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ABSTRACT 

 

Contraction Scour in Compound Channels with Cohesive Soil Beds. (December 2007) 

Benjamin Praisy Israel Devadason, B.S., Government College of Engineering, 

Tirunelveli, India  

Chair of Advisory Committee: Dr. Kuang-An Chang 

 

 Bridge scour, which is the removal of bed materials from near the bridge 

foundations, is observed to be the most predominant cause of bridge failures in the 

United States. Scour in cohesive soils is greatly different from scour in cohesionless 

soils owing to the differences in critical shear stresses, scour extents and the time taken 

to reach the maximum scour depth in the scour process. The present solutions available 

for the cohesionless soils cannot be applied to cohesive soils because of the above 

crucial reasons. Also, a compound channel model with main channel and flood plain 

arrangement represents more closely the field stream conditions rather than a simple 

rectangular prismatic model.  

 In this study, a systematic investigation of the scour process due to flow 

contractions in a compound channel with cohesive soil bed is made by conducting a 

series of flume tests representing typical field conditions. The effect of the most crucial 

factors causing contraction scour namely flow velocity, depth of flow and the shape of 

the abutment is examined. Correction factors are developed for changes in flow 



 

 

                                                                                                                                         iv 

                                                                                                                                        

 

geometries incorporating simulation results from the one dimensional flow simulation 

model HEC RAS.  

 Most importantly, a methodology to predict the depth of the deepest scour hole 

and its location in the vicinity of the contraction structure is developed for compound 

channels through an extension of the presently available methodology to predict 

maximum scour depths in simple rectangular channels. A prediction method to identify 

the extent of the uniform scour depth is also developed. Finally, an investigation of 

precision of the proposed methodology has been carried out on the field data from a 

number of real life contraction scour cases.  

The results obtained from this study indicate that depth of flow and geometry of 

the contraction section significantly influence final scour depth in cohesive soils with 

deeper flows and harsh contractions resulting in increased scour depths. However, 

corrections for different contraction inlet skew angles and long contractions need to be 

further explored in future studies.  
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CHAPTER I 

 

INTRODUCTION AND RESEARCH OBJECTIVES 

 

1.1 INTRODUCTION

Scour is the removal of bed material from the stream bed and stream banks due 

to the flow of water in the streams with high velocities. Flow acceleration happening 

around bridge structures can enhance such scour action resulting in enormous material 

removal. Scour is found to be the major cause of bridge failures all over the world.  

According to a survey conducted by Shirole and Holt (1991), 60% of the bridge failures 

are due to one or the other form of scour. According to Wang (2004), United States 

alone has lost about 1000 bridges to adverse scour action over the last 30 years. Bridges 

in general are high-investment infrastructures and any process that undermines the 

integrity of the bridges poses a huge threat to the hefty financial investments and causes 

a potential danger to the safety of human activities. A clear understanding of the 

scouring process is important in order to counter the effects of scour while structuring 

and designing bridge foundations.  

Although, scour in general is material-removal, such a material-removal action is  
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more pronounced during high flows during storm and flood events when the water 

velocities and depths of flow are higher. During such high flood events, enormous 

energy transfer and energy losses happen between water and the soil grains around the 

bridge structures resulting in the soil particles getting excited and removed from the bed 

and banks. This can be mainly attributed to the turbulence patterns that happen due to 

sudden changes in flow geometries.  

Contraction scour is classified as the scour that happens due to contracted flow 

patterns resulting from geometrical constrictions around bridges. Whenever contraction 

in area of flow occurs in between bridge abutments or piers, the velocity of flow 

increases rapidly due to the flow being forced through a reduced sectional area resulting 

in an increased shear stress near the soil bed. Whenever the shear stress at the soil-water 

interface exceeds the critical shear stress of the soil particles, excitation of the bed 

materials happen resulting in material removal. Such erosion of soil particles result in a 

general lowering of  the bed level resulting in scour holes in the contracted flow section. 

Such a contraction scour action is found to be different in intensities between 

cohesionless soils and cohesive soils.  

According to Briaud et al., (2001) scour and erosion rates in cohesive soils can 

be 1000 times slower than scour in cohesionless soils like sand. Therefore an estimate of 

scour in cohesive soils based on the characteristics of cohesionless soils can be an 

unnecessarily conservative estimate. The need for the differentiation between scour 

estimates in cohesive and non-cohesive soils is of particularly significant importance to 
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the bridge design community as it can mean huge differences in infrastructure 

expenditure in the form of very deep and massive foundations evenwhile making the 

scour estimates overly conservative. Currently, though a significant amount of research 

has been done to estimate the maximum depth of scour in cohesionless soils because of 

contraction scour, very little research can be accredited to the same on cohesive soils. 

Though thorough experimental investigations have been conducted in gravel beds 

(Carollo  et al., 2005) or in sand beds (Richardson & Davis, 2001; Lagasse et al., 1991) 

to understand scour around bridge abutments in cohesionless soils resulting from 

complex turbulence patterns in flow fields, scour in cohesive soils is a phenomena less 

understood and is still under study with little research material available. Even among 

cohesive soils, maximum scour prediction methodology is available only for a simple 

rectangular channel (Li, 2002) without any flood plain-main channel arrangement like 

the most typical fluvial geomorphologies. A better understanding of the flow field 

patterns is also vital in better comprehending the contraction scour phenomena in 

cohesive soils, especially in the context of a compound channel with flood plain-main 

channel arrangement.  

This research aims to develop a prediction methodology to estimate the 

maximum scour depth value in a compound channel with a flood plain-main channel 

arrangement with cohesive soils as the bed material. This research, in addition aims at 

understanding the physical processes during contraction scour by studying the effects of 

crucial flow parameters namely the flow depth and flow velocity and the geometry of the 
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abutment.  This research is also an attempt to model a compound channel and also it’s 

changing flow fields at a scale much closer to the typical real-life stream and 

approximately six times larger than previously studied models at reduced scales 

(Barbhuiya & Dey, 2003).     

 

1.2 RESEARCH OBJECTIVES 

This research is an attempt to understand the following key points with regard to 

contraction scour in compound channels with cohesive soil beds. Key questions that 

have been attempted to be answered through the current study of contraction scour on 

compound channels are as follows. 

1. To evaluate the general trend of contraction scour in compound channels, its 

extent and geometry. 

2. To develop a methodology to predict contraction scour depth and its location 

with reference to the bridge structure. 

3. To evaluate the effect of changing flow fields on the location of contraction 

scour for compound channels and to identify the difference between abutment and 

contraction scours in compound channels. 

4. To develop a method to construct a complete contraction scour profile for 

compound channels in cohesive soils. 
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1.3  APPROACHES AND METHODOLOGIES 

  In order to achieve the research objectives, flume tests in porcelain clay are 

conducted to study the behavior of scour for different case scenarios. The results of the 

flume tests are evaluated to arrive at generalized scour patterns. 

 

1.3.1 Flume Tests 

Flume tests are conducted to physically measure scour action under different 

conditions. The experiments on the flume model result in instant scour depth at different 

time steps and this data is extrapolated through a hyperbolic model to arrive at the 

maximum scour depth at equilibrium state. With special focus on the dominant factors 

causing scour action namely the approaching flow velocity, water depth and the 

contraction ratio, nine critical cases are evaluated to construct a basic formula to predict 

contraction scour. 

 

1.3.2 Hyperbolic Model 

 According to Li (2002), the major difference between the scour phenomena in 

cohesionless and cohesive soils is the time taken to reach the maximum scour depth in 

the scour hole. In cohesionless soils such as sands, equilibrium scour state can occur 

fairly quick while on the other hand, cohesive soils can take as much as ten to thousand 

times more time to reach the equilibrium state in scour (Li, 2002). Since the scour rate in 



                                                                                     

 

                                                                                           6 

                                                                                                                                         

 

cohesive soils is very low, it is practically difficult to conduct flume experiments till the 

maximum scour depth is reached at equilibrium scour state. Thus, according to Li (2004) 

and Briaud et al (1999,2001a), the first primary challenge that is faced while flume tests 

are conducted on porcelain clay is that the time to reach maximum scour depth Zmax   

could be as much as several months. The second challenge for cohesive soils is that the 

scour rate at later stages of the tests could be so low that it is almost impossible to judge 

and ascertain if the maximum scour depth has been reached. The answer to both of these 

challenges have been worked out by Briaud et al. (1999,2001a) through Scour Rate in 

Cohesive Soils (SRICOS) method wherein the maximum scour depth can be reliably 

extrapolated through fitting the flume test data of scour depth versus time as measured 

with a hyperbola.  

The above said hyperbolic model can be written as 
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t

t
tZ
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=                                                                 (1.1) 

This can be rewritten as                                 
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Where Z(t) is the scour depth at time t, Zmax is the maximum scour depth at equilibrium 

state and Zini is the initial scour rate. Both Zmax and Zini can be arrived by fitting the 

parabola given in Equation 1.2. Though the approach to extrapolate scour depth to arrive 
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at maximum scour depths based on the hyperbolic Equation 1.2. was developed for pier 

scour initially, it is also found to predict well contraction scour depth. 

 

1.3.3 Shear Stresses in Soil Bed 

Considering the erosion due to sediment transport to be negligible for clay, the 

only mechanism causing the removal of soil materials from the bed can be attributed to 

the erosive action of water. This erosive action of water flow can be represented by the 

shear stress the water exerts over the soil material. The initial represents the stress 

exerted by water on the soil bed before the scour process starts. The resistance offered 

by the soil particles against this erosive action of water can be quantified by the critical 

shear stress of the bed materials. The critical shear stress of the porcelain clay sample 

can be arrived at by the Erosion Function Apparatus developed by Briaud et al. (1999). 

This critical shear stress is assumed to be an unchanging characteristic throughout the 

scour development. The scour action is sustained until the shear stress in the clay bed, 

due to flow of water, drops down to the critical shear stress of soil bed material at the 

bottom of scour hole. Here, it is to be noted that any scour is initiated only if the erosive 

action of water, or in other words, the initial shear stress is greater than the critical shear 

stress of the soil bed. And therefore, it is the difference between the initial shear stress 

and the critical shear stress of the soil bed that governs the maximum scour depth and 

the time at which it is reached and all the associated equations developed based on these 

experiments. 
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CHAPTER II 

 

BASIC CONCEPTS AND PARAMETERS IN BRIDGE SCOUR 

 

 2.1 INTRODUCTION 

 Scour phenomena results from the interaction between the water that flows in the 

stream and the soil particles that make the bed of the stream. When the erosive action of 

the water exceeds the erosion resistance offered by the soil particles, scour starts and 

continues till the shear stresses generated by the water is equal to the shear resistance of 

soil particles. In other words, scour action continues till shear stress drops down to the 

critical shear stress of the soil. In this chapter, different types of scour action that can 

happen in stream beds have been introduced with details about scour pattern that can 

result due to different flow patterns around hydraulic structures. The soil characteristics 

that are found to be a factor in causing scour have also been introduced in this chapter. 

