HRWP wells than in HPF wells.   

 

Fig. 2.3 is from Wang et al.19  work showing the fractured well (linear flow geometry to the wellbore) vs. 

a radial flow (e.g. GP or HRWP). It is apparent that the radial flow GP geometry cannot compete with the 

hydraulically fractured wells. Due to the difference in the reservoir vs. fracture conductivity, and the flow 

geometry, the pressure drop is greater for the radial flow than for the linear flow. In the previous section 

we already explained the downhole velocity difference for GP and FP completions.  

 

2.6 Completion Failure Mechanisms  

 

Completion failures can have detrimental consequences especially for subsea wells with expensive 

hardware and workover. Small sand production can cause choke erosion and cutting, flowline plugging, 

and in some instances environmental disaster can take place caused by fluid leak.  

 

Completion failure mechanisms can be classified in two categories. The first and most frequently 

occurring category is screen erosion caused by high flux. If the GP is properly designed and executed, the 

screen should not erode, provided the well production rate does not exceed rate or drawdown limits that 

can cause destabilization of the annular pack. 
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If we take a look at Eq. 1.1 it is clear that the erosion is dependant on the flow velocity and the flow 

mixture density. This would mean that formation fines will aggravate the screen erosion process.  For 

cased hole GP’s the purpose of the screen is to hold the gravel pack, and the purpose of the GP is act as a 

filter that stops fines migration. However, the GP must have as high permeability as possible to avoid 

imposing excessive pressure drop through the completion. Therefore, the GP grain size distribution must 

be carefully designed to provide as high permeability as possible while stopping fines from flowing into 

the wellbore. If the GP is working properly, no fines should reach the screen. Yet several papers1,2,3,11 are 

reporting that a common reason for failure in GP completions is erosion of the screen. It is not always 

obvious whether the screen eroded due to formation fines produced with reservoir fluids, or whether 

erosion was due only to high velocity fluid flow. Once the screen fails, the pack itself can flow to the 

surface with sufficient fluid flow rate.  

 

 

 

�

 
Figure 2.3 Comparison of gas production rates from non-fractured wells, wells with negative 

skin and fractured wells (from Wang et al.19) 
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The second category would include mechanical failures such as completion collapse caused by excessive 

differential pressure over the completion hardware or caused by formation compaction. An abrupt high 

pressure gradient can cause formation sand unconsolidation and the sand failure. Once failed, formation 

sand can plug the GP. Then if the well continues to flow at high rate, high pressure gradient in the GP can 

cause it to destabilize and result in sufficient stress to collapse the completion. Another reason that 

formation sand may plug the GP is after water breakthrough. Other reasons for completion failures may be 

due to completion execution problems such as poor well cementing or poor GP placement. 

Completion failures in the second category can also result from screen plugging. Organic deposits 

(asphaltenes or paraffins) may precipitate as the pressure or temperature is reduced.20 This form of damage 

is typically located in the tubing, perforations, or formation. Perforation or screen plugging can occur 

which may cause completion failure.  

 

Tiffin et al.3  noted that a series of wells failed in a GOM field because of massive reservoir depletion and 

compaction forces. Well failure was due to casing collapse, screen collapse, and other problems. This is 

typically the case with high permeability reservoirs as they usually have high compressibility. For 

completion failures caused by formation compaction there are no major differences between GP and HPF 

wells. Deviated wells are more sensitive to casing damage due to overburden stress and compaction forces 

induced to the casing.  The vertical wells will have much less chances for the casing failure.  Since the 

reservoir depletion and compaction are unavoidable, the risk to lose the well due to the casing/tubing 

failure is high.  This is a good reason for wells to be drilled vertically in high compressibility reservoirs.  

 

Apart from completion failures related to compaction, it is evident that GP wells should be more 

vulnerable than HPF wells to completion failure.  
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2.7 Chapter Summary 

 

A comparison between ideal GP and FP completions was made. The HPF was distinguished from FP.  

