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ABSTRACT 

 
Facilitation of Visual Pattern Recognition by Extraction of  

 
Relevant Features from Microscopic Traffic Data.  (December 2007) 

 
Matthew James Fields, B.S., Trinity University 

 
Chair of Advisory Committee: Dr. Paul Nelson 

 
 

An experimental approach to traffic flow analysis is presented in which methodology 

from pattern recognition is applied to a specific dataset to examine its utility in 

determining traffic patterns.  The selected dataset for this work, taken from a 1985 study 

by JHK and Associates (traffic research) for the Federal Highway Administration, 

covers an hour long time period over a quarter mile section and includes nine different 

identifying features for traffic at any given time.  The initial step is to select the most 

pertinent of these features as a target for extraction and local storage during the 

experiment.  The tools created for this approach, a two-level hierarchical group of 

operators, are used to extract features from the dataset to create a feature space; this is 

done to minimize the experimental set to a matrix of desirable attributes from the 

vehicles on the roadway.  The application is to identify if this data can be readily parsed 

into four distinct traffic states; in this case, the state of a vehicle is defined by its velocity 

and acceleration at a selected timestamp.  A three-dimensional plot is used, with color as 

the third dimension and seen from a top-down perspective, to initially identify vehicle 

states in a section of roadway over a selected section of time.  This is followed by 

applying k-means clustering, in this case with k=4 to match the four distinct traffic 
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states, to the feature space to examine its viability in determining the states of vehicles in 

a time section.  The method’s accuracy is viewed through silhouette plots.  Finally, a 

group of experiments run through a decision-tree architecture is compared to the k-

means clustering approach.  Each decision-tree format uses sets of predefined values for 

velocity and acceleration to parse the data into the four states; modifications are made to 

acceleration and deceleration values to examine different results. 

 The three-dimensional plots provide a visual example of congested traffic for use 

in performing visual comparisons of the clustering results.  The silhouette plot results of 

the k-means experiments show inaccuracy for certain clusters; on the other hand, the 

decision-tree work shows promise for future work. 
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1. INTRODUCTION 

 

1.1 – Objective 

 
Moving vehicles tend to fall, at any given time, into one of four states as a result of road 

conditions, number of motorists, weather, and other factors.  The labels commonly given 

these four states are as follows.  Free flow designates travel at roughly the speed desired 

by the driver, with negligible acceleration.  Congested flow designates stunted travel 

speeds, with negligible acceleration; a “traffic jam” is an extreme case of congested 

flow.  An acceleration wave denotes acceleration to return to free flow speeds , such as 

when exiting a traffic jam; in the field of transportation science and engineering traffic 

“backed up” at a bottleneck is often termed a “queue,” and in that context an 

“acceleration wave” may be termed as “queue discharge.”  A deceleration wave, or 

shock wave, denotes a rapid deceleration of traffic, such as a group of motorists 

approaching a traffic jam.  These four states of traffic flow are recognizable to 

experienced motorists.  The first two are more-or-less embedded in the standard “level 

of service” measure of effectiveness for roadway facility performance, as described by 

the Highway Capacity Manual [Transportation Research Board 2000].  All four of these 

states are identifiable within the Lighthill-Whitham [1955]-Richards [1956] kinematic-

wave “fluid-like” model of vehicular traffic flow, which was the earliest mathematically 

predictive model of vehicular traffic flow.    

_____________ 
This thesis follows the style of ACM Transactions on Mathematical Software. 
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Notwithstanding these intuitively agreeable categories, there seems to be a 

paucity of accepted practical methods for the processing of traffic data to permit ready 

identification of spatiotemporal regions within which one of these traffic states 

dominates.  The objective of this thesis is to apply methods from the field of pattern 

recognition to facilitate the identification, from visual representations of the data, of 

spatiotemporal regions within which one of these four states of traffic flow prevails.  I 

introduce a conceptual framework, and a set of tools designed for extracting information 

from microscopic traffic-flow data that have been implemented as MatLab® code.  The 

techniques applied from pattern recognition include: 

• feature extraction and supervised learning, particularly k-means clustering with 

k=4 and intial selection of centroids informally by the preceding “state” 

characteristics, and 

• a decision tree methodology that is used in comparison to the k-means clustering. 

The techniques discussed are specific to microscopic data, by which is intended data 

recording the motion of individual vehicles as a function of time over a designated 

section of roadway.  The expectation is that the insights gathered from this exercise will 

lead to improved methods of analysis for the more widely available but lower-quality 

macroscopic loop-detector data.  It should be noted that this thesis is an expanded work 

to the paper and presentation given at the Transportation Research Board’s Annual 

Meeting in Washington, D.C., during the month of January 2006. 

