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ABSTRACT 

Implicit Runge-Kutta Methods to Simulate Unsteady 

Incompressible Flows. (December 2007) 

Muhammad Ijaz, B.Sc., University of Engineering & Technology, Lahore, Pakistan; 

M.Eng., Texas A&M University, College Station 

Chair of Advisory Committee: Dr. N. K. Anand 

A numerical method (SIMPLE DIRK Method) for unsteady incompressible 

viscous flow simulation is presented. The proposed method can be used to achieve 

arbitrarily high order of accuracy in time-discretization which is otherwise limited to 

second order in majority of the currently used simulation techniques. A special class of 

implicit Runge-Kutta methods is used for time discretization in conjunction with finite 

volume based SIMPLE algorithm. The algorithm was tested by solving for velocity field 

in a lid-driven square cavity. In the test case calculations, power law scheme was used in 

spatial discretization and time discretization was performed using a second-order implicit 

Runge-Kutta method. Time evolution of velocity profile along the cavity centerline was 

obtained from the proposed method and compared with that obtained from a commercial 

computational fluid dynamics software program, FLUENT 6.2.16. Also, steady state 

solution from the present method was compared with the numerical solution of Ghia, Ghia, 

and Shin and that of Erturk, Corke, and Goökçöl. Good agreement of the solution of the 

proposed method with the solutions of FLUENT; Ghia, Ghia, and Shin; and Erturk, Corke, 

and Goökçöl establishes the feasibility of the proposed method. 
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NOMENCLATURE 

A weights used in stage calculations in a Runge-Kutta method 

a coefficients in the discretized form of momentum/pressure-correction equations 

B weights used in update solution in a Runge-Kutta method 

B matrix of weights used in update solution in a Runge-Kutta method 

b source term in momentum equations 

c deferred correction term in the expression for time-derivative of velocity 

F  body force vector 

f interpolation factor 

f time-derivative 

H momentum term used in momentum interpolation 

h time-step size 

i,  j indices associated with grid points 

n index associated with time step 

P  surface force vector 

P order of accuracy in a Runge-Kutta method 

p pressure, N/m2 

q number of stages in a Runge-Kutta method 

RMS root mean square 

Re Reynolds number 

res residual 
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r, s stage indices used in Runge-Kutta methods 

S  surface vector 

S surface 

S source term 

t time, s 

u component of velocity in x-direction, m/s 

V  velocity vector, m/s 

V volume, m3 

v component of velocity in y-direction, m/s 

x, y x- and y-coordinates, m 

 

Greek Symbols 

α under-relaxation factor 

Γ general diffusion coefficient 

Δ geometric lengths of CVs, m 

δ diffusion length, m 

μ dynamic viscosity, N.s/m2 

ν kinematic viscosity ( /μ ρ ), m2/s 

ρ density, kg/m3 

τ parameters used to define quadrature points in Runge-Kutta methods 

τ matrix of parameters used to define quadrature points in Runge-Kutta methods 

φ general variable representing u or v 



viii 

Mathematical Symbols 

∇  gradient operator 

2∇  Laplacian operator 

 

Superscripts 

′ correction 

* incorrect or guessed value 

l associated with preceding iteration 

p associated with pressure 

pc associated with pressure correction 

u associated with u-velocity 

v associated with v-velocity 

 

Subscripts 

i association with ith node 

j association with jth node 

max maximum 

n time-step index 

W, E, S, N  west, east, south, and north nodes relative to a node under consideration 

w, e, s, n   west, east, south, and north faces of a node under consideration 
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1. INTRODUCTION 

In nature and in engineering applications, heat transfer, phase changes and 

chemical reactions are mostly time dependent. Scientists and engineers are frequently 

confronted with the challenge of accurate prediction of time-dependent flow, thermal, 

and/or species fields in the areas like environmental engineering, meteorology, health, bio-

medical, aeronautics, astronautics, energy exploration, power production, industry, and 

defense applications. 

Accuracy of predictability is important for economy, safety, efficiency, and 

environment-friendliness in design of equipment and machinery, especially during process 

start up, control, and shutdown. Accuracy of predictability is also important in the 

simulation of processes which are difficult to be realized in a laboratory. Also, accurate 

techniques are essential for Direct Numerical Simulation (DNS) of flows. Until recently, 

time-dependent numerical simulations have been modestly accurate in time advancement 

due to the past limitations on computing capabilities and storage of data and memory. 

Majority of the current simulation methods are limited to second order accuracy in time. 

Moreover, usual simulation methods rely on explicit time discretization methods. For 

explicit methods numerical stability of solution has been an issue which is generally 

guaranteed only with very small time step sizes. Major commercial Computational Fluid 

Dynamics (CFD) software programs provide options for implicit time advancing, but the 

accuracy is limited to second order in time. 

_______________________________ 

This dissertation follows the style and format of Numerical Heat Transfer. 
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The purpose of the current research is to propose a stable simulation method that 

can be used to achieve arbitrarily high order of accuracy in time advancement in 

simulation of time-dependent incompressible flow and heat transfer. The strategy is to 

combine the state-of-the-art mathematical tools with proven flow simulation algorithms to 

develop simulation techniques with higher-order accuracy. A special class of implicit 

Runge-Kutta methods is used in conjunction with SIMPLE algorithm [ 1]. The proposed 

method is called SIMPLE DIRK method. This method was initially presented for 

staggered grid approach at an international conference [ 2]. A journal paper on this method 

has also been published [ 3]. A FORTRAN code was developed to implement the method. 

As a test case a lid-driven square cavity flow was simulated with the developed code. The 

results were compared with the solution of a commercial CFD software program, 

FLUENT [ 4] for the same test case. Steady state solution was compared with the solutions 

of Ghia et al. [ 5] and Erturk et al. [ 6]. The method was also extended to co-located 

variables or non-staggered grid approach [ 7,  8]. The results of the non-staggered grid 

method were compared with the results of the staggered grid method.  

Good agreement of the results of the developed code with the results of FLUENT 

[ 4], Ghia et al. [ 5], and Erturk et al. [ 6] establishes feasibility of the proposed method and 

prospects for its extension to complex geometry and more complex flows involving 

chemical reaction, radiation, and multiple phases. 

This dissertation is arranged in eight sections. Section 2 presents a literature review 

of the work done on temporal discretization of incompressible flow equations, and 

establishes the need for the application of higher-order implicit methods to incompressible 
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flow simulation. In Section 3, the author’s choice of a special class of implicit Runge-

Kutta methods is justified on the basis of three criteria. Section 4 gives a detailed 

description of the method presented herein. At first the model equations are presented. 

Then the numerical method is discussed separately for both the staggered grid and the non-

staggered grid approaches. In Section 5, a test case is described. This section explains the 

strategy adopted for the validation of the presented method. In Section 6, results of the 

presented method are compared with the results of FLUENT [ 4] and published numerical 

solutions, and conclusions are drawn from the presented discussion. Section 7 presents a 

summary of this dissertation work. In Section 8, some recommendations for possible 

future work are presented. 
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2. LITERATURE REVIEW ON TEMPORAL DISCRETIZATION 

As will be described in Section  4, spatial discretization of momentum conservation 

equations converts them into first order ordinary differential equations (ODEs) in time. 

Depending on how the unavailability of evolution of pressure is handled, the available 

formulations can be identified as either vorticity-based or primitive variables-based. Based 

on the method used for time advancement in the solution of the spatially discretized form 

of momentum conservation equations, the available numerical methods can be categorized 

as explicit, implicit, or partially implicit. 

In almost all the early flow simulation methods, time advancement was performed 

by explicit first-order finite difference or forward Euler method. The earliest attempts to 

solve flow problems numerically were made by using finite difference methods with 

primitive variables. Harlow [ 9] proposed the Particle-In-Cell (PIC) method for transient, 

compressible flow which had a combination of Lagrangian and Eulerian approaches. 

However PIC method was intensive in memory and computational effort. Gentry et al. 

[ 10] developed a variation of PIC method, called the Fluid-In-Cell (FLIC) method, which 

used finite differencing in Eulerian approach. Stability was a concern in FLIC method due 

to improper velocity and pressure coupling. Fromm and Harlow [ 11] developed vorticity-

stream function formulation for transient, incompressible flows which is still being used 

for flow simulation in two-dimensional domains. The Marker-And-Cell (MAC) method of 

Harlow and Welch [ 12] was the earliest successful simulation method for unsteady 

incompressible flows by using primitive variables at staggered locations. The pseudo or 

artificial compressibility method developed by Chorin [ 13] modifies the continuity 
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equation for incompressible flows with an additional term. The artificial compressibility 

method provides an evolution equation for pressure and thus a mechanism to march in 

time. But this method ensures a solenoidal velocity field only at steady state and thus is not 

suitable for transient simulations. Later, Chorin [14, 15] used the Helmholtz-Hodge 

decomposition theorem and proposed a method for velocity-pressure coupling in 

incompressible flows, called projection or fractional-step method. Denaro [16] has 

presented a detailed discussion on the application of the Helmholtz-Hodge decomposition 

in projection methods for incompressible flows. Majority of modern flow simulation 

methods are variations of the projection method or fractional-step method. However, as 

pointed out by Orszag et al. [17], pseudo or spurious numerical boundary layer effect 

encountered in fractional-step methods can induce substantial time differencing errors. 

Researchers are still trying to deal with the effect of spurious numerical boundary layer 

(Dagan [18]). 

Alternating Direction Implicit (ADI) method, proposed by Peaceman and Rachford 

[19], paved the way for implicit time advancement. ADI method was later adopted for 

hyperbolic differential equations by Lees [20]. Steger and Kutler [21] were among the first 

researchers to present an implicit method for time advancement in incompressible flows. 

Earlier fully implicit methods were backward Euler methods which were unconditionally 

stable, but only first-order accurate in time. Examples of higher-order implicit methods are 

mid-point rule and second-order implicit Crank-Nicholson method [22]. 

Combinations of explicit and implicit methods were also developed. Many 

different applications of predictor-corrector method, originally proposed by MacCormack 
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[23], are examples of combination explicit-implicit methods. Combination explicit-

implicit methods suffer from constraints on time-step size due to stability conditions. 

It may be noted that pressure-velocity coupling remained an area of interest in all 

incompressible flow simulations. In recent simulation methods, higher order of accuracy 

and stability are major areas of interest in addition to pressure-velocity coupling. 

To achieve higher order of accuracy, multi-point methods, such as Adams-

Bashforth methods, were used which need information at more than one instant in time at 

which data has already been computed. However, multipoint methods rely on some other 

method to generate enough data to start time marching. These methods often suffer from 

instability and generate non-physical solutions (Ferziger and Peric [24]). 

Runge-Kutta (RK) methods offer an alternative to multi-point methods for higher 

order of accuracy in time. In RK methods, the value of the dependent variable at the end of 

any time step is calculated from its value at the beginning of the time step. For higher 

order of accuracy, the values of the dependent variable and/or its derivative are calculated 

at intermediate time instants within a single time step. For a desired order of accuracy, RK 

methods are more stable when compared with multi-point methods of same accuracy 

(Ferziger and Peric [24]). The classical explicit RK methods can be used to achieve high-

order accuracy, but they are restricted by stability constraints on time-step size. Especially 

for unsteady incompressible flow simulations at high Reynolds numbers, which involve 

solution of stiff ODEs, explicit RK methods are not suitable. Explicit RK methods have 

been developed and employed for time advancement in compressible flow simulation by 

many researchers such as Fehlberg [25, 26], Jameson et al. [27], and Cebeci et al. [28]. 
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The projection method of Chorin [14] was used by many researchers to develop 

methods with higher-order accuracy in time. Kim and Moin [29] developed an explicit-

implicit projection method using a second order explicit Adams-Bashforth method for the 

convective terms and a second order implicit Crank-Nicolson method for the viscous term. 