In the following chapters, all of these factors are explored in further detail with the focus 

being on contraction scour in compound channels. 
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2.2 CLASSIFICATION OF BRIDGE SCOUR 

Any scour that happens around and undermines bridge foundations can be termed 

as bridge scour. Bridge scour can be broadly classified into aggradation and degradation, 

local scour and contraction scour. 

 

2.2.1 Aggradation and Degradation 

 According to Richardson and Davis (2001), aggradation and degradation refer to 

the gradual changes in the streambed elevation due to the natural or man-made causes 

over a very long time. Also, according to them, aggradation refers to the increase in 

streambed elevation due to depositing action of the waters and degradation refers to the 

erosive action of the waters. Aggradation or degradation can happen due to the changes 

in flow characteristics of the stream due to construction of dams and reservoirs, changes 

in the land use patterns in the floodplains and watersheds, channelization, gravel mining 

from the channel bed, cutting off of meander stream beds and the movement of bend and 

stream movement in relation to crossing at a far upstream location (Richardson and 

Davis, 2001). Here, it is to be noted that aggradation and degradation do not include the 

local cutting or filling that happens due to the change in flow geometry in the vicinity of 

bridge infrastructure. In summary, aggradation and degradation refer to the increase or 

decrease in the general stream bed elevation on a long-term basis due to changes that 

happen at a far upstream location which affect sediment transfer. 
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2.2.2. Local Scour 

 The presence of  hydraulic structural obstacles such as abutments, embankments, 

spurs or piers can alter the flow patterns around these structures. This results in an 

increased erosive action around these structures. Since the area of influence of such an 

obstacle-induced erosion is limited, they are called local scour. Horseshoe vortex and 

wake vortex around these hydraulic obstacles are found to be the primary cause for local 

scour (Li, 2002). 

 

2.2.3. Contraction Scour 

 Contraction scour is the type of scour that is caused at flow constrictions due to 

man-made or natural causes. The reduction in flow area increases the flow velocity 

which thereby increases the shear stresses near the flow constriction. The scour due to 

such an increased erosive action happens in the vicinity of the contraction and can be a 

result of factors such as (1) natural flow area decrease in the form of channel 

constrictions, (2) abutments and piers, intruding into and blocking the flow area, (3) ice 

formations, (4) sediment depositions along the length of the banks forming natural 

berms, (5) islands or bars of soil formations formed at the upstream or downstream side 

of bridge openings, and (6) vegetation that can contract the flow area either in the main 

channel or in the floodplain (Richardson et al., 2001). Among all these causes, the most 

common cause is the contraction effect caused by the protrusion of bridge abutments 
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either into the main channel or into the flood plain below the bridge structure (Wang, 

2004).  

 

2.3 CONTRACTION SCOUR IN COMPOUND CHANNELS 

 In a typical stream, flow is not only conveyed through the main channel but also 

through the flood plain during events of flood and high flows. Flood plains offer 

hydraulic buffer space for flow transfer in stream systems when the discharge through 

the stream exceeds the capacity of the main channel. Such a compound arrangement of 

main channel and flood plain complicates the flow characteristics near the bridges and 

other hydraulic structures. Contraction scour caused due to the channel constriction can 

be very different between a stream with main channel alone and a stream with a 

combined main channel-flood plain arrangement. The flow transfer characteristics 

between the flood plain and the main channel can vary the quantity of contraction scour 

that happens around the flow constriction. Though a clear experimental study of 

contraction scour in cohesive soils has been undertaken for channels with a rectangular 

cross-section (Li, 2002), contraction scour in a compound channel with cohesive soil 

beds and with the complicated geometry of a flood plain-main channel arrangement is 

yet to be thoroughly evaluated. This research aims at exploring the compound channel 

more in detail with respect to contraction scour.  
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2.4 FACTORS AFFECTING CONTRACTION SCOUR PROCESS 

  Shear stress increase in flow contractions can be influenced by a number of 

factors. Flow velocity increases at flow constrictions due to reduced area of conveyance. 

Such an accelerated flow happens even before the scour starts. Any factor that affects 

flow velocity or flow depth will increase the generation of contraction scour.  

The initial flow velocity directly affects the initial shear stress while the flow 

depth is directly related to the shear stress decay rate with scour depth (Li, 2002). The 

flow velocity in the contracted section is found to be non uniform due to a number of 

factors. The major reason for such a non-uniform variation is the generation of 

turbulence in the wake of a hydraulic structure (Wang, 2004).                                                      
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CHAPTER III 

 

EXISTING CONTRACTION SCOUR PREDICTION METHODS 

 

3.1 INTRODUCTION 

Bridge scour has been extensively researched and systematic methods to evaluate 

scour have been put forward with respect to sandy soils. But research on scour in 

cohesive soils is still in its primitive state. With respect to contraction scour, only the 

live-bed and clear-water contraction scour in cohesionless soils have been the major 

concern in previous studies. The fundamental differences between the scour action in 

cohesionless soils and cohesive soils thus open up a horizon of areas where research is 

yet to be detailed and comprehensive. In this chapter, previous research on cohesionless 

contraction scour and cohesive contraction scour has been summarized with specific 

comments on the differences between the methodologies of the previous researches.  

 

3.2 CONTRACTION SCOUR IN COHESIONLESS SOILS 

 Encroachment of bridge abutments or piers into the flow area in the main channel 

or in the flood plains is found to be the most common cause of bridge contraction scour 

(Li, 2002). All of the previous research on long contraction scour has focused on 

uniform rectangular channels with sand as bed material. The predominant assumption 
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that the flow in the far upstream approach section is uniform has governed the 

theoretical solutions. Since uniformity in flow characteristics has been the primary 

assumption and the flow section has been a simple rectangle, fundamental open channel 

theories and continuity relationships have been employed to easily arrive at the flow 

characteristics in unknown contracted sections. Though live-bed and clear-water scour 

have been dealt differently, a similar approach using uniform flow assumption has been 

used to evaluate the flows and sediment transport in the constricted and unconstricted 

portions of the channel. The major difference between the live-bed scour and clear-water 

scour equations is the sediment transport term.  

According to Laursen (1963), clear water scour reaches an equilibrium state 

when the boundary shear stress reaches the critical shear stress of the soil bed. This 

observation forms the basis for several clear-bed scour equations to follow wherein the 

scour can be estimated based on a continuity relationship between the flow conditions in 

the uncontracted approach section and the constricted section. Clear water contraction 

scour equations of Laursen (1963) and Iverson (1998) for silica sands and clays 

respectively have been as follows. 

 

Laursen’s equation:   

7
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Iverson’s equation:   
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Where H2 is the average water depth in the contracted section, m; H1 or d1 is the average 

water depth in the main upstream channel, m; Q is the discharge through the bridge or on 

the over bank at the bridge associated with the width, m
3
/s; B2 is the width of the main 

channel in the contracted section, m; Su is the unconfined compressive strength of clay, 

lbs/ft
2
; D is the effective mean diameter of the bed material (1.25D50), m;  n is the 

Manning’s roughness coefficient and q2 is the flow per unit width, m
2
/s.  

Also, according to Laursen (1963), the start of sediment transfer acts as a 

threshold between clear water scour and live bed scour and live bed scour prediction 

equations are found to lie well below this threshold interface under the levels of clear 

water scour. The head losses at the contraction inlet due to changes in velocity head are 

found to have less impact on the amount of scour observed in a long contracted section, 

according to Laursen (1963). This served as a basis for the development of several scour 

prediction equations by future researchers considering the scour action as a factor of 

contraction alone neglecting the loss in the velocity head at the contraction inlet. 

According to Laursen’s (1963) findings, the error introduced through neglecting such 

kinetic head losses caused by the hindrance for uniform velocity at the bridge entrance 

section is found to be no greater than the possible error through the assumptions made 
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about the particle shear and critical shear of the soil bed. In general, it is observed that 

Laursen’s study on long contracted channels with sand beds is found to be a stepping 

stone for further studies. 

Biglari and Sturm (1998) experimented the relevance of the contraction scour 

studies conducted on rectangular channels and how they can be implemented for cases 

where a compound channel set up is present with a main channel and flood plain. In 

general, most of the real life streams are found to have distinct main channels and flood 

plains and therefore any methodology based on a simple rectangular channel may not be 

directly applicable to a compound channel. Through flume tests and computational 

approaches on compound channels, they have observed that there is a strong transverse 

movement of longitudinal momentum transfer between the flow in the main channel, 

where the water is flowing at a higher velocity to the flood plain where the water flows 

at a relatively lower velocity. According to Biglari and Sturm (1998), as the water flow 

increases, the velocity of flow in both the main channel as well as the flood plain 

increases, but the difference between the velocities decreases. Also, they inferred that the 

velocity in the center of the main channel was mostly unaffected by any projection of 

abutment into the flood plain or the edge of the main channel. On the other hand, the 

velocity in the flood plain increased greatly due to such encroachment. Also, according 

to them, the water depth and the velocity around the abutment can be approximately 

estimated by assuming that the water in the flood plain portion went only in to the flood 
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plain of the contracted channel and thus it could be assumed to be a rectangular section 

with the flow in the main channel considered separately for scour estimates.  

The first most important shortcoming in the presently available methods for 

contraction scour prediction is that all the experimental evaluations are based on sandy 

soils which have significantly different erosive characteristics compared to cohesive 

soils. Although Iverson (1998) has developed an equation to predict contraction scour 

depth in clear water scour through an empirical relationship between critical shear stress 

and direct shear strength of cohesive soils, any experimental result or case studies to 

validate the empirical relationship is unavailable. 

The present studies including that of Laursen (1963) have conducted experiments 

on long contraction channels to study contraction scour which may not realistically 

represent the most common short encroachments in the form of bridge piers and 

abutments (Melville and Coleman, 1999). Therefore application of correction factors to 

expand the usage of the contraction scour equations based on long contractions to short 

contractions becomes necessary. This need is particularly important with respect to 

predicting the location of the deepest scour hole. 

Another shortcoming in all the presently available texts except for Li (2002) on 

contraction scour research is that the lack of distinction between the maximum scour 

depth and the uniform scour depth. The present scour estimate methodologies have put 

forward equations to predict the scour values that could be considered uniformly around 

the contraction zone. But, based on flume experiments conducted by Li (2002) on a 
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rectangular channel with cohesive soil bed, it has been shown that the scour profile 

distinctly contains a maximum scour hole and a zone of roughly uniform scour depth. 

Also, a methodology to estimate the location of the maximum scour hole is yet to be 

explored within the context of a compound channel. The distance of the maximum scour 

hole (Xmax) from the start of the contraction section could be of significant importance to 

the bridge design community in making crucial structural decisions while considering 

the effects of scour.  

