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ABSTRACT 

 

Forecasting Project Progress and Early Warning of Project Overruns with Probabilistic 

Methods. (December 2007) 

Byung Cheol Kim,  

B.S., Seoul National University; M.S., Seoul National University 

Chair of Advisory Committee: Dr. Kenneth F. Reinschmidt 

 

Forecasting is a critical component of project management.  Project managers must be 

able to make reliable predictions about the final duration and cost of projects starting 

from project inception.  Such predictions need to be revised and compared with the 

project’s objectives to obtain early warnings against potential problems.  Therefore, the 

effectiveness of project controls relies on the capability of project managers to make 

reliable forecasts in a timely manner.   

This dissertation focuses on forecasting project schedule progress with 

probabilistic methods.  Currently available methods, for example, the critical path 

method (CPM) and earned value management (EVM) are deterministic and fail to 

account for the inherent uncertainty in forecasting and project performance.   

The objective of this dissertation is to improve the predictive capabilities of 

project managers by developing probabilistic forecasting methods that integrate all 

relevant information and uncertainties into consistent forecasts in a mathematically 

sound procedure usable in practice.  In this dissertation, two probabilistic methods, the 
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Kalman filter forecasting method (KFFM) and the Bayesian adaptive forecasting method 

(BAFM), were developed.  The KFFM and the BAFM have the following advantages 

over the conventional methods: (1) They are probabilistic methods that provide 

prediction bounds on predictions; (2) They are integrative methods that make better use 

of the prior performance information available from standard construction management 

practices and theories; and (3) They provide a systematic way of incorporating 

measurement errors into forecasting.  

The accuracy and early warning capacity of the KFFM and the BAFM were also 

evaluated and compared against the CPM and a state-of-the-art EVM schedule 

forecasting method.  Major conclusions from this research are: (1) The state-of-the-art 

EVM schedule forecasting method can be used to obtain reliable warnings only after the 

project performance has stabilized; (2) The CPM is not capable of providing early 

warnings due to its retrospective nature; (3) The KFFM and the BAFM can and should 

be used to forecast progress and to obtain reliable early warnings of all projects; and (4) 

The early warning capacity of forecasting methods should be evaluated and compared in 

terms of the timeliness and reliability of warning in the context of formal early warning 

systems. 
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CHAPTER I  

INTRODUCTION 

 

1.1 Project Management and the Role of Forecasting 

Reliable forecasting is a critical component of project planning, controlling, and risk 

management.  When at-completion project duration and cost are forecast before the start 

of a project, the process is carried out as a part of project planning and its results provide 

the baseline plan intended to complete the project on time and within budget.  Once a 

project gets started, actual performance is monitored and analyzed to revise the estimates 

of the remaining work.  The major purpose of execution phase forecasting is to obtain an 

early warning signal so that corrective or preventive actions may be taken in a timely 

manner.  Such predictions need to be revised and compared with the scheduled 

completion time and the available budget.  Therefore, the effectiveness of project 

controls relies on the capability of project managers to forecast final cost and completion 

time in a timely manner. 

 This research focuses on the schedule forecasting problem of on-going projects.  

Typically, three alternatives are available for project managers to update the original 

estimates, depending on the decision maker’s perception of the relationship between past 

and future performance: (1) forecasting based on the original estimate; (2) forecasting 

based on a new estimate; and (3) forecasting based on the original estimate modified by  

____________ 
This dissertation follows the style and format of the Journal of Construction 
Engineering and Management. 
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past performance information (PMBOK® Guide 2004).  The first two approaches, 

however, are valid only when any actual performance data observed from a project is 

considered irrelevant to the future performance of remaining jobs.  In such cases, the 

remaining work is considered a separate project.  The major focus of this dissertation is 

the third case in which project duration and cost at completion are updated using both 

the original estimate and actual performance data up to the time of forecasting.  The 

third type of forecasting can is referred to as “projective forecasting” while the first two 

types are referred to as “estimative forecasting.” 

 

1.2 Motivations 

This research is motivated by three observations regarding project management research 

in academia and practices in project management.  The first motivation of this research 

is the presence of uncertainty in both future project performance and current 

performance measurement.  Needs for forecasting some events arise only when there is 

uncertainty about the future.  Furthermore, the level of uncertainty in forecasts may 

influence decisions about planning and controlling projects.  Like all forecasts, 

forecasting the final outcomes of on-going projects is subject to uncertainties and 

prediction error.  Effective forecasting methods for dealing with uncertainty are, of 

necessity, probabilistic.  In addition, any prediction of project duration and cost should 

be accompanied by a level of confidence on the predicted values because those measures 

of uncertainty are also essential information for the project manager.  The most common 

way of measuring the level of confidence that a decision maker put on predicted value is 
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to estimate a prediction interval.  Traditional approaches such as the Critical Path 

Method (CPM) and Earned Value Management (EVM) are deterministic and provide 

point forecasts.  As a result, they do not provide information on the prediction bounds 

based on the likely accuracy of forecasts.  The program evaluation and review technique 

(PERT) provides a semi-probabilistic evaluation of project duration.  However, it has 

been criticized for systematic underestimation due to neglecting the influence of near-

critical paths. 

 Before proceeding further, the term “prediction interval” needs to be defined 

precisely.  In the literature on forecasting and decision making, prediction interval is 

often used interchangeably with confidence interval.  In this dissertation, however, those 

two terms are carefully chosen according to the suggestion by Armstrong (2002), which 

is “The term confidence interval is usually applied to interval estimates for fixed but 

unknown parameters.  In contrast, a prediction interval is an interval estimate for an 

(unknown) future value.”  A prediction interval consists of an upper and a lower limit at 

a prescribed probability, which are referred to as prediction bounds. 

 The second motivation of this research is the lack of reliable and consistent 

forecasting tools available to contractors, project managers, or program managers in 

public agencies, who would be the primary beneficiaries of this research.  The traditional 

approaches do not provide forecasting methods that are consistently applicable to both 

schedule and cost predictions.  For example, the fact that the standard EVM technique 

for forecasting the final cost at completion is not applicable to forecasting the project 

duration at completion has been criticized both by researchers (Short 1993; Vandevoorde 
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and Vanhoucke 2006) and by practitioners (Leach 2005; Lipke 2003).  As a result, 

project managers often resort to network-based schedule management techniques such as 

CPM for schedule prediction (Leach 2005).  However, concurrent usage of EVM and 

CPM in the same project is likely to lead to inconsistent time and cost predictions 

because these approaches are based on inconsistent assumptions about the relationship 

between past performance and future performance.  For example, a common cost 

forecasting technique in EVM is based on the assumption that future productivity (Cost 

Performance Index) will be the same as past productivity.  In the typical critical path 

method, however, the durations for the remaining work activities are often fixed at the 

original estimates. 

 Another motivation of this research is the lack of a comprehensive and 

integrative forecasting framework which integrates all the information relevant to project 

performance predictions, such as detailed project plans, historical data, subjective 

knowledge from project managers’ hands-on experiences, and measurement errors due 

to progress reporting rules or discrete reporting points.  Exploiting the potential benefits 

of pre-construction planning information such as baseline project progress curves and 

probabilistic estimates of project duration and cost is critical to the accuracy of 

forecasting, especially during the early phase of project execution because of the lack of 

enough actual performance data to get statistically reliable predictions. 
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1.3 Problem Statement and Research Objectives 

Aligning with the research motivations, the problem statement of this research is: 

 

There is a need for reliable and consistent forecasting methods in construction 

project management.  Currently available methods are mostly deterministic, overly 

simplified, or inconsistent in application and assumption, which make them 

unreliable or impractical.  Advanced forecasting methods that integrate all relevant 

information and uncertainties into consistent project performance predictions in a 

mathematically sound way will enable project managers in the real world to make 

decisions in a more effective and efficient way. 

 

The purpose of this dissertation is to improve the predictive capabilities of 

construction project managers by developing new probabilistic forecasting methods that 

integrate all relevant information and uncertainties into consistent schedule forecasts in a 

mathematically sound procedure usable in practice.  To achieve this purpose, the 

research objectives are identified as follows: 

 

1. Probabilistic Forecasting Methodologies:  Improve project forecasting methods 

by explicitly identifying and accounting for uncertainties in project performance 

and errors in measurements, and by providing prediction bounds on the predicted 

values. 
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2. Integrative Forecasting Methodologies:  Integrate all relevant information from 

different sources in a mathematically sound way.  The methodologies to be 

developed should be based on information available from standard construction 

project management systems such as the work breakdown structure, the network 

schedule, CPM, or EVM. 

3. Consistent Forecasting Methodologies:  Develop forecasting methods that can 

be applied to both schedule and cost performance forecasting in a consistent way. 

 

1.4 Research Hypothesis 

To achieve the research objectives, two project performance forecasting methods are 

developed based on state-of-the-art theories and methods in decision making and 

forecasting.  With the methods, the Kalman filter forecasting method and the Bayesian 

adaptive forecasting method, a series of parametric studies is carried out to test three 

research hypotheses which are developed to demonstrate the forecasting performance of 

new methods and to compare them with other methods currently used in the construction 

industry.   

 

Hypothesis 1:  The use of prior information, as used by Bayesian, along with actual 

performance data increases the quality of forecasting performance with regards to the 

accuracy, timeliness, and reliability of warning signals. 
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Hypothesis 2:  The Kalman filter model and the Bayesian adaptive model outperform 

the conventional methods such as CPM and EVM with regards to the accuracy, 

timeliness, and reliability of warning signals.  

 

Hypothesis 3:  The relative performance of the Kalman filter and Bayesian adaptive 

forecasting varies depending on the types of information available at the time of 

forecasting.  For example, the information about the baseline plan would be more useful 

in the Bayesian adaptive approach than in Kalman filter forecasting. 

 

The results from the parametric study will provide useful information for 

developing some practical guidelines for potential users of the new methods.   

 

1.5 Research Scope 

This dissertation focuses on forecasting project schedule progress with probabilistic 

methods.  From a literature review, it has been revealed that, despite a large literature on 

forecasts in various fields such as marketing, management, and engineering, very little 

research has addressed the forecasting issue in the context of construction project 

management.  Especially, the literature on probabilistic project performance forecasting 

is very limited.  Therefore, the research objectives and other issues addressed in previous 

sections require many original approaches in terms of methodology development, 

computer programming, data collecting, evaluating criteria development, and design of 
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hypothesis tests.  Some primary intellectual challenges in the research are identified and 

summarized in Table 1.1.   

 

Table 1.1 Intellectual challenges in the research 

Areas Subjects Challenges 
Kalman filter 
forecasting 

 Incorporating the nonlinear baseline plan – S-curve 
– into forecasting algorithm.  

 Developing algorithms for the cases in which the 
baseline plan is and is not available. 

Methodology 
Development 

Bayesian adaptive 
forecasting 

 Developing S-curves library that covers, in 
combination or separately, a wide range of potential 
project progress curves. 

 Developing easy and intuitive procedures for 
incorporating subjective information into the 
analysis in a systematic way. 

Artificial progress 
generation 

 Developing a computer algorithm for random 
progress generation. 

Evaluation metrics  Developing performance evaluation metrics for 
probabilistic forecasting methodologies. 

Methodology 
Validation & 
Parametric 

Study 
 Design of 

hypothesis test 
 Designing hypothesis test in a way that yields 

statistically significant results with minimum 
computation time.  

 

1.6 Dissertation Overview 

This dissertation is organized as follows. 

 Chapter I addresses the outline of this research, including the motivations, problem 

statement, and the objectives and scopes of this research. 

 Chapter II overviews the literature on project performance forecasting methods with 

an emphasis on practical issues.  Three state-of-the-art methods in the construction 

industry are also reviewed. 
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 In Chapter III, the Kalman filter forecasting method is developed based on the 

general frameworks of project control and the Kalman filter.  An example is 

presented to demonstrate the core properties of the Kalman filter forecasting method. 

 In Chapter IV, the Bayesian adaptive forecasting method is developed based on 

Bayesian inference and S-curve models.  Depending on the flexibility of S-curve 

models in fitting various progress curves of projects, two separate methods are 

developed: the multi-model Bayesian adaptive forecasting method and the BetaS-

curve Bayesian adaptive forecasting method.  Each method has its own unique 

properties and their performance is demonstrated with two numerical examples. 

 An extensive parametric study is carried out in Chapter V.  Using a large set of 

artificial projects, statistically meaningful results about the research hypotheses are 

obtained.   

 Chapter VI addresses some practical issues regarding implementation of the new 

forecasting methods.  Useful suggestions for project managers are made.  In addition, 

step-by-step input guidelines for the new methods are presented. 

 Chapter VII summarizes the contributions and major conclusion of the research and 

suggests some future research issues. 
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CHAPTER II  

LITERATURE REVIEW 

 

2.1 Introduction 

The purpose of this chapter is to identify the important issues in developing a new 

forecasting method and the state-of-the-art methods in project performance forecasting 

in the context of decision making and construction management.  It is often said that 

forecasting is an art rather than science.  The literature review in this chapter focuses on 

identifying practical issues that must be taken into account in formulating new methods 

in order to make the methods more acceptable for potential users. 

 

2.2 Forecasting Methods for Decision Making 

Forecasting is an essential part of decision making under uncertainty.  A need for 

forecasting arises only when there is uncertainty about the future and some aspects of the 

future can not be controlled (Armstrong 2002).  If everything relevant to an event is 

certain and the future of the event is deterministically predicted or controlled based on 

what is known at the point of forecasting, any decisions about it can be made according 

to the decision maker’s preference for expected outcomes.  Otherwise, decisions should 

be made based on forecasts which account for the uncertainty about the future.   

 The limits of deterministic approaches and the need for probabilistic models in 

engineering and management decision making have been repeatedly addressed over the 

last four decades (Ang and Tang 1975; Barraza et al. 2004; Hertz 1979; Spooner 1974).  
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The use of probabilistic methods, however, is often avoided among practitioners, largely 

because of the lack of appropriate methods, the lack of sufficient reliable data, and the 

additional difficulty in dealing with uncertainty in a quantitative way during the decision 

making process.   

 Plenty of forecasting methods are available for engineering and management 

decision making and they can be characterized in several ways.  Makridakis et al. (1982) 

classified forecasting methods into four groups: purely judgmental approaches, causal or 

explanatory methods, extrapolative (time series) methods, and any combination of the 

three.  On the other hand, Al-Tabtabai and Diekmann (1992) classified forecasting 

models as econometric models, time-series models and judgmental models.  With so 

many alternatives available, selecting the right method for a specific problem is itself a 

challenging decision.  Some comprehensive overviews of the management forecasting 

methods and selecting the right method can be found in the literature (Armstrong 2002; 

Chambers et al. 1971).  For example, Georgoff and Murdick (1986) evaluated 20 

forecasting techniques according to 16 criteria to provide a guide for how to choose the 

best technique or combination of techniques.   

 Use of subjective information and judgment in forecasting is another important 

issue in forecasting literature.  Some forecasting methods use objective data observed in 

a quantitative way, while others rely on subjective information.  For example, the Delphi 

method makes forecasts by deriving a consensus from a group of experts through a 

sequence of questionnaires.  For many forecasting methods, however, there is no clear-

cut distinction between the forecasting methods that rely on objective data and other 
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methods based on subjective information.  Some forecasters believe that subjective 

information or the use of it is the second best alternative, which can be justified only 

when there are no objective data available (Chau 1995), while others suggest use of 

subjective information as a way of improving forecasting performance (Georgoff and 

Murdick 1986).  For example, Al-Tabtabai and Diekmann (1992) conducted a study of 

applying social judgment theory to cost forecasting of a construction work package and 

asserted that both historical data and competent judgments based on experience and 

knowledge need to be included in a forecasting technique.   

 

2.3 Evaluation Criteria for Project Performance Forecasting Methods 

Evaluating forecasting methods, whether they are probabilistic or deterministic, is an 

essential challenge of all forecasters.  Many approaches have been investigated over the 

last four decades since the seminal work by Bates and Granger (1969).  A study 

(Carbone and Armstrong 1982) showed that accuracy was recognized as the most often 

used evaluation criterion for forecasting methods among both practitioners and 

researchers.  Some empirical studies on accuracy of forecasting methods include 

extrapolation methods (Makridakis et al. 1982) and project performance forecasting 

methods (Teicholz 1993; Zwikael et al. 2000).   

 Makridakis et al. (1982) conducted an empirical study on the accuracy of 

extrapolation methods.  Twenty four forecasting methods based upon time series 

analysis were applied to 1001 series and differences in performance were evaluated.  In 

the study, accuracy, although not the only factor, was used as a single measure of overall 
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forecasting performance.  Teicholz (1993) described the characteristics of a desirable 

forecasting method as accuracy, unbiasedness, timeliness, and stability.  In his study of 

forecasting final cost of construction projects, two forecasting methods – the moving 

average and the up-to-date average – were used to estimate unit cost, which was used to 

adjust the cost performance of future work.  Instead of purely statistical measures of 

accuracy, such as absolute percentage error or mean square errors, Teicholz measured 

the average accuracy of project cost forecasting by the area enveloped by the actual final 

cost and forecast final costs from monthly measurements plotted against percent 

complete.  In a similar way, timeliness was defined as the forecasting accuracy during 

the first 50% of the project duration.  Zwikael et al. (2000) evaluated five forecasting 

models in EVM using three performance measures: the mean square error, the mean 

absolute deviation, and the mean absolute percentage error.   

 

2.4 Conventional Methods for Project Performance Forecasting 

In the project management community, the best practice for project performance 

forecasting is to use the earned value method for cost performance forecasting and the 

critical path method for schedule forecasting.  In this section, basic features of those two 

methods are summarized and some limitations will be discussed.  In addition, Monte 

Carlo simulation is addressed in the context of project cost and schedule forecasting.   
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2.4.1 Earned Value Management 

The earned value method (EVM) integrates the project’s scope, cost, and schedule by 

using a resource-loaded project schedule and provides a systematic way of measuring, 

analyzing, communicating, and controlling the actual performance of a project.  EVM is 

endorsed by the Project Management Institute (PMI) (PMBOK® Guide 2004) and is in 

use by many public agencies (its use is mandated by NASA, DoD, DOE, and others) and 

by private owners and contractors to evaluate complex projects.  It has the advantage of 

being universally applicable over a wide range of project types and sizes, because every 

project, no matter how large or complex, is represented by the three functions: the 

planned value (PV or the budgeted cost of work scheduled), the earned value (EV or the 

budgeted cost of work performed), and the actual cost (AC or the actual cost of work 

performed).  Then both the schedule and cost performance of a project is measured in 

terms of four performance indicators:  

 Cost Variance (CV) = EV – AC 

 Cost Performance Index (CPI) = EV / AC 

 Schedule Variance (SV) = EV – PV 

 Schedule Performance Index (SPI) = EV / PV 

The ultimate goal of EVM is to provide reliable early warning signals about the 

schedule and cost performance of a project (Fleming and Koppelman 2006).  The 

standard EVM prediction for the project duration and cost at completion rests on the 

assumption that the cumulative performance index (SPIC(t) = EV(t)/PV(t) or CPIC(t) = 

EV(t)/AC(t)) will represent the performance efficiency of the jobs in the future.  Then, 
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the estimate at completion (EAC) at time t is equal to the cost already spent (AC) plus 

the adjusted cost for the remaining work: 

Reliable forecasting is a critical component of project planning, controlling 

 [ ]
( ) ( )

( )
( ) ( )

C C

BAC EV t BACEAC t AC t
CPI t CPI t

−
≅ + =  (2.1) 

where BAC is the Budget at Completion, or the original total budgeted cost.  One 

estimate of duration at completion (EDAC) can also be calculated in a similar way. 

 [ ]
( )

( )
( )

C

BAC EV t
EDAC t t

SPI t
−

≅ +  (2.2) 

where the cumulative Schedule Performance Index (SPIC), which is defined as the ratio 

of the EV and the PV, represents the efficiency of schedule performance up to the time 

of forecasting. 

 The cumulative CPI is known to stabilize once a project is twenty percent 

complete and “will not likely change by more than plus or minus 10% at the point of 

project completion” (Fleming and Koppelman 2006).  Although the use of EVM 

forecasting formulas for cost performance has been supported widely, many modified 

versions of the standard formula have been suggested as summarized in Table 2.1 

(Anbari 2003; Christensen 1993).  Christensen (1993) conducted an extensive study of 

comparing various formulas for EAC forecasting, including linear and nonlinear 

regression models, and reported that the accuracy depends on the type of a system and 

the phase of a contract.  It is apparent that different formulas should be applied to 
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different situations and the accuracy of prediction will be assured only for appropriate 

matches.   

 

Table 2.1 Extended formulas for the EAC. EAC=AC(t) +[BAC – EV(t)]/PF 

Types Performance Factor  Description 

Original PF = 1 When past performance is not a good 
indicator of future performance. 

Standard PF = CPIcum The standard formula. 

Composite 
Factor PF = CPIcum*SPIcum 

The product of CPI and SPI is  called 
the critical ratio (Anbari 2003) or the 
schedule-cost index (Christensen 
1993). 

Moving average PF = CPIm(t) 
Moving average of incremental CPI 
over the m latest time intervals.  CPI3, 
CPI6, and CPI12 are often used. 

Weighted PF =  
w1*CPIcum + w2*SPIcum 

Determination of the values of w1 and 
w2 is a judgment call of project 
managers. 0.5CPIcum+0.5SPIcum, 
0.75CPIcum+0.25SPIcum, or 
0.8CPIcum+0.2SPIcum can be used. 

% Complete PF = (%C)*CPIcum +  
(1-%C)*SPIcum 

This is a modified version of the 
weighted method.  Instead of using 
fixed weights, the weights change 
according to the percent complete of a 
project. 

 

On the other hand, the schedule forecasting method using the cumulative PV and 

EV has been criticized for systematic distortion in results (Leach 2005; Lipke 2003; 

Short 1993; Sparrow 2005; Vandevoorde and Vanhoucke 2006).  For example, Short 

(1993) demonstrated the erroneous behavior of Schedule Variance under two scenarios: 

when non-critical activities cause schedule variance and when certain activities are 

performed out of sequence from the baseline plan.  Figure 2.1 shows the behavior of the 

EAC and the EDAC during project execution when a project undergoes 20% overruns in 
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schedule and cost.  While the EAC is accurately predicted from the beginning of the 

project, the EDAC overshoots the actual project duration, which is 120 time steps, as 

early as 10% of the planned project duration.  Surprisingly enough, the EDAC at time 40 

overestimates the project schedule delay by about 350% of the actual delay of 20 time 

steps.  This simple example clearly demonstrates the limitations of the EVM forecasting 

approach.  

To improve the capacity of EVM’s schedule forecasting, several modified 

forecasting formulas have been suggested (Anbari 2003; Lipke 2003) as summarized in 

Table 2.2.  Recently, Vandevoorde and Vanhoucke (2006) compared three different 

approaches for the EDAC.  In the study, the authors demonstrated that the earned 

schedule method, originally proposed by Lipke (2003), was the only method that 

provides reliable forecasting results.  Later, Vanhoucke and Vandevoorde (2006) 

reported similar results based on extensive simulation about the relative performance of 

the three formulas in Table 2.2 under different progress scenarios. 
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Figure 2.1 Distortions in EVM schedule forecasting 
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Table 2.2 Extended formulas for the EDAC 

Types EDAC(t) Description 
The planned value 
method 

EDAC(t) = PD/PF 
PF = SPI or SCI 

PD is total planned project duration. 

The earned 
duration method 

EDAC(t) = t + (PD-ED)/PF 
PF = SPI or SCI 

The earned duration (ED) is the 
product of the actual duration and 

SPI, i.e. ED=AD*SPI 

The earned 
schedule method 

EDAC(t) = t + (PD-ES)/PF 
PF = SPI* 

The earned schedule (ES) is the 
planned time to achieve the current 

EV.  SPI* = ES/t. 
 

Based on the previous study, the schedule forecasting formula based on the 

earned schedule is selected as the representative EVM schedule forecasting method in 

the following hypothesis tests.  Given the three fundamental performance functions, the 

time performance index (TPI) is defined as 

 ES(t) = Earned Schedule at time t, which is determined as the time based on the 

baseline plan to finish EV(t). Therefore, ES(t) is calculated from the equation, 

 ( )( ) ( ) ( ) ( ) 1
   or   PV ES t  = EV t ES t PV EV t

−
= ⎡ ⎤⎣ ⎦  (2.3) 

 TV(t) =  ES(t) - t.  TV stands for Time Variation. 

 TPI(t) =  ES(t)/t.  TPI stands for Time Performance Index. 

Then, the estimated duration at completion at time t is defined in terms of the 

planned duration at completion (PDAC) and TPI at time t. 

 ( ) ( )
PDACEDAC t
TPI t

=  (2.4) 
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2.4.2 CPM 

The critical path method (CPM), which was developed by DuPont, Inc., in the 1950’s, is 

the de facto standard schedule management tool in construction projects.  Excellent 

introductions to CPM can be found in many sources (Meredith and Mantel 1995; 

Oberlender 2000).  In a typical CPM, the total duration of an on-going project is 

determined based on the assumption that future tasks will proceed as planned regardless 

of past performance.  For example, at the time of forecasting, actual completion dates of 

finished tasks and percent complete of on-going tasks are updated into a schedule 

network.  Then, the starting and finishing dates of remaining tasks are deterministically 

calculated according to the precedence relations and the original estimates of individual 

task durations.  The shortcomings inherent to classic CPM have been criticized since the 

early 1960s (Cottrell 1999; Lu and AbouRizk 2000).  Recently, Galloway (2006a; 

2006b) conducted an extensive survey on the use of CPM scheduling for construction 

projects and education in worldwide universities.   

 

2.4.3 Monte Carlo Simulation 

Monte Carlo simulation is probably the most common simulation technique in 

engineering and management.  In dealing with a complex system, Monte Carlo methods 

represent uncertainty associated with some variables in the system with random numbers 

from the estimated probability distributions for those variables.  A Monte Carlo 

simulation starts with drawing a set of random numbers from the distributions for the 

variables under consideration.  Then a deterministic analysis is carried out to obtain a 
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result based on the set of random values for variables.  A Monte Carl simulation repeats 

these two steps over and over until some statistically significant results can be obtained.   

In project management and decision making, Monte Carlo simulation, or simply 

simulation, has been used as a formal risk analysis technique for more than four decades.  

In a classic Harvard Business Review article, “Risk Analysis in Capital Investment,” 

David Hertz (1964) showed the importance of risk assessment in business decision 

making with a Monte Carlo simulation.  Van Slyke (1963) addressed typical problems in 

the program evaluation and review technique (PERT) with simulation.  Because of the 

relative complexity in calculating total project duration from probabilistic estimates of 

component work packages, Monte Carlo simulation based on network schedules has 

been intensively investigated by several researchers (Finley and Fisher 1994; Hulett 

1996; Lee 2005; Lu and AbouRizk 2000).   

 Recently, Barraza et al. (2005) conducted a study of probabilistic forecasting of 

project duration and cost using network-based simulation.  In the study, the correlation 

between past and future performance is simplified by adjusting the parameters of 

probability distributions of future activities with the performance indices (for example, 

the Cost Performance Index as defined in the earned value method) of finished works.  

However, this method is not supported by any empirical or statistical evidence.  Lee 

(2005) also presented a network-based simulation approach to compute the probability to 

complete a project in a specified time.  In the cost estimating area, Monte Carlo methods 

were tested as a method for dealing with correlation between random variables (Chau 

1995; Touran 1993; Touran and Wiser 1992).   
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CHAPTER III  

KALMAN FILTER FORECASTING METHOD 

 

3.1 Introduction 

A new probabilistic forecasting method, the Kalman filter forecasting method (KFFM), 

is developed here for forecasting project progress and probability distribution on project 

duration at completion.  The KFFM is formulated based on the general frameworks of 

project control and the Kalman filter.   

Project control is a continuous process in which project performance and process 

are monitored and measured.  The primary goal of project control is to identify adverse 

deviations from plan so that corrective or preventive actions can be taken in a timely 

manner (PMBOK® Guide 2004).  The efficiency and effectiveness of project control 

rely on the viability of the plan and the accuracy of the measured performance and 

progress.  However, currently available project planning tools and performance 

measuring methods in real construction projects are neither perfect nor free from errors 

or uncertainties.  For example, project plans such as project schedule and cost baseline 

are developed based on assumptions about the availability of resources such as bulk 

material, labor, equipment, and key personnel in a timely manner and at reasonable 

costs.  Furthermore, implementing even a good plan is subject to a degree of risk.  On 

the other hand, performance measuring systems also include a degree of uncertainty 

because typical construction projects consist of a wide range of non-homogeneous 
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activities with different physical properties and measurement units, which often overlap 

each other.   

 The Kalman filter provides a probabilistic framework that incorporates various 

kinds of prior information available under typical construction management standards 

and practices.  Along with the actual performance data being generated by a project, 

prior knowledge of the project progress pattern and the measurement system are taken 

into account to forecast the future progress of a project.  

 This chapter is organized as follows.  In Section 3.2, the concept and properties 

of the Kalman filter are reviewed and its application to the problem of forecasting 

project progress and final completion date at completion is addressed.  Section 3.3 

develops the general concepts into the Kalman filter forecasting method.  Depending on 

the availability of the project baseline plan, different approaches are presented.  In 

addition, a method of initializing the Kalman filter parameters with prior performance 

information is discussed.  A numerical example is presented in Section 3.5. 

 

3.2 The Kalman Filter and Its Application to Project Performance Forecasting 

3.2.1 The Kalman Filter 

The Kalman filter is a recursive algorithm used to estimate the true but hidden state of a 

dynamic system using noisy observations.  Since the seminal paper by Rudolph E. 

Kalman about a solution to the discrete-data linear filtering problem (Kalman 1960), the 

Kalman filter has expanded its application areas from tracking algorithms for radar 

systems to image processing.  In the context of civil engineering, the Kalman filter and 
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the extended Kalman filter have been applied on structural identification problems, 

structural control, and forecasting (Awwad et al. 1994). 

 The Kalman filter algorithm provides a recursive learning cycle shown in Figure 

3.1.  Within the Kalman filter framework, the state of a dynamic system, or the 

knowledge of any system of interest, is represented by two sets of variables: the state 

variables and the error covariance variables.  The error covariance represents the 

uncertainty in the estimates of the state variables.  The states and covariance are updated 

through two stochastic linear models: the measurement model and the system model.  

