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ABSTRACT

Implicit Runge-Kutta Methods to Simulate Unsteady
Incompressible Flows. (December 2007)
Muhammad Ijaz, B.Sc., University of Engineering & Technology, Lahore, Pakistan;
M.Eng., Texas A&M University, College Station

Chair of Advisory Committee: Dr. N. K. Anand

A numerical method (SIMPLE DIRK Method) for unsteady incompressible
viscous flow simulation is presented. The proposed method can be used to achieve
arbitrarily high order of accuracy in time-discretization which is otherwise limited to
second order in majority of the currently used simulation techniques. A special class of
implicit Runge-Kutta methods is used for time discretization in conjunction with finite
volume based SIMPLE algorithm. The algorithm was tested by solving for velocity field
in a lid-driven square cavity. In the test case calculations, power law scheme was used in
spatial discretization and time discretization was performed using a second-order implicit
Runge-Kutta method. Time evolution of velocity profile along the cavity centerline was
obtained from the proposed method and compared with that obtained from a commercial
computational fluid dynamics software program, FLUENT 6.2.16. Also, steady state
solution from the present method was compared with the numerical solution of Ghia, Ghia,
and Shin and that of Erturk, Corke, and Gookg¢ol. Good agreement of the solution of the
proposed method with the solutions of FLUENT; Ghia, Ghia, and Shin; and Erturk, Corke,

and Gookgol establishes the feasibility of the proposed method.
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NOMENCLATURE

weights used in stage calculations in a Runge-Kutta method

coefficients in the discretized form of momentum/pressure-correction equations
weights used in update solution in a Runge-Kutta method

matrix of weights used in update solution in a Runge-Kutta method

source term in momentum equations

deferred correction term in the expression for time-derivative of velocity

body force vector

interpolation factor

time-derivative

momentum term used in momentum interpolation
time-step size

indices associated with grid points

index associated with time step

surface force vector

order of accuracy in a Runge-Kutta method
pressure, N/m”

number of stages in a Runge-Kutta method
root mean square

Reynolds number

residual
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r,s stage indices used in Runge-Kutta methods
S surface vector
S surface
S source term
t time, s
u component of velocity in x-direction, m/s
Vv velocity vector, m/s
A% volume, m
v component of velocity in y-direction, m/s
X,y x- and y-coordinates, m
Greek Symbols
o under-relaxation factor
r general diffusion coefficient
A geometric lengths of CVs, m
) diffusion length, m
U dynamic viscosity, N.s/m’
A% kinematic viscosity ( i/ p ), m*/s
p density, kg/m’
T parameters used to define quadrature points in Runge-Kutta methods
T matrix of parameters used to define quadrature points in Runge-Kutta methods

general variable representing u or v



Mathematical Symbols
\% gradient operator
& Laplacian operator
Superscripts
' correction
* incorrect or guessed value
/ associated with preceding iteration
p associated with pressure
pc associated with pressure correction
u associated with u-velocity
v associated with v-velocity
Subscripts
i association with /™ node
Jj association with /™ node
max maximum
n time-step index

viii

W, E S N west, east, south, and north nodes relative to a node under consideration

w, e s, n west, east, south, and north faces of a node under consideration
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1. INTRODUCTION

In nature and in engineering applications, heat transfer, phase changes and
chemical reactions are mostly time dependent. Scientists and engineers are frequently
confronted with the challenge of accurate prediction of time-dependent flow, thermal,
and/or species fields in the areas like environmental engineering, meteorology, health, bio-
medical, aeronautics, astronautics, energy exploration, power production, industry, and
defense applications.

Accuracy of predictability is important for economy, safety, efficiency, and
environment-friendliness in design of equipment and machinery, especially during process
start up, control, and shutdown. Accuracy of predictability is also important in the
simulation of processes which are difficult to be realized in a laboratory. Also, accurate
techniques are essential for Direct Numerical Simulation (DNS) of flows. Until recently,
time-dependent numerical simulations have been modestly accurate in time advancement
due to the past limitations on computing capabilities and storage of data and memory.
Majority of the current simulation methods are limited to second order accuracy in time.
Moreover, usual simulation methods rely on explicit time discretization methods. For
explicit methods numerical stability of solution has been an issue which is generally
guaranteed only with very small time step sizes. Major commercial Computational Fluid
Dynamics (CFD) software programs provide options for implicit time advancing, but the

accuracy is limited to second order in time.

This dissertation follows the style and format of Numerical Heat Transfer.



The purpose of the current research is to propose a stable simulation method that
can be used to achieve arbitrarily high order of accuracy in time advancement in
simulation of time-dependent incompressible flow and heat transfer. The strategy is to
combine the state-of-the-art mathematical tools with proven flow simulation algorithms to
develop simulation techniques with higher-order accuracy. A special class of implicit
Runge-Kutta methods is used in conjunction with SIMPLE algorithm [1]. The proposed
method is called SIMPLE DIRK method. This method was initially presented for
staggered grid approach at an international conference [2]. A journal paper on this method
has also been published [3]. A FORTRAN code was developed to implement the method.
As a test case a lid-driven square cavity flow was simulated with the developed code. The
results were compared with the solution of a commercial CFD software program,
FLUENT [4] for the same test case. Steady state solution was compared with the solutions
of Ghia et al. [5] and Erturk et al. [6]. The method was also extended to co-located
variables or non-staggered grid approach [7, 8]. The results of the non-staggered grid
method were compared with the results of the staggered grid method.

Good agreement of the results of the developed code with the results of FLUENT
[4], Ghia et al. [5], and Erturk et al. [6] establishes feasibility of the proposed method and
prospects for its extension to complex geometry and more complex flows involving
chemical reaction, radiation, and multiple phases.

This dissertation is arranged in eight sections. Section 2 presents a literature review
of the work done on temporal discretization of incompressible flow equations, and

establishes the need for the application of higher-order implicit methods to incompressible



flow simulation. In Section 3, the author’s choice of a special class of implicit Runge-
Kutta methods is justified on the basis of three criteria. Section 4 gives a detailed
description of the method presented herein. At first the model equations are presented.
Then the numerical method is discussed separately for both the staggered grid and the non-
staggered grid approaches. In Section 5, a test case is described. This section explains the
strategy adopted for the validation of the presented method. In Section 6, results of the
presented method are compared with the results of FLUENT [4] and published numerical
solutions, and conclusions are drawn from the presented discussion. Section 7 presents a
summary of this dissertation work. In Section 8, some recommendations for possible

future work are presented.



2. LITERATURE REVIEW ON TEMPORAL DISCRETIZATION

As will be described in Section 4, spatial discretization of momentum conservation
equations converts them into first order ordinary differential equations (ODES) in time.
Depending on how the unavailability of evolution of pressure is handled, the available
formulations can be identified as either vorticity-based or primitive variables-based. Based
on the method used for time advancement in the solution of the spatially discretized form
of momentum conservation equations, the available numerical methods can be categorized
as explicit, implicit, or partially implicit.

In almost all the early flow simulation methods, time advancement was performed
by explicit first-order finite difference or forward Euler method. The earliest attempts to
solve flow problems numerically were made by using finite difference methods with
primitive variables. Harlow [9] proposed the Particle-In-Cell (PIC) method for transient,
compressible flow which had a combination of Lagrangian and Eulerian approaches.
However PIC method was intensive in memory and computational effort. Gentry et al.
[10] developed a variation of PIC method, called the Fluid-In-Cell (FLIC) method, which
used finite differencing in Eulerian approach. Stability was a concern in FLIC method due
to improper velocity and pressure coupling. Fromm and Harlow [11] developed vorticity-
stream function formulation for transient, incompressible flows which is still being used
for flow simulation in two-dimensional domains. The Marker-And-Cell (MAC) method of
Harlow and Welch [12] was the earliest successful simulation method for unsteady
incompressible flows by using primitive variables at staggered locations. The pseudo or

artificial compressibility method developed by Chorin [13] modifies the continuity



equation for incompressible flows with an additional term. The artificial compressibility
method provides an evolution equation for pressure and thus a mechanism to march in
time. But this method ensures a solenoidal velocity field only at steady state and thus is not
suitable for transient simulations. Later, Chorin [14, 15] used the Helmholtz-Hodge
decomposition theorem and proposed a method for velocity-pressure coupling in
incompressible flows, called projection or fractional-step method. Denaro [16] has
presented a detailed discussion on the application of the Helmholtz-Hodge decomposition
in projection methods for incompressible flows. Majority of modern flow simulation
methods are variations of the projection method or fractional-step method. However, as
pointed out by Orszag et al. [17], pseudo or spurious numerical boundary layer effect
encountered in fractional-step methods can induce substantial time differencing errors.
Researchers are still trying to deal with the effect of spurious numerical boundary layer
(Dagan [18]).

Alternating Direction Implicit (ADI) method, proposed by Peaceman and Rachford
[19], paved the way for implicit time advancement. ADI method was later adopted for
hyperbolic differential equations by Lees [20]. Steger and Kutler [21] were among the first
researchers to present an implicit method for time advancement in incompressible flows.
Earlier fully implicit methods were backward Euler methods which were unconditionally
stable, but only first-order accurate in time. Examples of higher-order implicit methods are
mid-point rule and second-order implicit Crank-Nicholson method [22].

Combinations of explicit and implicit methods were also developed. Many

different applications of predictor-corrector method, originally proposed by MacCormack



[23], are examples of combination explicit-implicit methods. Combination explicit-
implicit methods suffer from constraints on time-step size due to stability conditions.

It may be noted that pressure-velocity coupling remained an area of interest in all
incompressible flow simulations. In recent simulation methods, higher order of accuracy
and stability are major areas of interest in addition to pressure-velocity coupling.

To achieve higher order of accuracy, multi-point methods, such as Adams-
Bashforth methods, were used which need information at more than one instant in time at
which data has already been computed. However, multipoint methods rely on some other
method to generate enough data to start time marching. These methods often suffer from
instability and generate non-physical solutions (Ferziger and Peric [24]).