 Following is an outline of this thesis.  The following Section 1.2 of this 

introductory section is a summary of prior efforts at identifying spatotemporal regions 
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by the class, in some sense, of the traffic flow prevailing therein, principally for the 

purpose of positioning the present effort within the matrix of prior efforts.  In Section 2 I 

describe an abstract view of pattern recognition that is adapted from the literature to 

provide a detailed framework for the application of pattern recognition to the objective 

described above, specifically the assignment of a vehicle at a given time to one of the 

four kinematic-wave classes enumerated in the preceding section.  Section 3 is devoted 

to: 

• presentation of an abstract representation of microscopic traffic-flow data sets that 

fits into the pattern recognition framework of Section 2 (Section 3.1); 

• descriptions of two well-known collections of microscopic traffic-flow data sets, and 

their mapping into the abstract representation of Section 3.1 (Section 3.1.1 and 

3.1.2); 

• discussion of a library of operators, to act upon abstract microscopic traffic-flow 

datasets, that I have designed, and implemented in MatLab®; and 

• visual macroscopic examples of a traffic dataset, including the commonly used 

trajectory plot. 

Section 4 contains a summary of the generalities of k-means clustering, including 

how it is employed in the code, for pattern recognition applied to kinematic-wave 

classification for microscopic traffic-flow data sets.  I will also mention and give an 

example of silhouette plots, which play a part in analyzing results from applying k-

means.  In Section 5, I describe how k-means clustering is used in various examples 

to create centroids for experiments on a target roadway section.  Section 6 presents 
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how the resulting centroids are applied to the dataset, with regard to the specific 

section; furthermore, the resulting graphical and numerical descriptions of the 

resulting classes after parsing are given,  with subsequent attempts to identify 

kinematic-wave spatiotemporal regions from plots of the results from this 

microscopic classification.  Section 7 contains a similar preliminary application of 

decision trees for the pattern recognition, along with a comparative discussion of the 

results to those obtained using the k-means clustering.  My concluding Section 8 

contains a summary of the results, and recommendations for further related work. 

1.2 – Traffic-flow Measurements and Related Spatiotemporal Classification Schema 

 
This is a thesis in applied computer science, with the application domain being vehicular 

traffic flow.  It is directed toward developing tools capable of leading to a higher level of 

understanding of data, especially microscopic data, for vehicular traffic flow, but it also 

is informed by a variety of theories of vehicular traffic flow that have been developed 

over the past 50-75 years.  Most of these theories were developed in an effort to better 

understand the basis for classification schema that were themselves developed in an 

effort to understand a variety of traffic-flow data.  The objective of this section is to 

describe these various classification schema, and the data and data analyses underlying 

them, so as to delineate how the present work fits into the existing body of knowledge, 

within this application domain.  I defer to the references cited for explications of the 

associated mathematical theories.  I also briefly mention some possibilities, not pursued 
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in this thesis, of applying recent and ongoing developments within computer science to 

the application domain of vehicular traffic flow. 

I begin with a brief description of the prevalent types of measurements of 

vehicular traffic flow, which is to say sources of data.  By far the most common of these 

is loop-detector measurements, which are provided by single or closely spaced pairs of 

inductive loops embedded in roadways.  These detect the presence or absence of 

vehicles directly overhead at some relatively high frequency of sampling, typically 60 

cycles per second in North America.  Single-loop detectors can determine the number of 

vehicles passing per unit time (flow) and the percentage of time a vehicle is overhead 

(occupancy), but can provide speeds only if a vehicle length is assumed; paired-loop 

detectors can provide speeds additionally.  Loop detectors typically are spaced from ½ to 

one mile apart, so sample relatively coarsely in space.  They sample rather frequently in 

time, but the data typically are stored only in some time-aggregated form (e.g., average 

occupancy over 20-second intervals, or mean speed over one-minute intervals), so that 

the net result is a rather coarse sampling in both time and space.  However loop-detector 

data are widely available, because they are relatively inexpensive, and have been 

installed on freeways over much of the developed world to provide traffic management 

centers real-time information about the state-of-affairs on roadways. 

By contrast microscopic traffic-flow data typically come from photographs taken 

from aircraft or stationary elevated objects.  These are much higher quality, in the sense 

of providing samples at a much higher frequency in both time (depending on the frame 

rate) and space.  Optical considerations (angle of view) limit photographic data to 
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relatively short sections of roadway.  Further such data are typically much more 

expensive to obtain than loop-detector data, especially in regard to digitization of the 

data.  Although, there are newer forms of data gathering being researched, such as the 

efforts of the National Consortium on Remote Sensing in Transportation [2007]. 

 Transportation science work is often informed by the kinematic-wave model 

(KWM) [Lighthill and Whitham 1955] [Richards 1956].  This was the original 

quantitative model for traffic flow, and it reproduces the four classes of traffic flow 

described in the preceding Objectives section.  Notwithstanding this and the intuitive 

nature of those classes of traffic flow, tools for the automated classification of a given 

traffic flow pattern into one of these classes have not yet been developed.  The proposed 

work is intended as a step in that direction.   