The measurement model updates prior information using new observations and the 

system model predicts the future state of the system at the following time step.   

 It should be noted that the recursive learning cycle of the Kalman filter should be 

triggered with initial estimates of the states and the associated covariance.  Kalman filter 

theory is too extensive to be covered here.  Good introductions to the Kalman filter can 

be found in books (Brookner 1998; Welch and Bishop 2001; Zarchan and Musoff 2000).  

In the Kalman filter literature, different notations are currently in use, which may cause 

unnecessary confusion.  This dissertation follows the notation used by Welch and Bishop 

(2001). 
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Figure 3.1 Recursive learning cycle of the Kalman filter 

 

3.2.2 Application of the Kalman Filter to Project Performance Forecasting 

Based on the general framework of the Kalman filter, the Kalman filter forecasting 

method has been derived by analogy with the problem of tracking satellites or missiles. 

 Figure 3.2 represents the block diagram of the Kalman filter forecasting method.  

Construction projects are executed under the guidance of a set of plans such as the work 

breakdown structure, the schedule, the budget, and the resource plan, which are 

collectively referred to as the baseline plan.  A common way of representing the progress 

at the project level is cumulative progress curves, which are also called S-curves.  The 

baseline progress curve, which is defined as the cumulative progress curve that is based 

on the baseline plans, specifies the amount of work to be done at some particular time, 

the budget allocated to complete the work, and time derivatives of these values.  In the 

Kalman filter formulation for project performance forecasting, the cumulative progress 
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of a project throughout the execution phase is assumed to evolve according to a dynamic 

state-space equation which determines the baseline progress curve of the project.  The 

dynamic progress equation of a project represents our knowledge of the status of the 

project in the future and, inevitably, is subject to some degree of errors and uncertainties. 

 Once the project proceeds, actual performance, especially, the work done and the 

costs expended, is continuously monitored by performance measuring systems such as 

the earned value method and network schedule.  The reported performance data are to be 

compared with the baseline plan and analyzed to obtain some indicators about how well 

the project is going.  However, the true states of on-going projects are not observable 

due to measurement errors.   

 Using the prior performance information available, the actual performance data, 

and the inherent errors and uncertainties in execution and measurements, the Kalman 

filter is applied to obtain an optimal estimate of the project’s true state that minimizes 

the mean squared error.  After the effect of noise or random fluctuation in the observed 

data is eliminated, the Kalman filter proceeds by repeating the prediction process in the 

recursive learning cycle until the completion state is reached.  
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Project planning
Develop the baseline progress curve using project plans and 
assess the probability distributions of completion date and cost at 
completion.

System Model
Develop the system model using 
the baseline plan and predict the 
state and covariance variables at 
the next reporting time.

Project execution
Monitor actual performance and 
report cumulative progress in 
schedule and cost periodically.

Measurement Model
Update the prior estimates of the 
state and covariance variables 
using the actual performance data.

Forecasting
Update the posterior probability 
distribution on project duration 
at completion.

Filter Initialization
Initialize the Kalman 
filter parameters using 
the prior information 
from the project plan.

 
Figure 3.2 Application of the Kalman filter to project performance forecasting 

 

3.3 Kalman Filter Forecasting Method  

3.3.1 Formulation for the Case with a Baseline Plan 

A project baseline is the approved time phased plan for a project, against which actual 

project performance is compared and deviations are measured in terms of cost, schedule, 

and other performance measures (PMBOK® Guide 2004).  In the Kalman filter 

forecasting model, the baseline plan, or simply, the baseline of a project is represented 

by a cumulative progress curve that shows the amount of work to be done at a specific 

time throughout the execution of the project.  With a baseline plan as a guide for 

execution, project controlling efforts focus on the deviation between the plan and the 

actual, instead of dealing with the plan and the actual separately.   
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 Figure 3.3 shows the inputs required to apply the Kalman filter method to 

projects with baseline plans.  Along with the actual performance data, the Kalman filter 

method requires prior information about the planned duration at completion (PDAC), the 

budget at completion (BAC), the baseline progress curve, and the probability distribution 

of the project duration T.  The availability of PDAC and BAC is justified by the 

definition of a project, which is “… every project has a definite beginning and definite 

end.  The end is reached when the project’s objectives have been achieved” (PMBOK® 

Guide 2004).  Here, the PDAC represents the definite end of a project and, together with 

the BAC, constitutes the project’s objectives.   

 The need for the probability distribution of the project duration T arises from the 

probabilistic nature of the system model in the general Kalman filter formulation in 

Section 3.2.  Because the future project status determined by a system model is not 

certain – if it is, the future can be foreseen accurately and performance measurements or 

control are not necessary – the uncertainty associated with the system model is taken 

into account with process noise.  In the context of project performance forecasting, the 

process noise can be interpreted as the variation in the project performance due to the 

inherent uncertainty in the plan and in the execution of the plan.    

 For projects with a baseline plan, the Kalman filter forecasting method represents 

the dynamic progress of a project’s performance in terms of the time or cost deviation 

between the baseline and the actually observed performance data.  In this section, the 

formulation for schedule forecasting is derived.   
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Major components of the Kalman filter schedule forecasting method for projects 

with a baseline plan are shown in Table 3.1.  The remaining part of this section 

addresses each component in detail.  
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Figure 3.3 Kalman filter forecasting when a baseline is available 
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Table 3.1 The Kalman filter forecasting model 

Components Equations Descriptions 

State vector 
k

k k

TV
dTV

dt

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

x  
TVk is the time variation that is 
defined as the earned schedule minus 
the time of forecasting. 

Dynamic system 
model 

1 1

1
0 1

k k k k

k

T
− −= ⋅ +

Δ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

x A x w

A
 Ak is the transition matrix and wk-1 is 

a vector of random process noise. 

Measurement 
model { }1 0

k k k= +

=

z H x v
H

 
H is the observation matrix and vk is 
a vector of random measurement 
noise. 

Prediction process 1

1 1

ˆ ˆk k k
T

k k k k k

− +
−

− +
− −

=

= +

x A x

P A P A Q
 

Before observing a new TVk at time 
period k, the prior estimates of the 
state vector and the error covariance 
matrix are calculated. 

Kalman Gain ( ) 1T T
k k k k

−− −= +K P H HP H R  

Kk is the Kalman Gain at time period 
k, which is determined in such a way 
that minimizes the posterior error 
covariance matrix. 

Updating process 
( )

[ ]
ˆ ˆ ˆk k k k k

k k k

+ − −

+ −

= + −

= −

x x K z Hx

P I K H P
 

The posterior estimates of the state 
vector and the error covariance 
matrix are calculated using the 
Kalman Gain. 
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Definition of States 

When a project starts with a baseline progress curve to meet the objectives of the project, 

actual progress during construction is compared with the baseline to identify deviations 

from the plan and to take corrective actions, if necessary.  For example, the planned 

value (PV) and the earned value (EV) in the earned value method represent the amount 

of work planned to be done and the amount of work actually done, respectively, at a 

specific time.  The Kalman filter forecasting method for schedule forecasting focuses on 

the time variation (TV), which is defined as the deviation between an actual reporting 

time and the planned time to complete the work actually done at the reporting time 

(Barraza et al. 2004).  The planned time to achieve the work actually done is named as 

the earned schedule (ES) (Lipke 2003).  Using the EVM terminology, the time variation 

is defined as follows. 

 ( ) ( )TV ESt t t= −  (3.1) 

By definition, the ES at time t is determined by 

 ( )( ) ( )PV ES EVt t=  (3.2) 

Because the planned values of real projects are mostly calculated only at discrete 

reporting points, the earned schedule at a specific time can be approximated by an 

interpolation between two consecutive PVs that satisfy EV(t) ≥ PV(k) and EV(t) < 

PV(k+1) (Vandevoorde and Vanhoucke 2006).  Once the k is determined, the linear 

interpolation equation to calculate the earned schedule is 

 ( ) ( ) ( )
( ) ( )

EV PV
ES

PV 1 PV
t k

t k
k k

−
= +

+ −
 (3.3) 
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In the KFFM, cumulative progress of a project is modeled as a system with two 

states that evolve over time: the time variation (TV) and its rate of change over a 

reporting period.  Then, the state vector of the Kalman filter forecasting method is 

defined as 

 
,1

,2

, 0,1,...
k k

k k
k

x TV
kdTVx

dt

=⎧ ⎫
⎪ ⎪= =⎨ ⎬

=⎪ ⎪⎩ ⎭

x  (3.4) 

Here, xk,1 is the time variation at any time interval k.  The second element in the state 

vector is the incremental TV, which is calculated as xk,2 = xk,1 – x(k-1),1. 

 

Transition Process 

With the state vector, the transition process of the Kalman filter is defined as 

 1 1k k k k− −= ⋅ +x A x w  (3.5) 

where Ak is the transition matrix and wk-1 is a vector of random process noise.  The 

transition matrix Ak is obtained by assuming a constant rate xk,2 between two consecutive 

observations and a linear approximation of xk,1.  
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where TΔ  is the reporting period.  Then, 
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The random process noise term represents the random error or uncertainty in the 

system and is assumed to have zero mean, white, Gaussian components with covariance 

matrix Qk defined by 
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The whiteness assumption of the process noise implies that the process noise is not 

correlated in time.  

 

Measurement Process 

The state components in (3.4) represent the status of a project.  In real projects, however, 

the status of an ongoing project can be estimated only through a performance 

measurement process, which is defined as follows. 

 k k k= +z H x v  (3.9) 

where zk and H are the measurement vector and the observation matrix, respectively.  

Since the time variation is the only measure of progress in the Kalman filter formulation, 

the dimension of the measurement vector zk is one and the observation matrix H 

becomes 

 { }1 0=H  (3.10) 

 The uncertainty in the measurement process is taken into account by adding a 

random noise term into the measurement process.  The measurement noise vector vk is 

assumed to have zero-mean, white, Gaussian components with covariance matrix Rk 

defined by 
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 The measurement noise vk is assumed to be uncorrelated with the process noise 

wk.  Since the measurement vector has dimension one, Rk is a scalar.  The size of the 

measurement noise depends on the accuracy of measuring tools or methods, and must be 

estimated from experience in other similar projects. 

 

The State Estimate and the Error Covariance 

In the Kalman filter approach, knowledge about the state of a system is represented by 

two quantities: the state estimate ˆ kx  and the error covariance kP .  At a given time period 

k, both quantities are further classified depending on whether the estimation is carried 

out before or after the new observation zk.  Estimates before new observations are called 

the prior state estimates and the prior error covariance, and are denoted as ˆ k
−x  and k

−P , 

respectively.  Likewise, estimates after new observations are called the posterior state 

estimates and the posterior error covariance, and are denoted as ˆ k
+x  and k

+P , 

respectively.  

 The error covariance is defined from the state error estimates. 
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Here, the error vector ke is defined as the difference of the true – but hidden – value of 

the system state kx and an estimate ˆ kx . 
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Prediction Process: Prior State Estimate and Prior Error Covariance 

Before observing new data, the prior state estimate at time period k is calculated based 

on the previous state estimate and the transition process. 

 1ˆ ˆk k k
− +

−=x A x  (3.14) 

The prior error covariance is obtained from Equation (3.13) and (3.14). 
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From the definition of the error covariance in Equation (3.12), 
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From the independence property between the error vector and the system noise 

vector, Equation (3.16) becomes 
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The Kalman Gain 

In the Kalman filter, the posterior state estimate ˆ k
+x  is determined as a linear 

combination of the prior state estimate ˆ k
−x  and the weighted difference between the new 

actual measurement zk and the predicted measurement ˆ k
−H x .   

 ( )ˆ ˆ ˆk k k k k
+ − −= + −x x K z Hx  (3.18) 

The critical issue is to determine the weight for the difference ˆk k
−−z H x  which is 

called the measurement innovation.  The weight matrix K is called the Kalman Gain and 

is determined in such a way that minimizes the posterior error covariance in Equation 

(3.12).  One solution to the minimization problem is given by 

 ( ) 1T T
k k k k

−− −= +K P H HP H R  (3.19) 

It should be noted that, when the transition matrix A and the measurement matrix 

H are constant over time, the Kalman Gain Kk depends only on the initial error 

covariance P0 and the noise covariance matrixes Qk and Rk regardless of the actual 

observation zk.  For example, when the size of the measurement covariance matrix Rk 

increases the Kalman Gain decreases.  This inverse relationship is intuitively correct 

because the effect of a new observation decreases as the accuracy of measurement 

decreases or as the uncertainty in measurement increases.  Once the Kalman Gain is 

known, the posterior state estimate is obtained from Equation (3.18) and the posterior 

error covariance can be calculated by 

 [ ]k k k
+ −= −P I K H P  (3.20) 
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3.3.2 Formulation for the Case without a Baseline Plan 

In the Kalman filter formulation for projects with a baseline plan, a cumulative progress 

curve based on the plan serves as a target trajectory against which actual performance is 

compared.  The resulting dynamic system model for project progress is defined in terms 

of the time deviation between the baseline and the actual performance reported after 

each reporting period.  Since a prediction at a specific time point is made in terms of the 

relative performance against the baseline, the overall progress pattern of a baseline is 

automatically taken into account.   

 When there is no baseline to be used as a progress template, forecasts can be 

made based only on the actual performance data observed from the project itself.  

However, predictions that appear to be equally plausible in terms of their fit to the actual 

data can lead to a wide range of different results according to the assumptions about the 

relationship between the past and the future of a project.  For example, Figure 3.4 

conceptually depicts some typical predictions that can be made based on the same actual 

progress data.  Even though it would be possible to select the “best” model using some 

mathematical methods, for example, the least squares method, huge differences in results 

according to the selection of one extrapolating function against others can be hardly 

justified.  Obviously, better fit to the past data does not guarantee better forecasts.  At the 

very least, it is possible to find some mathematical curve that fits pretty well both the 

actual data and the planned duration of a project (See the sigmoidal prediction in Figure 

3.4).  In other words, a prediction can be made and used to justify whatever status the 
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project is in rather than to predict the plausible future and to use that information for 

better management of the remaining work.   
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Figure 3.4 Predictions when a baseline is not available 

 

The Kalman filter approach needs to address the same issue of selecting a 

plausible relationship between the past and the future.  More specifically, the system 

model should be established in such a way that the next state of a project can be 

predicted based on the current state.  In the absence of a baseline progress curve, 

alternative information should be used to establish a plausible progress template.  For 

example, subjective judgments or experience from similar projects can be used to select 

an appropriate progress curve that reasonably describes the progress pattern of a given 

project.   



   39

3.3.3 Kalman Filter Forecasting 

The application of the Kalman filter to forecasting can be regarded as an extrapolation of 

the system states.  To get the state estimates at time J > k, the Kalman Gain is set to zero 

during the interim periods from k + 1 to J - 1.  Then the Kalman updating routines for 

the state estimate become 

 ˆ ˆ ˆJ k
J J k
+ − − += =x x A x  (3.21) 

In the case of the error covariance, the updating algorithm for forecasting 

becomes 

 1 1 1 1
T

k k k k k

k k

− −
− − − −

+ −

= +

=

P A P A Q

P P
 (3.22) 

 

3.3.4 Initialization of Kalman Filter 

Because of the recursive nature of Kalman filter, initial values of state variables and 

error covariance must be determined before the first updating based on an actual 

performance report.  In addition, the process noise covariance matrix and the 

measurement error matrix need to be estimated in advance.  These processes are 

collectively referred to as the initialization of Kalman filter.  The primary challenge in 

the initialization of Kalman filter is that it needs to be done in the absence of any 

objective observations from the project to be analyzed.  The importance of initialization 

has been emphasized by many authors (Ansley and Kohn 1985; Casals et al. 2000; de 

Jong 1989).  This section addresses the initialization process of the current Kalman filter 

forecasting method. 
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 First of all, the initial state estimate and its error covariance are set to be zero.  

Unlike other time series forecasting problems, the project performance forecasting has or 

should have a clear starting point in terms of the physical work to be done, start time, 

and initial cost, which are likely to be set to be zero. In addition, it would be reasonable 

to assume that there is no uncertainty in the initial state of the project progress in terms 

of time and money.   

 The covariance matrix of process noise Qk is modeled as a unit matrix multiplied 

by a scalar constant. 
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0k
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q

⎡ ⎤
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⎣ ⎦

Q  (3.23) 

In a covariance matrix of process noise, the diagonal terms represent the 

variances of each state variable and the off-diagonal terms represent the covariances 

between the state variables.  In the case when only random errors of each state variable 

are considered, the off-diagonal terms are zero.  The variances of state variables are 

assumed to be constant, not because of any rationale or empirical evidence supporting 

the assumption but because of the lack of information supporting an alternative 

assumption.  As a result, the covariance matrix of process noise is modeled with a single 

variable, q, which represents the value of all diagonal terms.   

 In the Kalman filter forecasting method, the value of this variable is determined 

from the prior probability distribution – either from network-based simulation or 

subjective judgments – for the total project duration.  Given the mean, μT, and 

variance, 2
Tσ , of a project duration T, q is determined by the Kalman filter forecasting 
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equations in (3.21) and (3.22), in such a way that the uncertainty in the system model is 

consistent with the prior estimate of the uncertainty in project performance.  That is, at k 

= μT, the dynamic system model reaches the completion of the project with the same 

uncertainty estimated before the beginning of a project.   
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P P  (3.24) 

The measurement error covariance matrix Rk represents the accuracy of actual 

performance measurements and plays an important role in Kalman filter forecasting.  For 

example, as the measurement error approaches zero, the Kalman Gain in Equation (3.19) 

increases, resulting in the posterior estimates of state variables being influenced more by 

actual measurements than by the prior estimates of state variables by the system model.  

Therefore, by setting an appropriate value for the measurement error, the sensitivity of 

the forecasts to the actual performance data is adjusted.   

 In the Kalman filter model for project performance forecasting, the progress of a 

project is measured with a single value, the cumulative progress of the project, and the 

measurement error term can be determined based on prior information from experience 

and judgment.   

 

3.3.5 Calculation of the EDAC 

The objective of progress forecasting is to estimate and update the estimated duration at 

completion (EDAC) at any time tk.  Since the state variables of the Kalman filter 

forecasting method represents the estimate of time variation and its rate of change over 
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time, results from the method need to be converted into practical measures that can be 

used by project managers.  This section addresses the problem of calculating the EDAC 

at a specific time tk and its associated prediction bands.   

 The process of determining EDAC is illustrated in Figure 3.5.  At any time tk, the 

estimate of Time Variation kTV  is obtained from the Kalman filter analysis as ,1ˆkx .  

Then, the expected earned value at that time of analysis kEV  is determined by the 

baseline progress curve. 
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k k

k kk k k
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= + = +
 (3.25) 

 Then, the EDAC is determined as the time that satisfies 

 kEV BAC≥  (3.26) 

Once such tk is found, the correct value of the EDAC must lie between tk-1 and tk.  

In the applications in this dissertation, the exact value of EDAC is approximated as tk.  
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The prediction bounds of the EDAC can be obtained directly from the Kalman 

filter results in terms of the error covariance matrix Pk.  
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(b) EDAC for a project behind schedule. 0kTV <  

Figure 3.5 Calculating EDAC from the Kalman filter forecasting output 
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3.4 Example 3.1 

The Kalman filter forecasting method derived in the previous sections is used to predict 

and update future progress of an artificial project using randomly generated actual 

progress data.  The purpose of this example is to demonstrate the probabilistic and 

adaptive nature of the KFFM.   

 First, a random activity network of a project with 100 activities and 144 

precedence relations is generated using a random network generation method augmented 

with a redundancy elimination technique, which is discussed in Chapter V.  Then, Monte 

Carlo simulation is carried out to determine the planned progress curve and the prior 

probability distribution of the completion date.  The completion dates and corresponding 

progress curves for a set of random activity durations are calculated with the early start 

forward calculation in CPM.  It is assumed that all activities in the project are 

homogeneous with the same stochastic properties in duration and cost.  This 

homogeneous assumption is based on a scheduling practice in which activities in a 

project network are defined in such a way that they are small enough to be managed 

effectively, and not too small to cause additional burdens in management.  The input 

data used for generating the progress curves are summarized in Table 3.2.   
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Table 3.2 Input data for random progress curve generation 

Input parameters Value 

Number of activities 
Number of effective precedence relations 

100 
144 

Activity duration for planned progress Mean 
Standard deviation 

5 (weeks) 
2 (weeks) 

Activity duration for actual progress Mean 
Standard deviation 

5 (weeks) 
2 (weeks) 

 

The planned and the actual progress curves used in the following forecasts are 

shown in Figure 3.6.  From a Monte Carlo simulation based on a random activity 

network and the assumed probability distributions of activity durations and costs, the 

prior distribution of the completion date is estimated to have a mean of 67 weeks and a 

standard deviation of 6.0 weeks.  The planned progress curve in Figure 3.6 is determined 

by averaging stochastic progress curves from 5000 iterations over the progress 

dimension.   

 The cross marks represent a simulated progress curve with completion date at 79 

weeks.  The simulated curve is generated from the same network schedule for the 

planned progress curve.  Therefore, the curve represents an “actual” progress of the 

project, which is determined at random due to the uncertainty in the assumed activity 

durations and costs.  It should be noted that, although the complete actual progress is 

determined in advance, the actual performance data are assumed to be available only 

after each reporting period up to the time of forecasting. 
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Figure 3.6 The planned progress and the simulated “actual” progress for Example 

3.1 (Prior p(T) is drawn not to scale) 

 

The first prediction is made after 8 weeks and the future progress is shown as a 

thick solid line in Figure 3.7(a).  The graph shows that the forecast from the KFFM is 

very close to the plan in spite of some deviations in the actual progress from the plan.  

This is because the prediction is influenced more by the plan than it is by the small 

number of data points reported.  This is attributed to two characteristics of the KFFM.  

First, the KFFM uses both the prior performance information – the planned progress – 

and the actual progress data.  Second, the KFFM takes into account measurement errors 

in terms of the measurement noise term in Equation (3.11).  The forecasts in Figure 3.7 
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are made with the variance of measurement error R = 4.  It is also important to note that 

the prediction made at week 8 retains the sigmoid shape of the planned progress curve, 

even though only a few data points have been observed.  That is, the KFFM predicts that 

the future progress will be S-shaped because the planned progress curve is S-shaped, not 

because the past data contain this information.   

 The other three predictions in Figure 3.7 (b), (c), and (d) are made at different 

time points and show the adaptive nature of the Kalman filter forecasting.  The forecast 

would be repeated after every reporting period to incorporate the new data, but here the 

intermediate updates have been omitted.  Comparing the forecasts at different points of 

project execution, it is easy to see that the forecast has moved away from the plan and 

closer to the actual data, due to the accumulated discrepancies between the actual reports 

and the planned value.  When actual data are relatively few, for example at week 12, the 

Kalman filter prediction for the longer range forecasts is still influenced by the plan, and 

stays closer to it.  However, this tendency diminishes as more actual data accrue.  After 

28 weeks, the actual data dominate the prediction and the predicted progress has moved 

away from the plan curve and very close to the unknown actual completion date. 
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(a) Prediction at 8th week 
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(b) Prediction at 12th week 

Figure 3.7 Adaptive nature of the prediction by the KFFM 
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(c) Prediction at 16th week 
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(d) Prediction at 28th week 

Figure 3.7 (Continued) 
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Future progress curves, as in Figure 3.7, make predictions by the KFFM more 

useful for project managers because they provide a visual representation of the plausible 

path up to the estimated completion date.  However, the primary merit of the KFFM is 

its probabilistic nature.  That is, the KFFM provides prediction bounds on predicted 

completion dates, which indicate the possible outcomes at a given confidence level.  The 

history of EDAC over time is shown in Figure 3.8.  The prediction bounds in the graphs 

are determined at 5% confidence level on both sides.   

 The prediction starts with the prior probability distribution of the project duration 

T, which is obtained from the simulation based on the project schedule.  As more actual 

performance reports become available, the EDAC moves from the planned completion 

date toward the actual completion date.  It should be noted that the width of prediction 

interval tends to narrow as more data become available.  More importantly, after about 8 

weeks, the actual completion date falls inside the prediction bounds and stays inside 

during most of the remaining period.   
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Figure 3.8 History of the EDAC with prediction bounds 
(The prior and posterior p(T) are drawn not to scale) 
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Another merit of the KFFM is its flexibility in adjusting the sensitivity of 

predictions to actual performance data according to the user’s belief on the accuracy of 

measurements.  The same project has been predicted with different values for the 

variance of measurement error R.  The results are shown in Figure 3.9.  When R = 0, 

which corresponds to a perfect measurement system that always gives the accurate state 

of the project without error, the predictions show large fluctuations over time.  If R = 0, 

the Kalman Gain in Equation (3.18) becomes 1, which indicates that posterior state 

estimates are completely determined by the new observations.  Then the predictions are 

made based only on the time variation and its rate of change, which are calculated based 

on the latest observation.  As a result, predictions made with the Kalman filter 

forecasting equation (3.21) are more influenced by the specific states measured at the 

time of forecasting.   

However, perfect measurement systems can hardly be realized in real world 

project management.  The graphs in Figure 3.9 (b) show that even with a small 

measurement error, R = 0.25, the large fluctuation observed with R = 0 significantly 

disappears.  The other two graphs with R = 1 and R = 9 reveal that increasing the 

measurement errors results in slower conversion of predictions to the actual completion 

date.  With R = 9, one can get a smoother EDAC curve and, more importantly, the actual 

completion date lies inside the prediction bounds after 12 weeks throughout the 

completion point. 
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(a) R = 0 
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(b) R = 0.25 

Figure 3.9 Influence of measurement errors on the prediction by the KFFM 
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(c) R = 1 
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(d) R = 9 

Figure 3.9 Influence of measurement errors on the prediction by the KFFM 
(Continued) 
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3.5 Chapter Summary 

The Kalman filter forecasting method is developed based on the general project control 

framework and the Kalman filter.  The KFFM can be characterized with three attributes: 

(1) The KFFM is a probabilistic schedule forecasting method that provides prediction 

bounds on the predicted project duration; (2) The KFFM uses prior performance 

information in conjunction with the actual performance data; and (3) In the KFFM, 

measurement errors inherent in the real-world projects are explicitly taken into account, 

which allows the user to adjust the sensitivity of forecasts to the actual performance data 

according to their confidence on the accuracy of measurements. 

In Section 3.2, the Kalman filter and its application to project performance 

forecasting problem were addressed.  Based on the general frameworks of the Kalman 

filter and project controlling, the Kalman filter forecasting method was formulated in 

Section 3.3.  In the KFFM, relevant prior performance information and uncertainties in 

typical construction projects are seamlessly integrated into consistent predictions.  For 

example, a probabilistic estimate of project duration based on preconstruction plans is 

used to initialize the process noise matrix and a planned progress curve is used to 

supplement small samples of actual data, especially early in a project.  With an example 

in Section 3.4, basic properties of the KFFM were demonstrated.  Based on the 

formulation derived in this chapter, a thorough evaluation of the KFFM and a 

comprehensive comparison against other forecasting methods will be carried out in the 

following chapters. 
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CHAPTER IV  

BAYESIAN ADAPTIVE FORECASTING METHOD 

 

4.1 Introduction 

A probabilistic method for project performance forecasting has been developed based on 

Bayesian inference and S-curve functions.  S-curves, which are also called progress 

curves, represent cumulative progress of a project over the execution period.  The 

Bayesian adaptive forecasting (BAF) method is a regression model that fits S-curves to 

cumulative progress curves of a project and updates the parameter estimates of the S-

curves using a Bayesian inference approach.  In the BAF method, prior performance 

information which is available before the inception of a project is effectively used to 

make reliable forecasts.  The prior performance information may have various forms 

such as detailed project plans, historical data, and subjective judgment of project 

engineers.  Bayesian inference provides a systematic framework for integrating the prior 

performance information with actual progress data reported during the execution.  

Effective use of the prior performance information in project performance forecasting 

overcomes a typical limitation of forecasting during the early phases of project execution 

when project managers suffer from the lack of enough actual performance data.   

Every project is unique and can be characterized by a unique S-curve (Blyth and 

Kaka 2006; Kenley and Wilson 1986).  This observation serves as the premise that every 

project proceeds following a characteristic cumulative progress curve.  The underlying 

strategy of the BAF method is to identify the characteristic progress curve of a project 
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using the prior performance information and to use that curve, which is named as the 

progress curve template, to forecast future progress of the project.  The shape or pattern 

of individual progress curves for various projects can be characterized by some 

indicators such as the type, size, and location of a project.  However, even for the same 

project, different progress curves can be constructed according to the strategies and 

competence of the organization.  These factors collectively influence the shape of 

progress curves.  A reasonable way, probably the most reliable way, of obtaining the 

progress curve template is to construct it from the detailed plans of the project itself.  For 

example, the planned value (or the Budgeted Cost of Work Scheduled) distributed over 

time, which is used as the baseline of project performance analysis in the earned value 

method, can be directly used as a progress curve template for forecasting.   

 Once the progress curve template for a project is determined, it is approximated 

by fitting some S-curve models.  If a model is found that fits the progress curve template 

reasonably well, it is used to forecast future performance of the project by updating the 

parameters of the model with actual performance data.  This approach is valid under the 

assumption that an actual progress curve will also proceed following the same S-curve 

model that approximates the progress curve template.  In real projects, if the actual 

progress deviates significantly from the plan, then something is amiss with the project.  

 This chapter is organized as follows.  Section 4.2 describes S-curve models in 

construction management and a new S-curve model is presented.  In Section 4.3, the 

general formulation of Bayesian adaptive forecasting is derived based on Bayesian 

inference.  Practical solutions to computation of multi-dimensional integration are 
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presented using a Monte Carlo integration technique.  Based on the general framework 

of BAF, two different methods are developed in this research.  Multi-model Bayesian 

adaptive forecasting (MBAF) method in Section 4.4 uses a group of fixed-shape S-curve 

models.  Each model in the group proceeds separately using the same performance 

information.  At the final stage, however, different predictions from individual models 

are combined with the Bayesian model averaging technique.  Section 4.5 addresses 

BetaS-curve Bayesian adaptive forecasting (BBAF) method which uses the BetaS-curve 

derived in Section 4.2 as a single S-curve model.  The BetaS-curve can approximate a 

wide range of progress curves.  This approach is relatively simpler than MBAF and can 

be used to systematically quantify prior information from various sources of 

preconstruction information.  In Section 4.6, a simulation-based test has been carried out 

to quantify the predictive nature of a progress curve technique.   