Kan [30] and Bell et al. [31] also developed projection methods of second order accuracy 

in time similar to the one proposed by Kim and Moin [29]. These projection methods, 

though used by many, were later studied and criticized by many authors. Perot [32] argued 

that pressure calculation is only first order accurate in time. Strikwerda and Lee [33] 

confirmed Perot’s argument. There have been some recent improvements in the accuracy 

of projection methods. Brown et al. [34] and Liu et al. [35] have presented projection 

methods with second order accuracy in time. Rai and Moin [36] presented a method, 

which is second order accurate in time, for direct simulation of incompressible fully 

developed turbulent channel flow using an explicit Runge-Kutta method for the convective 

terms and an implicit Crank-Nicholson method for the viscous terms. Based on third-order 

accurate Runge-Kutta methods, semi-implicit schemes were proposed by Spalart et al. 

[37], Verzicco and Orlandi [38], and Nikitin [39]. 

Besides the projection methods discussed in the above paragraph, a method of 

velocity and pressure coupling was proposed by Caretto et al. [40]. This method, which is 

called SIMPLE, is documented and discussed in detail by Patankar [1]. Many variations of 

this method with some improvements have been developed [1, 41-52]. However, there has 

been little attention to the possibility of using higher order time discretization in 

conjunction with SIMPLE family of methods. The author has found no work, in particular, 
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on the use of implicit RK methods. The current work focused on using implicit RK 

methods in conjunction with SIMPLE. The factors that led the author to choose implicit 

RK methods for temporal discretization are discussed in Section 3. The reason for 

choosing SIMPLE instead of its later variations is that although the variations of SIMPLE 

were proposed with claimed improvements yet these methods have demerits that are still 

being discussed by many researchers [ 41- 52]. 
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3. CHOICE OF TEMPORAL DISCRETIZATION METHOD FOR 

THE CURRENT WORK 

Choice of temporal discretization method for the solution of incompressible flows 

is dictated by several considerations: 

First, an explicit evolution equation for pressure is not available; instead, 

implementation of the continuity equation provides an implicit form of pressure evolution. 

In other words, pressure field has to evolve in time so that the continuity equation is 

satisfied at all instants in time. This is in contrast with compressible flows where the 

continuity equation contains time rate of change of density which can be related to 

pressure through some equation of state. 

Second, the momentum conservation equations for incompressible flows are stiff 

differential equations which are susceptible to numerical instability, especially at higher 

Reynolds numbers. Stiffness may be defined in several ways. There are many 

mathematical representations of stiffness in the literature. In simple words, a stiff ODE 

requires much smaller time-step size to obtain a stable solution using an explicit method 

than that required for a desired accuracy using an implicit method. Thus the time-step size 

in explicit methods is dictated by stability rather than accuracy. Hoffman [53] has 

provided several simple definitions of stiffness. A stiff ODE contains some transient terms 

that decay faster than others. From the viewpoint of computational effort, an ODE is called 

stiff if the feasible step size is too large to give a stable solution. Often, for a stable 

solution the required step size is so small that the round-off errors dominate the solution. 



10 

The stiffness of an ODE can be mild or severe. Moreover, an ODE may be stiffer in 

certain part of the solution domain than the rest of the domain. 

Third, there should be room for adaptation to arbitrarily high order of accuracy. 

High order of accuracy is desirable because higher order methods are more efficient [54]. 

The above considerations lead us to look for some implicit method for 

simultaneous iterative solution of momentum and mass conservation equations. Implicit 

methods can be derived to be unconditionally stable. Therefore, the step size is not limited 

by stability. This makes implicit methods a suitable choice for stiff problems (Dekker and 

Verwer [55]). Moreover, for higher order of accuracy, Runge-Kutta methods are one-step 

alternative to multipoint methods. Therefore, implicit Runge-Kutta methods were adopted 

for time discretization in the current work. For higher order simulations, implicit RK 

methods are preferable over their explicit counterparts because, beyond order 4, explicit 

RK methods require more stages than the required order (Butcher [54]). Since formally 

been proposed by Butcher [56] and some others, implicit Runge-Kutta methods have gone 

through years of development. The relatively large computational effort associated with 

implicit Runge-Kutta methods is less of an issue due to the advancement in computing 

hardware technology. Interested readers may refer to Appendix A for an account of 

Runge-Kutta (RK) methods. 

In the current work, the author chose to adopt Explicit first stage, Single diagonal 

coefficient, Diagonally Implicit, Runge-Kutta (ESDIRK) methods in conjunction with 

SIMPLE algorithm. The current method was named as SIMPLE DIRK method. Several 

desirable characteristics of ESDIRK methods are discussed by Kennedy and Carpenter 
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[57] and Butcher [54]. Bijl et al. [58, 59] and Carpenter et al. [60] simulated unsteady 

compressible flow using ESDIRK methods in a pseudo-time sub-iteration algorithm. Isono 

and Zingg [61] performed similar simulation with a Newton-Krylov Algorithm. A special 

class of ESDIRK methods, called stiffly accurate ESDIRK methods, was chosen by these 

researchers. These methods were identified by Prothero and Robinson [62] and explained 

in detail by Hairer and Wanner [63]. We also chose to adapt stiffly accurate RK methods 

in the current simulation method. The reason for this choice is explained as follows. As 

will be explained later in this thesis, velocity and pressure fields in the proposed method 

are calculated simultaneously and implicitly during stage calculations in every time-step 

while satisfying both momentum and continuity equations. However, the update solution 

in every time-step is explicit in nature and does not guarantee a divergence-free velocity 

field. Moreover, the pressure field, corresponding to the velocity field obtained from the 

update solution, is not calculated simultaneously. The pressure field is required for 

calculations in the subsequent time-step and therefore needs to be calculated from the 

velocity field by some method such as solution of pressure Poisson’s equation. Stiffly 

accurate RK methods eliminate the need for update solution which is required in other RK 

methods in every time-step. The last stage calculations in any time-step n yield a velocity 

field which is equal to the velocity field at the end of that time-step. Since this velocity 

field results from simultaneous solution of momentum and continuity equations, the 

corresponding pressure field is also calculated. 
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4. NUMERICAL METHOD 

The method presented herein is an implicit formulation in time used in conjunction 

with finite volume based SIMPLE algorithm. The method can be used for arbitrarily high 

order of accuracy in time. Moreover, this method can be extended to three-dimensional 

domains with curvilinear coordinates, but for the sake of simplicity, we will limit our 

discussion to two-dimensional domains with Cartesian coordinates. Details of finite 

volume approach and SIMPLE algorithm can be found in many publications such as 

Patankar [1]. However, time discretization method presented in the current work is 

different from the usual time advancement methods presented in the literature. 

The method is presented for both the staggered grid and the co-located variables 

approach. 

4.1. Model Equations 

The flow of a fluid is modeled by the law of conservation of mass and the law of 

motion. Continuity equation as derived from the law of conservation of mass is given 

below: 

 

( ). 0V
t
ρ ρ∂
+∇ =

∂
 (4.1)

 

From Newton’s Second Law, equations of motion are derived which can be written 

in the following vector form (Schlichting [64]): 
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DV F P
Dt

ρ = +  (4.2)

 

In the current work, a fluid with constant thermo-physical properties is considered. 

It is assumed that the fluid is isotropic, i.e. the stress components and the rate of strain are 

related by the same relationship in all directions. The fluid is also assumed to be 

Newtonian, i.e. the stress components and the rate of strain are linearly related (Stoke’s 

law). It is further assumed that the flow is incompressible with negligible viscous 

dissipation. With these assumptions, the model equations take the following form: 

Mass conservation or continuity: 

 

. 0V∇ =  (4.3)
 

A velocity field that satisfies Eq. (4.3) is called divergence-free or solenoidal 

velocity field. 

Momentum Conservation:  

 

21.( )V V V p V
t

ν
ρ

∂
+ ∇ = − ∇ + ∇

∂
 (4.4)

 

Components of Eq. (4.4) in x- and y-direction are given below. 

 

.( )u uV u p
t

ρ ρ ν∂
= − ∇ − ∇ −∇

∂
 (4.5)



14 

.( )v vV v p
t

ρ ρ ν∂
= − ∇ − ∇ −∇

∂
 ( 4.6)

 

The numerical method used in the current work is a finite volume method in which 

the model equations are solved in their integral form. The method was used with staggered 

as well as non-staggered grid approach. The following sections explain the method for 

these two approaches. 

4.2. Staggered Grid Approach 

The concept of staggered-grid was introduced by Harlow and Welch [ 12]. 

Staggered grid approach ensures proper discretization of the pressure gradient terms in 

momentum conservation equation. This approach eliminates the possibility of emergence 

of non-physical pressure field in the solution. Staggered grid approach is very suitable for 

simple rectangular geometries. In the proceeding subsections, spatial and temporal 

discretization of mass conservation and momentum conservation equations is explained 

for staggered grid approach. Subsequently, simultaneous solution of the discretized 

equations is discussed. 

4.2.1. Spatial Discretization 

In the staggered grid approach pressure is calculated at the geometric center of control 

volume (CV) and velocities are calculated at the CV faces. Mass conservation equation 

(Eq. ( 4.3)) is integrated over control volumes enclosing main grid points; a typical CV is 

shown in Figure  4.1. Whereas, x- and y-components of momentum conservation equation 

(Eq. ( 4.4)) are integrated over the control volumes of the staggered grids shown in 
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Figures 4.2 and 4.3, respectively. 

4.2.1a. Mass Conservation Equation 

Integrating Eq. (4.3) over a typical p-CV, shown in Figure 4.1, and applyingdivergence 

theorem one gets, 

V S
. V . SV d V d∇ =∫ ∫  (4.7)

 

We assume that at any point on the face of the p-CV, velocity remains constant and 

equal to its value at the center of the face. With this assumption, discretization of Eq. (4.7) 

gives: 

 

( )( ) ( )( ), 1, , , 1 0p p
i j i j i j i jj i

u u y v v x− −− Δ + − Δ =  (4.8)

 

Eq. (4.8) is discretized form of mass conservation equation, Eq. (4.3), for a p-grid 

node (i, j) in staggered-grid approach. 

4.2.1b. Momentum Conservation Equations 

Integrating Eq. (4.5) over a u-CV, shown in Figure 4.2, and applying divergence 

theorem: 

 

V S S V

SourceTermConvectionTerm DiffusionTerm

V . S . S Vu d uV d u d pd
t

ρ ρ μ∂
= − + ∇ − ∇

∂∫ ∫ ∫ ∫  (4.9)

 

Similarly, for v-velocity, integrating Eq. (4.6) over a v-CV, shown in Figure 4.3,  
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and applying divergence theorem: 

 

V S S V

SourceTermConvectionTerm DiffusionTerm

V . S . S Vv d vV d v d pd
t

ρ ρ μ∂
= − + ∇ − ∇

∂∫ ∫ ∫ ∫  (4.10)

 

Eqs. (4.9) and (4.10) can be discretized with any spatial discretization scheme of 

one’s choice yielding different orders of accuracy. Regardless of the spatial discretization 

scheme used, the discretized equations can be written in the following form. 