Runge-Kutta (RK) methods offer an alternative to multi-point methods for higher
order of accuracy in time. In RK methods, the value of the dependent variable at the end of
any time step is calculated from its value at the beginning of the time step. For higher
order of accuracy, the values of the dependent variable and/or its derivative are calculated
at intermediate time instants within a single time step. For a desired order of accuracy, RK
methods are more stable when compared with multi-point methods of same accuracy
(Ferziger and Peric [24]). The classical explicit RK methods can be used to achieve high-
order accuracy, but they are restricted by stability constraints on time-step size. Especially
for unsteady incompressible flow simulations at high Reynolds numbers, which involve
solution of stiff ODEs, explicit RK methods are not suitable. Explicit RK methods have
been developed and employed for time advancement in compressible flow simulation by

many researchers such as Fehlberg [25, 26], Jameson et al. [27], and Cebeci et al. [28].



The projection method of Chorin [14] was used by many researchers to develop
methods with higher-order accuracy in time. Kim and Moin [29] developed an explicit-
implicit projection method using a second order explicit Adams-Bashforth method for the
convective terms and a second order implicit Crank-Nicolson method for the viscous term.
Kan [30] and Bell et al. [31] also developed projection methods of second order accuracy
in time similar to the one proposed by Kim and Moin [29]. These projection methods,
though used by many, were later studied and criticized by many authors. Perot [32] argued
that pressure calculation is only first order accurate in time. Strikwerda and Lee [33]
confirmed Perot’s argument. There have been some recent improvements in the accuracy
of projection methods. Brown et al. [34] and Liu et al. [35] have presented projection
methods with second order accuracy in time. Rai and Moin [36] presented a method,
which is second order accurate in time, for direct simulation of incompressible fully
developed turbulent channel flow using an explicit Runge-Kutta method for the convective
terms and an implicit Crank-Nicholson method for the viscous terms. Based on third-order
accurate Runge-Kutta methods, semi-implicit schemes were proposed by Spalart et al.
[37], Verzicco and Orlandi [38], and Nikitin [39].

Besides the projection methods discussed in the above paragraph, a method of
velocity and pressure coupling was proposed by Caretto et al. [40]. This method, which is
called SIMPLE, is documented and discussed in detail by Patankar [1]. Many variations of
this method with some improvements have been developed [1, 41-52]. However, there has
been little attention to the possibility of using higher order time discretization in

conjunction with SIMPLE family of methods. The author has found no work, in particular,



on the use of implicit RK methods. The current work focused on using implicit RK
methods in conjunction with SIMPLE. The factors that led the author to choose implicit
RK methods for temporal discretization are discussed in Section 3. The reason for
choosing SIMPLE instead of its later variations is that although the variations of SIMPLE
were proposed with claimed improvements yet these methods have demerits that are still

being discussed by many researchers [41-52].



3. CHOICE OF TEMPORAL DISCRETIZATION METHOD FOR

THE CURRENT WORK

Choice of temporal discretization method for the solution of incompressible flows
is dictated by several considerations:

First, an explicit evolution equation for pressure is not available; instead,
implementation of the continuity equation provides an implicit form of pressure evolution.
In other words, pressure field has to evolve in time so that the continuity equation is
satisfied at all instants in time. This is in contrast with compressible flows where the
continuity equation contains time rate of change of density which can be related to
pressure through some equation of state.

Second, the momentum conservation equations for incompressible flows are stiff
differential equations which are susceptible to numerical instability, especially at higher
Reynolds numbers. Stiffness may be defined in several ways. There are many
mathematical representations of stiffness in the literature. In simple words, a stifft ODE
requires much smaller time-step size to obtain a stable solution using an explicit method
than that required for a desired accuracy using an implicit method. Thus the time-step size
in explicit methods is dictated by stability rather than accuracy. Hoffman [53] has
provided several simple definitions of stiffness. A stiff ODE contains some transient terms
that decay faster than others. From the viewpoint of computational effort, an ODE is called
stiff if the feasible step size is too large to give a stable solution. Often, for a stable

solution the required step size is so small that the round-off errors dominate the solution.
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The stiffness of an ODE can be mild or severe. Moreover, an ODE may be stiffer in
certain part of the solution domain than the rest of the domain.

Third, there should be room for adaptation to arbitrarily high order of accuracy.
High order of accuracy is desirable because higher order methods are more efficient [54].

The above considerations lead us to look for some implicit method for
simultaneous iterative solution of momentum and mass conservation equations. Implicit
methods can be derived to be unconditionally stable. Therefore, the step size is not limited
by stability. This makes implicit methods a suitable choice for stiff problems (Dekker and
Verwer [55]). Moreover, for higher order of accuracy, Runge-Kutta methods are one-step
alternative to multipoint methods. Therefore, implicit Runge-Kutta methods were adopted
for time discretization in the current work. For higher order simulations, implicit RK
methods are preferable over their explicit counterparts because, beyond order 4, explicit
RK methods require more stages than the required order (Butcher [54]). Since formally
been proposed by Butcher [56] and some others, implicit Runge-Kutta methods have gone
through years of development. The relatively large computational effort associated with
implicit Runge-Kutta methods is less of an issue due to the advancement in computing
hardware technology. Interested readers may refer to Appendix A for an account of
Runge-Kutta (RK) methods.

In the current work, the author chose to adopt Explicit first stage, Single diagonal
coefficient, Diagonally Implicit, Runge-Kutta (ESDIRK) methods in conjunction with
SIMPLE algorithm. The current method was named as SIMPLE DIRK method. Several

desirable characteristics of ESDIRK methods are discussed by Kennedy and Carpenter
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[57] and Butcher [54]. Bijl et al. [58, 59] and Carpenter et al. [60] simulated unsteady
compressible flow using ESDIRK methods in a pseudo-time sub-iteration algorithm. Isono
and Zingg [61] performed similar simulation with a Newton-Krylov Algorithm. A special
class of ESDIRK methods, called stiffly accurate ESDIRK methods, was chosen by these
researchers. These methods were identified by Prothero and Robinson [62] and explained
in detail by Hairer and Wanner [63]. We also chose to adapt stiffly accurate RK methods
in the current simulation method. The reason for this choice is explained as follows. As
will be explained later in this thesis, velocity and pressure fields in the proposed method
are calculated simultaneously and implicitly during stage calculations in every time-step
while satisfying both momentum and continuity equations. However, the update solution
in every time-step is explicit in nature and does not guarantee a divergence-free velocity
field. Moreover, the pressure field, corresponding to the velocity field obtained from the
update solution, is not calculated simultaneously. The pressure field is required for
calculations in the subsequent time-step and therefore needs to be calculated from the
velocity field by some method such as solution of pressure Poisson’s equation. Stiffly
accurate RK methods eliminate the need for update solution which is required in other RK
methods in every time-step. The last stage calculations in any time-step » yield a velocity
field which is equal to the velocity field at the end of that time-step. Since this velocity
field results from simultaneous solution of momentum and continuity equations, the

corresponding pressure field is also calculated.
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4. NUMERICAL METHOD

The method presented herein is an implicit formulation in time used in conjunction
with finite volume based SIMPLE algorithm. The method can be used for arbitrarily high
order of accuracy in time. Moreover, this method can be extended to three-dimensional
domains with curvilinear coordinates, but for the sake of simplicity, we will limit our
discussion to two-dimensional domains with Cartesian coordinates. Details of finite
volume approach and SIMPLE algorithm can be found in many publications such as
Patankar [1]. However, time discretization method presented in the current work is
different from the usual time advancement methods presented in the literature.

The method is presented for both the staggered grid and the co-located variables

approach.

4.1. Model Equations
The flow of a fluid is modeled by the law of conservation of mass and the law of
motion. Continuity equation as derived from the law of conservation of mass is given

below:

o _
a—‘;+v.(pV)

0 4.1)

From Newton’s Second Law, equations of motion are derived which can be written

in the following vector form (Schlichting [64]):



13

o2 _Eyp 4.2)

In the current work, a fluid with constant thermo-physical properties is considered.
It is assumed that the fluid is isotropic, i.e. the stress components and the rate of strain are
related by the same relationship in all directions. The fluid is also assumed to be
Newtonian, i.e. the stress components and the rate of strain are linearly related (Stoke’s
law). It is further assumed that the flow is incompressible with negligible viscous
dissipation. With these assumptions, the model equations take the following form:

Mass conservation or continuity:

VIV =0 (4.3)

A velocity field that satisfies Eq. (4.3) is called divergence-free or solenoidal
velocity field.

Momentum Conservation:

a—V+17.(vV) = —lvp + WY (4.4)
ot ol

Components of Eq. (4.4) in x- and y-direction are given below.

p%‘ =—pV.(uV = Wu)-Vp (4.5)
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p% = —pV.(W —WV)—Vp (4.6)

The numerical method used in the current work is a finite volume method in which

the model equations are solved in their integral form. The method was used with staggered
as well as non-staggered grid approach. The following sections explain the method for

these two approaches.

4.2. Staggered Grid Approach

The concept of staggered-grid was introduced by Harlow and Welch [12].
Staggered grid approach ensures proper discretization of the pressure gradient terms in
momentum conservation equation. This approach eliminates the possibility of emergence
of non-physical pressure field in the solution. Staggered grid approach is very suitable for
simple rectangular geometries. In the proceeding subsections, spatial and temporal
discretization of mass conservation and momentum conservation equations is explained
for staggered grid approach. Subsequently, simultaneous solution of the discretized

equations is discussed.

4.2.1. Spatial Discretization

In the staggered grid approach pressure is calculated at the geometric center of control
volume (CV) and velocities are calculated at the CV faces. Mass conservation equation
(Eq. (4.3)) is integrated over control volumes enclosing main grid points; a typical CV is
shown in Figure 4.1. Whereas, x- and y-components of momentum conservation equation

(Eq. (4.4)) are integrated over the control volumes of the staggered grids shown in
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Figures 4.2 and 4.3, respectively.

4.2.1a. Mass Conservation Equation
Integrating Eq. (4.3) over a typical p-CV, shown in Figure 4.1, and applyingdivergence

theorem one gets,

[ vVav=|vas 4.7)

We assume that at any point on the face of the p-CV, velocity remains constant and
equal to its value at the center of the face. With this assumption, discretization of Eq. (4.7)

gives:

(”i,j _ui—l,j)(Ay)f +(vi,j _vi,j—l)(Ax)f =0 (4.8)

Eq. (4.8) is discretized form of mass conservation equation, Eq. (4.3), for a p-grid

node (7, ) in staggered-grid approach.