 

4.2 S-curve Models  

Experience has shown that typical cumulative progress curves of projects show S-like 

patterns, regardless of the unit of measurement, for example, cumulative costs, labor 

hours, or percentage of work (PMBOK® Guide 2004).  In project management, S-

curves, which are also called progress curves (Schexnayder and Mayo 2003), represent 

cumulative progress over time, which represents the amount of work done or to be done 

by a specific time throughout the execution period.  An S-curve of a project connects the 

beginning point and the completion point of a project in terms of time and progress, 

typically, the budget.  The completion point clearly indicates the objectives of the project 
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in time and money and the curve connecting the points is the path to follow to finish the 

project in time and on budget.  An S-curve for a project can be constructed from the 

resource-loaded project schedule for the project. 

 Many projects throughout different industries are actually planned and controlled 

by S-curves (Blyth and Kaka 2006; Miskawi 1989).  In the construction industry, S-

curves have been used as a graphical tool for measuring progress (Barraza et al. 2000; 

O’Brien and Plotnick 1999), as control limits based on early start and late start dates of 

activities (Schexnayder and Mayo 2003), and as a cash flow forecasting tool at relatively 

early stages of project life cycle (Fellows et al. 2002).  For example, in cash flow 

forecasting, different standard S-curves are developed for different project groups based 

on a sample of historical projects (Blyth and Kaka 2006).   

 However, previous studies of the use of the S-curve as a quantitative 

performance management tool for on-going projects, not just visual displays, are very 

limited (Barraza et al. 2000; 2004; Cioffi 2005; Murmis 1997).  Murmis (1997) 

generated a symmetric S-curve from a normal distribution and forced it to pass fixed 

points of the cumulative progress curve.  Murmis applied the curve to detect problems in 

project performance.  A more flexible S-curve was presented by Cioffi (2005).  He 

modified a typical sigmoid curve used frequently in ecology by imposing two project 

progress constraints: the slope of the rise in the S-curve and the time at which half the 

total work has been completed.  Barraza and his co-researchers tried to use a set of S-

curves generated from a network-based simulation as a visual project control tool (2000) 

and, later, extended the concept to a probabilistic forecasting method by adjusting 
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parameters of probability distributions of future activities with performance indices (the 

CPI and SPI in the earned value method) of finished activities (2004).  Useful as they 

are, these previous works are not applicable to the current research of forecasting at-

completion project duration and cost of ongoing projects, largely because of poor 

flexibility of the suggested S-curves and the lack of a mathematically sound forecasting 

framework based on actual performance information available at the time of forecasting.  

 The S-curve is a universal characteristic of all projects, regardless of the type, 

size, and complexity of a project.  However the individual shapes for various projects 

vary according to the nature of the projects (Blyth and Kaka 2006; Miskawi 1989).  Note 

that even linear projects with straight-line progress curves can be taken as S-curves 

(Table 4.2).  Therefore, it is useful to develop a library of S-curve models that can be 

used to fit the individual progress curves.  In the literature of forecasting, a lot of diverse 

S-curves can be found.  For example, Meade and Islam (1998) identify 29 models  for 

technological forecasting.  In construction management, Skitmore (1992) compared four 

S-curve models for cash flow forecasting.  Most of the models in the literature, however, 

have fixed shapes or very limited flexibility in representing various progress patterns 

such as front-end loaded, normal, and back-end loaded progress.  And so, they can be 

categorized as fixed-shape S-curve models.  The Multi-model BAF method uses such 

fixed-shape S-curve models while the BetaS-curve BAF method relies on a single more 

flexible model.  
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4.2.1 Fixed-shape S-curve Models 

The accuracy and reliability of the BAF method depend heavily on how well a 

mathematical function or functions fit the progress curve template.  A reasonable way of 

improving the quality of predictions from the BAF is to start with a large set of diverse 

S-curve functions and to screen them according to their goodness of fit to the progress 

curve template.   

 Among the S-curve models in the literature, five basic S-curve models are chosen 

to demonstrate the Multi-model BAF method and their formulas are shown in Table 4.1.  

The Pearl and Gompertz curves belong to the class of logistic functions that have many 

application areas in biology and economics.  The Dual-Gompertz function is a modified 

form of the Gompertz to represent the progress of a project with back-end loading.  It 

should be noted that these three logistic curves are defined inside the asymptotic limits 0 

< w(t) < S.  In the application to project performance forecasting, an asymptotic 

approach to some specific value is problematic because every project should have finite 

beginning and completion states.  Furthermore, while Function46 and Function50 have 

explicit parameters for the project duration (b) and the total work to be done (S), the 

logistic curves are defined over an infinite interval.   
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Table 4.1 Examples of simple S-curve models with two parameters 

Name Function 

Pearl(t; a,b) ( )
( )1 exp

S
w t  =

+ a bt−
 

Gompertz(t; a,b) ( ) [ ]{ }exp expw t = S a bt− −  

Dual-Gompertz(t; a,b) ( ) [ ]{ }( )1 exp expw t = S a bt− −  

Function46(t; n,b) ( ) ( ) ( )
1

1 2
nb t b t

w t S n n S
b b

+
− −

= + − + +⎡ ⎤ ⎡⎛ ⎞ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣⎝ ⎠ ⎦

 

Function50(t; n,b) 
( ) ( )( )( )

( ) ( )

1

2

2 2

3 2 1

2

2

2 3 1

n
n n n b t

w t S
b b

b b t b t b
S

n n n

+

+ + + −
=

− −
− − +

+ + +

⎡ ⎤ ⎡ ⎤ ×⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

(Note: w(t) represents the cumulative progress at time t and S represents the final state at 
completion) 
 

In this research, a set of boundary conditions is assumed for the logistic curves to 

make them more suitable for project performance forecasting.  Suppose that a project 

proceeds following the Pearl curve given as 

 
( )

( )
1 exp

Sw t
a bt

=
+ −

 (4.1) 

where w and S represent the cumulative progress at time t and the final state at 

completion, respectively.  For a project with duration T, the two parameters a and b in 

the original formulas can be determined by a set of initial and completion conditions at t 

= 0 and t = T, respectively. 

 
( )
( )

0

T

w 0  = s S

w T  = s S
 (4.2) 
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The two coefficients s0 and sT are the amount of work that define the beginning 

and completion, respectively, of the project.  For example, s0 = 0.01 and sT = 0.99 

represent the case in which a project starts with one percent of total work already done 

and is considered to be finished when 99 percent of the total work is done.  Once the 

boundary conditions are given, the original parameters are calculated as 

 
( )

0

1ln ln
1 1             

T

T

sa
s

a =  b = 
s T

⎛ ⎞−
− ⎜ ⎟

⎝ ⎠∴ − ∴  (4.3) 

With the same approach, the parameters of Gompertz and Dual-Gompertz 

functions in Table 4.1 are calculated for the same boundary conditions as follows. 

 
( ) ( ) ( ){ }

( ) ( ){ } ( )

0

0

ln ln ln
Gompertz: ln

ln ln 1 ln
Dual-Gompertz ln 1

T

T

a s
a = s  b = 

T
s a

a = s  b = 
T

− −
∴ − ∴

− − −
∴ − − ∴

 (4.4) 

It should be noted that the parameter a in Equation (4.3) and (4.4) is determined 

by the initial condition coefficient s0 only, while the parameter b is determined by the 

project duration T as well as the boundary coefficients s0 and sT.  Figure 4.1 shows the 

resulting curves generated with s0= 0.01 and sT= 0.99.  
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Figure 4.1 Examples of logistic curves (w(0)= 1, w(100)=99, T=100, and S=100) 
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“Function46” and “Function50” in Table 4.1 were developed by Reinschmidt 

(2006) and successfully used in the numerical example in this chapter.  Recently, 

Function50 was applied in a probabilistic forecasting of the progress of nuclear power 

plants in the United States (Gardoni et al. 2007).  These two functions have two 

advantages over the logistic curves above.  Firstly, they can represent a range of 

different shapes by adjusting the first parameter n, which must have a value greater than 

-1.  Figure 4.2 shows some examples of Function46 and Function50 with different shape 

factors.  Secondly, the second parameter b directly represents the project duration.  

These two properties play important roles in their application in the Multi-model BAF.  

However, it should be noted that the flexibility of Function46 and Function50 in fitting 

various progress curves is relatively limited compared with the BetaS-curve model 

which has two shape parameters instead of one.  Therefore, in this research, Function46 

and Function50 are regarded as fixed-shape S-curves whose shape parameter must be 

fixed in advance based on the prior performance information.   
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(a) Function46 
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(b) Function50 

Figure 4.2 Examples of Function46 and Function50 
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4.2.2 BetaS-curve Model 

The BetaS-curve model is derived based on the beta distribution.  The beta distribution 

provides a flexible S-curve function that can represent a wide range of cumulative 

progress patterns.  The beta distribution has a long history of application in project 

management, especially in approximating subjective estimates and fitting curves to 

observed data.  For example, the three-point estimates used in the program evaluation 

and review technique (PERT) are approximated by the beta distribution (Malcolm et al. 

1959).  AbouRizk and his co-researchers conducted a series of studies about fitting 

probability distributions to construction activity durations (AbouRizk and Halpin 1992; 

AbouRizk et al. 1991; 1994).  In his study of fitting the beta distribution to construction 

duration data, a visual interactive procedure was tried (AbouRizk et al. 1991) and later 

more rigorous statistical methods – moment matching, maximum likelihood, and least-

squares estimation – were tested against 80 construction data sets (AbouRizk et al. 

1994).   

 In statistics, the beta distribution is a continuous probability distribution that is 

defined on the finite interval A to B with two shape parameters α and β.  The probability 

density function (PDF) of a random variable X is: 

 ( ) ( )
( ) ( )

( ) ( )
( )

1 1

1; , , 0, 0,
x A B x

f x A x B
B A

α β

α β

α β
α β α β

α β

− −

+ −

Γ + − −
= > > ≤ ≤
Γ Γ −

 (4.5) 

where ( )zΓ  represents the Gamma function, 

 ( ) 1

0
, 0z tz t e dt z

∞ − −Γ = ∀ >∫  (4.6) 
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The mean and variance of the random variable X are given as: 

 

( )

( )
( )( )

2
2

21

x

x

A B A

B A

αμ
α β

αβ
σ

α β α β

= + −
+

−
=

+ + +

 (4.7) 

Like the Normal distribution, the cumulative distribution function of the beta 

distribution has no closed form expression.   

 The primary advantage of applying the beta distribution is the fact that the beta 

distribution can generate a wide range of shapes with only two parameters.  For 

example, the beta distribution with α = 1.0 and β = 1.0 is the uniform distribution.  Table 

4.2 shows some typical shapes of the beta distribution with different combinations of α 

and β.   

 The BetaS-curve model is derived by imposing two constraints on the beta 

distribution.  First, the model is defined over a finite interval [0, T], where T represents 

the project duration.  Second, the PDF must have a unimodal shape which resembles the 

typical resource level distribution of projects during the execution period.  The plausible 

range of the shape parameters that satisfy the unimodal condition is when α > 1.0 and β 

> 1.0 shown in Figure 4.3 (a).  More shapes of the beta distribution with α > 1 and β > 1 

are shown in Appendix A.  Roughly speaking, bell-shaped curves similar to the Normal 

distribution are generated when α > 2 and β > 2.  
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Table 4.2 Various shapes of the beta distribution 

 0 < β < 1 β = 1 β > 1 

0<α<1 

U-shaped PDF 
CDF PDF

 
(a) α=0.5, β=0.5 

Strictly decreasing PDF 
CDF PDF

 
(b) α=0.5, β=1.0 

Strictly decreasing PDF 
CDF PDF

 
(c) α=0.5, β=2.0 

α = 1 

Strictly increasing PDF 
CDF PDF

 
(d) α=1.0, β=0.5 

Uniform PDF 
CDF PDF

 
(e) α=1.0, β=1.0 

Strictly decreasing PDF 
CDF PDF

 
(f) α=1.0, β=2.0 

α >1 

Strictly increasing PDF 
CDF PDF

 
(g) α=2.0, β=0.5 

Strictly increasing PDF 
CDF PDF

 
(h) α=2.0, β=1.0 

Unimodal PDF 
CDF PDF

 
(i) α=2.0, β=2.0 
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β
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decreasing PDF

U-shaped PDF Strictly increasing PDF

1.0

:  The uniform distribution (α = β = 1 )

1.0

α

Plausible area
α  >1, β  >1

 

(a) α-β plane 

m

1.0

1.0

α

Plausible area
α>1, 0< m <1

 

(b) α -m plane 

Figure 4.3 Transformation of parameters and the plausible areas for project 
progress curves over α-β plane (a) and over α-m plane (b) 
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In the general definition of the beta distribution given in Equation (4.5), the 

location of the mode of the beta distribution on the interval A to B is given by the 

formula, 

 ( ) ( )
( ) ( )

1 1
1 1

B A
mode

α β
α β
− + −

=
− + −

 (4.8) 

From the first constraint A = 0 and B = T, the normalized mode (m) of the 

corresponding PDF is defined as: 

 ( )
( ) ( )

1
1 1

modem
T

α
α β

−
= =

− + −
 (4.9) 

Note that when both α and β approach 1, m = 0.5. 

Given α and m, the value of β is determined from Equation (4.9). 

 ( )1 2
m

αβ α−
= − −  (4.10) 

Then, the plausible area in the α-m plane is shown in Figure 4.3 (b).  It should be 

noted that, in the context of construction project management, estimating the point in 

time when the maximum progress rate occurs is more meaningful than estimating a 

proper combination of α and β because it is much more intuitive.   

 Based on the properties of the beta distribution and the characteristics of project 

performance forecasting, the BetaS-curve model is defined as 

 

( )
( ) ( )

( ) ( )
( )

( )

11

1

BetaS-curve ; , , :

,

1where 1, 0 1, 0,and 2

t m T

dw t x T x
dt T

m T
m

βα

α β

α

α β
α β

αα β α

−−

+ −

Γ + −
=
Γ Γ

−
> < < > = − −

 (4.11) 
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4.3 The General Formulation of Bayesian Adaptive Forecasting Method  

4.3.1 Bayesian Inference 

The heart of Bayesian inference is to update our knowledge in the light of new 

observations.  A Bayesian approach also provides a systematic way of combining all 

pertinent information from various sources in terms of probability distributions. In the 

BAF, the parameters of an S-curve model are estimated and updated through Bayes’ law 

whenever new actual performance data become available.  If a project manager has an 

initial estimate of project progress (that is, a project plan) and if this progress curve is 

fitted to some known model with associated parameters (Θ ), the belief in the individual 

model parameters can be updated with actual performance data (D) as the project 

proceeds.  Bayes’ law for this case can be written as:  

 ( ) ( ) ( )
( )

|
|

P D P
P D

P D
Θ Θ

Θ =  (4.12) 

where ( )P Θ  is the prior distribution reflecting the belief in parameters before observing 

new outcomes; ( )|P D Θ  is the conditional probability that the particular outcomes D 

would be observed, given the parameters Θ ; ( )P D  is the marginal distribution of the 

observables D; and ( )|P DΘ  is the posterior distribution of the parameters Θ  given 

that the outcomes D were observed.  
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4.3.2 Bayesian Updating of Model Parameters 

For an S-curve model with m parameters, the Bayesian updating process proceeds as 

follows.  Let Θ  denote the set of parameters { }1 2, ,..., mθ θ θ .  Then parameters are chosen 

independently so that the prior probability distribution of the parameter set is represented 

as   

 ( ) ( ) ( ) ( )1 2 mp p p pθ θ θΘ =  (4.13) 

Once a project gets started, actual progress is reported periodically and the data 

can be represented as a series of discrete values D. 

 ( ): , ,  1,...,i iD w t i N=  (4.14) 

where wi represents the cumulative progress reported at time ti and N is the number of 

records up to the time of forecasting.   

 The likelihood of the data conditional on the parameters chosen is measured 

based on the errors between the actual times of performance reporting and the planned 

times determined by a specific S-curve model and the parameters, ( )|M iT w Θ .  The goal 

is to seek an S-curve model and its associated parameters that make the errors normally 

distributed with zero mean and standard deviation σ.  It is assumed that the random 

errors corresponding to different observations are uncorrelated. Then, the likelihood of 

the data conditional on the parameters can be calculated as the product of the likelihood 

of each observation. 
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( ) ( )

( )
1

2

1

| , |

|1 1exp
22

N

i i
i

N
i M i

i

p D p t w

t T w
σπσ

=

=

Θ = Θ

⎡ ⎤− Θ⎛ ⎞
⎢ ⎥= − ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∏

∏
 (4.15) 

It should be noted that the value of σ is determined by decision makers or forecasters to 

adjust the sensitivity of predictions to the actual data reported.  

The marginal distribution of the observables D is determined from  

 ( ) ( ),p D p D d= Θ Θ∫  (4.16) 

where the joint probability distribution of data and parameters is constructed from 

Equation (4.13) and (4.15) as ( ) ( ) ( ), |p D p D pΘ = Θ Θ . 

 The ultimate goal of the Bayesian approach to prediction problems is to obtain a 

posterior marginal distribution of each model parameter conditional on the observed 

data.  Using fundamental properties of conditional distributions, the posterior marginal 

distribution of parameter iθ  can be derived by integrating the joint parameter 

distribution conditional on the observed data, which is determined from equations (4.12) 

through (4.16), with respect to the remaining parameters { }1 1 1, , , , ,i
i i mθ θ θ θ−
− +Θ = . 

 ( ) ( )| | i
ip D p D dθ −= Θ Θ∫  (4.17) 

 

4.3.3 Computation of Posterior Distributions using Monte Carlo Integration 

Computing the posterior distributions derived above requires multifold integration over 

the parameters used in the analysis.  In this research, a Monte Carlo integration 
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technique has been successfully applied without resorting to more sophisticated methods 

such as importance sampling and Markov Chain Monte Carlo method. 

 

Posterior marginal distributions of model parameters 

The major results from the Bayesian updating process include posterior marginal 

distributions of the model parameters conditional on the observed data.  Using the 

property of the conditional distribution, the posterior marginal distribution of a 

parameter iθ  is obtained by integrating the joint parameter distribution conditional on 

the observed data with respect to the remaining parameters i−Θ . 

 

( ) ( )
( )
( )

( ) ( )
( )

| |

,
               

|
               

i
i

i

i

p D p D d

p D
d

p D

p D p
d

p D

θ −

−

−

= Θ Θ

Θ
= Θ

Θ Θ
= Θ

∫

∫

∫

 (4.18) 

Since random samples can be drawn from the prior distribution of iθ , the 

integration in Equation (4.18) is approximately calculated using the Monte Carlo 

integration technique. 

 ( ) ( ) ( ) ( ) ( )
1

1 1ˆ | | , , ~
N

i i i
i i k i k

k

p D p D p p
p D N

θ θ θ− − −

=

= Θ Θ Θ∑  (4.19) 

 

Marginal likelihood of data 

A typical challenge in the Bayesian approach to real problems is to calculate the 

marginal likelihood of data, p(D), in Equation (4.19).  
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( ) ( )

( ) ( )

,

         |

p D p D d

p D p d

= Θ Θ

= Θ Θ Θ

∫
∫

 (4.20) 

With Monte Carlo integration, a solution can be computed as 

 
( ) ( ) ( )

( ) ( )
1

 |

1          | , ~
N

k k
k

p D p D p d

p D p
N =

= Θ Θ Θ

≅ Θ Θ Θ

∫

∑
 (4.21) 

 

Posterior estimates of model parameters 

The future progress of a project can be estimated using the posterior estimates of model 

parameters.  Once posterior marginal distributions of the model parameters are 

constructed, the expectation of each parameter conditional on the observed data is given 

as 

 [ ] ( )E | |i i i iD p D dθ θ θ θ= ∫  (4.22) 

If random samples from ( )|ip Dθ  can be generated, a numerical solution to 

Equation (4.22) can be easily calculated.  However, the posterior marginal distribution of 

iθ  in the form of Equation (4.19) does not appear to be proper for random sampling 

techniques such as the Gibbs sampling.  In this research, the Monte Carlo integration is 

again used. 
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⎣ ⎦
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∫

∫

∫

∫

∑

 (4.23) 

 

Prediction interval estimation 

Primary outputs from the BAF method include the prediction interval around forecasts.  

The posterior probability density distributions of parameters can be generated from 

Equation (4.19).  However, the prediction bounds corresponding to a predetermined 

acceptable level can not be directly obtained from the posterior distribution unless 

corresponding cumulative probability distributions are also available.  To overcome this 

problem, it is assumed that the posterior distributions of parameters can be approximated 

as normal distributions.  Then, the variance of the approximate normal distribution can 

be calculated from elementary statistics. 

 [ ] [ ]{ }22| | |i i iVar D E D E Dθ θ θ⎡ ⎤= −⎣ ⎦  (4.24) 

where the first term on the right side is calculated as  
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4.3.4 Use of Prior Performance Information 

Along with its probabilistic nature, the use of prior performance information in 

conjunction with actual performance data characterizes the originality of the BAF 

method.  The prior performance information is defined as all relevant performance 

information other than actual performance data, which is available even before the 

inception of a project.  Table 4.3 summarizes some typical types of the prior 

performance information.  The primary information that should be relied on for project 

performance forecasting is the past performance data observed in the project itself.  

Early in a project, however, project managers may suffer from a lack of sufficient actual 

performance data to make reliable forecasts, resulting in deferring any judgment about 

performance control at the risk of missing the opportune time to take appropriate 

corrective actions.  Moreover, the value of even highly reliable forecasts progressively 

decreases as the project continues.  

 The Bayesian adaptive forecasting method provides a systematic way of making 

more reliable forecasts sooner, when they are more valuable to project management.  In 

the general framework of Bayesian inference and forecasting, the BAF method combines 

all relevant information concerning future performance of an ongoing project, including 

documented project plans, historical data, subjective judgment, as well as the actual 

performance data being generated by the project itself.   
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Table 4.3 Information used in the Bayesian adaptive forecasting method 

Types Descriptions 

Project activity network 
G = G(n, r) 

A project activity network is represented as a directed 
acyclic network G(n, r), where n is the number of activities 
in the network and r is the number of Finish-to-Start 
relations among the activities.  

Activity durations and 
costs  A = {a1, a2, …, an} 

Each element of the information set, A, has probabilistic 
estimates of activity duration and cost.  

Historical data  
H = {h1, h2, …, hm} 

A historical data set might be represented as a series of 
discrete performance indicators throughout the lifecycle of 
past projects.  m is the number of historical progress data 
sets.   

Subjective information 
S = {c1, c2, …, cs} 

s is the number of subjective information sets that can be 
chosen by decision makers.  A subjective information set 
may be represented in terms of numerical constraints for 
the model parameters. 

 

In the BAF method for predicting schedule performance of a project, the prior 

performance information consists of two elements: the prior probability distribution of 

project duration and the progress curve template.  Figure 4.4 shows these elements in a 

graphical way.  First, the prior distribution of project duration represents the best 

probabilistic estimate of the project duration, which is made without observing actual 

performance data.  When an activity network and probabilistic estimates of activity 

durations and costs are available for a project, well-known methods such as PERT 

(Malcolm et al. 1959) and a network-based CPM simulation (Lee 2005; van Slyke 1963) 

can be used to generate the prior distribution of project duration.  In the absence of 

detailed project plans, a subjective probability estimate can be made based on a single 
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value estimate of the project duration.  For example, if the total project duration of a 

project is fixed as 60 months, someone with experience in similar projects might be able 

to estimate the possible range of the actual project duration as, for example, between 58 

months and 64 months.  Then one can further approximate a probability distribution over 

the range.  The planned project duration may be chosen according to the level of risk 

accepted by the organization.  Regardless of the methods used to generate it, a prior 

probability distribution of project duration is updated later with the actual performance 

data.   

 The second element of prior performance information, the progress curve 

template, represents the prior knowledge of the project manager and project engineers 

about the plausible progress pattern of the actual performance.  As pointed out in Section 

4.1, the fundamental premise of the Bayesian adaptive forecasting method is that there 

exist characteristic progress patterns for individual projects.  The progress curve 

template of a project represents the characteristics of the project in terms of the 

cumulative progress over time.  In the BAF method, the progress curve template is used 

to forecast future performance of the project.  The overall reliability of the BAF relies on 

the degree to which actual performance data match the progress curve template.   
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BAC

t

Progress ($)

Actual performance data

Progress curve template

Prior probability distribution of 
the project duration

PDAC  
Figure 4.4 Two elements of the prior performance information and the actual 

performance data 

 

It should be noted here that incorporating prior performance information into 

project performance forecasting does not necessarily mean that the quality of outcomes 

will be better than that of the forecasts based purely on actual performance data.  Use of 

misinformation will delay the convergence of forecasts to the actual value.  In a 

Bayesian approach, the quality of prior information can be measured in terms of the 

degree of bias and the precision of a prior probability distribution.  The degree of bias of 

a prior probability distribution represents how far, on the average, the mean of the 

probability distribution is from the right value.  On the other hand, the precision of a 

prior distribution is defined as the inverse of its variance.  Ideally, the Bayesian approach 

works best with unbiased and precise prior distributions.  However, when a prior 

distribution is precise but seriously biased, that will leave little chance for the 
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information in the future to influence the final outcomes.  Therefore, it is important to 

constantly evaluate the appropriateness of prior performance information in light of 

actual performance data.   

 

4.4 Multi-model BAF 

Based on the general formulation of the BAF in Section 4.3, two different methods – the 

Multi-model BAF method and the BetaS-curve BAF method – are developed and 

derived in this section and in Section 4.5, respectively. These two methods are 

distinguished by the use of the progress curve template in Figure 4.4 which is built based 

on prior performance information.   

 The outline of the Multi-model BAF method is shown in Figure 4.5.  Once the 

progress curve template and the probability distribution of total duration for a project are 

developed from the prior performance information available, the Multi-model BAF 

method proceeds through five steps: (1) selecting models, (2) generating prior 

distributions of model parameters; (3) updating model parameters, (4) forecasting, and 

(5) combining forecasts.  Among theses steps, the third step is carried out according to 

the general BAF framework in Section 4.3.  The remaining part of this section discusses 

the other steps in detail.  
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Project planning
Generate the prior probability 
distribution of project duration and the 
progress curve template based on all 
relevant prior performance information 
such as the planned value (PV) in the 
EVM, historical data, and subjective 
judgments.

Model selection
Identify an S-curve function or a class of 
functions that fit the progress curve 
template reasonably well. 

Project execution
Monitor actual performance and report 
cumulative progress in schedule and cost 
periodically.

Parameter updating
Update the probability estimates of the 
parameters of selected S-curve functions 
using Bayesian inference.

Forecasting
Update posterior probability 
distributions on project duration and cost 
at completion.

Prior distribution generation
Develop the prior probability 
distributions of model parameters based 
on the prior probability distribution of 
project duration.

Combining Forecasts
Combine forecasts from individual 
models into a single probabilistic 
estimate.  

Figure 4.5 Outline of the multi-model Bayesian adaptive forecasting 
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4.4.1 Selecting Models 

Once the two elements of prior performance information are developed for a project, 

they are separately incorporated into the Multi-model BAF method.  The progress curve 

template is used to test potential S-curve models and to select models that fit the 

template reasonably well.  This step is necessary because of the limitation of fixed-shape 

S-curves in representing various shapes of real project progress curves.  As the name 

says, each S-curve model belonging to the fixed-shape category has its unique progress 

pattern which may or may not fit well to the progress curve template of a project.  In the 

case of Function46 and Function50, the progress pattern can be adjusted by changing the 

first parameter n.  However, the range of possible S-curve patterns generated by 

Function46 and Function50 is still limited as shown in Figure 4.2.  In this research, the 

first parameter n of Function46 and Function50 is considered a constant that is 

determined in advance rather than a random variable which is updated with actual 

performance data. 

It should be noted that the pool of potential S-curve models is expandable.  That 

is, the user can add his or her own favorites.  In the Multi-model BAF method, all 

available fixed-shape S-curve models are tested to fit the progress curve template.  Then, 

the models with good fitting results are chosen as the candidate models whose 

parameters are updated with actual performance data.  A simple way of evaluating and 

comparing the fitness of different S-curve models to the progress curve template is the 

method of least squares (Please refer to Appendix B for further information).  Once 

proper models are selected, they are used to fit actual performance data and to generate 
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posterior distributions of the model parameters from which the project duration at 

completion is predicted.  

 

4.4.2 Generating Prior Distributions of Model Parameters 

The other element of prior performance information, the prior probability distribution of 

project duration, needs first to be converted to the probability distribution of the 

corresponding parameters of individual models, which will be later updated as actual 

performance is reported periodically.  In the case of Function46 and Function50, this 

transformation is unnecessary because parameter b itself represents the project duration.  

For the logistic functions (the Pearl, the Gompertz, and the Dual Gompertz functions) in 

Table 4.1, however, a simulation approach can be used to build the prior probability 

distribution of the slope parameter b from the prior distribution of project duration p(T).  

For example, if the project duration is estimated to have a normal distribution with mean 

of 100 time intervals and standard deviation of 10 time intervals, the corresponding 

probabilistic distribution of the slope parameter can be obtained using Equation (4.3) and 

(4.4) in Section 4.2.1.  A straightforward way of doing this is Monte Carlo simulation.  

Figure 4.6 shows the prior distributions of parameter b in the Pearl, the Gompertz, and 

the Dual Gompertz models under the assumption that s0 is 0.01.   

 The simulation approach to generating prior distributions of the model 

parameters has the advantage that a prior distribution of the slope parameter from 

various forms of the project duration can be used as long as the duration is represented in 

a probabilistic way.  For example, one can use a sequence of random durations from a 
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Monte Carlo simulation of a network schedule as input to generate corresponding 

random parameters.  Considering that risk management is getting recognized as an 

essential part of project management, obtaining such data appears to have become easier 

than ever.  Furthermore, commercial software packages such as Primavera® Project 

Planner and MS Project® provide similar functions for probabilistic estimation. 
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Figure 4.6 Prior distributions of the slope parameter of the Pearl, the Gompertz, 

and the Dual Gompertz functions for the prior distribution of project duration 

N(100,102) 
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4.4.3 Combining Predictions 

In the Multi-model BAF, the limited flexibility of individual S-curve models is 

overcome by the Bayesian model averaging technique.  The basic idea of the MBAF is 

to predict future progress of a project by using different models and combining 

predictions from the component models with weights according to the relative model 

likelihood.   

