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ABSTRACT 

 

Adaptive Discrete-Ordinates Algorithms and Strategies. (December 2007) 

Joseph Carlyle Stone, B.S., Texas A&M University; M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Marvin L. Adams 

 

 The approaches for discretizing the direction variable in particle transport 

calculations are the discrete-ordinates method and function-expansion methods.  Both 

approaches are limited if the transport solution is not smooth. 

Angular discretization errors in the discrete-ordinates method arise from the inability 

of a given quadrature set to accurately perform the needed integrals over the direction 

("angular") domain. We propose that an adaptive discrete-ordinate algorithm will be 

useful in many problems of practical interest.  We start with a "base quadrature set" and 

add quadrature points as needed in order to resolve the angular flux function. We 

compare an interpolated angular-flux value against a calculated value. If the values are 

within a user specified tolerance, the point is not added; otherwise it is. Upon the 

addition of a point we must recalculate weights. 

Our interpolatory functions map angular-flux values at the quadrature directions to a 

continuous function that can be evaluated at any direction. We force our quadrature 

weights to be consistent with these functions in the sense that the quadrature integral of 

the angular flux is the exact integral of the interpolatory function (a finite-element 
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methodology that determines coefficients by collocation instead of the usual weighted-

residual procedure).  

We demonstrate our approach in two-dimensional Cartesian geometry, focusing on 

the azimuthal direction  The interpolative methods we test are simple linear, linear in 

sine and cosine, an Abu-Shumays “base” quadrature with a simple linear adaptive and an 

Abu-Shumays “base” quadrature with a linear in sine and cosine adaptive.  In the latter 

two methods the local refinement does not reduce the ability of the base set to integrate 

high-order spherical harmonics (important in problems with highly anisotropic 

scattering). 

We utilize a variety of one-group test problems to demonstrate that in all cases, 

angular discretization errors (including "ray effects") can be eliminated to whatever 

tolerance the user requests. We further demonstrate through detailed quantitative 

analysis that local refinement does indeed produce a more efficient placement of 

unknowns. 

We conclude that this work introduces a very promising approach to a long-standing 

problem in deterministic transport, and we believe it will lead to fruitful avenues of 

further investigation. 
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I.   INTRODUCTION: ANGULAR DISCRETIZATION ERRORS 

 

A.   Introduction 

The angular discretization errors inherent in the deterministic solutions of transport 

are a major problem.1  Angular discretization errors, including ray effects, severely limit 

the use of discrete ordinate methods.  They arise from quadrature-rule limitations (see 

Section 3).  The example shown below (constructed to make it relatively easy to solve 

analytically) illustrates how ray effects distort the correct answer and motivates the 

adaptive discrete ordinate algorithms we present in this dissertation. 

B.   Motivation 

Figure 1 shows a two-dimensional problem containing a circular isotropic source 

centered at the origin in a non-scattering material of uniform composition.  The exact 

scalar flux in our example problem is the same at points A and B, since A and B are 

exactly the same distance from the source (r units).  Figure 2 is the plot of the angular 

flux (at the distance, r from the center of the source) for both points A and B as a 

function of the azimuthal direction.  For the moment we ignore the variation of the 

angular flux ( )ψ  in the polar angle, θ . 

 
 
 
____________ 
This dissertation follows the style and format of Nuclear Science and Engineering. 
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Figure 1   A circular isotropic source in a purely absorbing medium. 

 
 

 
Figure 2   This figure displays angular flux as a function of azimuthal direction γ for 

points A and B, at an arbitrary polar angle. 
 

  
Suppose we use the discrete ordinates method (see Section 2) with a coarse 

quadrature set of 8 equally spaced quadrature points in the azimuthal variable ( )γ  to 

maxψ  

o67.5Bγ =  

o0
A

γ =  
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solve for the scalar flux ( )φ  at points A and B.  The quadrature points are at 

o157.5γ = − , o112.5− , o72.5− , o22.5− , o22.5 , o67.5 , o112.5  and 157.5� .  Each of the 

quadrature weights ( )mw  has the same value 
4

π 
 
 

.  The scalar flux approximation at 

points A and B are 

 

 ( )
8

m
m 1

0
4

A A

π
φ ψ γ

=

≈ =∑  (1.1) 

and 

 ( )
8

m max
m 14 4

B B

π π
φ ψ γ ψ

=

≈ =∑  (1.2) 

 

respectively.  As this example illustrates, the angular-flux functions, which are not 

smooth, are very difficult to integrate with accuracy if only a single quadrature set is 

used. 

If we plot the scalar flux (calculated using this coarse quadrature set) along a circle 

centered on the source, the plot will oscillate between zero (in the positions between the 

angles in our quadrature set) and values that are much larger than that of the correct 

scalar flux (near positions that correspond to the angles in our quadrature set).  The true 

scalar flux is constant along the circle.  Figure 3 shows a pseudo-color plot of scalar flux 

for this problem using the coarse quadrature set. 
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Figure 3   A pseudo-color plot of the logarithm of the scalar flux using the 8-point 

quadrature set in the discrete-ordinates approximation.  The values in the legend are 
powers of 10. 

 
 

Ray effects are unphysical oscillations in the scalar flux.  They are caused by the 

inability of a quadrature set in the discrete-ordinates approximation to accurately 

integrate the angular flux.  If the spatial locations of the points of interest are sufficiently 

far enough from the source, it is not difficult to see that any fixed finite quadrature set 

will suffer from ray effects.  In the example, points closer to the source than A and B 

have wider peaks.  Therefore their scalar flux can be more accurately approximated with 

a coarser quadrature set (i.e. relatively few abscissae are needed to accurately integrate 

the peaks as one moves closer to the source).  However, as one looks farther from the 

source, the peaks of angular flux become narrower and more difficult to integrate with a 

coarse quadrature set.  To summarize, ray effects occur when the discrete ordinates 

quadrature set integrates two functions differently even though one is just a translation 

(in angle) of the other.  Ray effects are most pronounced when the angular flux oscillates 

significantly as a function of angle (i.e., is a “peaky” function). 
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If the quadrature set were allowed to conform to the solution at any spatial point of 

interest, the example problem that we have illustrated above could be accurately 

integrated with very little effort.  This would require only that the abscissas in the 

quadrature set be “properly placed.” 

 

C.   Related Works 

The simplest approach to mitigating ray effects is to increase the number of points 

(size) of the quadrature set.  This approach will cause the frequency of ray-effect 

oscillations to increase and the magnitude to become smaller.2  Even so, the ray effects 

can be persistent, as mentioned in the example above and as shown by K. D. Lathrop.3 

Another class of methods used to mitigate the ray effects is to use piecewise 

continuous function expansions to approximate the angular dependence of the angular 

flux. Equations for the coefficients are usually obtained by weighting and integrating the 

transport equation over the angular domain.4  These methods are sometimes called 

angularly smeared methods.  Examples include spherical-harmonics (“PN”) methods, 

quadruple (2D) or octuple (3D) PN methods,5,6,7 and finite element methods.8  While all 

of these methods can mitigate ray effects to some extent, only the full PN method 

eliminates them.  In addition, all of these methods (including full PN) suffer from 

persistent angular discretization errors as the number of unknowns increases.  The root 

of the difficulty is that the angular flux in a realistic problem is far from smooth and thus 

is not well approximated by smooth or piecewise-smooth functions that are chosen in 

advance (as opposed to adapted to the local solution). 
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Another method that helps with the problem of ray effects is to compute analytically 

the un-collided flux then use this to generate a first-collision source.  While the analytic 

first-collision source is a good and helpful thing to do, it does not solve the problem of 

ray effects or other angular discretization errors. 

Another approach, which still utilizes discrete ordinates, is to locally refine a 

quadrature set to provide a large number of quadrature points in one or more directional 

cones.9,10  Production codes DORT (2-D)11 and TORT (3-D),12 developed at Oak Ridge 

National Laboratory, can utilize region-dependent cross sections.  An example of where 

this approach is useful would be problems having a localized source and a localized 

region of interest (such as a detector).  This approach is one type of locally refined 

discrete ordinate method, but it is user-controlled as opposed to adaptive.  We propose 

that a truly adaptive discrete ordinate algorithm (as in the generalized description that we 

outlined at the beginning of this section) will be useful in more general problems. 

 

D.   Objectives 

In this dissertation we develop and test algorithms for adapting (refining) discrete 

ordinate quadrature sets to solve two-dimensional Cartesian-geometry particle transport 

problems.  We show that it is possible to eliminate ray effects and other angular 

discretization errors by refinement of the quadrature set locally in both position and 

direction.   By appropriate refinement we resolve angular variations in the angular flux 

through the efficient placement of new quadrature abscissas in order to accurately 

integrate the angular flux.  We divide the problem spatial domain into “quadrature 
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regions” with different quadrature sets allowed in different regions.  We assume a polar 

quadrature set (adaptable in principle) and an azimuthal set that can adapt independently 

on each polar level.  The use of locally adapted quadrature sets makes it possible to 

reduce the unknown count required to achieve a given accuracy, compared to the use of 

any single quadrature set across the spatial domain. 

In Section 2 we review the derivation of the two-dimensional, one-speed, time-

independent neutral-particle transport equation, including a brief overview of eigenvalue 

problems that arise in neutron transport.  We discuss the usual ways that the transport 

equation is discretized in time, energy, space and direction.  In Section 3 we review 

various quadrature rules, some of which we use to create our starting quadrature sets 

before we begin adapting.  In Section 4 we discuss the methods we have created for our 

adaptive algorithms.  We also explain our method for enforcing particle conservation.  In 

Section 5 we give a brief outline of our program’s algorithm. We describe our test 

problems and our numerical results.  We also present our analysis of the numerical 

results.  Section 6 comprises our conclusions on the work presented herein and outlines 

some of the prospects we envision for future work in this area. 
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II.    PROBLEM DEFINITIONS 

 

A.   Boltzmann Transport Equation 

The time-dependent linear Boltzmann transport equation for particles is:4  

 

 ( )
( ) ( ) ( ) ( )

( )

1
, , , , , , , , , , ,

v

                                                                                       , , , ,

t
r E t r E t r E t r E t

E t

S r E t

ψ ψ ψ
∂

Ω + Ω ∇ Ω + Σ Ω
∂

= Ω

� � � � �� � � �
i

��
 (2.1) 

 

where the angular flux ( ), , ,r E tψ Ω
��

 is a function of energy ( )E , position 

( )( ), ,r f x y z≡
�

, direction ( )( ),f γ θΩ ≡
�

 and time ( )t . The speed of a particle with 

kinetic energy ( )E  is ( )v E ;  ( ),t r EΣ
�

 is the total collision cross section; and 

( ), , ,S r E tΩ
��

 is the total source rate density, including scattering, fission and fixed 

sources.  The transport equation is a conservation equation or balance equation. It simply 

states that the “rate of change” plus the “rate of loss” equals the “rate of gain,” and it 

models the behavior of particles in seven dimensions. 

We limit the focus of this work to neutral particles.  There are fundamental 

assumptions that are made in order to derive the neutral particle transport equation: 

particles are considered to be points; particles travel in straight lines between collisions; 

there are no particle-particle interactions; the material properties of the medium in which 
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the particles exist are considered isotropic; and only the mean value of particle density is 

considered.13 

 

B.   Source Term 

The source term of the particle transport equation is divided into three sub-terms, the 

external source rate density, the fission source rate density (if the particles are neutrons), 

and the in-scattering rate density: 

 

 

( )

( )
( )

( ) ( )

( ) ( )

0 4

4 0

, , ,

, , , , , , , ,
4

   , , , , , , .

ext f

s

S r E t

E
S r E t dE r E t d r E t

d dE r E t r E E t

π

π

χ
υ ψ

π

ψ

∞

∞

Ω

′ ′ ′ ′ ′= Ω + Σ Ω Ω

′ ′ ′ ′ ′ ′+ Ω Ω Σ Ω → Ω →

∫ ∫

∫ ∫

��

�� � �

� �� �

 (2.2) 

 

The external source rate density ( )extS  is the rate of particle emission into the six-

dimensional (energy, position and direction) phase volume.  It is independent of particle 

density.  The next term is the gain from fission.  The energy spectrum, ( )Eχ  is a 

probability function: 

 

 ( )
0

1E dEχ
∞

=∫  (2.3) 
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It represents the distribution of neutrons born from fission into the energy dimension 

of phase volume.  These neutrons are born in an isotropic manner.  The mean number of 

neutrons produced from a fission into the phase volume caused by a neutron of energy 

E′ is ( ), ,r E tυ ′
�

.  The macroscopic fission cross section is ( ), ,f r E t′Σ
�

.  Since υ  is 

always multiplied by 
f

Σ , they are normally denoted as a single variable 
f

υΣ .11  The 

direction integration of the fission term is simplified by using the definition of scalar 

flux: 

 

 ( ) ( )
4

, , , , ,r E t d r E t
π

φ ψ= Ω Ω∫
� �� �

 (2.4) 

 

The last term is the gain due to in-scattering of particles into the energy and direction 

dimensions of phase volume.  The composite differential scattering cross sections ( )sΣ  

is a combination of the scattering cross sections and scattering distributions of many 

different materials.  This combination is written in the following short-hand: 

 

 ( ) ( ), , , ,i

s s

i

r E E r E E′ ′ ′ ′Σ → Ω → Ω = Σ → Ω → Ω∑
� � � �� �

 (2.5) 

 

Each nuclide in a mixture (denoted by i) has its own scattering cross section and 

scattering distribution.  We insert the source terms into Eq. (2.1)  to produce the time 

dependent transport equation that treats delayed neutrons as part of the external source: 



 11 

 

 

( ) ( ) ( ) ( )

( )
( )

( ) ( )

( ) ( )

0

4 0

1
, , , , , , , , , , ,

, , , , , , ,
4

, , , , , , .

t

ext f

s

r E t r E t r E t r E t
t

E
S r E t dE r E t r E t

d dE r E t r E E t
π

ψ ψ ψ
ν

χ
φ υ

π

ψ

∞

∞

∂
Ω + Ω ∇ Ω + Σ Ω

∂

′ ′ ′= Ω + Σ

′ ′ ′ ′ ′ ′+ Ω Ω Σ Ω → Ω →

∫

∫ ∫

� � � � �� � � �
i

�� � �

� �� �

 (2.6) 

 

If the particles are not neutrons the fission term is omitted. 

