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ABSTRACT 

 

Determination of Applied Stresses in Rails Using the Acoustoelastic Effect 

 of Ultrasonic Waves.  (December 2007) 

Shailesh Gokhale, B.E., Mumbai University, Mumbai, India 

Chair of Advisory Committee: Dr.- Ing. Stefan Hurlebaus 

 

 

 

This research develops a procedure to determine the applied stresses in rails using 

the acoustoelastic effect of ultrasonic waves. Acoustoelasticity is defined as the stress 

dependency of ultrasonic wave speed or wave polarization. Analytical models are 

developed that predict the acoustoelastic effect for longitudinal waves, shear waves, 

Lamb waves, and Rayleigh waves. Using a programming tool, a numerical simulation of 

the models is generated to obtain the stress dependent curves of wave velocity and 

polarization of the various ultrasonic waves propagating in rail steel. A comparison of 

the sensitivity of the acoustoelastic effect is made to determine the feasibility of 

ultrasonic waves for further study. Rayleigh waves are found to be most sensitive to 

stress change. Rayleigh waves are generated using ultrasonic transducer and detected 

using a laser Doppler vibrometer (LDV). The LDV measures the in-plane and out-of-

plane velocities. Polarization is defined as the ratio of in-plane and out-of-plane 

displacements. Initially, polarization is determined for the specimen in unstressed 

condition. Thereafter, the rail specimen is stressed in a compression testing machine, the 

experiment repeated, and the polarization determined. Thus, Rayleigh wave polarization 

is obtained as a function of applied stress. Finally, the change in polarization obtained 

experimentally is compared with the analytical model. 
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CHAPTER I 

1  INTRODUCTION 

 

1.1. Background 

Continuous welded rails (CWR) have become more popular than jointed tracks 

because of their high strength which facilitates smoother rides and higher speeds. 

Although the laying of welded rails might be a little expensive, they prove to be more 

economical in the long-term due to their low maintenance costs. 

 

CWR are typically long members which are susceptible to failure caused by 

temperature changes. Rails are subjected to compressive stresses as they expand in hot 

weather and tensile stresses as they contract in cold weather. Such rail temperature 

changes can lead to buckling or fracture of rails and eventually cause derailment of high 

speed trains. It is observed that a rise in rail temperature of 10
◦
C generates a compressive 

load of 18 tons (Tunna, 2000). Fig. 1.1 shows an example of buckling due to thermal 

stresses.  

 

 

 

Fig. 1.1. Buckling of tracks due to thermal stresses (Railway Investigation Report, 

Transportation Safety Board of Canada (TSB), 2002 and 2003) 

____________ 
This thesis follows the style of the ASCE Journal of Structural Engineering. 
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To avoid this problem, engineers install the rails at a temperature somewhere in 

between the extreme hot and cold temperatures of that region. This temperature is 

referred to as the stress free temperature (SFT). If the temperature is lower than SFT, 

tension builds in the rail and can cause fracture in the rail. On the other hand if the 

temperature is above SFT, compression is observed in the rail and can cause the rails to 

buckle. It is therefore crucial to know the SFT at which the longitudinal force in the rail 

will be zero.  

 

Stress free temperature or rail neutral temperature is defined as the temperature at 

which the longitudinal force in the rail is zero. The force in a rail of cross section A, 

elastic modulus E, thermal coefficient  , and subjected to a temperature change of T  

is given by 

 

P AE T  ,                                                   (1.1) 

 

where the temperature change T corresponds to the change in temperature from the 

neutral temperature. An example by Kish and Samavedam (2005) presents the 

importance of maintaining stress free temperature. Consider a CWR segment with a 

stress free temperature of 25 CnT   . If the track buckling forces are generated due to a 

temperature change of 15 CT   , then buckling occurs when the rail temperature 

reaches 40 C . Due to some reason, if the stress free temperature drops to15 C , the rail 

would buckle at a lower temperature of 30 C . SFT may change due to several reasons 

as explained in a later part of this section.  

 

 The stress free temperature is actually related to the stress in the rail since it is 

merely the ambient temperature where a fixed length of rail has no compressive or 

tensile stresses. In other words even if the ambient temperature is different, SFT can be 

induced in the rail by manipulating the stress in the rails while laying or repairing the 
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tracks. The direct relation between rail neutral temperature and longitudinal force in the 

rail is given by 

 

n aT T
E




  ,                                                  (1.2) 

 



nT aT T  

Fig. 1.2. Rail neutral temperature 

 

 

 

where nT  is the rail neutral temperature, aT  is the ambient temperature, and   is the 

stress. Fig. 1.2 shows this relationship. Thus, if the longitudinal stress in the rail is 

determined and the ambient temperature known, SFT can be determined using Eq. (1.2). 

 

Following are the factors affecting the stress free temperature: 

 Rail Longitudinal Movement 

 The continuous running of trains, braking and accelerating actions along 

with temperature gradients along the rail can cause the stress free temperature to 

change. 

 Track Lateral Shift 

 The lateral shift, sometimes referred to as “rail breathing”, occurs due to 

repeated lateral loads under running conditions and thermal loads on curves. 
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 Track Vertical Settlement 

 Repeated vertical wheel loads and high impacts on poorly supported 

tracks can cause vertical settlements which eventually affect the stress free 

temperature.  

 Maintenance Operations 

Maintenance operations such as lining, lifting, tamping, repairing 

defective or broken rails, also affect the longitudinal force state in the rail and 

alter the stress free temperature.  

 

1.2. Scope and Objective 

The objective of this research is to investigate a potential technique to determine 

the applied stresses in rails using the acoustoelastic effect of ultrasonic waves under 

controlled laboratory conditions. The proposed methodology utilizes the well-known 

acoustoelastic effect of ultrasonic waves to determine the longitudinal stress in the 

specimen. 

 

Analytical models examining the acoustoelastic effect of different ultrasonic 

waves are developed. The ultrasonic waves studied are longitudinal waves, shear waves, 

Lamb waves, and Rayleigh waves. Analytical study with these different ultrasonic waves 

aided in deciding the feasibility of using a specific ultrasonic wave from the point of 

view of sensitivity of the acoustoelastic effect. The experimental procedure uses a 

transducer for generation, and laser Doppler vibrometer (LDV) system for detection of 

Rayleigh waves. The specimen is stressed under fixed supports to study the changes in 

polarization of the Rayleigh wave and wave velocity with stress. The experimental 

results are compared with the results from the model. 

 

The successful realization of this stress determination technique can be further 

developed to a nondestructive, noncontact stress free temperature measuring technique. 
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1.3. Organization of Thesis 

This thesis is divided into seven chapters. Chapter I gives an introduction to the 

topic and presents a general idea on the problem under study. Chapter II describes a 

review of earlier research on the acoustoelastic effect of ultrasonic waves and various 

techniques for stress measurement. Chapter III briefly discusses the theory on elasticity 

and wave propagation in solids. In Chapter IV, analytical models describing the 

acoustoelastic effect of ultrasonic waves are derived. Chapter V describes the routine to 

setup numerical simulation for determining the theoretical values of the acoustoelastic 

effect. Also discussed are the important results of the simulation. Chapter VI describes 

the experimental procedure for measuring the acoustoelastic effect and thereby 

determining the applied stress. This chapter summarizes the experimental setup, 

discusses the principles involved in measuring the acoustoelastic effect and presents the 

experimental results and conclusion. The final chapter summarizes the work, discusses 

important conclusions, and presents recommendations for future work. 
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CHAPTER II 

2  LITERATURE REVIEW 

 

This chapter provides a background on topics pertaining to stress free 

temperature, acoustoelastic effect, and stress measurement in solids. The chapter 

includes general information and a review of previous research on these topics.  

 

2.1. Acoustoelasticity 

The fundamental principle functional in this research is the acoustoelastic effect 

of ultrasonic waves. Acoustoelasticity has been the subject under study for more than 

half a century. Acoustoelastic effect or acoustoelasticity is the dependency of ultrasonic 

wave speed and polarization on stress. Ultrasonics has long been a successful resource 

for studying the relationship between stress and the characteristics of wave propagation. 

Cauchy‟s theory of small deformations is restricted to elastically deformed medium. 

Acoustoelasticity is based on a continuum theory of small disturbances superimposed on 

an elastic material as formulated by Cauchy. It is a well known fact that, the elastic 

theory of small deformation becomes invalid if the material under stress is plastic or if 

the deformations are large enough to make the infinitesimal theory invalid.  

 

A theory of finite deformations was introduced by Murnaghan (1951). This 

theory made two important revisions from the infinitesimal theory. Firstly, due to large 

deformations, the initial and final coordinates are not interchangeable. Secondly, the 

strain energy terms were revised in order to express the terms in the initial or in the final 

coordinates independently. Murnaghan (1951) introduced three third order elastic (TOE) 

constants, l, m , and n for an isotropic body in addition to the second order coefficients 

also known as second-order Lamé constants,  , and . The application of Murnaghan‟s 

finite theory to the propagation behavior of acoustic waves in an elastically deformed 

material was completed by Toupin and Bernstein (1961). They also show how the 
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measured acoustoelastic effect can be used to determine the TOE constants for an 

isotropic material. The theory of acoustoelasticity was extended to orthotropic media by 

Pao and Gamer (1985). Hughes and Kelly (1953) derived expressions for the speeds of 

elastic waves in a stressed solid using Murnaghan‟s theory. The effect of compressive 

stresses and hydrostatic pressure on polystyrene, Pyrex glass, and iron was investigated 

and velocities of longitudinal and shear waves determined as a function of stress. Hayes 

and Rivlin (1961) were the first to provide the theory on acoustoelasticity of surface 

waves, namely, Rayleigh waves and Love waves. In this work, the theory of finite 

deformations is applied to study the propagation of surface waves in a semi-infinite body 

subjected to a static, pure homogenous deformation.  

 

Crecraft (1966) summarizes different methods of measuring stress-induced 

velocity changes. Hughes and Kelly (1953) measured the velocity changes for 

polystyrene, Pyrex glass, and Armco iron and determined the acoustoelastic constants 

using the pulse-echo technique. This method simply measured the time taken by a pulse 

to travel through the specimen as seen on the oscilloscope. This technique obviously 

lacked precision and a modification of this method by Bergman and Shahbender (1958) 

enabled a better sensitivity. The modified method transmitted a reference pulse through 

an ultrasonic delay line set to give the same delay as the specimen in the unstressed state. 

Another technique called the pulse superposition method uses the principle of matching 

the pulse repetition frequency (PRF) to an integral multiple of the travel time of a single 

pulse. This allows the series of received pulses to arrive in phase. The transit time can be 

determined from the PRF, the echo number, and averaging from the number of readings.  

 

Crecraft (1966) uses the sing-around technique for measuring the stress-induced 

velocity changes for steel, aluminum and copper, using shear and longitudinal waves. 

This technique involves generating a pulse using a transducer and receiving the pulse 

with another transducer. The receiving transducer converts the mechanical energy into 

electrical energy which retriggers the generating transducer. Thus a pulse “sings-around” 
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the system at repetition rate associated with the travel time. As the stress in the specimen 

changes, the PRF varies inversely as the transit time.  

 

Hirao et al. (1981) investigated the acoustoelastic effect for Rayleigh surface 

waves propagating in a homogenous isotropic material. Analytical and experimental 

validation was carried out for (i) uniform stress, and (ii) non-uniform stress distribution. 

The experimental data was obtained for a mild steel sample using the sing-around 

technique. The results revealed that under a uniform stress, Rayleigh waves are non-

dispersive and change in velocity with stress is linear. For a non-uniform stress 

distribution, Rayleigh waves are dispersive with the dispersion effect more prominent at 

lower frequencies. Fig. 2.1 shows the experimental results.   

 

 

 

 

Axial Strain

 
Fig. 2.1. Relative variation of Rayleigh wave transit time and velocity with uniaxial 

strain (Hirao et al. (1981)). 

 

 

 

Egle and Bray (1976) measured the acoustoelastic and TOE constants for rail 

steel using longitudinal waves. The method employed contact transducers for the 
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generation and reception of longitudinal waves. Acoustoelastic constants for relative 

change in wave speed in five directions were determined. Sing-around technique, 

resonant frequency technique and pulse overlay technique were compared and it was 

found that the latter yielded most consistent results. Measured values of the 

acoustoelastic constants were found to be consistent with the predictions of Hughes and 

Kelly (1953).  