For a u-grid node (i, j): 

 

( ) ( )

( ) ( )

( )

( )( )

, , , ,

, , , ,

, ,

,

1, 1, , 1 , 1

, 1, ,

/ , , ,

1
i j i j i j i j

i j i j i j i j

u
i j i j

u u u u
W E S N i j

u u u u
W i j E i j S i j N i ju p

i j p u
i j i j i jj

u t f t u v p

a a a a u

a u a u a u a u
x y

p p y c
ρ

− + − +

+

∂ ∂ =

⎧ ⎫− + + +
⎪ ⎪
⎪ ⎪= + + + +⎨ ⎬

Δ Δ ⎪ ⎪
+ − Δ +⎪ ⎪⎩ ⎭

 
(4.11)

 

Similarly, for a v-grid node (i, j): 

 

( ) ( )

( ) ( )

( )

( )( )

, , , ,

, , , ,

, ,

,

1, 1, , 1 , 1

, , 1 ,

/ , , ,

1
i j i j i j i j

i j i j i j i j

v
i j i j

v v v v
W E S N i j

v v v v
W i j E i j S i j N i jp v

i j v v
i j i j i jj

v t f t u v p

a a a a v

a v a v a v a v
x y

p p y c
ρ

− + − +

+

∂ ∂ =

⎧ ⎫− + + +
⎪ ⎪
⎪ ⎪= + + + +⎨ ⎬

Δ Δ ⎪ ⎪
+ − Δ +⎪ ⎪⎩ ⎭

 
(4.12)

 

In Eqs. (4.11) and (4.12), pi,j refers to nodes (i, j) of the main grid (p-grid), shown 
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in Figure  4.1. ui,j and vi,j refer to nodes (i, j) of the staggered grids (u- and v-grid 

respectively), shown in Figures  4.2 and  4.3. Coefficients aW, aE, aS, and aN are dependent 

on velocity field, thermo-physical properties, and grid size. Formulae for these coefficients 

are based on the discretization scheme chosen. The term c arises when higher-order 

discretization schemes are used in conjunction with deferred-correction technique 

introduced by Khosla and Rubin [ 65]. Appendix B gives expressions for the term c and the 

coefficients aW, aE, aS, and aN for power law scheme of Patankar [ 1] and QUICK scheme 

of Leonard [ 66].  

Eqs. ( 4.11) and ( 4.12) are ordinary differential equations in time. These are 

evolution equations for u- and v-velocity fields. At any instant in time, if velocity and 

pressure fields are known, time-derivative of u- and v-velocity can be calculated using 

these equations. 

4.2.2. Temporal Discretization 

In the current work, ESDIRK methods are used for temporal discretization (refer to 

Section 3). Referring to Appendix A, in a stiffly accurate ESDIRK method, u-velocity at 

nth time-step at any grid node is calculated from Eqs. (A.16) through (A.18) which 

transform to the following three equations: 

 

,1 ,0n nu u=  ( 4.13)
 

( ), ,0 ,
1

, , , , 2,
r

u
n r n rs n s

s
u u h A f t u v p r q

=

= + =∑ ( 4.14)
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1 ,n n qu u+ =  (4.15)
 

In Eqs. (4.13) through (4.15), the indices n, r refer to rth stage of nth time step and 

should not be confused with indices of the grid points. Parameters Ars in Eq. (4.14) are the 

weights used in stage calculations. These parameters are taken from the Butcher array of 

the chosen RK method. 

Re-writing Eq. (4.14) with a little re-arrangement: 

 

1

, ,0 , ,
1

, 2,
r

u u
n r n rs n s rr n r

s
u u h A f hA f r q

−

=

= + + =∑  (4.16)

 

At any rth stage, the first two terms on the right hand side of Eq. (4.16) are explicit 

terms. The first term is known from the previous time step. The second term can be 

calculated, using Eq. (4.11), from the values of u calculated in the preceding stages. 

However, the third term is an implicit term because fn,r is dependent on un,r. Inserting Eq. 

(4.11) into the third term on the right hand side of Eq. (4.16); for nth time step at rth stage, 

we get: 

 

( ) ( ) ( )

( ) ( ) ( ){

( )( ) }

, , , ,

, , , ,

1

, , ,0
1

,

1, 1, , 1 , 1

, 1, , , 2,

i j i j i j i j

i j i j i j i j

r
u

i j i j rs i jr s
s

u u u urr
W E S N i ju p

i j

u u u u
W i j E i j S i j N i j

p u
i j i j i jj r

u u h A f

hA a a a a u
x y

a u a u a u a u

p p y c r q

ρ

−

=

− + − +

+

= +

+ − + + +
Δ Δ

+ + + +

+ − Δ + =

∑

 

(4.17)
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where subscript n is omitted for clarity. 

Re-arranging terms and omitting subscript r from u-velocity terms: 

 

( ) ( )( )

( )( )

( ) ( ) ( ) ( )

, , , ,

, , , ,

,

1, 1, , 1 , 1

, 1,

1

, , ,0
1

/

, 2,

i j i j i j i j

i j i j i j i j

u pu u u u
W E S N rr i ji j

u u u u
W i j E i j S i j N i j

p
i j i j j

u p
r

i ju u
i j i j rs i j s

s rr

a a a a x y hA u

a u a u a u a u

p p y

x y
c u h A f r q

hA

ρ

ρ

− + − +

+

−

=

+ + + + Δ Δ

= + + +

+ − Δ

Δ Δ⎧ ⎫+ + + =⎨ ⎬
⎩ ⎭

∑

 

(4.18)

 

Re-writing Eq. (4.18) in a condensed form: 

 

( )( )
, , , ,, , 1, 1, , 1 , 1 , 1, ,i j i j i j i j

pu u u u u u
i j i j W i j E i j S i j N i j i j i j i jj

a u a u a u a u a u p p y b− + − + += + + + + − Δ +  (4.19)
 

Corresponding equation for v-velocity is: 

 

( )( )
, , , ,, , 1, 1, , 1 , 1 , 1, ,i j i j i j i j

pv v v v v v
i j i j W i j E i j S i j N i j i j i j i ji

a v a v a v a v a v p p x b− + − + += + + + + − Δ +  (4.20)
 

where 

( ) ( )
, , , ,, / , 2,

i j i j i j i j

u pu u u u u
i j W E S N rri j

a a a a a x y hA r qρ= + + + + Δ Δ =  (4.21)
 

( ) ( ) ( ) ( )
1

, , , ,0
1

/ , 2,
r

u pu u u
i j i j i j rs i j rri js

s
b c u h A f x y hA r qρ

−

=

⎧ ⎫= + + Δ Δ =⎨ ⎬
⎩ ⎭

∑  (4.22)

 

( ) ( )
, , , ,, / , 2,

i j i j i j i j

p vv v v v v
i j W E S N rri j

a a a a a x y hA r qρ= + + + + Δ Δ =  (4.23)
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( ) ( ) ( ) ( )
1

, , , ,0
1

/ , 2,
r

p vv v v
i j i j i j rs i j rri js

s

b c v h A f x y hA r qρ
−

=

⎧ ⎫= + + Δ Δ =⎨ ⎬
⎩ ⎭

∑  (4.24)

 

Eqs. (4.19) and (4.20) are the discretized forms of Eqs. (4.5) and (4.6), 

respectively, when staggered grid approach is used. Coefficients aW, aE, aS, and aN are 

evaluated based on the spatial discretization scheme of choice. Since coefficients of Eqs. 

(4.19) and (4.20) are dependent on the dependent variables u and v, these equations are 

non-linear equations, and therefore, require an iterative method for their solution. The 

solution method is explained in the next subsection. 

4.2.3. Simultaneous Solution of Mass Conservation and Momentum Conservation 

Equations 

At any nth time step, Eqs. (4.8), (4.19), and (4.20) are required to be solved 

simultaneously at every rth stage of a DIRK method. Therefore, in a q-stage DIRK method, 

q number of iterative solutions is required in every time step. However, in an ESDIRK 

method, the first stage velocity field is explicitly given by Eq. (4.13) and similar equation 

for v-velocity. Therefore, in a q-stage ESDIRK method, q–1 (one less than q) number of 

iterative solutions is required in every time step. Time advancement is shown 

schematically in Figure 4.4. SIMPLE algorithm (Patankar [1]) is used for simultaneous 

solution of Eqs. (4.8), (4.19), and (4.20). In this algorithm, velocity and pressure fields are 

required to be corrected in every iteration. The corrections are calculated from a pressure 

correction equation which is derived in Section 4.2.3b. Moreover, in order to ensure 
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convergence, the iterative solution of momentum equations is under-relaxed, as explained 

in Section  4.2.3c. Convergence of solution is monitored in every iteration by comparing 

relative residuals for mass conservation, u-velocity, and v-velocity with some specified 

values; relative residuals are defined in Section  4.2.3d. 

The proceeding subsection explains how the velocities are calculated at the faces of 

control volumes. These velocities are required to calculate coefficients in the discretized 

equations Eqs. ( 4.19) and ( 4.20). 

4.2.3a. Evaluation of CV Face Velocities 

Since the discretized equations, Eqs. ( 4.19) and ( 4.20), were obtained from the 

integral form of model governing equations, formulae derived for the coefficients aW, aE, 

aS, and aN using any general discretization scheme involve velocities at the CV faces. In 

the staggered-grid approach, the velocities at the faces of u- and v-CVs are calculated from 

the velocities at the u- and v-grid nodes by some interpolation method, e.g. linear and 

quadratic interpolation. The interpolation method is chosen based on the order of accuracy 

desired. Appendix B gives formulae for u-velocity at the east face of a u-CV when QUICK 

scheme of Leonard [ 66] is used. Different formulae will arise if a different spatial 

discretization scheme is used. 

4.2.3b. Correcting Velocity and Pressure Fields by Enforcing Mass Conservation 

During the iterative solution process before convergence is reached, the velocity 

fields calculated from momentum equations do not satisfy continuity equation, Eq. ( 4.8). 

Corrections are applied to the calculated velocity fields after every iteration until 

convergence is achieved. Let p* be a guessed or incorrect pressure field which is used in 
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the solution of Eqs. (4.19) and (4.20); the resulting velocity field can be denoted as u* and 

v*. Then corrections required in velocity and pressure fields are: 

 

*u u u′ = −  (4.25)
 

*v v v′ = −  (4.26)
 

*p p p′ = −  (4.27)
 

From Eq. (4.19): 

 

( )( )
, , , ,

* * * * * * *
, , 1, 1, , 1 , 1 , 1, ,i j i j i j i j

pu u u u u u
i j i j W i j E i j S i j N i j i j i j i jj

a u a u a u a u a u p p y b− + − + += + + + + − Δ +  (4.28)
 

Subtracting Eq. (4.28) from Eq. (4.19): 

 

( )( )
, , , ,, , 1, 1, , 1 , 1 , 1,i j i j i j i j

pu u u u u
i j i j W i j E i j S i j N i j i j i j j

a u a u a u a u a u p p y− + − + +′ ′ ′ ′ ′ ′ ′= + + + + − Δ  (4.29)
 

Omission of the first four terms in Eq. (4.29) and a little re-arrangement result in 

the following equation (justification for this omission is explained by Patankar [1]): 

 

( ) ( ), , 1,
,

p

j
i j i j i ju

i j

y
u p p

a +

Δ
′ ′ ′= −  (4.30)

 

Similar equation is obtained for v′ : 
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( ) ( ), , , 1
,

p

i
i j i j i jv

i j

x
v p p

a +

Δ
′ ′ ′= −  (4.31)

 

Substituting Eqs. (4.30) and (4.31) into Eqs. (4.25) and (4.26): 

 

( ) ( )*
, , , 1,

,

p

j
i j i j i j i ju

i j

y
u u p p

a +

Δ
′ ′= + −  (4.32)

 

( ) ( )*
, , , , 1

,

p

i
i j i j i j i jv

i j

x
v v p p

a +

Δ
′ ′= + −  (4.33)

 

Now substituting Eqs. (4.32) and (4.33) into Eq. (4.8) and re-arranging terms, we 

get the pressure correction equation: 

 