Since most of the above mentioned equations have been derived based on a 

channel with a simple rectangular cross section, the turbulence phenomena associated 

with the formation of eddies at the wake of the encroachment structures and the 

corresponding increase in the shear stresses have not been documented well. The 

possible formation of recirculation waves at the downstream side of the constriction and 

their mixing with the main stream flow could give rise to complex flow mixing with 

subsequent effect on the shear stress exerted on the soil bed. This points towards the 

need for an improved model of a compound channel with main channel and flood plain 

which resembles a natural stream to realistically evaluate the turbulence patterns around 

the flow constrictions and their effects on contraction scour. 
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3.3 CONTRACTION SCOUR IN COHESIVE SOILS 

 The higher cohesive binding between the clay particles can cause the scour rate 

in clayey soils to be ten to thousand times slower than that in cohesionless sandy soils 

(Briaud et al., 1999). Though studies on contraction scour in cohesive soils are very 

limited, the contraction flume tests conducted by Li (2002) on cohesive soil bed offers 

critical insights on the contraction scour phenomena. A number of flume tests have been 

conducted on a rectangular channel with porcelain clay bed to evaluate the scour 

responses in cohesive bed.  

Based on his research, three specific characteristics of contraction scour have 

been identified namely the maximum scour depth, Zmax or the depth of the most critical 

scour hole, the location of the maximum scour hole as measured from the start of the 

contracted section, Xmax and the uniform scour depth, Zunif which gives an estimate of the 

uniform scour depth that is observed beyond the maximum scour hole.  According to Li 

(2002), the scour profile in a contracted channel with cohesive soil bed can be 

schematically represented as in Figure 3.1. 
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FIG 3.1 Scour Profile In A Contracted Channel (Li, 2002) 

 

 The equations suggested by Li (2002) for evaluating contraction scour in 

cohesive soils can be gives as follows. 
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where Zmax is the maximum scour depth, mm; H1 is the depth of flow at a far upstream 

section where the effect of contraction is not pronounced, mm; v1 is the velocity of flow 

in the uncontracted upstream section, cm/s; B1 and B2 are the widths of the uncontracted 
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and contracted portions of the stream respectively, cm and vc denotes the critical velocity 

of the bed material, cm/s. The first term in this equation 
1

1
1

2
1.38

gH

B
v

B
 
  

refers to the Froude 

number in the contracted section. In the above term, the velocity of flow in the 

contracted channel (v2) has not been used and instead, it is arrived by dividing the 

average upstream velocity (v1) by the contraction ratio (B2/B1). The second term in Li’s 

equation 3.1,
1gH

cv
denotes the critical Froude number. This quantity signifies the 

amount of erosive resistance that is offered by the soil bed. According to Li, the 

difference between the first and the second term explains the erosive potential. The 

factors 1.9 and 1.38 are applied as dimensionless factors. 

According to Li, the scour phenomenon gives rise to an uniform scour zone apart 

from the maximum scour hole. This uniform scour zone extends beyond the immediate 

maximum scour hole and is found to be uniform because of the flow stabilization that 

occurs in the wake of the constriction. The expression to predict uniform scour depth 

according to Li (2002) is given as follows,   
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where all the parameters in the above Equation 3.2 are the same as in Equation 3.1, 

except for Zunif which is the uniform scour depth, mm. 

 Li (2002) has also put forward an equation to predict the location of the 

maximum scour based on the geometry of the contracted section. According to him,  

 

                                                    
2

2 1

maxX B
=2.25 0.15

B B
+                                                    (3.5) 

 

 In the above equation, Xmax denotes the distance of the maximum scour hole from 

the start of the channel in mm while B1 and B2 stand for the width of the non-contracted 

and contracted portions of the channel respectively.  
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CHAPTER IV 

 

MODEL DEVELOPMENT – CONTRACTION SCOUR 

 

4.1 INTRODUCTION 

 Contraction scour has been an important phenomenon and has been studied by a 

number of researchers in the past (Straub 1934; Laursen 1960; 1963; Komura 1966; Gill 

1981; Lim 1998; Chang 1998; Li 2002). Though contraction scour in cohesion soils have 

been studied thoroughly in the past, a comprehensive scour estimation methodology is 

not available for predicting cohesive contraction scour in compound channels. Even 

among the research on cohesionless soil contraction scour, it is only long contraction 

scour where the length of the contraction is more than twice the approaching channel 

width that has been focused on. But in reality, bridges typically impose short 

contractions in the form of abutments and piers and also, uniform flows as assumed by 

most of the previous methodologies may not be closely relevant assumptions with in the 

case of a compound channel. Besides, the applicability of the scour estimation 

methodologies based on cohesionless soils to cohesive soils is questionable. Another 

pressing need for the present research on compound channels is the necessity to 

distinguish uniform scour from the maximum scour hole and to identify its location.  

 In this chapter, the experiments on contraction scour are introduced. The 

theoretical background and the design of each flume test on contraction scour are 
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elaborately discussed. Comparisons are been made between the previous studies on 

contraction scour in cohesive soils with special emphasis being on cohesive solid bed 

and compound channel scour.  In the later part of the chapter, the data from flume test 

observations is discussed along with the results.  

 

4.2 THEORETICAL BACKGROUND 

  In this chapter the background behind the design of flume tests is discussed and 

analyzed in the light of cohesive soil scour. The most common cause for contraction 

scour is the reduction of flow area near abutments which causes flow constriction with 

subsequent increase in flow velocities followed by scour. Contraction scour typically 

occupies a larger area than other forms of local scour and therefore can result in a 

general lowering of the bed elevation over a long time (Li, 2002). Here open channel 

theories can provide the general background for the study on contraction scour. The 

equations and solutions used to generalize scour area according to Li (2002) are as 

follows. 

 Continuity equation describes that the input flow must be equal to the output 

flow when there is no channel loss involved.   

 

V1 B1 H1= V2 B2 H2                                                       (4.1) 
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Where V1, B1, H1 are the stream velocity, m/s; channel width, m; flow depth, m 

respectively of the stream in the upstream side of the contraction and V2, B2, H2 are the 

stream velocity, m/s; channel width, m; flow depth, m respectively of the stream at the 

contraction. 

In the event of a head loss at the contraction inlet, the energy conservation law 

that is used to calculate the head losses can be given as the Bernoulli’s law on a 

frictionless, steady and incompressible flow. 
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Z ++=++                          (4.2) 

  

Where g is acceleration due to gravity, m/s
2
; Z1, v1 and H1 are the stream bed elevation, 

m; flow velocity, m/s; flow depth, m respectively in the upstream side of the contraction 

and Z2, v2 and H2 are the stream bed elevation, m; flow velocity, m/s; flow depth, m 

respectively at the contraction.  

 

4.2.1 Application of Hyperbola Model on Contraction Scour 

 The idea of using a hyperbolic model to predict scour was proposed, tried and 

verified in the prediction of pier scour by Li (2002), but it can also be extended for 

application in contraction scour. Hyperbolic models can help extrapolate the test results 
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of contraction scour unto very long time periods to which conduction of experiments 

may not be practically feasible (Li, 2002). Two assumptions that are used by other 

researchers (Lauren, 1960; Komura, 1966) to simplify the flow conditions are as follows. 

(1) Flow is uniformly distributed in the rectangular channel.  

(2) The velocity head is negligible when compared with the flow depth and 

therefore the water elevation in the contracted channel remains the same 

throughout scour development. 

Based on the above two assumptions by the earlier researchers, Li (2002) has 

carried out the derivations as per Lauren (1960) and Komura (1966) as follows. 

(1) Continuity equation of flow is 

 

V1 B1 H1 = V2 B2 H2 = Q                                                  (4.3) 

 

Where Q is channel discharge, m
3
/s. 

(2) The bed of the stream is subjected to a shear stress of  

 

                                            τ=

2 2

2

1/3

gn V

H

ρ
                          (4.4) 

 

    Where τ is shear stress, N/m
2
 ;  ρ is the mass density of water, kg/m

3
; 
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H is flow depth, m. By rearranging the above equation, the critical velocity (Vc) 

can be expressed in terms of critical shear stress τc as 

 

Vc=
2

31

gn

Hc

ρ

τ
                                                 (4.5) 

    

 (3) By replacing V2 by Vc in Equation 4.4, the final water depth in the contracted 

portion of the channel after equilibrium state has reached can be written as 
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(3) A soil erosion function model in linear form can be given as 

 

)( cs
dt

dH
ττ −=                              (4.7) 

 

    Where H is the soil bed elevation, m; and S is a constant coefficient. 
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(4) Bringing equation 4.6 into Equation 4.7, the equation for scouring process 

can be obtained as  
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−=                                          (4.8) 

 

Where  a = 
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4.3 SHEAR STRESS AND FLOW VELOCITY 

 Shear stress exerted by water at the top of the soil bed plays a crucial role in 

exciting the bed materials, resulting in scour.  Also, the shear resistance offered by the 

soil grains is of crucial importance. The critical shear stress (τc) of the soil bed can be 

experimentally estimated directly through the Erosion Function Apparatus (EFA) 

developed by Briaud et al. (1999) by measuring the erosion rates of the clay sample at 

different flow velocities. According to Briaud et al. (1999), in cohesive soils, the 

velocity of flow which gives rise to scour at the rate of 1 mm/hour can be regarded as the 

critical velocity (Vc) of the soil. The shear stress at the top of the bed material 

corresponding to the critical velocity gives the critical shear stress of the soil (τc) . A 
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number of EFA tests were conducted on Porcelain Clay samples from the cohesive test 

beds used in the experiments to evaluate the critical velocity of the bed material used and 

thereby, the critical shear stress of the bed material. The results have been shown in 

Figure 4.1. A median value of 1.5 N/m
2 

was used for the critical shear stress value of test 

bed material in all the calculations in the following chapters.  

 Flow velocity is another major factor in the development of contraction scour. 

Though the velocity distribution across the stream at a far upstream approach section is 

fairly uniform, flow velocity variations occur to a great extent at the contraction section. 

This is mainly due to the convergence of flow into the constricted area. The portion of 

flow near the centerline of the stream has a higher velocity than the portion close to the 

abutment. This is due to the higher deflection of flow near the abutment contractions 

while the flow is fairly undisturbed near the channel centerline. Because of the uneven 

distribution of flow velocities across the contracted section, the actual velocity to be 

used in the calculations is based on the average velocity in the contracted section. A 

similar approach has been followed by the ABSCOUR program while estimating 

contraction scour. According to the ABSCOUR methodology developed by the 

Maryland State Highway Administration Scour Program in their Manual for Hydrologic 

and Hydraulic Design, Office of Bridge Development, Maryland SHA, when the setback 

of the abutment in to the floodplain from the main channel slope is less than 5 times the 

depth of water in the main channel, it is classified as a short set back case. And 

according to ABSCOUR methodology, there is uniform mixing among the main channel 
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waters and the flood plain waters thereby validating the assumption that the velocity 

used in the computation of flow parameters in the contraction channel can be the 

averaged velocity at the contraction section. In this research, a similar approach has been 

followed with the velocity with the suggestion that the velocity in the contraction section 

can be obtained by dividing the total discharge by the sectional area at the contraction 

section. 

 

FIG 4.1 Erosion Rate Vs Shear Stress For Porcelain Clay 
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4.4 DESIGN OF FLUME TESTS FOR CONTRACTION SCOUR IN 

COMPOUND CHANNEL 

 The main factors that influence contraction scour in compound channels can be 

listed as the approach velocity V1, the approach water depth Hm in the main channel, the 

contraction ratio (A2/A1), the abutment transition angle Θ and the contraction length L. 