 

Fukuoaka and Toda (1977) determined the acoustoelastic constants for 

aluminum, pure iron, and copper using shear transducers as transmitter and receiver and 

employing the sing-around technique. Their results demonstrate that, for aluminum and 

pure iron, ultrasonic velocity for transverse waves varies linearly to the applied stresses 

and for copper this relation is parabolic.  

 

Another technique for wave excitation and detection is interferometry. This 

technique involves superimposing two waves resulting into an output wave that is 

different from the input waves in phase and amplitude. The output wave can be used to 

compare the differences between the two input waves. Earlier interferometry techniques 

used electrical signals from a train of pulse echoes produced by multiple reflections in 

the specimen and added to another train. The former train could be from a stressed 

specimen and the latter could be from an unstressed specimen. This technique was 

investigated by Espinola and Waterman (1958). The velocity differences lead to phase 

cancellation of some echoes and addition of others. Hurlebaus and Jacobs (2006) 

developed an effective dual probe laser interferometer that has the advantage of making 

two independent and simultaneous measurements with a reduced number of optical 

components. This technique was developed to measure guided waves in a plate, or Lamb 

waves. 

 

The latest development in interferometry is laser Doppler vibrometry. It is based 

on the principle of measuring the Doppler shift of laser light scattering from a tiny spot 

on a vibrating body. The vibrating body reflects the laser beam and the velocity of 
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vibration is obtained by analyzing the Doppler shift using an optical interferometer. 

Junge et al. (2004) investigated the acoustoelasticity for aluminum using laser 

vibrometry. Rayleigh waves were generated using a transducer mounted on a plexiglass 

wedge and detected using a laser Doppler vibrometer. This technique enabled the 

simultaneous measurements of in-plane and out-of-plane velocities in an aluminum 

plate. The polarization of Rayleigh waves in unstressed and stressed specimen were 

determined and compared with the analytical values. The experimental results, however, 

did not conform to the analytical model. Fig. 2.2 shows the analytical results for the 

acoustoelastic effect of Rayleigh waves.  

 

 

 

ΔcR,

ΔΠ

 

Fig. 2.2. Relative change of Rayleigh wave speed and polarization with uniaxial stress 

for aluminum (Junge et al. (2004)) 

 

 

 

It may be noted that all these techniques except laser interferometry, measure 

velocities using transit time of an ultrasonic wave. The disadvantage is that such 

techniques may be influenced by the material characteristics along the path of ultrasonic 

wave. Another shortcoming may be the irreproducibility of the contact conditions when 

the transducer is shifted from point to point on the specimen surface. Also, the contact 

transducers are not available under certain conditions such as high temperature. Hence, a 
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non-contact measuring technique would be most effective. This research uses a point-

wise, reference free technique for measuring the stress induced velocity using laser 

Doppler vibrometry.  

 

2.2. Stress Measurements Using Ultrasonics 

In the past, various researchers have explored stress measurement techniques. 

Egle and Bray (1979) developed an ultrasonic probe for determination of the in-situ 

longitudinal stress measurement. The probe generates and receives longitudinal waves 

traveling along the longitudinal rail axis. A pulse overlay technique, similar to the pulse 

superposition technique is used to measure the travel time. Duquennoy et al. (1999) 

investigated residual stress measurement using Rayleigh waves. The stress profile along 

the thickness of aluminum sheets was investigated. The stress profiles were developed 

from the relative change in Rayleigh wave speed determined with a time of flight 

technique. The results were found similar when compared to a destructive method of 

stress determination. Bray and Leon (1985) describe a technique for measuring the 

longitudinal stresses in rail using head-waves. This technique measures bulk stresses and 

uses the time of flight technique to determine the velocity of bulk waves. Their paper 

makes an attempt at establishing the zero-force travel times so that the absolute stress in 

rails could be measured. 

 

Husson et al. (1982) developed a method to determine surface stresses using 

Rayleigh waves. They used an edge-bonded transducer for excitation and 

electromagnetic transducers (EMAT) for detection using the pulse-superposition 

technique. Stress-acoustic coefficients for Rayleigh waves were determined by Lingfeng 

and Kobayashi (2000) using laser Doppler velocimetry. Jassby and Kishoni (1982) 

describe an experimental technique to measure the stress-acoustic coefficients of 

Rayleigh waves using the time of flight technique. 
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Over the years, different methods of identifying the stress free temperature in 

rails have been developed and practiced commercially. These techniques are time 

consuming, difficult, destructive, labor intensive and require contact with the rails. The 

traditional method is to cut the rail, measure the gap, calculate SFT, and re-weld the rail. 

A new technique that has been developed by Salient Systems, Inc. (Kish and Read, 

2006) uses a strain gauge based remote sensing module fixed at the rail neutral axis and 

held in position by a bolt (Fig. 2.3). This device monitors and stores the rail temperature 

and stress at certain time intervals. This data is then transferred to a hand held, vehicle or 

train-mounted device and is uploaded to software where the data can be viewed and 

analyzed.  

 

 

 

 

Fig. 2.3. Wireless Rail Stress Module (www.salientsystems.com, 02/10/2007) 

 

 

 

Another method developed by Vortok International (Tunna, 2000) utilizes the 

rail‟s bending response as a measure of the longitudinal force in the rail. This method, 

although nondestructive, requires unclipping the rail, placing the Vertical Rail Stiffness 

Equipment (VERSE) in position, applying a set of loads on the rail, removing the 

equipment, reclipping the rail, and finally making the measurements. Eventually, this 



13 

 

 

method turns out to be time-consuming and labor intensive. Fig. 2.4 shows the VERSE 

system in place and ready for taking measurements. 

 

 

 

 

Fig. 2.4. VERSE equipment (www.vortok.co.uk, 02/01/2007) 

 

 

 

A recent development is the rail vibration based d‟Stresen system (Kish and 

Read, 2006). This system uses the basic principle that the vibration amplitude of a bar 

clamped to the rail is proportional to the longitudinal force in the rail. The vibration 

amplitude is maximum when the stress in the rail is zero; therefore the SFT is 

determined. The validation studies demonstrate a good agreement between SFT 

determined using the strain gauge and using the vibration technique. However, the 

measurement concept is validated only with the rail in tension. While this system is 

based on a nondestructive excitation and measurement of vibrations in rails, the system 

is in contact. 

 

Another technique investigated by Weaver and Damljanović (2004) makes use of 

the principle of sensitivity of bending rigidity to stress. This technique makes use of a 

laser scanning vibrometer to measure stress in rails. It measures the bending wave 
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number in rail in the stressed condition and compares it with the wavenumber of a rail 

without stress. Early experiments concluded that this technique requires very high 

precision equipment without which the experiments failed when carried out on the field 

at Transportation Technology Center, Inc. (TTCI).  

 

The aim of this research is to investigate if laser vibrometry can be employed to 

measure the stress induced ultrasonic wave velocity changes and thereby determines the 

velocity as a function of applied stress. A lot of previous research has been carried out 

using either longitudinal or shear waves. This research also tries to explore the potential 

of Rayleigh waves and Lamb waves in stress determination. Successful completion of 

this research would allow the results to be used for developing a new technique for in 

situ SFT measurements. 

 

2.3. Texture 

Texture is defined as the preferred orientation of crystallites in a material. It is 

important to include the effect of variations in texture on stress measurement, since the 

texture of material has a profound effect on physical properties such as anisotropy and 

wave propagation. Texture types are classified as face centered cubic (FCC), body 

centered cubic (BCC), and hexagonal closed packed (HCP). Hot rolled steel has BCC 

crystal structure. When a material is subjected to deformation, there is a complex change 

of the crystal structure and gradual rearrangement, which results in a change in the 

anisotropy. As ultrasonic wave velocity is anisotropic, an observed anisotropy in the 

wave velocity could be inaccurately attributed to the presence of residual or applied 

stresses. Hence, it is recommended to establish an account of ultrasonic velocity as a 

function of the texture of the material. Allen and Sayers (1984) talk about an ultrasonic 

technique for including the effects of variable texture while determining residual stresses 

in steel. This technique uses the longitudinal wave in combination with two orthogonally 

polarized shear waves and evaluates the time delay of the three waves. MacDonald 
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(1980) presents a comparison of wave speeds for materials with different textures to 

demonstrate the effect of variable texture. 

 

Texture can be measured by, either averaging over a large volume of 

polycrystalline aggregates or by measuring the orientation of individual crystals (Wenk 

and Houtte, 2004). Texture is determined using methods based on diffraction or using 

optical techniques. X-ray diffraction with a pole-figure geniometer, neutron diffraction, 

and electron diffraction are a few examples using the diffraction technique.  

 

This research does not account for the variations in texture in the test sample. 

However, it is recommended to evaluate the effect of texture on wave velocity before 

applying any stress measurement technique on a large scale. 
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CHAPTER III 

3  THEORY OF WAVE PROPAGATION 

 

This chapter gives a brief review on the concept of wave propagation through 

solid media. Some basic relationships for a linear elastic continuum are discussed 

followed by a brief description of the various modes of propagation of ultrasonic waves 

in elastic media. 

 

3.1. Different States of the Body 

A solid body undergoes a series of deformations from a stress free state to a static 

deformation or a dynamic deformation. Based on such a deformation process 

Duquennoy et al. (1999) define three states of a body. The natural state of a body is a 

state of zero stress and zero strain. This is an ideal case and such state practically never 

exists. The body undergoes a static deformation due to residual stresses during the 

manufacturing processes or due to applied stresses. Such a state is referred to as the 

initial state of the body. Eventually, a dynamic deformation, for instance, an ultrasonic 

wave through the body gives rise to further stresses and this is referred to as the present 

or final state of a body. Fig. 3.1 shows the coordinate system followed in this thesis, 

where x1 is the direction of propagation of the wave. Fig. 3.2 describes the relation 

between the three states of a body. The common Cartesian coordinate system as shown 

in Fig. 3.1 is used to refer the position of material points in the three states. The position 

vector ξ defines the position of a point in the natural state. Similarly X and x define the 

position in the initial and final states respectively.  
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Fig. 3.1. Co-ordinate system 
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Fig. 3.2. Natural, initial and final states of a body (See FIG. 1 of Duquennoy et al. 

(1999)) 

                                       

                                                                                                                                                               

  

The displacements of a point from one state to another can be described 

mathematically as 
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  ( )i
u X   ,       

( , )f
u t x   ,                                                (3.1) 

    ( , )u t x X  . 

 

3.2. Background of Wave Propagation 

3.2.1. Equations of Motion 

The principle of balance of linear momentum states that the total force acting on 

the body equals the rate of change of momentum. This can be written mathematically as 

d
d d d

d
m m m

A V V

t A f V v V
t

     ,                                   (3.2) 

where tm represents the distribution of traction forces on the body, fm are the internal 

body forces such as weight, ρ is the material mass density of a body of surface area A 

and volume V. Using Cauchy‟s stress equation  

m n mnt n T ,                                                      (3.3) 

and Gauss‟s divergence theorem 

d dn
n n

n
A V

u
n u A V

x




  ,                                             (3.4) 

where nn is an outward normal vector and Tmn is the stress tensor, the balance of linear 

momentum can be written as 

d 0mn
m m

n

V

T
f u V

x
 

 
   

   ,                                    (3.5) 

where xm denotes the direction in the coordinate system and um denotes the displacement 

in the xm - direction. Assuming a continuous integrand, Eq. (3.5) will be satisfied if the 

integrand equals zero. Neglecting the body forces it follows from Eq. (3.5)  

2

2

mn m

n

T u

x t


 


 
.                                                (3.6) 
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3.2.2. Stress-Strain Relationships 

3.2.2.1. Hooke’s Law 

The generalized Hooke‟s law for an elastic material in three dimensional stress-

state can be expressed as 

p

mn mnpq

q

u
T C

x





,                                                  (3.7) 

where mnpqC  is the tensor of elastic constants. The 81 elastic constants drop down to 21 

because of symmetric nature of the stress and strain tensors. In case of an isotropic 

material, the material properties are independent of direction. The elastic constants are 

then simply expressed as a combination of Lamé constants 

 mnpq mn pq mp nq mq npC          ,                                  (3.8) 

where  and  are the second order elastic constants also known as Lamé constants, and 

ij  is Kronecker delta. Lamé constants are expressed in terms of Young‟s modulus E, 

and Poisson‟s ratio υ 

 

2(1 )

E






,                 and           

(1 )(1 2 )

E


 


 
. 