 Combining predictions has a long history of recognition as a viable solution to 

improve the quality of forecasting.  Decision makers who need to predict any quantity of 

interest often get confused with a large range of forecasted values from various models 

which are based on different ideas and information.  In one way, a decision maker might 

try to select the best among the plausible forecast models.  However, if there are many 

independent forecasts that appear to be based on some reliable methodologies and 

information, it might be a waste of information to stick to the simplicity of using one 

method at the cost of discarding all the other sources of information.  An axiomatic idea 

underlying combining forecasts is to maximize information usage by integrating all 

methods and relevant information (Bates and Granger 1969; Bunn 1975).  It should be 

noted that if some methods are highly correlated, only one is needed.  When original 

forecasts have complementary nature in terms of methodologies or/and exclusive 

information used, a reasonable decision maker would try to identify the best combination 

which yields a combined forecast better than any of the original forecast.  Combining 

predictions is also useful when dealing with diverse estimates or advices from a plethora 
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of human experts.  One approach that can be used for combining diverse experts’ 

forecasts is to apply a weight to each expert.   

 Since the paper by Bates and Granger (1969), the efficiency of linear 

combination of forecasts has been examined by many researchers (Bunn 1985; Newbold 

and Granger 1974; Winkler and Makridakis 1983).  Most of them used variance of the 

error distribution as a measure of efficiency of combining methods, while some 

researchers try to apply the perspective of multi-criteria decision making process (de 

Menezes et al. 2000; Reeves and Lawrence 1991).   

 Bayesian model averaging (BMA) provides a coherent and intuitive framework 

for combining forecasts from the perspective of model uncertainty.  Model uncertainty 

arises when a decision maker selects a model, presumably the best model, and makes an 

inference from data as if the selected model were the exact one that had generated the 

given data.  Ignoring model uncertainty can lead to underestimation of the uncertainty 

about the quantities of interest and over-confident inferences (Hoeting et al. 1999; 

Raftery et al. 1997).  Bayesian model averaging is an approach to overcome the 

problems due to ignored model uncertainty by combining all plausible models in a 

weighted average sense.  The weights for individual models represent the adequacy of 

the model and can be determined as their posterior model probability.  In addition, the 

burden of justifying the choice of a single predictive model can be avoided with the 

Bayesian model averaging technique (Hoeting et al. 1999). 

In the Multi-model BAF method, the Bayesian model averaging technique is 

used to integrate different predictions from individual S-curve models into a single 
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prediction.  Once a project gets started, actual performance data, D, are periodically 

monitored and used to update the forecasts, for example the estimated duration at 

completion (EDAC), from individual models.  Then the combined prediction can be 

calculated as 

 ( ) ( ) ( )
1

| | , |
m

k k
k

p EDAC D p EDAC M D p M D
=

= ∑  (4.26) 

where m is the number of models in the combination.  This is an average of the posterior 

distributions from all component models, weighted by their posterior model probability.  

The posterior model probability for individual models is calculated as 
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where ( )| kp D M  is the likelihood of data D conditional on a model Mk and ( )kp M  is 

the prior model probability for Mk. 

 

4.4.4 Example 4.1* 

An artificial project has been analyzed to demonstrate the performance of the Multi-

model BAF model.  Table 4.4 shows the major inputs used in the generation of the 

artificial project data.  From a Monte Carlo simulation, the mean and the standard 

____________ 
*Reprinted with permission from “An S-curve Bayesian model for forecasting 
probability distributions on project duration and cost at completion” by Kim and 
Reinschmidt (2007). Construction Management and Economics - the 25th Anniversary 
Conference, Copyright [2007] by Taylor & Francis http://www.informaworld.com. 
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deviation of the prior distribution of the completion date are estimated as 71 weeks and 

6.6 weeks, respectively.  Figure 4.7 shows the planned progress and the simulated 

“actual” progress used in the numerical example.  The planned is determined by 

averaging stochastic progress curves from 5000 iterations over the progress dimension.  

The dotted line represents a simulated progress curve with completion date at week 71. 

 

Table 4.4 Input data for random progress curve generation 

Input parameters Value 
Number of activities 
Number of effective precedence relations 

200 
279 

Activity duration for planned progress 
Mean 

Standard deviation 
4 (weeks) 
2 (weeks) 

Activity duration for actual progress 
Mean 

Standard deviation 
4 (weeks) 
2 (weeks) 
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Figure 4.7 The planned progress and the “actual” progress for Example 4.1 

(Prior p(T) is drawn not to scale) 
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The five fixed-shape S-curve models discussed earlier are fitted to the planned 

progress curve.  The least squares method is used to measure the goodness of fit and four 

functions other than the Dual Gompertz turn out to fit the planned progress curve 

reasonably well.  The fitted graphs are shown in Figure 4.8 and the corresponding prior 

estimates of the model parameters are shown in Table 4.5.  It should be noted that the 

prior distribution of the completion date, which is obtained from the network-based 

schedule simulation, is also taken into account in terms of a random variable T in the 

formulas for slope parameter b.  The results show that the Gompertz function best fits 

the current planned progress with the minimum sum of the squares of vertical deviations. 
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Figure 4.8 S-curve functions fitted to the planned progress 
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Table 4.5 Prior estimates of model parameters  

 Parameters for 
shift (a) or shape (n) Slope parameter (b) Sum of the squares 

of vertical deviations 

Pearl a = 49.0 [ln(49) – ln(1/49)]/T 1102 

Gompertz a = 6.377 [ln(6.337) – ln(0.00702)]/T 23 

Function46 n = 3 T 765 

Function50 n = 5 T 520 

 

With the prior estimates of model parameters and weekly performance reports, 

EDAC is calculated after 10, 20, 30, and 40 weeks using the four S-curve functions.  The 

results are shown in Figure 4.9.  Different predictions from different models are 

combined with weights according to the relative reliability of the models, which is 

determined as the marginal probability of observing the actual performance data 

conditional on each model.  The predictions at week 10 show that all models provide 

similar results that are close to the prior estimates of the completion date.  This is 

attributed to the fact that the Bayesian adaptive model uses both prior information and 

actual progress data, and the prediction is influenced more by the plan than it is by the 

small number of data points reported up to this time.   

The other three graphs in Figure 4.9 show the adaptive nature of the BAF.  

Undoubtedly the forecast would be repeated after every reporting period to incorporate 

the new data, but here the intermediate updates have been omitted.  Comparing the 
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forecasts at different points of project execution, it is easy to see that each model 

responds to the actual performance data in a different way.  After 20 weeks, predictions 

by Gompertz (M2), Function46 (M3), and Function50 (M4) move away from the plan 

and approach the actual completion date, due to the accumulated discrepancies between 

the actual reports and the planned progress curve.  However, it should be noted that the 

planned completion date is still inside of the prediction bounds or control limits that are 

determined as two standard deviations above and below the expected EDAC.  The 

prediction bounds (control limits) should be determined in advance by project managers 

as a level of risk accepted by the owner or organization.  As more actual data accrue, the 

prediction bounds on the predicted values become narrower for all models.  After 30 

weeks, the combined prediction gets closer to the actual completion date, and more 

importantly, the prediction bounds indicate that the probability of completing the project 

within the planned completion date becomes lower than the predetermined acceptable 

level.  Predictions after 40 weeks clearly show these patterns and the combined forecast 

provides more accurate prediction of the actual completion date than its component 

forecasts. 
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(a) Predictions after 10 weeks 
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(b) Predictions after 20 weeks 
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(c) Predictions after 30 weeks 
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(d) Predictions after 40 weeks 

Figure 4.9 The estimated duration at completion at different times (M1-Pearl; M2-Gompertz; M3-Function46(n=3); 

M4-Function50(n=5)) 
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4.5 BetaS-curve BAF 

Instead of using multiple S-curve models, the BetaS-curve BAF (BBAF) method uses 

the BetaS-curve model in Section 4.2.2 to fit a wide range of progress curves for diverse 

projects.  The flexibility of the BetaS-curve model is attributed to the property of having 

three free parameters rather than two.  Along with the interval parameter T which 

directly represents the project duration, the BetaS-curve model has the two additional 

shape parameters α and m, which enables it to incorporate into forecasting prior 

performance information in various forms such as schedule network, activity estimates, 

historical data, and subjective judgment.  

 The outline of the BetaS-curve BAF method is shown in Figure 4.10.  The 

method consists of three steps: (1) generating prior distributions of model parameters; 

(2) updating model parameters, and (3) forecasting.  It should be noted that the BBAF 

method does not require the model selection and the combining forecasts steps in the 

Multi-model BAF method.  

 Once the prior performance information of a project is developed as discussed in 

Section 4.3.4, the information is used to generate the corresponding prior distributions of 

the BetaS-curve parameters.  Depending on the types of information at hand, different 

approaches can be used.  Specific methods proposed for different situations will be 

discussed below.  It should be mentioned here that, regardless of the types of approach 

used, all their final results are represented as probability distributions of the 

corresponding BetaS-curve parameters.   
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The periodic performance data are used to revise prior beliefs on the model 

parameters through Bayesian inference.  The process of monitoring and updating is 

cyclic and this adaptive property represents a key aspect of the Bayesian approach in 

dealing with sequential data.  Updated distributions of model parameters are used to 

generate meaningful project information such as the estimated duration at completion 

(EDAC), associated prediction intervals, and the probability of meeting the planned 

project duration. 

 

Project planning
Generate the prior probability 
distribution of project duration and the 
progress curve template based on all 
relevant prior performance information 
such as the planned value (PV) in the 
EVM, historical data, and subjective 
judgments.

Project execution
Monitor actual performance and report 
cumulative progress in schedule and cost 
periodically.

Parameter updating
Update the probability distributions of 
the BetaS-curve parameters using 
Bayesian inference.

Forecasting
Update posterior probability 
distributions on project duration and cost 
at completion.

Prior distribution generation
Develop the prior probability 
distributions of model parameters based 
on the prior performance information.

 

Figure 4.10 The outline of the BetaS-curve BAF method 
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4.5.1 Generating Prior Distributions of BetaS-curve Parameters 

The BeatS-curve model has three paramters: α, m, and T.  Just like Function46 and 

Function50, the BetaS-curve model has a parameter (T) that explicitly represents the 

project duration.  As a result, the probability estimate of project duration based on prior 

performance information is directly used as the prior probability distribution of 

parameter T.   

In order to construct the prior distributions of the other two parameters, α and m, 

different approaches can be applied, depending on the types of available information.  In 

this dissertation, two typical situations are addressed.  

 Prior distributions based on a stochastic network schedule p(α,m,T | G, A); 

 Prior distributions based on historical data or other subjective judgment p(α,m,T | H) 

or p(α,m,T | S).  

 

Prior distributions based on stochastic network schedule  

A stochastic network schedule of a project is defined as a network schedule of the 

project in which activity durations and costs are estimated in a probabilistic way, for 

example, three-point estimates.  Unlike typical, deterministic network schedules, the 

project duration based on a stochastic network schedule is calculated by a network-based 

Monte Carlo simulation and the results are represented as a probability distribution of 

project duration.  Given a stochastic network schedule for a project, a large sample of 

potential progress curves, which are collectively called stochastic S-curves of the project 

(Barraza et al. 2000; 2004), can be generated using the simulation approach.  Network-
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based schedule simulation has been used mostly as a method for quantifying schedule 

risk before the inception of a project (Lee 2005).  In this research, a typical network-

based schedule simulation is combined with a curve fitting technique to develop prior 

probability distributions of the shape parameters of BetaS-curve model.  With the 

method, the stochastic nature of progress curves of a project can be quantified in a 

systematic way and represented as a set of prior probability distributions of the BetaS-

curve model parameters.   

The basic concepts and procedures of the method are shown in Figures 4.11 and 

4.12, respectively.  Given an activity network G and probabilistic estimates of activity 

durations and costs A, a group of plausible S-curves, or stochastic S-curves, of the 

project can be generated using a network-based schedule simulation.  Each of the 

stochastic S-curves can be fitted with the BetaS-curve model.  Along with the resulting 

best-fit parameters (α, m, T), the error distribution e(w) is determined over the level of 

progress w, which represents the horizontal error between the S-curve generated in a 

simulation and the BetaS-curve approximation.  If this fitting process is applied 

repeatedly to all S-curves generated, a set of marginal probability distributions of 

individual parameters – p(α), p(m), p(T) – can be obtained along with the correlation 

coefficients among them.   
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w w

ei(w )

BetaS-curve(α i, m i , T i)

T i  

(a) Fitting a single progress curve 

w p(T ) w

E[e(w )]

p(α )
p(m )
p(T )

E[T ]  

(b) Fitting a large sample of progress curves 

Figure 4.11 Generating prior distributions for the BetaS-curve parameters from a 

large sample of progress curves (Error curves are drawn not to scale) 
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The overall error distribution from n fittings is measured in terms of the average 

fitting error (AFE), which is defined as the horizontal deviation, at specific level of 

progress w, between the average progress curve and the BetaS-curve determined by the 

expected values of the marginal probability distributions of parameters. 

Given n random progress curves for a project, the resulting sequence of best-fit 

parameter values (αi, mi, Ti), for i = 1,…, n, can be regarded as a set of random values 

drawn from the probability distributions, whatever they are, of the model parameters.  

The parameter values can directly be used in the computation of posterior distributions 

of interest.  This method is referred to as the direct sequence method.  An advantage of 

the direct sequence method is that dependences among model parameters, if any, are 

automatically taken into account.  Otherwise, the prior distributions of model parameters 

can be approximated with reasonable probability distributions so that random numbers 

can be drawn for the Bayesian updating computation.  Figure 4.12 depicts the procedures 

of developing prior distributions of BetaS-curve model parameters based on a stochastic 

network schedule. 
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Probabilistic estimates
of activity durations and costs (A)

[Direct sequence method]

[Probability distribution method]

Network-based Schedule Simulation

A set of prior distributions
p(α ), p(m ), p(T ),

p(α ,m ),p(α ,T ),p(m ,T )

Stochastic Network Schedule

Curve fitting technique

A network schedule (G)

Stochastic S-curves

A sequence of least square fit 
parameters

(α i ,m i , T i ), i =1,…,n

 

 

Figure 4.12 Procedures of developing prior distributions, given an activity network 

(G) and probabilistic estimates of activity durations and costs (A) 
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Prior distributions based on historical records or other subjective judgment 

Historical data about cumulative progress curves from similar projects are valuable 

information for developing prior distributions of model parameters, especially in the 

absence of reliable project plans such as WBS, project schedule, and activity level 

estimates.  When cumulative progress records of past projects are available, the BetaS-

curve can be fitted to the data and the resulting best fit parameter values can be used in 

choosing reasonable probability distributions for model parameters.  The best-fit 

parameters can be determined with the least squares method discussed in Appendix B. 

 This method is based on the premise that similar construction projects share 

some unique progress characteristics in terms of the time of the peak progress rate (or 

mode) and the overall progress pattern.  For example, front-end loading projects and 

back-end loading projects would be distinguished by the mode parameter, m, of the 

BetaS-curve while linear and nonlinear projects would have different ranges of α 

parameter.  When information directly related to a specific project is not available, 

subjective judgments about actual progress patterns can be applied.  
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4.5.2 Example 4.2 

The BetaS-curve BAF is applied to an artificial project which is generated following the 

same procedure used in Example 3.1.  In this example, four cases of prior distributions 

are used in predictions and the results are compared.  The main purposes of the series of 

predictions for the same project are to demonstrate the merits and properties of BetaS-

curve BAF model with different sets of prior distributions for the model parameters and 

to show how effectively the method quantifies prior performance information and how 

the forecasting performance of the BBAF is influenced by the use of different prior 

information.  The major inputs are summarized in Table 4.6.  The resulting baseline 

progress curve and the simulated “actual” progress curve to be used in the forecasting 

are shown in Figure 4.13.  

 It is assumed that the network schedule and the probabilistic estimates of activity 

durations are established by the project team.  With this information, a set of stochastic 

progress curves can be generated.  Then, the curve fitting technique in Section 4.5.1 is 

applied to individual progress curves to quantify the stochastic nature of the project 

progress in terms of the distributions of corresponding parameters.  In this example, 500 

random progress curves were generated and the resulting means and standard deviations 

of the BetaS-curve parameters are shown in Table 4.7 along with frequency diagrams in 

Figure 4.14.  In the calculation of the posterior distributions of the parameters, normal 

approximation of the simulation result is used.  The solid lines in Figure 4.14 show that 

normal distributions approximate the frequency histograms reasonably well.  
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Table 4.6 Input data for random progress curve generation 

Input parameters Value 
Number of activities 
Number of effective precedence relations 

200 
433 

Activity duration for planned progress 
Mean 

Standard deviation 
4 (weeks) 
1 (week) 

Activity duration for actual progress 
Mean 

Standard deviation 
4 (weeks) 
1 (week) 
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Figure 4.13 The planned progress and the “actual” progress for Example 4.2 

 

 
Table 4.7 Statistical properties of the BetaS-curve parameters  

Correlation Coefficients 
Parameters Mean Standard 

Deviation T α m 
T 
α 
m 

86.7 
1.91 
0.30 

4.15 
0.23 
0.03 

1 
(symmetric) 
(symmetric) 

-0.16 
1 

(symmetric) 

-0.18 
0.73 

1 
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(c) m 

Figure 4.14 Prior distributions of the BetaS-curve parameters 
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In this example, four cases of different prior distributions are applied to the 

prediction of the estimated duration at completion (EDAC).  The four cases are 

summarized in Table 4.8.  For the project duration parameter, T, two types of prior 

distributions are compared in the analysis: the informative prior distribution and the 

noninformative prior distribution.  Figure 4.15 shows the two prior distributions along 

with the planned and the actual project durations.  The informative prior is constructed 

from the network schedule simulation results in Table 4.8.  On the contrary, the 

noninformative prior distribution is built as a uniform distribution over [0, 250].  Such 

noninformative priors can be used when a decision maker decides to make a prediction 

based only on actual performance data.    

In the case of the shape parameters, α and m, two options are tested: fixed shape 

priors and probabilistic shape priors.  Fixed priors for the shape parameters can be used 

when a project manager decides to make a prediction with a single, fixed progress curve 

template.  In this example, the expected values from the simulation results are used as in 

Case B and Case D.  Predictions made with fixed priors, however, ignore the uncertainty 

in the shape parameters under the assumption that the chosen values are the accurate 

shape parameters for the actual progress curve.  When taking account of the uncertainty 

in the shape of actual progress curves, probabilistic priors should be used for the shape 

parameters.   
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Table 4.8 Four cases of prior distributions used in Example 4.2 

Informative prior for T Noninformative prior for T 
Parameters 

Case A Case B Case C Case D 
T 

α 

m 

N(86.7, 4.152) 

N(1.92, 0.2392) 

N(0.30,0.03142)

N(86.7, 4.152) 

1.92 

0.30 

Uniform(0,250) 

N(1.92, 0.2392) 

N(0.30,0.03142) 

Uniform(0,250) 

1.92 

0.30 
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Figure 4.15 Two types of prior distributions for the project duration 

 

The BetaS-curve BAF model is repeatedly applied to the same progress data with 

the four prior cases and the time histories of the EDAC are shown in Figures 4.16 and 

4.17.  In the graphs, the thick solid line represents the mean of the posterior distribution 

of the EDAC over the forecasting time.  The upper and lower bounds are determined at 

the 5 percent confidence level on each side.  That is, the upper bound shows the duration 
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that would not be exceeded with probability 0.95, while the lower bound is the duration 

that would be exceeded with probability 0.95.  Therefore, an actual project duration has 

a 90% probability of lying between the bounds. 

 Forecasts made with the informative prior for T but different priors for the shape 

parameters are shown in Figure 4.16.  The results reveal that the use of probabilistic 

priors for the shape parameters (Case A) results in a slow conversion of EDAC to the 

actual project duration.  On the contrary, when fixed shape priors are used (Case B), the 

mean of the EDAC shifts quickly from the planned duration to the actual duration.  The 

results indicate that the same actual data has stronger influence on the update of the prior 

distribution of the project duration when the true values of the other two parameters are 

assumed to be correctly known.  However, it should be noted that using fixed shape 

priors does not guarantee fast convergence to the correct actual duration.  Obviously, if 

biased estimates are used for the fixed parameters, predictions may approach the wrong 

conclusions.   

 The impact of using different shape priors is also found in the profiles of 

prediction intervals.  Results in Figure 4.16 show that the width of prediction bounds 

narrows as more data are observed.  However, the rate of narrowing is greater with Case 

B than Case A.  This can be explained by the additional uncertainty included in the Case 

A priors in terms of probabilistic distributions for the shape parameters.  In Case B, new 

information is used to update the distribution of project duration only.  However, the 

same information is used in Case A to update all the three parameter distributions of a 

BetaS-curve model.   
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(a) Prior Case A 
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(b) Prior Case B 

Figure 4.16 EDAC(t) with the informative prior distribution of project duration  
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The results when a noninformative prior distribution is used for the project 

duration are shown in Figure 4.17.  The results show that the average EDAC quickly 

responds to the actual performance data even with probabilistic priors for the shape 

parameters (Case C).  What makes the difference between Case A in Figure 4.16 and 

Case C in Figure 4.17 is the use of the noninformative prior instead of the distribution 

from the network simulation.  As shown in Figure 4.15, for someone with a belief that 

the normal distribution constructed from a network schedule simulation represents the 

likely project duration, the actual duration in this example, belongs to a rather extreme 

case, which corresponds to a value that would not be exceeded with probability of 99%.  

As a result, it takes more data to adjust the prior belief.  On the contrary, when a uniform 

distribution is used, all values in the range are assumed to be equally likely in the 

beginning and forecasts are made based on the new data being reported as the project 

proceeds.  As a result, forecasts based on noninformative priors are more adaptive to the 

actual data than those based on informative priors.   

The overall forecasting performance of the four cases can be compared with two 

metrics: the length of time period during which the actual project duration lies between 

the prediction bounds and the time when the planned duration first falls outside of the 

prediction bounds.  For example, forecasts with Case C priors include the actual project 

duration throughout the execution period while Case A starts to cover the actual duration 

at week 52.  On the other hand, the earliest warning about schedule overrun can be 

obtained with Case D as early as sixth week.   
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 The decision as to whether to use a noninformative prior or not should be made 

by the project manager.  What the results in this example show is that, when the major 

concern of the project manager is some extreme cases, such as schedule or cost overruns, 

rather than normal outcomes, the noninformative prior can be useful because the results 

are determined entirely by the data. 

 With actual performance reports being generated after each reporting period, 

prior distributions of model parameters are repeatedly updated.  Then a BetaS-curve with 

the mean of the posterior parameter distributions is extrapolated to the future.  Figure 

4.18 shows the updated project progress curves with the Case B prior set after 5, 10, 15, 

and 20 weeks.  Note that the prediction progress curves in the graph are adjusted with 

the errors between the planned progress curve and its best-fit BetaS-curve.  The graphs 

clearly show the adaptive nature of the method, which was observed in the example for 

the Kalman filter forecasting method (Section 3.4).  At week 5, the prediction almost 

overlaps the plan.  As more data are gathered and the discrepancies between the plan and 

the actual build up, however, predictions move away from the plan and closer to the 

actual data.   
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(a) Prior Case C 
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(b) Prior Case D 

Figure 4.17 EDAC(t) with the noninformative prior distribution of project duration 
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(a) Prediction at 5th week 
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(b) Prediction at 10th week 

Figure 4.18 Adaptive nature of the prediction by the BBAF 
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(c) Prediction at 15th week 
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(d) Prediction at 20th week 

Figure 4.18 (Continued) 
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4.6 Predictive Power of a Progress Curve Template Based on Project Plans 

A fundamental strategy of the BAF method is to identify some mathematical S-curve 

models for the progress curve template of a project using all relevant prior performance 

information and to update parameters of the selected models in light of actual 

performance data.  Naturally, the reliability of the BAF method depends, in large part, 

on the degree to which an actual progress curve matches the progress curve template 

constructed before the inception of a project.   

 In this section, an empirical test is carried out to quantify the predictive power of 

a progress curve template of a project.  The purpose of this test is to investigate the 

potential relation between the progress curve template based on prior performance 

information and the actual progress pattern and, if one exists, to assess the relation in a 

quantitative way.   

Figure 4.19 shows the outline of the test.  The test takes into account two types of 

uncertainty in project performance: the inter-project variation due to different schedule 

network structures and the activity level variation within individual projects.  The inter-

project variation is taken into account by using a large set of artificial projects.  In total, 

10,000 projects are generated by a random schedule network generation technique.  

Detailed information about the technique is provided in Chapter V.  While all projects 

are assumed to consist of 200 activities, the number of precedence relations connecting 

those activities varies from project to project and Figure 4.20 shows the distribution of 

the resulting number of precedence relations in the test projects.  On the other hand, the 

activity level variation within individual projects is simulated by modeling activity 
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durations as random variables from a known normal distribution.  Then, for each project, 

the progress curve template can be determined with the mean values of activity 

durations.  On the other hand, an actual progress curve is randomly generated using a set 

of activity durations that are randomly drawn from the assumed probability distribution.  

It should be noted that the progress curve template of a project is determined by the 

characteristics of its network structure, while the actual progress curve is subject to the 

combined effect of the random network structures and the random activity durations.  

 

With each project, 
determine the progress curve template 
with the means of activity durations

Generate a large set (N) of artificial 
projects

With each project,
generate an actual progress curve with 

randomly drawn activity durations

Find the best fit parameters for
the progress curve templates:

( )* * *, ,   for  1, ,i i im T i Nα =

Find the best fit parameters for
the actual progress curves:
( ), ,   for  1, ,i i im T i Nα =

Curve fitting using the BetaS-curve

Compare                                              .( ) ( )* * *, ,  and , ,p m T p m Tα α
 

Figure 4.19 Outline of the test of predictive power of a progress curve template 

based on prior performance information 
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Figure 4.20 Distribution of the number of precedence relations of 10,000 test 

projects 

 

Once a pair consisting of a progress curve template and an actual progress curve 

is determined, their stochastic nature can be measured with the curve fitting technique 

using the BetaS-curve model.  In the test, two different execution options – the early 

start progress and the late start progress – are considered as shown in Figure 4.21.   
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(a) Early start progress 
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(b) Late start progress 

Figure 4.21 Examples of the curve fitting technique to different execution options 
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The statistical properties of the best fit parameters for the 10,000 projects are 

summarized in Table 4.9 and graphically shown in Figure 4.22.  From the results, some 

conclusions can be drawn. 

 Depending on the execution policy – the early start policy and the late start policy – 

the mode parameter m has different ranges.  This result indicates that different 

progress patterns due to different resource loading types, such as front-end loading 

and back-end loading, can be characterized by different range estimates of parameter 

m.  

 Regardless of the execution policy, strong correlations between the best fit shape 

parameters for the progress curve template and those for the actual progress curves 

are observed.  All correlation coefficients between α and m are about 0.9 regardless 

of the execution policy.  Since correlation coefficients represent the degree to which 

an actual progress curve matches its corresponding progress curve template, these 

results strongly support the rationale of using the progress curve template based on 

detailed project plans as a predictive model.  Such a strong match of progress 

patterns is attributable to the fact that both progress curves – the baseline and the 

actual – are generated from the same activity network.  In other words, the results 

indicate that, when the activities in a project are executed according to the scheduled 

order, the actual progress curve, in spite of the variations at the activity level, tends 

to follow a progress curve similar to the progress curve template based on the 

schedule network and probabilistic estimates of activity durations.  The assumption 

about the execution order of activities is realistic because a network schedule is often 
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a part of legal contracts between owners and contractors.  Once a project schedule is 

officially accepted and approved by the project management team, it is set as the 

schedule baseline and should be revised only in response to approved changes.   

 

Table 4.9 Statistical properties of the best fit parameters for the progress curve 

templates and those for the actual progress curves 

Progress curve template Actual progress curve Execution 

policy 

Model 

parameters mean std.dev. mean std.dev. 

Correlation 

coefficient 

Early Start 

α 

m 

T 

2.65 

0.33 

95.10 

0.48 

0.04 

9.77 

2.59 

0.32 

96 

0.50 

0.05 

10.21 

(α*,α) 

(m*,m) 

(T*,T) 

0.89 

0.88 

0.91 

Late Start 

α 

m 

T 

4.34 

0.67 

95.23 

0.92 

0.05 

9.72 

4.30 

0.68 

97 

0.93 

0.05 

10.13 

(α*,α) 

(m*,m) 

(T*,T) 

0.90 

0.89 

0.91 
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(a) Baseline progress 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9 10

α

m

Early Start
Late Start

 

(b) Actual progress 

Figure 4.22 Scatter diagrams of the best fit parameters for the progress curve 

templates and the actual progress curves 
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4.7 Chapter Summary 

A probabilistic framework for forecasting project progress and the probability 

distribution on project duration at completion has been developed based on Bayesian 

inference and S-curve models.  The Bayesian adaptive forecasting method is a regression 

model that fits S-curves to cumulative progress curves of a project and updates the 

parameter estimates of the S-curves using a Bayesian inference approach.   

This chapter started with a review of S-curve models in previous research.  In 

Section 4.2, five useful S-curve models were introduced and the BetaS-curve model was 

proposed.  Then, the general framework of the Bayesian adaptive forecasting was 

derived in Section 4.3.  The framework can be characterized by three features of being 

probabilistic, integrative, and adaptive.  The BAF method makes use of all relevant 

performance information available from standard construction management practices 

and theories.  Information used in the BAF method can be grouped into two categories: 

the prior performance information and the actual performance data.  The prior 

performance information includes all preproject (or preconstruction) information in 

various forms such as project plans, historical data, and subjective experience.  From the 

prior performance information, the probability distribution of project duration and the 

progress curve template are constructed.   

A fundamental idea of the BAF method is that every project proceeds following a 

characteristic progress pattern and that prior performance information can be used to 

identify the underlying pattern in advance before actual performance data reveal it.  