But in this research, the focus has been only on the first three parameters which are the 

most influential parameters. The scour depth can therefore be expressed as these factors 

as below 

 

Z = f ( Hc, V1, V2,τc, g, ρ, µ, Θ , S)                        (4.9)  

 

The explanation for the notations used in Equation 4.9 are given below the 

schematic diagram of the experimental set up shown in Fig. 4.2.The flume tests are 

designed to evaluate the effect of the following four factors.  

(1) The effect of the approach velocity V1 on scour development. 

(2) The effect of the approach water depth Hc on scour development. 

(3) The effect of shape of the abutment on scour development. 

(4) The effect of contraction ratio on scour development.  

To model the effects of the above parameters, two sets of experiments were 

conducted. One set is to study the effects of approach velocity, water depth and the 
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shape of the abutment on a compound channel while the other set was conducted to 

study the effect of blockage ratio on a rectangular channel.  

Since the objective of these set of experiments were to bring about a set of 

solutions that can be applicable both for the compound channel and the rectangular 

channel geometries, all the above factors have been discussed with the primary focus 

being on the compound channel setup. 

The following schematic diagram 4.2 represents the different variables used to 

define the geometries of the contraction section. 

 

 

 

 

 

 

 

 

 

FIG 4.2 Schematic Representation Of The Geometry Of The Contracted Channel 

Section 
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La  – Width of the abutment. 

Lf  – Width of the flood plain 

Lf  =  L- Lm 

Hc  – Depth of flow in the main channel. 

Hfp  – Depth of flow in the flood plain. 

Q – Discharge. 

β – Inclination angle of the abutment side walls. 

Θ – Angle of the abutment. 

Fr – Froude number. 

S – Longitudinal slope of the channel bed. 

 - Kinematic viscosity of water. 

V1 – Velocity of flow in the uncontracted channel 

V2 – Velocity of flow at the contraction. 

 

It is to be noted that since scour experiments were performed on a symmetric 

channel model, the centerline of the channel is replaced by a boundary wall. Table 4.1 

and Table 4.2 show the variables and the different ratios in the dimensionless form for 

compound channel cases and rectangular channel cases respectively. Table 4.3 and Table 

4.4 show the values of variables in the flume model for the compound and rectangular 

cases respectively.  
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Table  4.1 Dimensionless Form Of Test Matrix For Compound Channel Cases 

 

Test 

Case 
Hfp/La Fr La/L TAN(βa) Θ (

o
)  L/Lm Hc/Lm La/Lm 

1 0.16 0.23 0.5 0.5 90  3 0.41 1.50 

2 0.1 0.23 0.5 0.5 90  3 0.32 1.50 

3 0.22 0.23 0.5 0.5 90  3 0.50 1.50 

4 0.16 0.18 0.5 0.5 90  3 0.41 1.50 

5 0.16 0.28 0.5 0.5 90  3 0.41 1.50 

6 0.16 0.23 0.5 vertical 90  3 0.41 1.50 

 

 

Table  4.2. Dimensionless Form Of Test Matrix For Rectangular Channel Cases 

 

Test Case Fr La/L 

7 0.18 0.28 

8 0.18 0.44 

9 0.18 0.61 

 

 

Table  4.3 Dimensional Form Of Test Matrix For Compound Channel Cases 

 

L  Lm  Lf  La  Hfp  Vavg  Test 

Case (ft) (m) (ft) (m) (ft) (m) (ft) (m) (ft) (m) (ft/s) (m) 
TAN(βa) Θ (

o
) VARIABLE 

1 12 3.66 4 1.2 8 2.4 6 1.8 0.96 0.29 1.41 0.43 0.5 90 Reference case 

2 12 3.66 4 1.2 8 2.4 6 1.8 0.60 0.18 1.17 0.35 0.5 90 
Water Depth 

(Low) 

3 12 3.66 4 1.2 8 2.4 6 1.8 1.32 0.40 1.61 0.49 0.5 90 
Water Depth 

(High) 

4 12 3.66 4 1.2 8 2.4 6 1.8 0.96 0.29 1.10 0.33 0.5 90 Velocity (Low) 

5 12 3.66 4 1.2 8 2.4 6 1.8 0.96 0.29 1.71 0.52 0.5 90 Velocity (High) 

6 12 3.66 4 1.2 8 2.4 6 1.8 0.96 0.29 1.71 0.52 vertical 90 Abutment shape 
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Table  4.4 Dimensional Form Of Test Matrix For Rectangular Channel Cases 

 

L  Lm (ft) Lf (ft) La (ft) Hc (ft) Vavg  Test 

Case (ft) (m) (ft) (m) (ft) (m) (ft) (m) (ft) (m) (ft/s) (m/s) 
TAN(βa) 

Θ 

(
o
) 

VARIABLE 

7 12 3.66 - - - - 3.33 1.01 1.20 0.37 1.09 0.33 vertical 90 Contraction ratio 

8 12 3.66 - - - - 5.33 1.62 1.20 0.37 1.09 0.33 vertical 90 Contraction ratio 

9 12 3.66 - - - - 7.33 2.23 1.20 0.37 1.09 0.33 vertical 90 Contraction ratio 

 

4.5 GENERAL TEST ARRANGEMENT 

The flume tests were designed to be conducted till an appreciable portion of the 

scour prediction hyperbola model has been constructed from the available experimental 

data for each test case. Stream bed elevations are measured across a grid of points after 

24 hours in every test case in order to measure the changes in the bed topography and to 

identify scour. A plan view of the measurement grid is shown in Figure 4.3. The grid is 

more closely spaced towards the center of the abutment in order to capture the trends of 

scour development more precisely.  

Mechanical profilers attached to the movable carriage described in Chapter 5 are 

used to measure to the bed elevation at the grid points after every 24 hours. After the 

first 144 hours of the test run, bed elevations were measured at a frequency of 48 hours 

so as to obtain more extensive points for fitting the hyperbolic model. 
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All dimensions of the flume shown are in units of ft (SI units are within brackets) 

FIG 4.3 Scour Depth Measurement Grid Points 

 

Flow velocity measurement around the abutment contraction and in the far 

upstream approach section is essential in understanding the velocity trends around the 

abutment contraction. Flow velocity was measured along a grid of points after the start 

of each test run. The grid points where velocity measurements were made is given in the 

Figure 4.5. Similar to the bed topography measurement grid, velocity measurement grid 

is also more intensive towards the abutment contraction as shown in Figure 4.5. Velocity 

measurement was made every 120 hours in the entire grid and every 24 hours in the far 

Abutment 
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upstream section in order to identify any changes in the velocity patterns due to the 

development of scour and change in bed geometry. Advanced Doppler Velocimeters as 

described in Chapter 5 were used measure the velocities at each of the grid points. A 

spectral analysis of the velocities around the contraction zone were conducted for Cases 

3 and 5 to evaluate the velocity time history of flow and thereby to identify the time-

duration of the eddies and recirculation waves formed at the wake of the contraction. 

The spectral analysis is performed on the basis of plotting the frequency of the eddy in 

the wake of the contraction opening against the power of the wave. The frequency 

corresponding to the intersection of a line with a negative slope  of 5/3 against the power 

fluctuations gives average time period of the wave. Therefore, in the flume tests, the 

duration of the measurement ranges from 100 seconds near the abutment upto 10 

minutes near the far downstream section. This change in the time of measurement is due 

to the fact that eddies and recirculation waves are generated near the abutment 

contraction with low time periods while as they move downstream their time period 

increases. This explains the need for measurements made over a longer time period in 

the sections away from the abutment so as not to miss the velocity pattern of any of the 

recirculation vortices in the vicinity of the contraction zone. An example of the 

conducted spectral analysis for Test Case 3 of the experiment is shown in Figure 4.4. 
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FIG 4.4 Spectral Plot Of Flow Velocity For Test Case 3 

    Spectral Plot of flow velocity 
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CL

CL

All dimensions are in units of ft (SI units are given within brackets) 

FIG 4.5 Velocity Measurement Grid Points 

 

 

Water surface elevations are measured using a point gage at the start of every test 

along the main channel to record the changes in the water surface profile near the 

contraction zone. Water level is also measured after every 24 hours to monitor the 

changes in the water elevation due to changes in the scour bed geometry. 

The following Table 4.5 compares the observations and measurements that were 

made in the previous research conducted by Li (2002) on contraction scour in cohesive 

soils in a rectangular channel and the measurements carried out in this present research 

on compound channel contraction scour in cohesive soil beds.  

Abutment 

(1.52m) 

(4.57m) 

(0.76m) (0.61m) (0.53m) (0.53m) (0.61m) 

(9.14m) 

(0.3m) 

(0.41m) 

(0.3m) 

(0.33m) 

(0.15m) 

(0.15m) 
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Table 4.5  Comparison Of The Experimental Measurements And Data Acquired– 

Rectangular Channel Vs. Compound Channel 

 

Rectangular channel (Li, 2002) Compound channel 

Velocity measurement (using an ADV): 

1. Longitudinal velocity profile 

along the centerline of the 

channel once at the initial state 

and then at the final state. 

Initial vertical velocity profile in the 

middle of the channel at a location of 1.2 

m upstream of the contraction. 

 

Velocity measurement (using an ADV): 

1. Velocity measurement at a 2-D grid of 

points (grid is shown below) at initial state 

and after every 120 hours till final state 

(viz. 0hour, 120hour, 240hour, 360hour).  

• Closer grid points near the channel 

contraction to capture the changes 

in flow fields precisely. 

2. Initial vertical velocity profile in a 

section across the channel at the contracted 

portion for two cases. 
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Table 4.5 (Continued) 

Water surface elevation (measured using a 

point gage): 

1. Initial water surface elevation 

measured along the centerline of 

the channel. 

2.  Final water surface elevation 

measured along the centerline of 

the channel. 

      

Water surface elevation (measured using a 

point gage): 

1. Initial water surface elevation 

measured along the centerline of 

the main channel.  

2. 120-hour water surface elevation 

measured along the centerline of 

the main channel.  

3. 240-hour water surface elevation 

measured along the centerline of 

the main channel.  

360-hour water surface elevation 

measured along the centerline of the 

main channel (for Case 2 only) 

Contraction scour profile: 

Contraction scour profile along the 

centerline of the bottom of the channel, as 

a function of time (measured using a point 

gage). 

Contraction scour profile: 

Contraction scour profile across a 2-D 

grid of points at the bottom of the flood 

plain and the main channel, as a function 

of time (measured using a profiler). 
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Table 4.5 (Continued) 

Abutment scour measurements: 

Two abutment scour measurements as a 

function of time (measured using a point 

gage). 

- 

1. Photos of the final scour hole shape 

(taken by a digital camera). 

1. Photos of the final scour hole 

shape (taken by a digital camera). 