, , , ,, , 1, 1, , 1 , 1 ,i j i j i j i j

pc pc pc pc pc pc
i j i j W i j E i j S i j N i j i ja p a p a p a p a p S− + − +′ ′ ′ ′ ′= + + + +  (4.34)

 

where 

 

( )
( )

,
1,

i j

p
pjpc

W u j
i j

y
a y

a
ρ

−

⎛ ⎞Δ
⎜ ⎟= Δ
⎜ ⎟
⎝ ⎠

 (4.35)

 

( )
( )

,
,

i j

p
pjpc

E u j
i j

y
a y

a
ρ
⎛ ⎞Δ
⎜ ⎟= Δ
⎜ ⎟
⎝ ⎠

 (4.36)
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( ) ( )
,

, 1
i j

p
ppc i

S v i
i j

x
a x

a
ρ

−

⎛ ⎞Δ
⎜ ⎟= Δ
⎜ ⎟
⎝ ⎠

 (4.37)

 

( ) ( )
,

,
i j

p
ppc i

N v i
i j

x
a x

a
ρ
⎛ ⎞Δ
⎜ ⎟= Δ
⎜ ⎟
⎝ ⎠

 (4.38)

 

, , , ,, i j i j i j i j

pc pc pc pc pc
i j W E S Na a a a a= + + +  (4.39)

 

( )( ) ( ) ( )* * * *
, 1, , , 1 ,

p upc
i j i j i j i j i jj i

S u u y v v xρ ρ− −= − Δ + − Δ  (4.40)
 

4.2.3c. Under-relaxation 

Since Eqs. (4.19) and (4.20) are non-linear, their solution needs to be under-relaxed 

to ensure convergence. Let ul represent u-velocity at the preceding iteration; incorporating 

under-relaxation into Eq. (4.19): 

 

( )( ){ }
( )

, , , ,

,

1, 1, , 1 , 1 , 1, ,
,

,1

i j i j i j i j

i j

u
pu u u u u

W i j E i j S i j N i j i j i j i ju j
i j

u l
i j

u

a u a u a u a u p p y b
a

u

α

α

− + − + +

=

+ + + + − Δ +

+ −

 

(4.41)

 

Re-arranging Eq. (4.41): 

 

( )( )
, , , ,, , 1, 1, , 1 , 1 , 1, ,i j i j i j i j

pu u u u u u
i j i j W i j E i j S i j N i j i j i j i jj

a u a u a u a u a u p p y S− + − + += + + + + − Δ +  (4.42)
 

Corresponding equation for v-velocity is: 
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( )( )
, , , ,, , 1, 1, , 1 , 1 , 1, ,i j i j i j i j

pv v v v v v
i j i j W i j E i j S i j N i j i j i j i ji

a v a v a v a v a v p p x S− + − + += + + + + − Δ +  (4.43)
 

S u and S v in Eqs. (4.42) and (4.43) are given by: 

 

, , , ,
1 1u u u l

i j i j i j i juS b a u
α
⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 (4.44)

 

, , , ,
1 1v v v l

i j i j i j i jvS b a v
α
⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 (4.45)

 

where bu and bv are calculated from Eqs. (4.22) and (4.24), respectively. 

Pressure correction is also under-relaxed as given below: 

 

* pp p pα ′= +  (4.46)
 

4.2.3d. Convergence Criteria 

During the simultaneous iterative solution of Eqs. (4.8), (4.19), and (4.20), the 

solution is checked for convergence during every iteration by evaluating relative residuals 

and comparing them with some chosen values. The relative residuals for mass and 

momentum conservation equations are calculated as given below. 

Relative residual for mass conservation: 

( )( ) ( )( ), 1, , , 1
-CVs

massconservation

p u
i j i j i j i jj i

p

c c

u u y v v x
res

u l

ρ ρ

ρ

− −− Δ + − Δ
=
∑

 (4.47)

 

where uc and lc are some characteristic values of velocity and length. Choice for 
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these characteristic values depends on nature of the problem under consideration; for 

example in case of lid-driven square cavity flow, these values can be lid speed and cavity 

height. 

Relative residual for u-velocity: 

 

(

( )( ) )

, , , ,velocity , , 1, 1, , 1 , 1
-CVs, ,

-CVs

, 1, ,

1
i j i j i j i j

u u u u u
u i j i j W i j E i j S i j N i ju

ui j i j
u

p u
i j i j i jj

res a u a u a u a u a u
a u

p p y S

− − + − +

+

= − + + +

− Δ +

∑∑  

(4.48)

 

Relative residual for v-velocity: 

(

( )( ) )

, , , ,velocity , , 1, 1, , 1 , 1
-CVs, ,

-CVs

, 1, ,

1
i j i j i j i j

v v v v v
v i j i j W i j E i j S i j N i jv

vi j i j
v

p v
i j i j i ji

res a v a v a v a v a v
a v

p p x S

− − + − +

+

= − + + +

+ − Δ +

∑∑  

(4.49)

 

4.2.3e. Algorithm 

1. Assign initial values to velocity and pressure fields. These initial fields are also 

taken as initial guess for the subsequent iterative solution. 

2. Set boundary conditions. 

3. Set n = 1. 

4. Set un,0 and vn,0 equal to initial velocity field. 

nth Time-Step ( n = 1, nmax): 

1st Stage (r = 1): 

5. Set un,1 = un,0 and vn,1 = vn,0 (Eq. (4.13) and the corresponding equation for v-
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velocity). 

rth Stage (r = 2, q): 

6. Calculate coefficients aW, aE, aS, and aN using the velocity fields un,r-1 and vn,r-1 

with a spatial discretization scheme of choice. 

7. Calculate time-derivatives ,
u

n sf and ,
v

n sf (for s = 1, r-1) from Eqs. (4.11) and 

(4.12) respectively. 

8. Calculate bu and bv from Eqs. (4.22) and (4.24) respectively. 

 Iteration for u, v, and p: 

9. Solve Eqs. (4.19) and (4.20) with some solution algorithm such as line-by-

line procedure which is a combination of Tri-diagonal Matrix Algorithm 

(TDMA) and Gauss-Seidel scheme. 

10. Calculate pressure correction from Eq. (4.34). 

11. Correct u- and v- velocity fields using Eqs. (4.32) and (4.33). 

12. Correct the pressure field using Eq. (4.46). 

13. Calculate coefficients aW, aE, aS, and aN using the velocity fields 

calculated in step 11. 

14. Calculate residuals from Eqs. (4.47) through (4.49). Check for 

convergence by comparing the residuals with some chosen values. 

15. If solution is converged, go to step 17. 

16. If solution is not converged, go to step 9. 

17. Check the value of r. 

18. If r = q, go to step 20. 
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19. If r < q, switch to next stage, i.e., set r = r + 1. Go to step 6. 

20. Check the value of n. 

21. If n < nmax, switch to the next time-step, i.e., set n = n + 1. Set un,0 and vn,0 equal 

to the velocity fields calculated in step 11. Go to step 5. 

22. If n = nmax, stop the program. 

 

The above solution algorithm is shown as a flow chart in Figure 4.5. 
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START

Assign initial values to velocity and pressure fields. 
Set boundary conditions.
Set n = 1.
Set un,0 and vn,0 equal to initial velocity field.

Set un,1 = un,0 and vn,1 = vn,0 as given by Eq. (4.13) 
and the corresponding equation for v-velocity.

Calculate coefficients aW, aE, aS, and aN using the 
velocity fields un,r-1 and vn,r-1 with a spatial 
discretization scheme of choice.
Calculate time-derivatives f u and f v from Eqs. 
(4.11) and (4.12) respectively.
Calculate bu and bv from Eqs. (4.22) and (4.24) 
respectively.

Solve Eqs. (4.19) and (4.20) with some solution 
algorithm such as line-by-line procedure which is a 
combination of Tri-diagonal Matrix Algorithm 
(TDMA) and Gauss-Seidel scheme.
Calculate pressure correction from Eq. (4.34).
Correct u- and v- velocity fields using Eqs. (4.32) 
and (4.33).
Correct the pressure field using Eq. (4.46).
Calculate coefficients aW, aE, aS, and aN.
Calculate residuals from Eqs. (4.47) through (4.49).

Convergence?No

r = q

Check r.

Check n.

STOP

n = nmax

Yes

set r = r + 1. r < q

set n = n + 1. n < nmax

 

 Figure 4.5 Solution Algorithm for Staggered Grid Method 
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4.3. Non-staggered Grid Approach (or Co-located Variables Approach) 

Due to larger memory and computational effort requirement associated with the 

staggered grid approach, it has always been desirable to use a non-staggered grid wherein 

all variables can be calculated and stored at the nodes of a single grid. Moreover, the 

staggered grid approach is not suitable for use with complex geometries that involve 

internal bluff regions and require unstructured grids. Rhie and Chow [67] proposed a 

method to overcome the difficulties involved in the use of a non-staggered grid. The 

method was later improved by other researchers. 

The above considerations motivated the current author to extend the proposed 

SIMPLE DIRK method to non-staggered grid approach. The proceeding subsections 

explain spatial and temporal discretization of mass conservation and momentum 

conservation equations for non-staggered grid approach. Subsequently, simultaneous 

solution of the discretized equations is discussed. 

4.3.1. Spatial Discretization 

In the co-located variables approach, pressure and velocities are calculated at the 

geometric center of control volumes (CVs). Both the mass conservation equation (Eq. 

(4.3)) and the momentum conservation equation (Eq. (4.4)) are integrated over the same 

CVs; a typical CV is shown in Figure 4.6.  

4.3.1a. Mass Conservation Equation 

Assuming that at any point on the face of the CV, velocity remains constant and 

equal to its value at the center of the face, discretization of Eq. (4.7) gives: 
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( ) ( ) ( ) ( ), ,
0e w n si j j i j i

u u y v v x− Δ + − Δ =  (4.50)

 

Eq. (4.50) is discretized form of mass conservation equation, Eq. (4.3), for a non-

staggered grid node (i, j). 

4.3.1b. Momentum Conservation Equations 

Integrating Eqs. (4.5) and (4.6) over a CV, shown in Figure 4.6, and applying 

divergence theorem, we get equations similar to Eqs. (4.9) and (4.10): 

 

V S S V

ConvectionTerm DiffusionTerm SourceTerm

V . S . S Vu d uV d u d pd
t

ρ ρ μ∂
= − + ∇ − ∇

∂∫ ∫ ∫ ∫  (4.51)

 

V S S V

SourceTermConvectionTerm DiffusionTerm

V . S . S Vv d vV d v d pd
t

ρ ρ μ∂
= − + ∇ − ∇

∂∫ ∫ ∫ ∫  (4.52)

 

For any node (i, j) in non-staggered grid approach, spatial discretization of Eq. 

(4.51) and (4.52) results in evolution equations for u- and v-velocity fields: 
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(4.53)
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(4.54)

 

In Eqs. (4.53) and (4.54), pi,j, ui,j, and vi,j refer to node (i, j) of the non-staggered 

grid, shown in Figure 4.6. Formulae for the velocity-field-dependent coefficients aW, aE, 

aS, and aN are based on the discretization scheme chosen. In the non-staggered grid 

approach, these coefficients are identical for both the evolution equations, Eqs. (4.53) and 

(4.54). Given in Appendix B are expressions for the deferred-correction term c and the 

coefficients aW, aE, aS, and aN for power law scheme of Patankar [1] and QUICK scheme 

of Leonard [66]. 

4.3.2. Temporal Discretization 

In Section 4.2.2, Eq. (4.16) was written for a u-grid node. Now we consider Eq. 

(4.16) for a typical node of a non-staggered grid. Inserting Eq. (4.53) into the third term on 

the right hand side of Eq. (4.16); for nth time step at rth stage, we get: 
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(4.55)
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where subscript n is omitted for clarity. 