Because of the characteristic of projects of having a definite beginning, the data samples 
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of actual performance early in a project is too small to make a reliable statistical 

inference about the overall progress pattern of the project.  For example, when a project 

starts slowly, accelerates, and then tails off near closing – in fact, many projects actually 

follow this pattern – actual performance data at the outset do not reveal sufficient 

information about typical turning points in the future progress, such as when the project 

reaches its peak work rate or when the tailing off starts.  In the BAF method, a progress 

curve template based on prior performance information is used to supplement the 

shortage of actual performance data by providing a holistic view of the overall progress 

pattern of a project.  As more actual data are available, the contribution of the progress 

template becomes smaller.  Mathematical S-curve models are used to formulate this 

fundamental concept within the general framework of Bayesian inference by quantifying 

the progress template of a project and adjusting the probability distributions of model 

parameters in light of new actual performance reports.   

Depending on the types of S-curve models used in forecasting, two methods have 

been presented: the Multi-model BAF (Section 4.4) and the BetaS-curve BAF (Section 

4.5).  Both approaches are based on the general framework of BAF and proceed through 

basic three steps: (1) generating prior distributions of model parameters; (2) updating 

model parameters, and (3) forecasting.  The Multi-model BAF however needs two 

additional steps because it starts with a group of fixed-shape S-curve models.  Once the 

progress curve template for a project is developed, the goodness of fit of each model to 

the template is evaluated to select the models with reasonable fit.  Then the general BAF 

framework is separately applied with each of the selected models.  At the final stage, 
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forecasts from different S-curve models are combined via the Bayesian model averaging 

technique.  On the other hand, the BetaS-curve method uses the BetaS-curve model as a 

single mathematical function to approximate a wide range of progress curves.  With two 

shape parameters – the nonlinearity parameter α and the mode parameter m –, the BeatS-

curve model has a greater capability of representing extremes and variability in project 

progress patterns than the fixed-shape models used in the Multi-model BAF method.   

In Section 4.6, the BetaS-curve model and the curve fitting technique used in the 

BetaS-curve BAF method were applied to an empirical test of the predictive power of a 

progress curve template based on project plans.  With a large set of artificial projects, it 

has been shown that there exist strong correlations between the shape parameters of the 

progress curve templates and the actual progress curves when a project is executed 

according to the planned schedule network.   

In addition to the probabilistic nature, another important merit of the Bayesian 

adaptive forecasting method is the use of prior performance information in conjunction 

with actual performance data.  Prior performance information from detailed project 

plans, historical data, and subjective judgments of project managers is effectively 

combined with actual performance data to make reliable forecasts of future performance.  

As demonstrated in the two examples, proper use of prior performance information may 

lead to significant improvements in the quality of predictions early in the project.  

Conventional forecasting models based on CPM and EVM rely dominantly on either 

original project plans or actual performance data being observed during the execution.  

For example, a typical CPM makes little use of the actual performance information 
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because only up-to-date performance, whether it is good or bad, is considered and the 

original estimates of remaining jobs are not adjusted according to the past performance.  

On the contrary, the fundamental concept of EVM forecasting formulas is to linearly 

extrapolate the efficiency of past performance to the future performance, regardless of 

the reliability or amount of past data available at the time of forecasting.   

 Another merit of the BAF methods is easy implementation.  The BAF method 

can be incorporated into current construction management and control systems without 

additional burden of system changes or new data acquisition.  Typical input data 

required by the BAFM are available in standard construction practices and standards.  In 

addition, Monte Carlo integration is effectively used to perform the Bayesian updating 

calculation without relying on more sophisticated, time-consuming techniques such as 

importance sampling and Markov Chain Monte Carlo method.  
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CHAPTER V  

PARAMETRIC STUDIES 

 

5.1 Design of the Parametric Studies 

5.1.1 Outline 

Every project is unique in its objectives, the plan to achieve the objectives, and the actual 

progress guided by the plan.  Naturally, the forecasting performance of a method varies 

from one project to another according to the specific situations of the project of interest.  

Even with the same performance information available, some projects may be harder to 

predict for some methods than for others due to the characteristics of individual 

methods.  Therefore, it is challenging by itself to evaluate the forecasting performances 

of various methods and to compare them in an objective way. 

This section includes a series of parametric studies about the forecasting 

performance of the two methods – the Kalman filter forecasting method (KFFM) and the 

Bayesian adaptive forecasting method (BAFM) – which were presented in previous 

chapters.  In addition, two conventional methods – the earned value method (EVM) and 

the critical path method (CPM) – are compared with the new methods.  The purpose of 

the parametric studies is to evaluate the forecasting performance of the KFFM and 

BAFM and compare them with the conventional methods in a statistically meaningful 

way.  The results from the study will serve as a guideline for potential users and help 

them build a better understanding of the new methods as well as the methods they have 

been relying on.  
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 In spite of the crucial role of forecasting in successful project management, 

previous research about evaluating performances of different forecasting methods is very 

limited (Teicholz 1993; Vanhoucke and Vandevoorde 2006).  Teicholz (1993) compares 

three forecasting methods for final cost and budget using the data from 121 real projects.  

Vanhoucke and Vandevoorde (2006) compares three earned value forecasting formulas 

for project completion date using a large set of simulation data.  In spite of the 

differences in the forecasting targets and the data used, previous approaches commonly 

measure the accuracy of forecasts in terms of the average of the errors between the 

prediction and the actual over the entire project execution.  Furthermore, the timeliness 

of a method is evaluated based on the average of the same errors over a specific period 

of time.  For example, Teicholz (1993) defines timeliness as “the forecast accuracy 

during the first 50% of the project (measured by budget percent complete)” and 

Vanhoucke and Vandevoorde (2006) compares timeliness with the change of accuracy 

along the completion stage of projects.   

 However, these approaches have two limitations.  First, the accuracy measure in 

terms of the average error of prediction over the entire execution has little practical 

meaning for project managers.  It would be more useful if accuracy of various methods 

is compared at specific points of time.  For example, forecasting performance evaluation 

results must be able to answer a question such as “After 20 percent of project duration 

has passed, what is the expected accuracy of the predicted project duration from this 

method?”  Another limitation in the previous approach is that the timeliness measure of 

a forecasting method is based on the belief that more accurate predictions lead to earlier 
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warnings.  Although, at least intuitively, the assumption appears reasonable, the 

timeliness of a forecasting method should be evaluated in terms of the timing of warning 

which is determined in the larger context of a decision making system.   

 In this dissertation, a new evaluation framework for project performance 

forecasting methods is proposed.  The primary goal of the framework is to obtain 

statistically meaningful and practically informative results of various forecasting 

methods in terms of the accuracy of prediction, the timeliness of warning, and the 

reliability of warning.  Figure 5.1 compares the new framework to the conventional one.  

The new approach is based on the common performance control practices used in the 

construction industry, artificial data from extensive simulation, and new evaluation 

criteria developed to take account of the characteristics of project performance 

forecasting.  The timeliness and reliability of a method are evaluated based on the 

warnings from an early warning system, instead of average accuracy during a period of 

time.  

 This chapter is organized as follows.  In Section 5.1, fundamental issues related 

to the parametric studies are reviewed.  The limitations of using real projects are 

discussed and artificial project data generation is presented as an alternative method.  A 

brief review of the conventional forecasting methods is also presented.  Section 5.2 

addresses the random progress generation technique used to develop a large set of 

diverse artificial project data.  In Section 5.3, typical early warning systems in project 

management are reviewed and it is shown that in spite of individual characteristics they 

share common core elements.  Section 5.4 reviews the evaluation criteria used in the 
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Figure 5.1 Frameworks for evaluating project performance forecasting methods 
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following performance evaluation.  In this research, the two most commonly used 

criteria (the mean percentage error and the mean absolute percentage error) in the 

forecasting literature are modified and several original criteria are proposed based on the 

characteristics of project performance forecasting and general probabilistic performance 

evaluation.  Results from the tests of the three research hypotheses are summarized in 

Section 5.5, Section 5.6, and Section 5.7, respectively.  Overall comparison between the 

four forecasting methods is presented in Section 5.8.  Finally, the results are summarized 

in Section 5.9. 

 

5.1.2 Data Collection 

To achieve the goal of obtaining statistically meaningful results about the performance 

of various forecasting methods, a large set of project performance data is required.  

These data should be independent of any of the forecasting methods under comparison.  

Showing some real cases in which a forecasting method makes better forecasts than 

other methods does not prove the superiority of the method because it is almost always 

possible to find some other cases in which another method outperforms the others.  A 

similar issue has been addressed by Hazelrigg (2003) in his study about validating 

engineering design alternative selection methods.  The author argues that merely testing 

a decision method in various contexts does not validate the decision method because the 

results can be made by chance and the only viable method is to rely on mathematical 

validation of the procedure.  Furthermore, in order to verify that a decision 

recommended by a decision method is indeed the best choice, all possible choices must 
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be tested independently so that the results of each choice can be compared (Hazelrigg 

2003).   

 The same argument by Hazelrigg (2003) holds true for evaluating and comparing 

different forecasting methods.  In that sense, the use of real project data has several 

shortcomings because real data from past projects are limited in amount and, more 

importantly, affected by unknown managerial activities during the execution.  First, for 

any historical project data to be used in performance evaluation, a complete set of the 

planned and the actual performance data should be available.  Furthermore, to get a 

statistically meaningful outcome, a large enough number of complete project data is 

required, which can hardly be achieved in the real world.  Second, given the actual 

progress data, any volitional interference – whether good or bad – by the project team or 

management should be identified and their effects on the actual progress should be 

quantified.  Probability distributions of future performance predictions, as forecasts from 

the current state, are conditional on no control actions being taken in the future.   

 Another challenge in evaluating project performance forecasting methods arises 

from the fact that it is practically impossible to conduct empirical tests using real 

projects.  First of all, a prediction of a project overrun is a self-negating prediction.  That 

is, a warning about a future problem should be used to reduce its probability of coming 

true, resulting in negating the prediction.  Furthermore, in order to compare forecasting 

methods with a real project, the same project should be executed independently from any 

of the forecasting methods under consideration or each forecasting method should be 

applied independently.  However, either situation is not possible because forecasting is 
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an essential function of management and the same project can not be repeated 

independently with each forecasting method. 

 In this research, a large set of artificial project data is used.  Testing new ideas 

and methods under artificial or simulated environments is common and a generally 

accepted approach in the engineering and scientific research community.  For example, 

new earthquake design codes for buildings or bridges may be tested on a huge shaking 

table that generates artificial earthquake vibrations.  The primary idea of using artificial 

data is to evaluate or test the performance of forecasting models against a wider range of 

plausible situations instead of relatively small sets of real data (Vanhoucke and 

Vandevoorde 2006).   

 Artificial projects are generated with a common project simulation approach 

based on network schedule and their actual performance data are obtained through 

random executions that are independent of any forecasting methods.  It should be noted 

that the fundamental concept of this approach is to evaluate the forecasting performance 

of various methods with a large set of diverse project data which are generated 

artificially under the control of critical factors such as the complexity of the activity 

network, the accuracy of preconstruction information (i.e., a probabilistic estimate of 

project duration and a baseline progress curve), and execution scenarios (i.e., ahead of 

schedule and behind schedule).  Recently, Vanhoucke and Vandevoorde (2006) 

conducted a study comparing different EVM schedule forecasting formulas.  In the 

study, they tried to draw general conclusions that hold under various situations, rather 

than to show specific forecast results based on a limited number of real project data.  To 
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achieve this goal, they generated 3100 random activity networks for projects with 30 

activities.   

 

5.1.3 Forecasting Methods 

In this chapter, four forecasting methods are used separately or as a combination.  They 

are the Kalman filter forecasting method, the Bayesian adaptive forecasting method, the 

EVM, and the CPM.  Since the EVM and the CPM were reviewed in Chapter II and the 

KFFM and the BAFM have been discussed thoroughly in previous chapters, this section 

focuses on the assumptions made for CPM and EVM. 

 

Critical path method 

Critical path method has been reviewed in Chapter II.  In this research, the project 

duration at completion is estimated based on two assumptions.  First, it is assumed that 

all activities in a network schedule are successfully managed to start at the earliest 

possible time according to the early start policy.  Second, it is assumed that actual 

completion dates of on-going activities that have been completed more than 50 percent 

as of the time of forecasting can be correctly estimated.  For the other on-going activities 

with completion rate less than 50%, the original estimates are used for prediction. 

 

Earned value method 

Earned value method has been reviewed in Chapter II in detail.  It should be noted that 

the same performance metric based on the earned schedule (ES) concept is used as the 
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primary performance state variable in the Kalman filter method.  Therefore, any 

differences in the predicted project durations at completion by the EVM and the KFFM 

are strictly the results of methodological differences rather than any differences in input 

information.  

 

5.1.4 Selection of Decision Parameters 

In the generation of the artificial project data, specific values of design parameters are 

selected according to common management practices in the construction industry and 

the results from previous research.  This section summarizes major parameters used in 

the data generation, including the number of activities in a schedule network, the number 

of precedence relations in the network, the activity durations and costs, and the time 

horizon of forecasting. 

 

The number of activities in individual project networks 

The number of activities is an important element in project scheduling.  Project 

scheduling is a process of identifying all activities required to complete the project and 

defining the interface between them to ensure that the activities are managed more 

effectively and in the right order.  Typical project scheduling starts with decomposing 

the whole project into smaller components – activities or work packages – so that they 

can be estimated, planned, and managed more efficiently.  In general, the size of a 

project is a primary factor that determines the number of activities in the project 

schedule.  However, the appropriate number of activities in a schedule network depends 
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on the level of scheduling detail which is determined by the planner according to many 

factors, such as the physical nature of a project, the competency of the organization, and 

the procurement plan specific to the project.  Therefore, there are no systematic rules 

that determine the optimal number of activities for a project schedule.   

In the 2002 Unified Facilities Guide Specification (UFGS) for Network Analysis 

Systems, appropriate ranges of the number of activities are recommended for 

construction projects with different sizes (Nassar and Hegab 2006).  Most artificial 

projects used in the parametric studies are generated to have 200 activities.  According to 

the UFGS, this number is recommended for projects in cost range of 1.0 to 5.0 million 

dollars.   

 

The number of precedence relations in the network 

Given the number of activities in a schedule network, the number of precedence 

relations among the activities is the most important factor that influences the complexity 

of the network structure.  To take into account of potential effects of network complexity 

on the forecasting performance, the number of precedence relations in artificial projects 

is chosen to represent a reasonable range of complexity levels in construction projects.   

 A precedence relation is based on the interdependence of activities and shows the 

order or sequence in which the activities are planned to be executed.  In a typical 

precedence network schedule, four basic relationships between activities are determined 

by how the completion (or start) of an activity restricts or restrains the start (or 

completion) of following activities.  They are the finish-to-start (FS), finish-to-finish 
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(FF), start-to-start (SS), and start-to-finish (SF) relations.  In the generation of artificial 

projects used in the hypothesis tests, only the FS relationship is used because it is most 

common in real project activities. 

The number of precedence relations in a network is directly related to the 

complexity of a schedule network.  Many different measures are proposed in the 

literature to characterize the complexity in activity networks.  A well-known measure for 

activity-on-node networks is the coefficient of network complexity (CNC), which is 

defined as the number of arcs over the number of activities (Davies 1973; De Reyck and 

Herroelen 1996; Elmaghraby and Herroelen 1980; Kaimann 1974).  Demeulemeester et 

al. (2003) argue that the CNC does not correctly measure the hardness of a project 

scheduling problem.   

 The complexity measure used in this research is based on the order of strength 

(OS) proposed by Mastor (1970).  The OS is defined as the number of precedence 

relations divided by the maximum number of precedence relations, which is N(N-1)/2 for 

a network with N activities (Demeulemeester et al. 2003).  Recently, Nassar and Hegab 

(2006) proposed a modified complexity measure based on the OS.  The measure 

evaluates the complexity of a schedule network based on the range of possible non-

redundant precedence relations.  For a schedule network with N activities, the minimum 

number of non-redundant relations is (N -1) and the maximum number of non-redundant 

relations in a network with N ≥ 6 is given by (Kolisch et al. 1995) 
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Then the network complexity (CN) of a project with N activities connected with x 

non-redundant relations is defined as (Nassar and Hegab 2006) 
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where the min and the max are (N-1) and the maximum number of precedence relations 

calculated with Equation (5.1).  In use of the CN, the authors recommended a schedule 

network with CN < 30 as an acceptable level of complexity for scheduling.   

 

The durations and costs of activities 

It is assumed that all activities in individual artificial projects are homogeneous in terms 

of the probabilistic properties of duration and cost.  The durations and costs of activities 

are assumed to be normally distributed.  Specific values of the mean and variance of 

activities are chosen in such a way that the overall project duration spans over the range 

from 70 to 90 weeks to ensure proper length of the time horizon of forecasting. 

 

The time horizon of forecasting 

The forecasting of project duration at completion is carried out up to the point of planned 

project duration.  Forecasting is no longer meaningful when the planned completion date 

has already passed.  In a practical point of view, when a project passes an original 
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completion date without rescheduling, prediction of the actual completion date should be 

based on thorough investigation over the remaining activities instead of past 

performance data. 

 

5.2 Random Progress Generation 

5.2.1 Random Network Generation 

An alternative to the data observed from real projects is artificial data generated by 

mathematical models.  To meet the purpose of the research, an original random progress 

generating algorithm was developed and programmed in Visual Basic for Applications 

in Excel® 2003, which is named RanPRO (the random project progress generator).  

RanPRO is a program that generates a set of project progress curves – the planned 

progress and the actual progress – using a random network generation technique and the 

standard critical path analysis method (Figure 5.2).  Although the need for random 

schedule network generation has been recognized and investigated by many researchers 

(Agrawal et al. 1996; Demeulemeester et al. 1993; Demeulemeester et al. 2003), the 

method presented in this research is an improved one because it takes the effect of 

redundant relations into account.  
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Figure 5.2 Random project progress generation 

 

Demeulemeester et. al. (1993) presented a random activity network generation 

method that represents precedence relations between activities in a matrix form, which is 

named the precedence matrix.  In the method, a schedule network should satisfy three 

schedule constraints. 

Schedule Constraints 

1. An arc always leads from a small number activity to a larger one. 

2. There is one start and one end activity. 

3. Each internal activity has at least one immediate preceding activity and at least one 

immediate following activity. 
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Under the schedule constraints, a schedule network with N-activities can have a 

maximum of N(N-1)/2 precedence relations.  All the feasible relations can be represented 

in an N-by-N matrix, as shown in Figure 5.3 (a) for the case with ten activities. The 

number ‘1’ in an element (i, j) of a precedence matrix indicates that Activity-i is linked 

to Activity-j by the Finish-to-Start relation.  In other words, one needs to finish Activity-

i to start Activity-j. 

 
1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1
4 1 1 1 1 1 1
5 1 1 1 1 1
6 1 1 1 1
7 1 1 1
8 1 1
9 1

10  
(a) Complete relations 

1 2 3 4 5 6 7 8 9 10
1 1 0 0 1 0 0 1 0 0
2 1 0 1 0 0 1 0 1
3 1 0 1 0 0 1 0
4 1 0 0 1 0 0
5 0 0 1 1 0
6 1 1 0 0
7 0 1 1
8 1 0
9 1

10  
(b) A random network with redundancy 

Figure 5.3 A random network generated by the deletion method 

 

The deletion method by Demeulemeester et. al. (1993) starts with the complete 

precedence matrix and proceeds by randomly selecting a predetermined number of 

relations to eliminate.  Before a relation has been eliminated from the precedence matrix, 

it must be checked whether eliminating the selected relation does violate any schedule 

constraints.  The precedence matrix in Figure 5.3 (b) is an example that was generated to 

have 20 active relations. 
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5.2.2 Redundancy Elimination 

Redundant relations 

The redundant relation in an Activity-on-Node (AoN) schedule network is defined as a 

precedence relation that is dominated by other precedence relations and, as a result, 

elimination of it has no impact on the schedule performance of the network.  Figure 5.4 

shows two cases of redundancy in AoN schedule networks: the direct redundancy and 

the latent redundancy.  The direct redundancy occurs when a relation between two 

activities is dominated by another activity that goes between the two with direct relations 

with both of them.  The latent redundancy occurs when a relation between two activities 

is dominated by a combined effect of relations between two or more activities.  

 The deletion method does not account for the redundant links between activities.  

As a result, it may provide an unrealistic measure of network complexity.  Furthermore, 

the presence of redundant links in a schedule network can lead to additional 

computational burden in the following modules. 
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(a) Direct redundancy 
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(b) Latent redundancy 

Figure 5.4 Redundant relations in AoN schedule network 
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Redundancy elimination algorithm 

A simple algorithm is presented for the elimination of all redundant relations in a 

random network generated by the deletion method.  The algorithm is based on a set of 

three order constraints and ensures a complete enumeration, in the right order, of all 

indirect relations between any two activities in the network.  More specifically, all 

combinations of three activities – Activity-i, Activity-j, and Activity-k –, which are 

assumed to be i < j < k, are examined.  Then, there are only four cases that make a 

relation between Activity-i and Activity-k redundant as shown in Table 5.1.  From the 

four cases, three ordering constraints for complete enumeration of all combinations of 

two activities can be derived. 

 

Order constraints (OC) 

 [OC1] Relation between Activity-i and Activity-j should be examined before the 

relation between Activity-i and Activity-k.  Therefore, the third activity should be 

arranged in ascending order. 

 [OC2] Relation between Activity-j and Activity-k should be examined before the 

relation between Activity-i and Activity-k.  Therefore, the first activity should be 

arranged in descending order. 

 [OC3] There should be at least one activity between Activity-i and Activity-k.   
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Table 5.1 Four cases of a redundant relation 

Activity-i and Activity-j Activity-j and Activity-k Activity-i and Activity-k 
Precedence 
Precedence 
Redundant 
Redundant 

Precedence 
Redundant 
Precedence 
Redundant 

Redundant 
Redundant 
Redundant 
Redundant 

 
 
 

Activity-i  Activity-j  Activity-k 
1         2         3 
2         3         4 
1         2         4 
1         3         4 
3         4         5 
2         3         5 
2         4         5 

··· 
1       (N-1)        N 

(a) Complete enumeration 

 
For k = 3 To NNODE       'Third ACT-k 
For i = (k - 2) To 1 Step -1   'First ACT-i 
For j = (i + 1) To (k - 1)     'Second ACT-j 
   If PM(i, j) * PM(j, k) <> 0 Then 
      PM(i, k) = 2        'Redundant Relationship. 
   End If 
Next j 
Next i 
Next k 

(b) Algorithm (Visual Basic) 

Figure 5.5 An algorithm for redundant relation elimination 

 

A computer code was written to detect the latent redundancy and shown in 

Figure 5.5.  Figure 5.6 (a) shows the network after eliminating direct redundancy. Figure 

5.6 (b) shows all the direct and latent redundancies in the same network along with the 

final precedence relations. 

It should be noted that even though the sample network was originally generated 

to have 10 activities and 20 relations, eliminating redundant relations reduces the 

meaningful relations to 11 – about half the target. More importantly, Figure 5.6 (b) 

clearly shows that based on the final relations there are just five potential relations left, 

which are smaller than the difference, 20 – 11 = 9,  to meet the target. 
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1 2 3 4 5 6 7 8 9 10
1 1 0 0 R 0 0 R 0 0
2 1 0 1 0 0 R 0 1
3 1 0 1 0 0 1 0
4 1 0 0 R 0 0
5 0 0 1 R 0
6 1 1 0 0
7 0 1 R
8 1 0
9 1

10  
(a) The random network without direct 

redundancy 

1 2 3 4 5 6 7 8 9 10
1 1 R R R R R R R R
2 1 R R R R R R R
3 1 R 1 R R R R
4 1 0 0 R R R
5 0 0 1 R R
6 1 1 R R
7 0 1 R
8 1 R
9 1

10  
(b) The random network without 

redundancy 

Figure 5.6 The effect of redundancy elimination in a random network 

 

5.2.3 Project Progress Curve Generation 

Once an activity network for a project is determined, durations of all activities in the 

project are combined into the network to get a project schedule.  The start and finish 

dates of each activity can be calculated by the critical path analysis.  Then the project 

progress curve is generated by imposing the cost estimate of each activity on the project 

schedule.   

 

5.3 Early Warning Systems in Project Management 

In evaluating forecasting methods, statistical significance is often confused with 

practical significance or reliability (Armstrong 2002).  Statistical error measures such as 

the mean percentage error (MPE) and the mean absolute percentage error (MAPE) make 

evaluation procedures a straightforward process because they provide absolute values for 

the accuracy of forecasting methods.  However, practical significance of forecasting 

methods should be evaluated in the context of a larger decision making system in which 
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the methods are used as aids to provide unbiased predictions and reliable prediction 

bounds.  

 In project management, forecasting methods are used to provide reliable 

estimates of the degree of success in achieving the project objective.  One should 

manage projects not by the current indicators but by the forecasts at completion.  In a 

typical project control system, forecasts are evaluated and compared against the 

objectives in order to make a decision as to whether the current deviation is significant 

or not.  An early warning system (EWS) provides a formal procedure for evaluating the 

significance of the deviation between the plan and the actual progress.  Therefore, an 

early warning system is an essential part of project controlling process.  With a reliable 

EWS, a project team is able to decide the timing when additional attention is required to 

detect some symptoms or early indicators of future problems.   

 Early warning systems can be characterized with two attributes: the warning 

metric and the warning criterion.  In this section, two probabilistic early warning systems 

are reviewed according to the nature of warning metrics and warning criteria.  The 

purpose of this section is to show that the early warning system used in the parametric 

studies in this chapter are, in fact, completely general and, therefore, the assessment of 

forecasting performance based on the warning systems can be considered a general one 

rather than case-specific.  
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EWS based on critical risk 

Project objectives, especially the completion date and the budget of a project, should be 

realistic and achievable.  Under a competitive business environment, however, decisions 

about the project duration and cost in a bid are often made based on a strategic balance 

between the probability of winning the bid and the expected profits from the project.   

 For example, an organization may win a project and start it with some accepted 

level of risk, P0, which represents the probability of overrun.  During the execution, the 

actual performance is monitored and measured to revise the probability of overrun.  Let 

P(t) denote the probability of overrun as evaluated at time t.  Then a project team needs 

to determine whether the current level of overrun risk is negligible or it is the time for 

raising a warning flag.  This decision must be made based on an objective criterion 

according to the objectives of the project and risk management strategies of the 

organization.  For example, a warning signal can be transmitted when the current 

overrun probability exceeds the critical risk for the project, PC.  Figure 5.7 (a) shows an 

example of the EWS based on critical risk.   

 

EWS based on Duration-at-Risk 

Value-at-Risk (VaR), which was originally developed to quantify market risk, is defined 

as the percentile of gains or losses at a given level of confidence (Jorion 2000).  In the 

construction industry, Ye and Tiong (2000) proposed a method for capital investment 

decision making based on the VaR concept.  The method, the NPV-at-risk method, 

provides the net present value of a project at a given confidence level.  
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 In a similar way, the Duration-at-Risk (DaR) for project schedule performance 

can be defined as follows.  Given a probability distribution of project duration at time t, 

T(t), the Duration-at-Risk, Tp(t), of the project duration at a given probability p, is the (1-

p)th percentile of the distribution.  That is, 

 ( ) ( )pP T t T t p⎡ ⎤> =⎣ ⎦  (5.3) 

Then, Tp(t) represents the project duration that has a (1 - p) probability of finishing 

earlier.  

 The primary merit of the DaR is that it provides an intuitive single-value 

indicator for a probability distribution of project duration.  Once the probability p is 

chosen, the resulting Duration-at-Risk Tp is the single criterion that can be used to make 

decisions about performance control.  For example, a warning can be made when the 

DaR at a specific time is greater than a predetermined control limit as shown in Figure 

5.7 (b).   

 In practice, the control limit is determined at some value greater than the planned 

completion date to allow some buffer in making official warnings.  For example, when 

the prior distribution of project duration is available, the planned duration at completion 

(PDAC) can be determined at some confidence level p, that is, PDAC = DaRp(0).  Then 

a warning is made at some time t when the DaRp(t) calculated from the posterior 

distribution of project duration exceeds the control limit.   

 It should be noted that the safety margin between the control limit (CL) and the 

PDAC can be explicitly included in project objectives in terms of schedule contingency.  

Contingency is defined in many different ways.  According to PMBOK®, contingency is 
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“a provision in the project management plan to mitigate cost and/or schedule risk.”  

Simply put, contingency is something added to the baseline estimate to account for 

uncertainties.  Adding contingency as a separate item in project planning is a 

recommended practice in the project management community (Uyttewaal 2002).  

However, practical implementation of contingency may differ from organization to 

organization according to its culture, policy, and the attitude of the owner or top 

management against risk.  For a project with schedule contingency as a separate item, 

the PDAC can be determined as 

 ( ) ( ) ( )PDAC Baseline Estimate Contingency= +  (5.4) 

In this situation, a schedule warning occurs when DaRp(t) > PDAC. 

 In the parametric studies in this chapter, the EWS based on DaR is applied with 

confidence level p = 0.5.  Then the PDAC is the mean of the prior probability 

distribution of project duration and the DaR0.5 at time t is the mean of the posterior 

probability distribution of project duration.  The control limit for warning can be 

determined from the prior distribution of project duration at a critical level α < 0.5.   
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PDAC

t = 0 t

A warning is made
when the probability of 
overrun becomes greater
than a predetermined
critical risk, PC

Initially accepted
risk, P0

Warning Criterion:
P(t) > PC(t) 

 
(a) EWS based on critical risk 

PDAC 
= DaRp(0)

Control Limit

t = 0 t

A warning is made
when the Duration-at-Risk
at a given probability p
is greater than a predetermined
control limit.

Probability, p
Warning Criterion:

DaRp(t) > Control Limit

 
(b) EWS based on DaR 

Figure 5.7 Early warning systems  

(Note: All probability distributions are drawn not to scale) 
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5.4 Evaluation Criteria for Project Forecasting Method 

5.4.1 Accuracy, Timeliness, and Reliability 

Establishing proper criteria is a critical step for evaluating and comparing forecasting 

methods.  In the forecasting literature, accuracy is known as the most often used 

criterion among both practitioners and researchers (Carbone and Armstrong 1982).  In 

the previous work on evaluating project performance forecasting methods (Vanhoucke 

and Vandevoorde 2006; Zwikael et al. 2000), accuracy of forecasts is assessed with 

well-known statistical error measures, such as the mean square error (MSE), the mean 

percentage error (MPE), and the mean absolute percentage error (MAPE).  In this 

dissertation, conventional concepts of the MPE and the MAPE are modified to obtain 

results that are practically informative and statistically meaningful.  