HPF is using a proppant while FP is using gravel as the injected material. While HRWP completion 

performance is initially better than GP completion, the overall mid and late well performance is often 

similar. This is due to the fact that both completion types will result in fines movement and plugging of the 

perforations and annular pack. A remedial work (an acid treatment or well recompletion) will be needed to 

restore the well productivity.  

 

HPF completions are superior to any other completions. The flow area of the HPF completion is much 

higher than the flow area of GP or HRWP completion. This will result in the lower formation flow 

velocity at the fracture face for the HPF completions. Since the flow velocity is low enough, it will ensure 

that fines do not move, and, hence, the skin should remain unchanged over the well life.  

 

The resulting completion skin for ideal HPF wells is significantly smaller than for GP or HRWP wells, 

hence the well productivity for HPF wells will be considerably higher than for GP or HRWP wells. The 

well productivity for HPF wells should remain the same throughout the well life. 

 

Equations were given to calculate HPF design parameters that should ensure low skin, no fines movement, 

and bypass of near wellbore region damage. Because the resulting formation flow velocity will be below 

the critical velocity, the well can be operated at the maximum achievable flow rates without being put at 

the risk for fines movement, screen erosion, or screen collapse.  

 

Different completion failures will impact the well performance. Depending on the completion failure 

seriousness, the well may be jeopardized. However, properly designed and executed HPF completion 

should not be prone to the listed failure mechanisms and should not have any of the completion failures 

mentioned above.  
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CHAPTER III 
 

WELL TRAJECTORY AND GEOLOGY IMPORTANCE (IMPACT) TO HPF 

COMPLETIONS  
 

3.1 Preliminary Discussion 

 

The previous chapter explained why ideal HPF completions should out perform any GP or HRWP 

completions. Unfortunately, operators do not necessarily strive for ideal HPF completions. The HPF 

choice is not justified merely to avoid remedial work. As we saw in the example from the previous 

chapter, the post treatment skin for HPF completions should always be considerably smaller than GP or 

HRWP completions. Some would ask why we need an ideal HPF when the well performance has 

significantly improved over the last decade or so. A positive skin factor for oil wells of +10 used to be an 

excellent post treatment stimulation result, and now we are targeting up to +2 or less.  Yet the following 

example shows that production could double or even triple with a negative skin factor.  

 

Assuming a typical GOM well reservoir permeability of 300 md and a thickness of 100 ft, the nodal 

analysis in Fig. 3.1 shows that a nearly ideal GP skin of +10 would result in a production rate of around 

2,700 STBOPD and a drawdown of 1,000 psi. An average GP well with a skin of +40 would produce less 

than 1,000 STBOPD for the same drawdown.  A commonly occurring HPF skin equal to +2 would lead to 

a production rate of over 5,000 STBOPD, certainly a considerable improvement over GP wells.  However 

an ideal HPF with a negative skin of -3 would result in a production rate of nearly 10,000 STBOPD. It is 

apparent that HPF could more than triple the rate of a modern GP completion.  

 

This example answers the question why operators should select the HPF completion, properly design it 

and execute it. The production increase would be enormous compared to the current HPF completion 

trends. Prominently getting an ideal HPF well should not be a big challenge if the well trajectory is 

considered during the well planning phase. The next section explains the reason why many HPF 

completions have a positive skin and why more than a reduced flow rate may be at stake.  
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Figure 3.1 Nodal analysis result for Example in section 3.1 

 

 

3.2 Production from a Fractured Deviated Well 

 

A reservoir at depth is under a state of stress that can be characterized by three principal stresses. In 

reservoirs at depths greater than 1,500 ft the vertical, or overburden, stress is the largest of the three, and 

the other two are horizontal.15 The hydraulic fracture plane will be normal to the minimum stress direction, 

leading to vertical hydraulic fracture planes in almost all petroleum production applications.   