Re-arranging terms and omitting subscript r from u-velocity terms: 

 

( ) ( )( )

( ) ( )

( ) ( ) ( ) ( )

, , , ,

, , , ,

,

1, 1, , 1 , 1

,,

1

, ,0
1

/

, 2,

i j i j i j i j

i j i j i j i j

W E S N rr i ji j

W i j E i j S i j N i j

u
w e i ji j j

r
i ju

i j rs i j s
s rr

a a a a x y hA u

a u a u a u a u

p p y c

x y
u h A f r q

hA

ρ

ρ

− + − +

−

=

+ + + + Δ Δ

= + + +

+ − Δ +

Δ Δ⎧ ⎫+ + =⎨ ⎬
⎩ ⎭

∑

 

(4.56)

 

Re-writing Eq. (4.56) in a condensed form, we get the discretized form of x-

component of momentum conservation equation, Eq. (4.5): 

 

( ) ( )
, , , ,, , 1, 1, , 1 , 1 ,,i j i j i j i j

u
i j i j W i j E i j S i j N i j w e i ji j j

a u a u a u a u a u p p y b− + − += + + + + − Δ +  (4.57)
 

where 

 

( ) ( )
, , , ,, / , 2,

i j i j i j i ji j W E S N rri j
a a a a a x y hA r qρ= + + + + Δ Δ =  (4.58)

 

( ) ( ) ( ) ( )
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/ , 2,
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u u u
i j i j i j rs i j rri js

s
b c u h A f x y hA r qρ

−

=

⎧ ⎫
= + + Δ Δ =⎨ ⎬
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∑  (4.59)

 

An equation similar to Eq. (4.57) is obtained from discretization of y-component of 

momentum conservation equation, Eq. (4.6): 
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( ) ( )
, , , ,, , 1, 1, , 1 , 1 ,,i j i j i j i j
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i j i j W i j E i j S i j N i j s n i ji j i
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where ,i ja  are given by Eq. (4.58); ,
v
i jb  are calculated as below: 
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v v v
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s
b c v h A f x y hA r qρ
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Eqs. (4.57) and (4.60) are the discretized forms of Eqs. (4.5) and (4.6), 

respectively, when non-staggered grid approach is used. The iterative solution method 

required for these non-linear equations is explained in the following subsection. 

4.3.3. Simultaneous Solution of Mass Conservation and Momentum Conservation 

Equations 

In any nth time step, Eqs. (4.50), (4.57), and (4.60) are required to be solved 

simultaneously at every rth stage of an ESDIRK method. Like staggered grid approach, 

SIMPLE algorithm (Patankar [1]) is used for simultaneous solution of Eqs. (4.50), (4.57), 

and (4.60). q–1 (one less than q) number of iterative solutions is required in every time 

step in a q-stage ESDIRK method. Time advancement is shown schematically in Figure 

4.4.  

4.3.3a. Evaluation of CV Face Velocities 

Since the discretized equations, Eqs. (4.57) and (4.60), were obtained from the 

integral form of model governing equations, formulae derived for the coefficients aW, aE, 

aS, and aN using any discretization scheme involve velocities at the CV faces. In the non-
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staggered grid approach, the velocities at the faces of u- and v-CVs are calculated from an 

interpolation method similar to the one proposed by Rhie and Chow [67]. This method has 

been called momentum interpolation method. Later, Majumdar [68] and Choi [69] pointed 

out some problems in the original method and proposed improvements. The interpolation 

method in the current work is described below. 

Incorporating under-relaxation into Eq. (4.57) and using Eq. (4.59), for a node (i, j) 

we get: 
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(4.62)

 

where 

 

, , , ,, 1, 1, , 1 , 1i j i j i j i j

u
i j W i j E i j S i j N i jH a u a u a u a u− + − += + + +  (4.63)

 

Similarly for the node (i+1, j): 
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(4.64)

 

where 

 

1, 1, 1, ,1, 1, 2, 1, 1 1, 1i j i j i j i j

u
i j W i j E i j S i j N i jH a u a u a u a u

+ + ++ + + + − + += + + +  (4.65)

 

u-velocity at the east face of the CV corresponding to the node (i, j) can be 

obtained by interpolating selected terms in the above equations. Consider an imaginary u-

CV enclosing the geometric center of the east face of the CV corresponding to the node (i, 

j). Geometric centers of the west and east faces of this imaginary u-CV coincide with the 

nodes (i, j) and (i+1, j) respectively. Therefore the term (pw – pe) becomes (pi, j – pi+1, j). 

Other terms are interpolated or taken from either the previous iteration or the preceding 

time-step. 

Based on the above discussion, u-velocity at the east face of the CV corresponding 

to the node (i, j) is written as: 
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Equations similar to Eq. (4.66) can be written also for 
,i jwu , 

,i jnv , and 
,i jsv . 

The terms with an over-bar in Eq. (4.66) are interpolated quantities at the east face 

of the CV. Interpolation can be based on the usual linear interpolation or some higher 

order accurate interpolation method. Examples of higher order momentum interpolation 

methods are Quadratic Momentum Interpolation Method proposed by 

Papageorgakopoulos et al. [70] and fourth-order momentum interpolation method 

presented by Yu et al. [71]. In case of linear interpolation the terms with over-bars in Eq. 

(4.66) are given by the following equations: 

 

( )
, , 1,

1 1 1f 1 f
i ie e

i j i j i ja a a +

= + −  (4.67)

 

( ), , 1,f 1 f
i j i i

u u u
e e i j e i jH H H += + −  (4.68)

 

( ), , 1,f 1 f
i j i i

u u u
e e i j e i jc c c += + −  (4.69)

 

( ), , 1,f 1 f
i j i i

u u u
e e i j e i jf f f += + −  (4.70)

 

where interpolation factor fe is given by: 
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4.3.3b. Correcting Velocity and Pressure Fields by Enforcing Mass Conservation 

In SIMPLE algorithm, velocity and pressure fields are required to be corrected in 

every iteration. The corrections are calculated from a pressure correction equation which is 

derived below. 

Consider an imaginary u-CV enclosing the geometric center of the east face of the 

CV corresponding to the node (i, j). Geometric centers of the west and east faces of this 

imaginary u-CV coincide with the nodes (i, j) and (i+1, j) respectively. An equation can be 

derived similar to Eq. ( 4.57) for ue, u-velocity at the geometric center of the east face of 

the CV corresponding to the node (i, j). Such equation can be written as: 
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( 4.72)

 

Recalling the definitions of p*, u*, and v* given by Eqs. ( 4.25) through ( 4.27), if Eq. 

( 4.72) is solved with a guessed or incorrect pressure field p*, the resultant velocity field 

can be expressed as u* and v*. With these pressure and velocity fields, Eq. ( 4.72) becomes: 
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( 4.73)
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Subtracting Eq. (4.73) from Eq. (4.72): 
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′ ′+ − Δ
 

(4.74)

 

We are looking for an approximate correction that can be applied to velocity field 

during the iterative solution procedure. Since we are only interested in an approximation 

for eu′ , we drop the first four terms on the right hand side of Eq. (4.74) to get an explicit 

relationship between eu′  and p′ : 
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On the right hand side of Eq. (4.75), all quantities are known except for 
,i jea . The 

coefficient 
,i jea is approximated by interpolation from the coefficients of the neighboring 

nodes of the actual grid. The interpolated value of the coefficient a at the east face of a CV 

enclosing a node (i, j) is denoted as 
,i jea . With this approximation, Eq. (4.75) becomes: 
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Similarly, wu′ , sv′ , and nv′  are given as: 
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Inserting Eq. (4.76) into Eq. (4.25), we get the following expression for ue: 
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Expressions for uw, vs, and vn are obtained by a similar procedure and are given 

below: 
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Now, a similar procedure is followed with Eqs. (4.57) and (4.60) to get the 

following expressions for nodal velocities: 
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Now, substituting Eqs. (4.80) through (4.83) into Eq. (4.50) and performing some 

re-arrangement, we get the following equation for pressure correction p′ : 

 

, , , ,, , 1, 1, , 1 , 1 ,i j i j i j i j

pc pc pc pc pc pc
i j i j W i j E i j S i j N i j i ja p a p a p a p a p S− + − +′ ′ ′ ′ ′= + + + +  (4.86)

 

where 

 

( )
( )

,

,

i j

i j

jpc
W j

w

y
a y

a
ρ
⎛ ⎞Δ
⎜ ⎟= Δ
⎜ ⎟
⎝ ⎠

 (4.87)

 

( )
( )

,

,

i j

i j

jpc
E j

e

y
a y

a
ρ
⎛ ⎞Δ
⎜ ⎟= Δ
⎜ ⎟
⎝ ⎠

 (4.88)
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( ) ( )
,

,

i j

i j

pc i
S i

s

x
a x

a
ρ
⎛ ⎞Δ
⎜ ⎟= Δ
⎜ ⎟
⎝ ⎠

 (4.89)

 

( ) ( )
,

,

i j

i j

pc i
N i

n

x
a x

a
ρ
⎛ ⎞Δ
⎜ ⎟= Δ
⎜ ⎟
⎝ ⎠

 (4.90)

 

( )( ) ( )( )* * * *
,
pc

i j w e s nj i
S u u y v v xρ ρ= − Δ + − Δ  (4.91)

 

In every iteration, Eq. (4.86) is solved for p′ . The calculated corrections are 

applied to pressure and velocity fields after every iteration. 

4.3.3c. Under-relaxation 

Solution of Eqs. (4.57) and (4.60) is under-relaxed to ensure convergence. Let ul 

represent u-velocity at the preceding iteration; incorporating under-relaxation into          

Eq. (4.57): 

 

( ) ( ){ }
( )

, , , ,, 1, 1, , 1 , 1 ,,
,

,1

i j i j i j i j

u
u

i j W i j E i j S i j N i j w e i ji j j
i j

u l
i j

u a u a u a u a u p p y b
a

u

α

α

− + − += + + + + − Δ +

+ −

 
(4.92)

 

Re-arranging Eq. (4.92): 

 

( ) ( )
, , , ,, , 1, 1, , 1 , 1 ,,i j i j i j i j

u
i j i j W i j E i j S i j N i j w e i ji j j

a u a u a u a u a u p p y S− + − += + + + + − Δ +  (4.93)
 

Corresponding equation for v-velocity is: 
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( ) ( )
, , , ,, , 1, 1, , 1 , 1 ,,i j i j i j i j

v
i j i j W i j E i j S i j N i j s n i ji j i

a v a v a v a v a v p p x S− + − += + + + + − Δ +  (4.94)

 

S u and S v in Eqs. (4.93) and (4.94) are given by: 

 

, , , ,
1 1u u l

i j i j i j i juS b a u
α
⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 (4.95)

 

, , , ,
1 1v v l

i j i j i j i jvS b a v
α
⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 (4.96)

 

where bu and bv are calculated from Eqs. (4.59) and (4.61), respectively. 

Pressure correction is under-relaxed using Eq. (4.34). 

4.3.3d. Convergence Criteria 

The relative residuals for mass and momentum conservation equations are 

calculated as given below. 

Relative residual for mass conservation: 

 

( ) ( ) ( ) ( ), ,
CVs

massconservation

w e s ni j j i j i

c c

u u y v v x
res

u l

ρ ρ

ρ

− Δ + − Δ
=
∑

 
(4.97)

 

where uc and lc are some characteristic values of velocity and length. 