4.2.1b. Momentum Conservation Equations
Integrating Eq. (4.5) over a u-CV, shown in Figure 4.2, and applying divergence

theorem:

pJ.Va—udV:— p.l.sufdg + L,uVu.a’g - IVVpdV (4.9)

ConvectionTerm DiffusionTerm SourceTerm

Similarly, for v-velocity, integrating Eq. (4.6) over a v-CV, shown in Figure 4.3,
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and applying divergence theorem:

pJV%de— pjsvﬁ.dg + Lﬂvv.a@ = IVVpdV (4.10)

ConvectionTerm DiffusionTerm SourceTerm

Egs. (4.9) and (4.10) can be discretized with any spatial discretization scheme of
one’s choice yielding different orders of accuracy. Regardless of the spatial discretization
scheme used, the discretized equations can be written in the following form.

For a u-grid node (i, j):

(Ou /81‘)[,] =f" (t,u,v,p)ij/

u u u u
_(aW‘_ Fag +ag +ay )ui’j

:W +aW +ClE ,+1]+Cls i 1+aN ulj+l (4.11)
+(pi,.i _pi+1,_;)(AJ’)j +c
Similarly, for a v-grid node (i, j):
(Gv/ﬁt)i’j =f" (t,u,v,p)i,j
_(a;V‘}+a;i‘+a;i,+a;vib)vi’j
= AR (A | Vi ¥ e Vo 5 Vi ¥l Vi 4.12
Py (ay) | T B s S Vg 1D

+(pi,j _pi,j+1)(Ay)j +c;

In Eqgs. (4.11) and (4.12), p;; refers to nodes (7, j) of the main grid (p-grid), shown
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in Figure 4.1. u;; and v;; refer to nodes (i, j) of the staggered grids (u- and v-grid
respectively), shown in Figures 4.2 and 4.3. Coefficients aw, ag, as, and ay are dependent
on velocity field, thermo-physical properties, and grid size. Formulae for these coefficients
are based on the discretization scheme chosen. The term c arises when higher-order
discretization schemes are used in conjunction with deferred-correction technique
introduced by Khosla and Rubin [65]. Appendix B gives expressions for the term ¢ and the
coefficients aw, ag, as, and ay for power law scheme of Patankar [1] and QUICK scheme
of Leonard [66].

Egs. (4.11) and (4.12) are ordinary differential equations in time. These are
evolution equations for u- and v-velocity fields. At any instant in time, if velocity and
pressure fields are known, time-derivative of u- and v-velocity can be calculated using

these equations.

4.2.2. Temporal Discretization

In the current work, ESDIRK methods are used for temporal discretization (refer to
Section 3). Referring to Appendix A, in a stiffly accurate ESDIRK method, u-velocity at
n" time-step at any grid node is calculated from Egs. (A.16) through (A.18) which

transform to the following three equations:

un,l = un,O (413)

un,r =un,0+hZAsfu(t’u’v’ p)n,s’ r=2, q (414)
s=1
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un+1 = un,q (415)

In Egs. (4.13) through (4.15), the indices n, r refer to A stage of n™ time step and
should not be confused with indices of the grid points. Parameters 4, in Eq. (4.14) are the
weights used in stage calculations. These parameters are taken from the Butcher array of

the chosen RK method.

Re-writing Eq. (4.14) with a little re-arrangement:

r=1
un,r = Z/ln,O + hz Arsf‘n‘fs + hArr nlfr’ r= 2’ q (4 16)
s=1

At any 0 stage, the first two terms on the right hand side of Eq. (4.16) are explicit
terms. The first term is known from the previous time step. The second term can be
calculated, using Eq. (4.11), from the values of u calculated in the preceding stages.
However, the third term is an implicit term because f, , is dependent on u,,. Inserting Eq.

(4.11) into the third term on the right hand side of Eq. (4.16); for n™ time step at " stage,

we get:

(1), =(0,), +1 54, (1),

b (e vap vy v Y,
plax) (a)y U T T T

J

i+l,j

+ay, u,_, +a, u '
W/-_/» i-l,j Ei,/ i,j—1

u u
tag u g tay U,

(= ) (W) el | r=2.g 17)



where subscript z is omitted for clarity.

Re-arranging terms and omitting subscript » from u-velocity terms:

(a;’,,w + af‘;’_'j + a;‘_‘j_ + a]‘(,hj + p(Ax):l (Ay)f /hA”,)ui’j

—aW +aE H1]+as u

¥ (pl-,,- = Piay ) ()]

u
ij-1 +aNi"u

J i,j+1

(&)

r-l Ax) .
et ), o080 (1) | PO s

rr

Re-writing Eq. (4.18) in a condensed form:

p— u
az ]ul] aW +aE i+1,j +aS i,j-1 +aN uz,(/’-*—l +(pi,j _pi+1,(/’)(Ay) +b

Corresponding equation for v-velocity is:

— p v
al jvl J aW +aE i+l,j +aS i,j—1 +aN Vl ,j+l +(pi,j _le,_j)(Ax)i +bi,_j
where
u o __ o u u u u u P _
aj,=ay +ay +ag +ay +p(Ax). (Ay)j /hA,,, r=2,q

1
bl =cl,+ {(uf,_,- ), +hy A, (£ )S}P(Ax)? (Av) /hd,,  r=2.q

a,=ay +a, +ag +ay +p(Ax)’ (Ay); /hA,,, r=2,q
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(4.18)

(4.19)

(4.20)

4.21)

(4.22)

(4.23)
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bl =cl,+ {(m ), +h2 A1), }p(Ax)f’ (Av)' /B4,  r=2,q (4.24)

Egs. (4.19) and (4.20) are the discretized forms of Egs. (4.5) and (4.6),
respectively, when staggered grid approach is used. Coefficients ay, ag, as, and ay are
evaluated based on the spatial discretization scheme of choice. Since coefficients of Egs.
(4.19) and (4.20) are dependent on the dependent variables u and v, these equations are
non-linear equations, and therefore, require an iterative method for their solution. The

solution method is explained in the next subsection.

4.2.3. Simultaneous Solution of Mass Conservation and Momentum Conservation

Equations

At any n™ time step, Egs. (4.8), (4.19), and (4.20) are required to be solved
simultaneously at every 7" stage of a DIRK method. Therefore, in a g-stage DIRK method,
g number of iterative solutions is required in every time step. However, in an ESDIRK
method, the first stage velocity field is explicitly given by Eq. (4.13) and similar equation
for v-velocity. Therefore, in a g-stage ESDIRK method, g—1 (one less than ¢) number of
iterative solutions is required in every time step. Time advancement is shown
schematically in Figure 4.4. SIMPLE algorithm (Patankar [1]) is used for simultaneous
solution of Egs. (4.8), (4.19), and (4.20). In this algorithm, velocity and pressure fields are
required to be corrected in every iteration. The corrections are calculated from a pressure

correction equation which is derived in Section 4.2.3b. Moreover, in order to ensure
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convergence, the iterative solution of momentum equations is under-relaxed, as explained
in Section 4.2.3c. Convergence of solution is monitored in every iteration by comparing
relative residuals for mass conservation, u-velocity, and v-velocity with some specified
values; relative residuals are defined in Section 4.2.3d.

The proceeding subsection explains how the velocities are calculated at the faces of
control volumes. These velocities are required to calculate coefficients in the discretized

equations Eqgs. (4.19) and (4.20).

4.2.3a. Evaluation of CV Face Velocities

Since the discretized equations, Egs. (4.19) and (4.20), were obtained from the
integral form of model governing equations, formulae derived for the coefficients aw, ag,
as, and ay using any general discretization scheme involve velocities at the CV faces. In
the staggered-grid approach, the velocities at the faces of u- and v-CVs are calculated from
the velocities at the u- and v-grid nodes by some interpolation method, e.g. linear and
quadratic interpolation. The interpolation method is chosen based on the order of accuracy
desired. Appendix B gives formulae for u-velocity at the east face of a u-CV when QUICK
scheme of Leonard [66] is used. Different formulae will arise if a different spatial

discretization scheme is used.

4.2.3b. Correcting Velocity and Pressure Fields by Enforcing Mass Conservation
During the iterative solution process before convergence is reached, the velocity

fields calculated from momentum equations do not satisfy continuity equation, Eq. (4.8).

Corrections are applied to the calculated velocity fields after every iteration until

convergence is achieved. Let p’ be a guessed or incorrect pressure field which is used in
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the solution of Egs. (4.19) and (4.20); the resulting velocity field can be denoted as " and

v . Then corrections required in velocity and pressure fields are:

u'=u-u (4.25)
V=y—v (4.26)
p'=p-p (4.27)
From Eq. (4.19):
azju:] aW +aE 1+1, +aS u,] 1+aN uzj+1 +(pzj —p;l’j)(Ay) +b;, (4.28)

Subtracting Eq. (4.28) from Eq. (4.19):

’ ' ' p
a U = aW + aE t+1 .J + aS i,j—1 + aN ul ,j+l +(pi,_j _le,_/)(Ay)j (429)

L7

Omission of the first four terms in Eq. (4.29) and a little re-arrangement result in

the following equation (justification for this omission is explained by Patankar [1]):

(4.30)

_ Jj ro_
U, = Pij = Pin,;

Similar equation is obtained for V':



Ax)”
Viji = ( V)l (pi,,j _pi,,j+1)

4a, ;

Substituting Egs. (4.30) and (4.31) into Egs. (4.25) and (4.26):

P
o (Ay)j ’ ’
u, , =u, ; +— (pi,j _le,_j)
i,j
p
— +ﬂ Iy
Vz/ _Vz;j v pz;j pi7j+l
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(4.31)

(4.32)

(4.33)

Now substituting Egs. (4.32) and (4.33) into Eq. (4.8) and re-arranging terms, we

get the pressure correction equation:

!

a’s

where

(Ay)"
ay;, = p| —— |(&v)]
i-1,j
(&)

_ o pc 1 pe 1 pe 1 pe 1 pe
i.jPi,j = 4w, Pi,; + A Pia,j + ds, Pija + ay, Pijn + Si,j

(4.34)

(4.35)

(4.36)



pc _ pC pe pec pec
ai,] - an,_/ + aEi,j + aSi,i + aN'\./

St = plu, —ui, ) (&), +o (v,

4.2.3c. Under-relaxation

28

(4.37)

(4.38)

(4.39)

(4.40)

Since Egs. (4.19) and (4.20) are non-linear, their solution needs to be under-relaxed

to ensure convergence. Let u' represent u-velocity at the preceding iteration; incorporating

under-relaxation into Eq. (4.19):

Uij=
a" "
p {aW +aE i+l +as ij- 1+aN Hijn +(pi,j _pi+l,j)(Ay) +b, }
i,J
+(1—a”)uf,j
Re-arranging Eq. (4.41):
a' u, . =a,

p u
i i =, +aE l+lj+aS i) 1+aN ulj+1+(pi,_j_pi+1,j)(Ay)j+Si,_/

Corresponding equation for v-velocity is:

(4.41)

(4.42)
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v _ P v
a; Vi aW +aE i+1,) +as - 1+aN Vi +(pi,j _pi+l,j)(Ax)i +S;; (4.43)

S"and S" in Egs. (4.42) and (4.43) are given by:

1
Stul = biLj_/ +(au _lj az_/uf,j (444)
v v 1 v [
Si,./‘ =bi,_/ + ?_1 a; Vi ; (4.45)

where b" and b" are calculated from Egs. (4.22) and (4.24), respectively.