 

C.   The α and k Eigenvalue Problems 

The physical definition of a critical system is a system capable of maintaining a self-

sustaining, time-independent chain reaction in the absence of an external source of 

neutrons.  In other words, it is a system that exists in equilibrium, with the number of 

neutrons produced from fission equal to the number of neutrons that are absorbed or leak 

from the system.4  If the system cannot maintain equilibrium, the asymptotic population 

of neutrons (the fundamental mode) will either increase (super-critical) or decrease (sub-

critical) with time exponentially.  In the presence of an external source of neutrons, a 

sub-critical system will eventually come to a state of equilibrium (i.e. the production of 

the external and fission neutrons is balanced by the absorption and leakage from the 

system).  A critical or super-critical system cannot maintain equilibrium with the 

presence of an external source and the neutron flux distribution will be an increasing 

function of time.  If a system is critical it has a nonnegative solution to the time 



 12 

independent source free transport equation with appropriate boundary conditions.4  The 

time-independent form suppresses the time argument of Eq (2.6): 

 

 

( ) ( ) ( )

( ) ( )

( )
( ) ( )

, , , , , ,

, , , ,

, , , .
4

t ext

s

f

r E r E S r E t

d dE r E r E E

E
dE r E r E r V

ψ

ψ

χ
υ φ

π

 Ω ∇ + Σ Ω = Ω + 

′ ′ ′ ′ ′ ′Ω Ω Σ Ω → Ω →

′ ′ ′+ Σ ∈

∫ ∫

∫

� � � �� � �
i

� �� �

� � �

 (2.7) 

 

This is accompanied by appropriate boundary conditions, such as 

 

 ( ), , 0 0, ,r E n rψ Ω = Ω < ∈ Γ
� �� � �

i  (2.8) 

 

where V is the volume of the system and Γ  is its surface.  If a system is sub-critical then 

there exists a solution to the time-independent transport equation with a non-zero fixed 

external source: 

 

 

( ) ( ) ( )

( ) ( )

( )
( ) ( )

, , , , ,

, , , ,

, , , , ,
4

t ext

s

f

r E r E S r E

d dE r E r E E

E
dE r E d r E r V

ψ

ψ

χ
υ ψ

π

 Ω ∇ + Σ Ω = Ω 

′ ′ ′ ′ ′ ′+ Ω Ω Σ Ω → Ω →

′ ′ ′+ Σ Ω Ω ∈

∫ ∫

∫ ∫

� � � �� � �
i

� �� �

�� � �

 (2.9) 

 

where there is a known distribution of neutrons entering the system across its surface: 
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 ( ) ( ), , , 0, .r E r n rψ Ω = Ψ Ω Ω < ∈Γ
� � �� � � �

i  (2.10) 

 

Eigenvalue problems tell us how a system would behave in the absence of any 

“forcing” (in our case sources and incident fluxes) if they were left alone.  The time-

absorption eigenvalue calculation ( )eigenvalueα −  is one of the options found in most 

discrete-ordinates transport codes.13  It presents a solution of the transport equation in 

the form of a constant angular flux times an exponential.  The eigenvalueα −  problem 

looks for solutions to Eq. (2.7) that take the form: 

 

 ( ) ( ), , , , , ,tr E t r E eα
αψ ψΩ = Ω

� �� �
 (2.11) 

 

and satisfy the boundary conditions (2.8).  We insert Eq. (2.11) into Eq. (2.7)and set the 

external source to zero: 

 

 

( ) ( ) ( ) ( )

( )
( ) ( )

, , , , , , ,

, , , ,
4

t s

f

r E r E d dE r E r E E

E
dE r E d r E r V

α α

α

α
ψ ψ

ν

χ
υ ψ

π

 
′ ′ ′ ′ ′ ′Ω ∇ + Σ + Ω = Ω Ω Σ Ω Ω →  

′ ′ ′+ Σ Ω Ω ∈

∫ ∫

∫ ∫

� � � � �� � � �
i i

�� � �
(2.12) 

 

If a system is left on its own for a long time , then the angular flux will take the 

shape of the eigenfunction corresponding to the α  with the largest real part ( 0α ).  If 0α  
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is positive then the system is supercritical; if 0α  is negative then the system is sub-

critical; and if 0α  is zero then the system is critical. 

The k-eigenvalue calculations are made to ascertain the neutron multiplication factor.  

The k-eigenvalue problem replaces the average number of neutrons per fission ( )υ  with 

k

υ
.  The physical interpretation is that υ  can be adjusted such that a solution to Eq. (2.7) 

exists: 

 

 

( ) ( ) ( ) ( )

( )
( ) ( )

, , , , , , ,

, , , , .
4

t s

f

r E r E d dE r E r E E

E
dE r E d r E r V

k

ψ ψ

χ
υ ψ

π

′ ′ ′ ′ ′ ′ Ω ∇ + Σ Ω = Ω Ω Σ Ω → Ω → 

′ ′ ′+ Σ Ω Ω ∈

∫ ∫

∫ ∫

� � � � �� � � �
i

�� � �
 (2.13) 

 

Any chain reaction system with a non-zero 
f

υΣ  can be made critical by such an 

adjustment.4  There will always be a largest eigenvalue, k, for which the associated 

eigenfunction, ψ , is non-negative.  If this value of k is greater than one then the system 

is super-critical; if it is one then the system is critical; if it is less than one the system is 

sub-critical.  Solutions to the k-eigenvalue equation are often found using power iteration. 

 

D.   Discretization in Time 

We do not analyze time-dependent problems in this research.  We provide a brief 

discussion of discretization in time only to give a perspective of the benefits an adaptive 
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algorithm may have in time-dependent problems.  Finite-differencing the derivative in 

time is the approach most often taken.  The exact equations are integrated over the time 

step 1n n
t t t −∆ = −  and functions are denoted with an over-bar to indicate they are 

averages over the time step: 

 

 ( ) ( )
1

1
, , , , ,

n

n

t

t

r E dt r E t
t

ψ ψ
−

Ω = Ω
∆ ∫

� �� �
 (2.14) 

 ( ) ( )
1

1
, , , ,

n

n

t

ext ext

t

S r E dtS r E t
t

−

= Ω
∆ ∫

�� �
 (2.15) 

 

We lump the fission term into our external source term ( )extS  and substitute the 

average definitions (Eqs. (2.14) and (2.15)) into Eq. 2.6 to form the time difference 

equation: 

 

 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1

0 4

, , , ,
, , , , ,

, , , , , ,

n n

t

ext s

r E r E
r E r E r E

t

S r E dE d r E E r E
π

ψ ψ
ψ ψ

ν

ψ

−

∞

Ω − Ω
+ Ω ∇ Ω + Σ Ω =

∆

′ ′ ′ ′ ′ ′Ω + Ω Σ Ω → Ω → Ω∫ ∫

� �� �
� � � �� � �
i

� � �� � �
 (2.16) 

 

( )1 , ,
n

r Eψ − Ω
��

 is known from the previous time step; however ( ), ,
n

r Eψ Ω
��

 and 

( ), ,r Eψ Ω
��

 are not known.  The simplest solution is to assume a relationship among the 

three, such as: 
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 ( ) ( ) ( ) ( )1, , , , 1 , ,
n n

r E r E r Eψ βψ β ψ −Ω = Ω + − Ω
� � �� � �

 (2.17) 

 

We use Eq. (2.17) to eliminate ( ), ,
n

r Eψ Ω
��

 from Eq. (2.16): 

 

 

( ) ( ) ( ) ( )
( )

( ) ( )

1

0 4

, ,1
, , , , , , ,

, , , ,

n

t ext

s

r E
r E r E r E S r E

t t

dE d r E E r E
π

ψ
ψ ψ

βν βν

ψ

−

∞

 Ω 
 Ω ∇ Ω + Σ + Ω = Ω +   ∆ ∆   

′ ′ ′ ′ ′ ′+ Ω Σ Ω → Ω → Ω∫ ∫

��
� � � � �� � � �
i

� �� �

(2.18) 

 

We now solve a series of steady state problems (one per time step) with an 

“effective” total cross section and an “effective” source.  We eliminate the over-bars and 

combine the terms within brackets: 

 

 ( )
( )

( )1 , ,
, , , ,

n

ext ext

r E
S r E S r E

t

ψ

βν

−
 Ω
 Ω + → Ω
 ∆ 

��
� �� �

; (2.19) 

and 

 ( ) ( )
1

, ,
t t

r E r E
tβν

 
Σ + → Σ 

∆ 

� �
. (2.20) 

 

Eq. (2.18) can now be written as a time-independent equation: 
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( ) ( ) ( )

( ) ( ) ( )
0 4

, , , , ,

     , , , , , , .

t

ext s

r E r E r E

S r E dE d r E E r E
π

ψ ψ

ψ
∞

Ω ∇ Ω + Σ Ω =

′ ′ ′ ′ ′ ′Ω + Ω Σ Ω → Ω → Ω∫ ∫

� � � �� � �
i

� � �� � �  (2.21) 

 

E.   Discretization in Energy 

The multi-group approximation to discretize the energy variable divides the energy 

range of the particles into G intervals with 0
G

E =  and 0E  sufficiently large such that 

the number of particles with energies above 0E  is insignificant.  The particles in group g 

are defined as particles with energies greater than 
g

E  and less than 1g
E − .  The objective 

here is to obtain an approximation to the transport equation in terms of the group angular 

flux:4 

 

 ( ) ( ) ( )
1 1

, , , , ,
g

g

E g

g

E g

r dE r E dE r Eψ ψ ψ
− −

Ω = Ω = Ω∫ ∫
� � �� � �

 (2.22) 

 

Now divide the energy integral in Eq. (2.22) into the contributions from each energy 

group: 

 

 

( ) ( ) ( ) ( )

( ) ( )
1

1 4

, , , , , , ,

, , , , .

t ext

gG

s

g g

r E r E r E S r E

dE d r E E r E
π

ψ ψ

ψ
′−

′= ′

Ω ∇ Ω + Σ Ω = Ω

′ ′ ′ ′ ′ ′+ Ω Σ Ω → Ω → Ω∑ ∫ ∫

� � � � �� � � �
i

� �� �  (2.23) 
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Then integrate over the energy range 
g

E  to 1g
E − : 

 

 

( ) ( ) ( ) ( )

( ) ( )

1 1 1

1 1

1 4

, , , , , , ,

, , , , .

g g g

t ext

g g g

g gG

s

gg g

dE r E dE r E r E dES r E

dE dE d r E E r E
π

ψ ψ

ψ

− − −

′− −

′= ′

Ω ∇ Ω + Σ Ω = Ω

′ ′ ′ ′ ′ ′+ Ω Σ Ω → Ω → Ω

∫ ∫ ∫

∑∫ ∫ ∫

� � � � �� � � �
i

� �� �
 (2.24) 

 

Next define group source as follows: 

 

 ( ) ( )
1

, , ,
g

g ext

g

S r dES r E

−

Ω ≡ Ω∫
� �� �

 (2.25) 

 

The next step is to assume a shape function in energy (an energy spectrum) and use it 

in place of the exact solution ψ  to obtain group-averaged cross sections.  This is called 

the spectrum " "f  and the multi-group approximation is: 

 

 

( ) ( )

( )

( ) ( )

( )
( )

1 1

1 1

, , , , ,

, , ,

g g

t t

g g

tgg g

g g

dE r E r E dE r E f r E

r

dE r E dEf r E

ψ

ψ

− −

− −

Σ Ω Σ

→ ≡ Σ

Ω

∫ ∫

∫ ∫

�� � � �

�

�� �
, (2.26) 

 

( f  is usually assumed to be independent of direction) and 
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( ) ( )

( )

( ) ( )

( )
( )

1 1

1

1 1

,1

, , , ,

, ,

, , ,

, .

,

g g

s

g g

g

g

g g

s

g g

s g gg

g

dE dE r E E r E

dE r E

dE dE r E E f r E

r

dE f r E

ψ

ψ

′− −

′

′−

′

′− −

′

′→′−

′

 
′ ′ ′ ′ ′Σ Ω → Ω → Ω 
  

′ ′ ′Ω

 
′ ′ ′ ′Σ Ω → Ω → 
   ′→ ≡ Σ Ω → Ω

′ ′

∫ ∫

∫

∫ ∫

∫

� �� �

��

�� �

��

�

 (2.27) 

 

We apply the definitions (Eqs (2.22) and (2.25))  and the approximations (Eqs (2.26) 

and (2.27)) to Eq. (2.24): 

 

 
( ) ( ) ( )

( ) ( ) ( ),

4

, ,

        , , , ,

g tg g

g s g g g

r r r

Q r d r r
π

ψ ψ

ψ′ ′→

Ω ∇ Ω + Σ Ω =

′ ′ ′Ω + Ω Σ Ω → Ω Ω∫

� � � �� � �
i

� � �� � �  (2.28) 

 

where we have defined a group fixed plus in-scattering source: 

 

 ( ) ( ) ( ) ( ),
1 4

, , , , .
G

g g s g g g

g
g g

Q r S r d r r
π

ψ′ ′→
′=
′≠

′ ′ ′Ω = Ω + Ω Σ Ω → Ω Ω∑ ∫
� � � �� � � �

 (2.29) 

 

The multi-group equations are exact if the angular flux is separable and the energy 

spectrum is known (Eq. (2.30)) or if the cross sections are piecewise constant (Eq. 

(2.31)). 
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 ( ) ( ) ( ), , , ,r E y r f r Eψ Ω = Ω
� �� � �

, (2.30) 

 

or 

 

 
( ) ( )

( ) ( )
1 1

2 1

,  for ,  and

, , ,  for .

t g g

s g g

r E C r E E E

r E E C r E E E

−

′ ′−

Σ = ≤ ≤

′ ′ ′Σ → Ω → Ω = Ω → Ω ≤ ≤

� �

� �� �  (2.31) 

 

The multi-group equations are a coupled set of one-group equations each with the 

form given in Eq (2.33): 

 

 ( ) ( ) ( ) ( ) ( ) ( )
4

, , , , ,t ext sr r r Q r d r r
π

ψ ψ ψ′ ′ ′Ω ∇ Ω + Σ Ω = Ω + Ω Σ Ω → Ω Ω∫
� � � � � � �� � � � � �
i  (2.32) 

 

Solving multi-group time-dependent problems involves solving many equations in 

the form of Eq. (2.32).  Solving an eigenvalue problem, with energy discretized by the 

multi-group method also requires solving many equations of the same form.  For this 

reason we focus our research on finding solutions to equations in this form. 

 

F.   Discretization in Angle 

It is convenient to expand the differential scattering cross sections in the orthogonal 

Legendre polynomials:4 
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 ( )
( ) ( )

( ) ( )0
0

0

, 2 1
,

2 4
s

s sl l

l

r l
r r P

µ
µ

π π

∞

=

Σ +
′Σ Ω → Ω = = Σ∑

�
� �� �

 (2.33) 

 

where we make the usual assumption that the scattering probability depends only on the 

scattering angle, whose cosine is ′Ω Ω
� �
i : 

 

 0 cos ine of the scattering angle.µ′Ω Ω = =
� �
i  (2.34) 

 

We can make this conclusion (that the scattering reaction depends on the angle 

between the initial direction of travel and the final direction of travel) since we assumed 

that the material has isotropic properties. 