Relative residual for u-velocity: 
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(

( ) ( ) )

, , , ,velocity , , 1, 1, , 1 , 1
CVs, ,

CVs

,,

1
i j i j i j i ju i j i j W i j E i j S i j N i j

i j i j

u
w e i ji j j

res a u a u a u a u a u
a u

p p y S

− − + − += − + + +

+ − Δ +

∑∑  

(4.98)

 

Relative residual for v-velocity: 

 

(

( ) ( ) )

, , , ,velocity , , 1, 1, , 1 , 1
CVs, ,

CVs

,,

1
i j i j i j i jv i j i j W i j E i j S i j N i j

i j i j

v
s n i ji j i

res a v a v a v a v a v
a v

p p x S

− − + − += − + + +

+ − Δ +

∑∑  

(4.99)

 

4.3.3e. Algorithm 

1. Assign initial values to velocity and pressure fields. These initial fields are also 

taken as initial guess for the subsequent iterative solution. 

2. Set boundary conditions. 

3. Set n = 1. 

4. Set un,0 and vn,0 equal to initial velocity field. 

nth Time-Step ( n = 1, nmax): 

1st Stage (r = 1): 

5. Set un,1 = un,0 and vn,1 = vn,0 (Eq. (4.13) and the corresponding equation for v-

velocity). 

rth Stage (r = 2, q): 

6. Calculate coefficients aW, aE, aS, and aN using the velocity fields un,r-1 and vn,r-1 
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with a spatial discretization scheme of choice. 

7. Calculate time-derivatives ,
u

n sf and ,
v

n sf (for s = 1, r-1) from Eqs. (4.53) and 

(4.54) respectively. 

8. Calculate bu and bv from Eqs. (4.59) and (4.61) respectively. 

 Iteration for u, v, and p: 

9. Solve Eqs. (4.57) and (4.60) with some solution algorithm such as line-by-

line procedure which is a combination of Tri-diagonal Matrix Algorithm 

(TDMA) and Gauss-Seidel scheme. 

10. Solve pressure correction equation, Eq. (4.34). 

11. Apply pressure corrections to nodal pressures using Eq. (4.46). 

12. Calculate pressures at CV faces by using some interpolation. 

13. Calculate pressure corrections at CV faces by using some interpolation. 

14. Calculate corrected face velocities using Eqs. (4.80) through (4.83). 

15. Calculate coefficients of Eqs. (4.57) and (4.60) using the corrected face 

velocities calculated in step 14. 

16. Correct u- and v- velocity fields using Eqs. (4.84) and (4.85). 

17. Calculate residuals from Eqs. (4.97) through (4.99). Check for 

convergence by comparing the residuals with some chosen values. 

18. If solution is converged, go to step 20. 

19. If solution is not converged, go to step 9. 

20. Check the value of r. 

21. If r = q, go to step 23. 
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22. If r < q, switch to next stage, i.e., set r = r + 1. Go to step 6. 

23. Check the value of n. 

24. If n < nmax, switch to the next time-step, i.e., set n = n + 1. Set un,0 and vn,0 equal 

to the velocity fields calculated in step 16. Go to step 5. 

25. If n = nmax, stop the program. 

 

The above solution algorithm is shown as a flow chart in Figure 4.7. 
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 Figure 4.7 Solution Algorithm for Staggered Grid Method 
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5. VALIDATION 

In order to validate the proposed SIMPLE DIRK method, a FORTRAN code was 

developed for each of the staggered and the non-staggered grid approaches. Power-law 

scheme of Patankar [1] was used in spatial discretization. Temporal discretization was 

performed with a two-stage second-order stiffly-accurate ESDIRK method. The Butcher 

array for the used ESDIRK method is given below: 

 

0 0 0
1 1/ 2 1/ 2

1/ 2 1/ 2
 

 

In the staggered grid method, CV face velocities were calculated by linear 

interpolation. In case of non-staggered grid method, CV face velocities were calculated by 

linear momentum interpolation as given by Eqs. (4.66) through (4.71). Under-relaxation 

factors for the momentum and pressure correction equations were based on the following 

relationships as proposed by Ferziger and Peric [24]: 

 

,1 1p u p vα α α α= − = −  (5.1)
 

A value of 0.3 was used for αp and 0.7 for both αu and αv. The simultaneous 

solution of momentum and mass conservation equations was considered to be converged 

when the values of residuals of momentum conservation equations became less than 10-6 



54 

and that of continuity equation reached below 10-5. 

5.1. Test Case 

Flow field in a lid-driven 1 m × 1 m square cavity was solved by the proposed 

method for air with constant thermo-physical properties. The values used for absolute 

viscosity and density were 1.843×105 N.s/m2 and 1.177 kg/m3 respectively. Calculations 

were performed for Reynolds number of 400 and 1,000; where Reynolds number was 

based on cavity height and the lid velocity. 

5.2. Grid Dependence Study 

A grid dependence study was performed before a grid size was chosen for the code 

validation runs. The time step size for grid dependence study was 10 seconds. 

The procedure for this study is as follows. The staggered grid code was run for a 

flow time of 30 seconds with a grid size of 11×11 and Root-Mean-Square (RMS) value of 

u-velocity along the vertical centerline of the cavity was calculated. The code was run 

again for the same flow time but with the refined grid size of 25×25 and RMS value of u-

velocity along the vertical centerline of the cavity was calculated. Then the absolute value 

of marginal relative percent change in the RMS value of u-velocity was calculated from 

the following formula: 

fine grid coarse grid

coarse grid

RMS RMS

RMS

Marginal Relative % Change = 100
Increase in Number of Grid Points

u u

u

−
×

×
(5.2)

 

The above procedure was repeated with grid sizes of 40×40, 51×51, 60×60, 68×68, 

75×75, and 81×81. The results are plotted in Figure 5.1. This figure also shows the results  
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obtained with the flow time of 60 seconds and 120 seconds. Although the marginal relative 

percent change in RMS value of u-velocity along the vertical centerline of the cavity 

decreases when grid is refined beyond 60×60 internal nodes, yet the change is so small 

that it was decided to perform calculations with the 60×60 grid. 

5.3. Code Validation Runs 

The staggered grid code was validated by comparison with the results of 

commercial software program FLUENT [ 4], Ghia et al. [ 5], and Erturk et al. [ 6]. Then the 

non-staggered grid code was validated by comparison with the results of the staggered grid 

code. 

5.3.1. Comparison of the Staggered Grid Code with FLUENT for Re = 400 

For the comparison of the staggered grid code with the results of commercial 

software program FLUENT [ 4], simulation was performed for Re = 400 and a flow time of 

3,600 seconds. The time step size for this simulation was 1 second. The same grid density, 

time step size, and flow time were used in the simulation with the staggered grid code and 

FLUENT. In the solution by FLUENT, second order implicit time advancing was chosen. 

A higher-order scheme (QUICK) was used for spatial discretization in FLUENT compared 

with power law scheme used in the test solution by the staggered grid code. The results are 

discussed in Section  6. 

5.3.2. Comparison of the Staggered Grid Code with the Results of Erturk et al. [ 6] for 

Re = 1,000 

The staggered grid code was also run for Re = 1,000 and a flow time of 3,000  
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seconds. The results were compared with the steady state solutions of Ghia et al. [ 5] and 

Erturk et al. [ 6]. The time step size for this simulation was 10 seconds. The same grid 

density was used in the simulation with the staggered grid code as used by Ghia et al. [ 5] 

and Erturk et al. [ 6]. The results are discussed in the next section. 

5.3.3. Comparison of the Non-staggered Grid Code with the Staggered Grid Code for 

Re = 400 

In order to validate the non-staggered grid method the above problem was again 

solved with both the staggered grid and the non-staggered grid codes for a flow time of 

4,000 seconds, with a time step size of 10 seconds, and grid density of 60×60 internal 

nodes. A discussion on the results is presented in Section  6. 
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6. RESULTS AND DISCUSSION 

First, the results from the staggered grid code were compared with those from 

FLUENT [4] and the numerical solution of Ghia et al. [5] and Erturk et al. [6]. Second, the 

results from the non-staggered grid code were compared with those from the staggered 

grid code. 

Normalized u-velocity profile along a vertical line through the center of the cavity 

as obtained from the staggered grid code was compared with that calculated from 

FLUENT [4]. The results at various instants in time are presented in Figure 6.1. In Figures 

6.2 and 6.3, u- and v-velocity contours obtained from the staggered grid code at t = 200 s 

are compared with those obtained from FLUENT [4]. Figures 6.4 and 6.5 present similar 

comparison at t = 400 s. It is evident from Figures 6.1 through 6.5 that the solution 

obtained from the code is in good agreement with the solution of FLUENT [4]. In Figure 

6.6, the u-velocity profile obtained from the staggered grid code at 3,600 seconds is 

compared with the steady state numerical solution of Ghia et al. [5]. The staggered grid 

code was also run for Re = 1,000 and a flow time of 3,000 seconds. Normalized u- and v-

velocity profiles along a vertical line through the center of the cavity are compared with 

those of Ghia et al. [5] and Erturk et al. [6] in Figures 6.7 and 6.8. The results from the 

code agree well with the results of Ghia et al. [5]. ] and Erturk et al. [6]. 

In order to investigate how the difference in the solution of the staggered grid code 

and the results of FLUENT varies as the simulation proceeds in time, normalized u-

velocity data was extracted for 50 equally spaced points on the vertical centerline of the 

cavity from the solutions of the staggered grid code and FLUENT [4] at various instants in  
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Figure 6.2 u-Velocity Contours at t = 200 s for Re = 400 
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Figure 6.3 v-Velocity Contours at t = 200 s for Re = 400 
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Figure 6.4 u-Velocity Contours at t = 400 s for Re = 400 

b) Staggered 
Grid Code 
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63 

 

-0.002

-0.001

-0.0005

-6.2E-05

-8.4E-06

2.5E-05

2.5E-05

9.2E-05

9.2E-05

0.00024

0.00024

0.00037

0.00037

0.0005

0.001

Distance along the Bottom Wall

D
is

ta
nc

e
al

on
g

th
e

Le
ft

W
al

l

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

-0.002

-0.001

-0.0005

-6.2E-05

-8.4E-06

2.5E-05

2.5E-05

9.2E-05

9.2E-050.00024

0.00024

0.00037

0.00037

0.0005

0.001

Distance along the Bottom Wall

D
is

ta
nc

e
al

on
g

th
e

Le
ft

W
al

l

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

Figure 6.5 v-Velocity Contours at t = 400 s for Re = 400 

b) Staggered 
Grid Code 
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64 

 

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91 -0

.5
-0

.4
-0

.3
-0

.2
-0

.1
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0
N

or
m

al
iz

ed
 u

-V
el

oc
ity

, u
/u

lid

Vertical Distance from the Bottom, y (m)

C
ur

re
nt

 W
or

k
G

hi
a 

et
 a

l. 
[4

]

N
or

m
al

iz
ed

 u
-V

el
oc

ity
 P

ro
fil

e 
on

 V
er

tic
al

 C
en

te
rli

ne
 (x

 =
 0

.5
 m

) o
f 

a 
Sq

ua
re

 C
av

ity
 fo

r R
e 

= 
40

0 
at

 t 
= 

3,
60

0 
s (

St
ea

dy
 S

ta
te

) 
 

6.
6

Fi
gu

re
 

 



65 

 

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91 -0

.5
-0

.4
-0

.3
-0

.2
-0

.1
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0

Vertical Distance from the Bottom, y(m)

N
or

m
al

iz
ed

 u
-V

el
oc

ity
, u

/u
lid

S
ta

gg
er

ed
 G

rid
 C

od
e 

at
 t 

= 
3,

00
0 

s
E

rtu
rk

 e
t a

l. 
20

05
 S

te
ad

y 
S

ta
te

G
hi

a 
et

 a
l. 

19
82

 S
te

ad
y 

S
ta

te

 
N

or
m

al
iz

ed
 u

-V
el

oc
ity

 P
ro

fil
e 

on
 V

er
tic

al
 C

en
te

rli
ne

 (x
 =

 0
.5

 m
) o

f 
 

  
 

a 
Sq

ua
re

 C
av

ity
 fo

r R
e 

= 
1,

00
0 

 
6.