Pressure correction is also under-relaxed as given below:

p= p* +a’p' (4.46)

4.2.3d. Convergence Criteria

During the simultaneous iterative solution of Egs. (4.8), (4.19), and (4.20), the
solution is checked for convergence during every iteration by evaluating relative residuals
and comparing them with some chosen values. The relative residuals for mass and
momentum conservation equations are calculated as given below.

Relative residual for mass conservation:

2,

_ p-CVs
mass conservation

P(”i,j IU)(Ay) +/0( Vi 1)(Ax)il

pul,

(4.47)

res

where u. and /. are some characteristic values of velocity and length. Choice for
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these characteristic values depends on nature of the problem under consideration; for

example in case of lid-driven square cavity flow, these values can be lid speed and cavity

height.

Relative residual for u-velocity:

1

J— u
resu—velocity - u Z az jul Jj (aW +aE i+l,j +aS uz,j—l +aN,-’/-ui,j+l
Z d; Uy j| u-Cvs k
u-CVs
=P, (&) +S0) (448)
pz,/ pl+1,] y .
Relative residual for v-velocity:
j— 1 v
reSv—velocity - z ai,jvi j (aW +aE i+l,j + aS i,j-1 + aN vz j+l
al jV,/ v-CVs
v-CVs
p v
+(pi,j _pi+l,j)(Ax)i +Si,j) (4.49)

4.2.3e. Algorithm

1. Assign initial values to velocity and pressure fields. These initial fields are also
taken as initial guess for the subsequent iterative solution.

2. Set boundary conditions.

3. Setn=1.

4. Set u,o and v, equal to initial velocity field.

th Time-Step (N =1, Nmax):

1* Stage (r =1):

5. Set un1 = uyo and v, = vuo (Eq. (4.13) and the corresponding equation for v-
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velocity).

r Stage (r =2, Q):

6. Calculate coefficients aw, ag, as, and ay using the velocity fields u,,.; and v,

with a spatial discretization scheme of choice.

7. Calculate time-derivatives f,’ and f,’ (for s = 1, -1) from Egs. (4.11) and

(4.12) respectively.

8. Calculate " and b" from Egs. (4.22) and (4.24) respectively.

Iteration for u, v, and p:

9.

10.

1.

12.

13.

14.

15.

16

Solve Egs. (4.19) and (4.20) with some solution algorithm such as line-by-
line procedure which is a combination of Tri-diagonal Matrix Algorithm
(TDMA) and Gauss-Seidel scheme.

Calculate pressure correction from Eq. (4.34).

Correct u- and v- velocity fields using Egs. (4.32) and (4.33).

Correct the pressure field using Eq. (4.46).

Calculate coefficients aw, ag, as, and ay using the velocity fields
calculated in step 11.

Calculate residuals from Eqs. (4.47) through (4.49). Check for
convergence by comparing the residuals with some chosen values.

If solution is converged, go to step 17.

If solution is not converged, go to step 9.

17. Check the value of r.

18. If r =g, go to step 20.
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19. If r < g, switch to next stage, i.e., set » =r + 1. Go to step 6.
20. Check the value of n.
21. If n < nyuy., switch to the next time-step, i.e., set n =n + 1. Set u, o and v, equal
to the velocity fields calculated in step 11. Go to step 5.

22. If n = nygy, stop the program.

The above solution algorithm is shown as a flow chart in Figure 4.5.



Time Advancement

Stage Calculations

START

Assign initial values to velocity and pressure fields.
Set boundary conditions.

Setn=1.

Set u, o and v, o equal to initial velocity field.

v

Set u,1 = u,0 and v,; = v, as given by Eq. (4.13)
and the corresponding equation for v-velocity.

v

Calculate coefficients ay, ag, as, and ay using the
velocity fields u,,; and v,,.; with a spatial
discretization scheme of choice.

—» Calculate time-derivatives /" and /" from Egs.

(4.11) and (4.12) respectively.
Calculate »* and b" from Egs. (4.22) and (4.24)
respectively.

A

Solve Egs. (4.19) and (4.20) with some solution
algorithm such as line-by-line procedure which is a
combination of Tri-diagonal Matrix Algorithm
(TDMA) and Gauss-Seidel scheme.

Calculate pressure correction from Eq. (4.34).

Figure 4.5

4 Correct u- and v- velocity fields using Egs. (4.32)
],
2 and (4.33).
s Correct the pressure field using Eq. (4.46).
:h Calculate coefficients ay, ag, as, and ay.
5 Calculate residuals from Egs. (4.47) through (4.49).
=
.2
®
2
«— N Convergence?

e ETaiaan e

n = Nygyx

STOP

Solution Algorithm for Staggered Grid Method

33
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4.3. Non-staggered Grid Approach (or Co-located Variables Approach)

Due to larger memory and computational effort requirement associated with the
staggered grid approach, it has always been desirable to use a non-staggered grid wherein
all variables can be calculated and stored at the nodes of a single grid. Moreover, the
staggered grid approach is not suitable for use with complex geometries that involve
internal bluff regions and require unstructured grids. Rhie and Chow [67] proposed a
method to overcome the difficulties involved in the use of a non-staggered grid. The
method was later improved by other researchers.

The above considerations motivated the current author to extend the proposed
SIMPLE DIRK method to non-staggered grid approach. The proceeding subsections
explain spatial and temporal discretization of mass conservation and momentum
conservation equations for non-staggered grid approach. Subsequently, simultaneous

solution of the discretized equations is discussed.

4.3.1. Spatial Discretization

In the co-located variables approach, pressure and velocities are calculated at the
geometric center of control volumes (CVs). Both the mass conservation equation (Eq.
(4.3)) and the momentum conservation equation (Eq. (4.4)) are integrated over the same

CVs; a typical CV is shown in Figure 4.6.

4.3.1a. Mass Conservation Equation
Assuming that at any point on the face of the CV, velocity remains constant and

equal to its value at the center of the face, discretization of Eq. (4.7) gives:
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(ue_uw)i,j(Ay)j+(Vﬂ_Vs)i,j (Ax)z =0 (4.50)

Eq. (4.50) is discretized form of mass conservation equation, Eq. (4.3), for a non-

staggered grid node (i, j).

4.3.1b. Momentum Conservation Equations
Integrating Egs. (4.5) and (4.6) over a CV, shown in Figure 4.6, and applying

divergence theorem, we get equations similar to Egs. (4.9) and (4.10):

pjvg—?d\/=— pLul?dg + L,uVu.dg - IVVpdV (4.51)
NI

M . . —
ConvectionTerm DiffusionTerm  Source Term

ol Zav=- pjsv?dg + L;Nv.a@, - jVVpdv (4.52)

ConvectionTerm  DiffusionTerm SourceTerm

For any node (i, j) in non-staggered grid approach, spatial discretization of Eq.

(4.51) and (4.52) results in evolution equations for u- and v-velocity fields:

(au/ét)i’j = f (t,u,v,p)i,j

_(aW,-,, ta, +ag +ay )ui’j
1

= +an_ Uy +ClEi Uiy +ag U i +aN/ U (453)
) (), |+ M

(pw_pe),,/( y)j +Cllfj
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(av/at)i,j :fv(t,u,v,p)i’j

—(aw,-,/ +a, +ag +ay )vw,

1

i w +aWi’j Vi e, Vit V+ s, Vi1
(p,=p,),, (&) +e,

(4.54)

tay, Vijn

In Egs. (4.53) and (4.54), pij, u;j, and v;; refer to node (i, j) of the non-staggered
grid, shown in Figure 4.6. Formulae for the velocity-field-dependent coefficients aw, ag,
as, and ay are based on the discretization scheme chosen. In the non-staggered grid
approach, these coefficients are identical for both the evolution equations, Egs. (4.53) and
(4.54). Given in Appendix B are expressions for the deferred-correction term ¢ and the
coefficients aw, ag, as, and ay for power law scheme of Patankar [1] and QUICK scheme

of Leonard [66].

4.3.2. Temporal Discretization
In Section 4.2.2, Eq. (4.16) was written for a u-grid node. Now we consider Eq.
(4.16) for a typical node of a non-staggered grid. Inserting Eq. (4.53) into the third term on

the right hand side of Eq. (4.16); for n"™ time step at P stage, we get:

(1), =(0 ), 52 4. 13),

IO(Ax)i (Ay)j ’ : J J

Fly Uy Qg Uy T U Ty U

+(pw—pe)i’j (Ay)j +CZf},~’ r=2,q (4.55)



38

where subscript z is omitted for clarity.