We have chosen to restrict the class of problems that we address in this work to 

simplify our study, because even with restrictions the problem space is very rich.  In our 

case we will analyze problems with isotropic scattering and sources; therefore we 

require only the zeroth moment in the scattering expansion: 

 

 ( ) ( ) ( )( ) ( ) ( )0 0 0

1
, , 1

4
ext sQ r Q r d r r Pψ µ

π
′ ′Ω = + Ω Ω Σ

� �� � � � 1

4π

 
 
 

∫  (2.35) 

 

 ( ) ( ) ( ) ( )
1

.                                 ,        
4 ext s

Q r r rQ r φ
π

= + Σ  Ω
��� � �

 (2.36) 
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We use the definition of scalar flux to obtain Eq. (2.36); we then replace the right 

hand side of Eq. (2.32) to obtain the time independent one-group transport equation with 

isotropic sources: 

 

 ( ) ( ) ( ) ( ) ( )
1

, ,
4t ext s

r r r Q r rψ ψ φ
π

Ω ∇ Ω + Σ Ω = + Σ  
� � � �� � � � �
i . (2.37) 

 

F.1.   Discrete Ordinate Method 

One approach to discretizing the angular variable is to find the solution of the 

transport equation in specific angular directions.  The discrete-ordinates method 

(commonly called SN) does this and replaces angular integrals with quadrature sums: 

 

 ( ) ( )m mdiscrete-ordinates
m 14

M

d f w f
π =

Ω Ω → Ω∑∫
� �

, (2.38) 

 

where mw  and mΩ
�

constitute the mth weight and mth direction respectively of the 

“quadrature set.”  Thus, the discrete-ordinates approximation for the “angular moments” 

(which appear in the scattering and fission terms) is: 

 

 ( ) ( ) ( )*
, ,

1

,
N

M

k n m k n m mS
m

r w Y rφ ψ
=

→ Ω Ω∑ � � �
�

� �� �
, (2.39) 
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where *
kn

Y  is the complex conjugate of the normalized spherical harmonics functions 

kn
Y .4  With the discrete-ordinates method, we need to find the angular flux only at M  

different angles { }m
Ω
�

.  We define ( )m m
ψ ψ≡ Ω

�
 and rewrite Eq. (2.37) with the 

expansion of the differential scattering cross section in the form of one-group discrete-

ordinates equations: 

 

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ), , ,
0

1
        2 1    1, , .

4

m m t m

K k

ext s k k n k n m

k n k

r r r

Q r k r r Y m M

ψ ψ

φ
π = =−

Ω ⋅∇ + Σ =

 
+ + Σ Ω = 

 
∑ ∑

� � � � �

�� � �
…

 (2.40) 

 

Thus, by replacing the integral over the direction variable with a quadrature sum, we 

can reduce the steady state one-group transport equation to a set of coupled first order 

differential equations in which the unknowns mψ  depend only on position.  The 

following well known production codes utilize the discrete-ordinates method for neutral 

particle transport, TORT14 and PARTISN.15   In problems with isotropic scattering 

( )0K =  one only needs the 0th angular moment, therefore Eq. (2.40) becomes: 

 

 ( ) ( ) ( ) ( ) ( ) ( )
1

,    1, ,
4m m t m ext s

r r r Q r r r m Mψ ψ φ
π

Ω ⋅∇ + Σ = + Σ =  
� � � � � � � �

… , (2.41) 

 

where 
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 ( )
1

M

m m

m

r wφ ψ
=

≡∑ � �
�

�
. (2.42) 

 

F.2. Other Methods 

Another approach to angular discretization is to assume that ( )ψ Ω
�

 is a linear 

combination of known basis functions: 

 

 ( ) ( ) ( )
1

,
M

m mfunction
expansion m

r r bψ ψ
=

Ω → Ω∑
� �� �

�  (2.43) 

 

The coefficients ( )mψ�  are unknown; the moments of the basis functions ( )mb  are 

known.  A standard way of finding the coefficients in a function expansion is the 

weighted-residual approach.  This approach inserts the function expansion into the 

equation and defines the residual as the difference between the right- and left-hand sides 

of that equation.  If the residual is zero for all values of r
�

 and Ω
�

 then the expansion is 

perfect. 

This ideal result almost never happens.  However, it is possible to choose the 

expansion coefficients so that the residual is minimized in some sense.  For example, we 

could force M different weighted integrals of the residual be zero.  This is called the 

weighted-residual approach.  Insert Eq. (2.43) into Eq.(2.37) and expand the scattering 

source: 
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( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

, , ,
0

1
                     2 1 ,

4

M

t m m

m

K k

ext s k k n k n m

k n k

r r b

Q r k r r Y

ψ

φ
π

=

= =−

 Ω ∇ + Σ Ω = 

 
+ + Σ Ω 

 

∑

∑ ∑

� � �� �
�i

�� � �
 (2.44) 

 

where 

 

 ( ) ( ) ( ) ( )*
, ,

1 4

M

k n m k n m

m

r r d Y b
π

φ ψ
=

≡ Ω Ω Ω∑ ∫�
�

� �� �
�  (2.45) 

 

Then for some set of M weight functions ( )mw , we require: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

14

, , ,
04

1
2 1 ,  1 .

4

M

m t m m

m

K k

m ext s k k n k n m

k n k

d w r r b

d w Q r k r r Y m M

π

π

ψ

φ
π

=

= =−

 Ω Ω Ω ∇ + Σ Ω = 

 
Ω Ω + + Σ Ω = 

 

∑∫

∑ ∑∫

� � � �� �
�i

� �� � �
…

 (2.46) 

 

This yields M equations for the M expansion coefficients ( )mψ� .  If the weight and 

basis functions are spherical harmonic functions through order N then this is called the 

“spherical harmonics” or PN method.  If the weight and basis functions are nonzero only 

over small local portions of the direction domain, this is called a finite-element method 

(FEM) in angle.  If the weight and basis functions span the same function space, the 

weighting is called Galerkin weighting. 
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G.   Spatial Discretization 

We begin with the discrete-ordinates equations (Eq. (2.41)) in two-dimensional 

Cartesian coordinates: 

 

 
( ) ( ) ( ) ( ) ( )

1
, , , , , ,

4

1, , ,

m m t m ext s
x y x y Q x y x y x y

x y

m M

µ η ψ φ
π

 ∂ ∂
+ + Σ = + Σ    ∂ ∂ 

= …

 (2.47) 

 

where 

 

  and m m x m m ye eµ η= Ω = Ω
� �� �
i i . (2.48) 

 

We examine an arbitrary cell from a rectangular grid and direction, 
m

Ω
�

 as shown in 

Figure 4. 
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Figure 4   A rectangular cell with an angular flux entering through the left (L) and 

bottom (B) edges and exiting through the top (T) and right (R) edges. 
 

We suppress the direction subscript, m and define the fluxes averaged over the cell 

edges and area respectively as: 

 

 ( )
0

1
,

y

R dy x y
y

ψ ψ
∆

= ∆
∆ ∫ ; (2.49) 

 

 ( )
0

1
,

x

T dx x y
x

ψ ψ
∆

= ∆
∆ ∫ ; (2.50) 

 

 ( )
0 0

1
,

y x

A dy dx x y
x y

ψ ψ
∆ ∆

=
∆ ∆ ∫ ∫ ; (2.51) 

 

o0
 

mψ  

,m A
ψ  ,m R

ψ  

,m T
ψ  

,m B
ψ  

,m L
ψ  

x∆  

y∆  

o90
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 ( ) ( ) ( )
0 0

1 1
, , ,

4

y x

A ext sq dy dx Q x y x y x y
x y

φ
π

∆ ∆

 = + Σ ∆ ∆ ∫ ∫ . (2.52) 

 

 and 
L B

ψ ψ  are defined similarly.  We now integrate Eq. (2.47) over the cell area and 

divide by x y∆ ∆  in order to obtain the balance equation for the cell: 

 

 
( ) ( )R L T BA

A

t x y

q ψ ψ ψ ψ
ψ

τ τ

− −
= − −

Σ
, (2.53) 

 

where 

 

  and t t
x y

x y
τ τ

µ η

Σ ∆ Σ ∆
= = . (2.54) 

 

Equation (2.53) contains no spatial approximation and therefore is exact.4  For this 

research we have chosen to use the Step Characteristic method, which assumes the 

scattering and fixed sources are constant in each cell.  The total macroscopic cross 

section is constant throughout the cell.  Incident and exiting angular fluxes are averaged 

over their respective cell edges. 

The Step Characteristic (SC) method was first developed by Lathrop.16  Although we 

derive our SC method in rectangular cells, the original derivation of the method does not 

make assumptions about the shape of the cell. 
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The exit flux for the cell in Figure 4 can be expressed in terms of a suitable linear 

combination of the incident flux and the average source term, ( )Aq .  For example, in Fig. 

4 the direction of interest is such that exiting angular flux through the top surface 

depends only on the incident flux through the left surface and Aq : 

 

 ( ) ( )0 01A
T L x x

t

q
M Mψ ψ τ τ = + − Σ

, (2.55) 

where we use exponential moment function defined by Walters:17 

 

 ( )
( )

0

1 x

x

x

e
M

τ

τ
τ

−−
= . (2.56) 

 

The SC method is monotonic, positive and simple, but somewhat diffusive.  On 

square cells in the Cartesian coordinate system it has the added disadvantage of 

characteristic anomalies at all 
4

nπ
 directions.  These anomalies effectively cause 

inaccuracies in angular flux and all angular moments of angular flux.  Despite these 

flaws, it is well suited for the research we present in this dissertation.  We present a more 

detailed derivation of the SC formulas in Appendix A. 

 



 30 

H.   Solution Methods 

We use source iteration (iteration on the scattering source) in this research for 

solving simultaneous equations.  Calculations are made using “iterative sweeps” in the 

direction of particle flow.  Each iteration consist of four sweeps through a rectangular 

grid mesh: 

 

 

0, 0 left to right; bottom to top. (1)

0, 0 right to left; bottom to top. (2)

0, 0 right to left; top to bottom. (3)

0, 0 left to right; top to bottom. (4)

µ η

µ η

µ η

µ η

> >

< >

< <

> <

 

 

The source in each cell is updated using the discrete-ordinates approximation Eq. (2.42): 

 

 [ ]
1

4A s A
q Q φ

π
= + Σ . (2.57) 

 

I.   Summary 

Deterministic solutions of the particle transport equation are difficult.  However, they 

are made more manageable when they are reduced to coupled sets of one-group fixed-

source steady-state equations.  In this section we reviewed some of the ways that the 

transport equation’s variables can be discretized: 

• Finite-differencing the derivative in time; 

• The multi-group approximation for energy; 



 31 

• The discrete-ordinates method in angle; 

• 2-D Cartesian geometry step characteristic for position. 

We also outlined the source-iteration procedure for solving the discrete equations. 
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III.   QUADRATURE RULES 

 

The classical quadrature rule is based on the following equation: 

 

 ( ) ( ) ( )
1

d
b N

i i

ia

w x f x x w f x E
=

= +∑∫ . (3.1) 

 

The set of { }ix  are the quadrature nodes or abscissae, ( )w x  is the weight function and 

{ }iw  are the quadrature weights.  N is the number of points in the quadrature set and E is 

the error.  A quadrature formula is said to have nth-order precision if it exactly integrates 

all polynomials of degree n or less.  The values of { } { } and i iw x  depend on the interval 

of integration [ ],a b  and on the weight function.  If a set { }ix  does not include the 

endpoints  and a b  the rule is said to be an open rule.  An open rule is useful when 

evaluating integrals that exhibit endpoint singularities.  A closed rule includes the 

endpoints of the range. 

 

A.   Newton-Cotes Rules 

Newton-Cotes rules are formulas for a constant weight function and a finite interval 

of integration.18  The two “primitive rules” are the mid-point rule, shown in Eq. (3.2), 

and the trapezoidal rule, shown in Eq. (3.3): 
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The interval of integration [ ],a b  is divided into N  segments of length 
b a

h
N

−
= .  The 

mid-point rule is an open rule, where the quadrature points ip  are: 

 

 
( ){ }2 1 , 1, ,

2
i

i
p i Na h

−= =+ … ; (3.4) 

 

the trapezoidal is a closed rule, where the quadrature set includes the end points  and a b  

and points iq , which are: 

 

 { }, 1, , 1iq i Na ih= = −+ … . (3.5) 

 

There derivations are simple and they are likely to be the first rules introduced in any 

common math text. 

Another simple, higher order and commonly used rule is Simpson’s rule.  The beauty 

of Simpson’s rule, and the reason it is so widely used, is that it is derived to integrate 
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exactly a quadratic polynomial, but the resulting formula integrates a cubic 

polynomial:19 
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Although we do not examine Simpson’s rule directly, we will introduce another rule that 

has some similarities to Simpson’s rule in the azimuthal angle space. 

 

B.   Level Symmetric Rule 

Level-symmetric quadrature rules are widely used when solving the Boltzmann 

transport equation.20  The ordinates are arranged on the unit octant bounded by axes in 

the direction cosines ( ),  ,  and µ η ζ .  The set of positive values on each axis are the 

same: 

 

 1,2, ,
2

n n n

N
nµ η ζ= = = …  (3.7) 

 

The set of ordinate directions is invariant to o90  rotations about any axis.  A widely 

used level-symmetric set of order N  has only one degree of freedom.4  The weights are 
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determined using a geometric association described in Ref. 3.  One significant drawback 

of the level-symmetric quadrature rule is negative weights for 20N > . 

 

C.   Gaussian Rules 

More advanced rules (e.g. the theory of Gaussian quadrature) choose the abscissae 

{ }ix  in addition to the weights { }iw  to maximize the order of the polynomials that they 

integrate.  Finding the { }ix  requires the solution of non-linear equations, whose 

solutions are based on the zeros of an associated set of orthogonal polynomials.  An N-

point Gaussian quadrature rule yields an exact result for polynomials of degree 2 1N − .  

There are Gaussian quadrature rules associated with Legendre polynomials, Jacobi 

polynomials and Chebyshev polynomials of the first kind. 

The Gaussian based rules that we examine in this work are based on the Chebyshev 

polynomials of the first kind and the polynomials developed by I. K. Abu-Shumays.  We 

do not attempt any refinements in the level-symmetric quadrature sets. 