7
Fi

gu
re

 
 



66 

 

-0
.5

5

-0
.4

5

-0
.3

5

-0
.2

5

-0
.1

5

-0
.0

5

0.
05

0.
15

0.
25

0.
35

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Normalized v-Velocity, v/ulid

H
or

iz
on

ta
l D

is
ta

nc
e 

fr
om

 th
e 

Le
ft 

W
al

l, 
x

(m
)

S
ta

gg
er

ed
 G

rid
 C

od
e 

at
 t 

= 
3,

00
0 

s
E

rtu
rk

 e
t a

l. 
20

05
 S

te
ad

y 
S

ta
te

G
hi

a 
et

 a
l. 

19
82

 S
te

ad
y 

S
ta

te

 
N

or
m

al
iz

ed
 v

-V
el

oc
ity

 P
ro

fil
e 

on
 H

or
iz

on
ta

l C
en

te
rli

ne
 (y

 =
 0

.5
 m

) o
f 

 
  

 
a 

Sq
ua

re
 C

av
ity

 fo
r R

e 
= 

1,
00

0 
 

6.
8

Fi
gu

re
 

 



67 

time. Absolute difference in the two solutions was calculated for these 50 points and 

maximum value of absolute difference determined. RMS value of the differences was also 

calculated. Figure 6.9 shows variation of maximum absolute difference and RMS value of 

the difference of the two solutions with time. At the beginning, when time-derivatives of 

velocity are large in this flow, the difference in solutions grows quickly. At later times, 

growth of difference in solutions almost levels out. This can be explained as follows. 

Accuracy of time-derivative of velocity is dependent on the accuracy of spatial 

discretization scheme as is evident from Eqs. (4.11), (4.12), (4.53) and (4.54). Use of 

lower-order spatial discretization introduces errors in calculation of time-derivative of 

velocity. Eqs. (4.14) and (4.15) show that velocity field at the end of every time-step 

depends on the values of time-derivatives obtained from stage calculations. The errors in 

time-derivative of velocity, therefore, affect the accuracy of velocity field. When velocity 

field changes rapidly with time, i.e. time-derivatives are large, the effect of errors in time-

derivatives on the calculated velocity field is more significant. During time spans when 

time-derivatives are small, the effect of errors in time-derivatives introduced due to use of 

low-order spatial discretization on the calculated velocity field are less significant. This is 

the reason for growth of difference in solutions in Figure 6.9 to diminish at later times in 

the cavity flow. 

Another conclusion that follows the above discussion is that the use of higher-order 

spatial discretization is necessary if higher-order accuracy in time is desired. Moreover, as 

shown by Eq. (4.14), a smaller time-step size h will lessen the effect of errors introduced 

by use of low-order spatial discretization. However, a time-step size dependence study is  
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required in order to find out optimum time-step size. 

Since growth of difference in solutions almost stops after 1,200 seconds of flow 

time (Figure 6.9), the solution will not become unstable. This observation gives a fair 

indication that the proposed method is stable. However, more rigorous analysis and testing 

are required to establish the stability of this method. 

After comparison of the results of the staggered grid code, a comparison was made 

between the results of the staggered and non-staggered grid codes. Normalized u- and v-

velocity profiles are plotted along the cavity vertical and horizontal centerlines, 

respectively, in Figures 6.10 and 6.11 as obtained from both the staggered grid and non-

staggered grid codes at various instants in time. The solutions obtained from the two 

methods are in excellent agreement with each other. To take a quantitative look at the 

comparison of the two results, the absolute differences were calculated as percents of the 

lid velocity using the following equation: 

 

-Absolute% Difference 100staggered grid non staggered grid

lid

u u
u
−

= ×  (6.1)

 

The maximum % absolute difference is shown in Figure 6.12 at four instants in 

time. Similar percent differences were also calculated for v-velocity at the horizontal 

centerline of the cavity. The maximum values of these percent differences are also shown 

in Figure 6.12. At t = 1,000 s, the maximum % difference in the values of v-velocity at the 

horizontal centerline of the cavity is only 0.68. Figure 6.13 presents a comparison of the 

two methods in terms of number of iterations required for convergence of solution at 
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each time step. Similar comparison is shown in terms of CPU time in Figure 6.14. The 

CPU time data shown in Figure 6.14 were obtained when the code was run on a personal 

computer with Intel Core 2 Duo processor. It is clear from Figures 6.13 and 6.14 that the 

non-staggered grid SIMPLE DIRK method converges faster than the staggered-grid 

method. Figure 6.13 shows that the number of iterations required in a typical time step to 

meet the convergence criteria chosen in the current solution is about 800 with the 

staggered-grid method as opposed to about 200 with the non-staggered-grid method. 

Figure 6.14 shows that the CPU time required in a typical time step to meet the 

convergence criteria chosen in the current solution is about 23 seconds with the staggered-

grid method as opposed to about 11 seconds with the non-staggered-grid method. One 

obvious reason for the superior behavior of the non-staggered-grid method is that the 

coefficients of both x- and y-momentum equations are identical and, therefore, required to 

be calculated only once during every iteration. Figures 6.15 and 6.16 show, for staggered 

grid and non-staggered grid method respectively, the values of residuals of u-velocity, v-

velocity, and continuity at every iteration for a typical time step. Logarithmic values of all 

the residuals decrease linearly after certain number of iterations. In another study (results 

are not shown here) when time step size was increased to large values, this linear variation 

was replaced by oscillations, but the solution still proceeded toward convergence. 

However, in comparison to the staggered grid method, the non-staggered grid method 

offers faster convergence. 
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7. SUMMARY 

A numerical method (SIMPLE DIRK Method) is presented for unsteady 

incompressible flow simulation. This method uses implicit Runge-Kutta methods in 

conjunction with finite volume method. The method is presented for both staggered and 

non-staggered approaches. A FORTRAN code was developed for each of these two 

approaches. The staggered grid code was validated by comparison of its results with those 

obtained from FLUENT [4] and published by Ghia et al. [5] and Erturk et al. [6]. Non-

staggered grid code was validated by comparison with the staggered grid code. 

Good agreement of the results of the two codes with the solution of FLUENT [4] 

and the results of Ghia et al. [5] and Erturk et al. [6] establishes that the proposed method 

is feasible and has prospects for extension to higher-order RK methods with higher-order 

spatial discretization. For higher-order accuracy in time, use of higher-order spatial 

discretization is necessary. Moreover, a smaller time-step size h will produce higher 

accuracy. The method was observed to be stable. The non-staggered-grid (co-located 

variables) SIMPLE DIRK method produced results that are nearly equivalent to the ones 

obtained from the staggered-grid SIMPLE DIRK method. However, the non-staggered 

grid method exhibited better convergence behavior with less CPU time requirement for the 

same level of convergence. 
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8. RECOMMENDATIONS FOR FUTURE WORK 

Studies should be initiated to investigate the effect of convergence criteria, under-

relaxation factors, and time step size on the results of the presented method. For DNS 

applications, the proposed method should be used with higher order ESDIRK methods for 

time discretization in conjunction with higher order spatial discretization schemes. Using 

higher order discretization, DNS data can be generated for code validations and 

investigation of physical laws. Appendix C gives formulation for a method with four stage 

Runge-Kutta method. Application of the presented method to heat transfer problems and 

multi-phase flows involving chemical reaction and/or radiation should be explored. 

Extendibility of the presented non-staggered grid method to complex domains with 

internal regions should be worked out. 
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APPENDIX A: RUNGE-KUTTA METHODS 

As documented by Butcher [72] and Butcher and Wanner [73], Runge and his 

successors Heun, Kutta, and Nyström laid the foundation of Runge-Kutta (RK) methods 

during late 19th and early 20th century. Classical RK methods were explicit. It was during 

1960s when Kuntzmann and Butcher [56] proposed implicit RK methods. Fully implicit 

RK methods were, however, difficult to derive and computationally inefficient. During 

seventies, many researchers (such as Alt, Kurdi, Nørsett, Crouzeix, and Alexander [74]) 

worked towards improvement in efficiency of implicit RK methods. The work of 

Alexander [74] is very frequently referenced. The historical works of Runge, Heun, Kutta, 

Nyström, Kuntzmann, Alt, Kurdi, Nørsett, Crouzeix are originally referenced by Butcher 

[72] and/or Butcher and Wanner [73]. The current author has not reviewed their work. For 

interested readers, a list of references as quoted by Butcher [72] and/or Butcher and 

Wanner [73] is presented in Appendix D. 

At this point, it is appropriate to define Stage and Order of accuracy of RK 

methods. Stage is defined as the number of times the dependent variable or its time-

derivative is calculated during every time step. Order of accuracy of an RK method is the 

level of accuracy determined by neglecting certain order terms in Taylor series expansion 

during the derivation of the method. In case of explicit RK methods, for a given order of 

accuracy, P, the required number of stages, q, may be equal to or more than the order of 

accuracy, i.e. P ≤ q. But a q-stage implicit RK method can be derived for order P such that 

P > q (Butcher [54]). Parameters Ars in Eq. (A.6) are determined based on the required 

order, number of stages, and stability considerations. 
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In the following sections various types of RK methods are summarized. The 

following discussion is derived from the work of Alexander [74] and Dekker and Verwer 

[55]. 

A1. General Form of Runge-Kutta Methods 

The purpose of RK methods is to find out approximate solution of the initial value 

problem: 

 

( ) ( ) 0, , 0d f t
dt
ϕ ϕ ϕ ϕ= =  (A.1)

 

Let h be the size of a typical nth time step: 

 

1 ,0n nt t h+ = +  (A.2)

 

φ(tn,0) and φ(tn+1) are values of the dependent variable φ at the beginning and at the 

end of nth time step, respectively. The concept of RK methods is to calculate φ(tn+1) from 

φ(tn,0) by approximating the integral in the following formula: 

 

( ) ( ) ( )( )1

1 ,0 ,n

n

t

n n t
t t f t t dtϕ ϕ ϕ+

+ = + ∫  (A.3)

 

The indices r and s, used in the following discussion, should not be confused with 

the indices of the grid points. Let there be q number of quadrature points defined by: 
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, ,0 , 1,n r n rt t h r qτ= + =  (A.4)
 

If br are the weights at quadrature points tn,r, the following quadrature formula is 

used to approximate the integral in Eq. (A.3): 

 

( ) ( ) ( )( )1 ,0 , ,
1

,
q

n n r n r n r
r

t t h b f t tϕ ϕ ϕ+
=

= + ∑  (A.5)

 

Let φn,0, φn,r, and φn+1 be the approximations of φ(tn,0), φ(tn,r), and φ(tn+1), 

respectively. The values φn,r are calculated at the quadrature points defined by Eqs. (A.4) 

using the following quadrature formula: 

 

( ), ,0 , ,
1

, , 1,
q

n r n rs n s n s
s

h A f t r q
=

= + =∑ϕ ϕ ϕ  (A.6)

 

Eqs. (A.6) are, in general, a set of q implicit equations. Solution of Eqs. (A.6) is 

called stage calculations. The values of φn,r obtained from stage calculations are used in 

Eq. (A.5) to obtain update solution φn+1: 

 

( )1 ,0 , ,
1

,
q

n n r n r n r
r

h B f tϕ ϕ ϕ+
=

= + ∑  (A.7)

 

Eqs. (A.6) and (A.7) define general form of Runge-Kutta methods. In every time 

step, q number of values of the dependent variable φ are calculated from Eqs. (A.6); 

therefore, the method is called q-stage method. τi, Bi, and Aij are the parameters. 
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Calculation of these parameters is based on the required order, number of stages, and 

stability consideration. A condensed form of presentation for a Runge-Kutta method is 

called Butcher array: 

 

1 11 1

T

1

1

. .
. . . . .