 From a practical perspective, however, project managers may be more concerned 

about the timeliness and reliability of warnings than the accuracy in terms of statistical 

error measures.  The ultimate goal of forecasting is to provide management with warning 

signals about the degree of success in achieving the project objectives (for example, the 

scope, the budget, and the completion date).  Therefore, warning signals should be 

reliable and, more importantly, should be transmitted as early as possible.  The 

timeliness of warning signals has been recognized as a desirable characteristic of project 

performance forecasting (Teicholz 1993) and has served as an important criterion for 

evaluating forecasting performance (Vanhoucke and Vandevoorde 2006).  In this 

dissertation, two timeliness criteria – the overrun warning point and the probability of 

correct warning at different stages of completion – have been proposed and applied in 
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the parametric studies.  Both criteria are discussed in detail in the following sections.  It 

should be noted here that the overrun warning point works only for probabilistic 

forecasting models, for example, the KFFM and the BAFM, because it relies on the 

prediction bounds on single-point forecasts.  As a result, when deterministic methods 

such as CPM and EVM are involved in comparison, the probability of correct warning at 

different stages of completion is applied.   

 The reliability of warnings is also an important factor, especially for 

practitioners, that need to be considered in the evaluation of forecasting methods.  

Typical responses to an overrun warning may include the time consuming and disruptive 

process of identifying the root causes, evaluating the significance, and taking appropriate 

actions to put the project back on track.  Even when the warning turns out to be false it 

may have repercussions.  For example, the project team may still need to spend some 

time on preparing and disseminating additional performance analysis reports that justify 

the taking-no-action decision.  

 The overall performance of forecasting methods must be measured in terms of 

accuracy, timeliness, and reliability.  An ideal case would be one in which all of the 

three elements are maximized simultaneously.  However, in most situations, trade-offs 

among these factors may need to be made according to the managerial strategy or 

priority of the project.  In the remaining parts of this section, the evaluation criteria used 

in the parametric studies are addressed in detail.  Correct understanding of the criteria is 

essential for correct interpretation of results. 
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5.4.2 MAPE and MPE 

The literature about the evaluation of project performance forecasting methods is very 

limited.  Teicholz (1993) compared two models – the sliding moving average and the up-

to-date average – for forecasting final cost and budget of construction projects in terms 

of the area which is enveloped by the forecast final costs over time and the actual final 

cost.  Zwikael et al. (2000) evaluated five forecasting models in EVM using three 

performance measures: the mean square error (MSE), the mean absolute deviation 

(MAD), and the mean absolute percentage error (MAPE).  Recently, Vanhoucke and 

Vandevoorde (2006) used the mean percentage error (MPE) and the MAPE in a study of 

comparing earned value metrics for schedule forecasting.   

 Most evaluation criteria used in the previous work can be characterized by the 

fact that an evaluation of a method or a comparison of methods is made based on the 

accuracy of forecasting, which is measured, fundamentally, in terms of the average 

deviation between the forecasts and the actual over a certain period of time.  For 

example, when the estimated duration at completion (EDAC) is forecast over N periods 

(t, t+NΔt), the MAPE is defined as  

 ( ) ( )
( )

0

1, 100
1

N

i

ADAC EDAC t i t
MAPE t t N t

N ADAC=

− + Δ
+ Δ = ×

+ ∑  (5.5) 

where ADAC is the actual duration at completion.   

 The MAPE is useful for comparing relative accuracy of the methods.  However, 

an average error of forecasts over a period of time has little practical significance 

because it is difficult for decision makers, for example, project managers and owners, to 

interpret the result and use it to make a better decision.  That is, the average error over a 
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period of time does not answer the question of how accurate a prediction made at a 

specific time during the execution period is.  

 In this research, this limitation in the conventional measures for forecasting 

accuracy evaluation has been overcome by evaluating the percentage error (PE) and the 

absolute percentage error (APE) at a specific time t.  These are defined as follows: 

 
( ) ( )

( ) ( )

100

100

APDU EDAC t
APE t

APDU
APDU EDAC t

PE t
APDU

−
= ×

−
= ×

 (5.6) 

Given a project k, the mean absolute percentage error and the mean percentage 

error are calculated from a set of forecasts for a large set of random executions.   
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where k and i are the indices for projects and random executions for individual projects, 

respectively; N is the number of executions for project k. 

 

5.4.3 Overrun Warning Point 

Although solutions to making decisions under uncertainty have been investigated as 

early as the 1960s (Hertz 1968), probabilistic results from management models often 

make decision makers confused and reluctant to rely on them, largely because of the lack 

of specific and intuitive rules for alternative selection and the chance of preference 

reversal under different criteria.  A new performance measure is proposed in this 
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research based on the characteristics of projects and probabilistic forecasting approaches.  

The new metric, the overrun warning point (OWP), serves as objective measure of 

forecasting performance, combining the accuracy of mean prediction, the associated 

uncertainty, and the risk-attitude of decision makers.  

 The overrun warning point is defined as the time when a probabilistic forecasting 

method generates a warning signal about project schedule or cost overrun according to a 

predetermined acceptable tolerance of decision makers.  OWP is an integrative measure 

of the overall quality of a forecasting method because it is a function of the average 

value of prediction, its associated uncertainty, and the tolerance limits of decision 

makers.  OWP is also a direct measure of timeliness of a forecasting method and 

represents the ability of the method to issue an early warning signal in a timely manner.   

 The graphs in Figure 5.8 illustrate how the OWP is determined from a series of 

probabilistic predictions of the EDAC of a hypothetical project undergoing roughly 28% 

schedule overrun.  The mean and prediction bounds are estimated every 10 time units.  

The upper bound (UB) and lower bound (LB) are shown at 10% confidence level on 

both sides.  From the result, one can expect the forecasting system to issue an overrun 

warning at around 34 time units.  The overrun warning is the sign that the probability of 

schedule overrun exceeds the project’s acceptable level which is specified with 

prediction bounds. 
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Figure 5.8 Example of the OWP 

 

5.4.4 Probability of Warning at Different Stages of Execution 

Probability of warning is an original criterion for the forecasting performance evaluation 

based on simulation.  Given a project k, the probability of warning at time t, PWk(t), is 

defined as the probability that a forecasting method transmits a warning signal, whether 

it is correct or not, for a large set of potential executions under consideration.   

 the number of forecasts that transmit overrun warning at time ( )
the total number of forecasts at time k

tPW t
t

=  (5.8) 

The average of PW across many projects is named the mean probability of 

warning (MPW) and is defined as 

 ( ) ( )
1

1 m

k
k

MPW t PW t
m =

= ∑  (5.9) 

where m represents the number of projects used in calculation. 
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A set of executions used in the PW calculation is referred to as a target group of 

the PW.  When a target group is chosen from a population with specific requirements, 

the PW represents a conditional probability of warning under the specific situation.  For 

example, if a target group consists of executions that finish behind schedule, the 

corresponding PW(t) represents the probability of detecting overrunning executions and 

issuing correct warnings at time t.  On the contrary, for a group of executions finishing 

ahead of schedule, the PW(t) represents the probability of transmitting false warnings 

even though the executions finish ahead of schedule.   

 With a large set of data from the simulation of artificial projects, the probability 

of warning is integrated with the scenario based evaluation of forecasting performance.  

That is, the PW at time t given an execution scenario represents the probability of getting 

a warning for the specific cases belonging to the scenario.  The profiles of PW over the 

forecasting span may be different from each other depending on the scenarios. 
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5.5 Test of Hypothesis 1 

5.5.1 Test Design and Data Generation 

The first hypothesis of this research states as follows:  

Hypothesis 1:  The use of prior information, as used by Bayesian, along with actual 

performance data increases the quality of forecasting performance with regards to the 

accuracy, timeliness, and reliability of warning signals.  

 

The first hypothesis is about the effect of incorporating prior performance 

information available during the preconstruction phase on the accuracy, timeliness, and 

reliability of warning signals.  The BetaS-curve BAF method is chosen to represent the 

BAF approach because its flexibility in dealing with various types of prior performance 

information. 

Figure 5.9 shows the structure of the artificial project data set used for the 

hypothesis tests.  First, three project groups of ten artificial projects, 30 projects in total, 

are generated according to predetermined complexity levels for the schedule network.  

To take into account the potential influence of different network structures of the 

projects within the same project group, the ten projects in each project group are 

randomly generated.  Projects in the same project group are meant to have the same 

network complexity level.  However, the resulting complexity levels of the component 

projects vary to some extent, due to the randomness in the redundancy elimination 

technique – that is, the number of redundant precedence relations in a randomly 

generated network is not deterministic.   
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Figure 5.9 Structure of the artificial project progress data set 
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It is assumed that both activity network and probabilistic estimates of activity 

durations and costs are known to the project team in advance.  This information is used 

in a network-based schedule simulation in order to generate a large set of random 

progress curves.  From the simulation results, the planned duration at completion 

(PDAC), or the planned project duration, is chosen at the mean of the estimated 

probability distribution of the project duration.  The planned progress curve 

corresponding to the PDAC is determined by averaging the random progress curves 

from the simulation over the progress dimension.  The results in this section are obtained 

with 500 random progress curves.  

 Then, artificial project executions are randomly generated with the project 

network and random activity durations.  Each of the resulting progress curves is 

considered the “actual” progress of the project and separately used in forecasts to update 

the estimated duration at completion (EDAC) after each reporting period.  To take into 

account the potential influence of the stochastic nature of randomly chosen actual 

progress curves, each project is repeatedly analyzed against 100 random executions 

(Figure 5.9).   

 Two sets of random progress curves are generated according to two execution 

scenarios: the overrun scenario (OS) and the underrun scenario (US).  The underrun 

scenario is the case when a simulated execution finishes earlier than the PDAC and the 

overrun scenario is the case when it finishes after a schedule control limit, which has to 

be determined by the project team in advance (Figure 5.10).  The schedule control limit 

(SCL) is also used as a criterion for issuing warning signals.  That is, a warning signal is 
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transmitted when the EDAC becomes greater than the SCL.  The SCL can be determined 

based on prior estimates of project duration and a critical risk level α.   

 According to the execution scenarios, two different sets of artificial project 

executions – the underrun group and the overrun group – are generated.  The underrun 

group is used to evaluate the probability of false warning and the overrun group is used 

to measure the probability of correct warning.   

 

 

BAC

PDAC

ADAC

Schedule
Control Limit 
(SCL)

α  

Underrun Scenario: 

   ADAC ≤ PDAC 

 

Overrun Scenario: 

   ADAC > SCL 

 

Figure 5.10 Two execution scenarios in the hypothesis tests (Note: BAC – the 
budget at completion; PDAC – the planned duration at completion; ADAC – the 
actual duration at completion; α - the critical risk for the schedule control limit) 
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In sum, the total number of forecasts in the test of Hypothesis 1, in other words, 

the total number of pairs of planned and actual progress curves, is determined as the 

product of the number of project groups, the number of projects in each project group, 

the number of execution scenario, and the number of random executions in each 

scenario, which is 3x10x2x100 = 6000. 

 Recently Vanhoucke and Vandevoorde (2006) reported a study of comparing 

three earned value metrics.  In the study, two scenarios – an ‘ahead of schedule’ scenario 

and a ‘project delay’ scenario – are simulated by assuming different probability 

distributions for the generation of random activity durations.  More specifically, a 

triangular distribution with a long tail to the left is used to draw random activity 

durations for the ahead-of-schedule projects while another triangular distribution with a 

long tail to the right is used for the delayed projects.  However, influencing the actual 

duration of each activity to ensure that the resulting execution finishes ahead of or 

behind schedule has some limitations.  First, as the authors mentioned, “comparison 

between scenarios is of little value” and comparison should be made within each 

scenario.  Another limitation is that it is hard to generalize the results.  Forecasting 

performance of a method for specific conditions that are manipulated to meet a certain 

criterion can hardly represent the forecasting performance under general conditions in 

which the future depends purely upon the variations of individual activity durations.   

 In this research, the two execution scenarios are defined according to a typical 

early warning system and are generated based on the same probability distribution for 

activity durations.  Therefore, it is possible to compare results across different scenarios.  
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Furthermore, the schedule control limit that is used as the overrun criterion as well as the 

warning criterion can be adjusted according to the level of risk for performance control.   

 An example of random executions under different execution scenarios is shown 

in Figure 5.11.  In the example, the SCL corresponding to α = 0.03 is about 80 weeks.  

With the planned duration of 73 weeks, all random executions under the overrun 

scenario end up finishing with at least 10 percent schedule delay.  It should be noted that 

a random execution belonging to the overrun scenario is not necessarily behind schedule 

throughout the execution.  Figure 5.11 (a) shows that even at the 90% completion point 

there are some executions whose cumulative progress indicates the projects are ahead of 

schedule, even though they eventually result in at least 10 percent overrun.  A similar 

pattern can be found in the random executions finishing ahead of schedule.   

The forecasting performance is measured at different stages of completion.  Six 

evaluation points are chosen as follows:  

 10%T: the time point corresponding to 10 percent of the PDAC 

 20%T: the time point corresponding to 20 percent of the PDAC 

 30%T: the time point corresponding to 30 percent of the PDAC 

 40%T: the time point corresponding to 40 percent of the PDAC 

 50%T: the time point corresponding to 50 percent of the PDAC 

90%C: the time point when 90 percent of the project scope has been completed 
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(a) Overrun scenario 
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(b) Underrun scenario 

Figure 5.11 The planned and random progress curves (100 for each scenario). 
The critical risk α used for the schedule control limit is 0.03 
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In order to investigate the influence of prior information on forecasting 

performance, four cases of prior performance information are chosen.  Prior information 

to the BetaS-curve BAF method consists of the information about project duration and 

information about the progress curve template (Section 4.3.4).  Regardless of the forms 

and sources of information, prior performance information must be represented in terms 

of the probability distributions of the corresponding model parameters, that is, T for the 

project duration and α and m for the shape of the progress curve.   

 Table 5.2 shows the four combinations of prior distributions used in this 

parametric study.  For all cases, results from a network-based schedule simulation are 

used to determine the prior distributions of individual parameters.  In Prior Case 3, the 

standard deviation is doubled to examine the potential effect.  In the case of shape 

parameters, the first case (PC1) consists of the mean values of the prior distributions 

obtained from the simulation.  With fixed shape parameters, actual performance data 

influence only the posterior distribution of project durations.  On the contrary, the 

second (PC2) and the third cases (PC3) use the whole distributions from the simulation.  

As a result, a comparison between PC1 and PC2 shows the influence of using stochastic 

S-curves instead of a single, presumably best, S-curve.  In Prior Case 4, the prior 

distributions of the shape parameters are assumed based on subjective judgment, instead 

of relying on simulation results.  The purpose of PC4 is to demonstrate the effect of 

using relative vague prior information on the forecasting performance of the Bayesian 

adaptive forecasting model.  
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Table 5.2 Prior information cases to be compared in the test of Hypothesis 1 

Types of the BetaS-curve parameters 
Prior Case 
(PC) 

Duration parameter (T) Shape parameters (α and m) 

PC1 TN ~ ( )2,T TN μ σ  αN ~ αμ , mN ~ mμ  

PC2 TN ~ ( )2,T TN μ σ  αN ~ ( )2,N α αμ σ , mN ~ ( )2,m mN μ σ  

PC3 TN ~ ( )( )2, 2T TN μ σ  αN ~ ( )2,N α αμ σ , mN ~ ( )2,m mN μ σ  

PC4 TN ~ ( )2,T TN μ σ  
Subjective judgment 

αN ~ Beta(1.5, 1.5, 1, 9) 
mN ~ Beta(1.5, 1.5, 0.1, 0.9) 
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5.5.2 Test Data 

A large set of artificial project performance data is generated to resemble a wide range of 

real-life projects.  Different levels of network complexity are taken into account with 

three project groups.  Each project group consists of 10 random projects.  With 

individual projects, 100 random executions are generated for the two execution 

scenarios.  In total, 6000 sets of project performance data have been used to evaluate the 

effect of using different prior information in the BetaS-curve forecasting model. 

 The properties of the 30 projects in the test data are shown in Table 5.3.  The 

average network complexity index (CN) of each project group is 9.9, 15.5, and 19.6, 

respectively.  The planned duration at completion ranges from 64 weeks to 91 weeks.  It 

should be noted that the average time to reach the 90 percent completion point is about 

60 percent of the planned duration.  This means that, on average, it takes about 40 

percent of the planned project duration to end the last ten percent of the project.  This is 

typical of projects with front-end-loaded resource allocation.  This pattern is attributed to 

the early start forward calculation method assumed in the generation of the cumulative 

progress curves.  Although it is possible to generate random progress curves representing 

normal or back-end-loaded projects, the early start calculation in the CPM is chosen 

because it does not require additional assumptions other than that there is no resource 

constraint in executing a project.   
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Table 5.3 Properties of random project data for the test of Hypothesis 1 

Ratio to PDAC Project 
Group Project # NR CN PDAC 90%C S.C.L. 90%C S.C.L 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

292 
292 
294 
292 
294 
293 
292 
294 
293 
293 

9.8 
9.8 
10.0 
9.8 
10.0 
9.9 
9.8 
10.0 
9.9 
9.9 

72.9 
73.2 
64.9 
65.6 
71.5 
84.6 
73.0 
76.0 
76.8 
70.0 

44.0 
44.9 
36.7 
41.8 
40.7 
49.5 
45.6 
38.2 
44.6 
44.8 

79.8 
80.4 
71.8 
71.5 
77.6 
92.7 
80.1 
83.9 
83.7 
76.5 

60.4% 
61.4% 
56.5% 
63.7% 
56.9% 
58.5% 
62.4% 
50.2% 
58.0% 
64.0% 

110% 
110% 
111% 
109% 
109% 
110% 
110% 
110% 
109% 
109% 

PG 1 

Avg. 293 9.9 72.8 43.1 79.8 59.2 110% 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

368 
377 
359 
368 
367 
368 
362 
359 
360 
368 

15.7 
16.3 
15.1 
15.7 
15.6 
15.7 
15.3 
15.1 
15.1 
15.7 

79.5 
78.7 
91.9 
81.5 
74.0 
77.6 
77.9 
76.7 
88.6 
83.0 

49.9 
52.6 
55.3 
50.3 
48.8 
44.5 
47.1 
48.6 
51.9 
54.1 

86.3 
85.8 
101.0 
89.5 
80.4 
85.4 
85.3 
83.7 
97.5 
90.2 

62.7% 
66.8% 
60.2% 
61.6% 
66.0% 
57.3% 
60.4% 
63.4% 
58.6% 
65.2% 

108% 
109% 
110% 
110% 
109% 
110% 
109% 
109% 
110% 
109% 

PG 2 

Avg. 365 15.5 81.0 50.3 88.5 62.2% 109% 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

424 
431 
435 
439 
437 
424 
429 
418 
428 
423 

19.3 
19.7 
20.0 
20.2 
20.1 
19.3 
19.6 
18.9 
19.6 
19.3 

77.5 
78.0 
74.7 
74.9 
80.6 
86.3 
80.4 
78.3 
76.1 
72.5 

46.5 
50.3 
44.5 
53.1 
53.0 
61.1 
51.6 
50.4 
47.1 
48.0 

85.1 
85.0 
81.4 
82.0 
88.4 
94.0 
88.4 
85.4 
83.6 
80.3 

60.0% 
64.5% 
59.5% 
70.9% 
65.8% 
70.8% 
64.2% 
64.4% 
61.8% 
66.2% 

110% 
109% 
109% 
109% 
110% 
109% 
110% 
109% 
110% 
111% 

PG 3 

Avg. 428 19.6 77.9 50.6 85.4 64.8% 110% 
(Note: 1) NR denotes the number of nonredundant precedence relations in a network; 2) 
CN is the complexity index; 3) PDAC is the planned duration at completion; 4) 90%C 
denotes the time at 90% completion; 5) S.C.L. denotes the schedule control limit, which 
is determined at α = 0.03.) 
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5.5.3 Results Summary 

This section summarizes the results in terms of the accuracy of predictions and the 

timeliness and reliability of overrun warnings.  

 

Accuracy 

Figure 5.12 shows the overall MPE for the four prior cases, which are aggregated from 

the 30 projects in the test data.  Each data point represents an average over 3000 

forecasts at a specific time.  The results can be summarized as follows. 

 Predictions based on PC1 and PC3 outperform the other two cases at all six 

evaluation points, regardless of the execution scenarios.  In more detail, PC3 

provides more accurate predictions than PC1 at early evaluation points (at 10%T and 

20%T under the overrun scenario and at 10%T under the underrun scenario).   

 Predictions based on PC4 show the largest MPE at all evaluation points.  More 

importantly, while all other three cases show improvement in accuracy as the time of 

forecasting increases from 10%T to 90%C, PC4 shows slight changes at 50%T and 

90%C.   

 

The 95 percent confidence interval on the MPE under the overrun scenario is 

shown in Figure 5.13.  The confidence intervals indicate that the differences in the MPE 

values are statistically significant on the 5% level.  
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(b) Underrun scenario 

Figure 5.12 MPE from 3000 forecasts 

 
 
 



   170

0%

2%

4%

6%

8%

10%

12%

10%T 20%T 30%T 40%T 50%T 90%C

M
PE

PC1
PC2
PC3
PC4
PC1.UB
PC1.LB

 
(a) PC1 
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(b) PC2 

Figure 5.13 Confidence intervals on MPE under the overrun scenario 
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(c) PC3 
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(d) PC4 

Figure 5.13 (Continued) 
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Timeliness and reliability of warning 

The probability of warning from 3000 random executions under each execution scenario 

is shown in Figure 5.14.  The results are summarized as follows. 

 Forecasts based on PC1 and PC3 outperform the other two cases in their timeliness 

of warning.  At 20%T, PC3 provides more correct warnings than the other cases.  At 

30%T, 40%T, and 50%T, the probability of correct warning by PC1 is greater than 

twice the probability by PC3.  However, these differences disappear at the 90% 

completion point. 

 The probability of warning under the underrun scenario is much smaller than the 

probability of warning under the overrun scenario.  The PW of PC1 increases during 

the first three evaluation points, hitting the peak of 3% at 30%T.  However, at the 

later evaluation points – at 40%T, 50%T and 90%C –, the PW decreases.  This 

pattern confirms that the BetaS-curve BAF model provides, on average, more 

reliable warnings as a project proceeds.  

 Early warning potentials of PC2 and PC4 are almost zero up to 50%T.  Even at 

90%C, the probability of correct warning is merely 3.1% for PC2 and 1.4% for PC4.  

It should be noted that the accuracy of predictions by PC2 shows a similar pattern to 

those by PC1 and PC3 under both execution scenarios.  However, when it comes to 

the probability of (correct or false) warning, the results in Figure 5.14 (a) show that 

PC2 fails to detect overrunning projects in a timely manner.  This shows the 

importance of evaluating project performance forecasting models in terms of the 

probability of warning as well as the accuracy measures.  
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Figure 5.14 Overall percentage of warning under different scenarios 
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5.6 Test of Hypothesis 2 

5.6.1 Test Design and Data 

The second hypothesis of this research states as follows: 

Hypothesis 2:  The Kalman filter model and the Bayesian adaptive model outperform 

the conventional methods such as CPM and EVM with regards to the accuracy, 

timeliness, and reliability of warning signals.  

 

This hypothesis is about relative performance of different forecasting methods 

under diverse project situations with respect to execution scenarios, stages of 

completion, and complexity levels of activity network.  The new forecasting methods – 

the KFF and the BAF – are compared with the CPM and the EVM.   

 General introductions to and major assumptions of the CPM and the EVM used 

in the test are discussed in Section 2.4 and Section 5.1.3.  It should be recalled here that, 

except for the CPM, all other methods use the same form of actual performance data 

which are given in typical earned value performance measures, that is, the planned 

cumulative progress and the actual cumulative progress.  The Bayesian adaptive 

forecasting model uses cumulative progress data over the time horizon.  However, both 

the EVM and the KFF focus on the horizontal deviation of the actual progress from the 

plan, which is measured in terms of the earned schedule in Equation (2.3).  Among the 

four prior information cases in Section 5.5, the first type of prior distribution is chosen in 

the BetaS-curve forecasting model.   
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The same procedure used in the test of Hypothesis 1 is applied to generate the 

test set of artificial project data for Hypothesis 2 (Figure 5.9).  First, three project groups 

with different levels of network complexity are generated.  Each project group consists 

of 10 projects with different properties in terms of the number of nonredundant 

precedence relations, the planned duration at completion, and the cumulative progress 

pattern of the baseline progress curve.  The diversity at the project level is achieved by 

the random progress generation technique discussed in Section 5.2.   

 The properties of individual projects are summarized in Table 5.4.  The mean 

project durations of the three project groups are 72, 77, and 86 weeks for PG1, PG2, and 

PG3, respectively.  The ratio of the 90% completion point to the mean project duration is 

about 60%.  The SCL is determined at α = 0.10, which corresponds to about seven 

percent schedule overrun.  

 Given that the planned progress and the actual execution are determined, the four 

methods are individually applied to forecast the EDAC after each reporting period.  

Forecasting performance is evaluated at six points.  However, the 50%T in the test of 

Hypothesis 1 is replaced with the 5%T in order to take a closer look at the forecasting 

performance during the early phase of execution.   
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Table 5.4 Properties of random project data for the test of Hypothesis 2 

Ratio to PDAC Project 
Group Project # NR CN PDAC 90%C S.C.L. 90%C S.C.L 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

288 
292 
292 
295 
294 
293 
293 
298 
290 
292 

9.4 
9.8 
9.8 
10.1 
10.0 
9.9 
9.9 
10.3 
9.6 
9.8 

80.0 
72.0 
73.9 
73.8 
76.5 
68.3 
58.3 
64.9 
81.1 
71.2 

44.8 
39.4 
41.9 
43.2 
45.9 
41.6 
35.1 
36.4 
45.4 
43.6 

85.8 
77.2 
78.6 
78.7 
81.9 
73.7 
62.5 
69.1 
86.1 
75.7 

56.0% 
54.7% 
56.7% 
58.5% 
60.0% 
61.0% 
60.3% 
56.2% 
55.9% 
61.3% 

107% 
107% 
106% 
107% 
107% 
108% 
107% 
107% 
106% 
106% 

PG 1 
(CN = 10) 

Avg. 292.7 9.8 72 41.7 76.9 58.1% 107% 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

369 
376 
356 
358 
364 
367 
365 
364 
364 
366 

15.8 
16.2 
14.8 
15.0 
15.4 
15.6 
15.5 
15.4 
15.4 
15.6 

80.3 
74.5 
83.6 
76.8 
78.4 
79.6 
68.1 
85.9 
73.6 
67.1 

47.9 
46.9 
42.8 
46.2 
50.0 
46.6 
38.8 
56.9 
39.8 
42.2 

85.6 
79.4 
88.8 
81.7 
83.1 
85.3 
72.9 
91.2 
79.0 
71.3 

59.6% 
63.0% 
51.3% 
60.2% 
63.8% 
58.6% 
57.0% 
66.3% 
54.1% 
63.0% 

107% 
107% 
106% 
106% 
106% 
107% 
107% 
106% 
107% 
106% 

PG 2 
(CN = 16) 

Avg. 364.9 15.5 77 45.8 81.8 59.7% 107% 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

433 
417 
429 
422 
421 
430 
415 
426 
413 
430 

19.8 
18.9 
19.6 
19.2 
19.1 
19.7 
18.8 
19.4 
18.6 
19.7 

86.7 
85.1 
85.7 
86.0 
81.8 
80.2 
86.4 
84.0 
84.6 
91.9 

57.9 
51.6 
47.7 
63.0 
53.7 
51.2 
52.9 
50.7 
51.9 
57.1 

92.1 
90.6 
91.3 
91.6 
87.0 
84.5 
91.7 
90.0 
90.0 
97.9 

66.7% 
60.7% 
55.7% 
73.3% 
65.7% 
63.9% 
61.2% 
60.4% 
61.4% 
62.1% 

106% 
106% 
106% 
107% 
106% 
105% 
106% 
107% 
106% 
107% 

PG 3 
(CN = 19) 

Avg. 423.6 19.3 86 53.8 90.6 63.1% 106% 
(Note: 1) NR denotes the number of nonredundant precedence relations in a network; 2) 
CN is the complexity index; 3) PDAC is the planned duration at completion; 4) 90%C 
denotes the time at 90% completion; 5) S.C.L. denotes the schedule control limit, which 
is determined at α = 0.1.) 
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5.6.2 Accuracy of the EDAC 

This section summarizes the results in terms of two accuracy metrics: the MPE and the 

MAPE.  In the following section, the timeliness and reliability of warnings by different 

forecasting methods are evaluated in terms of the probability of warnings under the 

overrun and the underrun scenarios.  

 
Accuracy - MPE 

The accuracy of different methods is measured in terms of the MPE.  The results are 

shown in Figure 5.15 at the six evaluation points.  Each point in the graphs represents 

the average over 3,000 forecasts from 30 random projects.  The results can be 

summarized as follows. 

 Under the overrun scenario, the MPE of predictions by the CPM, the KFF, and the 

BAF models decreases with forecasting time, which means that the forecasting 

accuracy of the CPM, the KFF, and the BAF improves as a project is executed and 

progressed.  For underruning executions, all four methods’ accuracy improves over 

time.   

 Among the CPM, the KFF, and the BAF methods, the order of forecasting accuracy 

is KFF > BAF > CPM under the overrun scenario.  However, the order is reversed to 

CPM > BAF > KFF under the underrun scenario.  These orders are consistent at all 

the six evaluation points. 

 The MPE profile of the EVM for overrunning projects is different from the others.  

During the early stages, 5%T and 10%T, the MPE has negative values, which means 

that predictions by the EVM, on average, overestimate the project duration.  
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However, at the following evaluation points, the MPE are positive.  This inconsistent 

pattern is attributed to the large variation in the EVM predictions, which results in 

errors with different signs.   
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(b) Underrun scenario 

Figure 5.15 MPE of the EDAC under different execution scenarios (α = 0.10) 
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Figure 5.16 shows the variability in the observed percentage errors for each 

method.  The result from the EVM shows that the EVM has a relatively large variation 

during the early evaluation points.  It also shows that the small value of MPE is a result 

of averaging the large overestimating errors and the large underestimating errors during 

the early stages.  Another noticeable pattern found in Figure 5.16 is that the variability of 

the percentage error samples from the KFF and the BAF is getting larger during the early 

stages and, later, slightly decreasing.  Increasing uncertainty early in a project is 

counterintuitive because as the forecasting time passes more actual data are generated, 

which one might assume would decrease the uncertainty in forecasting errors.  This 

pattern found in the KFF and the BAF can be explained by the use of prior information.  