Re-arranging terms and omitting subscript » from u-velocity terms:

(an_J ta, +ag +ay +p(Ax)l_ (Ay) , /hAW)ui’j

:aWM +aE/ z+l/+aS 1/1+aN uzj+1
+(po=r.),, (&), +
= p(Ax) (Ay),
+{(ui,f)o+thA,S(ﬁ?j)s}%, r=2q (456

Re-writing Eq. (4.56) in a condensed form, we get the discretized form of x-

component of momentum conservation equation, Eq. (4.5):

al Juz J = aW,-)jui—l,j +aE i+l,j +aS uz ,j-1 +aNi’jui,j+1 (p pe) (Ay) +bu (457)
where
@ =ay, +ag +ag +ay +p(Ax) (Ay), k4, r=2,q (4.58)
r—I1
b;jj :czj +{(ui,j )0 +hZArS (f;uj )b}p(AX)l(Ay)/ //’IAW, r=2, q (459)
s=1

An equation similar to Eq. (4.57) is obtained from discretization of y-component of

momentum conservation equation, Eq. (4.6):
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_ _ 24
a; Vi =Gy Vit Qg Vi T Vi Tay Vit (ps Py )i,j (Ax), + bi,j (4.60)

where a; ; are given by Eq. (4.58); bl.v, ; are calculated as below:

bli=ci +{(v,.,j )+ 4. (S )s}p(Ax),» (av), /4, r=2.q (4.61)

Egs. (4.57) and (4.60) are the discretized forms of Egs. (4.5) and (4.6),
respectively, when non-staggered grid approach is used. The iterative solution method

required for these non-linear equations is explained in the following subsection.

4.3.3. Simultaneous Solution of Mass Conservation and Momentum Conservation
Equations
In any n™ time step, Egs. (4.50), (4.57), and (4.60) are required to be solved
simultaneously at every " stage of an ESDIRK method. Like staggered grid approach,
SIMPLE algorithm (Patankar [1]) is used for simultaneous solution of Egs. (4.50), (4.57),
and (4.60). g—1 (one less than ¢) number of iterative solutions is required in every time
step in a g-stage ESDIRK method. Time advancement is shown schematically in Figure

4.4.

4.3.3a. Evaluation of CV Face Velocities
Since the discretized equations, Eqgs. (4.57) and (4.60), were obtained from the
integral form of model governing equations, formulae derived for the coefficients ay, ag,

as, and ay using any discretization scheme involve velocities at the CV faces. In the non-
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staggered grid approach, the velocities at the faces of u- and v-CVs are calculated from an
interpolation method similar to the one proposed by Rhie and Chow [67]. This method has
been called momentum interpolation method. Later, Majumdar [68] and Choi [69] pointed
out some problems in the original method and proposed improvements. The interpolation
method in the current work is described below.

Incorporating under-relaxation into Eq. (4.57) and using Eq. (4.59), for a node (i, ;)

we get:

aijj
(uw' )0 Ax) (A
I P o e
+hy A, (f1) h4,
s=1
where
HZ,' = aWiJui—l,j + aE,-'j Ui + aSiyjui,j—l + aN,-,jui,jJrl (4~63)

Similarly for the node (i+1, j):
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Uiy =(1_a)(ui+l,j ),
Hilil,j + (pw _pe )i+1,j (Ay)] + c;trl,j

o
+ -l p(Ax o Ay), , =24 (4.64)
Uy +{(ui+1’j )0 -I-hz A (flilj )3} })IAI ( J
s=1

rr

where

u
Hi+1,j tag, u

=a -+ a u 1
W; Eij i, L =1

o, i, 42,/ Tay, Ui jn (4.65)

u-velocity at the east face of the CV corresponding to the node (i, j) can be
obtained by interpolating selected terms in the above equations. Consider an imaginary u-
CV enclosing the geometric center of the east face of the CV corresponding to the node (i,
J). Geometric centers of the west and east faces of this imaginary u-CV coincide with the
nodes (i, j) and (i+1, j) respectively. Therefore the term (p,, — p.) becomes (p; j — pi+1, )
Other terms are interpolated or taken from either the previous iteration or the preceding
time-step.

Based on the above discussion, u-velocity at the east face of the CV corresponding

to the node (i, j) is written as:
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ue,'.j = (l_a)(uehf )1 +_i I—_[@Lj; +(pi’j _p”l’j)(Ay)] +E;',‘f

r=1 _ ox ) A
+{(“e,-.,-)o”“gflm(ﬁff,)s}% > =24 (4.60)

rr

Equations similar to Eq. (4.66) can be written also for u, , v

Wi n;,

L and v, -

The terms with an over-bar in Eq. (4.66) are interpolated quantities at the east face
of the CV. Interpolation can be based on the usual linear interpolation or some higher
order accurate interpolation method. Examples of higher order momentum interpolation
methods are  Quadratic Momentum Interpolation = Method proposed by
Papageorgakopoulos et al. [70] and fourth-order momentum interpolation method

presented by Yu et al. [71]. In case of linear interpolation the terms with over-bars in Eq.

(4.66) are given by the following equations:

_L:fe/_—+(1—fe[) ! (4.67)
a, ‘“a, a,,

H! =f H +(1-f,)H},, (4.68)
o =fc +(1-1, )ety, (4.69)
o =t (=) £ (4.70)

where interpolation factor f, is given by:
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AX . [2 AX

i+1

5 :Axi/2+Ax

i+1

= 1+ (4.71)
12 AX +AX,

4.3.3b. Correcting Velocity and Pressure Fields by Enforcing Mass Conservation

In SIMPLE algorithm, velocity and pressure fields are required to be corrected in
every iteration. The corrections are calculated from a pressure correction equation which is
derived below.

Consider an imaginary u-CV enclosing the geometric center of the east face of the
CV corresponding to the node (i, j). Geometric centers of the west and east faces of this
imaginary u-CV coincide with the nodes (i, j) and (i+1, j) respectively. An equation can be
derived similar to Eq. (4.57) for ue, u-velocity at the geometric center of the east face of

the CV corresponding to the node (i, j). Such equation can be written as:

ei,juei‘j - (an )i,j uei—i‘j +(aes )i,j uei+1‘j +<aes )i,j uei,j—l +(aeN )i,j uei,j+1

+( Pij = Pij )(AY)J- "‘b;j (4.72)

Recalling the definitions of p*, u”, and v_ given by Egs. (4.25) through (4.27), if Eq.
(4.72) is solved with a guessed or incorrect pressure field p’, the resultant velocity field

can be expressed as u” and v". With these pressure and velocity fields, Eq. (4.72) becomes:

aei,ju;,j - (aﬂm )i,j u:ifl,j +(aeE )i,j u:iﬂ,j +(aes )i,j U;H +(aeN )i,j u;*j“ (4.73)
+(Pry = Pl ) (Ay), +b2,
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Subtracting Eq. (4.73) from Eq. (4.72):

r ' ' ' '
ae"j ”e,,,. = (aew )i,j ”e,-,],,- + (aeE )i,j uew + (aes )[’j ”e.-,,-fl + (aeN )i,j u,

i,j+l

+(p,.',j _p;+1,/)(Ay)j (4.74)

We are looking for an approximate correction that can be applied to velocity field

during the iterative solution procedure. Since we are only interested in an approximation
for u, we drop the first four terms on the right hand side of Eq. (4.74) to get an explicit

relationship between u, and p':

u;,-,, = P ! (pi',_/ _p;ﬂ,j) (4.75)

On the right hand side of Eq. (4.75), all quantities are known except for a, . The
coefficient a,. is approximated by interpolation from the coefficients of the neighboring

nodes of the actual grid. The interpolated value of the coefficient a at the east face of a CV

enclosing a node (i, /) is denoted as a, . With this approximation, Eq. (4.75) becomes:

i =) @76)
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. b ) . .
Similarly, u, , v;,and v/ are given as:

w, = %:?j (pL,-pL) (4.77)
v, = %(p!,,_l -pi,) (4.78)
v, = (%)i(pi, ;= Pl) (4.79)
Inserting Eq. (4.76) into Eq. (4.25), we get the following expression for u,:
&), (4.80)

— " J _
ue,_’j_ = ue,.’j_ +_—(pi,j pi+1,_/)

Ci.j

Expressions for u,, vy, and v, are obtained by a similar procedure and are given

below:

u, =u, +%(p' ' ) (4.81)

— +(aAX)i (0,2 (4.82)
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! !

Va, =V, ¥ 2)6 l (pzxi _pi,j+1) (4.83)

Now, a similar procedure is followed with Egs. (4.57) and (4.60) to get the

following expressions for nodal velocities:

L),
u,; =u,,+—=(p,—pl),, (4.84)
co(AY)
Vi, =V +(a_)f( P-p),, (4.85)
i,j

Now, substituting Egs. (4.80) through (4.83) into Eq. (4.50) and performing some

re-arrangement, we get the following equation for pressure correction p':

alip;,; = avz;:/ Pl ag:, Pl aéf/ Pt a]‘\,}i,pi’,j-ﬂ +87 (4.86)
where
(Ay),
’{ : ’J(Ayk (457

a - /{(éy),- J (&) (4.88)
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af - p[(m), J( A¥) (4.89)

ay, = p(&J(m)l (4.90)

S5 = p(u, =1 ) (&), +p(vi - v, )(Ax), 4.91)

In every iteration, Eq. (4.86) is solved for p'. The calculated corrections are

applied to pressure and velocity fields after every iteration.

4.3.3c. Under-relaxation
Solution of Eqs. (4.57) and (4.60) is under-relaxed to ensure convergence. Let i
represent u-velocity at the preceding iteration; incorporating under-relaxation into

Eq. (4.57):

+(1-a")uj, (4.92)

Re-arranging Eq. (4.92):

_ _ u
Q; Ui =y Uiy ;T g Uy +ag Uyt Ay Uy g+ (pw P, ),-,j (Ay)j + Si,j (4.93)

Corresponding equation for v-velocity is:
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_ v
Q; Vi =y, Vit Qg Vi T VijaTay Vi ™ (ps — P, ),»,j (Ax), + Si,j (4.94)

S*"and S§" in Egs. (4.93) and (4.94) are given by:

S, =bi;+ (Lu_lj a; j”z‘li (4.95)
y a 9, LN
v Y 1 !
Si,=bi;+ o —lia, v, (4.96)

where b and b" are calculated from Egs. (4.59) and (4.61), respectively.

Pressure correction is under-relaxed using Eq. (4.34).

4.3.3d. Convergence Criteria
The relative residuals for mass and momentum conservation equations are
calculated as given below.

Relative residual for mass conservation:

2

_ _CVs
mass conservation

pu,~u,), (&), +p(v,~v,),, (M), 497)

pul,

res

where u. and /. are some characteristic values of velocity and length.