 

There exist reservoirs in which the minimum stress direction is horizontal, leading to a horizontal fracture 

plane.21 Two main situations where fracture planes may be horizontal are in very shallow reservoirs or in 

highly overpressured reservoirs. Also, the fracture plane may be neither vertical nor horizontal for highly 

dipping beds. Section 3.4 will address the problem how to design the well trajectory in dipping reservoirs 

depending on whether the well will be completed with GP or HPF.  
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The original hydraulic fractures were in hard rock and typically in wells drilled on land with a strictly 

vertical trajectory. In contrast, many HPF completions are in offshore wells drilled from a platform at high 

deviation to achieve the extended reach required to reach the target reservoir location.  While many 

operators request S-shaped22 wells in order to penetrate the reservoir with a vertical trajectory, some 

operators insist that this is not necessary.  

 

From the production point of view a critical HPF characteristic is fracture to-well connectivity.  Since this 

study assumes the maximum stress is vertical, the trajectory of a vertical well will always align with the 

final and main plane of the hydraulic fracture. However, the well azimuth of an inclined well usually does 

not coincide with the final fracture plane, and the fracture plane will initiate in the plane of the well and 

twist, causing “tortuosity” in its path to the final azimuth normal to the minimum stress direction.  This is 

the major problem with current trends in HPF, and Section 3.3 explains why HPF wells do not have 

negative skin as they should. Fig. 3.2 depicts an unaligned fracture with a deviated wellbore.  

 

 

 

 

Figure 3.2 Twisted fracture aligned with the preferred direction (From Economides et al.20) 
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Welling10 states that the wells are all inclined for their study, but he never explains why.  Except in the 

very unlikely event that the well path is in the plane of the fracture, hydraulic fracturing in a deviated well 

is sure to severely limit the number of perforations connecting with the fracture. Therefore, Fig.1.1 (from 

Welling10) is misleading for deviated wells unless the fracture plane coincides with the well trajectory. 

The number of perforations connecting the fracture to the wellbore may be a lot fewer than indicated by 

Welling.10 Since typically inclined wells are perforated along the entire productive length before fracturing 

usually without any knowledge of the far field stresses, during the initial HPF injection some or all of the 

perforations may take injected proppant. While some of the proppant may fill an annulus between the 

cement and the formation as a so-called halo effect, the plan is that most of the proppant manages to form 

a single plane that starts in the plane of the well and ends up in the plane normal to the minimum stress 

direction.  If the final fracture plane is at an angle with the well trajectory, it is not unreasonable to expect 

that flow to the well will be established in the easiest paths from the fracture to the well, which would very 

likely be through a few perforations.  

 

Fig. 3.3 shows fracture-perforation intersection for different fracture plane orientations. Fig. 3.3 A shows 

the case where the fracture plane is normal to the plane of the wellbore axis, giving an angle of 90o 

between the wellbore and the far field fracture plane. Obviously, this is one of the worst possibilities. In 

this case the connection will be poor with connection to only a few perforations (total of four). Fig. 3.3 B 

shows a fracture plane at an angle of about 10o intersecting the opened wellbore as a sine wave. The 

fracture plane will probably intersect the maximum possible perforations, in this case, perhaps as many as 

10 (red perforations), but via the halo effect, there may be connection to all perforations from the 

maximum to the minimum of the sine wave, giving a total of 31, as shown in yellow. Fig. 3.3 C shows the 

full fracture-to-well connectivity where less than seven shots per foot times the thickness in feet is 

connected. If the perforation phase were 180° with perforations oriented to be in the plane of the fracture, 

then the connectivity would be even better, or with halo effect, perhaps all perforations are connected even 

without oriented perforating.  

 

A general equation for the number of perforations connected to fracture is; 

SPF
r

hN h
inc ⋅= )

),sin(min(
,min(

βα
                                                                                                         (3.1) 

where hinc is the total measured thickness, rh is the halo radius, α is the wellbore deviation from vertical, 

and β is the angle between the fracture plane and the plane of the wellbore axis.  
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90o   10o                                                           0o

 
Figure 3.3 Fracture-perforation intersection for different fracture plane orientations 

 

 

As an example, consider a well drilled 15° from vertical with a 6 in wellbore halo and with the wellbore 

axis 90° from the axis of the hydraulic fracture. The fracture plane will pass through 3.73 ft of the 

wellbore length. At 12 SPF, whatever spacing is, this will amount to about 23 perforations. Using 

Welling’s equations the resulting perforation skin is 1.5. The perforation velocity will be 12 ft/sec, and C 

factor will be 88 if we are flowing oil with density 55 lb/ft3 (Eq. 1.1).  