Abu-Shumays’ work takes advantage of the inherent symmetries in two dimensions 

in order to develop accurate angular quadrature abscissae and weights “especially suited 

for the net and/or partial currents and all the net and/or partial moments of the neutron 

flux.”21   His work details the use of Chebyshev-Gauss rules to derive product quadrature 

sets to solve integrals in the form of Eq. (3.8): 
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Abu-Shumays divides his integral into a product quadrature set between the polar 

( )θ  and azimuthal ( )γ  directions.  Since two dimensional problems are relatively 

smooth in the polar directions, the real interest and difficulties lie in the azimuthal 

directions.  The Abu-Shumays quadrature sets enumerated in his paper will accurately 

integrate higher order polynomials in the form of Eq.(3.9). 

 

 ( )
2

0

cos sinl m
d

π

γ γ γ∫  (3.9) 

 

D.   Disadvantages of “Static” Quadrature Rules 

The Gaussian quadrature and other such advanced rules can have high accuracy 

compared to Newton-Cotes rules, but at a potentially high cost.  It is a common practice 

when comparing quadrature rules to take an increasing size (number of abscissae) and 

show their accuracy when solving a particular integral.  If one were to use a generalized 

Simpson’s rule each time the size of the quadrature set doubled the Simpson rule uses 

the points from the previous set (i.e. 2, 4, 8, 16 …).  Therefore the number of function 

evaluations are 2 2 4 8+ + + � .  A comparable Gaussian function evaluation does not use 
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the same points from the previous set.  The Simpson sets yields answers at half the cost 

of the Gaussian.  Although it may be less accurate, a progressive rule like Simpson’s 

may be more useful with its lower cost. 

All quadrature rules have difficulty when they are used to evaluate a region where a 

sharp “spike” or discontinuity may be present (a “peaky” function).  Although 

convergence may appear to occur without any complications, the unseen spike in an 

otherwise smooth function (or data) can create different answers as one changes the size 

of the quadrature set.  If one knows how a rule works, it is a relatively simple task to 

invent a problem that defeats it. 

Oscillatory problems can pose a huge difficulty for most quadrature rules as well.  

This is especially true when the number of oscillations is greater than the density of the 

abscissae in the quadrature set.  These problems arise quite frequently in reactor physics 

and source shielding problems.  They are the main cause of the so-called ray effects that 

were defined in a previous section.  Another approach to solving these problems is to 

move the oscillatory part of the problem into the weight function of Eq. (3.1).  It is 

possible to generate a Gaussian formula with the weight functions ( )cos xω  and 

( )sin xω .  However, this approach is extremely expensive since it requires different 

rules for different combinations of intervals of integration, oscillatory rates ( )ω  and 

types of oscillation (e.g. trigonometric or Bessel).  One of the earliest attempts at such an 

approach was made by Filon.22 

Singularities are also a major hurdle to over come when finding a rule to solve an 

integral.  Most attempts of solutions to these problems involve the careful selection of a 
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quadrature set to avoid the placement of a point near or on the singularity.  Here, like in 

the oscillatory problems, it is possible to come up with special weighted Gaussian rules 

to solve unique problems, but these are also very expensive and require prior knowledge 

of the locations of the singularities.  In real world problems, for example reactor physics 

and shielding, the analyst can not always be certain where a singularity will occur. 

A more practical approach is to begin with a Newton-Cote rule and refine the range 

of integration where more points are needed to accurately interpolate the function.  A 

higher accuracy can be obtained through subdividing of the range around the 

singularities. 

 

E.   Adaptive Quadrature Rules 

Rules are said to be adaptive if they automatically change the size of the quadrature 

set through refinement or coarsening in difficult regions within the range of integration.  

The popularity of automatic integrators is directly related to the advent of the computer 

age. 

Adaptive discrete-ordinate rules are generally problem specific locally refined 

approaches (locally refine a quadrature set to provide a very high number of angles in a 

directional cone).  Longoni and Haghighat developed a technique they call Ordinate 

Splitting.  The idea is to select a direction of flight of the particle and split it into a 

certain number of directions of equal weights, while conserving the original weight.23   

In another technique they call “regional angular refinement” or RAR, Longoni and 

Haghighat begin with a PN-TN quadrature set of arbitrary order on one octant of a unit 
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sphere.  They use the Legendre polynomials in the polar direction and Chebyshev 

polynomials of first kind in the azimuthal direction to generate extra quadrature points in 

specific regions (directions) inside the octant.24   Brown and Chang use a simple 

quadrature rule to subdivide the cone using triangular tessellations in 3D and rectangular 

tessellations in 2D.25 

The simplest adaptive rule makes use of a progressive rule by starting with a small 

number of points and successively dividing the range until the desired accuracy is 

achieved.  The simple idea here is to increase the number of quadrature points in a 

trouble region and eventually have a dense enough concentration of quadrature points to 

evaluate it properly.  Quadpack by Piessens, Doncker-Kapenga, Überhuber and Kahanr 

is one of the more well known packages for solving difficult mathematical problems.26  

In this package the authors subdivide the intervals of integration based on error 

calculation over subintervals, applying a finer quadrature set to each sub-interval.  The 

quadrature rules most utilized for this approach are the Gauss-Kronrod rules.  They are 

employed by many software packages (e.g. Quadpack and Mathemattica™).  These 

formulae rely on the error estimation at the so called “Kronrod points,” which are based 

on the zeros of Legendre polynomials and Stieltjes polynomials.  The major advantage 

of this method is to allow the reuse of previously evaluated abscissae, that is to say it is 

progressive.  One of the major drawbacks of the Gaussian rules is that they are not 

progressive.  Kronrod showed that by adding 1n +  abscissae to the Gaussian rule it was 

possible to generate a quadrature rule which would be progressive and integrate exactly 

polynomials of degree 3 1n +  for n  even 3 2n +  for n  odd.27  Quadpack and many other 
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mathematical packages (mainly written in FORTRAN) are available online at 

http://gams.nist.gov/. 

We postulate that an adaptive method would be extremely helpful in our goal to 

mitigate ray effects and other discretization errors in the discrete-ordinates 

approximation.  Using an adaptive method like the one described above could be very 

expensive when solving the transport equation.  Our approach is start with a Newton-

Cotes or Gaussian rule, then efficiently add quadrature points at specific trouble spots (at 

sharp peaks or around singularities) in the angular flux function.  We describe our 

approach in detail in Section 4. 

 

F.   Summary 

The “primitive” Newton-Cotes rules are simple yet useful as starting quadrature sets 

for adaptive algorithms.  The level-symmetric rule is commonly used in today’s 

transport calculations; however it is limited to order S20 and it is not adaptable.  The 

Gaussian rules are more advanced but can be expensive to implement.  Adaptive rules 

are becoming very popular and could be very useful to mitigate ray effects and other 

angular discretization errors in discrete-ordinates approximations. 
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IV.   THE ADAPTIVE STRATEGY 

 

A.   The Argument 

Our adaptive algorithm by necessity uses more computer processor (cpu) time per 

unknown.  This investment is made in order to compare interpolative values with 

computed transport values.  However, this hindrance can be mitigated by the reduced 

number of unknowns to achieve a given accuracy.  It can be further mitigated in time-

dependent problems, where the cpu time necessary for our adaptive logic can be 

amortized over several time steps.  In other words, it may not be necessary to adapt on 

every time step in a time-dependent problem (or even every iteration in a steady-state 

problem).  In addition, an adaptive algorithm produces a given accuracy with 

significantly fewer unknowns in general, resulting in significant memory savings.  This 

savings can be very important in particle-transport problems.  One could also argue that 

it may be well worth additional expense to provide the user confidence that the solution 

is accurate to within the tolerance specified. 

 

B.   The Adaptive Algorithm 

The two-dimensional problems we analyze in this work have relatively smooth 

solutions in the polar direction and therefore may be integrated with relatively few 

Gaussians polar-quadrature points.  Thus, there exists a “product quadrature set” that can 

accurately perform the needed angular integrals.  By “product” quadrature we mean the 
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combination of two one-dimensional quadrature sets (one in the polar direction and one 

in the azimuthal).  We write our product quadrature approximation in the following 

manner: 
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Product quadratures are not a new idea for transport calculations.  For example, Abu-

Shumays derived Gaussian class quadrature sets that he presented as “product 

formulas.”28  In Eq (4.1) θ  and γ  are the polar and azimuthal directions, respectively.  

Notice that the azimuthal direction has the m index to specify that each polar level may 

have its own set of azimuthal angles independent of other levels.  Typical quadrature sets 

will have a varying number of azimuthal angles on each level with more toward the 

equator and fewer near the pole of the polar dimension (e.g. level symmetric quadrature 

sets).  For simplicity, in our current implementation we require all polar levels to have 

the same azimuthal quadrature set before adaptive refinement. 

We divide the spatial domain into regions and divide each region into cells.  All cells 

within the spatial region have the same quadrature set.  We apply our adaptive logic to 

the exiting angular flux along each region boundary.  We determine the interpolative 

angular flux values (or extrapolative values near the ends of the “open” intervals).  We 

compare these values against the actual exiting flux that is calculated by “sweeping” the 
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region at the test direction.  If the relative difference between these values does not meet 

a user provided tolerance then the test point is added to the quadrature list. 

At least one iterative sweep of the problem must be completed before any refining of 

a quadrature set can commence.  If the problem has some highly scattering regions in it, 

then it may be preferable to perform many iterative sweeps before performing any 

adaptive process.   This allows the problem to step towards convergence and achieve 

more accurate values for exiting flux, thus providing a more accurate interpolation.  The 

user determines how often to perform the refinement process. However, in the purely 

absorbing case, there is no scattering source to converge; therefore, in purely absorbing 

problems we adapt after every iterative sweep. 

If a refinement test is to be made on the next iterative sweep the values of exiting 

angular flux on region boundaries are stored during the current iterative sweep.  The 

refinement sweep (a modified iterative sweep) is conducted on a region by region basis 

(one polar level at a time).  Figure 5 illustrates a linear test adaptive method. 
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Figure 5   A linear-interpolation adaptive method. 

 

Angular fluxes 1 2 and ψ ψ  at quadrature points 1 2 and γ γ  are the results stored from 

the previous iterative step.  In the testing phase of the algorithm, we evaluate a test 

angular flux ( )comp
ψ  at the midpoint ( )testγ  between 1 2 and γ γ .  We evaluate the 

interpolated angular flux ( )intψ  at the same test angle using an interpolative method 

chosen by the user.  We compare the absolute value of the difference between the two 

values ( )ψ∆  against the tolerance criterion ( )TC : 
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The relative error ( )reε and threshold tolerance ( )thε  are user specified.  The 

threshold tolerance, multiplied by an average angular flux evaluated in the cell, is a 

limiter to the adaptive process.  It helps prevent “over-adapting.”  There may be some 

ranges of flux that are extremely small compared with the overall angular flux function.  

This added tolerance helps to ensure that the algorithm does not continue to adapt to 

resolve ever smaller and possibly insignificant angular flux.  However, although a value 

may seem insignificant at one spatial point, it may be significant elsewhere.  If there is 

not an appropriate refinement taking place, the user can use a larger initial starting 

quadrature set or set the threshold tolerance, εth, to a very small value.  As 0
th

ε →  the 

TC  becomes simply a relative-error test. 

After all midpoints in a region list have been tested (on every polar level within a 

quadrant), the adaptive logic adds the test angles that failed the tolerance test 

( TCψ∆ > ) to the region’s quadrature set.  If the test angle passes the test ( TCψ∆ < ), 

the adaptive logic accepts the interpolated value of angular flux as the correct angular 

flux, therefore rejecting the test point.  This procedure may cause neighboring regions to 

have different quadrature sets, which sometimes requires the use of interpolated values 

from one region as incident angular fluxes on adjacent regions.  Once all testing in a 

region is complete, the program calculates a new region scalar flux using a normal 

iterative sweep.  We update the scattering source after all regions have been refined and 

then swept with their new quadrature sets. 

 



 46 

C.   Conservation 

Since each region locally refines the initial quadrature list to its own needs, the 

quadrature sets of neighboring regions will likely be different.  In Figure 6 we have 

illustrated this difference.  To conserve particle flow, we require the exiting partial 

current through each region’s surface to be identical to the incident partial current of the 

adjacent region’s surface.  However, given different quadrature sets, this will not happen 

in general unless we take steps to enforce it. 

 

 

 
Figure 6   Example in which the quadrature set of region A has fewer points than the 

quadrature set of region B. 
 

The angular current density is a vector quantity defined by: 

 

 ( ) ( ), , , , , ,j r E t r E tψ= ΩΩ Ω
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If  ne
�

 is the unit normal vector to the area 2
d r  then we define the discrete partial 

current: 

 

 

( ) 2
n
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If it is a positive quantity then flow is in the direction of ne+
�

 and if it is negative then 

flow is in the direction of ne−
�

. 

Partial current density is a non-negative scalar quantity defined as the rate per unit 

area at which particles cross an area 2
d r  from one side to the other.  Mathematically, 

partial current toward the ne+
�

side is defined: 

 

 ( ) ( ) ( )
n

2

n
0 : 0

, , , , ,e

e

J d dr E t e r E t

π

γ ψ+

Ω Ω>

= Ω Ω Ω∫ ∫� ��
i

� �� � �
i  (4.5) 

 

or 

 

 ( ) ( ) ( )
2

0 0

, , , , ,eJ d dr E t r E t

π

µ

γ µ ψµ+

>

= Ω∫ ∫
�� � , (4.6) 

 



 48 

where µ  is the direction cosine ( )ne Ω
��
i .  The partial current density in the ne−

�
 direction 

is defined: 
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After all refinements are complete and the convergence criteria have been achieved 

we perform one last sweep of the problem. We define a scaling factor ( )SF  as the ratio 

of the exiting partial current to the “old” incident partial current. 
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As with all previous sweeps of the problem, we must acquire the incident angular 

flux (for “Region B”) from the values of the exiting angular flux (of “Region A”).  We 

refer to this incident angular flux as the “old” incident angular flux ( )old
nψ .  The “old” 

incident angular flux is either directly equal to an exiting angular flux (i.e. they have the 

same direction) or it is the interpolant of the exiting angular flux.  Before a sweep of a 

region is commenced, all of the “old” incident angular fluxes are calculated and used to 

determine the SF .  We use the SF  to calculate a “new” incident angular flux: 
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 ( )new old
n nSFψ ψ= . (4.9) 

 

D.   The Quadrature Rules for Our Adaptive Methods 

There are many different algorithms for adaptive quadrature rules.  J. R. Rice claims 

that there are as many as 10 million different adaptive algorithms of interest with 

significant differences from one another.29  We concentrate our research on three types 

of quadrature rules and three similar adaptive algorithms. 