Relative residual for u-velocity:
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resu—velocity 1] z J ( W, i—l,j +aE i+l,j +aS ul,j—l +aNl.y/.ui,j+l
,] l] CVs
CVs
u
+(po=p.), (), +S) (498)
Relative residual for v-velocity:
resv—velocity 1 . lj ( i—l,j +aE i+l,j +aS vt,_jfl + aN,-iji,_jH
‘ , N , /‘ CVs
CVs
A4
+(ps — Py )i,j (Ax)z +Si,j) (4.99)

4.3.3e. Algorithm
1. Assign initial values to velocity and pressure fields. These initial fields are also
taken as initial guess for the subsequent iterative solution.
2. Set boundary conditions.
3. Setn=1.
4. Set u, and v, o equal to initial velocity field.
n™ Time-Step (N = 1, Nima):
1% Stage (r =1):
5. Set u,,1 = uno and v,; = v,0 (Eq. (4.13) and the corresponding equation for v-
velocity).
r Stage (r =2, q):

6. Calculate coefficients aw, ag, as, and ay using the velocity fields u,,,.; and v, -1
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with a spatial discretization scheme of choice.

7. Calculate time-derivatives f,' and f, (for s = 1, r-1) from Egs. (4.53) and

(4.54) respectively.

8. Calculate b" and b” from Egs. (4.59) and (4.61) respectively.

Iteration for u, v, and p:

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Solve Egs. (4.57) and (4.60) with some solution algorithm such as line-by-
line procedure which is a combination of Tri-diagonal Matrix Algorithm
(TDMA) and Gauss-Seidel scheme.

Solve pressure correction equation, Eq. (4.34).

Apply pressure corrections to nodal pressures using Eq. (4.46).

Calculate pressures at CV faces by using some interpolation.

Calculate pressure corrections at CV faces by using some interpolation.
Calculate corrected face velocities using Egs. (4.80) through (4.83).
Calculate coefficients of Eqgs. (4.57) and (4.60) using the corrected face
velocities calculated in step 14.

Correct u- and v- velocity fields using Egs. (4.84) and (4.85).

Calculate residuals from Egs. (4.97) through (4.99). Check for
convergence by comparing the residuals with some chosen values.

If solution is converged, go to step 20.

If solution is not converged, go to step 9.

20. Check the value of r.

21. If r =g, go to step 23.
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22. If r < g, switch to next stage, i.e., set ¥ =r + 1. Go to step 6.
23.  Check the value of n.
24. If n < nygy, switch to the next time-step, i.e., set n = n + 1. Set u,o and v, o equal
to the velocity fields calculated in step 16. Go to step 5.

25. If n = nygy. stop the program.

The above solution algorithm is shown as a flow chart in Figure 4.7.
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and Gauss-Seidel scheme.

Solve pressure correction equation, Eq. (4.34).

Apply pressure corrections to nodal pressures using Eq. (4.46).
Calculate pressures and pressure corrections at CV faces by using some
interpolation.

Iteration for u, v, and p

Calculate corrected face velocities using Egs. (4.80) through (4.83).
Calculate coefficients of Eqs. (4.57) and (4.60) using the corrected face
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Correct u- and v- velocity fields using Eqgs. (4.84) and (4.85).
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Figure 4.7
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Solution Algorithm for Staggered Grid Method
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5. VALIDATION

In order to validate the proposed SIMPLE DIRK method, a FORTRAN code was
developed for each of the staggered and the non-staggered grid approaches. Power-law
scheme of Patankar [1] was used in spatial discretization. Temporal discretization was
performed with a two-stage second-order stiffly-accurate ESDIRK method. The Butcher

array for the used ESDIRK method is given below:

0 0
1/2 1/2
1/2 1/2

In the staggered grid method, CV face velocities were calculated by linear
interpolation. In case of non-staggered grid method, CV face velocities were calculated by
linear momentum interpolation as given by Egs. (4.66) through (4.71). Under-relaxation
factors for the momentum and pressure correction equations were based on the following

relationships as proposed by Ferziger and Peric [24]:

a,=1-«a a,=1-a (5.1)

A value of 0.3 was used for o, and 0.7 for both o, and a,. The simultaneous
solution of momentum and mass conservation equations was considered to be converged

when the values of residuals of momentum conservation equations became less than 107
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and that of continuity equation reached below 107

5.1. Test Case

Flow field in a lid-driven 1 m x 1 m square cavity was solved by the proposed
method for air with constant thermo-physical properties. The values used for absolute
viscosity and density were 1.843x10° N.s/m* and 1.177 kg/m’ respectively. Calculations
were performed for Reynolds number of 400 and 1,000; where Reynolds number was

based on cavity height and the lid velocity.

5.2. Grid Dependence Study

A grid dependence study was performed before a grid size was chosen for the code
validation runs. The time step size for grid dependence study was 10 seconds.

The procedure for this study is as follows. The staggered grid code was run for a
flow time of 30 seconds with a grid size of 11x11 and Root-Mean-Square (RMS) value of
u-velocity along the vertical centerline of the cavity was calculated. The code was run
again for the same flow time but with the refined grid size of 25x25 and RMS value of u-
velocity along the vertical centerline of the cavity was calculated. Then the absolute value
of marginal relative percent change in the RMS value of u-velocity was calculated from

the following formula:

u —u
RMS ine gri RMS garse gn i
fi gil wrid : ' x100 (52)
Ugys, < Increase in Number of Grid Points

Marginal Relative % Change =

The above procedure was repeated with grid sizes of 40x40, 51x51, 60x60, 68x68,

75x75, and 81x81. The results are plotted in Figure 5.1. This figure also shows the results
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obtained with the flow time of 60 seconds and 120 seconds. Although the marginal relative
percent change in RMS value of u-velocity along the vertical centerline of the cavity

decreases when grid is refined beyond 60x60 internal nodes, yet the change is so small

that it was decided to perform calculations with the 60x60 grid.

5.3. Code Validation Runs

The staggered grid code was validated by comparison with the results of
commercial software program FLUENT [4], Ghia et al. [5], and Erturk et al. [6]. Then the
non-staggered grid code was validated by comparison with the results of the staggered grid

code.

5.3.1. Comparison of the Staggered Grid Code with FLUENT for Re = 400

For the comparison of the staggered grid code with the results of commercial
software program FLUENT [4], simulation was performed for Re = 400 and a flow time of
3,600 seconds. The time step size for this simulation was 1 second. The same grid density,
time step size, and flow time were used in the simulation with the staggered grid code and
FLUENT. In the solution by FLUENT, second order implicit time advancing was chosen.
A higher-order scheme (QUICK) was used for spatial discretization in FLUENT compared
with power law scheme used in the test solution by the staggered grid code. The results are

discussed in Section 6.

5.3.2. Comparison of the Staggered Grid Code with the Results of Erturk et al. [6] for
Re = 1,000

The staggered grid code was also run for Re = 1,000 and a flow time of 3,000
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seconds. The results were compared with the steady state solutions of Ghia et al. [5] and
Erturk et al. [6]. The time step size for this simulation was 10 seconds. The same grid
density was used in the simulation with the staggered grid code as used by Ghia et al. [5]

and Erturk et al. [6]. The results are discussed in the next section.

5.3.3. Comparison of the Non-staggered Grid Code with the Staggered Grid Code for
Re =400
In order to validate the non-staggered grid method the above problem was again
solved with both the staggered grid and the non-staggered grid codes for a flow time of
4,000 seconds, with a time step size of 10 seconds, and grid density of 60x60 internal

nodes. A discussion on the results is presented in Section 6.



58

6. RESULTS AND DISCUSSION

First, the results from the staggered grid code were compared with those from
FLUENT [4] and the numerical solution of Ghia et al. [5] and Erturk et al. [6]. Second, the
results from the non-staggered grid code were compared with those from the staggered
grid code.

Normalized u-velocity profile along a vertical line through the center of the cavity
as obtained from the staggered grid code was compared with that calculated from
FLUENT [4]. The results at various instants in time are presented in Figure 6.1. In Figures
6.2 and 6.3, u- and v-velocity contours obtained from the staggered grid code at = 200 s
are compared with those obtained from FLUENT [4]. Figures 6.4 and 6.5 present similar
comparison at ¢ = 400 s. It is evident from Figures 6.1 through 6.5 that the solution
obtained from the code is in good agreement with the solution of FLUENT [4]. In Figure
6.6, the u-velocity profile obtained from the staggered grid code at 3,600 seconds is
compared with the steady state numerical solution of Ghia et al. [5]. The staggered grid
code was also run for Re = 1,000 and a flow time of 3,000 seconds. Normalized u- and v-
velocity profiles along a vertical line through the center of the cavity are compared with
those of Ghia et al. [5] and Erturk et al. [6] in Figures 6.7 and 6.8. The results from the
code agree well with the results of Ghia et al. [5]. ] and Erturk et al. [6].

In order to investigate how the difference in the solution of the staggered grid code
and the results of FLUENT varies as the simulation proceeds in time, normalized u-
velocity data was extracted for 50 equally spaced points on the vertical centerline of the

cavity from the solutions of the staggered grid code and FLUENT [4] at various instants in
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time. Absolute difference in the two solutions was calculated for these 50 points and
maximum value of absolute difference determined. RMS value of the differences was also
calculated. Figure 6.9 shows variation of maximum absolute difference and RMS value of
the difference of the two solutions with time. At the beginning, when time-derivatives of
velocity are large in this flow, the difference in solutions grows quickly. At later times,
growth of difference in solutions almost levels out. This can be explained as follows.
Accuracy of time-derivative of velocity is dependent on the accuracy of spatial
discretization scheme as is evident from Eqgs. (4.11), (4.12), (4.53) and (4.54). Use of
lower-order spatial discretization introduces errors in calculation of time-derivative of
velocity. Egs. (4.14) and (4.15) show that velocity field at the end of every time-step
depends on the values of time-derivatives obtained from stage calculations. The errors in
time-derivative of velocity, therefore, affect the accuracy of velocity field. When velocity
field changes rapidly with time, i.e. time-derivatives are large, the effect of errors in time-
derivatives on the calculated velocity field is more significant. During time spans when
time-derivatives are small, the effect of errors in time-derivatives introduced due to use of
low-order spatial discretization on the calculated velocity field are less significant. This is
the reason for growth of difference in solutions in Figure 6.9 to diminish at later times in
the cavity flow.