 

When the angle between the wellbore and the far field fracture plane is large, another possibility is that a 

number of small en echelon fractures may form instead of one common fracture plane. These may or may 

not extend past near wellbore damage, and they may not contain sufficient proppant to provide any real 

stimulation. The net result in this case may be that the working proppant that takes flow to the wellbore is 

effectively only that in the perforation tunnels and the annular GP. In other words, what is left may be 

little more than a conventional GP. If, instead, the proppant forms a halo, at least the radius of the halo 

may provide somewhat more flow area than a conventional GP, but nowhere near the flow area that would 

have been provided by a properly executed HPF.  Eq. 2.11 provided an estimate for the halo radius in the 

worst case scenario that all of the proppant intended for a HPF ended up instead as a halo, and the 

resulting sand face flow velocity was provided in Eq. 2.12.  
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Yew et al.23 have indicated that as the initial fracture grows, it deviates from the initial plane formed along 

the wellbore because of the influence of off-shear stresses. Then, the twisting of the fracture occurs in a 

short distance, estimated at only a few well diameters. 

 

A rule of thumb for successful fracture execution is to avoid letting the angle between the well axis and 

the final fracture plane exceed 15°.24 However, this pertains to fracture execution, not flow to the fracture 

during production. In reality, if the well is deviated and the wellbore axis is not aligned with the final 

fracture plane, the fracture-to-well connectivity will be poor, and logically the fracture will be connected 

effectively with only those perforations near the intersection between the wellbore axis and the final 

fracture plane. Perforations more distant from the final fracture plane will have been abandoned during 

execution as proppant flow followed the preferential shorter flow paths to the final fracture plane. 

Likewise, during production, flow to the well will be preferentially through the fracture, thereby bypassing 

perforations no longer connected to the final fracture plane.  

 

3.3 Estimating the Skin for a High Permeability Fracture in a Deviated Wellbore 

 

Chen et al.25 considered the effect of fracture tortuosity as narrowed fracture width at the connection 

between the final fracture plane and the wellbore produced a choked fracture. Alternatively, using the 

approach of Welling 10 the number of perforations connecting the final fracture plane to the wellbore can 

be estimated as the product of the well length intersected by the fracture plane multiplied by the 

perforation HPF. Because of the halo effect, all of the perforations in that interval may be counted. The 

total skin for a deviated well will be computed from combined Eq.2.25, Eq.2.26, and Eq. 3.1. The resulting 

skin in oilfield units is; 
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                                                                                                    (3.2) 

 

The total pressure drop through peroration tunnels, DP, will be computed by using Eq. 2.19 where number 

of flowing perforations, N, will be computed by using Eq. 3.1.  
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If we consider field example from Chapter II, knowing that the well deviation angle from vertical was 20°, 

the fracture plane azimuth was 40°, the well azimuth 340°, and no halo, then the total number of flowing 

perforations would be 18 (Eq.3.1). The resulting skin would be 1.6 (Eq.3.2). The resulting skin is positive 

even though the well was HPF. The initial pressure build-up done on this well gave a skin of 1.3. There is 

no significant difference between the calculated skin and the measured skin by PTA. This example seems 

to confirm that HPF wells end up with positive skin due to poor fracture to well connectivity. With current 

technology, proppant damage should be small and should not account for additional positive skin.  