 

Substitution of Eq. (3.7) into Eq. (3.6) gives 

2 2

2

p m
mnpq

n q

u u
C

x x t


 


  
.                                            (3.9) 

Substitution of Eq. (3.8) into Eq. (3.9) leads to the following equations of motion 

2 2 2

2
( )m n m

n n m n

u u u

x x x x t
   

  
  

    
.                                (3.10) 

 

3.2.2.2. Elastic Constants 

In the linear theory of elasticity, the propagation velocities of ultrasonic waves 

depend on the material properties such as mass density, stiffness coefficients and other 

parameters that are defined in the natural state. These parameters are assumed to remain 
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constant during any deformation. The velocities therefore depend only on the second 

order elastic constants. Thus, when the material is stressed, the second order constants 

cannot describe the change in the ultrasonic wave velocities due to such applied stress. 

In order to deal with changes in wave speeds due to stresses, a nonlinear behavior needs 

to be introduced. Such nonlinearity occurs due to large deformations and a nonlinear 

stress-strain behavior. The nonlinear theory takes into account the second order effect of 

strain and introduces the third-order elastic constants in addition to the second order 

Lamé constants. For an isotropic material like rail steel the elastic constant mnpqC  can be 

expressed in terms of the second-order elastic constants and the TOE constants as 

 

1 2

2

3

( )

[( ) ( )( )]

2( )( )

2( )( )

IJKL IJ KL IK JL IL JK

IJ KL IK JL IL JK MM

IJ KL KL IJ

IK JL IL JK JK IL JL IK

C       

          

     

         

  

      

  

    

 ,                  (3.11) 

 

 

where 
1 2 3,  ,       are the TOE constants.  

 

For an isotropic material the elastic constants matrix is given as (Jones, 1999) 

 

IJKLC    =   

11 12 12

12 11 12

12 12 11

11 12

11 12

11 12

0 0 0

0 0 0

0 0 0

( )
0 0 0 0 0

2

( )
0 0 0 0 0

2

( )
0 0 0 0 0

2

C C C

C C C

C C C

C C

C C

C C

 
 
 
 
 

 
 
 
 
 
 
 
 

,           (3.12) 
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where the constants ijC can be obtained if Young‟s modulus E  and Poisson‟s ratio   for 

the material is known. Jones (1999) gives simple relations to derive these constants. For 

an isotropic material,  

 
2

11 2

(1 )
C

E





,  12 2

(1 )
C

E

 



, 

with 

2 3

3

(1 3 2 )

E

  
  .                                           (3.13) 

 

3.2.2.3. Index to Matrix Notation for Isotropic Case 

Rose (2004) provides a simple rule to convert the elastic constants in the index 

form  mnpqC  to the matrix form  ijC . This rule is a useful tool while solving the 

Christoffel equation introduced in Chapter IV. The rule states that 

 If m n  then i m ; and if p q  then j n . 

 If m n  then 9 ( )i m n   and if p q  then 9 ( )j p q   . 

For instance,  

1111 11C C  where 1m n p q    ; using the above rule 1i j  . 

1311 51C C  where m n  implies 9 ( ) 5i m n     and 1p q   implies 1j  .  

 

3.3. Ultrasonic Waves 

Ultrasonics is the study and application of sound waves vibrating at frequencies 

greater than 20 kHz, i.e., beyond the range of human hearing. Ultrasonic waves serve 

numerous applications in the fields of medicine, defense and industries. The application 

that interests civil engineers is nondestructive testing, popularly known as „NDT‟. In 

solids, sound can propagate as longitudinal waves, shear waves, surface waves or guided 

waves. This section briefly discusses the nature of these waves.  
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3.3.1. Longitudinal Waves and Shear Waves 

Longitudinal and shear waves are the two modes of propagation most widely 

used in ultrasonic testing. These waves travel in an unbounded solid. Fig. 3.3 (a) and (b) 

describe the propagation of longitudinal and shear waves, respectively. The 

displacement field for a longitudinal wave can be described by (Bedford and 

Drumheller, 1996)  

 

1 1( , )u u x t , 

  2 0u  ,                                                        (3.14)                                                            

3 0u  , 

and for shear waves  

1 0u  , 

  2 0u  ,                                                        (3.15) 

 3 3( , )u u x t . 

 

 

Direction of 

wave propagation

One wavelength

x1

x3

 

(a) Longitudinal wave 

Fig. 3.3. Longitudinal and shear waves 
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x1

One wavelength

x3

 

 (b) Shear wave 

Fig. 3.3. continued 
 

 

 

Eq. (3.10) is difficult to solve using the displacement field described above. The 

longitudinal and shear components can be obtained using Helmholtz decomposition 

which uncouples the equations. For this purpose the displacements are expressed as a 

combination of a scalar potential   and a vector potential ψ. 

 u x .                                              (3.16) 

 

The uncoupled equations can be obtained by substituting Eq. (3.16) into Eq. (3.10) 

2
2

2 2

L

1

c t





 


,     and     

2
2

2 2

S

1

c t


 




 ,                          (3.17) 

 

where Lc  and Sc  are the longitudinal and shear wave speed, respectively. The 

expressions for the wave speeds are 

 

2

L

2 (1 )

(1 )(1 2 )

E
c

  

   

 
 

 
,                                   (3.18) 

 

2

S
2 (1 )

E
c



  
 


.                                            (3.19) 

 

3.3.2. Rayleigh Waves 

The existence of Rayleigh waves was predicted in 1885 by Lord Rayleigh. 

Rayleigh waves are surface waves that travel in a solid with boundaries introduced in 
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one of the three directions. In case of homogenous stress state, Rayleigh waves are 

nondispersive which means that the velocity of the wave does not change with the 

change in frequency. A Rayleigh wave propagates in the 1x - direction and attenuates 

exponentially in the 
3x - direction. The displacement field for a Rayleigh wave can be 

described by 

  1 1 1,u u x t , 

                                                       
2 0u  ,                                                         (3.20) 

             3 3 3exp( ),u u x t . 

The scalar and the vector potentials can be assumed to be of the form 

     1( )

3( )
ik x ct

F x e 
 , 

1( )

3( )
ik x ct

G x e 
 ,                                            (3.21) 

where G  and F  are functions of 3x , k is the wavelength and c is the wave speed. 

Substituting these into Eq. (3.17) yields the expressions that describe the surface wave 

motion 

      
2 2

L 3 1( )k k x ik x ct
Ae e

  
 , 

2 2
S 3 1( )k k x ik x ct

Be e
  

 ,                                        (3.22) 

where kS and kL are the wavenumbers for the longitudinal and shear waves. The 

boundary conditions at the stress free surface are 

   33 3 13 30 0 0T x T x    .                                    (3.23) 

Substituting the potentials into the boundary conditions results into the Rayleigh 

characteristic equation 

4
2 2 2

2 2 2

S L S

2 16 1 1 0
c c c

c c c

    
        

    
.                           (3.24) 

Out of the six possible solutions, one satisfies the condition of a wave propagating in the 

1x - direction and attenuating in the 3x - direction. Fig. 3.4 describes the propagation of 

Rayleigh waves. The Rayleigh wave exists for only a couple of wavelengths beneath the 



25 

 

 

surface as the energy dissipates very fast in the 3x -direction. At the surface, the particle 

motion is counterclockwise. At a depth of about 0.2 times the wavelength, the particle 

motion reverses direction since 1u  changes sign. This is shown in Fig. 3.4. 

 

 

Direction of

 wave propagation

x1

x3

Wave dissipates in 

2 to 3 wavelengths

Anticlockwise 

motion

Clockwise 

motion

 

Fig. 3.4. Rayleigh wave propagation 

 

 

 

3.3.3. Lamb Waves 

3.3.3.1. Rayleigh-Lamb Equations 

Lamb waves are named so in honor of the scientist Horace Lamb for his 

contribution to this subject matter. When a disturbance is generated in a thin plate such 

that the disturbance penetrates to the opposite surface then this produces a wave-guide 

effect. The disturbance travels as a guided wave consisting of compressions and 

rarefactions constrained between the two surfaces. If a Rayleigh wave is generated in a 

plate with a thickness equivalent to one wavelength, it degenerates to a Lamb wave. The 
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displacement field for a Lamb wave can be described by (Bedford and Drumheller, 

1996) 

1 1 1 3( , , )u u x x t , 

2 0u  ,                                                     (3.25) 

3 3 1 3( , , )u u x x t . 

Substituting Eq. (3.21) in Eq. (3.17) and using the displacement field defined above 

gives the scalar and vector potentials  

    1( )2 2 2 2

L 3 L 3sin cos
ik x ct

A k k x B k k x e     
  

,                 (3.26) 

    1( )2 2 2 2

S 3 S 3sin cos
ik x ct

C k k x D k k x e
    

  
 .                 (3.27) 

 

For a plate with thickness h the boundary conditions are 

33 13 0T T  ,   at   3 2x h  .                                          (3.28) 

Plugging in the boundary conditions in Eq. (3.26) and Eq. (3.27) gives the Rayleigh-

Lamb equations. 

 

For the symmetric mode this is given by 

 

2 2
2 2 2 2 2S

S L

2
2 2

2 2
S

L

tanh
42

2tanh
2

h
k k

k k k k k

h k kk k

 
      

   
 

.                       (3.29) 

For the antisymmetric mode this is given by 

 
2 2 2

2 2S
S

2 2 2 2 2
2 2

S L
L

tanh
22

4tanh
2

h
k k

k k

h k k k k kk k

 
     

    
 

.                       (3.30) 
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3.3.3.2. Symmetric and Antisymmetric Lamb Modes 

Particles moving in a plate can have a couple of configurations. In symmetric or 

„extensional‟ mode the particles vibrate symmetrically about the longitudinal axis of the 

plate. In antisymmetric mode, the particles vibrate antisymmetrically about the 

longitudinal axis. Fig. 3.5 shows the particle vibration in first mode for the symmetric 

and antisymmetric case as described by Hurlebaus (2005). 

 

 

 

x3

x1

x3

x1

S0

S0
A0

A0

h

h

 
Fig. 3.5. Lamb wave modes showing displacements in x1 and x3-directions 

 

 

 

Lamb waves are dispersive meaning that the propagating velocity of the Lamb wave is 

dependent on the frequency of the wave.  

 

3.3.3.3. Phase and Group Velocity 

 Lamb waves exhibit a complicated behavior and the propagation of Lamb waves 

exhibits two velocities as described by Graff (1981). When two harmonic waves with the 



28 

 

 

same amplitude and slightly different frequencies interact, the resulting wave can be 

represented as 

1 1 2 2sin( ) sin( )u A k x t A k x t     .                             (3.31) 

1 2 1 2 1 2 1 22 cos sin
2 2 2 2

k k k k
u A x t x t

         
     

   
 .              (3.32) 

Eqn. (3.32) can be written as 

 0 0sinu D k x t  ,                                             (3.33) 

2 cos( )D A kx t   .                                           (3.34) 

where, 1 2
0

2

k k
k


 ,   1 2

2

k k
k


  ,  1 2

2

 



  , and  1 2

0
2

 



 .  

Thus, the carrier wave propagates with its amplitude modulated by D. The modulation D 

changes slowly and builds up a wave group. The velocity of the carrier is referred to as 

the phase velocity pc  and the velocity at which the over-all wave group propagates is 

referred to as group velocity gc . The two velocities are 

0

0

pc
k


 ,        and                                    (3.35) 

d

d
gc

k k

 
 


 .                                           (3.36) 
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CHAPTER IV 

4   ANALYTICAL MODEL 

 

A general analytical model that describes the acoustoelastic effect of ultrasonic 

waves is discussed in this chapter. This model describes the fundamental approach for 

obtaining the relationship between wave speed and stress or polarization and stress for 

the ultrasonic waves under consideration for this research. Further, three individual 

models are elaborated, one for longitudinal and shear waves, next for Rayleigh waves 

and another one for Lamb waves. 

 

4.1. Wave Motion in a Prestressed Body 

4.1.1. Stresses and Displacements 

The material properties like material density, Young‟s modulus etc. are defined 

with respect to the natural state of the body. In order to establish the nonlinearity due to 

large deformations the theory of acoustoelasticity takes into account the third order 

elastic constants.  