Video clips of water flow across the 

contracted zone taken from the upstream, 

downstream and an aerial perspective 

using a digital camcorder. 
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CHAPTER V 

 

FLUME TESTS – THE COMPOUND CHANNEL MODEL 

 

5.1 THE COMPOUND CHANNEL MODEL 

  A compound channel model was constructed to perform a series of flume tests at 

the Haynes Coastal Engineering Laboratory, Texas A&M University, College Station. 

The tests were aimed at experimentally studying the proposed hyperbolic model. 

Porcelain clay was used to set up the bed of the compound channel and was sourced 

from Armadillo Clay and Supplies in Austin, Texas. A schematic representation of the 

compound channel model along with the instrumentation is shown in the following 

Figure 5.1. Details of the test set-up are described in the following paragraphs.  

 

              

                                                                                                             

 

 

 

 

FIG 5.1 Schematic Representation Of The Flume System (Not To Scale) 
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(1) – Contraction Abutment          (7) – Scour Bed Mechanical Profiler 

(2) – Steel Rails                              (8) – Point Gage 

(3) – False Bottom                          (9) – Advanced Doppler Velocimeter 

(4) – Flood Plain                             (10) – Carriage 

(5) – Main Channel                         (11) – Computer Controls 

(6) - Sediment Pit                            (12) – Concrete Flume Bed 

 (13) – Water level 

A long two-dimensional test flume with the dimensions 150 feet (45.72 m) long, 

12 feet (3.66 m) wide and 11 feet (3.35 m) deep was used to conduct the scour 

experiment. The flume is part of a closed system and two pumps supply water into the 

flume part of this recirculation system at desired velocities and discharge levels based on 

accurate electronic adjustments of pump speeds. Therefore the total volume of water in 

the system remains constant except for few minor losses in the form of leakage or 

evaporation. The flume also includes an adjustable gate on one end so as to impound 

water if necessary to adjust flows and water levels. A sediment pit measuring 25 feet 

(7.62 m) long  and 5 feet (1.52 m) deep starting at about one half of the flume length is 

available inside the flume which is used as the test bed. 
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5.2 FALSE BOTTOMS 

False bottoms are necessary on either side of the test bed to ensure a smooth 

transition of the channel waters into the compound channel portion, which extends only 

for about 25 feet (7.62 m) length within the 150 feet (45.72 m) long flume. False 

bottoms were provided with the same geometrical cross-section as that of the compound 

channel geometry. In this experiment, false bottoms were provided with concrete beams 

of cross-sectional dimension 8” x 2’ (0.203m x 0.61m). Placement and alignment of 

these heavy beams were done with the help of the gantry crane available at the 

laboratory. The gaps between these beams were sealed with liquid sealants to avoid any 

infiltration of water into the beams. The false bottoms were also provided with an entry 

ramp and an exit ramp with the slope 1:3 (vertical to horizontal) to ensure a smooth 

transition and to avoid the introduction of eddies. The slope of the main channel in the 

false bottom portion was provided with a framework of wooden members with plywood 

facing. These wooden members were fastened to the floor of the flume to avoid any 

uplift thrust exerted by the flowing waters. 

 

5.3 SCOUR BED PREPARATION 

The flume contains a sediment pit which is 25 feet (7.62 m) long, 12 feet (3.66 

m) wide and 5 feet (1.52 m) deep. The sediment pit was filled with sand for about 3 feet 

(0.91 m) depth and the remaining depth was filled with Porcelain clay with a median 
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particle diameter of D50 = 0.003mm, plastic index of 14% and a critical shear stress (τc) 

of 1.5 N/m
2
. The abovementioned physical properties of clay were ascertained through 

the ASTM standard test procedures and the Erosion Function Apparatus test procedure 

(Briaud et al., 1999). The Porcelain Clay used for these experiments were sourced from 

Armadillo Clay and Supplies, Austin, Texas. The Erosion Function Apparatus (EFA) 

(Briaud et al., 1999) estimates the critical shear stress (τc) of the clay sample based on 

the erosion rates of the sample at different flow velocities.  EFA tests were conducted on 

samples from the Porcelain Clay supplies and their critical shear stresses have been 

plotted in the Figure 4.1. The Porcelain Clay was delivered from the source in sealed 

plastic bags of size 250 mm x 180 mm x 180 mm. These bags were opened and the clay 

blocks were placed carefully upon the concrete floor of the flume. Compaction was 

performed to get rid of the air voids between adjacent blocks of clay. Compaction is 

necessary as any gaps between clay blocks could result in excessive scour holes. Care 

was taken to see to it that the clay was not deformed or its homogeneity lost in an effort 

to compact the bed.  

The test bed was constructed with a flood plain arrangement along the length of 

the flume with a side slope of 1:1 and an elevation of 8 inches (0.2 m) relative to the 

main channel, for the tests on compound channels. The flood plain arrangement was 

made with plywood material with braces and connections to keep the shape intact. 

Abutments of two different shapes were tested in these experiments. One of them was a 

vertical wall abutment with a °45  wing wall, 18 inch (0.46 m) wide crest, 44 inch (1.12 
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m) height, and 90 inch (2.29 m) width and the other one was a spill-through abutment 

with the same dimensions. The side slope for the wing-wall shape is to be 2:1 

(horizontal: vertical). The abutment was firmly seated in the flood plain with the right 

orientation.   

Figure 5.1 shows the proposed experimental setup and the definition of the flow 

parameters are given below. The different test conditions that are to be investigated are 

shown in Table 4.3 and Table 4.4. After the completion of every test, the eroded and top 

slimy part of the clay was removed and was replaced with fresh unused clay. The 

removal of the top soft film of clay is essential to ensure that the old soil and the new 

soil can stick tight. Otherwise, the new clay might possibly be washed away in lumps 

when water exerts shearing and uplifting forces at higher velocities of flow. 

 

5.4 MEASUREMENT EQUIPMENT 

 

5.4.1 Equipment for Velocity Measurement 

Acoustic Doppler Velocimeter (ADV) is an electronic instrument that uses 

acoustic sensors to measure the flow velocity in the flume by way of measuring the 

delay in the reflected waves between the impurities that are carried by the flow. ADVs  

can accurately measure velocities of flow without disturbing the flow or generating 

eddies through their probes. The used ADVs were sensitive for a velocity range of +-2.5 
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m/s and to a resolution of 0.1 mm/sec. Two ADVs were used in the compound channel 

flume tests, one each for the flood plain and the main channel set at 0.6 times the depth 

of water in order to measure the average velocity at that point. ADV's can measure 

velocities in all the three principal directions x, y and z. The two ADVs were set at 

measuring velocities four times every second. ADVs were primarily used in this 

experiment to measure the flow velocity across a grid of points as shown in Figure 4.4. 

The ADVs were fitted to a metal sliding piece and were mounted on a movable carriage 

that was used for making measurements across the test bed. The movable carriage was 

fabricated for mounting measurement devices and was towed by an electrically operated 

crane during the experiments. 

 

5.4.2 Equipment for Flow Depth Measurement 

Point gage is an accurate, inexpensive and efficient instrument to measure depth 

of flow. It is designed on the principle that electrical conductivity changes between 

different media such as air, water and soil. It has a needle attached to a vertical rule. The 

needle is connected to an electrical circuit which in turn in connected to a resistance 

gage. When the needle is lowered into the water and when the tip of the needle just 

touches the top surface of water, there is a sudden change of current flow in the closed 

circuit, which in turn is displayed in the resistance gage.  



                                                                                     

 

                                                                                           49 

                                                                                                                                         

 

An electronic display unit is also provided to accurately measure water depths 

with a precision of 1/100 mm. A point gage was mounted on the movable carriage to 

measure flow depths along the length of the flume during the flume tests.   

 

5.4.3 Equipment for Elevation Measurement 

Elevation of the clay bed is to be measured after every 24 hours or 36 hours in 

order to record the changes in the bed topography with time. Measurement of elevation 

changes in a grid of points in the contraction zone as shown in Figure 4.3 are necessary 

to evaluate the scour trends and extents. 

 In this experiment, a hand-operated mechanical profiler arrangement is used to 

measure the elevations of the bed after every run of the test. A series of 0.5 inch (1.27 

cm) diameter tubes are affixed with measurement tapes. These tubes can be lowered to 

rest on the bed after every test and the change in elevations can be noted down at the 

level of the carriage against a fixed mark. This is a simple yet effective method to 

measure the bed elevations. It takes roughly about three to four hours to measure the 

surface elevations of all the grid points whose elevations are measured.  

After every test case, the skewed tubes are replaced with new ones in order to 

avoid any errors due to the nonlinearity of the profiler tubes. These profilers are mounted 

on the downstream side of the movable carriage. A measurement tape was affixed on the 

wall of the flume to identify the exact locations along the length of the flume where the 

scour bed elevation measurements were made. 
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CHAPTER VI 

 

TEST DATA AND OBSERVATIONS 

 

6.1 INTRODUCTION  

 In this chapter, the experimental results from the flume tests are introduced. For 

each test case, scour depth across a grid of points are measured at regular time intervals 

to obtain the trend of scour development and the maximum scour depth is thereby 

obtained from the hyperbolic model. Measurements of flow velocity at different sections 

were also carried out to obtain the trends in velocity change across the abutment 

contraction. Water depth measurement was also made for every test case. A brief 

discussion of the observed significant trends has been made for each of those 

measurements. 

 

6.2 GENERAL TEST PROCEDURE 

 

Pumps were operated and discharges were adjusted to match proposed discharge 

of the test conditions as shown in Tables 4.3 and 4.4 which in turn have been decided 

from a comprehensive dimensionless analysis of the typical bridge geometry conducted 

by Briaud et al., (2005) at Texas A&M University, College Station and are shown in 

Table 4.1 and Table 4.2 of Chapter 4. At the beginning of every test case, water 
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elevations and the test bed topography (bed elevation) were measured. The pump 

operation is followed by measurements of water depth and bed elevations at the grid 

points every 24 hours using an electronic point gage and a mechanical bed profiler 

respectively.  

Flow velocities along all the three principal directions were measured while the 

experiment is in process using two Advanced Doppler Velocimeters, one for the main 

channel and one for the flood plain every 120 hours as explained in chapter 4. 