 

3.4 Potential for Screen Erosion for a HPF Well in a Deviated Wellbore 

 

As was shown in Eq. 1.1 the C factor is basically the square root of the kinetic energy of the fluids flowing 

into the screen. As was mentioned in Chapter I Tiffin et al.3  emphasized the importance of this parameter 

for high rate production wells and related it to screen erosion. The current recommendation to avoid screen 

erosion is to ensure that the screen velocity is less than 1 ft/sec. The research to establish screen erosion 

velocity is ongoing and currently it is proprietary information. Clearly, the denser fluid the faster erosion 

will occur. Also, a greater amount of fines in the fluid mixture will erode the screen faster.  

 

In a HPF well it is unlikely that fines will be flowing to the screen. If the screen erodes in a HPF well very 

likely this occurred because of high fluid flow velocity without fines. Section 3.2 explains that very few 

perforations may be connecting the fracture to the wellbore and section 3.3 shows that observed skins in 

HPF wells are consistent with a skin calculation using a small number of perforations. Furthermore, the 

interval through which this flow is occurring is computed as the length of the fracture-perforation-

intersection, hint. Therefore, the screen velocity, Vs, is computed as; 

int2 hr
q

V
s

s π
=                                                                                                                                             (3.3) 

where rs is the screen radius.   

 

This shows that even with a negative skin there may still be high velocity flow through few perforations 

(hot spots) which could lead to screen erosion, or annular pack destabilization. Once the annular pack is 

“destabilized” the flow velocity at the screen face will be higher and the screen will be exposed to high 

failure risk.  

Fig. 3.4 shows a sensitivity study for a 20,000 STBOPD oil well. The perforation permeability is assumed 

to be 200,000 md, and the halo radius is assumed to be 0.5 ft. Even at a 45o deviation, the total skin may 
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be less than zero. However, the flow velocity through the screen for this case is about 0.82 ft/sec, what is 

considered a safe flow velocity.  

 

From the Fig. 3.4 it can be seen that the velocity behavior is the same regardless of the perforation density. 

This is because the screen area used in Eq. 3.3 is dependent on the length of the fracture-perforation-

intersection, hint, which is not dependant on the perforation density. If the halo radius was greater then we 

could get a few more perforations and the velocity would be slightly reduced.   
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Figure 3.4 FP perforation skin and screen velocity for larger perforation densities, assuming 90o angle 

between wellbore and main fracture planes 

 

 

It can be seen from Fig. 3.4 that the perforation skin is never less than zero. However, the total skin can be 

less than zero as it is composed of different skin components.  
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For the field example from Chapter II the screen velocity is 0.7 ft/sec. Therefore, this well is not at risk. 

However, the literature indicates that a number of HPF wells have failed due to screen erosion. A close 

look revels that in most or all of the reported cases the wells were inclined.  

 

3.5 HPF in Dipping Reservoirs 

 

Welling10  indicates that field matches for FP completions suggest that 0.7 to 2.3 SPF are flowing in 

deviated wells and concludes that flow in high rate oil and gas wells in high permeability reservoirs is 

perforation limited. Therefore, he prefers HRWP completions because field matches show on average 5 

SPF are flowing except for highest permeability reservoirs, in which he recommends OHGP. Fig. 1.1 

assumes that the fracture plane is completely aligned with the wellbore with both fracture wings. This will 

only be true when the wellbore and the fracture plane coincide. For deviated wells, in order to have 

wellbore totally connected with the fracture; the well azimuth must normal to the minimum horizontal 

stress. Because of this we find very compelling the logic of drilling wellbores strategically to be in the 

fracture plane, so that it does not need to turn from the local wellbore stress to the far field stress. In most 

cases this would normally mean drilling the well vertically through the productive formation.  

 

For dipping reservoirs, the generalization that maximum stress is likely to be vertical may not always hold. 

If the maximum stress direction is not vertical in a dipping reservoir, then geomechanical analysis must be 

done to determine the well trajectory that will ensure that the wellbore is aligned with the created fracture. 

The geomechanical analysis for dipping beds is considered beyond the scope of this study. However, what 

this work implies is that once a geomechanical study has determined the stress magnitudes and directions, 

then the well trajectory can be designed such that the wellbore will align with the hydraulic fracture plane.  