 

The stress state at a given point can be defined in two ways. In the initial state the 

Cauchy stress tensor i

JKt defines the force per unit predeformed area with an outward 

normal N (see Fig. 3.2). The Piola-Kirchhoff stress tensor iT  refers to the stress at the 

same point but in the natural configuration. The relation between the two is given by 

1i iJK
JK

XX
t T

X


   



   

 .                                      (4.1) 

Using the same analogy the relation between Cauchy stress tensor 
f

ijt referring to the 

final state and the Piola-Kirchhoff stress tensor 
fT  referring to the natural configuration 

is  
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1 jf fi
ij

xx
t T

x


   



   

.                                         (4.2) 

When any dynamic disturbance such as an ultrasonic wave is superimposed on a 

predeformed body, there is a stress change from the initial to the final state. In terms of 

Piola-Kirchhoff stress it follows that 

 f i
T T T ,                                                  (4.3) 

     f i

JK JK JKT T t  , 

    f iT T T    . 

 

4.1.2. Equation of Motion for a Prestressed Body 

For a body having a volume V, surface area A, density ρ, and with a final stress 

given by the Piola-Kirchhoff tensor in the final state f

KJT , the equations of motion are 

expressed by (Pao et al., 1984) 

                 
2

2

f f iJ J
KJ KL

K L

u u
T T

X X t


  
  

   
.                                       (4.4) 

          

The deformation from the natural to initial state is static and hence it must satisfy the 

equilibrium equation 

0
i

IK

K

t

X





.                                                    (4.5) 

Subtracting Eq. (4.5) from Eq. (4.4) gives the equation for the incremental stress and 

incremental displacement u 

2

2

i J J
IJ IK

I K

u u
T t

X x t


  
  

   
.                                        (4.6) 

 

The incremental stress IJT can be replaced by a stress strain relationship as given 

by Hooke‟s law. Pao et al. (1984) provides a complete derivation of this relationship 

where they introduce the TOE constants  
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K
IJ IJKL

L

u
T C

X





.                                                 (4.7) 

The relation between mass densities, ρ
i
 and ρ

o
 in the initial and natural states 

respectively, can be approximated as 

 1i o i

NN    .                                                   (4.8) 

 

It follows from Eq. (4.6), Eq. (4.7) and Eq. (4.8) that 

22
0

2
( ) (1 )i i JK

IJKL IL NNJK
I L

uu
C t

x x t
  


  

  
.                               (4.9) 

 

4.1.3. Solution for a Plane Wave 

The solution for the displacement u for a plane-wave is of the form 

  1( )
e

ik x ct

j j d j
u b P


 ,                                                 (4.10) 

 

where jb is the displacement field and Pd is the decay parameter. The time derivative of 

the displacement equation can be expressed as 

2 2 2

j j ju k c u u    .                                              (4.11) 

Using tensor analysis, it can be proved that 
2

K

I L

u

x x



 
= I L Kk k u  (Rose, 2004). Using this 

expression and Eq. (4.11) the equation of motion can be written as 

2( )i i

IJKL IL I L K JJK
C t k k u u    .                                 (4.12)  

Applying J K JKu u  and replacing i  by   for ease in writing, the above equation can 

be written as 

 2( ) 0IJKL IL I L JK KJK
C T k k u     ,                            (4.13) 

2 0JK JK
    ,                                           (4.14) 

 

where the Christoffel acoustic tensor is defined as  

( )JK IJKL IL I LJK
C T k k    .                                    (4.15) 
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Thus, Eq. (4.13) can be written as  

   0A b ,                                                 (4.16)                                                     

which is the Christoffel equation. 

 

In order to determine the displacement field jb , the determinant of the 

coefficient matrix A must be equal to zero. Then, solving Eq. (4.16) for the eigenvectors 

leads to the displacement fields. Inserting the wave solution Eq. (4.10) into the boundary 

conditions specific to a wave leads to the equations of the form 

   0D U .                                                 (4.17) 

The condition for the nontrivial solution is that  

0D .                                                      (4.18) 

For Rayleigh waves, Eq. (4.18) yields the Rayleigh wave speed cR and the decay 

parameter p for a stress of T11. For Lamb waves this equation yields the frequency ω and 

wavenumber k. The next part of this section describes the analytical models specific to 

the ultrasonic waves under consideration.  

 
4.2. Longitudinal and Shear Waves  

To obtain an analytical solution of the longitudinal and shear wave velocities, the 

model pointed out by Egle and Bray (1976) is followed. They describe the expressions 

for wave speeds as derived by Hughes and Kelly (1953) using Murnaghan‟s (1951) 

theory of finite deformations. The wave speeds for a plane wave propagating in 1x -

direction and having displacements in 1x , 2x  and 3x -directions are obtained by,  

 

11
11

( 2 (2 ) (4 4 10 )NN
L

l m
c v

      



     
   ,               (4.19) 

 
  11

12

4 ( / 2) (1 2 )
S

n m
c v

    



   
      ,                   (4.20) 
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  11

22

2 2 (1 2 ) 4 ( 2 )l m
v

      



     
 ,                   (4.21) 

  11

21

( 2 )(1 2 ) / 2m n
v

     



    
    ,                   (4.22) 

  11

23

( )(1 2 ) 6 / 2m n
v

    



    
    ,                   (4.23) 

 

where l, m, and n are the third order elastic constants (Egle and Bray, 1976), ijv  is the 

wave speed of a wave traveling in the i-direction and with particle vibration in j-

direction. 

 

4.3. Lamb Waves 

4.3.1. Solution of the Christoffel Equation 

Section 4.1 introduced the basic idea for determining the wave speed of an 

ultrasonic wave using the theory discussed in Chapter III. This section develops a model 

to predict the wave speed of Lamb waves in particular. This analysis follows the model 

described by Desmet et al. (1996). This model, however, neglects the effect of the TOE 

constants.  

The plane wave solution for displacement for a Lamb wave can be expressed by 

taking   1d j
P   in Eq. (4.10). This gives 

1( )
e

ik x ct

j ju b


 . 

The Christoffel acoustic tensor can be determined using Eq. (4.15). More details 

on this topic can be obtained from (Rose, 2004). Since only the longitudinal forces in the 

rail are of concern, a uniaxial stress T11 = T in the x1 - direction is assumed and all other 

stresses are neglected. Thus, the acoustic tensor matrix A is determined to be (Desmet et 

al., 1996) 

2

11 12 3
11 11 1

( )( )
( )

2

C C K W
A C T K

h

    
     
   

,                             (4.24) 
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K WC C
A K TK

h

      
      
    

,                             (4.25) 

 

 2

11 12 1

33 1 11 3

( )

2

C C K W
A TK C K

h

   
    
   

,                            (4.26) 

 
2

11 12
13 1 3

( )

2

C C
A K K

h

  
  
 

,                                     (4.27) 

  

31 13A A ,                                                      (4.28) 

 

12 23 21 32 0A A A A    ,                                         (4.29) 

 

where the dimensionless quantities K1, K3 and W ( Desmet et al., 1996) are 

  
2

1

h
K k



 
  
 

 ,    

2

3 3

h
K k



 
  
 

 ,    

2 2

11 12

2h
W

C C





  
   

   
.                (4.30)                    

 

The matrix A is a function of the circular frequency and wavenumber. Eq. (4.16) has a 

solution when the determinant of the matrix A goes to zero. Using the above expressions 

for ijA ‟s gives 

 2

22 11 33 13 0A A A A  .                                              (4.31) 

The solution for 22 0A   gives the shear horizontal mode and is not discussed here. The 

solution for  2

11 33 13 0A A A   is given by 

 

 2

3 2,3( ) 4 / 2K b b ac a    ,                                     (4.32) 

where 
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b C T C C K T C K W
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 
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     
       

  
. 

 

Solving for the null-space of A, the displacement fields jb  are obtained as 

 

11 12
1 1

2
p

C C
b K R


  pU ,                                           (4.33) 

2 0b  ,                                                         (4.34) 

11 12
3 11 1( ) ( )

2
p

C C
b C T K R W

 
     

 
p

U ,                            (4.35) 

 

with 1,2,3,4p  where R1,2 = (K3)2, and R3,4 = (K3)3. 

 

4.3.2. Boundary Conditions 

The boundary conditions for Lamb waves are 

33 13 0   at 3 / 2x h  ,                                      (4.36)  

for a Lamb wave propagating through a plate of thickness h. Eq. (4.36) can be written 

with the help of Hooke‟s law as 

3 3 0K
I I KL

L

u
C

X



 


.                                           (4.37) 

The displacement field b for each value of 1..4p   can be obtained and hence the 

displacement can be written as a linear combination in the matrix notation as  

1( )
u Bf

ik x ct
e


 ,                                                (4.38) 

with the vector f giving the factors for the linear combination, and 

 1 2 3 4B= b ,b ,b ,b .                                             (4.39) 

Inserting the plane wave solution Eq. (4.38) in the boundary conditions Eq. 

(4.37) yields final condition as given by Eq. (4.17). The matrix D is a function of the 

circular frequency and wavenumber. As explained earlier, in Lamb waves, two types of 

particle vibrations are possible, namely, symmetric and antisymmetric. In order to obtain 

the nontrivial solution, Eq. (4.18) must be satisfied. Desmet et al. (1996) gives the 

conditions for the two cases.   
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For the symmetric case,  

1 3
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sin cos
2 2

sin cos 0
2 2

R R
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1 1 2 2
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,                      (4.40) 

 

and for the antisymmetric case, 
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,                     (4.41) 

where  
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12 11 1( )

2

C C
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
   1D (R) , 

 11 12 11 12
12 11 11 1( ) ( )

2 2
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R C C C T K W R
    

      
  

2D (R) . 

  

Equations (4.40) an (4.41) give the dispersion relations for the symmetric and 

antisymmetric Lamb modes, respectively. Solving these equations gives the 

wavenumber and circular frequency for the Lamb modes. Using these relations one can 

plot the Lamb modes in the ( , )k   plane. The phase velocity cp and the group velocity cg 

for the wave are determined using the following relations 

pc
k


 ,                                                        (4.42) 

d

d
gc

k


 ,                                                       (4.43) 

 

where ω is the angular frequency and k is the wavenumber.  

 

4.4. Rayleigh Waves 

4.4.1. Solution of the Christoffel Equation 

Eq. (4.10) for a Rayleigh wave can be expressed by taking   3ipkx

d j
P e , since the 

Rayleigh wave decays in the 3x - direction. The wave solution then becomes 
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1 3( )ik x px ct

j ju b e
 

 .                                             (4. 44) 

By plugging in Eq. (4.44) into Eq. (4.9) it follows that (Junge, 2003) 
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 

     

u
               (4.45)      

                                                      

Since the stress is a uniaxial stress in the
1x - direction this equation reduces to Eq. (4.16) 

in the following form 

                         2 2

0 R
ˆ ˆˆ ˆ( ) (1 ) 0T i

NNp p c       A b S R R Q I b ,            (4.46)                                                           

 

where the three matrices S, R and Q  are defined as 

2 2
ˆ

I KCS  ,  1 2
ˆ

I KCR  ,  1 1 11
ˆ i

I K IKC T Q . 

The matrix I is the identity matrix. A is a function of the Rayleigh wave speed and the 

decay parameter p.  

Solving for the nontrivial solution of Eq. (4.46) yields three pairs of complex 

conjugate roots for p. The displacement field b can be solved for each value of ip  by 

solving for the null vector of A. Once the bj’s are determined one can express the 

displacement as a linear combination of the single solutions using the matrix notation as 

shown in Eq. (4.47). 

1( )

du BP f
ik x ct

e


 ,                                               (4.47) 

with the vector f  giving the factors for the linear combination, 

 1 2 3B= b , b , b ,                                                (4.48) 

and 

1 3

2 3

3 3

( )

( )

( )

e 0 0

0 e 0

0 0 e

i kp x

i kp x

i kp x

 
 

  
 
 

d
P .                                  (4.49)        

                                           

4.4.2. Boundary Conditions 

The boundary conditions for a Rayleigh wave propagating in the x1-direction and 

decaying in the x3- direction are 
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33 13 0    at 3 0x  .                                        (4.50) 

Using Hooke‟s law and plugging in Eq. (4.47) into the boundary conditions yields Eq. 

(4.17) in the form  

   ˆ ˆ( ) 0  T
D f R B SBP f ,                                    (4.51) 

with 

1

2

3

0 0

0 0

0 0

p

p

p

 
 


 
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P . 

 

The value of Rc obtained that satisfies both the Equations (4.46) and (4.49) is the 

wave speed of the Rayleigh wave at a uniaxial stress T. The vector f is obtained by 

solving for the null-space of D. The displacements are thus determined by using Eq. 