 

D.1 Linear 

In the first adaptive method we interpolate the exiting angular flux one point at a 

time with a mid-point rule (open).  This method uses a linear interpolation in the 

azimuthal dimension: 

 

 ( )f A Bγ γ= +  (4.10) 

 

We calculate a set of Chebyshev abscissae (Eq. (4.11)) for the initial population of 

all the quadrature sets:  
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where N is the number of abscissae per quadrant. 

  

  Since we employ a Cartesian grid system for our spatial discretization, 

discontinuities in the angular flux at a given spatial point can occur at the quadrant 

boundaries 
3

0,  ,  ,  
2 2

π π
π

 
 
 

.  This difficulty makes a closed quadrature rule on a 

quadrant basis hard to manage; therefore we begin with a mid-point rule on the range 0 

to 2π.  We divide the range into the usual four quadrants.  Obviously this also divides the 

quadrature points into four sets. 

An example N 3=  points per quadrant quadrature set is shown below.  Note that this 

is the initial (before first refinement) quadrature set and that each region, polar level and 

quadrant starts with an identical number ( )N  of equally spaced abscissae per quadrant: 
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The initial weights for the quadrature sets are the normal midpoint-rule weights (please 

refer to Eq. (3.2)): 
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Since these are Chebyshev points, these quadrature sets exactly integrate the 2Nth-order 

Chebyshev polynomials on the global interval [ ]0, 2π .  We discuss this observation in 

more detail in section C. 3 (the third adaptive algorithm). 

The midpoint angles between the existing abscissae of the quadrature sets are 

examined in each test phase.  Since the mid-point rule is open, we must also examine the 

angles between the extremes of the quadrature set and the quadrant boundaries.  We 

extrapolate using the two values at either the beginning or end of the quadrature list (see 

Figure 7).  We choose the test angles for the extrapolated points such that they are a 

sufficient distance away from the extreme values in the quadrature list.  We do this in 

order to approach singularities (if they exist) at the quadrant boundaries as quickly as 

possible: 
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The minimum azimuthal value ( )minγ  is the lower extreme of the quadrant boundary 
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2

q
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− 
 

 and the maximum azimuthal value ( )maxγ  is the upper extreme of the 

quadrant boundary 
2

q
π 

 
 

, where 1,2,3,4q = . 
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Figure 7   Example of the extrapolative linear test. 

 

When new abscissae are added to a quadrature set new weights are calculated for the 

neighboring points.  Our guiding principle for calculating quadrature weights is that we 

maintain consistency with an underlying finite-element basis set.  That is, we construct 

an interpolatory “basis function” for each quadrature point and integrate it to obtain the 

weight for that point.  In the current setting, with linear interpolation, we integrate the 

linear “tent” functions associated with each abscissa (as shown in Figure 8 and Figure 9).  

This means that the mid-point rule for the whole range (0 to 2π) only holds in the 

unrefined quadrature set.  Once the quadrature set has been refined the mid-point rule is 

no longer valid over the whole range. 
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Figure 8   Linear weight functions in quadrant q. 
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where ( )f +  is the positive sloping linear function and ( )f −  is the negative sloping 

linear function.  At the extreme values of the quadrant, it is necessary to integrate from 

the extreme quadrature points of the neighboring quadrants as shown in Figure 9. 
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Figure 9   Linear weight functions at the extreme of quadrant q. 

 

D.2.   Linear in Sine and Cosine 

The second adaptive algorithm employs basis functions that are linear in ( )sin γ  and 

( )cos γ .  It is similar to a 3-point Simpson rule.  We refer to it by the acronym LSC: 

 

 ( ) ( ) ( )cos sinf A B C A B Cγ γ γ µ η= + + ≡ + +  (4.17) 

 

In Figure 10 we choose three arbitrary angles (separated by γ∆ ) in a quadrant 

domain on the range of [ ],a bγ γ .  The three basis functions have a shape similar to 

quadratic functions in γ. 
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Figure 10  The LSC basis functions. 

 

The LSC weights are calculated by integrating the basis functions over the range 

[ ],a bγ γ .  The first and third basis functions’ integrals are equal on the range [ ],a bγ γ  as 

long as 3 1b a
γ γ γ γ− = − .  Note that these basis functions remain well defined if 

a
γ  is 

equal to 1γ  and/or 
b

γ  is equal to 3γ .  The only problem that may occur is negative 

weights for the middle basis function.  This happens when γ∆  is smaller than half the 

range between 1  and 
a

γ γ  or 3  and 
b

γ γ : 

 

 1

1

2
a

γ γ γ∆ < −  or 3

1

2
b

γ γ γ∆ < − , (4.18) 

 

γ∆  2γ  γ∆  3γ  
b

γ  
a

γ  1γ  
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where 2 1 3 2γ γ γ γ γ∆ = − = − .  To prevent negative weights from occurring we require 

points to be added between γa and γ1 and/or γ3 and γb  if Eq. (4.18) is true. 

Every LSC test phase requires that two mid-points be tested simultaneously.  If 

either interpolated value fails the test, then both points are added to the quadrature set.  

This is to ensure that pairs of quadrature intervals are evenly spaced (on the range of 

[ ],a bγ γ ) . 

The LSC is an open rule.  As in the linear method above, we must calculate the 

extrapolated values of LSC.    We use the Chebyshev abscissae as our initial quadrature 

points.  Two extrapolated values are tested between the quadrature extremes and the 

quadrant boundaries.  Logic must be inserted in order to prevent a situation from arising 

that cause the inequalities of Eq. (4.18). 

D.3.   Derivation of the LSC Basis Functions 

We begin with some definitions and shorthand notation: 

 

 ( ) ( ) ( )cos sin sin
x x x x x y x y

µ γ η γ η γ γ−= = = − . (4.19) 

 

We then set up the linear system of equations for solving the three constants associated 

with the first basis function: 
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1 1

2 2

3 3

1 1

1 0

1 0

A

B

C

µ η

µ η

µ η

    
    

=    
    
    

. (4.20) 

 

As mentioned above the range is [ ]1 3,a bγ γ γ γ≥ ≤ , where 

 

 ( )2 1 3

1

2
γ γ γ= + . (4.21) 

 

We use elimination to find the three constants for the function: 

 

 
( ) ( ) ( ) ( )

3 2

3 1 2 1 1 3 2 1

A
η η

µ µ η η η η µ µ

−
=

− − + − −  
; (4.22) 

 

 
( ) ( ) ( ) ( )

2 3

3 1 2 1 1 3 2 1

B
µ µ

µ µ η η η η µ µ

−
=

− − + − −  
; (4.23) 

 

 
( ) ( ) ( )( )

3 2 2 3

3 1 2 1 1 3 2 1

C
µ η µ η

µ µ η η η η µ µ

−
=

− − + − −  
. (4.24) 

 

Substituting Equations (4.22), (4.23), and (4.24) into (4.17) and simplifying using 

trigonometric identities yields the first basis function: 
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 ( ) 3 2 2 3
1

2 1 3 2 3 1

f
γ γη η η

γ
η η η

− − −

− − −

+ −
=

+ −
. (4.25) 

 

The other two basis functions are similarly derived: 

 

 ( ) 1 3 3 1
2

2 1 3 2 3 1

f
γ γη η η

γ
η η η

− − −

− − −

+ −
=

+ −
; (4.26) 

 

 ( ) 2 1 2 1
3

2 1 3 2 3 1

f
γ γη η η

γ
η η η

− − −

− − −

+ −
=

+ −
. (4.27) 

 

Integrating these three over the range [ ],a bγ γ  yields the following weight equations: 

 

 ( )
( )3 2 3 2 3 2

1 1

2 1 3 2 3 1

b

b b a a

a

b a
w f d

γ
γ γ γ γ

γ

µ µ µ µ η γ γ
γ γ

η η η

− − − − −

− − −

− − + + −
= =

+ −∫ ; (4.28) 

 

 ( )
( )3 3 1 1 3 1

2 2

2 1 3 2 3 1

b

a b b a

a

b a
w f d

γ
γ γ γ γ

γ

µ µ µ µ η γ γ
γ γ

η η η

− − − − −

− − −

− + − − −
= =

+ −∫ ; (4.29) 

 

 ( )
( ) ( ) ( )1 1 2 2 2 1

3 3

2 1 1 3 3 2

b

b a b a

a

b a
w f d

γ
γ γ γ γ

γ

µ µ µ µ η γ γ
γ γ

η η η

− − − − −

− − −

− + − + −
= =

+ +∫ . (4.30) 

 



 59 

When [ ]1 3,a bγ γ γ γ= = , which is the case away from quadrant boundaries, the 

weight equations can be further simplified: 

 

 ( )
3

1

1,3 1,3 1
w f d

γ
γ

γγ

γ η
γ γ

µ
∆

∆

∆ −
= =

−∫ ; (4.31) 

 

 ( )
3

1

2 2
1

w f d

γ
γ γ

γγ

η γµ
γ γ

µ

∆ ∆

∆

− ∆
= =

−∫ . (4.32) 

 

D.4.   Polynomial Error Adapting (PEA) 

Our third algorithm refines on the errors in a high-order interpolant of the exiting 

angular fluxes.  Consider an f-weighted azimuthal integral of the angular flux: 

 

 ( ) ( )
2

1 10

adaptbase
NN

comp
m m m n n n

m n

f d w f v f

π

γ ψ γ γ ψ ε
= =

≈ +∑ ∑∫  (4.33) 

 

The polar integration is suppressed.  We have decomposed the flux into two components.  

The first is a high-order interpolant, poly
nψ , that passes through the “base” quadrature-

point values.  The second is an “error” term, nε , which we define as the difference 

between the calculated angular flux (from the iterative sweep), comp
nψ , and poly

nψ : 
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 comp poly
n n nε ψ ψ= −  (4.34) 

 

The base quadrature set is usually designed to achieve exact integration of the high-

order interpolating functions, which are usually polynomials in sinγ and cosγ.  The 

adaptive quadrature set must therefore be chosen to accurately integrate the “error” term.  

The error term contains any components of the solution that are not smooth; thus, the 

adaptive sets are usually based on low-order basis functions.  An important point is that 

any function in the high-order interpolation space will be integrated exactly by the 

combined base + adaptive quadrature set, because ε = 0 for any such function.  Thus, 

with this method, adaptive refinement does not destroy high-order integration. 

We perform the same refinement testing described by Eq. (4.2), but our int

n
ψ  is now a 

combination of the polynomial interpolant and the error function interpolant: 

 

 int poly int

n n n
ψ ψ ε= +  (4.35) 

 

In the results we present below, we interpolate the error function of the polynomial using 

either the Linear rule (PEAL) or the LSC rule (PEALSC).  This means that the weights 

{ }nv  of the error term in Eq. 4.33 are generated as described in the Linear and LSC 

methods.  In the first refinement sweep all int

n
ε  are necessarily zero; thus the first sweep 

is comparing poly

n
ψ directly to comp

n
ψ .  In all subsequent refinement sweeps, wherever 
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points have been added to the quadrature set, we compare int poly int

n n n
ψ ψ ε= +  to comp

n
ψ .  

The higher order interpolant remains unchanged. 

It is possible to use other interpolatory function rules (e.g. the Chebyshev 

polynomials for a global [ ]0, 2π  polynomial approximation) as the basis functions for 

the PEA method.  However, in order to maintain the consistency of our quadrant-based 

quadrature sets, we use the “quadruple-range” quadrature defined by Abu-Shumays.30  

The Abu-Shumays polynomials are briefly mentioned in the previous section.  The term 

quadruple-range “corresponds to subdividing the range of  [ ]0,2γ π∈  into four equal 

parts.” 

As in the previous algorithms, we begin with a base quadrature set.  We make our 

initial iterative sweeps of the problem using the base set.  Before we begin the 

refinement testing, the constants { }jc  for the polynomials are calculated and stored for 

each exiting surface of the boundary cells of each region: 

 

 ( )
1

bN
b b

j j m m

j

c b γ ψ
=

=∑ . (4.36) 

 

The basis functions ( )b

j m
b γ  are provided by Abu-Shumays.35  The exiting angular flux 

b

m
ψ  is calculated for each angle in the region’s quadrature set.  The Abu-Shumays’ basis 

functions are: 
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 ( )
( )

( ) ( )

1

2

sin 3,7,11,15
;   0, .

 sin cos  3,7,11,15 2

j

j j

j
b

j

γ π
γ γ

γ γ

−

−

 ≠   
= ∈   =    

…

…
 (4.37) 

 

The j index is the order of the polynomial.  For example, if 3
b

N = , then the polynomial 

is: 

 

 ( ) ( ) ( ) ( )1 2 3sin sin cos ; 0,
2

f c c c
π

γ γ γ γ γ
 

= + + ∈   
. (4.38) 

 

The constants { }1 2 3, ,c c c are calculated numerically by inverting the basis matrix 

B created using the base quadrature set: 

 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( )
( )

( )

1 1 2 1 1 1
1

21 2 2 2 2 2

1 2

b

b

b

b b b b b

b b b b
N

b b b b
N

Nb b b b
N N N N N

b b b
c

cb b b

c
b b b

γ γ γ ψ γ

γ γ γ ψ γ

γ γ γ ψ γ

   
    

    
    =
    
            

   

�

�

�� � � � �

�

. (4.39) 

 

The inversion of the matrix need only be performed once and stored, since 

polynomial order (initial size of the quadrature set
b

N ) is known from the user input: 

 

 1
Bc c Bψ ψ−= ⇒ = . (4.40) 
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Once the constants are all calculated we are able to calculate the polynomial 

interpolant of the angular flux anywhere in the quadrant: 

 

 ( )
1

bN

poly

n j j n

j

c bψ γ
=

=∑ . (4.41) 

 

The weights of each base quadrature point ( )mw  are provided by Abu-Shumays.35  After 

each refinement we adjust them on a global basis with the addition of the adapted 

quadrature points.  We substitute Eq. (4.34) into the 0th moment of Eq. (4.33): 

 

 ( )
1 1

adaptbase
NN

comp comp poly
m m n n n

m n

d w vψ γ γ ψ ψ ψ
= =

 ≈ + −
 ∑ ∑∫ . (4.42) 

 

The adapted quadrature point weights ( )nv  are derived from the quadrature rule used 

for interpolation (linear or LSC).  These weights are “folded” into the base weights as 

follows.  We substitute Eq. (4.41) into Eq. (4.42): 

 

 ( ) ( )
1 1 1 1

b a a bN N N N
comp comp

m m n n n j j n

m n n j

d w v v c bψ γ γ ψ ψ γ
= = = =

≈ + −∑ ∑ ∑ ∑∫ . (4.43) 

 