Another conclusion that follows the above discussion is that the use of higher-order
spatial discretization is necessary if higher-order accuracy in time is desired. Moreover, as
shown by Eq. (4.14), a smaller time-step size /4 will lessen the effect of errors introduced

by use of low-order spatial discretization. However, a time-step size dependence study is
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required in order to find out optimum time-step size.

Since growth of difference in solutions almost stops after 1,200 seconds of flow
time (Figure 6.9), the solution will not become unstable. This observation gives a fair
indication that the proposed method is stable. However, more rigorous analysis and testing
are required to establish the stability of this method.

After comparison of the results of the staggered grid code, a comparison was made
between the results of the staggered and non-staggered grid codes. Normalized u- and v-
velocity profiles are plotted along the cavity vertical and horizontal centerlines,
respectively, in Figures 6.10 and 6.11 as obtained from both the staggered grid and non-
staggered grid codes at various instants in time. The solutions obtained from the two
methods are in excellent agreement with each other. To take a quantitative look at the
comparison of the two results, the absolute differences were calculated as percents of the

lid velocity using the following equation:

Absolute% Difference = staggered gid ~ Ynon-saggered grid x100 6.1)

Ujiq
The maximum % absolute difference is shown in Figure 6.12 at four instants in
time. Similar percent differences were also calculated for v-velocity at the horizontal
centerline of the cavity. The maximum values of these percent differences are also shown
in Figure 6.12. At = 1,000 s, the maximum % difference in the values of v-velocity at the
horizontal centerline of the cavity is only 0.68. Figure 6.13 presents a comparison of the

two methods in terms of number of iterations required for convergence of solution at
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each time step. Similar comparison is shown in terms of CPU time in Figure 6.14. The
CPU time data shown in Figure 6.14 were obtained when the code was run on a personal
computer with Intel Core 2 Duo processor. It is clear from Figures 6.13 and 6.14 that the
non-staggered grid SIMPLE DIRK method converges faster than the staggered-grid
method. Figure 6.13 shows that the number of iterations required in a typical time step to
meet the convergence criteria chosen in the current solution is about 800 with the
staggered-grid method as opposed to about 200 with the non-staggered-grid method.
Figure 6.14 shows that the CPU time required in a typical time step to meet the
convergence criteria chosen in the current solution is about 23 seconds with the staggered-
grid method as opposed to about 11 seconds with the non-staggered-grid method. One
obvious reason for the superior behavior of the non-staggered-grid method is that the
coefficients of both x- and y-momentum equations are identical and, therefore, required to
be calculated only once during every iteration. Figures 6.15 and 6.16 show, for staggered
grid and non-staggered grid method respectively, the values of residuals of u-velocity, v-
velocity, and continuity at every iteration for a typical time step. Logarithmic values of all
the residuals decrease linearly after certain number of iterations. In another study (results
are not shown here) when time step size was increased to large values, this linear variation
was replaced by oscillations, but the solution still proceeded toward convergence.
However, in comparison to the staggered grid method, the non-staggered grid method

offers faster convergence.
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7. SUMMARY

A numerical method (SIMPLE DIRK Method) is presented for unsteady
incompressible flow simulation. This method uses implicit Runge-Kutta methods in
conjunction with finite volume method. The method is presented for both staggered and
non-staggered approaches. A FORTRAN code was developed for each of these two
approaches. The staggered grid code was validated by comparison of its results with those
obtained from FLUENT [4] and published by Ghia et al. [5] and Erturk et al. [6]. Non-
staggered grid code was validated by comparison with the staggered grid code.

Good agreement of the results of the two codes with the solution of FLUENT [4]
and the results of Ghia et al.[5] and Erturk et al. [6] establishes that the proposed method
is feasible and has prospects for extension to higher-order RK methods with higher-order
spatial discretization. For higher-order accuracy in time, use of higher-order spatial
discretization is necessary. Moreover, a smaller time-step size 4 will produce higher
accuracy. The method was observed to be stable. The non-staggered-grid (co-located
variables) SIMPLE DIRK method produced results that are nearly equivalent to the ones
obtained from the staggered-grid SIMPLE DIRK method. However, the non-staggered
grid method exhibited better convergence behavior with less CPU time requirement for the

same level of convergence.
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8. RECOMMENDATIONS FOR FUTURE WORK

Studies should be initiated to investigate the effect of convergence criteria, under-
relaxation factors, and time step size on the results of the presented method. For DNS
applications, the proposed method should be used with higher order ESDIRK methods for
time discretization in conjunction with higher order spatial discretization schemes. Using
higher order discretization, DNS data can be generated for code validations and
investigation of physical laws. Appendix C gives formulation for a method with four stage
Runge-Kutta method. Application of the presented method to heat transfer problems and
multi-phase flows involving chemical reaction and/or radiation should be explored.
Extendibility of the presented non-staggered grid method to complex domains with

internal regions should be worked out.
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APPENDIX A: RUNGE-KUTTA METHODS

As documented by Butcher [72] and Butcher and Wanner [73], Runge and his
successors Heun, Kutta, and Nystrom laid the foundation of Runge-Kutta (RK) methods
during late 19™ and early 20" century. Classical RK methods were explicit. It was during
1960s when Kuntzmann and Butcher [56] proposed implicit RK methods. Fully implicit
RK methods were, however, difficult to derive and computationally inefficient. During
seventies, many researchers (such as Alt, Kurdi, Nersett, Crouzeix, and Alexander [74])
worked towards improvement in efficiency of implicit RK methods. The work of
Alexander [74] is very frequently referenced. The historical works of Runge, Heun, Kutta,
Nystrom, Kuntzmann, Alt, Kurdi, Nersett, Crouzeix are originally referenced by Butcher
[72] and/or Butcher and Wanner [73]. The current author has not reviewed their work. For
interested readers, a list of references as quoted by Butcher [72] and/or Butcher and
Wanner [73] is presented in Appendix D.

At this point, it is appropriate to define Stage and Order of accuracy of RK
methods. Stage is defined as the number of times the dependent variable or its time-
derivative is calculated during every time step. Order of accuracy of an RK method is the
level of accuracy determined by neglecting certain order terms in Taylor series expansion
during the derivation of the method. In case of explicit RK methods, for a given order of
accuracy, P, the required number of stages, ¢, may be equal to or more than the order of
accuracy, i.e. P < g. But a g-stage implicit RK method can be derived for order P such that
P > g (Butcher [54]). Parameters 4,,; in Eq. (A.6) are determined based on the required

order, number of stages, and stability considerations.
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In the following sections various types of RK methods are summarized. The
following discussion is derived from the work of Alexander [74] and Dekker and Verwer

[55].

Al. General Form of Runge-Kutta Methods
The purpose of RK methods is to find out approximate solution of the initial value

problem:

%:f(la¢)’ ¢(0):¢0 (Al)

Let /4 be the size of a typical n™ time step:

to+h (A.2)

n+l = “n,0

t

o(ty0) and ¢(t,+;) are values of the dependent variable ¢ at the beginning and at the
end of n™ time step, respectively. The concept of RK methods is to calculate ¢(z,+;) from

@(t,,0) by approximating the integral in the following formula:

49(%1):Cﬁ(fn,o)ﬂf:ﬂf(t,qo(t))dt (A.3)

The indices » and s, used in the following discussion, should not be confused with

the indices of the grid points. Let there be ¢ number of quadrature points defined by:



&9

t,, =1,0+7.h, r=lgq (A4)

If b, are the weights at quadrature points ¢, ,, the following quadrature formula is

used to approximate the integral in Eq. (A.3):

()= 0(t0)+ 12,1 (1, 0(0,,)) (A.5)

Let ¢n0, ¢nr, and ¢@,+; be the approximations of ¢(t,0), @(t.,), and @(t,+1),
respectively. The values ¢, , are calculated at the quadrature points defined by Egs. (A.4)

using the following quadrature formula:

wn,r = ¢n,0 + hzq:Arsf(tn,gagon,s): r= 1, q (A.6)

s=1

Egs. (A.6) are, in general, a set of g implicit equations. Solution of Egs. (A.6) is
called stage calculations. The values of ¢, , obtained from stage calculations are used in

Eq. (A.5) to obtain update solution ¢,+:

Pt =Pyt hiBrf(tn,r’¢n,r) (A7)

r=1

Egs. (A.6) and (A.7) define general form of Runge-Kutta methods. In every time
step, ¢ number of values of the dependent variable ¢ are calculated from Egs. (A.6);

therefore, the method is called g-stage method. 7, B;, and A; are the parameters.
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Calculation of these parameters is based on the required order, number of stages, and
stability consideration. A condensed form of presentation for a Runge-Kutta method is

called Butcher array:

7 | 4, Alq

k ];* _ (AB)
Tq Aql Aqq
B, B,

A2. Explicit Runge-Kutta Methods
If 4,5 = 0 for s > r in Butcher array, ¢,, in Eq. (A.6) can be calculated explicitly
from the preceding values of ¢, ;. For explicit RK methods, Egs. (A.6) and (A.7) take the

following form:

¢n,l = q)n,O (A9)

r—l1
G =Cua +hY A S (1,,20,.), r=2,9  (A.10)

s=1

Pt =P t+ hi B”f(tn,r’¢n,r) (A.11)

r=1
A3. Diagonally Implicit Runge-Kutta (DIRK) Methods
Runge-Kutta methods, for which 4; = 0 for all j > i in Butcher array, are called

Diagonally Implicit Runge-Kutta (DIRK) methods. In DIRK methods, at every stage of
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calculation in a time step, dependent variable depends on its value at that stage as well as
at all previous stages. Thus a dependent variable ¢ at i stage of n™ time step is calculated

from:

1q (A.12)

(on,r = (Dn,o + hi As f (tn,s b ¢n,s ): r
s=1

Update solution is calculated from Eq. (A.7).

A4. Singly Diagonally Implicit Runge-Kutta (SDIRK) Methods

DIRK methods for which all the diagonal elements of matrix A are equal to a
single number, are called Singly Diagonally Implicit Runge-Kutta (SDIRK) methods. Bijl
et al. [58, 59] used a more explanatory name for these methods, i.e. Single diagonal

coefficient, Diagonally Implicit, Runge-Kutta methods.