(4.47). Since Rayleigh wave has maximum amplitude at the surface 3( 0)x  , the 

displacement at the surface is given by 

1( )
u Bf

ik x ct
e


 .                                                 (4.52) 

The polarization  , of a Rayleigh wave is defined as the ratio of maximum in-plane, to 

the maximum out-of-plane displacement of a particle on the free surface. The 

polarization vector is given by 


Bf   .                                                  (4.53) 

 

 

At the surface, 3 0x  ; the polarization of the Rayleigh wave is given as  

1

3

( )

( )
 

Bf

Bf
.                                                (4.54)          
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CHAPTER V 

5   NUMERICAL SIMULATION 

 

The theory of acoustoelasticity has been explained in the previous chapters. This 

section applies this theory in order to provide a numerical solution to the propagation of 

ultrasonic waves through rail steel. Firstly, the generic algorithms followed to obtain a 

numerical solution are discussed. This is followed by the simulation results. The 

acoustoelasticity of various ultrasonic waves is compared. Finally, important conclusions 

regarding the numerical solution are presented. 

 

5.1. Generic Algorithms for Numerical Simulation 

The algorithms are easy to implement in any programming tool. For this 

research, MATLAB was used to program the algorithms.  

 

5.1.1. Rayleigh Wave 

The objective of this problem is to determine the Rayleigh wave speed Rc  and 

polarization   for a material under constant stress. The algorithm proceeds in the steps 

as described below following Junge (2003) 

STEP 1. Make an initial guess for the wave speed using the equation given by 

Graff (1978) 

R0 S0

0.87 1.12

1
c c









,                                          (5.1) 

where, the subscript „0‟ denotes zero stress and   is Poisson‟s ratio. 

STEP 2. Using the wave speed obtained from Eq. (5.1), compute ip  that satisfies 

Eq. (4.40), or in other words, makes the determinant of A  equal to zero.  

STEP 3. For each value of p, compute the null-space b of Eq. (4.41).  

STEP 4. Construct the matrix D as per Eq. (4.46).  
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STEP 5. Check for the determinant of D.  

 If the determinant is equal to zero then the assumed value of Rc  is 

correct. Proceed to STEP 6.  

 If the determinant is not equal to zero then, change the value of  
Rc and 

repeat steps 2, 3, 4 and 5.  

STEP 6. Use this value of 
Rc  to determine the vector f which is the null-space of  

D. 

STEP 7. Compute the polarization using Eq. (4.49).  

 

5.1.2. Lamb Waves 

The objective of this problem is to determine the wavenumber k and circular 

frequency   of the propagating wave in order to plot the dispersion relations. The basic 

principle is to iteratively find the  -k pairs for each mode. The algorithm proceeds in 

the steps as described below following Lowe (1992) 

STEP 1. Make an initial assumption of the wavenumber k and frequency .  

STEP 2. With the physical properties of rail steel set up Eq. (4.35) and Eq. (4.36) 

with the unknowns k and  . 

STEP 3. In this step a coarse search is made by evaluating the functions in Eq. 

(4.35) (or Eq. (4.36)) for a fixed value of wavenumber and over a range 

of values on the frequency axis. Observing the values of the function that 

crosses zero gives the approximate location of a Lamb mode. This search 

gives all possible modes that could be obtained starting from an assumed 

wavenumber.  

STEP 4. Select an approximate location found in STEP 3, determine the exact 

location by using a numerical technique such as Regula Falsi method that 

converges to the point where zero exists. This gives the first pair  1 1,k   

on the curve. 
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STEP 5. Increase k by a small amount k , and repeat step 3 and 4 to find another 

pair  2 2,k  .  

STEP 6. Determine the slope of the line joining the two points. 

STEP 7.  Increase k2 by another k  and using the slope found in step 6 extrapolate 

to the value of 3 .  

STEP 8.  To determine accurately the value of 3 , once again Regula Falsi method 

is employed to converge to a root between 3  and 3   where 

 is a small arbitrary increment. This gives a third point. 

STEP 9.  Repeat the steps 7 and 8 determining the  ,k  pairs each time. The 

iterations are stopped when the desired value of frequency is reached.  

STEP 10. For the next mode go to STEP 3 and start with another approximate 

location. Repeat STEPS 4 through 9 to determine another curve. 

STEP 11. Plot  versus k for various modes obtained. 

The above algorithm generates the dispersion curves for Lamb modes.  

 

5.2. Sensitivity Constants 

The numerical simulation was carried out for different stresses ranging from a 

compression of 11T  = -400 MPa to a tension of  11T  = + 400 MPa.  A lot of literatures 

define the sensitivity constants as a relative change in wave speed and polarization per 

unit change in stress. This is due to the fact that the absolute change in wave speed or 

polarization with stress is very small. 

The relative change in wave speed is defined as 

0

0

c c
c

c


  .                                                   (5.2) 

The relative change in polarization is defined as 

0

0


 


,                                                (5.3) 
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where c is the wave speed, Π is the polarization and the subscript „0‟ indicates these 

parameters at zero stress. Using these relations, the sensitivity constants for wave speed 

and polarization are respectively defined as 

ck
c






,                                                     (5.4) 

pk






.                                                    (5.5) 

 

5.3. Simulation Results 

This research focuses on the effect of a uniaxial stress T11 in the propagation 

direction x1 on the wave speed of various ultrasonic waves and polarization of Rayleigh 

waves. In addition, the effect of variations in TOE constants on sensitivity constants of 

Rayleigh waves is also discussed. 

Analytical models as discussed earlier were encoded in MATLAB. Rail steel has 

yield strength of 450 MPa. The model is run for stresses varying between  400 MPa 

where „+‟ indicates tension and „-‟ indicates compression. The elastic properties of rail 

steel used for this analysis are taken from Junge (2003) and are presented in Table 5.1. 

 

 

Table 5.1. Density, Lamé constants and TOE constants for rail steel 

ρ  

[kg/m
3
] 

λ  

[GPa] 

µ 

 [GPa] 

υ1  

[GPa] 

υ2 

 [GPa] 

υ3  

[GPa] 

7800 115.8 79.9 36 -266 178.5 
 

 

 

 

5.3.1. Rayleigh Waves 

The simulation results are shown in Tables 5.2 and 5.3. Fig. 5.1 shows the 

relative change in polarization for a uniaxial stress variation from -400 MPa to +400 

MPa. It is observed that the Rayleigh wave speed increases with increasing tension and 

decreases with increasing compression. Also, it is observed that polarization decreases 

with increasing tension and decreases with increasing compression. Both the 
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relationships are linear which is consistent with the observations of Egle and Bray 

(1976) and Hirao et al. (1981). This relationship can be expressed in terms of the 

sensitivity constants ck  and pk . For rail steel these constants are 

51.508 10 / MPack    and, 

69.011 10 / MPapk    . 

It is found that for other materials such as aluminum, as investigated by Junge et 

al. (2004), and mild steel, investigated by Hirao et al. (1981), this relationship is opposite 

to that observed in rail steel. Comparing the TOE constants for different materials from 

Junge (2003) it is observed that the sensitivity constants for wave speed  ck  and 

polarization pk  depend on the TOE constants.  

 

 

Table 5.2. Comparison of sensitivity constants for different materials 

Material υ1  

[GPa] 

υ2 

 [GPa] 

υ3  

[GPa] 
ck  

[1/MPa] 

pk  

[1/MPa] 

Mild Steel -13 -200 -200 75.72 10   69.182 10  

Aluminum -27.7 -91.7 -89.3 62.88 10   52.789 10  

Rail Steel 36 -266 178.5 51.508 10  69.011 10   
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Table 5.3. Simulation results showing the change in Rayleigh wave speed and 

polarization 

11T  [MPa] 
Rc  [m/s] Polarization Vector ∆

Rc  ∆  

  u1 u3   

-400 2948.27 0.551287 0.834316 -6.033E-03 3.622E-03 

-300 2952.76 0.550939 0.834546 -4.521E-03 2.711E-03 

-200 2957.23 0.550591 0.834775 -3.012E-03 1.803E-03 

-100 2961.70 0.550245 0.835003 -1.505E-03 8.996E-04 

0 2966.17 0.549900 0.835230 0.000E+00 0.000E+00 

100 2970.62 0.549556 0.835457 1.502E-03 -8.957E-04 

200 2975.07 0.549214 0.835682 3.002E-03 -1.788E-03 

300 2979.51 0.548872 0.835906 4.500E-03 -2.676E-03 

400 2983.95 0.548532 0.836130 5.995E-03 -3.561E-03 
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(a) Relative change of wave speed 

 

Fig. 5.1. Relative change in Rayleigh wave speed and polarization for uniaxial stress 

change along propagation direction 
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(b) Relative change of polarization  

 

Fig. 5.1. continued 
 

 

 

Fig. 5.2 shows the motion of a particle on the surface of rail steel. The 

polarization of Rayleigh waves is the ratio of the maximum in-plane to the maximum 

out-of-plane displacements. The change in polarization with stress is visualized from the 

two ellipses in the figure that indicate the motion of the particle when the stress changes 

from 0 MPa to -10 GPa. It may be noted that this model does not take into account the 

fact that yield stress of steel is 450 MPa. Fig. 5.2 is only for demonstrating the effect of 

stress change on the polarization ellipse.  
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Fig. 5.2. Rayleigh wave polarization 
 

 

 

5.3.2. Sensitivity of TOE Constants – Rayleigh Waves 

The simulation assumes that the TOE constants remain unchanged throughout 

the simulation. The experiments by Egle and Bray (1976) on two rail samples reveal a 

maximum variation of 4.1%. In order to evaluate the dependency of sensitivity constants 

on variation in TOE constants, a simulation is carried out. This simulation assumes a 

scatter of  10 %.  On the other hand, Lamé constants can be accurately determined and 

hence their values are assumed to be constant. Table 5.4 shows the variation in TOE 

constants used in the analysis.  
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Table 5.4. Variation of TOE constants-Rayleigh Waves [GPa] 

 Min. (-10%) Average Max. (+10%) 

1  32.4 36 39.6 

2  -292.6 -266 -239.4 

3  160.65 178.5 196.35 

 

 

 

Fig. 5.3 shows the results for the sensitivity analysis. From the two plots, it is 

evident that the scatter in Rayleigh wave speed is less as compared to the scatter in wave 

polarization. This means that the variability in TOE constants has more effect on wave 

polarization. Table 5.5 shows the influence of TOE constants on the sensitivity 

constants. Change in pk  is approximately three times the change in ck .    

 

 

 

Table 5.5. Variation in sensitivity constants-Rayleigh Waves 

 
ck  

[1/MPa] 

 ck  

% 

pk  

[1/MPa] 

 pk  

% 

Max. 1.619E-05 7.72 -1.082E-05 20.10 

Avg. 1.503E-05 0.000 -9.011E-06 0.000 

Min. 1.387E-05 -7.72 -7.112E-06 -21.08 
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(a) Relative change in wave speed. 
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(b) Relative change in polarization. 

Fig. 5.3. Effect of variation in TOE constants on relative change in Rayleigh wave speed 

and polarization. 
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5.3.3. Sensitivity of TOE Constants – Longitudinal and Shear Waves 

In order to study the effect of variations in TOE constants for longitudinal and 

shear waves, a 10% scatter of the constants is assumed, as described in the previous 

section. Table 5.6 shows the variation in TOE constants used in the analysis.  

 

 

 

Table 5.6. Variation of TOE constants-Bulk Waves [GPa] 

 Min. (-10%) Average Max. (+10%) 

l -272.8 -248 -223.2 

m -685.3 -623 -560.7 

n -785.4 -714 -642.6 

 

 

 

From Fig. 5.4 it is observed that the scatter in longitudinal wave speed is less as 

compared to the scatter in shear wave speed. This means that the variability in TOE 

constants has more effect on shear waves. Table 5.7 shows the influence of TOE 

constants on the sensitivity constants.  

 

 

 

Table 5.7. Variation in sensitivity constants-Bulk Waves 

 
 c L
k  

[1/MPa] 

  c L
k  

% 

 c S
k  

[1/MPa] 

  p S
k  

% 

Max. -0.977E-05 -19.44 -1.324E-07 -89.10 

Avg. -1.214E-05 0.000 -1.220E-06 0.000 

Min. -1.450E-05 19.44 -2.308E-06 89.10 
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(a) Relative change in longitudinal wave speed. 
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(b) Relative change in shear wave speed. 