Early in a project, both methods make forecasts based more on prior information than on 

a small number of actual data.  As a result, forecasts made during early in a project tend 

to be close to the prior estimate of the project.  That is, ( )EDAC t PDAC≅ .  Then, from 

the definition of the percentage error, the percentage error for i-th execution of project k 

is  

 
( ) ( ), ,

,
,

,

,

100

100

k i k i
k i

k i

k i k

k i

APDU EDAC t
PE t

APDU
APDU PDAC

APDU

−
= ×

−
≅ ×

 (6.10) 

Therefore, when informative prior is used and the predictions are dominated by 

the prior rather than a small samples of actual data, the variability in percentage errors is 

dominated by the variability in actual project durations, not by the prediction uncertainty 

in EDAC(t).  In other words, the Bayesian and Kalman priors used in the test reduce 
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prediction uncertainty due to small sample data.  Obviously, the pattern in Figure 5.16 

(c) and (d) can be avoided when noninformative priors are used.  For example, the 

forecasts in Figure 4.17 (page 112) show that when noninformative prior is used in the 

BAF method, large errors can be observed even early in a project. 

The 95 percent confidence interval in Figure 5.17 shows that the differences in 

the MPE values in Figure 5.15 (a) are statistically significant on the 5% level.  

 

Accuracy –MAPE 

Another commonly used evaluation measure for forecasting methods is the mean 

absolute percentage error (MAPE).  Since the absolute value of a percentage error is 

used, the MAPE avoids the offset effect in the EVM results in Figure 5.15.  The results 

in Figure 5.18 can be summarized as follows. 

 Among the CPM, the KFF, and the BAF, the same orders of forecasting accuracy 

measured with MPE in Figure 5.15 are observed with MAPE.  That is, KFF > BAF > 

CPM under the overrun scenario and CPM > BAF > KFF under the underrun 

scenario.  However, the BAF and the KFF coincide at 30%T under the overrun 

scenario.   

The EVM shows the largest errors at 5%T and 10%T for overrunning executions, 

and at 5%T, 10%T, and 20%T for underrunning executions.  However, the accuracy 

improves and gets very close to the KFF and BAF at 30%T, 40%T, and 90%C. 
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Figure 5.16 Variability in percentage errors under the overrun scenario  
(The upper and lower bounds are determined at a standard deviation above and below the mean.) 
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Figure 5.17 Confidence intervals on MPE under the overrun scenario  
(The upper and lower bounds are determined at a standard deviation above and below the mean.) 
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Figure 5.18 MAPE of the EDAC under different execution scenarios (α = 0.10) 
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5.6.3 Timeliness and Reliability of Warning 

Given a project, the probability of warning is calculated from 100 random executions.  

The probability of warning at specific times represents the probability that a method 

transmits a warning signal for a set of random executions in an execution scenario.  The 

PW under the overrun scenario represents the probability of correctly detecting a 

schedule overrun at completion and, therefore, it can be used to measure the timeliness 

of a forecasting model to give an early warning against projects that belong to the 

overrun scenario.  However, it is also important for a decision maker to understand the 

probability of false warning, that is, the probability that a forecasting method gives a 

warning against executions which, in fact, are going to finish ahead of the planned 

completion date.  An abundance of false warnings eventually damages the reliability of 

the forecasting method.  Furthermore, decision makers relying on such methods may end 

up ignoring warnings because of “warning fatigue”, which is often observed among the 

people under frequent warnings such as security threats or hurricane evacuations.   

 Therefore, the two graphs in Figure 5.19 show the two sides of the same coin.  

The results can be summarized as follows. 

 CPM:  The CPM forecasts are extremely conservative in giving warning signals.  

The risk of false warning against underruning projects is almost zero at all the six 

evaluation points (Figure 5.19 (b)).  The chance of giving correct warnings for 

overrunning projects remains negligible up to 40%T.  It increases slightly at 40%T to 

4%.  However, even at 90%C, it is merely 19%.  These results can be explained by 

the retrospective nature of the CPM forecasting.  Schedule forecasts by the CPM are 
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based on what has already happened and the performance of remaining jobs in the 

future is not adjusted according to the past performance.  That is, CPM assumes that 

the correlations between past activity durations and future activity durations are 

always zero.  Therefore, it can be concluded that, when it comes to predicting the 

future, an overrun warning by the CPM is extremely reliable because is almost free 

from false warnings.  But the cost of such reliability is that, its early warning 

capability is very poor and the chance of getting early warnings for overrunning 

projects is very low.   

 EVM:  In sharp contrast to the CPM, the EVM shows, at the first three evaluation 

points, higher probabilities of warning than the other methods, regardless of the 

execution scenarios.  Under the overrun scenario, the chance of getting a correct 

warning from the EVM is over 50% even at 5%T and 10%T.  However, the 

probability of correct warning decreases with forecasting time.  This is counter-

intuitive because the reliability of warning should increase as more actual 

information is acquired along the progress of a project.  Nonetheless, the results in 

Figure 5.19 (a) indicate that the EVM gives more correct warnings early in the 

project than the other three methods.  However, the results under the underrun 

scenario shed a different light on how the early warnings from the EVM should be 

interpreted.  Figure 5.19 (b) reveals that the EVM tends to give a lot of false 

warnings during the early stages of a project.  At 5%T and 10%T, the probability of 

a false warning is about 40% and 31%, respectively.  Although the risk of false 

warning for projects decreases over time – at 40%T, it is 7% –, the high risk of false 
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warning during the earlier stages may deter decision makers from counting on the 

EVM.   

 

63%
56%

47%
42%

4%

19%

48%

18%

34%

40% 39%

1%

26%

48%45%

32%32%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5%T 10%T 20%T 30%T 40%T 90%C

Pe
rc

en
ta

ge EVM
CPM
KFF
BAF

 
(a) Overrun scenario 

40%

31%

18%

10%

14%
11%
7%

3%

8%
5%

6%
8%

5%
2%

0%

10%

20%

30%

40%

50%

5%T 10%T 20%T 30%T 40%T 90%C

Pe
rc

en
ta

ge EVM
CPM
KFF
BAF

 
(b) Underrun scenario 

Figure 5.19 Probability of warning under different execution scenarios (α = 0.10) 
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 KFF:  The Kalman filter forecasting method shows relatively stable and reasonable 

warning patterns under both execution scenarios.  Under the overrun scenario, the 

probability of correct warning remains negligible up to the 10%T, then it starts to 

grow to reach 26% at the 20%T and 45% at the 30%T.  On the other hand, the 

probability of false warning by the KFF is again negligible up to the 10%T, increases 

to peak at 30%T, and starts to decline at the following evaluation points.  The 

maximum value of the probability of false warning is about 14% at the 30%T.  These 

results are reasonable because forecasts become more reliable with more actual 

performance data. 

 BAF:  The Bayesian adaptive forecasting method shows similar profiles of 

probability of warning over time to those of the KFF.  However, the response of the 

BAF to actual performance data is slower that that of the KFF, which indicates that 

the BAF is less capable for giving early warnings against overrunning projects and 

more reliable in avoiding false warnings against underruning projects.  It should be 

noted that the forecasting performance of the BAF is influenced by the use of 

different priors or different measurement errors.  The same is also true for the KFF 

method.  Predictions shown in Figure 3.9 (page 53), Figure 4.16 (page 109), and 

Figure 4.17 (page 112) show the wide range of possible predictions that can be made 

by the KFF and the BAF based on the same actual performance data.  Therefore, 

comparison between the BAF and the KFF based on the results in Figure 5.19 can 

not be generalized as the overall performance of the methods.  
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The 95 percent confidence interval on the PW in Figure 5.19 are shown in Figure 

5.20 and Figure 5.21, which show that the differences in the PW are statistically 

significant on the 5% level.  

 

5.6.4 Influence of the Network Complexity on Forecasting Performance 

It is commonly taken for granted that as the network complexity of a project increases it 

gets more difficult to schedule and control the project because of the increasing 

interrelationships among network activities.  This section investigates the influence of 

the network complexity, as defined in Section 5.1.4, on the forecasting performance of 

the EVM, the CPM, the KFF, and the BAF methods.   

 In addition to the results obtained from the three project groups with different 

levels of network complexity, a group of linear projects is analyzed as a reference case.  

Each linear project consists of 20 activities, all of which are on the critical path.  Figure 

5.22 shows the baseline and the first 100 executions out of 1000 random executions 

under each scenario.   

The major results in terms of MPE, MAPE, and PW are shown in Figure 5.23.  

From the graphs, one can see that the characteristic patterns of forecasting methods, 

which were discussed in Section 5.6.2 and Section 5.6.3 are also found with the linear 

projects.   
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Figure 5.20 Confidence intervals on PW under the overrun scenario 
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Figure 5.21 Confidence intervals on PW under the underrun scenario 
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(a) Overrun scenario 
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(b) Underrun scenario 

Figure 5.22 The baseline and random executions (first 100 executions for each 
scenario) of the linear project.  The critical risk α used for the schedule control 

limit is 0.10 
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Figure 5.23 Forecasting performances for linear projects 
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The forecasting performances of each method for projects with different network 

complexities are shown in Figure 5.24 through Figure 5.27 and the results can be 

summarized as follows.   

 

 The EVM:  In most evaluation points, the MPE tends to be smaller for a linear 

project than more complex projects.  Especially, the MPE for a linear project under 

the overrun scenario is almost zero after the 20%T point (Figure 5.24 (a)).  However, 

this does not necessarily mean that the EVM provides more accurate predictions for 

linear projects than more complex projects.  As discussed in Section 5.6.2, the small 

MPE may result from the off-set between positive errors and negative errors.  The 

results in Figure 5.24 (c) and (d) show that the MAPE for linear projects is not any 

better than those for other more complex projects.  In the case of the probability of 

correct warning (Figure 5.24 (e)), the EVM shows higher PW for linear projects at 

20%C, 30%C, 40%C, and 90%C.  However, the influence of network complexity on 

the probability of false warning for projects finishing ahead of schedule is not 

obvious. 
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 The CPM: Under the overrunning scenario, the CPM shows better accuracy in both 

the MPE and the MAPE for linear projects.  The improved accuracy leads to increase 

the probability of correct warning in Figure 5.25 (e).  However, up to 40%T, the PW 

remains still less than 10 %.  At 90%C, the probability of correct warning for linear 

projects is 67% which is about three times of the second highest PW for Project 

Group 3.   

 The KFF:  Forecasts by the KFF do not reveal any dominant pattern among different 

project groups in terms of MAPE and MPE.  In the case of probability of correct 

warning (Figure 5.26 (e)), the KFF makes more correct warnings for linear projects 

than more complex projects.  However, the graphs show that the probability of 

correct warning for Project Group 3 is higher than Project Group 1 and Project 

Group 2, which are less complex than Project Group 3.   

 The BAF:  Similar patterns observed with the KFF are also found in the results from 

the BAF.  Again, no dominant pattern has been observed in forecasting performance 

of the BAF depending on the level of complexity of projects except for the 

probability of correct warning for linear projects.   
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Figure 5.24 Forecasting performance of the EVM for projects with different 

network complexities (Note: PG denotes Project Group in Table 5.4) 



   196

 

0%

2%

4%

6%

8%

10%

12%

5%T 10%T 20%T 30%T 40%T 90%C

M
PE

 
(a) MPE (Overrun) 

-6%

-4%

-2%

0%
5%T 10%T 20%T 30%T 40%T 90%C

M
PE

 
(b) MPE (Underrun) 

0%

2%

4%

6%

8%

10%

12%

5%T 10%T 20%T 30%T 40%T 90%C

M
A

PE

 
(c) MAPE (Overrun) 

0%

2%

4%

6%

5%T 10%T 20%T 30%T 40%T 90%C

M
A

PE

 
(d) MAPE (Underrun) 

67%

18%

23%

0%

10%

20%

30%

40%

50%

60%

70%

5%T 10%T 20%T 30%T 40%T 90%C

Pe
rc

en
ta

ge

 
(e) PW (Overrun) 

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

5%T 10%T 20%T 30%T 40%T 90%C

Pe
rc

en
ta

ge

 
(f) PW (Underrun) 

Lin PG1 PG2 PG3  
Figure 5.25 Forecasting performance of the CPM for projects with different 

network complexities 
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Figure 5.26 Forecasting performance of the KFF for projects with different 
network complexities 
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Figure 5.27 Forecasting performance of the BAF for projects with different 
network complexities 
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5.6.5 Effect of the Level of Critical Risk on Forecasting Performance 

In the forecasts shown in the previous parts of this section, the critical risk level, α = 

0.1, was chosen arbitrarily to determine the schedule control limit.  Section 5.6.5 repeats 

the same analysis in sections 5.6.2 and 5.6.3 with a different value for α.  The purpose of 

this test is to examine the potential influence of the critical risk level on the performance 

of forecasting methods.   

 To focus on more extreme cases – when project managers are more worried 

about severe delays than mild ones –, α = 0.03 is used to determine the schedule control 

limit.  Major forecasting performance measures at different stages are shown in Figure 

5.28.   

 The results show that the change in the level of critical value, which must be 

determined by project managers according to their own attitudes toward risk, does not 

fundamentally change the forecasting performance patterns observed in previous 

sections.   
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Figure 5.28 Forecasting performances by different methods (α = 0.03) 
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5.7 Test of Hypothesis 3 

5.7.1 Test Design 

The third hypothesis states as follows: 

Hypothesis 3:  The relative performance of the Kalman filter and Bayesian adaptive 

forecasting varies depending on the types of information available at the time of 

forecasting.  For example, the information about the baseline plan is more useful in the 

Bayesian adaptive approach than in Kalman filter forecasting.   

 

The Kalman filter forecasting method and the Bayesian adaptive forecasting 

method share several common attributes.  First of all, both methods make use of prior 

performance information to supplement actual performance data.  The major prior 

information required is the probability distribution of project duration and the planned 

cumulative progress curve.  Both methods use actual performance data measured in 

terms of project level cumulative progress.  In addition, both the KFFM and the BAFM 

yield probabilistic predictions with prediction bounds on single-point estimates. 

 However, from a methodological point of view, the two methods are formulated 

based on different premises.  While the KFFM focuses on the dynamic nature of project 

performance, the BAFM relies on well-known statistical approaches such as regression 

methods, curve fitting techniques, and Bayesian inference.  More specifically, the KFFM 

is based on the premises that the progress of a project can be represented by a set of 

dynamic equations with uncertainty and the true state of the project can only be 

measured with some inherent errors.  The dynamic equations for a given project can be 
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established with prior information from the project plan, historical data, or subjective 

judgment.  In the BAFM, the same prior information is used to identify proper S-curve 

models and to construct the prior distributions of model parameters.  Then, the 

probability distribution of each model parameter is revised with actual performance data 

through Bayesian inference.  Therefore, even with the same actual performance data, 

specific predictions by the KFFM and the BAFM may differ from each other due to the 

differences in the use of information.   

 In this section, the relative performance of the KFFM and the BAFM is 

compared under two typical situations in real projects: when the baseline plan is 

available and when the baseline plan is not available.  

 

5.7.2 The KFF and the BAF When the Baseline Is Available 

The forecasting performance of the KFFM and the BAFM when the baseline is available 

has already been discussed in Section 5.6.  The results in Section 5.6, however, are 

limited to single-point predictions about the EDAC in order to make comparisons 

against deterministic methods – the CPM and the EVM – possible.  Meaningful as they 

are, the results do not incorporate the probabilistic nature of both methods.  In this 

section, a comparison between the KFFM and the BAFM is carried out with the overrun 

warning point (OWP) introduced in Section 5.4.3.   

 Using the data in Section 5.6, the overrun warning points from 3000 executions 

under each execution scenario have been calculated.  The overrun warning points are 

determined at the 90% confidence level, which corresponds to a 90% probability of 
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exceeding the planned duration at completion (PDAC).  The probability distributions of 

the OWP from the KFFM and the BAFM are shown in Figure 5.29.  Since each project 

has different PDAC, the normalized OWP – the OWP over the PDAC – is used in the 

results.  The results indicate that both methods provide a similar pattern in issuing early 

warnings, regardless of the execution scenarios.  During the first 10% of project 

duration, the probability of warning from both methods is almost zero.  Thereafter the 

number of warnings increases and the probability of getting an overrun warning reaches 

a peak near 20% of the project duration.  The probability distributions are highly skewed 

to the right.  The most interesting thing is that the difference between the KFFM and the 

BAFM is very small.   

 The probability of getting an overrun warning at a specific time is also compared 

and shown in Figure 5.30.  Under the overrun scenario, the probability of getting at least 

one overrun warning before a project reaches the 90% completion point is 72% and 69% 

for the BAFM and the KFFM, respectively.  For underrunning projects, the probabilities 

are 13% and 10% for the BAFM and the KFFM, respectively.  The results can be used 

effectively by project managers.  For example, at 30% of project duration, the 

probability of getting a correct warning against the overrunning executions in the test is 

49% by the BAFM.  But there is still 8% chance of a false warning even when the 

project is underrunning.   
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(b) Underrun 

Figure 5.29 Probability distributions of the OWP from 3000 random executions 
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(b) Underrun 

Figure 5.30 Probability of the OWP from 3000 random executions 

 

 



   206

5.7.3 The KFFM and the BAFM When the Baseline Is Not Available 

The fundamental concept of the KFFM and the BAFM is to add additional value to the 

conventional project performance forecasting based only on actual performance data by 

making better use of prior performance information and by providing prediction bounds 

on predictions.  Since prior performance information from various sources is represented 

by the baseline progress curve for a given project, the presence of a reliable baseline 

plan is crucial to elicit the best performance from the KFFM and the BAFM.  At the very 

least, starting with a reliable plan to guide execution and control of a project is a must-do 

practice in project management.   

 However, even for a project in which such a baseline plan is not available, the 

new methods can still be useful.  In the KFFM and the BAFM, the importance of a 

reliable baseline arises from the fact that it conveys the knowledge about the overall 

progress of a project, which is often not revealed until the closing phase of the project, 

by the actual performance data being generated by the project itself.  Therefore, in the 

absence of the baseline based on specific plans for a project, other sources of prior 

information, such as historical data from similar projects and subjective judgment, may 

serve as alternatives.  For example, Figure 5.31 shows the best fitting parameters of the 

BetaS-curve for the thirty artificial projects used in Section 5.6 (Table 5.4).  The means 

of α and m from the sample are 2.55 and 0.3, respectively.  Then, this information can be 

useful for another project that is believed to share some similarity in progress pattern 

with the 30 projects in the past.   
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From a methodological point of view, the BAF approach provides a project 

manager with more flexibility in approximating various forms of prior performance 

information.  From the historical data in Figure 5.31, for instance, appropriate 

probability distributions of α and m can be used instead of the mean values.   

 In the case of the KFFM, options for using rather uncertain baseline information 

are limited.  Fundamentally, the predictive power of the KFF approach lies in the 

accuracy of the system model which predicts the future state of a project based on the 

current state.  The measurement model is used to correct the prediction according to the 

relative uncertainty included in the prediction and the measurement.  In the absence of a 

baseline progress curve based on a detailed project plan, the system model should be 

established based on alternative sources such as historical data and subjective judgment.   

 

5.8 Comparison of Forecasting Methods 

From the results discussed in the previous parts of this chapter, a brief comparison of the 

four forecasting methods is shown in Table 5.5 for basic properties and Table 5.6 for 

forecasting performance.  
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Figure 5.31 The best fitting parameters of the BetaS-curve for the projects used in 

Section 5.6 
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Table 5.5 Comparison of forecasting methods: Basic properties 

Criteria CPM EVM KFFM BAFM 

Major  
properties 

- Activity level control 
- Retrospective 

- Project level control 
- Linear extrapolation 

- Project level control 
- Probabilistic prediction 
- Use of prior information 

- Project level control 
- Probabilistic prediction 
- Use of prior information 

Input  
requirements 

- Activity network 
- Activity estimates 

- The planned value 
- The earned value 
- The actual cost 

- Prior probability 
 distribution of project 
 duration 
- The baseline curve 
- The actual progress 

- Prior probability 
 distribution of project 
 duration 
- The baseline curve 
- The actual progress 

Limitations - Only for schedule - For schedule and cost - For schedule and cost - For schedule and cost 

Applicability 
- Only for projects with 
 a network schedule 
 available 

- Universally applicable to 
 all projects of all types, 
 sizes, and complexities. 

- Universally applicable to 
 all projects of all types, 
 sizes, and complexities. 

- Universally applicable to 
 all projects of all types, 
 sizes, and complexities. 

Ease of 
implementation 

- Activity level knowledge is
 required 
- Activity level updates 
- Commercial software 

- Project level update  
- Simple formulas based on 
 three variables 

- Project level update  
- Simple formulas based on 
 three variables 
- Basic knowledge about 
 probabilistic forecasting 

- Project level update  
- Simple formulas based on 
 three variables 
- Basic knowledge about 
 probabilistic forecasting 

Ease of 
communication 

- Difficulty increases with 
 the number of activities 

- Understanding of the three
 basic variables is required  

- Understanding of EVM 
 and probabilistic 
 forecasting is required 

- Understanding of EVM 
 and probabilistic 
 forecasting is required 

209 
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Table 5.6 Comparison of forecasting methods: Forecasting performance 
Criteria CPM EVM KFFM BAFM 

Accuracy<1> 
(Start~20%T) 
 
[F.5.15-F.5.18]<2> 

����� 
CPM updates 
prediction based only 
on actually observed 
performance. 

����� 
EVM is best in MPE but 
worst in MAPE due to a 
large variability in 
predictions. 

����� 
KFFM provides the most 
accurate predictions in both 
MPE and MAPE. 

����� 
KFFM is slightly better than 
BAFM, but both are better 
than CPM in both MPE and 
MAPE. 

Accuracy 
(30%T~90%C) 
 
[F.5.15-F.5.18] 

����� 
CPM updates 
prediction based only 
on actually observed 
performance. 

����� 
EVM gets stabilized and 
provides as accurate 
predictions as KFFM and 
BAFM in both MPE and 
MAPE. 

����� 
KFFM provides more 
accurate predictions than 
early stages. Difference in 
KFFM and BAFM is 
negligible. 

����� 
BAFM provides more 
accurate predictions than 
early stages. But difference 
in BAF and KFF is 
negligible. 

Timeliness of 
warning 
 
[F.5.19-F.5.21] 

����� 
CPM provides almost 
no warnings up to the 
30%T and, even at the 
90%C, the PW is mere 
19%. 

����� 
EVM provides early 
warnings but EVM can be 
applied only after the 
performance has stabilizes. 

����� 
Up to the 10%T, no 
warnings come from the 
KFFM.  After that point, the 
PW increases, reaching 45% 
at the 30%T. 

����� 
After the 10%T, the PW 
starts to increase and reach 
32% at the 30%T. 

Reliability of 
warning 
 
[F.5.19-F.5.21] 

����� 
The likelihood that 
CPM provides a false 
warning is almost zero. 

����� 
The likelihood that EVM 
provides a false warning is 
about 40% at the 5%T.  

����� 
The probability of false 
warning increases to 14% at 
the 30%T and starts to 
decrease. 

����� 
The probability of false 
warning increases to 8% at 
the 30%T and starts to 
decrease. 

Flexibility 

����� 
Deterministic results. 

����� 
Predictions can be adjusted 
with various performance 
factors that can be chosen by 
a user. 

����� 
Sensitivity of prediction to 
the actual data can be 
adjusted by the measurement 
error term. 

����� 
Sensitivity of prediction to 
the actual data can be 
adjusted by the likelihood 
variance term. 

(Note <1> Accuracy is compared based only on the results under the overrun.  <2> ‘F’ abbreviates ‘Figure’.  
 <3> �����(Very Poor); �����(Poor); �����(Medium); �����(Good); �����(Very Good)) 

210 
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5.9 Chapter Summary 

In this chapter, a series of parametric studies has been carried out to evaluate, in a 

statistically meaningful way, the forecasting performances of the Kalman filter 

forecasting method in Chapter III and the Bayesian adaptive forecasting method in 

Chapter IV.  In addition, a comparison of the new methods against two conventional 

methods – the earned value method and the critical path method – has been made. 

 To obtain statistically meaningful results, a new forecasting performance 

evaluation framework is proposed.  The evaluation framework in this research can be 

characterized in two ways.   First, it relies on a large set of artificial project data rather 

than limited real data selectively chosen from past projects.  Several limitations in using 

real data for evaluation of project performance forecasting methods have been identified 

(Section 5.1.2) and the process of generating random project performance data is 

proposed based on a random network generation method from literature, which is 

improved with a redundancy elimination technique (Section 5.2).  With the artificial 

project generation technique, a large set of project data can be generated to draw 

statistically meaningful conclusions.  Furthermore, since artificial data are independent 

from the forecasting methods under comparison, it is possible to compare forecasting 

performance across different methods.  Another characteristic of the evaluation 

framework is that the timeliness and reliability of a forecasting method are directly 

measured in terms of the warning instead of accuracy-based indicators.  This was 

possible by incorporating an early warning system into the evaluation process.  In 

Section 5.3, two typical early warning systems in project management have been 
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reviewed.  Furthermore, new concepts such as the overrun warning point and the 

probability of warning under different execution scenarios have been proposed and 

seamlessly integrated into the evaluation framework. 

 Using the new forecasting performance evaluation framework, the three research 

hypotheses have been tested and addressed in Section 5.6, Section 5.7, and Section 5.8, 

respectively.  Based on the results from the hypothesis tests, basic properties and relative 

forecasting performance of the two new methods in this research are compared with the 

earned value method and the critical path method (Section 5.8).   

 In closing, it should be mentioned here that the comparison made in this chapter 

should not be considered deterministic – one method is better than the other with 

certainty – or exclusive – one method should be used and another method should be 

discarded.  The dynamics and diversity of real project management still demand project 

managers to make their own decisions based on their best knowledge under specific 

conditions.  Furthermore, better decisions often are made based on a combination of 

different approaches rather than a single model, presumably the best model, chosen for 

some reason.  For example, according to the National Hurricane Center Forecast 

Verification Report 2006, consensus models that combine results from other hurricane 

forecasting models outperform individual models (Franklin 2007).   
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CHAPTER VI  

IMPLEMENTATION OF THE KFFM AND THE BAFM 

 

6.1 Introduction 

Ease of implementation is an important factor for the selection of forecasting methods.  

Yokum and Armstrong (1995) conducted a study of criteria for selecting forecasting 

methods and examined the differences in selection criteria according to the various roles 

of forecasters, such as decision maker, practitioner, educator, and researcher.  The study 

shows that, although the respondents ranked accuracy as the most important criterion, 

other criteria such as ease of implementation, ease of use, ease of interpretation and 

flexibility are also comparable in importance.  Decision makers put significantly higher 

weights on flexibility and ease of implementation than did the other three groups of 

forecasters.   

 This chapter includes some recommendations and guidelines for the project 

manager and other potential users regarding the implementation of the KFFM and the 

BAFM in their projects.  In Section 6.2, some recommendations for project managers 

and other potential users are suggested.  In Section 6.3, practical guidelines for 

implementing the KFF and the BAF methods in real world projects are presented.  The 

purpose of the guides is to help project managers and other potential users build better 

understanding of and insight into the new methods, so that they apply those methods to 

their projects efficiently. 
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6.2 Recommendations for Project Managers 

6.2.1 General Attitudes of the Project Manager 

In using the KFF and the BAF methods, the project manager should be aware of and try 

to practice the following recommendations about the general attitudes regarding project 

performance forecasting. 

 Take part in the forecasting as an information provider: The project manager is not 

merely an end user of the forecasts provided to him or her.  It is important for the 

project manager to take part in the planning and forecasting process actively, 

hopefully, from the very beginning.  Unlike the CPM and the EVM, in which 

forecasts are made, in most parts, with limited, fixed data, the KFFM and the BAFM 

allow forecasters to utilize additional performance information from various sources 

such as project plans, historical data, and subjective judgment.  One of the sources of 

relevant information is the knowledge and experience of the project manager. 

 Acquaint yourself with the new methods: The more you understand a tool, the more 

effectively you can use its outcome.  The project manager may not have to be an 

expert in Kalman filter, Bayesian inference and other theories or techniques used in 

the formulation of the method.  However, understanding the basic features of the 

methods is important for the project manager to have more confidence in the 

forecasts, to make better decisions based on them, and to communicate them more 

effectively.   
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 Use forecasting methods as a tool for decision making: The purpose of project 

performance forecasting is not to foresee the exact final status of a project.  The 

ultimate goal is to get reliable confirmation of success or an early warning about 

performance failure so that effective and timely actions can be made to avoid 

problems in the future.  In that sense, successful forecasts for a project can not be 

verified by the project’s result.  Therefore, the best use of forecasting methods can 

only be realized by using them reasonably and within a rational decision making 

framework.  For example, it is important to establish a formal early warning system 

in which forecasts, possibly from different methods, are used.  

 Avoid exploiting the flexibility of methods to see what you want to see: 

The flexibility in the KFFM and the BAFM should be used in the way that makes the 

best use of all relevant, unbiased performance information available in a specific 

situation.  It should not be used as a way of getting what the project manager wants 

to get. 

 

6.2.2 Selecting the Right Method 

To help the project manager decide which methods will be appropriate in a particular 

project situation, a table is developed based on the results in previous chapters.  The 

forecasting methods selection table in Table 6.1 evaluates the four forecasting methods 

compared in Chapter V, which are the KFFM, the BAFM, the CPM, and the EVM, 

against four important criteria described below. 
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Table 6.1 Forecasting method selection table 

Methods 
Criteria Options KFFM BAFM EVM  CPM 

Project manager ● ● ● ● 
Types of responsibility 

Program manager ● ● ●  

Probabilistic forecasts ● ●   
Types of forecasts 

Single-point forecasts ● ● ● ● 

Timeliness of warning ● ● ●  

Reliability of warning ● ●  ● Major concern of forecasts 
Timeliness and reliability  

of warning ● ●   

A single curve with  
properly fitted S-curve models ● ● ●  

A single curve without  
S-curve models ●  ●  Properties of the baseline progress curve 

A group of curves based on  
historical data or  

subjective judgments 
 ●   
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Criterion 1. Types of responsibility 

While a project manager is in charge of a single project, a program manger needs to 

coordinate a group of related projects to achieve the program’s objectives.  For project 

managers, all the four methods in comparison may be found useful.  However, for 

program managers, the CPM is not recommended because of two reasons.  First, CPM 

requires an activity-level understanding of the project.  Unlike project managers who 

may have a thorough understanding of the project at hand, program managers may not 

possess in-depth knowledge of the projects, for example, the precedence constraints 

between activities due to technology, practice, efficiency, and other factors such as, how 

many activities are on the critical path and what are the status of those critical activities.  