We rearrange Eq. (4.36) solving for the constants 
j

c : 
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 ( )
1

bN
comp

j j m m

m

c b γ ψ
=

= ∑ �  (4.44) 

 

where jb�  are elements of the matrix 1B− .  We substitute Eq. (4.44) into Eq. (4.43): 

 

 

( )

( ) ( )

1 1

1 1 1

.

b a

a b b

N N
comp comp

m m n n

m n

N N N
comp

n j m m j n

n j m

d w v

v b b

ψ γ γ ψ ψ

γ ψ γ

= =

= = =

≈ +

 
−  

  

∑ ∑∫

∑ ∑ ∑ �
 (4.45) 

 

Then we rearrange and combine sums: 

 

 ( ) ( ) ( )
1 1 1 1

b a b a

m

N N N N
comp comp

m n j m j n m n n

m n j n

w

d w v b b vψ γ γ γ γ ψ ψ
= = = =

 
≈ − + 

  
∑ ∑ ∑ ∑∫

�

�

	




�




�

. (4.46) 

 

Unlike the previous two adaptive methods the weights no longer depend only on their 

neighbors.  As the number of adapted angles increases, all of the base weights ( )mw�  

change (get smaller).  We then use the following modified quadrature set to calculate the 

scalar flux and update the scattering source: 

 

 
1 1

b aN N
comp comp

m m n n

m n

w vφ ψ ψ
= =

≈ +∑ ∑� . (4.47) 
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The weights for higher moments of this rule, such as partial current, have a similar 

derivation: 

 

 ( ) ( )
1 1 1 1

b a b a

m

N N N N
comp comp

m m n n j m j n m n n n

m n j n

w

J w v b b vµ µ γ γ ψ µ ψ
= = = =

 
≈ − + 

  
∑ ∑ ∑ ∑

�

�

	





�





�

. (4.48) 

 

E.   Program Algorithm 

We present here an outline of the algorithm executed by our program: 

 Input: 

- problem geometry, divided into quadrature regions; 

- initial quadrature set; 

- method of adapting if applicable 

- adapting criteria if applicable; 

- source convergence criterion 

Iterative/Adaptive sweeps: 

- refinement tests and modification of quadrature sets (not performed during 

the first iteration); 

� Create a list of test angles for each region from the midpoints from the 

quadrature sets used in the previous iteration; 

� Perform sweeps in direction of particle flow; 
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� Compare computed exiting angular flux in test directions on region 

surfaces to interpolated values generated using results computed in 

the previous iterative sweep. 

- Calculation (non-adaptive) sweep of the problem 

� Use the most recent quadrature set after updating weights at the 

beginning of each region sweep. 

� Compute the average angular flux in each cell for each quadrature 

point (each of these cell-averaged angular fluxes is counted as one 

“unknown”) and use the quadrature set to calculate a new scalar flux. 

- Compute the new scattering source for each cell. 

- If there have been no additional quadrature points added from the previous 

refinement then perform a convergence check. 

- If the check fails then repeat this section. 

Conservation sweep: 

- If refinements were made then perform another sweep of the problem, 

modifying the incident angular flux on each region surface using a scaling 

factor (see Section 4.C.). 

End Algorithm. 

 

F.   Memory Requirements 

The storage of exiting angular flux on each region boundary can cause the adaptive 

program to demand a great deal of memory.  For our algorithm, these exiting angular 
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flux values are needed to generate the interpolated values used in the test sweeps.  If we 

store the values in computer memory they can limit the size of our test problems.  For 

our demonstration code we have chosen to save exiting angular flux values in scratch 

files on the iteration sweep before an adaptive iteration.  During the adaptive sweep, we 

then read only the values that are necessary for a given region in the direction of particle 

flow; thus reducing much memory load.  Writing to and reading from disk slows the 

analysis somewhat, but for this study we are interested in “proof of principle” rather than 

programming efficiencies. 

 

G.   Summary 

We have argued that an efficient placement of quadrature points can greatly increase 

the accuracy of the transport solution.  Although this adds computational expense per 

unknown, this expense could be amortized over many time steps in a time-dependent 

problem, or over several iterations in many iterative problems.  It also reduces the 

number of unknowns needed for a given accuracy.  We test locally in both position and 

direction with one of four user-chosen methods (Linear, LSC, PEAL and PEALSC).  We 

force conservation with a scaling factor (a function of exiting and incident partial 

current) that we calculate on each region boundary.  The third and fourth methods of 

adaptive integration maintain the base interpolative function and thus integrate 
B

N -order 

polynomials in ( )sin γ  and ( )cos γ .  Other interpolative functions could be used in the 

third/fourth method, but they are not examined in our work.  Lastly, in this section we 
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presented the program algorithm that we utilize in this research and discussed memory 

management in the programming process. 
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V.   RESULTS 

 

In this section we show the effectiveness and shortcomings of our research.  We start 

our analysis by examining how our adaptive algorithm performs when it is used to 

integrate functions for which the analytic answer can be easily determined.  Our intent is 

to show how each of our methods can accurately interpolate and integrate three functions 

for which the analytic answers are known.  Next we examine a simple corner source 

problem in a purely absorbing material.  Ray effects are most clearly visible in the 

purely absorbing problems.  It is our intention to demonstrate how well our adaptive 

methods can mitigate ray effects.  Lastly, we examine two scattering problems with 

features of practical problems.  In problems with “true” rays, errors caused by angular 

discretization can be difficult to distinguish from the true solution features.  Once again, 

we intend to demonstrate how our methods can find and eliminate these errors to within 

a user specified tolerance.  However, before we begin our analysis, we present an 

explanation of our analytic process. 

 

A.   Definitions of Solution Metrics and Descriptive Notations 

In order to more clearly convey how we present our data, we begin with a brief 

description of our terminology.  There are a few shorthand notations that we use when 

describing the error of our scalar flux.  They are used in the figures as well as in the 

analysis of our data: 

Absolute Relative Error (ARE) is: 
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 ARE
ref soln

ref

x x

x

−
=  (5.1) 

 

where { }ref
x  is the reference solution (where practical we compute the analytic solution 

of the problem with double precision accuracy; however, on our large problems we 

generate the reference using a very fine uniform quadrature set); and { }solnx  is the 

solution computed to some tolerance set by the user. 

We define RMS, Eq. (5.2) as the square root of the average square of the absolute 

relative error of the computed scalar flux, { }Compφ with respect to the reference scalar 

flux, { }REFφ  averaged over Ncells spatial cells.  We define this weighted norm in order to 

analyze problems with a wide range of scalar flux magnitudes (because φ  can vary by 

several orders of magnitude). 

 

 

2

2
1

cells
REF CompN
n n

REF
n

n

cells

RMS
N

φ φ

φ=

−

=

∑
 (5.2) 

 

EQSP is a quadrature set with equally spaced abscissa.  They are the Chebyshev 

quadrature points: 
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 ( )
( )

( )
2 1

1 ; 1, , ; 1, , 4
4 2n B

B

n
q q n N q

N

π π
γ

−
= + − = =… … , (5.3) 

 

where 
B

N  is the number of azimuthal angles { }nγ  per quadrant.  For example, LSC 9 

EQSP is weighting method LSC with 9 equally spaced angles per quadrant.  If it is 

preceded by “Linear” then the weights are the Chebyshev weights: 

 

 
2

B

w
N

π
=  (5.4) 

 

If it is preceded by “LSC” then the weights are calculated using the derivations 

described in Section 4.D.2.  A quadrature rule name (Linear, LSC, PEAL or PEALSC) 

followed by a number is an adaptive method.  The number designates the starting size 

(
B

N ) (i.e. before refinement) of the quadrature set (e.g. LSC9 is the LSC adaptive 

quadrature rule that begins with 9 EQSP quadrature points per quadrant).  We say that a 

quadrature set is even or odd in the case of the Linear method if 
B

N  is even or odd;  in 

the case of the LSC method if n is even or odd in Eq. 5.5 for the number of base points 

per quadrant, 
B

N  then the LSC method is even or odd: 

 

 2 1 1,2,
B

N n n= + = …  (5.5) 

 

Thus, LSC-7 is “odd” and LSC-9 is “even,” for example. 
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B.   An Outline of Our Presentation of Data 

In the list below we explain the various ways that we analyze the data that we collect 

from our research.  These are just a few of the many ways one could present the data. 

- We plot scalar flux vs. position along a problem’s boundary edge to show the 

oscillations caused by ray effects, or their elimination. 

- We plot scalar flux vs. position on a 2D pseudo-color plane to show the 

oscillations due to ray effects or the elimination of the ray effects. 

- We plot angular flux vs. azimuthal angle from an exiting surface of a cell.  

This plot is designed to show the region/cell with the most drastic peak and to 

show the region/cell where the test failed most often (i.e. added the most new 

quadrature points). 

- We plot RMS (or ARE where appropriate) vs. unknowns to illustrate how 

well the method we are examining is converging and how many fewer 

adapted unknowns are needed for a given accuracy.  We also add a trend line 

and equation, where appropriate. 

 

C.   Minimum Allowable ∆γ∆γ∆γ∆γ    

An algorithm parameter that has not been mentioned thus far is the minimum 

allowable azimuthal width between two quadrature points (min_DG).  Without such a 

parameter, Gibb’s phenomenon (oscillations of interpolated solutions near 

discontinuities) causes our algorithm to refine indefinitely in the neighborhood of a 
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solution discontinuity or near-discontinuity.  This is because our refinement test is point-

wise, not integral, and any high-order interpolation will over- or under-shoot the solution 

at the quadrature test points that are nearest the discontinuity, no matter how closely 

spaced the points are.  The value of min_DG has been fixed at 0.02 radians for most of 

our test problems; however we vary it in certain problems to allow the adaptive 

algorithm to try to resolve “jump” discontinuities (as in function 3 below).  If the 

min_DG is not allowed to vary then our adaptive algorithm would not be able to produce 

an arbitrarily small integration error, because it would stop refining at some maximum 

number of quadrature points regardless of the adapting criteria (
th

ε  and ψε ).  If the 

min_DG is set to zero then the adapting process never ceases at the “jump” 

discontinuities.  Our algorithm has no other way to account for a “jump” discontinuity at 

this time; and, other than adding many points to the range around a “jump” discontinuity, 

it has no way to mitigate the effects of Gibb’s phenomena.  A possible alternative for 

future consideration is to base refinement decisions on integrals over sub-intervals 

instead of on point values.  Another is to switch to linear interpolation once a threshold 

∆γ is reached. 

 

D.   A 6
th

 Order Polynomial Function in the Azimuthal Angle 

We examine here some functions of azimuthal angle on the range 0,
2

π 
  

.    The first 

function (Figure 11) is a 6th-order polynomial. 
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Figure 11   A 6th-order polynomial function on the range 0,
2

π 
  

. 

 

The equation of the polynomial function is: 

 

 ( ) 6 5 4 3 28.75 43.9 83.9 75.9 32.1 5.06 0.153ψ γ γ γ γ γ γ γ= − + − + − + + . (5.6) 

 

The integral of the polynomial is: 

 

 ( )
2

0

0.309997d

π

γψ γ ≅∫ . (5.7) 
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Figure 12, Figure 13, Figure 14 and Figure 15 display plots of absolute relative error 

(between the analytic and computed solutions) as a function of the number of quadrature 

points (needed to achieve a given user-input refinement criteria).  The interpolation 

tolerance (εψ ) is initially set to 10% and adjusts downward to 0.001% for independent 

runs.  The threshold tolerance (εth ) is initially set at 1% and automatically adjusts 

downward by one order of magnitude if the adaptive process stops before the 

convergence criteria is satisfied; thus allowing more angles to be added that previously 

were rejected as “insignificant.”  The min_DG is also allowed to vary downward 

(from .02 radians to .001 radians) if the accuracy does not improve as the number of 

quadrature points increase.  The adaptive method used in each figure is Linear, PEAL, 

LSC and PEALSC, respectively.  In the figures using a linear method for adapting, a set 

of EQSP Linear solutions are shown (Figure 12 and Figure 13).  In those showing the 

LSC adapting methods (Figure 14 and Figure 15), a set of EQSP LSC solutions are 

shown.  Four initial quadrature sets are run for each method (two “even” and two “odd”).  

The reason for the even and odd starting quadrature sets arose from the difference in the 

accuracy noticed in the EQSP quadrature sets while examining the exponential cusp 

function.  It is explained more clearly in the description and analysis of the exponential 

cusp function (below).  A linear trendline is included to indicate the overall convergence 

of the adaptive solutions. 
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Figure 12   Linear adaptive performances for the 6th order polynomial. 

 

 

 
Figure 13   PEAL adaptive performances for the 6th order polynomial. 
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Figure 14   LSC adaptive performances for the 6th order polynomial. 

 

 
Figure 15   PEALSC adaptive performances for the 6th order polynomial. 
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As can be seen from the graphs above, the overall accuracy is improved by using any 

of the adaptive methods (note the trendline vs. the EQSP solution line).  The lines with 

color drawn in the figures connect the ARE points for a given quadrature set (adaptive 

and EQSP).  Some of the adaptive solutions are several orders of magnitude better than 

the corresponding EQSP quadrature set.  We do not have any additional logic in our 

algorithm to determine which adapted quadrature set is sufficient.  Our algorithm is 

totally dependent on the accuracy of the interpolation of the function. 

In the linear methods (Linear and PEAL), accuracy is improved by approximately 

one order of magnitude over the EQSP Linear solutions for a given number of 

quadrature points.  The LSC methods (LSC and PEALSC) perform even better with 

approximately one and a half order magnitude improvement in accuracy for a given 

number of quadrature points.  Other than Linear Adaptive vs. Linear EQSP (Figure 12), 

there are no marked improvements over convergence rates.  The EQSP Linear is 

( )
21

N
O and the EQSP LSC is ( )

41
N

O , according to the plots.  The trendlines for the 

adaptive methods indicate ( )
31

N
O  for Linear, ( )

21
N

O for PEAL, ( )
41

N
O  for LSC and 

( )
41

N
O  for PEALSC. 

 

D.   The Exponential Cusp-Shape Function 

The second problem we examine is an exponential cusp-shaped function (plotted in 

Figure 16).  The function is symmetric around the cusp (discontinuity in the first 

derivative), which is located at 4π . 
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Figure 16   An exponential cusp function on the range [ ]0, 2π . 