Fig. 5.4. Effect of variation in TOE constants on relative change in longitudinal wave 

speed and shear wave spe 
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5.3.4. Lamb Waves 

Fig. 5.5 shows the dispersion curves for the symmetric and antisymmetric Lamb 

modes, shear wave and longitudinal wave for a frequency range of 0-10 MHz. This 

dispersion curve is plotted at zero stress. The numerical model is run for a stress 

variation between 400  MPa and 400  MPa. The dispersion relations obtained are used 

to determine phase velocity and group velocity in rail steel using Eq. (4.36) and Eq. 

(4.37).  The Lamb wave velocities vary as a function of frequency and stress. Fig. 5.6 

and 5.7 show the dispersion curves of the Lamb wave phase velocities and group 

velocities at zero stress. It is observed that at frequencies higher than about 6 MHz, the 

phase velocity in the S0 and A0 modes converges to the Rayleigh wave speed. The 

higher modes also tend to converge towards the S0 or A0 modes, at very high 

frequencies.  Group velocities for all the modes increase steeply for a very small 

frequency change, reach a peak value, drop down to a lower level and finally converge 

towards the Rayleigh wave speed at higher frequencies.  
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Fig. 5.5. Dispersion curves determined from the analytical model 
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Fig. 5.6. Dispersion of Lamb modes phase velocity for zero stress 

 

 

 

Fig. 5.8 and 5.9 show the change in phase velocity and change in group velocity with 

frequency for a stress change of 100 MPa. It is observed that, for Lamb waves the 

change in the phase and group velocity with stress varies with the frequency, since Lamb 

waves are dispersive. For Lamb waves the results predicted that at frequencies higher 

than 6 MHz the relative change in the wave speed is fairly constant. Hence, this value of 

the relative change is used to compare it with the sensitivities of other non-dispersive 

waves.  
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Fig. 5.7. Dispersion of Lamb modes group velocity for zero stress 
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Fig. 5.8. Change in the phase velocity of Lamb modes for a stress change of 100 MPa 
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Fig. 5.9. Change in the group velocity of Lamb modes for a stress change of 100 MPa 

 

 

 

5.3.5. Comparison of Sensitivity Constants 

 A comparison of the relative changes in wave speed and polarization is presented 

in Fig. 5.10. Table 5.8 presents a comparison of sensitivity constants for the various 

ultrasonic waves considered. It is observed that the Rayleigh wave speed has the 

maximum sensitivity and shear waves have the least.  
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Fig. 5.10.  Sensitivity of acoustoelastic effect 

 

 

 

Table 5.8. Sensitivity constants for various ultrasonic waves 

Type of 

Ultrasonic 

Wave 

Rayleigh Wave 
Lamb 

Wave 

Longitudinal 

Wave 

Shear 

Wave 

Sensitivity 

Constants 

[1/GPa] 
ck  pk  

ck  ck  ck  

 

 
15.03E-03 -9.011E-03 7.460E-03 -12.14-03 -1.22E-03 

 

 
 

5.4. Conclusion 

The numerical simulation results predict that the change in wave speed and 

polarization of ultrasonic waves as a function of the applied stress can be effectively 

used to measure the residual stresses in rails. Table 5.8 shows a comparison of the 
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sensitivity constants. It is seen that ck  for Rayleigh wave speed is the largest. In other 

words, the change in Rayleigh wave speed is most sensitive to the change in stress. The 

variations in TOE constants show a greater effect on wave polarization than on wave 

speed. A comparison of the Rayleigh wave sensitivity constants for rail steel with those 

of other materials described by Junge (2003) shows that the results are consistent with 

his observations that the stronger the material the smaller are the changes in wave speed 

and polarization. It is concluded that Rayleigh waves would be most feasible for 

determining the applied stresses in rail steel. All further study is carried out considering 

Rayleigh waves only.  
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CHAPTER VI 

6   EXPERIMENTAL METHOD AND RESULTS 

 

This chapter provides the details of the experimental procedure followed during 

the course of the research and presents the results obtained. The first section describes 

the principle followed for generating Rayleigh waves. The second section discusses the 

equipment/instrumentation involved and the third section describes the actual procedure 

engaged. Finally, the results of the experiments are discussed. 

 

6.1. Principle of Wave Generation 

The technique used in this research for generation of Rayleigh waves is referred 

to as wedge-technique. This technique has several advantages as put by Junge (2004). 

Firstly, this technique is frequency independent. Secondly, the technique theoretically 

generates only Rayleigh waves and hence interference from longitudinal and shear is not 

a problem. Thirdly, a sinusoidal longitudinal is converted to a sinusoidal surface wave.  

In this technique a longitudinal transducer is mounted on a plexiglass wedge and which 

in turn is coupled over the surface where the wave needs to be generated.  

 

6.1.1. Mode Conversion 

When ultrasonic energy is incident on a surface there is mode conversion of the 

incident energy at the interface.  The incident energy is mode converted to different 

forms of ultrasonic energy in the second material and part of it is also reflected back. 

The mode conversion ultimately depends on the angle of incidence of wave energy as 

given by Snell‟s law. This is shown in Fig. 6.1. 

 

In Fig. 6.1, an incident longitudinal wave is mode converted into a longitudinal, 

shear and Rayleigh wave in Material 2. Snell‟s law for each of this conversion can be 

expressed as 
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(1) (2)

L 2R R 1Lsin sinc c   ------ for Rayleigh wave,                       (6.1) 

(1) (2)

L 2L L 1Lsin sinc c   ------ for longitudinal wave,                    (6.2) 

(1) (2)

L 2S S 1Lsin sinc c   ------ for shear wave,                          (6.3) 

 

 

 

θ1L

θ2S

θ2L

cR

c
L

c
S

θ1L

(1)

(2)

θ2R

 

Fig. 6.1. Mode conversion 

 

 

 

where R, L and S represent Rayleigh, longitudinal and shear wave respectively, and the 

numbers (1) and (2) represents the first and second material as shown in Fig. 6.1. For a 

surface wave, 2R 90   , and Eq. (6.1) becomes,  

(1)

L
1L (2)

R

sin sin W

c

c
    ,                                          (6.4) 

where W represents the wedge. Plugging in the above relationship in Equations (6.2) and 

(6.3),  

(2)

L
2L (2)

R

sin
c

c
  , and 

(2)

S
2S (2)

R

sin
c

c
  .                                 (6.5)    

For a material such as rail steel, it is known that, (2) (2) (2)

R S Lc c c  . Thus, Eq. (6.5) 

becomes greater than one and such solution does not exist. As a result, the mode 
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conversion yields a pure surface wave if the angle of incidence is W  as shown in Fig. 

6.2. 

 

cRθw

θw

(1)

(2)

Rail Surface

Wedge

 

Fig. 6.2. Rayleigh wave generation 
 

 

 

Thus, the wedge technique requires that the Rayleigh wave speed in the test material 

should be less than the longitudinal and shear wave speed in the wedge material, 

 (2) (1) (2) (1)

R L R S,c c c c  . For rail steel the Rayleigh wave speed is 2966.67 m/s and the 

longitudinal wave speed through a plexiglass wedge is 2720 m/s. This gives an angle 

66.5w   .  

 

6.2. Experimental Setup 

 Fig. 6.3 shows a schematic diagram of the experimental setup. Following 

paragraphs shall discuss about the various components involved.  

 



60 

 

 

θ°

OFV 505

 LDV-

 Sensor Head

Panametrics Transducer

(1 MHz)

Plexiglass-wedge

Rail Specimen



Agilent 33250A 

Function Generator

Tektronix 

TDS 3034B 

DPO

OFV 5000

Vibrometer Controller
Computer

 O
FV

 505

LD
V
- 

S
ensor H

ead

 

Fig. 6.3. Schematic diagram of the experimental setup 

 

 

 

6.2.1. Laser Doppler Vibrometer (LDV) 

The interferometer used in the experiments is a Polytec Single Point Vibrometer 

which comprises of OFV 505/503 standard sensor head and OFV 5000 vibrometer 

controller. This system measures the vibrations of a surface in the direction of the laser 

beam.  

 

The basic principle of this system is to measure the frequency shift known as 

Doppler shift of the incident and reflected laser beam and relate it to the particle velocity 

and displacement. To detect this, laser from the interferometer is split into two beams, a 

reference beam and a measurement beam. The reference beam contains information 

about the original beam and is directly incident on a photodetector. The measurement 

beam is incident on the test specimen. The reflected beam changes in frequency and 

phase, due to surface vibrations. This back-scattered light contains information about the 

phase and frequency shift. This beam now falls on the photodetector and is compared 

with the reference beam which generates a modulated detector output signal revealing 
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the Doppler shift in frequency Df  and phase. The frequency modulation provides the 

velocity information and, the displacement information is revealed from the phase 

modulation.  

 

(a) Out-of-plane measurement: In order to determine the out-of-plane velocity 

the laser and the test specimen are positioned orthogonal as seen in Fig. 6.4(a). This 

setup directly gives the out-of-plane particle velocity. 

 

 

θ

Test Specimen
Test Specimen

LDV LDV

   (a)      (b) 

 

Fig. 6.4. In-plane and out-of-plane measurements 

 
                                              

 

(b) In-plane measurement: In order to determine the in-plane velocity, the laser is 

incident at an angle   with the test specimen as seen in Fig. 6.4(b). Under this setup the 

LDV measures velocity in the direction of the laser beam. Velocity measured in this 

manner contains the out-of-plane component which needs to be filtered out.  
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Fig. 6.5. Extracting in plane velocity 

 

 

 

If  v  is the velocity measured at an angle   and 3v  is the out-of-plane velocity, then the 

in plane velocity 1v  is given by (Fig. 6.5) 

 1 3 sin / cosv v v    .                                              (6.6) 

For an angle of 45 ,  

3
1 2

2

v
v v

 
  
 

.                                                  (6.7) 

 

 

The LDV setup consists of a sensor head and a vibrometer controller (Fig. 6.6). 
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Fig. 6.6. Optical configuration in the LDV sensor head  

(Polytec User Manual for OFV-505/-503 Sensor head) 

 

 

 

The laser source is a Helium-Neon laser that generates a coherent polarized laser 

beam. The first beam splitter (BS-1) splits the beam into a measurement beam and a 

reference beam. The measurement beam passes through another beam splitter (BS-2) 

and a / 4  plate and is incident on the test specimen. The reference beam passes through 

a Bragg cell and a third beam splitter (BS-3) before it is made incident on the 

photodetector. The reflected beam is deflected by BS-2 towards the photodetector where 

it mixes with the reference beam. The path of the reference beam from BS-1 to the 

photodetector is equal to the path of the measurement beam from BS-1 to photodetector 

through BS-2 and BS-3. Thus, the path difference between the reference and reflected 

beam is equal to twice the distance between BS-2 and the test specimen. The Bragg cell 

performs the function of determining the sign of the velocity. The mixed beam is 

converted to an electrical signal in the photodetector and analyzed in the controller.  

 

The output passes through a built-in low pass filter of 1.5 MHz and a fast 

tracking filter. The output is displayed in terms of / /mm s V . 
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6.2.2. Input Signal 

The transducer is driven by a sinusoidal signal or an impulse. The sine function is 

generated using an Agilent 33250A function generator capable of generating frequencies 

up to 80 MHz. The pulse is generated using Panametrics Pulser/ Receiver PR 5072. 

 

6.2.3. Transducer 

The experiment uses a Panametrics C401 transducer for wave generation. The 

transducer has a size of 0.5'' 1"  and a center frequency of 1 MHz.  

 

6.2.4. Data Acquisition 

The signal from the vibrometer controller is passed on to a digital phosphor 

oscilloscope (DPO). The DPO is a Tektronix TDS 3034B. The signal is averaged over 

512 times by the oscilloscope. The waveform is acquired on a computer using Wavestar 

software. The data is analyzed using MATLAB.  

 

6.2.5. Test Sample 

The test sample is a 12''  long rail piece with bottom flange dimensions 

6" 12" and 7 ''  deep with a cross section of 12.88 in
2
.  