 

6.3 SCOUR DEPTH 

  

 Contour plots of channel bed elevation measurements have been shown in 

Figures 6.1 and 6.2. These plots show the changes in the scour patterns over time. 
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Scour contours at different time steps - CASE 1 (Hfp/La = 0.16, Fr = 0.23)                    
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FIG 6.1 Contour Plots Of Compound Channel Flume Tests On Cohesive Soil 
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Scour contours at different time steps - CASE 1(Hfp/La = 0.16, Fr = 0.23)   
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FIG 6.1 (Continued)      
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Scour contours at different timesteps - CASE 2 (Hfp/La = 0.1, Fr = 0.23)           
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FIG 6.1 (Continued) 
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Scour contours at different time steps - CASE 2 (Hfp/La = 0.1, Fr = 0.23)   
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FIG 6.1 (Continued) 
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Scour contours at different time steps - CASE 3 (Hfp/La = 0.22, Fr = 0.23)   
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FIG 6.1 (Continued) 
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Scour contours at different time steps – CASE 3 (Hfp/La = 0.22, Fr = 0.23)    
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FIG 6.1 (Continued) 
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Scour contours at different time steps - CASE 4 (Hfp/La = 0.16, Fr = 0.18)    
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FIG 6.1 (Continued) 
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Scour contours at different time steps - CASE 4 (Hfp/La = 0.16, Fr = 0.18)    
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FIG 6.1 (Continued) 
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Scour contours at different time steps - CASE 5 (Hfp/La = 0.16, Fr = 0.23)              
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Scour contours at different time steps - CASE 5 (Hfp/La = 0.16, Fr = 0.23)              
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FIG 6.1 (Continued) 
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Scour contours at different time steps - CASE 6 (Hfp/La = 0.16, Fr = 0.23, Vertical wall abutment)              
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FIG 6.1 (Continued)  
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Scour contours at different time steps - CASE 6 (Hfp/La = 0.16, Fr = 0.23, Vertical abutment)              
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FIG 6.1 (Continued) 
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Scour contours at different time steps - CASE 7 (Fr = 0.18, La/L = 0.28)              
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Scour contours at different time steps - CASE 7 (Fr = 0.18, La/L = 0.28)                 
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FIG 6.1 (Continued) 
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Scour contours at different time steps - CASE 8 (Fr = 0.18, La/L = 0.44)              
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FIG 6.1 (Continued)  

Color Legend: 

Scour Depth in 

inches (SI units 

are given within 

brackets) 

 
(-27.9 cm) 

 
(-12.7 cm) 

 
(0 cm) 

24 hours 120 hours 168 hours 

Flow Flow Flow 

(3.05 m) 

(1.83 m) 

(-1.83 m) 

(-3.05 m) 

(3.05 m) (1.52 m) 

(0.61 m) 

(-0.61 m) 

(4.27 m) 

Plan dimensions of flume are in units of feet (SI units in brackets) 



                                                                                     

         

         6
7
 

 

 

                                                                                                                                         

                                         

                                                                                                                                         

 

Scour contours at different time steps - CASE 8 (Fr = 0.18, La/L = 0.44)              
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FIG 6.1 (Continued) 
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Scour contours at different time steps - CASE 9 (Fr = 0.18, La/L = 0.61)              
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Scour contours at different time steps - CASE 9 (Fr = 0.18, La/L = 0.61)              
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FIG 6.1 (Continued) 
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Contraction Scour Boundary – Half-depth of Maximum Scour 
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   FIG 6.2 Contraction Scour Boundary – Half-Depth Of Maximum Scour  
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 Contraction Scour Boundary – Half-depth of Maximum Scour 
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FIG 6.2 (Continued)  
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For Test Cases 1 to 5, the contraction abutment in the compound channel is 

provided with a spill-through shaped abutment while the Test Case 6 on the compound 

channel geometry and the rectangular channel cases from Test Case 7 through Test Case 

9 are provided with a wing and vertical wall shaped abutments respectively. Test Case 1 

is considered as the reference case whose dimensionless parameters were arrived 

through a statistical analysis conducted by Briaud et al. of Texas A&M University after 

conducting a survey of bridge geometries in the United States. Test Cases 1, 2 and 3 

simulate the effect of water depth on contraction scour. Test Cases 1, 4 and 5 simulate 

the effect of flow velocity of contraction scour. Test Cases 1 and 6 study the effect of the 

shape of the abutment on contraction scour. Test Cases 7, 8 and 9 test analyze the effect 

of contraction ratio on contraction scour.  

Contraction scour in a compound channel is more pronounced near the center 

line of the channel. With the increase in depth of flow, the scour trend broadens 

throughout the contraction zone. This is also accompanied by the faster development of 

a deeper scour hole.  
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Table 6.1 Results From The Contraction Scour Tests In Compound Channel With Clay 

Bed 

 

Hc  Q  V1  V2  VHEC  Zmax  Zunif  Xmax  
Test Case No. 

(ft) (m) (cfs) (m
3
/s) (ft/sec) (m/s) (ft/sec)(m/s) (ft/sec)(m/s) (inch) (cm) (inch) (cm) (ft) (m) 

Case 1 1.620.4920.23 0.57 1.44 0.44 2.21 0.67 2.22 0.68 8.13 20.65 3.86 9.80 5.751.75

Case 2 1.270.3911.29 0.32 1.17 0.36 1.77 0.54 1.75 0.53 3.53 8.97 2.25 5.72 4.001.22

Case 3 1.980.6028.69 0.81 1.58 0.48 2.39 0.73 2.22 0.68 10.1725.83 5.55 14.104.251.30

Case 4 1.630.5015.61 0.44 1.12 0.34 1.72 0.52 1.76 0.54 2.87 7.29 3.51 8.92 4.751.45

Case 5 1.630.5023.37 0.66 1.67 0.51 2.56 0.78 2.64 0.80 10.6226.97 5.31 13.494.001.22

Case 6 1.630.5026.79 0.76 1.91 0.58 3.26 0.99 3.46 1.05 8.42 21.39 4.84 12.293.751.14

Case 7 1.200.3715.15 0.43 1.06 0.32 1.47 0.45 1.47 0.45 2.2 5.59 0.72 1.83 2.750.84

Case 8 1.220.3715.27 0.43 1.04 0.32 1.87 0.57 1.86 0.57 5.66 14.38 2.45 6.22 4.001.22

Case 9 1.230.3714.69 0.42 0.99 0.30 2.54 0.77 3.00 0.91 8.29 21.06 4.36 11.073.000.91

                 

 

  

 Comparison between the contour plots of scour between the Test Cases 1 and 6 

(Effect of the shape of the abutment) show the interesting fact that there is no scour near 

the toe of the abutment in case of a vertical wall abutment. This could be the result of the 

portion of flow from the flood plain getting harshly deflected into the main channel 

owing to the shape of the vertical wing wall contraction abutment. 

 An increase in contraction ratio increases the depth and extent of the contraction 

scour hole. This has also been observed by the previous researchers (Laursen, 1960; Li, 

2002). Though a very harsh contraction combines the effect of contraction scour and 

abutment scour near the upstream tow of the contraction abutment, there is a well-
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marked delineation between contraction and abutment scour patterns in mild 

contractions as abutment scour occurs localized around the abutment while contraction 

scour is more towards the center of the channel and extends longer than abutment scour. 

 Figure 6.3 shows the influence of contraction ratio on contraction scour profile. 

Figure 6.4 shows the influence of approach velocity on contraction scour profile. Figure 

6.5 and Figure 6.6 show the influence of water depth and abutment shape, respectively 

on contraction scour development. Detailed Tables showing the development of the 

maximum depth scour hole with time have been given in Appendix C. 

 

FIG. 6.3 Influence Of Contraction Ratio On Contraction Scour Profile 
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FIG. 6.4 Influence Of Approach Velocity On Contraction Scour Profile 

 

 

FIG. 6.5 Influence Of Water Depth On Contraction Scour Profile 
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FIG. 6.6 Influence Of Abutment Shape On Contraction Scour Profile 

 

 

6.4 FLOW VELOCITY AND WATER DEPTH 

  

 Flow velocities at the various grid points were obtained from the Advanced 

Doppler Velocimeter measurements. A contour plot of the velocities in Test Case 2 and 

Test Case 3 at the start of the flume tests have been shown in the Figure 6.7. The 

changes in velocities at different longitudinal sections at the contraction zone have been 

shown in the Figure 6.8. 
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FIG 6.7 Velocity Contours At The Start Of Test Cases 3 And 5 

 

 

 A reverse circulation in the downstream side of the contraction abutment gives 

rise to negative velocities just downstream of the abutment. In all the test cases, velocity 

increases rapidly near the abutment contraction and particularly near the toe of the 

abutment and gradually slows down as the waters move downstream. There is no 

uniform increase across the center of the abutment section. This again reinforces the fact 
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that the mixing of flood plain waters in to the main channel waters gives rise to the 

sudden increase of flow velocity causing enormous erosive forces near the soil bed. 

 

 

 
                      

FIG 6.8 Longitudinal Velocity Profiles At The For Test Case 3 
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 A plot of the vorticity of flow near the abutment from the velocity data shows the 

amount of flow “rotation” that takes place around the contraction section. Figure 6.9 

shows the vorticity pattern observed in Test Case 3 of the flume tests. It is to be noted 

that there is a clear recirculation pattern that takes place just downstream of the abutment 

(shown in the figure with blue contours) signifying the introduction of a rotational 

motion which could give rise to local abutment scour.  
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FIG 6.9 Vorticity Plot For Test Case 3 
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In the above equation, ζ gives a measure of vorticity, which is obtained from the 

difference between the change in velocity components along the longitudinal and 

transverse directions.  

The water surface elevation drops near the contracted zone for the compound 

channel tests, which has been observed by previous researchers in rectangular channels 

(Laursen 1960, Komura 1966) as well. Also, the water depth is found to rise at the 

contracted section with time and tends to get equal with the upstream water level. This is 

in agreement with the findings of Li (2002) for a simple rectangular channel with 

cohesive soil bed. Since the flow in the channel is subcritical, downstream control exists 

suggesting the changes in the water surface elevations could be the result of the 

development of scour in the downstream side of the contraction zone. Figure 6.10 shows 

the change in water surface profiles at different time steps for Test Case 15. 
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FIG 6.10 Water Surface Profile At Different Time Steps For Test Case 15 

 

With respect to the velocity in the contracted zone, there is a tendency for the 

velocity to decrease gradually with the development of scour. This is also in 

confirmation with what Li (2002) observed in the rectangular channel with cohesive soil 

bed. It is also observed in the compound channel that the highest velocity and the lowest 

water surface elevation occur roughly at the same downstream location confirming the 

validity of the flow continuity assumptions. 
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1 dimensional flow simulation program HEC RAS is used to simulate the present test 

conditions. A comparison between the HEC RAS simulated flow parameters for the 

same discharge and flow geometry against the flume test measurements helps in 

identifying the differences in prediction based on the software program and the actual 

flow parameters. Fgure 6.11 shows the comparison of HEC-RAS predicted flow 

velocities the measured velocities from the flume tests at the contraction section for 

different test cases. It is observed that HEC RAS predictions are closer to the actual 

averaged velocities at the contraction section for the compound channel tests than the 

rectangular channel cases. It is also observed that HEC RAS was not found to be very 

sensitive to variations in water depth. A stepped increase or decrease in the water surface 

elevations was observed in all the test cases. 

FIG 6.11 Comparison Of HEC RAS Predicted Velocities And Flume Test Velocities 
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Though a close prediction of flow velocities to the actual measured flow 

velocities was observed in HEC RAS, a correction factor of 1.02 is proposed to achieve 

better regression values while comparing the HEC RAS predicted the velocities and the 

actual velocities measured from flume tests for compound channels.  

Figure 6.12 shows the comparison plot between HEC RAS predicted velocities 

and the actual measured velocities. 

 
 

FIG 6.12 Relationship Between HEC RAS Estimate Of Velocities And Flume Test 
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                                            VHEC = 1.02 x V1 (A1/A2)                     (6.1) 

 

The test results from all the cases have been given in the Table 6.1. From the 

hyperbolic model results, the scour values are extrapolated to arrive at maximum scour 

values.  