 

3.6 Should OHGP Be Recommended in High Rate Gas Wells? 

 
Welling10 recommended using OHGP completion for oil wells if the reservoir permeability is above 900 

md, and if it is above 600 md for high rate gas wells. This work shows that the Welling10 equations are 

correct but he makes two errors in applying them. The first error is that his perforation count is not correct. 

For HPF in inclined wells the perforation count can be much less than he assumes. The second error was 

when matching field behavior Welling10 reduced the gravel permeability to compensate for the excessive 

number of perforations. The model in this work agrees with the field case shown.  

 

If the number of perforations connected to fracture are properly counted (by using Eq. 3.1) then HPF 

would result in lower skin than OHGP completion skin. This confirms that the HPF completion is a better 
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choice than OHGP completion. Also, OHGP completions are not practicable in high permeability 

unconsolidated formations due to the wellbore instability.  

 
 
3.7 Chapter Summary 

 
If the wellbore trajectory is vertical through the pay zone almost always the wellbore will be aligned with 

the hydraulic fracture plane. For deviated wells, in order to have wellbore entirely connected with the 

fracture; the well azimuth must be normal to the minimum horizontal stress. Therefore the horizontal 

stress measurement must be determined before drilling the wellbore section through the productive 

interval.  

 

If the well is deviated and not drilled perpendicularly to the minimum horizontal stress direction then 

potential for screen erosion and annular pack destabilization is high because of limited fracture to well 

connectivity. All flow will be forced to pass through a few perforations. Equations were developed 

showing the number of perforations connecting the fracture and the wellbore, and the total skin for HPF 

deviated well.  

 

In inclined wells it is important to properly count number of perforations connected to fracture. HPF 

completion will result in lower skin than a OHGP completion.  

 

For dipping beds, the maximum stress may not be strictly vertical. However, advanced geomechanical 

study can reveal the minimum stress direction so that the well can be drilled normal to this direction. With 

this strategy the wellbore will be aligned with the hydraulic fracture.  
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CHAPTER IV 

 

SUMMARY, CONCLUSIONS, AND 

RECOMMENDATIONS FOR FUTURE WORK 
 

4.1 Summary and Conclusions  

 

Often existing completion practices do not lead to optimal well performance, and well production is 

constrained to avoid high velocity and drawdown which could cause premature completion failure. The 

resulting skin in HPF wells was almost always positive which is contradictory to the theoretical skin 

definition for hydraulically fractured wells. The main reason for poor completion and high mechanical 

skin in HPF wells was the fracture-to-well connectivity. Most of the wells in deepwater GOM are deviated 

and are not drilled perpendicularly to the minimum horizontal stress.  

 

In this work we recommended high permeability fracture (HPF) completions. HPF completions are 

superior to any other, provided the far-field fracture is in the plane of the wellbore. By selecting, properly 

designing and executing the HPF the resulting mechanical skin should be negative. The well productivity 

is increased; the well is safely produced at its maximum achievable flow rate, the risk of sand production 

is minimal, or even impossible. Also, high rate gas wells will benefit from HPF by minimizing the 

turbulence effects. The full set of equations was given for proper HPF well design. The deviation between 

the proposed model and the real well performance should be negligible, unless some obvious details were 

overlooked or the HPF execution phase did not go as planned. A new and more accurate calculation of the 

theoretical skin and flow velocity for HPF completion for deviated wells was given.  

 

The vertical well through the net pay is the best option. In most cases, this will ensure that the fracture 

plane and the wellbore are aligned, and that, therefore, fracture-to-well connectivity is good. Since the 

high permeability reservoirs are usually prone to compaction, the vertical well will be a better choice than 

a deviated well. If the vertical well trajectory can not be selected, then the stress measurement should be 

done and the well should be drilled along the maximum horizontal stress. If the well is inclined it is 

important to properly count number of perforations connected to fracture. If the stress measurement was 

not interpreted and applied it must not be assumed that the fracture is connected entirely to the wellbore.  
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4.2 Recommendations, Comments, and Future Work 

 

The future work on this topic should consider mechanisms for further improvements in selected 

completion design. In order to ensure that the HPF is properly designed, this method should be checked 

against the empirical data from the wells. A halo effect possibility is still in research. Even though the halo 

effect existence is confirmed in soft reservoirs, drilling the vertical wells would be preferred over inclined 

in this case.  