 

6.3. Experimental Procedure 

6.3.1. Surface Preparation 

As described in Section 6.2.1, the principle of laser vibrometry is based on 

comparing and analyzing the reference and the reflected beams. Thus it is essential that 

the surface reflects back most of the energy incident on it. A highly reflective surface 

such as a mirror reflects ideally all the energy when light is incident orthogonal to the 

surface. However, when the light is incident at another angle that is not orthogonal, the 

light is reflected away from the lens. The OFV-505 sensor head has a collecting aperture 

of 10 mm diameter. Any energy reflected outside this diameter is not useful for analysis. 
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Diffuse surfaces reflect light over a large area and dull surfaces absorb most of the 

incident light.  

 

In order to obtain good results it is necessary to increase the reflectivity of the 

surface by using external agents such as retro-reflective tape or paints. Tapes are not 

effective since the thickness of the tape may generate Lamb waves within the tape. 

Retro-reflective paints contain glass beads or spheres mixed with a base and are 

available in the form of liquid paints or aerosols. When a coherent beam is incident on 

such a material, a speckle pattern is generated due to multiple reflections from the small 

glass beads. The laser beam hits a large number of glass beads simultaneously and this 

results into interference effects between the beams originating at different scattering 

centers on the surface. If the focused spot is very small, the number of scattering centers 

is small and the angular dependence of the path length differences in a given direction is 

also small. This leads to a large angle over which the interference condition is 

reasonably constant and thus a large solid angle for the speckle. The test specimen used 

in this research is coated with “RUSTOLEUM Reflective Finish” which is an aerosol and 

works on a similar principle as explained above.  

 

6.3.2. Velocity and Polarization Measurement  

The experimental setup is shown in Fig. 6.3. The plexiglass wedge is clamped in 

position on the rail web.  The transducer is mounted on the wedge such that the wave is 

incident at the critical angle as determined in Section 6.1.1. DOW CORNING high 

vacuum grease is used as a coupling agent between the transducer and wedge and 

between the wedge and test specimen to lower the acoustic impedance between two 

surfaces.  

 

The transducer is driven by a sinusoidal signal with maximum peak to peak 

amplitude of 10 Volts and a frequency of 1 MHz. The number of cycles is varied 

between 1 and 10. Alternately, the transducer can be driven by a single pulse with 
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amplitude varying between 90 V and 380 V. To obtain the in-plane and out-of-plane 

components at a point on the specimen, it is necessary to take two measurements. It is 

advisable to keep the laser running for at least 30 minutes before the measurements are 

made to heat up and give a stable light. The laser is focused into a small spot on the 

surface and two measurements are taken as described in Section 6.2.1. The specimen is 

stressed in a compression testing machine and the experiment is repeated. Fig. 6.7 shows 

the experimental setup with the rail specimen mounted on a testing machine and two 

LDV‟s focused on the surface. Fig. 6.8 shows a picture of the rail sample fixed in the 

testing machine. The change in the Rayleigh wave components is observed and 

compared to the analytical results.  

 

 

 

 
 

Fig. 6.7. Experimental setup for Rayleigh wave measurement 
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Fig. 6.8. Rail specimen mounted on a compression testing machine  

 

 

 

6.4. Results 

To begin with, the experiment is carried out with the specimen in the unstressed 

case. Several measurement techniques for determining the Rayleigh wave polarization 

are investigated and results compared. Subsequently, the specimen is stressed, and the 

experiment repeated. 

 

6.4.1. Unstressed Case 

6.4.1.1. Excitation Signal 

 Experimental data was obtained for two types of excitation signals and results 

examined.  

(a) Sinusoidal Signal 

 The transducer is excited with a 10 cycle sinusoidal signal. The amplitude of the 

signal is set to 10 Volts peak to peak. To achieve optimum signal quality, the signal 

frequency is set equal to 1 MHz which is also the transducer frequency. The signal 

repetition rate is set to 50 ms, ensuring that the first set of 10 cycles dissipate completely 

before the arrival of the next set. The received signal is averaged over 512 times.  
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 The Rayleigh wave velocity is measured at a distance of 60 mm from the point of 

generation. The vibrometer output for out-of-plane measurement is shown in Fig. 6.9. It 

is observed that the Rayleigh wave arrives at 33 μs which is in good agreement with the 

theoretically expected arrival time of 32.36 μs. 

 

 It is observed from Fig. 6.9 that the peaks of the vibrometer output signal are not 

steady. As explained in Section 6.1.1, when a disturbance is incident at the critical angle, 

only Rayleigh waves are generated. However, the observed instability of amplitudes 

might be explained by the possible interference of longitudinal and shear waves. The 

expected arrival times for a distance of 60 mm are estimated in Table 6.1. Thus, for a 10-

cycle sinusoidal wave with a period of 1 μs, the longitudinal and shear waves do not 

dissipate completely before the arrival of Rayleigh wave. The discrepancy in theory and 

experimental observation may be attributed to the inaccuracy in setting the critical angle. 
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Fig. 6.9. Rayleigh wave out-of-plane component in unstressed specimen for sinusoidal 

input signal. 
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Table 6.1. Estimated arrival times of ultrasonic waves at a distance of 60 mm from the 

transducer 

 
Wave Velocity 

[m/s] 

Estimated arrival time 

[μs] 

Longitudinal Wave 5944.21 22.22 

Shear Wave 3200.56 30.88 

Rayleigh Wave 2966.67 32.36 

 

 

 

(b) Impulse 

 In this case the transducer is driven by a single pulse of 380 Volts. The damping 

value is set to 500 ohms. The received signal is averaged over 512 times. Rayleigh wave 

velocity is measured at a distance of 60 mm from the point of generation. The 

vibrometer output for out-of-plane measurement is shown in Fig. 6.10.   
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Fig. 6.10. Rayleigh wave out-of-plane component in unstressed specimen for pulse 

excitation 
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 It is seen from Fig. 6.10 that the arrival time of 32.8 μs is fairly consistent with 

the estimated arrival time of 32.36 μs. Also, since the voltage applied was much higher, 

the signal to noise ratio (SNR) is higher.  
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(b) 

 

 

Fig. 6.11. Rayleigh waves in rail steel. (a) Excitation is 10 cycle sinusoidal signal.  

(b) Excitation is a pulse 
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A set of consecutive measurements were taken for both, sinusoidal signal 

excitation and pulse excitation. Rayleigh waves detected for each excitation are shown in 

Fig. 6.11. Comparing Figures 6.11 (a) and (b) reveal that the maximum peak amplitudes 

in Fig. 6.11 (a) have a much larger deviation than in Fig. 6.11 (b). This can be attributed 

to the interference explained earlier. In other words, the peaks in Fig. 6.11 (b) are fairly 

stable. In this case, there is negligible interference due to longitudinal or shear waves 

since the driving signal is a single pulse.  

 

Conclusion 

 To avoid any interference issues, all further measurements are taken using the 

pulse as excitation. 

 

6.4.1.2. Measurement Techniques 

  

 As explained in Section 6.3, the basic principle for measuring polarization is to 

take two measurements using LDV and separate the in-plane and out-of-plane 

components. The following techniques were investigated to determine polarization, 

keeping this principle in mind. 

 

(a) Using Single Laser Doppler Vibrometer 

 The first technique utilizes a single LDV to make two measurements. This is 

shown in Fig. 6.11.  

 

 

LDV

θ

Position 1

Position 2

Test 

Specimen

 

Fig. 6.12. Measurement using a single LDV 
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 When the test sample is in position 1, the LDV measures the out-of-plane 

component of Rayleigh wave velocity. Under position 2, the LDV measures the 

component in direction θ. The in-plane component can be extracted using Eq. (6.6).  

 

Results and Discussion 

Fig. 6.13 presents the in-plane and out-of-plane components obtained using this 

technique. The polarization of Rayleigh wave is presented in Fig. 6.14. As can be seen, 

the polarization ellipse is rotated from the vertical axis. This indicates that the in-plane 

and out-of-plane components have a phase-shift not equal to / 2 . Ideally, when the two 

components have a phase-shift of / 2 , the ellipse has a perfectly vertical axis. This 

discrepancy can be explained due to the relative movement of the measurement point on 

the rail surface between position 1 and position 2 as shown in Fig 6.12. The erroneous 

rotation of the specimen from position 1 to position 2 results into the LDV detecting the 

wave at two separate points. This results into a phase shift in the two signals. This setup 

yields a mean polarization value of 0.6498 with a standard deviation of  0.01. It can be 

concluded that the results are not reproducible.  
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Fig. 6.13. Rayleigh wave components in unstressed specimen using single LDV 
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Fig. 6.14. Rayleigh wave polarization in unstressed specimen using single LDV 
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(b)  Using Single Laser Doppler Vibrometer with a Combination of Beam Splitter 

and Mirror 

 As an alternative over the measurement technique described earlier, a single 

LDV was set up in combination with a beam splitter and mirror (Fig. 6.15). 
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Fig. 6.15. Measurement using a single LDV and a beam splitter-mirror combination 
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Fig. 6.16. Measurement using a single LDV and a beam splitter-mirror combination 
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 In this setup, the drawback due to physical movement of the specimen is 

eliminated by using a combination of beam splitter and mirror. It facilitates measuring 

in-plane and out-of-plane components simultaneously. Two setups were investigated. In 

the first setup (Fig. 6.15), beam B is blocked to measure the out-of-plane component. To 

measure the in-plane component beam A is blocked and the in-plane component is 

obtained using Eq. (6.6). Fig. 6.18 shows the in-plane and out-of-plane velocity 

components obtained using this technique. Fig. 6.19 shows the polarization of the 

Rayleigh wave. 

 

 In the second setup (Fig. 6.16); two measurements are taken at an angle   from 

the perpendicular to the rail surface. The in-plane and out-of-plane velocities can be 

obtained by 

    
   

1
2

A B
v v

v
 

   ,                                        (6.1) 

  
   

3
2

A B
v v

v
 

   ,                                        (6.2) 

where  
A

v  and  
B

v  are the velocity components in direction of beam A and B, 

respectively and are shown in Fig. 6.17 

 

 

 

(Vθ)A

Out of plane 

velocity

In plane 

velocity

Specimen

(Vθ)B

V3

V1

θ
θ

 

Fig. 6.17. Extracting in-plane and out-of-plane velocities using setup in Fig. 6.15 
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Results and Discussion 

 Both the setups were studied and no significant differences were observed in the 

results. The results for the setup in Fig. 6.15 are presented in Figures 6.18 and 6.19. It 

can be noted from Fig. 6.18 that the peak of in-plane component coincides with the zero 

value of out-of-plane component and vice-versa. This indicates that the two waves have 

a phase shift of / 2 . As expected, the polarization ellipse is perfectly vertical (Fig. 6.19 

(a)). A mean polarization value of 0.4506 with a standard deviation of  0.0085 was 

obtained with this setup. 
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` 

Fig. 6.18. Rayleigh wave components in unstressed specimen using single LDV and 

beam splitter - mirror combination with setup shown in Fig. 6.16 
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     (a)           (b)  

Fig. 6.19. Rayleigh wave polarization in unstressed specimen using single LDV and 

beam splitter - mirror combination with setup shown in Fig. 6.16 

 

 

 

Figures 6.20 and 6.21 present the velocity components and polarization, 

respectively, using the setup in Fig. 6.16. This setup gave a mean polarization of 0.4533 

with a standard deviation of 0.007.  
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Fig. 6.20. Rayleigh wave components in unstressed specimen using single LDV and 

beam splitter - mirror combination with setup shown in Fig. 6.17 

 

 

Again, the accuracy in measurement depends on how closely the two beams 

coincide. This setup encountered the problem of loss in laser energy as the beam splitter 

divided the beam into two. The effect of this is loss of carrier signal. Consequently, the 

maximum in-plane and out-of-plane components showed a considerable deviation. This 

deviation is observed in Figures 6.19 (b) and 6.21 (b). 
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   (a)                (b)  

Fig. 6.21. Rayleigh wave polarization in unstressed specimen using single LDV and 

beam splitter - mirror combination with setup shown in Fig. 6.15 

 

 

 

(c) Using two Laser Doppler Vibrometers 

 This setup utilizes two LDV‟s focused simultaneously at a single point on the 

specimen (Fig. 6.22). Beam A and Beam B measure components in the corresponding 

directions. The in-plane and out-of-plane components can be obtained using Equations 

(6.1) and (6.2).  
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Fig. 6.22. Measurement using two laser Doppler vibrometers 

 

 

 

Results and Discussion 

 This setup yielded the best results as compared to other methods investigated. 