 

The equation of the exponential function is: 

 

 ( )
7.63

40.4e

π
γ

ψ γ

 
− 

 =  (5.8) 

 

The integral of the exponential is: 

 

 ( )
2

0

0.1046d

π

γψ γ ≅∫  (5.9) 
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Figure 17, Figure 18, Figure 19 and Figure 20 display plots of absolute relative error 

(between the analytic and computed solutions) versus the number of quadrature points 

necessary for a given user-input refinement criteria (εψ and εth).  The interpolation 

tolerance (εψ ) is initially set to 10% and adjusts downward to 0.001% for independent 

runs.  The threshold tolerance (εth ) is initially set at 1% and automatically adjusts 

downward by one order of magnitude if the adaptive process stops before the 

convergence criteria is satisfied; thus allowing more angles to be added that previously 

were rejected as “insignificant.”    The min_DG is also allowed to vary downward 

(from .02 radians to .001 radians) if the accuracy does not improve as the number of 

quadrature points increase.  The adaptive method used in each figure is Linear, PEAL, 

LSC and PEALSC, respectively.  In the figures using a linear method for adapting, two 

sets of EQSP Linear solutions (one with “even” sized quadrature sets and one with 

“odd” sized quadrature sets) are shown (Figure 17 and Figure 18).  In those showing the 

LSC adapting methods (Figure 19 and Figure 20), two sets EQSP LSC solutions (one 

with “even” sized quadrature sets and one with “odd” sized quadrature sets) are shown.  

Four initial quadrature sets are run for each method (two “even” and two “odd”).  There 

is little variance in the resulting solutions compared with the polynomial function 

analysis; therefore we do not include a linear trendline. 
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Figure 17   Linear adaptive performances for the cusp function. 

 

 
Figure 18   PEAL adaptive performances for the cusp function. 
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Figure 19   LSC adaptive performances for the cusp function. 

 

 
Figure 20   PEALSC adaptive performances for the cusp function. 
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The most obvious property that we notice is that the rate of convergence is quite 

different for even and odd EQSP LSC quadrature sets (see Figures 18 and 19).  If we 

shift the location of the cusp away from 4π , the difference goes away.  The common 

relationship that all Linear EQSP even quadrature sets share is that none of them have a 

point at 4π .  For LSC, all quadrature sets have a point at 4π .  However, the point at 

4π  is a middle basis-function point for odd quadrature sets but an edge basis-function 

point for even sets (see Figure 10 in Section 4).  Thus, the EQSP LSC odd quadrature 

sets contain an underlying assumption of smoothness at 4π , whereas the even sets 

assume only continuity.  This appears to be a phenomenon unique to the cusp problem 

and problems with similar solution behavior.  We discuss it here because of its 

similarities with some of our later transport test problems.  The Step-characteristic 

spatial discretization on rectangular grids in Cartesian geometry causes anomalies in the 

solution along the quadrant boundaries and along cell-diagonal directions (which for 

square cells are odd multiples of 4π ).  These anomalies introduce cusp-like features in 

the angular flux, which in turn lead to fundamentally different performance of “even” 

and “odd” EQSP quadrature sets.  However, our results show that no matter what size 

quadrature set one chooses to begin with, the accuracy and convergence of our adaptive 

methods are not affected by shape of the function.  In fact all adaptive methods are more 

accurate than the EQSP odd quadrature sets.  Linear adaptive and LSC adaptive match 

the accuracy and convergence of the EQSP even.  The PEA methods perform better than 

the EQSP odd sets but not as well as the EQSP even sets. 
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E.   A Jump Discontinuous Function 

The third function (Figure 21) is a polynomial in sin ( )γ  and cos ( )γ  with “jump” 

discontinuities at 1.0 and 1.4 radians.  This type of problem (with sharp peaks or 

discontinuities) poses a difficult challenge for quadratures sets for obvious reasons and is 

one of the motivations we discuss in the first section. 

 

 
Figure 21   A piecewise polynomial function in sin ( )γ  and cos ( )γ  on the range [ ]0, 2π . 

 

The equation of the function is: 

 

 ( )
( ) ( )92sin cos 1.0 1.4

0 otherwise

γ γ γ
ψ γ

 ≤ ≤
= 


 (5.10) 

 



 85 

The integral of the polynomial in sin and cos function is: 

 

 ( )
1.4

1.0

0.137135dγψ γ ≅∫  (5.11) 

 

 Figure 22, Figure 23, Figure 24 and Figure 25 display plots of absolute relative error 

(between the analytic and computed solutions) versus the number of quadrature points 

necessary for a given user-input refinement criteria (εψ and εth).  The interpolation 

tolerance (εψ ) is initially set to 10% and adjusts downward to 0.001% for independent 

runs.  The threshold tolerance (εth ) is initially set at 1% and automatically adjusts 

downward by one order of magnitude if the adaptive process stops before the 

convergence criteria is satisfied; thus allowing more angles to be added that previously 

were rejected as “insignificant.”    The min_DG is also allowed to vary downward 

(from .02 radians to .001 radians) if the accuracy does not improve as the number of 

quadrature points increase.  The adaptive method used in each figure is Linear, PEAL, 

LSC and PEALSC, respectively.  In the figures using a linear method for adapting a set 

of EQSP Linear solutions are shown (Figure 22 and Figure 23).  In those showing the 

LSC adapting methods (Figure 24 and Figure 25), a set of EQSP LSC solutions are 

shown.  Four initial quadrature sets are run for each method (two “even” and two “odd”).  

A linear trendline is included to indicate the overall convergence of the adaptive 

solutions. 
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Figure 22   Linear adaptive performances for the polynomial in sin ( )γ  and cos ( )γ  with 

“jump” discontinuities. 
 

 

Figure 23   PEAL adaptive performances for the polynomial in sin ( )γ  and cos ( )γ  with 

“jump” discontinuities. 
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Figure 24   LSC adaptive performances for the polynomial in sin ( )γ  and cos ( )γ  with 

“jump” discontinuities. 
 

 
Figure 25   PEALSC adaptive performances for the polynomial in sin ( )γ  and cos ( )γ  

with “jump” discontinuities. 
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The difficulty of using an EQSP quadrature set is clearly illustrated in the preceding 

figures.  The accuracy oscillates dramatically and the convergence rate is just better 

than ( )1
N

O .  Only PEAL of the four adaptive methods fail to outperform the EQSP 

quadrature sets.  In fact, the other three adaptive methods perform quite well on this 

problem in both accuracy and convergence.  The Linear adaptive method has 

( )
41

N
O convergence; LSC has ( )

61
N

O convergence; and PEALSC has ( )
51

N
O  

convergence. 

 

F.   Corner Source in a Purely Absorbing Material 

Ray effects are most dramatic in purely absorbing problems.  Therefore the first two-

dimensional problem we examine has a corner source placed in a purely absorbing (σt = 

0.1 cm-1) medium shown in Figure 26. 

 

 
Figure 26   A 20 cm by 20 cm purely absorbing material (blue) with a 1 cm by 1 cm 
isotropic external source (red) located in the lower left corner – “the corner source.” 
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We divide the surface into 16 “quadrature regions” separated by the dark lines.  Each 

region is sub-divided into cells (1mm by 1mm, resulting in a 200 by 200 spatial grid).  

Figure 27, Figure 28 and Figure 29 show an LSC9 solution before refinement, after 2 

refinement steps, and after all refinement has completed (7 steps).  The interpolation 

tolerance (εψ ) is .01% and the threshold tolerance (εψ ) is .01%.  The min_DG is fixed 

at .02 radians. 

 

   
Figure 27   The LSC9 scalar flux for the corner source problem, with no refinement. The 

legend is in powers of 10.  The axes labels are in cm. 
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Figure 28   The scalar flux for the corner source problem after 2 refinements.  The 

legend is in powers of 10.  The axes labels are in cm. 
 

 
Figure 29   The scalar flux for the corner source problem after all refinements.  The 

legend is in powers of 10.  The axes labels are in cm. 
 

The adaptive program eliminates the ray effects from the pseudo-color plots.  (The 

lack of smoothness in the scalar flux in Figure 29 is entirely due to the step-characteristic 
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spatial discretization.)  The values in the preceding legends are base-10 logarithm of the 

solution. 

To illustrate how ordinary quadrature sets are inadequate in performing integration 

for this problem, we examine the oscillations of the scalar flux along the rightmost 

column of cells (at x = 19.95 cm).  A coarse EQSP LSC 9 solution is shown in Figure 30 

(also see Figure 27 for the EQSP LSC 9 in the pseudo color plane).   A finer EQSP LSC 

33 is shown in Figure 31 and is directly compared to the LSC 9 adaptive result shown in 

Figure 32. The reference solution uses LSC 2001 EQSP. 

 

 
Figure 30   The scalar flux (phi) solution using LSC 9 EQSP along the outer edge of the 

corner source problem. 
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Figure 31   The scalar flux (phi) solution using LSC 33 EQSP along the outer edge of the 

corner source problem. 
 

 
Figure 32   The scalar flux (phi) solution using LSC 9 Adaptive along the outer edge of 

the corner source problem. 
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The solution to the corner source problem using LSC 33 EQSP (Figure 31) needs 

over 5 million unknowns, and ray effects are still obvious.  The much more accurate 

solution using LSC 9 Adaptive (Figure 32) needs approximately 3 million unknowns, 

and ray effects are significantly mitigated (see Figure 29).  The oscillations at the ends 

(less than 10 mm and greater than 190 mm) are a result of the difficult integration of the 

spatial anomalies (arising from the step-characteristic spatial discretization).  The square 

shape spatial anomaly in the reference solution (less than 10 mm) is due to the 

integration of a half cusp function.  The slanted spatial anomaly in the reference solution 

(greater than 190 mm) is due to the integration of function with a full cusp shape. 

As with the one-dimensional problems, it is also noteworthy to examine how the 

adaptive programming can perform with changing user tolerance criteria by plotting 

RMS vs. unknowns to examine accuracy and convergence over the whole problem.  

Figure 33 and Figure 34 show how the solution RMS changes when different starting 

quadrature sets are used.  The threshold tolerance is zero in both figures.  The angular 

flux tolerance is varied downward from 1.0% to 0.001%.  The zigzag effects of the cusp 

function can be seen in the EQSP comparison lines.  Also, the effects of a fixed min_DG 

of 0.02 radians can be seen in the sharp “knee” in Figure 33. 
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Figure 33   The RMS error in scalar fluxes from EQSP and Adaptive (LSC5 and 

PEALSC5) methods on the corner source problem. 
 

The “knee” is not as noticeable in Figure 34 (it is much lower on the RMS scale) 

because we start with a larger quadrature set.  The smaller quadrature set performs as 

well as the larger quadrature set near the source (i.e. within user specified tolerances).  

However, the larger quadrature set contains angles that are needed farther from the 

source in order to produce more accurate results around discontinuities.  Alternatively, 

we could also adjust the min_DG value to allow for more refinements around the 

discontinuities. 

 

“knee
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Figure 34   The RMS error in scalar fluxes from EQSP and Adaptive (LSC13 and 

PEALSC13) methods on the corner source problem. 
 

Lastly, we plot exiting angular flux from various cells far away from the source as a 

function of azimuthal angle.  These plots illustrate the ability of our adaptive methods 

(LSC is the only method shown for brevity; the others perform in a similar fashion) to 

interpolate the exiting angular flux.  This interpolative ability is very important.  If the 

exiting angular flux functions are not properly mapped the downstream angular flux will 

be wrong and will yield inaccurate results.  Figure 35 shows the initial exiting angular 

flux functions using the LSC9 adaptive method.  Figure 36 shows how the adaptive 

algorithm adds only the points that are needed to accurately interpolate the exiting 

angular flux. 
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Figure 35   The exiting angular flux interpolated functions (at spatial positions noted by 

black arrows) before any refinements. 
 

 

 
Figure 36   The exiting angular flux interpolated functions (at spatial positions noted by 

black arrows) after refinements. 
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G.   Problems with Scattering Materials 

It is a common misconception that scattering problems are immune to ray effects or 

that scattering somehow “smears” them away.  Ray effects and other angular 

discretization errors are still present in problems with scattering.  We examine a checker 

board problem (see Figure 37) designed to produce beams and shadows.  A 2 cm by 2 

cm isotropic source region (red) is placed at the center of a 20 cm by 20 cm problem 

with vacuum boundaries.  The dark blue 2 cm by 2 cm square regions are purely 

absorbing (σt = 100 cm-1) and the light blue regions have a scattering ratio of 0.5 (σt = 1 

cm-1).  Each region is further subdivided into 1 mm by 1 mm cells, for a uniform 200 by 

200 spatial grid. 

 

 
Figure 37   The checker board problem with a 2 cm by 2 cm isotropic source (red) 

placed at the center of a 20 cm by 20 cm problem with vacuum boundaries.  The dark 
blue 2 cm by 2 cm squares are purely absorbing and the light blue areas have a scattering 

ratio of 0.5. 
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We use an LSC15 EQSP (2.4 million unknowns) and plot scalar flux vs. position on 

a 2D pseudo-color plane in Figure 38 to illustrate the ray effects that appear in this 

problem. 

 

 

 
Figure 38   The solution of scalar flux for the checker board problem using LSC15 

EQSP.  The legend is the base-10 logarithm.  The axes labels are in cm. 
 

Figure 38 shows many rays, some of which are representative of the correct solution 

and some of which are artifacts.  We can see the ray effects more clearly in Figure 39, 

where we plot the right edge scalar flux versus position along with a reference line that 

uses LSC2001 EQSP (320 million unknowns). 
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Figure 39   The right-edge scalar flux from LSC15 EQSP compared with a reference 

solution. 
 

We perform the same tests using LSC9 adaptive method to eliminate the angular 

discretization errors and plot the results on a 2D pseudo-color plane in Figure 40.  We 

use a threshold tolerance of 0.01% and an angular flux tolerance of 10%.  Likewise we 

plot the right edge flux in Figure 41.  The number of unknowns is 4.59 million and the 

RMS error in the scalar flux along the right edge is 3.19E-4. 
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Figure 40   The solution of scalar flux for the checker board problem using LSC9.  The 

legend is the base-10 logarithm.  The axes labels are in cm. 
 

 
Figure 41   The right-edge scalar flux from LSC9 adaptive. 

 

The adaptive methods produce a significant improvement.  All ray effects have been 

eliminated as far as can be told from Figure 41.  The edge scalar flux plot in Figure 41 is 
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even more impressive when one compares it to the size of an EQSP quadrature set 

needed to match this plot.  To the naked eye there are no visible oscillations.  In order to 

quantify the difference of accuracy between the EQSP LSC quadrature set and the LSC 

adaptive method we must use an EQSP LSC93 (14.9 million unknowns vs. 4.59 million 

for the adaptive) to achieve a comparable RMS error of 3.52E-4. 