The focus has been on three characteristics in compound channel contraction 

scour namely the maximum scour depth (Zmax), the uniform scour depth (Zunif) which 

extends both in the upstream and well as downstream sides of the maximum scour hole 

and the distance to the maximum scour hole from the center of the contraction section 

(Xmax). 
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CHAPTER VII 

 

METHODOLOGY DEVELOPMENT AND SCOUR PREDICTION 

 

7.1 BACKGROUND 

 New methodologies are developed based on the results of flume tests and 

observations as detailed in Chapter 6. To evaluate the effects of different flow 

parameters in the development of scour, critical shear stress is employed as the resistive 

parameter against scour. This new methodology predicts all the three important 

characteristics namely the maximum scour depth, its location and also the uniform scour 

depth. A procedure to construct a complete geometry of the scour hole in a compound 

channel is also described. Equations to predict scour are also modified to include HEC-

RAS predicted flow parameters in order to arrive at scour depths without any field 

measurement of flow parameters at the contraction section. Finally, a verification study 

of the proposed methodology is carried out to check its applicability to real life stream 

data.  
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7.2. MAXIMUM SCOUR DEPTH 

 The major advantage of this research on contraction scour in compound channels 

is that it identifies the maximum scour hole and distinguishes it from the uniform scour 

depth. The maximum scour depth (Zmax) is the depth of scour hole in the contraction 

zone. The contraction zone can be identified from the flow lines near the contraction 

zone. Figure 7.1 shows the flow lines around the contraction section which converge 

toward the center of the channel. These flow lines converge upto a certain distance (or 

vena contracta) and diverge again.  

The boundary for contraction scour can be delineated from the streamline 

tangential to the contraction abutment for there is no particulate transfer across a stream 

line. According to Li (2002), the maximum scour depth is more critical than the uniform 

scour depth for two reasons.  

(1) The maximum scour depth represents the most severe scour and therefore is 

of more critical importance to the bridge foundation evaluation.  

(2) The maximum scour hole is closer to the contraction inlets and bridge piers 

are abutments are in its influence zone. 
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FIG 7.1 Velocity Stream Line Plots For Test Cases 3 And 5 

 

Earlier findings by Li (2002) on contraction scour in cohesive soils for a 

rectangular channel indicate that Froude number is found to be a better correlation factor 

compared to Reynolds number. This research compares the relationship between the 

Flow Flow 

Plan dimensions of flume are in units of feet (SI units in brackets). 

Color Legend: 

Flow velocity in 

cm/s 

(4.57 m) 

(3.05 m) 

(-3.05 

(1.52 m) 

(1.52 m) 

(-1.52 

(3.05 m) 

(-4.57 m) 

(-6.09 m) 

(-7.62 m) 

(-9.14 m) 



                                                                                     

 

                                                                                                                                        88 

                                                                                                                                         

                                                                                           

                                                                                                                                         

 

maximum scour depth with the Froude number in the contraction section for a 

compound channel. Figure 7.2 shows the different geometrical parameters at the 

contracted section of the channel. 

 

 

 

 

 

 

  

 

 

 

FIG 7.2 Geometry Of The Contracted Section 

 

A relationship between the scour depth and Reynolds number has been evaluated 

in the following Figure 7.3. It is found that Reynolds number does not correlate well 

with the observed scour depths of the maximum scour hole and the uniform scour zone.     
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FIG 7.3 Correlation Of Scour Depth Against Reynolds Number 

 

Figure 7.4 shows the relationship between maximum scour depth and Froude 

number in the contraction section (Fr) and the critical Froude number (Frc) for a given 

flow geometry and soil condition.                  
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FIG 7.4 Relationship Between Maximum Scour Depth And Froude Number 
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        Where Afp is the area of flood plain; Amc  is the area of main channel; M is the 

contraction ratio.  
1

2

A

A
M =  Where A2 is the area of flow of the contracted channel and 

A1 is the area of flow of the uncontracted channel.              

 

The above equation 7.1 can be written incorporating upstream velocity V1 as 

given below (Equation 7.2) where V2 has been replaced by the relationship between the 

flow and the area of the contracted section. 

  

 

 

                                                      (7.2) 

                                                   

Where Ls is the setback length of the contraction abutment from main channel bank.  

 

The background behind the derivation of the above equation to predict maximum 

scour depth in a compound channel can be given as follows. The right side of Equation 
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upstream approach section, A1 and A2 are the flow areas in the far upstream and 

contracted section respectively. Therefore, the nominal Froude number in the contracted 

section would be  

 

1 1

21

v A
Fr

AgH

∗  
=  

 
                 (7.3) 

 

In the above equation, H1 (Hc) has been used instead of H2 as the flow levels are 

assumed to be the same between the upstream and the contracted sections before scour 

starts and also the velocity is constant across the profile of the channel at the contracted 

section. A correction factor is applied to account for the errors in this assumption which 

has been described in detail later in this chapter. 

Based on Manning’s equation and the equilibrium between the gravity potential 

and the hydraulic potential for an open channel flow, shear stress (τc) and critical 

velocity (vc) have been related by Richardson and Davis (1995) through the following 

equation. 
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Therefore, the critical Froude number Frc can be defined as  

 

1
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1
2

11

c

c
c

v
Fr

gnHgH
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ρ

 
 
 = =                  (7.5) 

 

Bringing Equation 7.4 into Equation 7.5, the equation for contraction scour can 

be written as  

 

 ( )
cFrFr

Hc

Z
−= *βα                           (7.6) 

 

A similar approach also has been used by Li (2002) for predicting contraction 

scour in a rectangular channel with cohesive soil. In the above Equation 7.6, α and β are 

dimensionless coefficients with definite physical meaning. The coefficient β accounts for 

the difference in the velocities between the contracted section and the vena contracta as 

the latter is the section with maximum velocity and contraction. It also accounts for the 

variation in velocity across the contraction section. The coefficient α is defined as the 

contraction modulus (Li, 2002) which accounts for the change in the flow geometry 

between the approach and the contraction sections. 
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 The coefficient γ defined in the Equation 7.2 represents a reduction factor applied 

to the scour estimate based on a rectangular channel in order to factor the complex flow 

patterns that occur at the contraction section in a compound channel.  

 In the above equation, HEC RAS predicted velocity (VHEC) can be used and the 

Equation can be revised as given below. 
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7.3 LOCATION OF MAXIMUM SCOUR DEPTH 

 The knowledge of the location of the maximum scour hole is crucial in making 

decisions from a bridge design perspective. The location of the deepest contraction scour 

hole influences the risk posed to bridge pier or abutment by contraction scour. The 

observed distances of the maximum scour hole from the center of the contracted section 



                                                                                     

 

                                                                                                                                        95 

                                                                                                                                         

                                                                                           

                                                                                                                                         

 

for the various test cases of the flume tests have been given in the Table 6.1. The 

following relationship between the distances of the maximum scour hole from the center 

of the contracted section (Xmax) has been found to predict the distances more accurately 

than the prediction methodology used for the rectangular channels by Li (2002). 
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                                                                           (7.8)

 

 
 

    
4.05.2

2

max += M
B

X

                                  (7.9) 

 

 

In the above Equation 7.9, B2 stands for the length of the opening at the 

contraction inlet; Xmax represents the distance to the maximum scour hole from the center 

of the contraction section. The plot between the predicted values of Xmax on the y-axis 

and the actual measured values of Xmax on the x-axis has been given in Figure 7.5. 

 In the downstream side, though a clear boundary for the scour hole could not be 

identified for lack of test bed, it was noted that contraction scour extends more than 

atleast twice the length of abutment scour in the downstream direction. In the lateral 

direction, contraction scour is bound by the farthest stream line which is tangential to the 

abutment or pier structure giving rise to contraction. 
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FIG 7.5 Relationship Between Xmax And Contraction Geometry 

 

7.4 UNIFORM SCOUR DEPTH 

 Uniform scour depth in a compound channel can be defined as the extent of the 

scoured area that has a scour depth which is more than atleast 50% of the depth of the 

maximum scour hole. The uniform scour hole extends well beyond the maximum scour 

hole and is fairly even in bed elevation. In the flume tests, four values of the uniform 

scour values have been averaged based on the evenness of scour observed from the time-

series plots of scour development. The relationship to estimate uniform scour depth 

(Zunif) has been given below. 
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The contracted section velocity term (V2) in the above equation can be replaced 

by the HEC-RAS predicted velocity and the correction can be made as follows. 
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A plot of the predicted values of Zunif on the y-axis and the actual measured 

values of the uniform scour depth on the x-axis is shown in Figure 7.6. 
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FIG 7.6 Relationship Between Zunif And Froude Number 

 

7.5 VERIFICATION CASE STUDY 

 An investigative approach to evaluate the precision of the scour prediction 

equations developed in this research is essential to understand the reliability of the 

predicted results.  Equation 7.1 primarily developed for the estimation of maximum 

scour depth was used to predict the deepest scour holes due to contraction scour 

developed in a number of streams and channels of varied geometries and conditions 

whose scour data was obtained from US Geological Survey’s online database 

(water.usgs.gov). A comparison of the scour depths predicted by the above equation 7.1 

has been compared against the scour values measured at various scour sites. 
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Table 7.1 Contraction Scour Estimates On Real Life Rivers With Compound Channel 

Geometry 

State Stream Name 

Contracted 

Average 

Velocity, 

V2 (m/s) 

Uncontracted 

Depth, Hc 

(m) 

Contracted 

Discharge 

(m
3
/s) 

Measured 

Scour (m) 

Predicted 

Scour 

(m) 

OH Scioto River 0.76 4.9 89.40 0.30 0.46 

OH Clear Creek 0.85 3.8 77.18 0.61 0.82 

OH Massies Creek 0.87 1.9 28.04 0.42 0.50 

OH Maumee River 0.99 5.8 541.38 0.30 1.01 

OH Scioto River 1.21 4.4 558.04 0.61 1.30 

OH Walnut Creek 0.74 2.1 41.92 0.39 0.45 

OH Walnut Creek 0.84 2.9 68.02 0.39 0.65 

MN 

Pomme De Terre 

River 1.45 2.4 138.82 1.18 1.17 

MO Chariton River 1.50 5.8 481.38 2.06 2.68 

IA Cedar River 1.70 6.8 671.87 0.76 2.66 

SD James River 1.27 5.4 385.91 1.21 1.46 

MS Conehoma Creek 2.81 4.3 249.12 1.24 1.24 

MS Conehoma Creek 2.80 4.2 187.40 0.91 1.02 

WA Chehalis River 2.30 1.9 694.08 1.30 1.33 

WA Chehalis River 2.76 1.9 832.89 1.51 1.58 

  

The above Table 7.1 shows the various geometrical parameters of the rivers in 

this case study, the discharges and other relevant parameters. A comparison of the 

predicted scour depths and the actual measured scour depths by USGS has been given in 

Figure 7.7. It is to be noted that the uncontracted flow velocity V1 was greater than the 

flow velocity at the contracted section V2 in a few cases due to possible presence of 

short and narrow floodplains. It should also be noted that predicted scour values are 
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close to the observed scour depths in a few cases due to the reason that velocity 

measurements could have been made during non-flood periods prior to flood events 

causing scour while the recorded scour depth is due to the actual flood event.    