τ A
. . . . .

B
. .
. .

q

q q qq

q

A A

A A
B B

τ

τ
=  (A.8)

 

A2. Explicit Runge-Kutta Methods 

If Ars = 0 for s ≥ r in Butcher array, φn,r in Eq. (A.6) can be calculated explicitly 

from the preceding values of φn,s. For explicit RK methods, Eqs. (A.6) and (A.7) take the 

following form: 

 

,1 ,0n nϕ ϕ=  (A.9)
 

( )
1

, ,0 , ,
1

, , 2,
r

n r n rs n s n s
s

h A f t r qϕ ϕ ϕ
−

=

= + =∑ (A.10)

 

( )1 ,0 , ,
1

,
q

n n r n r n r
r

h B f tϕ ϕ ϕ+
=

= + ∑  (A.11)

 

A3. Diagonally Implicit Runge-Kutta (DIRK) Methods 

Runge-Kutta methods, for which Aij = 0 for all j > i in Butcher array, are called 

Diagonally Implicit Runge-Kutta (DIRK) methods. In DIRK methods, at every stage of 
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calculation in a time step, dependent variable depends on its value at that stage as well as 

at all previous stages. Thus a dependent variable ϕ at ith stage of nth time step is calculated 

from: 

 

( ), ,0 , ,
1

, , 1,
r

n r n rs n s n s
s

h A f t r qϕ ϕ ϕ
=

= + =∑  (A.12)

 

Update solution is calculated from Eq. (A.7). 

A4. Singly Diagonally Implicit Runge-Kutta (SDIRK) Methods 

DIRK methods for which all the diagonal elements of matrix A are equal to a 

single number, are called Singly Diagonally Implicit Runge-Kutta (SDIRK) methods. Bijl 

et al. [ 58,  59] used a more explanatory name for these methods, i.e. Single diagonal 

coefficient, Diagonally Implicit, Runge-Kutta methods. 

A5. Explicit first stage, Single diagonal coefficient, Diagonally Implicit, Runge-

Kutta (ESDIRK) Methods 

ESDIRK methods are characterized by the first explicit stage. For these methods 

A11 = 0, so that: 

 

,1 ,0n nϕ ϕ=  (A.13)
 

( ), ,0 , ,
1

, , 2,
r

n r n rs n s n s
s

h A f t r qϕ ϕ ϕ
=

= + =∑ (A.14)
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A6. Stiffly Accurate Runge-Kutta Methods 

An RK method is stiffly accurate if the last stage approximation φn,q is equal to the 

update solution φn+1. This class of RK methods requires that: 

 

, 1,qs sA B s q= =  (A.15)
 

These methods can be expressed as: 

 

,1 ,0n nϕ ϕ=  (A.16)
 

( ), ,0 , ,
1

, , 2, 1
r

n r n rs n s n s
s

h A f t r qϕ ϕ ϕ
=

= + = −∑  (A.17)

 

( )1 , ,0 , ,
1

,
q

n n q n qs n s n s
s

h A f tϕ ϕ ϕ ϕ+
=

= = + ∑  (A.18)
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APPENDIX B: TWO EXAMPLES OF EVALUATION OF 

DEFERRED-CORRECTION TERM AND COEFFICIENTS IN THE 

DISCRETIZED MOMENTUM EQUATIONS 

B1. Power Law Scheme 

B1.1. Staggered-Grid Approach 

When power law scheme of Patankar [1] is used in spatial discretization of 

momentum equations, the deferred correction terms in Eqs. (4.11) and (4.12) are zero:  

 

, , 0u v
i j i jc c= =  (B.1)

 

In the following equations the operator  is used to return the maximum of the 

enclosed operands. The coefficients aW, aE, aS, and aN in Eqs. (4.11) and (4.12) are 

evaluated from the following equations when power law scheme is used: 

 

( )
( )

( ) ( )
( ) ( )

,

5

,
,

0, 1 0.1 0,
i j

p u u
w w u pj i j iu

W wu i j j
w i

y u x
a u y

x

μ δ
ρ

νδ

⎡ ⎤Δ
⎢ ⎥= − + Δ
⎢ ⎥
⎣ ⎦

 (B.2)
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( )

( ) ( )
( ) ( )

,

5

,
,

0, 1 0.1 0,
i j

p u u
e e u pj i j iu

E eu i j j
e i

y u x
a u y

x

μ δ
ρ

νδ

⎡ ⎤Δ
⎢ ⎥= − + Δ
⎢ ⎥
⎣ ⎦

 (B.3)
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( )
( )

( ) ( )
( ) ( )

,

5

,
,

0, 1 0.1 0,
i j

u pu
s s u ui j ju i

S sp i j i
s j

v yx
a v x

y

δμ
ρ

νδ

⎡ ⎤Δ ⎢ ⎥= − + Δ
⎢ ⎥
⎣ ⎦

 (B.4)
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( )

( ) ( )
( ) ( )

,

5

,
,

0, 1 0.1 0,
i j

u pu
n n u ui j ju i

N np i j i
n j

v yx
a v x

y

δμ
ρ

νδ

⎡ ⎤Δ ⎢ ⎥= − + Δ
⎢ ⎥
⎣ ⎦

 (B.5)

 

( )
( )

( ) ( )
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e e v vj i j iv

E ep i j j
e i

y u x
a u y

x

μ δ
ρ

νδ

⎡ ⎤Δ
⎢ ⎥= − + Δ
⎢ ⎥
⎣ ⎦

 (B.7)
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5

,
,

0, 1 0.1 0,
i j

v vp
s s v pi j jv i

S sv i j i
s j
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( )

( ) ( )
( ) ( )

,

5

,
,

0, 1 0.1 0,
i j

v vp
n n v pi j jv i

N nv i j i
n j

v yx
a v x

y

δμ
ρ

νδ

⎡ ⎤Δ ⎢ ⎥= − + Δ
⎢ ⎥
⎣ ⎦

 (B.9)

 

CV face velocities used in Eqs. (B.2) 

 through (B.9) are usually calculated by linear interpolation. 

 

B1.2. Non-Staggered Grid Approach 

When power law scheme of Patankar [1] is used in spatial discretization of 
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momentum equations, the deferred correction terms in Eqs. (4.53) and (4.54) are zero:  

 

, , 0u v
i j i jc c= =  (B.10)

 

The coefficients aW, aE, aS, and aN, that are identical for both the evolution 

equations, Eqs. (4.53) and (4.54), are evaluated from the following equations when power 

law scheme is used: 

 

( )
( )

( ) ( )
( ) ( )

,

5

,
,

0, 1 0.1 0,
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w wj i j i
W w i j j

w i

y u x
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x
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 (B.11)
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0, 1 0.1 0,
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s si j ji
S s i j i
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v yx
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δμ
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 (B.13)

 

( )
( )

( ) ( )
( ) ( )

,

5

,
,

0, 1 0.1 0,
i j

n ni j ji
N n i j i

n j

v yx
a v x

y

δμ
ρ

δ ν

⎡ ⎤Δ
⎢ ⎥= − + Δ
⎢ ⎥⎣ ⎦

 (B.14)

 

CV face velocities used in Eqs. (B.11) through (B.14) are usually calculated by 

momentum interpolation. 
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B2. QUICK Scheme 

B2.1. Staggered Grid Approach 

Consistent formulation of QUICK scheme was provided by Hayase et al. [75] 

which was used by Yu et al. [71] and Wei et al. [76] in a general formulation. Following 

the work of these authors, deferred correction term c in Eqs. (4.11) and (4.12) is calculated 

as below: 

 

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )
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, 1, ,, , , ,
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ρ ρ
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(B.15)
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(B.16)

 

When QUICK scheme is used, the coefficients in Eqs. (4.11) and (4.12) are given 

as: 

( )
( )

( ) ( )
, ,

0,
i j

p
u pju

W wu i j j
w i

y
a u y

x

μ
ρ

δ

Δ
= + Δ  (B.17)
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( )
( )

( ) ( )
, ,

0,
i j

u
u uu i

N nu i j i
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μ
ρ

δ

Δ
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CV face velocities used in Eqs. (B.17) through (B.20) are calculated by 

interpolation. QUICK interpolation formulae for u-velocity at east face of a u-CV are 

given below: 

For ( ) ,
0u

e i j
u ≥ : 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1
1,,

1 1 1

1 1
,

1 1

1

1 1 1

2

2

2

2

p p
u i i

e i ji j p p p p p

i i i i i

p p p
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1,i ju +

⎫
⎪ ⎪

⎬
⎪ ⎪⎩ ⎭

 

(B.21)

 

For ( ) ,
0u

e i j
u < : 
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Velocity field used in Eqs. (B.17) through (B.22) is taken from preceding iteration; 

use of superscript l is avoided for the sake of simplicity. u-velocity at the west face of a 

CV and v-velocity at the south and north faces are calculated from equations similar to 

Eqs. (B.21) and  (B.22). 

B2.2. Non-staggered Grid Approach 

Deferred correction term c in Eqs. (4.53) and (4.54) is calculated as below: 
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When QUICK scheme is used, the coefficients in Eqs. (4.53) and (4.54) are given 

as: 
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CV face velocities used in Eqs. (B.23) through (B.28) are calculated by quadratic 

interpolation as explained by Papageorgakopoulos et al. [70]. 
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APPENDIX C: FORMULATION FOR SIMPLE DIRK METHOD 

USING A FOUR-STAGE ESDIRK METHOD 

The method presented in this dissertation can be used with ESDIRK method of any 

order P with any number of stages q. The number of stages and the parameters Ars in the 

Butcher array will depend on the chosen method. In this dissertation, the feasibility of the 

presented method was tested with one of the simplest ESDIRK methods which involved 

calculations for only one stage. In the following subsections, formulation is presented for a 

four-stage ESDIRK method as an example considering a typical nth time step. This 

formulation will be helpful for future work on the use of higher-order ESDIRK methods in 

the presented simulation method. 

C1. Staggered Grid Approach 

Eqs. (4.8), (4.19), and (4.20) are solved with SIMPLE algorithm in every stage 

except for the first stage. No calculations are required in the first stage because un,1 and vn,1 

are set equal to un,0 and vn,0 respectively as given by Eq. (4.13) and corresponding equation 

for v-velocity. Given below are the source terms ,
u
i jb and ,

v
i jb and the 

coefficients ,
u
i ja and ,

v
i ja to be used in the solution of Eqs. (4.19) and (4.20) in stage 2 

through 4. The deferred correction terms cu and cv and the coefficients aW, aE, aS, and aN 

are calculated from the current available velocity field using some spatial discretization 

scheme of choice. 
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Stage 2 (r = 2): 
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Stage 3 (r = 3): 
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Stage 4 (r = 4): 
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C2. Non-staggered Grid Approach 

Similar to the staggered grid method, Eqs. (4.50), (4.57), and (4.60) are solved with 

SIMPLE algorithm in every stage except for the first stage. No calculations are required in 

the first stage because un,1 and vn,1 are set equal to un,0 and vn,0 respectively (Eq. (4.13) and 

corresponding equation for v-velocity). Given below are the source terms ,
u
i jb and ,

v
i jb and 

the coefficients ,i ja  to be used in the solution of Eqs. (4.57) and (4.60) in stage 2 through 

4. The deferred correction terms cu and cv and the coefficients Wa , Ea , Sa , and Na  are 

calculated from the current available velocity field using some spatial discretization 

scheme of choice. 
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Stage 2 (r = 2): 
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Stage 3 (r = 3): 
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Stage 4 (r = 4): 
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