 

H.   A “Point” Source Problem 

In the previous problem we suspect that SC spatial anomalies are most likely 

producing artifacts along 45-degree lines because of square spatial cells.  The triangular 

shaped areas of greater orange intensities on the other side of the purely absorbing 

regions are likely over valued and the collimated beam that should be visible in those 

scattering regions is completely smeared out.  To illustrate this we have devised another 

scattering problem (see Figure 42) in which the regions are rectangular, but the cells 

remain square.  As in the previous problem the red region is a square isotropic source but 

its size has been reduced to 1 mm.  The dark blue regions are purely absorbing (σt = 100 

cm-1).  The light blue regions have a scattering ratio of 0.5 (σt = 1 cm-1).  The regions are 

divided into 1 mm by 1 mm square cells. 
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Figure 42   The ”point” source problem with rectangular shaped absorbing and scattering 

regions. 
 

The shape of the rectangular cells is intended to force the collimated beams away 

from the 4π  directions.  We apply our LSC9 adaptive method to the problem with a 

10% interpolation tolerance and a 0.01% threshold tolerance and display the results in 

Figure 43. 
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Figure 43   The scalar flux solution of the “point” source scattering problem with 

rectangular shaped regions.  Axes units are decimeters. 
 

The spatial anomalies due to the SC method are pointed to by the arrows.  They are 

(barely visible) thin yellow lines (10-5.5) at the odd multiples of 4π .  A quick 

observation of the problem geometry unquestionably indicates that these irregularities 

are unphysical.  We emphasize that these are not discrete-ordinate ray effects, but are 

artifacts of the spatial discretization. 
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I.   Summary 

In this section we presented numerical results from a variety of test problems.  We 

employed several quadrature schemes including four adaptive schemes we have 

developed.  We used simple one-dimensional function integration to illustrate basic 

properties of the various schemes, and then we turned to several two-dimensional 

transport problems.  Results demonstrated that our adaptive schemes produce smaller 

solution errors with fewer unknowns than do standard schemes and that are methods do 

eliminate ray effects. 
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VI.   CONCLUSION 

 

A.   Observations 

We have presented our efforts toward an adaptive discrete-ordinates quadrature 

methodology, focusing on transport problems in two-dimensional Cartesian geometry.  

Our strategy involves several key components: 

• A set of interpolatory functions that provide an interpolated solution at any value 

of the direction variables; 

• Quadrature weights that are consistent with these interpolatory functions, in the 

sense that the quadrature sum of a function is equal to the exact integral of the 

interpolation through the quadrature points; 

• Division of the spatial domain into “quadrature regions,” each with its own 

adapting quadrature set; 

• Refinement tests based on comparing evaluated functions against interpolated 

values; 

• Refinement tests performed only on surfaces of quadrature regions, not on region 

or cell interiors. 

Various methods in our strategic framework differ in their choices of initial sets, 

refinement-test points, and interpolatory functions.   
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Our results are encouraging. We have shown that it is possible to adapt quadrature 

sets to resolve local variations in angular fluxes, and we have shown that even very 

simple adaptation logic combined with very simple linear interpolation and trapezoidal-

rule quadrature sets can achieve highly accurate solutions with relatively few unknowns. 

We have gone beyond this to a linear-in-cosines method that yields significantly 

improved accuracy with fewer unknowns. We have gone farther and developed a method 

that retains the ability to exactly integrate high-order polynomials in the direction 

cosines even given many levels of local adaptation. 

Our main conclusion is bold and significant: Our adaptive discrete-ordinates strategy 

eliminates ray effects and other angular discretization errors to whatever tolerance the 

user specifies.  It does so with far fewer unknowns than would be required by applying 

any quadrature set to the entire spatial domain.  It also does so with far fewer unknowns 

than would be required by applying different “standard” quadrature sets in different 

spatial regions, without local refinement in angle.   

An unexpected finding of our research was the ability of the EQSP LSC method to 

accurately integrate functions.  In most cases (jump discontinuities are the exception) we 

observed a fourth-order convergence rate and more accurate integration than was 

provided by the Gauss-Chebyshev set with the same number of points.  Even without 

adaptation, this LSC quadrature set appears to be worthy of further study. 

Our proof of principle has laid the groundwork for a great deal of future research in 

the area of adaptive discrete ordinates methods.  We offer our thoughts on this in the 

next section. 
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B.   Future Work 

Our study was restricted to two-dimensional Cartesian geometry, in which the 

angular flux varies in a complicated way in only the azimuthal direction.  (Polar 

variations are smooth.)  Thus, we focused on adaptive quadrature sets only for 

azimuthal-angle integration.  In other coordinate systems, such as two-dimensional 

axisymmetric (r,z) and three-dimensional Cartesian, there can be complicated variations 

in both the polar and azimuthal directions.  This will require significant extension of the 

ideas we have introduced here. 

We have tested only refinement, not coarsening, of adaptive quadrature sets.  We see 

coarsening as a simpler task, at least given our view that one should never try to get 

coarser than the “base” quadrature set, which means that coarsening steps are simply the 

undoing of previous refinement steps.  We propose the same strategy as for refinement:  

compare an interpolated value at the candidate point against the calculated value.  In the 

case of testing for coarsening, if the two are close enough then the quadrature point can 

be removed from the set.  This strategy needs to be implemented and tested.  We expect 

it to be most useful in time-dependent problems, in which the solution in a given spatial 

region can change significantly over time (and thus the quadrature set should as well). 

In our work we have studied only isotropic scattering.  Problems with strongly 

anisotropic scattering pose further challenges to the quadrature set, partly because there 

are more functions that must be accurately integrated to form an accurate scattering 

source.  We believe that our methods that retain the high-order integration properties of 

the base quadrature set will perform well even with highly anisotropic scattering, but this 
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must be tested.  The Linear method integrates the constant and the LSC method 

integrates 0th and 1st order polynomials in sinp ( )γ  and cosq ( )γ .  Strictly speaking, for 

higher order spherical harmonics the Linear and LSC methods do not conserve; whereas 

the PEA methods integrate higher orders to 1p q N+ ≤ − .  

There are other ways that should be considered for determination of the scalar flux.  

Basing the adaptation on how the scalar flux is changing for the better as it is related to 

some reaction rate (i.e. a physical quantity).  Another approach that could be 

implemented is a goal-oriented adaptive process.  The adaptive process could be in terms 

of a localized quantity of interest, where the related mathematical theory would 

necessarily require the solution of an adjoint function.31,32 

In our present implementations we take care to enforce particle conservation, and we 

do so by ensuring that the exiting partial current from the surface of a region is exactly 

the incident partial current on that surface of the neighboring region.  In some 

applications, the momentum carried by the particles and exchanged with the matter are 

also important quantities to conserve.  To enforce this in our framework will require that 

we ensure continuity of second angular moments on surfaces in addition to the present 

requirement of continuity of current (which is the first angular moment).  Algorithms for 

enforcing all necessary continuity conditions will need to be developed for these 

applications. 

 

In our work with interpolatory functions of higher order than linear, we found that 

Gibb’s phenomenon led to unlimited refinement at solution discontinuities.  To prevent 
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this in our proof-of-principle code, we simply imposed a minimum spacing between 

quadrature points and did not permit further refinement.  We believe that an interesting 

line of investigation would be to reduce the order of the interpolatory functions, 

ultimately down to linear, if a great deal of local refinement takes place.  Linear 

interpolation is not subject to Gibb’s phenomenon and thus should not lead to unlimited 

refinement.   

In our work we employed what is often called “h-refinement,” meaning that we fixed 

the order of the method and refined the spacing between points.  An alternative is “p-

refinement,” in which the spacing of intervals is fixed and new degrees of freedom are 

devoted to higher-order methods.  In the application of adaptive methods to differential 

equations, it is often the case that a combined “h-p-refinement” method is superior.  It 

would be interesting, and likely fruitful, to develop such an approach for adaptive 

discrete ordinates. 
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APPENDIX A.  STEP CHARACTERISTIC FORMULAS  

Problem Overview and Definitions 

 

 

 
Figure 44   A rectangular cell drawn with characteristic lines entering through the left 

(L) and bottom (B) edges and exiting through the top (T) and right (R) edges. 
 

 The one-speed, steady-state Boltzmann transport equation discretized in the 

direction cosine variables,  and m m x m m ye eµ η= Ω = Ω
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The source term includes embedded emitters that are independent of the flux as well 

as the scattering source: 

 

 ( ) ( ) ( ) ( )
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For clarity of derivation, we consider only isotropic emitters and scattering.  The 

scalar flux,φ  is solved using the discrete ordinates approximation: 

 

 ( ) ( )
1

, ,
M

m m

m

x y w x yφ ψ
=

≡∑ � �
�

, (A3) 

 

where the quadrature rule employed has M quadrature directions { },m mµ η  and weights, 

{ }mw . 

The cell optical thickness is defined in the x and y directions respectively as: 

 

    and   t t
x y

x y
τ τ

µ η

Σ ∆ Σ ∆
= =  (A4) 

 

The ratio of the x to the y optical thickness is: 

 

 x

y

x

y

η τ
κ

µ τ

∆
= =

∆
 (A5) 
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The exponential moment functions are: 

 

 ( ) ( )
1

0

1
xtn

nM dt ex t
−≡ −∫  (A6) 

 

 ( )0

1 x
e

M x
x

−−
=  (A7) 

 

 ( )
( )0

1

1 M x
M x

x

−
=  (A8) 

 

Consider 0 and 0m mµ η> > .  If the flux entering the bottom edge of the cell is 

constant ( )Bψ , then the resulting flux in the cell is: 

 

 ( ),

0 otherwise

t y

B
B

x y
e

x y
ηψ

ψ µ η

Σ 
− 
 


 ≥

= 



 (A9) 

 

If the flux entering the left edge of the cell is constant ( )Lψ , then the resulting flux in 

the cell is: 
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 ( ),

0 otherwise

t x

L
L

x y
e

x y
µψ

ψ µ η

Σ 
− 
 


 ≤

= 



 (A10) 

 

The flux resulting from a constant volumetric source is: 

 

 ( ) 0

0

,

t

t

x xx

S
y yy

dx x y
Qe

x y

dy x y
Qe

µ

η

µ µ η
ψ

η µ η

′ −
−Σ 
 

′ − 
−Σ 
 

 ′
 ≤


= 
′

≥


∫

∫

 (A11) 

 

Derivations 

The case examined here is in the first quadrant ( 0 and 0µ η> > ) where 1κ < .  The 

case where 1κ >  accomplished by flipping the variables for the exiting surfaces.  Other 

quadrants are handled with sign reversals of  or µ η  where appropriate.  The flux exiting 

through the top edge is a combination of the flux contributions from the left face and the 

source: 

 

 T TL TSψ ψ ψ= +  (A12) 

 

The flux through the top due to the left edge is: 
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 TL L

0

1 tx
x

e dx
x

µψ ψ
Σ∆ −

=
∆ ∫  (A13) 

 

We use the following change of variables: 

 

   
x dx

v dv
x x

= =
∆ ∆

 (A14) 

 

 ( )
1

TL L L 0

0

xv

x
e dv M

τψ ψ ψ τ−= =∫  (A15) 

 

The flux emitted from the source through the top edge is: 

 

 TS

0 0

1 t

x xx x
Q

e dxdx
x

µψ
µ

 −∆ −Σ 
 =

∆ ∫ ∫
�

�  (A16) 

 

We use the following change of variables: 

 

    
x x

v v
x x

= =
∆ ∆

�
�

�
 (A17) 

 

 ( )
1

TS 0

0 0

1x x

v

v v

x

t

Q Q
e e dvdv M

τ τψ τ
µ

−= = −  Σ∫ ∫
� �  (A18) 



 118 

 

The flux exiting through the top is then: 

 

 ( ) ( )T L 0 01
x x

t

Q
M Mψ ψ τ τ= + −  Σ

 (A19) 

 

The flux exiting through the right edge is a combination of the flux contributions 

from the left face, the bottom face and the source: 

 

 R RB RL RSψ ψ ψ ψ= + +  (A20) 

 

The flux exiting through the right due to the bottom edge is: 

 

 RB B

0

1 ty
y

e dy
y

κ

ηψ ψ
Σ∆

−

=
∆ ∫  (A21) 

 

We use the following change of variables: 

 

  and 
y dy

v dv
y yκ κ

= =
∆ ∆

 (A22) 

 

 ( )
1 1

RB B B B 0

0 0

1 t

x

yv
v

xe ydv e dv M
y

κ
τηψ ψ κ ψ κ κψ τ

Σ
− ∆

−= ∆ = =
∆ ∫ ∫  (A23) 
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The flux exiting through the right due to the left edge is: 

 

 ( ) ( )RL L L L

1 1
1x x x

y

y

e dy e y y e
y y

τ τ τ

κ

ψ ψ ψ κ κ ψ
∆

− − −

∆

= = ∆ − ∆ = −
∆ ∆∫  (A24) 

 

The flux emitted from the volumetric source through the right edge is: 

 

 RS

0 0 0

1 1t t

y y x xy y y x

y

dy dx
Q dy e Q dy e

y y

κ

η µ

κ

ψ
η µ

 −   ∆ −∆ ∆ ∆−Σ −Σ   
   

∆

= +
∆ ∆∫ ∫ ∫ ∫

� �
� �

 (A25) 

 

 RS

0 0 0

1 1
t t t

x

y y y xy y x

y

Q dye e dy Qe dy dxe
y y

κ

η η µτ

κ

ψ
η µ

Σ Σ Σ     ∆ ∆ ∆−     
−     

∆

= +
∆ ∆∫ ∫ ∫ ∫

� �

� �  (A26) 

 

We use the following change in variables: 

 

                  
y dy y dy x dx

v dv v dv u du
y y y y x xκ κ κ κ

= = = = = =
∆ ∆ ∆ ∆ ∆ ∆

� � � �
� � � �  (A27) 

 

 ( ) ( ) ( )
1 1

RS

0 0 0

1
x x xx

yv
v v u

y

x
y yS dve dve Qe dy e du

y y

τ τ ττ

κ

ψ κ κ
η µ

∆
− −

∆

∆
= ∆ ∆ +

∆ ∆∫ ∫ ∫ ∫
� �

� �  (A28) 
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 ( ) ( )
1

TS

0

1 1
1 1x x

y

v

x x y

x
y y Q e dv S e dy

y y

τ τ

κ

ψ κ κ
η τ µτ

∆

− −

∆

∆
= ∆ ∆ − + −

∆ ∆∫ ∫  (A29) 

 

 ( ) ( ) ( )( )TS 1 01
x x

x
Q M Mψ κ τ κ τ

µ

∆
= + −  (A30) 

 

The flux exiting through the right is then: 

 

 ( ) ( ) ( ) ( ) ( )R B 0 L 1 01 1x

x x x

x x
M e Q M M

τψ κψ τ κ ψ κ τ κ τ
µ µ

−  ∆ ∆
= + − + + − 

 
 (A31) 
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