 

FIG 7.7 Verification Case Studies – Prediction Vs Measurement 

 

The prediction of the proposed equation for maximum contraction scour is found 

to predict the actual scour measurements from field data fairly well given the fact that 

the geometries and soil types were differing widely from the test conditions of the flume 

experiments. Also it should be noted that the predicted scour values are on the 

conservative side of estimation compared against the field scour measurements. 
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CHAPTER VIII 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

8.1 CONCLUSIONS 

 The interaction between the soil bed materials and flow is one of the leading 

causes for bridge failures in the United States. With respect to contraction scour on 

cohesive soil beds, on one hand, the soil properties of the clay bed affect specific 

behavior of scour including the scour rate, the final scour depth and the scour extent or 

shape. On the other hand, the geometry of the flow contraction affects physical 

parameters such as flow around the abutment contractions, flow acceleration, formation 

of vortices and eddies. In this present study, the characteristics of compound channel 

contraction scour have been highlighted based on the results from a number of flume 

tests and auxiliary computational analysis. 

 The following are the main conclusions obtained in this research. 

1. The applicability of a hyperbolic model to the estimate the maximum scour depth 

of a contraction scour hole in a compound channel has been evaluated based on 

the flume test results and has been verified. 

2. Based on flow observations, it has been found that the water surface elevation 

lowers greatly at the contraction section before scour starts coupled with a 
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sudden increase in velocity. This difference between the approach section and the 

contraction section gradually reduces and the water level stays between the 

approach section water surface elevation and the downstream water surface 

elevation towards the development of equilibrium scour condition. This again 

confirms the validity of a methodology to arrive at the scour depth based on the 

difference between the initial and final water surface elevations at the contracted 

section. 

3. A similar distinction between maximum scour hole and uniform scour zone like 

in simple rectangular channels with cohesive beds have been identified for the 

compound channels. The shape and extent of the scour hole and the depth of the 

maximum scour hole have been found to be a result of the difference between the 

erosive action of the approach flow characterized by the Approach Froude 

Number and the resistance to scour offered by the soil at the contraction section 

characterized by the Critical Froude Number.  

4. The extent and boundary of contraction scour in a compound channel is governed 

by the flow field by being bound by the stream line tangential to the 

abutment/pier structure. Also, contraction scour happens more near the center of 

the channel while abutment scour is localized and happens only in the wake of 

the abutment. It was also observed that contraction scour and abutment scour 
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superimpose one another upto the development of equilibrium scour when the 

contraction is harsh. 

5. Two sets of equations have been developed to predict maximum scour hole 

depths and the uniform scour hole depths, one based on a calculation of average 

representative velocity at the contraction section and the other based on the 

simulated results from a HEC RAS one dimensional model. 

6.  An equation to predict the location of the scour hole based on a relationship 

between the contraction geometry and approach geometry. A method to identify 

the extent of the scour hole has also been proposed. 

7. Flow velocity and depth have crucial effect on contraction scour in a channel 

with compound geometry. Flow depth directly affects the extent of scour and 

broadens out the shape of the scour hole while increase in the flow velocity 

elongates and extends the scour hole far downstream at the contraction section. 

8. A vertical wing wall abutment deflects the flow more towards the center of the 

channel leading to increased velocities causing  harsh contractions compared to a 

spill-through shaped abutment contraction. At the same time, a vertical wall 

abutment contraction seems to give rise to little scour in the vicinity of the 

structure itself suggesting that a vertical wall abutment may be more suitable to 

avoid scour in the close vicinity of the abutment, from a bridge design 

perspective. 
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8.2 RECOMMENDATIONS 

Most of the current research is based on evaluating the results of flume tests. The 

singleness of the tested cohesive soil, simplified test conditions might constrain the use 

of the application of the present research to unique field conditions. The following are 

the recommendations for future research and investigations. 

1. More different kinds of clay should be tested with variations on the shear stresses 

of clay. 

2. Layered cohesive soil formations should be tested under the same flume 

conditions to test the applicability of the proposed scour equations for layered 

beds. 

3. Flume tests on skewed contraction inlets/abutments should be tested to identify 

the effects of a skewed inlet geometry on contraction scour.  

4. Contraction length effect especially for long contractions should be explored to 

identify the effect of the length of contraction zone. 

5. An integrated approach to evaluate abutment scour and contraction scour in case 

of harsh contractions should be developed. 
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APPENDIX A 

 

HYPERBOLIC MODEL RESULTS FOR FLUME  

TESTS

Case 1: Hyperbolic model - Predicted Zmax vs Measured Zmax
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Case 4: Hyperbolic model - Predicted Zmax vs 

Measured Zmax
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Case 5: Hyperbolic model - Predicted Zmax vs 

Measured Zmax

0

5

10

15

20

0 200 400 600
Time (Hour)

Z
m

a
x
 (
c
m

)

Measured Zmax
Predicted Zmax

 

Case 6: Hyperbolic model - Predicted Zmax vs 

Measured Zmax

0

5

10

15

20

0 200 400 600
Time (Hour)

Z
m

a
x
 (
c
m

)

Measured Zmax
Predicted Zmax

 

Zmax = t/ 

 (0.3479 t +43.805) 

Zmax = t/ 

 (0.0942 t +20.064) 

Zmax = t/ 

 (0.1187 t +12.992) 

Zmax = 21.39 cm. 

Zmax = 26.96 cm. 

Zmax = 7.3 cm. 



                                                                                     

 

                                                                                                                                        112 

                                                                                                                                         

                                                                                           

                                                                                                                                         

 

                           

Case 7: Hyperbolic model - Predicted Zmax vs 

Measured Zmax
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Case 8: Hyperbolic model - Predicted Zmax vs 

Measured Zmax

0

2

4

6

8

10

12

14

0 200 400 600
Time (Hour)

Z
m

a
x
 (
c
m

)

Measured Zmax

Predicted Zmax

Case 9: Hyperbolic model - Predicted Zmax vs 
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APPENDIX B 

 

TIME VERSUS (T/Zmax) PLOTS FROM FLUME TESTS                  
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APPENDIX C 

MEASURED MAXIMUM SCOUR DEPTH AS A FUNCTION OF TIME 

 

 

Max scour 

(Zmax) 

Time 

(Hour) 

 (in) (cm) 

24 1.13 2.87 

48 2.25 5.72 

72 2.50 6.35 

96 2.88 7.32 

120 3.06 7.77 

156 3.88 9.86 

192 4.63 11.76 

240 5.00 12.70 

288 5.38 13.67 

336 5.63 14.30 

384 5.75 14.61 

 432 5.88 14.94 

 

 

Case 1                                           Case 2                                       Case 3       

 

Max scour (Zmax)  Time 

(Hour)  (in) (cm) 

24 0.56 1.42 

48 0.75 1.91 

72 1.19 3.02 

96 1.25 3.18 

120 1.38 3.51 

144 1.50 3.81 

168 1.50 3.81 

192 1.63 4.14 

216 1.75 4.45 

252 1.88 4.78 

298 2.06 5.23 

Case 4                                                                 Case 5            

Max scour 

(Zmax) Time 

(Hour)  (in) (cm) 

24 1.06 2.69 

48 1.69 4.29 

72 2.06 5.23 

96 2.63 6.68 

120 3.13 7.95 

156 3.69 9.37 

192 4.06 10.31 

228 4.44 11.28 

264 4.94 12.55 

300 5.25 13.34 

348 5.88 14.94 

396 6.13 15.57 

456 6.50 16.51 

504 6.94 17.63 

Max scour 

(Zmax)     Time 

(Hour)  (in) (cm) 

24 1.63 4.14 

48 1.94 4.93 

72 2.13 5.41 

96 2.19 5.56 

 120 2.19 5.56 

156 2.38 6.05 

192 2.63 6.68 

228 2.88 7.32 

264 3.06 7.77 

300 3.19 8.10 

Max scour 

(Zmax)   
Time 

(Hour) 
 (in) (cm) 

24 1.19 3.02 

48 1.81 4.60 

72 2.50 6.35 

96 3.25 8.26 

120 4.13 10.49 

168 5.00 12.70 

216 5.38 13.67 

264 5.56 14.12 

312 6.06 15.39 

360 6.56 16.66 

408 7.31 18.57 



                                                                                     

 

                                                                                                                                        117 

                                                                                                                                         

                                                                                           

                                                                                                                                         

 

            

Max scour 

(Zmax) Time (Hour) 

 (in) (cm) 

24 2.06 5.23 

48 2.81 7.14 

72 3.06 7.77 

96 3.25 8.26 

120 3.94 10.01 

144 5.00 12.70 

168 5.44 13.82 

192 5.56 14.12 

216 5.56 14.12 

240 5.63 14.30 

264 5.88 14.94 

288 6.38 16.21 

 

    Case 6                Case 7 

 

 

 

 

Max scour 

(Zmax)  
Time 

(Hour) 
(in) (cm) 

24 1.63 4.14 

48 2.00 5.08 

72 2.50 6.35 

96 3.25 8.26 

120 3.19 8.10 

144 4.00 10.16 

168 4.00 10.16 

192 4.00 10.16 

216 4.19 10.64 

240 4.25 10.80 

 

Case 8               Case 9 

Max scour 

(Zmax) 
Time 

(Hour) 
 (in)) (cm) 

24 0.25 0.64 

48 0.38 0.97 

72 0.44 1.12 

96 0.50 1.27 

120 0.63 1.60 

144 0.69 1.75 

168 0.75 1.91 

192 0.94 2.39 

216 1.00 2.54 

240 1.25 3.18 

Max scour 

(Zmax)  
Time 

(Hour) 
(in) (cm) 

24 1.88 4.78 

48 3.13 7.95 

72 4.31 10.95 

96 4.56 11.58 

120 5.13 13.03 

144 5.47 13.89 

168 5.78 14.68 

192 5.91 15.01 

216 6.09 15.47 

240 6.63 16.84 



                                                                                     

 

                                                                                                                                        118 

                                                                                                                                         

                                                                                           

                                                                                                                                         

 

VITA 

 

 

 Benjamin Praisy Israel Devadason received his Bachelor of Engineering degree 

in Civil Engineering from Government College of Engineering, Tamil Nadu in India in 

2003. He started his Master’s program at Texas A&M University, College Station in the 

fall of 2005. His special professional interests include Hydraulics, Hydrology and Water 

Resources Systems Engineering.  He worked as a Graduate Research Assistant at Texas 

A&M University and graduated with a Master of Science degree in Civil Engineering in 

December 2007.  

 Mr. Israel’s contact mailing address is Civil Engineering Department, c/o Dr. 

Kuang-An Chang, Texas A&M University, College Station, Texas 77840. He can be 

contacted at the email address bpraisy1982@hotmail.com.    