 

As an alternative the new well surveillance method can be developed which would ensure that the well is 

operated safely in the case that the completion method is not selected properly, or the completion 

execution was not successful. The current surveillance method has many assumptions, it is not applicable 

to various applications, and is not reliable in most cases.  With the industry evolution there might be new 

screen which could withstand higher erosion velocity. If so, the well flow rate could be increased. 

 

Since a significant number of wells are inclined without a stress measurement, the fracture choking is 

likely. There is no satisfactory PTA model for choked fracture flow. Development of this model would 

help operators to properly examine existing wells performance.  

 

Correlations for critical fines movement for different formations should be developed. Correlation would 

help to determine critical fines movement velocity. Since many wells are not cored having the critical 

velocity result prior to well completion would aid for further well completion decisions.  
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NOMENCLATURE 
 
 

a  =  Laminar pressure drop factor in reservoirs without skins, dimensionless  

b  =  Turbulent pressure drop factor, dimensionless  

AGP  =  Flow area at the sand face for gravel pack completion, ft2 

AHPF  =  Flow area of the fracture face, ft2 

Ap  =    Perforation cross sectional area, ft2 

B        =     Oil formation volume factor, RB/STB    

C  =        Erosion factor, dimensionless 

CfD  =       Dimensionless fracture conductivity, dimensionless 

hf          =       Fracture height, ft 

hinc  =          Total measured thickness, ft 

hint   =  Length of the fracture-perforation-intersection, ft 

Hof  =       Open flow length, ft 

hp  =       Perforated interval ft 

Htot  =       Total thickness, ft 

K  =       Reservoir permeability, md 

kcake  =        Filter cake permeability, md. 

kf  =       Average fracture permeability, md 

kfl  =       Fluid loss zone permeability, md 

kgr  =      Gravel permeability, md 

      kp  =      Perforation permeability, md 

      Lg  =      Connection flow length (difference between drilled radius and screen radius), ft  

Lp  =      Perforation length, ft 

      Q  =      Volumetric gas production rate, MSCFD 

      Q  =      Volumetric oil production rate, BOPD 

rcake  =       Filter cake radius, ft 

rd  =      Radius of drilling and completion induced damage, ft 

regp  =      Radius of extended gravel pack, ft 

rfl  =       Fluid loss radius, ft 

rg  =      Under reamed radius, ft 

rh  =  Halo radius, ft 

roc  =      Outside screen radius, ft 

rp  =       Perforation radius, ft 

rs  =  Screen radius, ft 
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     rw  =      Wellbore radius, ft 

Scake  =      Filter cake skin, dimensionless 

Sfl  =     Fluid loss skin, dimensionless 

Sgr  =  Gravel skin, dimensionless 

Spl  =  Partial completion skin, dimensionless 

Vc  =  Flow velocity existing casing, ft/sec 

vc,SF  =      Critical flow velocity for single phase fluid, ft/sec 

VEGP  =  Formation flow velocity into the extended gravel pack completion, ft/sec 

Vi  =         Injected proppant volume,ft3 

Vpmax  =         Maximum perforation velocity, ft/sec  

Vs  =  Flow velocity at the screen surface, ft/sec 

VSF  =   Velocity at the fracture face, ft/sec 

W  =   Average fracture width, ft 

xf  =  Fracture half length, ft 

xfA  =   Fracture flow area, ft2 

 

 

Greek Letters 

 

 

      �  =   Angle between the fracture plane and the plane of the wellbore axes, degree 

      �goil  =  Turbulence factor for gravel when oil is flowing, 1/ft 

      µ  =   Fluid viscosity, cp 

      α  =   Wellbore deviation from vertical, degree 

ρm  =   Fluid mixture density, lbs/ft3 
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