The in-plane and out-of-plane components are shown in Fig. 6.23.  
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Fig. 6.23. Rayleigh wave components in unstressed specimen using two LDVs 

 

 

 

 Using two LDVs eliminates all problems encountered in earlier setups. As can be 

seen in Fig. 6.23, the in-plane and out-of-plane components are out of phase by / 2 . 

The polarization ellipse is presented in Fig. 6.24. It is found that when measurements are 

repeated, the deviation in the maximum in-plane and out-of-plane components is less 

than the deviation observed in earlier setups. Once again, it is crucial to have the two 

laser beams focused at a single point. A mean polarization value of 0.5792 with a 

standard deviation of  0.0028 was obtained with this setup. 
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      (a)             (b) 

Fig. 6.24. Rayleigh wave polarization in unstressed specimen using two LDVs 

 

 

 

 Conclusion 

 Due to the comparative robustness of measurements obtained using two LDVs, 

further experiments are carried out using this setup. 

 

6.4.2. Stressed Case 

6.4.2.1. Measurement Description 

The setup described in Fig. 6.22 is used to make the measurements. The 

transducer is driven by a pulser generating a pulse of 380 V. The specimen is 

compressed in a compression testing machine. The specimen is preloaded to generate a 

compressive stress of  11 5.36 MPaT   . Further, the specimen is loaded to generate a 
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compressive stress of  11 214.15 MPaT   . Rayleigh wave polarization is measured at a 

distance of 57 mm from the wedge. 

 

6.4.2.2. Results 

(a) Stress of 5.36 MPa  

 The signal shows a Rayleigh wave velocity of 2964.5 m/s which is in good 

agreement with the theoretical value of 2966.67 m/s. Fig. 6.25 shows the in-plane and 

out-of-plane velocity signals for the preloaded case. It is observed that the two 

components have a phase shift of / 2 . The particle displacement components can be 

obtained by integrating the velocity signals. The polarization ellipse using velocity 

components and using displacement components are shown in Figures 6.27 (a) and (b), 

respectively. The maximum out-of-plane component is almost twice as high as the in-

plane component. Polarization for this case can be obtained by  

1 1
10

3 3

u v

u v
   . 

The velocity components give a mean polarization value of 0.49, while the displacement 

components yield a polarization value of 0.41. The numerical simulation gives a 

polarization value of 0.65. The standard deviation of measurements is 0.0046.  
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Fig. 6.25. In-plane and out-of-plane components of Rayleigh wave in rail steel 

 

 

 

 (b) Stress of 214.15 MPa 

The lower plot in Fig. 6.25 shows the in-plane and out-of-plane signal for this 

case. Comparing it with the components at 5.36 MPa tells that the in-plane component 

drops down considerably. The mean value of polarization using velocity components is 

0.13 and using displacement components is 0.24. The measurements show a standard 

deviation of 0.004. This is shown in Fig. 6.27 (a) and (b). The numerical simulation 

predicts a polarization of 0.659 which is about three times more than what is obtained 

experimentally. The theoretical values for Rayleigh wave speed, polarization and the 

expected change are shown in Table 6.2. 
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Table 6.2. Theoretically expected values 

Stress [MPa] Rc  [m/s] П 

5.36 2965.92 0.65841 

214.15 2956.60 0.65965 

Change 9.32 0.00123 

 

 

Looking at the time domain signals shown in Fig. 6.26, it is observed that 

stressing the specimen reduces the phase difference between the signals drastically 

which ultimately almost cancels out the in-plane component. One explanation could be 

the presence of slight camber in the specimen cross-section, which causes additional 

movement of the two focusing points. Also, it can be observed that Rayleigh wave speed 

decreases as expected theoretically. However, the experimental change in Rayleigh wave 

speed is about nine times the expected change. The experimental values obtained are 

presented in Table 6.3. 

 



86 

 

 

28 30 32 34 36 38
-0.5

0

0.5

1

Time [s]

S
ig

n
al

 A
m

p
li

tu
d

e 
[V

]

 

 

Received signal from LDV 1

Received signal from LDV 2

28 30 32 34 36 38
-0.5

0

0.5

1

Time [s]

S
ig

n
al

 A
m

p
li

tu
d

e 
[V

]

 

 

Received signal from LDV 1

Received signal from LDV 2

 

Fig. 6.26. Time domain representation of signals received by the two vibrometers. The 

upper plot is at 5.36 MPa and the lower plot is at 214.15 Mpa 

 

 

 

Table 6.3. Experimental values 

Stress 

[MPa] 

Wave speed 

Rc  [m/s] 

Polarization 

П 

5.36 2964.48 0.4904 

214.15 2880.58 0.1304 

Change 83.9 - 0.36 
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Fig. 6.27. Rayleigh wave polarization at 5.36 MPa and 214.15 MPa. 

 

 

 

 The setup shown in Fig. 6.15 is also investigated, replacing the beam splitter and 

mirror by another LDV. The angle is taken as 22.5 . The results for this case are shown 

below. The upper plot in Fig. 6.28 shows the in-plane and out-of-plane components 

obtained at 5.36 MPa and the lower plot shows these components at 214.15MPa. It is 

clear that the two components have a phase shift other than / 2 . The polarization is 

shown in Fig. 6.29. As expected the two ellipses do not show a vertical axis. 
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Fig. 6.28. In-plane and out-of-plane components of Rayleigh wave 

 

 

 

In order to understand the effect of phase differences in the two signals, it is attempted to 

provide a phase shift to the received signals and plot the polarization thereafter. Fig. 6.30 

shows the two signals after phase shifting such that the difference is / 2 . The effect of 

phase shifting the signals is realized in the polarization presented in Fig. 6.31 and the 

corresponding polarization values are represented in Table 6.4 Although the change in 

polarization is larger than expected, the tendency of change in polarization agrees with 

the theory. In other words, polarization increases with increase in compression as shown 

by the simulations. 
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(a) Polarization using velocity components 
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(b) Polarization using displacement components 

 

 

Fig. 6.29. Rayleigh wave polarization at 5.36 MPa and 214.15 MPa 



90 

 

 

32 32.5 33 3.35 34 34.5
-1

-0.5

0

0.5

1

Time [sec]

S
ig

n
al

 A
m

p
li

tu
d

e 
[V

]

In-plane and Out-of-plane components on phase shifting at 214.15 MPa

 

 

In plane component

Out-of-plane component

31.5 32 32.5 33 33.5
-0.5

0   

0.5

1

Time [sec]

S
ig

n
al

 A
m

p
li

tu
d

e 
[V

]

In-plane and Out-of-plane components on phase shifting at 5.36 MPa

 

 

In plane component

Out-of-plane component

 
Fig. 6.30. In-plane and out-of-plane components of Rayleigh wave on phase shift 
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Fig. 6.31. Rayleigh wave polarization at 5.36 MPa and 214.15 MPa on phase shift 

 

 

 

Table 6.4. Polarization values on phase shift 
 

Stress [MPa] Polarization П 

5.36 0.5736 

214.15 0.8032 

Change 0.23 

 

 

 
6.5. Conclusion  

 Changes are observed in the Rayleigh wave speed and polarization on stressing 

the specimen. However, the changes are several times higher than expected. Rayleigh 

wave speed decreases with increase in stress which is consistent with the theory. 

However, polarization shows a decrease with increase in stress, contrary to the theory. 
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The most important reason for this discrepancy can be explained by the presence of 

camber in the specimen cross section which introduces the possibility of bending in the 

rail section. Several important conclusions that explain the discrepancy in the theory and 

experiments are explained in the next section.  
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CHAPTER VII 

7   CONCLUSIONS AND FUTURE WORK 

 

 Using the acoustoelastic effect of ultrasonic waves, it is attempted to determine 

the applied stresses in rail steel. Initially, analytical models are developed for 

longitudinal, shear, Rayleigh and Lamb waves. Using numerical solution techniques, 

these models are evaluated to determine the sensitivity of acoustoelastic effect. A 

sensitivity analysis is carried out to determine the effect of variability in TOE constants 

on the acoustoelastic effect of Rayleigh waves. The solutions from numerical 

simulations reveal that the acoustoelastic effect of Rayleigh waves is more promising 

than that of other ultrasonic waves.  

 The proposed polarization measurement technique is known as the wedge-

technique. In this, Rayleigh wave is generated using a transducer mounted on a 

plexiglass wedge. A laser Doppler vibrometer is used to detect the Rayleigh wave. In 

order to determine the polarization experimentally, several setups are investigated and 

the results compared. It is observed that using two laser Doppler vibrometers yielded 

better results. The rail specimen is subjected to a compressive stress in a testing machine 

and polarization measured for this case.  

Finally, changes in Rayleigh wave speed and polarization are observed and 

compared to the expected changes predicted by the numerical simulation.  

  

 

 The following conclusions are made based on the results obtained from this 

research: 

1.  The results of the numerical simulation demonstrate that the acoustoelastic effect 

of Rayleigh wave speed is most sensitive among the ultrasonic waves investigated. The 

absolute change in wave speed is equal to 0.0447m/s/MPa and the sensitivity constant 

51.5 10ck   /MPa. Junge et al. (2004) states that the polarization of Rayleigh wave is 
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more sensitive than the wave speed. However, this is not true for all materials. From the 

analytical results obtained in this thesis it can be concluded that for rail steel Rayleigh 

wave speed is more sensitive than polarization. 

2.  The tendency of change in wave speed or polarization with stress depends on the 

TOE constants of the materials.  

3. The effect of variability in TOE constants on the sensitivity of acoustoelastic 

effect is more prominent on Rayleigh wave polarization than on wave speed.  

4.  Different setups investigated reveal several important points to be considered for 

measuring polarization. Firstly, it is very important to record the in-plane and out-of-

plane components at the exact same point. Secondly, a good reflective surface is 

necessary to obtain a better signal. Finally, it is important to maintain sufficient laser 

energy to avoid loss of carrier. 

5. The experimentally observed changes in wave speed and polarization are several 

times higher than the values determined by the numerical simulations. A couple of 

reasons can be attributed to this discrepancy in the experimental and theoretical results. 

  

 The excitation signal is not strong enough. This resulted into a very low SNR 

making the noise level higher than the decipherable changes in polarization. 

 The experimental setup is subjected to a lot of floor vibrations. This might have 

added some noise to the signal. 

 Temperature plays an important role in ultrasonic wave velocity. Changes in 

temperature during the experiment complicated the behavior of Rayleigh waves.  

 The specimen is compressed in a machine that is suited for brute force crushing. 

As a result, the force applied is not constant and there is vertical vibration of the 

machine as it attempts to stabilize the force. Also, there is possibility of rigid 

body movement of the specimen before and after stressing such that the points of 

measurement are different.  

 The reflective spray used to improve the reflectivity generates a speckle pattern 

on the rail surface. This speckle pattern adds some noise to the signal. 
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 The specimen cross section has a slight camber. As a result, part of the applied 

stress is initially used up in cancelling out the camber and the rest of the stress is 

effective. This causes additional movement of the signals detected by the 

vibrometers. 

             

The following recommendations are suggested for future work:  

1. Excitation Signal 

 It is observed that the vibrometer output is unsteady. A higher amplitude input 

signal might serve the purpose for obtaining a steady signal. Also, the LDV can be tuned 

to obtain a higher carrier signal. 

2.  Reflectivity 

 LDV works on the principle of comparing the incident or reference beam to the 

reflected beam. It is crucial that sufficient light is reflected, for further analysis. In this 

research, the rail specimen is coated with a reflective spray generating a speckle pattern. 

The received carrier signal is unstable, which may be attributed to the speckle pattern 

that adds some noise to the signal. A different method to improve the reflectivity of the 

surface needs to be investigated.  

 

3. Compressive Stress 

 It is recommended to use a machine that can provide a constant stress without 

causing external vibrations.  

 

4.  Measurement of Rayleigh Wave Components 

 A method of measuring the in-plane and out-of-plane components by a single 

measurement would prove more effective. Junge (2004) used a type of LDV that could 

measure the in-plane and out-of-plane with a single measurement.  
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5.  Camber 

 The cross section of the specimen needs to have exactly parallel faces. A slight 

camber would produce erroneous results as part of the stress is expended in nullifying 

the camber. 

 

6. Texture 

 In order to completely understand the nature of the results and apply this stress 

measurement technique on a large scale, it will be necessary to evaluate the dependency 

of stress measurement on rail texture and variations in microstructure such as grain size 

or alloy content. For this purpose it is recommended to carry out a texture 

characterization for the rail sample and relate it to the stress measurement results. 
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