Second, even when the program manager is capable of handling the details of individual 

projects, it would be time-consuming.  Tracking actual progress of multiple projects and 

making forecasts should be carried out periodically and dealing with large amount of 

very detailed information in CPM would impede the overall program management 

process.  

 

Criterion 2. Types of forecasts 

Uncertainty is an important factor in planning and making decisions about the future 

progress of a project.  Only the KFFM and the BAFM provide prediction bounds that 

represent the range of possible outcomes at a given confidence level.  As discussed 

repeatedly throughout this dissertation, probabilistic forecasts are to be preferred against 

deterministic forecasts.  There are at least two major reasons.  First, probabilistic 
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forecasts (KFFM or BAFM) convey information about the accuracy of the forecasts that 

is not conveyed in deterministic (EVM or CPM) forecasts.  The accuracy of the forecasts 

is represented as prediction intervals, from which the users may obtain estimates of risks 

associated with the forecasts and be able to answer some key questions such as “What is 

the risk or probability of exceeding the planned completion date?” and “What is the 

expected completion date?”  Deterministic methods provide no variances of forecasts 

and no estimates of risk of overrun.   

 Another reason that probabilistic forecasts should be preferred is that, contrary to 

popular belief, single-point forecasts by deterministic methods do not represent expected 

values of the forecasts.  For example, the basic earned value method for forecasting the 

estimated cost at completion (EAC) is given as 

 BACEAC
CPI

=  (6.1) 

where BAC is the budget at completion and CPI is the cost performance index.  Assume 

that the CPI in this equation is a random variable with mean CPIμ  and variance 2
CPIσ .  

Then the expected value of EAC can be approximated in terms of the Taylor series 

expansion up to the second order term (Ang and Tang 2006; Howard 1971). 

 [ ]
( )

2
3E CPI

CPI CPI

BAC BACEAC σ
μ μ

≅ +  (6.2) 

Equation (6.2) shows that even if the expected value of CPI is used in Equation 

(6.1), the resulting value is not the expected value of EAC because the second term in 

Equation (6.2) is ignored, let alone the higher-order terms ignored in the Taylor series 
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expansion.  This example shows the case when a deterministic forecasting method gives 

a prediction, but one does not know what the prediction means.   

 

Criterion 3. Major concern of forecasts 

Getting reliable warnings, sooner than later, is the major concern of project performance 

forecasting.  The parametric studies in Chapter V, however, reveal that no method under 

comparison outperforms others simultaneously on all criteria, such as the timeliness and 

the reliability of overrun warnings.  Therefore, a trade-off between the timeliness and the 

reliability of warnings may be necessary in selecting adequate forecasting methods.   

 A simple way of doing the trade-off analysis is to compare the cost of errors in a 

specific project situation.  In project performance forecasting, two types of warning 

errors can be defined according to the combination of forecasts and actual performance: 

the warning failure error and the false warning error.  Table 6.2 shows the combination.  

The cost of false warning error can be defined as the monetary or non-monetary impact 

from a false warning on the performance of a project.  For example, when a red flag is 

raised against a significant schedule overrun, the first thing for the project team to do is 

to authenticate the warning by investigating the root causes of the warning.  Even when 

the warning turns out to be a false alarm, results from such investigations should be 

documented and reported.  On the other hand, the cost of warning failure error is a kind 

of opportunity cost that might have been saved by taking additional preventive actions in 

a timely manner if there were a correct warning.   
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Table 6.2 Types of error in project performance forecasting 

Actual results 
Forecasts 

Overrun Underrun 

Overrun Warning Correct warning False warning error 

No Warning Warning failure error Correct no-warning 
 

Obviously, it would not be easy to assess these two types of error costs and to 

compare them in individual projects.  First of all, there is no accepted method that can be 

used systematically to make a quantitative evaluation.  The results in Chapter V, in that 

sense, can be useful in selecting appropriate methods and interpreting results from 

different methods.  For example, warnings from the EVM are very unreliable early in a 

project.  The reliability of warning improves over time by collecting more data, but it 

would be difficult to assess the reliability of EVM for individual projects, because it is 

deterministic.  Therefore, the EVM is not recommended for such projects in which a 

warning entails some formal investigation that might impede the proper execution of 

work or erode the credibility of the forecast.  However, if the project manager’s top 

priority is to detect every possible symptoms of an overrun, the EVM will be more 

useful than other methods.  On the contrary, the CPM provides extremely reliable 

warnings but its early-warning potential is literally zero.   

 The KFFM and the BAFM provide viable alternatives to the EVM and the CPM.  

These methods should be used when a balance between the timeliness and reliability of 

warnings is required.  Furthermore, it should be pointed out that the KFFM and the 

BAFM allow the user to incorporate subjective information in terms of the prior 
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distribution of project duration and the measurement errors.  This flexibility can be used 

to adjust the sensitivity of forecasts to the actual data, which eventually influences the 

reliability and timeliness of warnings.  

 

Criterion 4. Properties of the baseline progress curve 

A baseline progress curve is a primary input for KFFM, BAFM, and EVM.  However, 

some general properties of the baseline curve may influence the selection of the proper 

method.  For example, when historical data or subjective judgments are used to construct 

a group of possible progress curves, the BAF method can be applied effectively because 

of its flexibility in dealing with a range of different progress shapes.  Once a single 

progress curve is used as the baseline, the BAF method works well when the baseline 

curve is reasonably approximated with some S-curve models.  

 

6.3 Quick Implementation Guide of the KFFM and the BAFM 

6.3.1 Basic Features 

Some basic features of the KFFM and the BAFM are summarized below. 

 The KFFM and the BAFM are probabilistic methods.  First and foremost, the inputs 

– the prior performance information and the actual performance data – are 

represented in terms of probability distributions.  In the KFFM, the prior probability 

distribution of project duration is used to determine the size of the process noise term 

and a single-point estimate of the actual performance at a specific time is combined 

with the measurement error term into a probability distribution.  In the BAFM, the 
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prior probability distribution of project duration is updated with the actual 

performance data through the Bayesian updating process. 

 The KFFM and the BAFM can be used for any project, regardless of its size, type, 

and complexity.  The actual performance data used in both methods are cumulative 

progress measures which may be constructed in various forms such as percentage of 

completion, labor hours, and cumulative costs.  As a result, the new methods are free 

from the differences in sizes, types, and complexities in individual projects.  EVM is 

a typical project management system that measures actual performance in terms of a 

cumulative progress curve.   

 The KFFM and the BAFM use prior performance information to supplement the lack 

of predictive power of small samples of actual performance data early in a project.  

The best information to be used for forecasting is the actual performance data 

observed in the project itself.  However, actual performance data early in a project 

are too few to reveal significant information about the future progress of a project.  

The new methods overcome this problem by using prior performance information 

based on project plans, historical data, or subjective judgment.   

 The KFF method focuses on building more refined models of the dynamic nature of 

projects and on the uncertainty in measurements.  In addition, forecasts by the KFF 

method are optimal in a sense that they minimize the sum of the squares of 

prediction errors. 

 The reliability of the BAFM is influenced by the degree of match between the 

progress curve template and the actual progress curve.  The degree of match between 
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these two curves represents the predictive power in the progress curve template.  A 

practical way to improve the predictive power is to establish the progress curve 

template of a project based on a realistic project schedule.   

 

6.3.2 Input Preparation for the KFFM 

The KFFM forecasts using four input elements: the prior probability distribution of the 

project duration, the planned cumulative progress curve, the size of measurement error, 

and the actual cumulative performance data.  Figure 6.1 (a) shows the KFF method input 

elements.  

 
[KFF Input-1] The planned progress curve 

The planned progress curve or the baseline represents the amount of work to be done at 

each specific time.  The baseline of a project as shown in Figure 6.1 (a) can be generated 

from a value loaded project schedule.  The value here is chosen as the quantity that best 

represents the overall progress of the project in the most efficient way.  In earned value 

management, the budgeted cost of each activity is used as the measure of the activity’s 

value.  However, other quantities such as engineer hours, labor hours and percentage of 

work can be used as long as they represent the cumulative progress of the project.  Once 

the values of individual activities in a project are evaluated, they are distributed over the 

time horizon according to the starting dates and the finishing dates in the plan. 
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Commercial programs such as Primavera Project Planner® and Microsoft Office 

Project® provide functions to automatically generate the planned progress curve.  

However, a simple bar chart can also be used effectively.   

 

[KFF Input-2] The prior probability distribution of project duration 

The prior probability distribution of the project duration is used to determine the 

uncertainty associated in the process model.  That is, with a given level of uncertainty in 

the process model, the project duration forecast by the KFF method before the inception 

of a project should be consistent with the prior probability distribution of the project 

duration. 

 Project duration is assumed to be normally distributed by the central limit 

theorem and its mean and variance can be determined in many ways such as network-

based CPM simulation, three-point estimates, and subjective estimates of the first and 

second moments.  The simulation approach has been discussed in Chapter II.  Many 

approaches have been proposed to approximate subjective distributions of random 

variables (Keefer and Bodily 1983; Moder and Rodgers 1968; Perry and Greig 1975).  

For example, range estimating or three-point estimating provides a simple but effective 

way of representing the user’s uncertainty (Curran 1989; King et al. 1975; Oberlender 

2000).   
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[KFF Input-3] The actual performance data 

Actual performance should be constantly monitored and measured periodically.  The 

actual cumulative progress at a specific time is estimated by aggregating activity level 

progress over each reporting period and summing all periodic progress in the past.  

Because of the periodical nature of the reporting cycle, the actual progress data are 

estimated in a discrete manner as shown in Figure 6.1 (a). 

 

[KFF Input-4] The variance of measurement error 

The last input element required to run the KFF method is the variance of measurement 

error, which represents the uncertainty in reported performance data.  Estimating the 

measurement error is probably the trickiest aspect of the implementation of the KFF 

method.  Measurement errors in project management arise from, roughly, two sources: 

the error in measuring time to report and the error in measuring performance at the 

reporting times.  Most projects report progress according to some calendar-based periods 

such as weeks and months.  However, the net work hours during each reporting period 

may vary from one period to another.  For example, the number of days in a month 

varies from month to month.  In addition, most performance data after each reporting 

period are subject to a certain amount of errors.  For example, project level progress in 

any quantity of interest is estimated, in most cases, as a sum that aggregates various 

activities with diverse physical and managerial properties, whose progress is measured 

by individual task managers who may have different scales for the amount of work 

actually done.  Currently, no viable methods for measuring these errors with actual data 
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have been reported.  In this dissertation, therefore, it is recommended to estimate the 

variance of measurement error by subjective judgments.   

 It should be noted that the measurement errors in the KFF formulation are 

estimated in terms of the time variation, that is, the deviation of the earned schedule 

from the forecasting time t (Figure 6.1 (a)).  However, in most projects, project progress 

is measured at fixed times rather than the time at which a certain amount of work is 

accomplished.  Naturally, project managers or other project engineers with experience 

would feel more comfortable with making range estimates over the potential errors in the 

amount of actual work done at a specific time.  In such cases, a probability distribution 

of the measurement error in progress at time t should be converted to the probability 

distribution of earned schedule as shown in Figure 6.1 (a).   

 A simple but efficient way of doing this transformation is using a simulation 

approach.  Given the baseline curve and the distribution of the measurement error in 

progress, a large set of random values can be drawn from the measurement error 

distribution and corresponding earned schedules can be calculated with Equation (2.3) in 

Section 2.4.1.   

 

6.3.3 Input Preparation for the BAFM 

In spite of different roles and interpretations within individual methodologies, 

conceptually the same elements discussed for the KAF method are also used in the BAF 

method.  This section addresses the input elements focusing on the differences between 

the KFFM and the BAFM. 
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[BAF Input 1] The progress curve template 

The same approach used for the KFFM can be applied to generate the planned progress 

curve.  It should be noted, however, the BAF method provides a more robust framework 

than the KFF method for the development of the progress curve template.  For example, 

the BetaS-curve model allows users to account for uncertainty in the progress curve 

template by imposing probabilistic shape parameters instead of fixed values.   

 

[BAF Input-2] The prior probability distribution of project duration 

In the BAF method for schedule forecasting, the project duration is considered a random 

variable to be updated as a project progresses.  Unlike the KFF method, the prior 

probability distribution of the project duration can be approximated with a non-normal 

distribution as long as random numbers can be drawn efficiently from the distribution.  

The prior probability distribution of project duration can be obtained in many ways using 

analytical tools or subjective judgment.  The range estimating techniques for the KFFM 

can be used.   

 When selecting the prior probability distribution of project duration, special 

caution should be taken to ensure that the prior distribution includes a proper range of 

plausible outcomes.  The BAF method updates, rather than independently estimates, the 

prior distribution of project duration in light of new actual performance data.  Any new 

information is used to adjust prior distribution.  Therefore, if the prior distribution is 

strongly biased from the actual project duration, using the prior information results in 

impeding the convergence to the right value, or even ending up a wrong one. 
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Figure 6.1 Inputs and outputs of the KFFM and the BAFM 
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[BAF Input-3] The actual performance data 

The same data generated for the KFF method can also be used in the BAF method.  

Please refer to Section 6.3.2. 

 

[BAF Input-4] The variance of measurement error 

The measurement error in the BAF formulation for schedule forecasting is defined as the 

horizontal deviation between the actual progress curve and a progress curve that is 

generated by some S-curve model.  In the BAF method, the standard deviation of 

measurement error is used for calculating the probability of observing the actual 

progress curve, conditional on some parameters (Please refer to Equation (5.15) in 

Section 5.3.2).  In practice, the variance of measurement error should be determined 

based on subjective judgment for the same reasons addressed in the discussion of the 

KFF method.  In addition, it should be noted that the variance can be assumed to be not 

constant.   

 

6.3.4 Results Interpretation  

The new methods provide forecasting results in two forms: the probability distribution of 

EDAC and the expected progress curve.   

 

[Output-1] The posterior probability distribution of the project duration 

The primary output from the KFFM and the BAFM for schedule forecasting is the 

posterior probability distribution of the project duration (Figure 6.1 (b)), which is 
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represented in terms of the mean and the variance and may be represented by a normal 

distribution.  Given these results, the project manager is able to make decisions based on 

the uncertainty rather than single-point forecasts.  For example, the duration-at-risk in 

Section 5.3 may be used.   

 

[Output-2] The future progress 

An advantage of the KFFM and the BAFM over the EVM is that it provides an updated 

progress curve that leads to the expected project duration.  With this curve, the project 

manager may gain better insight into the forecasts at completion. 

 

6.4 Chapter Summary 

Based on the results in previous chapters, a brief implementation guide for potential 

users of the KFF and the BAF methods was presented.  Ease of implementation is an 

important factor that influences a decision maker’s choice of forecasting methods.  The 

objective of this chapter is to help potential users develop a better understanding of the 

core features of the new methods in this dissertation and apply them in their projects 

effectively.   

 This chapter addresses some practical issues.  In Section 6.2, some useful 

recommendations for the project manager have been suggested about appropriate 

attitudes in forecasting.  Then four criteria for selecting proper forecasting methods were 

discussed.  In Section 6.3, quick implementation guides for the KFF method and the 
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BAF method have been presented, focusing on basic features, input preparation, and 

results interpretation.   
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CHAPTER VII  

CONCLUSIONS 

 

7.1 Contributions 

Major contributions of this research to the construction industry and the project 

management community are: (1) Two probabilistic forecasting methods for project 

progress and early warning of schedule overruns were developed; (2) Project schedule 

forecasting methods – both conventional and the newly developed – were evaluated and 

compared; and (3) With the new forecasting method evaluation framework developed in 

this dissertation, independent comparisons between forecasting methods can be made 

with respect to the practical and statistical significance of forecasts. 

 

(1) Two probabilistic forecasting methods for project progress and early warnings 

of schedule overruns were developed. 

In this dissertation, two probabilistic methods for project schedule forecasting have been 

developed.  The Kalman filter forecasting method (KFFM) and the Bayesian adaptive 

forecasting method (BAFM) have the following advantages over the critical path method 

(CPM) and the earned value method (EVM) based on the earned schedule metric: 

1. The KFFM and BAFM methods explicitly account for uncertainty in forecasts 

and provide prediction bounds on predictions.  The level of uncertainty or risk 

associated in a prediction is critical to efficient planning and decision making.  

Combined with the prescribed level of acceptable risk of the organization, the 
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prediction bounds can be used to determine the specific time at which current 

deviations from the original plan should be considered significant such that the 

original project targets are likely to be missed.  With such warning signals, 

project managers and decision makers in top management will be able to take 

necessary actions in a timely manner. 

2. The KFFM and the BAFM make better use of the information available in typical 

construction project environments.  The most difficult problem in project 

performance forecasting is, probably, the lack of sufficient data to work with at 

the early stages of a project.  In the KFFM and the BAFM, prior performance 

information in various forms such as detailed project plans, historical data, and 

subjective judgments are systematically integrated with actual performance data.  

For example, the baseline progress curve of a project is used to supplement the 

small samples of actual performance data, which is typical early in a project.   

3. The KFFM and the BAFM provide a systematic way of incorporating 

measurement errors into forecasts.  In project performance forecasting, one 

should make the best of actual performance data.  However, measurement errors 

are inherent in project management and the degree of errors may differ from 

project to project.  Therefore, it would be attractive for the users that the KFFM 

and the BAFM allow them to adjust the sensitivity of forecasts to actual 

performance data by adjusting some parameters according to their belief on the 

accuracy of measurements. 
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In spite of the methodological advantages addressed above, the KFFM and the 

BAFM can be efficiently implemented by any construction project, regardless of its 

type, size, and complexity.  Furthermore, both methods rely on performance information 

which is available in standard practices and methodologies in the construction industry.  

Especially, the EVM provides an ideal management system in which the new methods 

can be integrated seamlessly.  It should also be noted that the programs used in this 

dissertation are developed in Visual Basic for Application for Excel® and can be used in 

any computer with Excel®.   

 

(2) Project schedule forecasting methods – both the conventional and the newly 

developed – were evaluated and compared. 

Both the EVM and the CPM have been in use in the project management community for 

several decades.  Surprisingly enough, no research has been done, to the best of the 

author’s knowledge, about the comparison between them, especially regarding their 

early warning capacities.  Some experts advocate the CPM because of its capacity of 

focusing on critical activities, while others prefer the EVM-based forecasting formulas, 

on the grounds of simplicity.  In this dissertation, the advantages and challenges of the 

CPM and the EVM have been evaluated with respect to three vital criteria in schedule 

forecasts: the accuracy at different stages of a project, the early warning capacity, and 

the reliability of warnings.  The results, which will be summarized in the next section, 

are intuitive and can be explained by some fundamental attributes of each method.  But 

still, they would give many researchers and practitioners some fresh perspectives about 
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those methods that they have used and are using now.  Especially, the limitations in the 

CPM and the EVM, which were revealed in this dissertation, show the needs for better 

forecasting methods for project schedule management.  At this point, the comparison 

between the KFFM and the BAFM versus the conventional methods would be useful 

both for practitioners who need something that can be used right away and for 

researchers who are interested in developing new forecasting methods. 

 

(3) With the new forecasting method evaluation framework developed in this 

dissertation, independent comparisons between forecasting methods can be made 

with respect to practical and statistical significance of forecasts.  

The new evaluation framework for project performance forecasting methods is based on 

artificial project data and a formal early warning system.  With the random progress 

generation technique proposed in this dissertation, a large sample of independent 

projects can be generated so that statistically meaningful results can be obtained.  It 

should be reminded that real project data can not be used in the comparison between new 

and conventional forecasting methods because real projects are likely to have been 

influenced by some of the conventional methods.  Because artificial data are independent 

of any forecasting methods, whatever they are, it becomes possible to compare new 

forecasting methods against conventional ones that might have been employed in real 

projects in the past.  Another salient aspect of the new evaluation framework can be 

found in the early warning system incorporated to simulate a warning process in typical 

project management.  As a result, the early warning capacity of a forecasting method is 
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directly evaluated in the situation for which the forecasts are used rather than being 

inferred from statistical error measures. 

 

7.2 Conclusions 

Major conclusions from this research are: (1) The state-of-the-art EVM schedule 

forecasting method can be used to obtain reliable warnings only after the project 

performance has stabilized; (2) The CPM is not capable of providing early warnings due 

to its retrospective nature; (3) The KFFM and the BAFM should be used to forecast 

progress and to obtain reliable early warnings of all projects; and (4) The early warning 

capacity of forecasting methods should be evaluated and compared in terms of the 

timeliness and reliability of warning in the context of formal early warning systems. 

 

(1) The usual EVM schedule forecasting method can be used to obtain reliable 

warnings only after the project performance has stabilized. 

In practice, EVM forecasting formulas for the estimate at completion (EAC), for 

example EAC = BAC/CPIC, are recommended to be used only for projects that are at 

least 15 to 20 percent complete because of the inherent instability in the cumulative CPI 

measurements (Fleming and Koppelman 2006).  This practice is supported by some 

empirical studies as addressed in Chapter II.  On the other hand, predictive potentials of 

various schedule forecasting formulas based on EVM are still a contentious issue among 

professionals.  Some EVM experts argue that earned value schedule data alone are not 

sufficient and should not be relied on to predict the final completion date for a project 
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(Fleming and Koppelman 2006), while others struggle to find proper schedule 

counterparts of the cost forecasting formulas in use (Lipke 2006; Vanhoucke and 

Vandevoorde 2006).  For the former, the CPM often emerges as a rational solution to the 

schedule forecasting problem.  

 The results in this dissertation are in support of the potential benefits from a 

state-of-the-art EVM schedule forecasting method.  Based on some recent findings in the 

literature, the earned schedule method is chosen as the state-of-the-art EVM schedule 

forecasting method.  The parametric study in Chapter V reveals that early in projects the 

earned schedule method provides extremely erroneous forecasts.  However, over a 

certain period, roughly 20 percent of the original project duration, the forecast error 

decreases rapidly and gets closer to the size of errors from the CPM, the KFFM, and the 

BAFM.  Although the results in this dissertation were obtained from an artificial 

experiment, there is a close analogy between the schedule forecasting performance 

observed in this dissertation and the cost forecasting performance in the previous 

literature: both of them need some time to let the performance stabilize.   

 However, it should be noted that there is a serious limitation in the earned 

schedule method.  That is, there is no way to detect the right time when the performance 

data of a project have stabilized within an acceptable level.  Therefore, it can be 

concluded that the earned schedule method, which is known as the best schedule 

forecasting metric in the EVM, provides reliable early warnings only after the project 

performance has stabilized, but no one knows when it stabilizes. 
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(2) The CPM is not capable of providing early warning.  

The CPM can not be used to predict schedule overruns before they actually happen.  All 

that a CPM forecast for the project completion date says is how much the project is 

currently behind its planned schedule.  In the CPM, there are no proper, accepted 

algorithms for systematically updating the original estimates of future jobs according to 

past performance data.  This retrospective nature results in poor early warning capacity 

for detecting overrunning projects before they actually fall behind schedule.  The results 

in Section 5.6 regarding the performance of the CPM reveal that the CPM has literally 

no predictive power and detects overrunning projects only when they already have fallen 

behind schedule.    

 

(3) The KFFM and the BAFM should be used to forecast progress and to obtain 

reliable early warnings. 

There are at least three compelling reasons why the KFFM and the BAFM should be 

applied on all project, especially the projects that employ the earned value management 

system.  First, the KFFM and the BAFM provide prediction bounds on predictions but 

the CPM and the EVM do not.  Prediction bounds indicate the range of possible 

outcomes at a given confidence level.  In project management, the level of uncertainty or 

risk in forecasts can affect the planning and controlling decisions regarding future 

performance of a project.   

Second, the KFFM and the BAFM share unique merits of the EVM but still 

provide stable forecasts from project inception.  Just like the EVM, the KFFM and the 
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BAFM are universally applicable over a wide range of projects.  However, the KFFM 

and the BAFM provide reliable forecasts from the outset of a project and do not require 

the stabilization period for the EVM forecasting methods.  This characteristic can be 

attributed to the adaptive nature of the KFFM and the BAFM.  The EVM forecasts show 

significant variability early in a project because the forecasts are made based only on 

small samples of actual data.  On the contrary, the KFFM and the BAFM make forecasts 

using both the actual data and the prior performance information from project plans, 

historical data, and subjective judgments.  As the project proceeds, the influence of the 

prior information decreases and forecasts become more influenced by the actual 

performance data.  As a result, the problem of waiting some time – no one knows how 

long it is – for forecasts to stabilize can be avoided.  

 Third, the KFFM and the BAFM allow the users to adjust the sensitivity of 

forecasts to actual performance data according to their confidence on the accuracy of 

performance measurements.  Measurement errors are almost inherent in project 

management because of human errors, inadequacy of rules for determining earned value, 

and variations in reporting intervals.  As a result, the level of accuracy of actual 

performance data may differ from project to project.  Therefore, the flexibility of the 

KFFM and the BAFM in dealing with measurement errors will be useful in real projects 

under diverse situations. 
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(4) The early warning capacity of forecasting methods should be evaluated and 

compared in terms of the timeliness and reliability of warning in the context of 

formal early warning systems.  

In the context of project performance forecasting, there is a tendency to believe that 

more accurate forecasts will lead to earlier warnings.  For example, Vanhoucke and 

Vandevoorde (2006) state that “we want to continue our research in order to improve the 

forecast accuracy of the EV metrics … in order to improve the early-warnings potential 

of the metrics.”  However, forecast accuracy based on statistical error measures should 

not be confused with the early warning capacity of forecasting methods.  The results in 

this dissertation provide evidence that forecast accuracy of a method, useful as it is, is 

not an appropriate metric for the timeliness of warnings by the method.  For example, 

according to the results in Section 5.6, the differences in accuracy between the CPM and 

other methods were not practically significant, but the chance of correct warnings from 

the CPM at the 40 percent project duration point was merely 4% against 32% from the 

BAFM, 39% from the EVM, and 48% from the KFFM.  Statistical significance of 

forecasts should not be confused with practical significance which can be measured in 

the situations for which they are used.  In this research, the early warning capacity of 

forecasting methods was evaluated in terms of their performance in an early warning 

system.  
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7.3 Further Study 

In this research, two probabilistic forecasting methods, the KFFM and the BAFM, were 

developed and their applicability was demonstrated.  In addition, an extensive parametric 

study has been carried out about the use of prior performance information and 

forecasting performance of the new methods against the EVM and the CPM.  Based on 

the results established in this dissertation, some suggestions have been made about future 

study. 

 

Application of the KFF and the BAF methods to cost performance forecasting 

In this dissertation, application of the KFFM and the BAFM to cost performance 

forecasting is not covered.  From a methodological point of view, as long as project 

progress is measured in some cumulative metric, the distinction for whether the metric 

represents schedule performance (i.e., the budgeted cost of work performed) or cost 

performance (i.e., the budgeted cost of actual cost) is irrelevant.  However, it would be 

beneficial to investigate the cost forecasting counterparts of the KFFM and the BAFM 

formulated in this dissertation, and to compare them with other conventional methods 

such as the EVM and a Monte Carlo simulation approach. 

 

Integration of schedule forecasting and cost forecasting 

Schedule performance and cost performance are closely related and should be analyzed 

collectively.  When it comes to forecasting, a schedule forecast should precede a cost 

forecast because, in general, project duration itself is an important factor of the project 
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cost.  The Kalman filter has a significant potential as an integrated framework because it 

provides an extremely flexible framework for combining new state variables.   
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APPENDIX A  

More examples of the beta distribution with α > 1 and β > 1 

 

 β = 0.8α β = α β = 2.0α 

α = 1.5 

CDF PDF

 
(a) α=1.5, β=1.2 

CDF PDF

 
(b) α=1.5, β=1.5 

CDF PDF

 
(c) α=1.5, β=3.0 

α = 2 

CDF PDF

 
(d) α=2.0, β=1.6 

CDF PDF

 
(e) α=2.0, β=2.0 

CDF PDF

 
(f) α=2.0, β=4.0 

α = 3 

CDF PDF

 
(g) α=3.0, β=2.4 

CDF PDF

 
(h) α=3.0, β=3.0 

CDF PDF

 
(i) α=3.0, β=6.0 

α = 4 

CDF PDF

 
(j) α=4.0, β=3.2 

CDF PDF

 
(k) α=4.0, β=4.0 

CDF PDF

 
(l) α=4.0, β=8.0 

α = 10 

CDF PDF

 
(m) α=10.0, β=8.0 

CDF PDF

 
(n) α=10.0, β=10.0 

CDF PDF

 
(o) α=10.0, β=20.0 
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APPENDIX B 

The method of least squares 

 

The method of least squares, which was proposed by the German scientist Karl Gauss 

(1777-1855), is a method for estimating the parameters of a regression model in a way 

that minimizes the sum of the squares of the (vertical, horizontal, or others – such as 

Generalized Least Squares) deviations of the observations from the fitted value.   

 The curve fitting technique used in this research utilizes the flexibility of the beta 

distribution in representing a wide range of shapes.  The least squares estimates of the 

beta distribution parameters α, β, A and B should result in a curve that is, in one sense, a 

“best fit” to the progress curve at hand.   

 Suppose that a project progress curve is given in a discrete set of paired data 

points, (ti, wi) i = 1,2,…,N.  Then the method of least squares can be applied to fit the 

beta distribution in two directions: vertical and horizontal.  If the objective is to 

minimize the sum of the squares of the vertical deviations of the observed value from the 

fitted curve, the problem is defined as, 
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where wF is the progress level at completion and Fbeta represents the cumulative 

distribution function (cdf) of the beta distribution.   
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In a similar way, if the objective is to minimize the sum of the squares of the 

horizontal deviations of the observed value from the fitted curve, the problem is defined 

as, 
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where 1
betaF −  represents the inverse of the cumulative distribution function for a specified 

beta distribution.   

 In this dissertation, the Solver function in the spreadsheet program Excel® is 

used to obtain the least squares estimates of the best-fit S-curve parameters.   
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