A5. Explicit first stage, Single diagonal coefficient, Diagonally Implicit, Runge-
Kutta (ESDIRK) Methods
ESDIRK methods are characterized by the first explicit stage. For these methods

A1 =0, so that:

Pn1 = Pno (A.13)

Por = Pro TN AT (005 r=2,0  (Al4)
s=1
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A6. Stiffly Accurate Runge-Kutta Methods
An RK method is stiffly accurate if the last stage approximation ¢, , is equal to the

update solution ¢, ;. This class of RK methods requires that:

A, =B, s=1,q (A.15)

These methods can be expressed as:

¢n,l = (0)1,0 (A16)

(Dn,r = Q)n,O + hz Arsf(tn,s’q)n,s )’ r= 2’ q _1 (A17)

s=1

q
Puit = Pug = Puo + hz Aqsf (tn,s s P s ) (A ! 8)
s=1
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APPENDIX B: TWO EXAMPLES OF EVALUATION OF
DEFERRED-CORRECTION TERM AND COEFFICIENTS IN THE

DISCRETIZED MOMENTUM EQUATIONS

B1. Power Law Scheme

B1.1. Staggered-Grid Approach
When power law scheme of Patankar [1] is used in spatial discretization of

momentum equations, the deferred correction terms in Egs. (4.11) and (4.12) are zero:

¢;=¢;=0 (B.1)

In the following equations the operator [ is used to return the maximum of the

enclosed operands. The coefficients aw, ag, as, and ay in Egs. (4.11) and (4.12) are

evaluated from the following equations when power law scheme is used:

+[0.0(u,);, (av)] (B.2)

(B.3)

+ ﬂO,p(”e )?/ (Ay)f]]
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o :zté(ix))j 0,{1—0.1(“);55%)? ]5 o), (ay] (B4)
ay,, = fé(jx))f 0,{10.1—(“’ )Zfigy ), ]5 +ﬂ0,p(vn )jj(Ax)f]] (B.5)
ay,, =f§(:y )); o,ll—o.l(””')z/iaxwf }5 +lop(,) (), (B.6)
a; =/Z ;iy) ? 0,:1—0 1 (“e)f,iﬁxe)j’ }5:+|[0,p(ug)zj(Ay)j]] ®B.7)
ag. =’(l§ix))]p 0,:1—0 1( Y):’J'f&ys); ]5 +[[O,p(vs)zj(AX)f’I| (B.8)
" féix; o -0 L } cfo.o (), (&) | (5

CV face velocities used in Egs. (B.2)

through (B.9) are usually calculated by linear interpolation.

B1.2. Non-Staggered Grid Approach

When power law scheme of Patankar [1] is used in spatial discretization of
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momentum equations, the deferred correction terms in Eqs. (4.53) and (4.54) are zero:

(B.10)

The coefficients aw, ag, as, and ay, that are identical for both the evolution

equations, Egs. (4.53) and (4.54), are evaluated from the following equations when power

law scheme is used:

* HO’ p(”w )i,j (Ay)/]]

+ Ho,p(ue )i,j (Ay)f]]

+[[0,,0(Vn )i,J (Ax)’]]

(B.11)

(B.12)

(B.13)

(B.14)

CV face velocities used in Egs. (B.11) through (B.14) are usually calculated by

momentum interpolation.
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B2. QUICK Scheme

B2.1. Staggered Grid Approach
Consistent formulation of QUICK scheme was provided by Hayase et al. [75]

which was used by Yu et al. [71] and Wei et al. [76] in a general formulation. Following

the work of these authors, deferred correction term ¢ in Egs. (4.11) and (4.12) is calculated

as below:

G, =+ :0’:0 “w)?,j (Ay)f]]((“w),uj _“i—l,«/)_ﬂoﬂp(_“w)?, (Ay), ]](( w)?,,- _“za/)
| ﬁ :0 p(ue)?j(Ay)f]](( )Zj_uid')
9/0( Vs)?, (Ax); ((Vs )?,j_vi,.i)

+
=
—_~~ —_~~ —~ —~
S
N—
SR
~ N
< —_ <
-
A =
L ;|
—
<
<
o=
|
Z
L
~—
|
=
=]

as:

(B.17)



L )
e
u _,u(Ax)?+ v.) X
%~ oy P, ]
G :
T o) oot (a1]

CV face velocities use

d in Egs.
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(B.18)

(B.19)

(B.20)

(B.17) through (B.20) are calculated by

interpolation. QUICK interpolation formulae for u-velocity at east face of a u-CV are

given below:

For (ue )?J >0:

(B.21)
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()., [2(ax) +(ax), ]

s = [ (ax); +2(ax);, + (ax), || (ax) +<Ax>il}}”"”
()]

)
[(av),, +<Ax>:;J}
(

(
(Ax)” [ 2(Ax
[(ax)) +(ax),, |

Ax)zp (A)C i+l

)p u.. ., .
()7 + (A, ]| (a0 +2(ax),, +(m)i2}} (B.22)

Velocity field used in Egs. (B.17) through (B.22) is taken from preceding iteration;
use of superscript / is avoided for the sake of simplicity. u-velocity at the west face of a

CV and v-velocity at the south and north faces are calculated from equations similar to

Egs. (B.21) and (B.22).

B2.2. Non-staggered Grid Approach

Deferred correction term ¢ in Egs. (4.53) and (4.54) is calculated as below:

fo.p —vn>i,,.(Ax,.J](<vn),, ,,H) [[0p< @) @
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When QUICK scheme is used, the coefficients in Eqs. (4.53) and (4.54) are given

as:

ay, = ‘(’((Sfy )) o.o(w,),, (a),] (B.25)
o, o), () .26
) @27
o, oot ()] ®29

CV face velocities used in Egs. (B.23) through (B.28) are calculated by quadratic

interpolation as explained by Papageorgakopoulos et al. [70].
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APPENDIX C: FORMULATION FOR SIMPLE DIRK METHOD

USING A FOUR-STAGE ESDIRK METHOD

The method presented in this dissertation can be used with ESDIRK method of any
order P with any number of stages ¢g. The number of stages and the parameters 4,, in the
Butcher array will depend on the chosen method. In this dissertation, the feasibility of the
presented method was tested with one of the simplest ESDIRK methods which involved
calculations for only one stage. In the following subsections, formulation is presented for a
four-stage ESDIRK method as an example considering a typical n™ time step. This
formulation will be helpful for future work on the use of higher-order ESDIRK methods in

the presented simulation method.

C1. Staggered Grid Approach
Egs. (4.8), (4.19), and (4.20) are solved with SIMPLE algorithm in every stage
except for the first stage. No calculations are required in the first stage because u,,; and v,

are set equal to u,oand v, respectively as given by Eq. (4.13) and corresponding equation

for v-velocity. Given below are the source terms b/,

and b, and the

coefficients @, and a; ; to be used in the solution of Egs. (4.19) and (4.20) in stage 2

through 4. The deferred correction terms ¢ and ¢” and the coefficients ay, ag, as, and ay
are calculated from the current available velocity field using some spatial discretization

scheme of choice.



Stage 2 (r = 2):

o P ()] u
bi,j = Ci,j +T22"{(ui’j)0 +hA21 (f’/)l}

p(Ax)ip (Ay); {( )

=Gt ha,, Vil +h4,, (f;vj )1}

u u u u u u P
a;;=ay +ap +as +ay +p(Ax). (Ay)j / h4,,

LJ

v o_ v v v v p v
aj,=a, +a, +ag +ay +p(Ax). (Ay)j / hA,,

Stage 3 (r = 3):

Ax)' (Ay)!
by =cl, +’)(,1)A’%(y)’{(ui,j ), s (1), + b (1),
33
Ax)" (Ay)
bl =c) +W{(m ), s (1), + ek (1),
33

u o _ u u u u u p
@, =ay +ag +ag +ay. +p(Ax)i (Ay)j / h4,,

a’ . = aVVVu + agw_ + a;w_ + alv\',,_, + p(Ax)ip (Ay)j_ / h4,,

LJ
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(C.1)

(C.2)

(C.3)

(C.4)

(C.5)

(C.6)

(C.7)

(C.8)
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Stage 4 (r = 4):

u

PO, ) ity (1) + e (1), ot (1)) €9

b' =c' +
1] L]
hA,,

p(Ax) (&), . . .
i = Cig +T44]{(VLJ )0 +hA, (f,-,,- )1 +hA, (ﬁj )2 +hd, (ﬁ,j )3} (C.10)

al;=ay +ay +ay +ay +p(Ax) (Ay)] kA, (C.11)

Ly

i,

aj,=ay +ay +ag +ay + p(Ax)f’ (Ay); / hA,, (C.12)

C2. Non-staggered Grid Approach
Similar to the staggered grid method, Egs. (4.50), (4.57), and (4.60) are solved with
SIMPLE algorithm in every stage except for the first stage. No calculations are required in

the first stage because u,; and v, are set equal to u,oand v,orespectively (Eq. (4.13) and

corresponding equation for v-velocity). Given below are the source terms bl.'f ;and bl.v, ;and
the coefficients a; ; to be used in the solution of Egs. (4.57) and (4.60) in stage 2 through

4. The deferred correction terms ¢ and ¢" and the coefficients a,,, a,, dg, and a, are

calculated from the current available velocity field using some spatial discretization

scheme of choice.



Stage 2 (r = 2):

p(Ax), (Ay), .
bj:c + i, (”,)O+hA21(fi,j)l}

p(Ax) (Ay), .
b, =c ha,, {(Vi,j )0 +hd,, (flj )1}

4 = an.j +aEf,f +a5f,/ +aNz,j +p(Ax)i (Ay)/ /hAzz

Stage 3 (r = 3):

=t (v ) b (1), R (1), )

4 = an.j +aEf,f +a5f,f +aNi.j +p(Ax)i (Ay)j /hA33

Stage 4 (r = 4):

p(Ax), (4y),

) e (7)o (7)1 (1)
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(C.13)

(C.14)

(C.15)

(C.16)

(C.17)

(C.18)

(C.19)

(C.20)
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a,;=ay +ap +ag +ay +p(Ax)i (Ay)j / h4,, (C.21)
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