Analyses of data from loop detectors have raised questions as to the validity of 

this KWM classification scheme [Drake et al. 1967] [Koshi et al. 1981], especially in 

their failure to confirm the Greenshields hypothesis [1934], which asserts the existence 

of a bivariate relationship between vehicular flow (vehicles per unit time) and density 

(vehicles per unit length).  As the Greenshields hypothesis is one of the two major 

components of the Lighthill-Whitham [1955]-Richards [1956] model,1 this casts doubt 

on that model, and leaves intuition as the only remaining basis of support for the four-

state classification scheme.  However, more recent reviews [Cassidy 1998] suggest the 

possibility that the classical failures to validate the Greenshields hypothesis could be due 

to flawed techniques for analyzing the data.  Here we interpret those results as 

                                                 
1 The other is conservation of vehicles. 
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motivation to attempt a direct validation of the four-state KWM classification scheme.  

The tools we are led to develop could also be applied toward direct validation of the 

Greenshields hypothesis, although that is outside the scope of the presently proposed 

work.    

Alternatives to the KWM traffic-flow classification scheme exist, some of them 

motivated by the apparent failures of KWM, as described above.  Certainly the most 

familiar of these to practicing transportation engineers is the traditional level of service 

(LOS) classification, according to which: “six LOS are defined for each type of facility 

that has analysis procedures available.  Letters designate each level, from A to F, with 

LOS A representing the best operating conditions and LOS F the worst” [Transportation 

Research Board 2000].      

Yet another classification scheme has been offered by B. S. Kerner and co-

workers; the essence of this classification scheme seems to be well-captured by the 

following quotation:  “There are three traffic phases: (1) free flow, (2) synchronized 

flow, and (3) wide moving jam” [Kerner and Klenov 2002].   Note however that a more 

recent work [Kerner 2004] seems to suggest a substantial variety of subclasses of these 

three apparently basic classes.  Finally, Schönhof and Helbing [2004] have suggested a 

classification of traffic flow on a 30 km stretch of German freeway into five classes 

(pinned localized clusters, homogeneous congested traffic, oscillating congested traffic, 

stop-and-go waves and moving localized clusters), based on application of an adaptive 

smoothing method for multiple dual-loop detector data aggregated over one-minute 

intervals.. 
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Regarding these various proposed classification schemes, note first that the 

validity or invalidity of one such classification scheme is a priori quite independent of 

the validity or invalidity of the other; that is, all may be valid, all may be invalid, or there 

may any combination of these.  However the differing vocabularies, and lack of precise 

definitions of the various classes in terms of some common set of attributes (“features,” 

in the terminology of the following section), makes it difficult to achieve any common 

understanding. 

Second, I observe that the LOS classes seem to be sufficiently well-defined, in 

terms of attributes that can be extracted from measurements for a particular type of 

facility, so that one could, subject to availability of appropriate data, develop a 

corresponding pattern recognition algorithm (particularly a classifier), in the sense of the 

elements of pattern recognition as outlined in Section 2 below.  While we have no doubt 

that the classifications schemes of Kerner and Klenov [2002], Kerner [2004], and of 

Schönhof and Helbing [2005], as cited above, have significant merit, it does not yet 

appear that they are yet sufficiently well-developed so as to permit application of the 

formal methods of pattern recognition.  More specifically, in the terminology of Section 

2 below, it is not clear how one could view the collections of classes suggested by these 

workers as comprising a partition of some feature space having attributes that are 

algorithmically defined in terms of certain measurements. 

 I close by noting that a great deal of work in computer science has been 

motivated by spatiotemporal identification within images (“object recognition”).  

However, very little work in computer science has been directed toward identification of 
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spatiotemporal regions within which the moving vehicles predominantly share some 

characteristic.  The lone exception to this that I find in the literature is the work of 

Shahar and Molina [1998].  That framework is not employed in the present work, nor 

does there seem to have been significant further development in the traffic-flow 

application domain that builds upon it; however it does appear to offer a promising basis 

for such developments.
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2. ELEMENTS OF PATTERN RECOGNITION 

 
 
Pattern recognition is a set of tools, using varied degrees of automation or human 

“supervision,” in applications in research analysis and practice to identify, recognize, 

and verify classes that the information in question can exist in.  It should be noted that 

“class,” as in classification, is synonymous with anything that can be described as a 

pattern, state, phase, or similar concept.  For clarity in this thesis, the word “class” will 

be used; furthermore, the four states of vehicular traffic flow listed in the Objective 

section are the primary instances of classes that are of interest here.  Patterns can be 

parsed into many classes; it is the job of performing pattern recognition to quantify the 

degree to which a classification fits particular patterns.  Pattern recognition is best 

described in the form of stages that perform necessary tasks to form an overall 

algorithm.  Webb [2002] uses a multistage description that can be partially summarized 

as sensor, representation pattern, feature extraction/selector, feature pattern, classifier, 

and decision.  These stages perform the tasks of gathering, examining, and analyzing 

data for purposes of interpretation of results. 

 The first step in application of pattern recognition to classification is designing a 

problem that requires classification.  Some applications of pattern recognition include 

diagnosis of medical conditions or weather patterns [Webb 2002].  Techniques are used 

to create systems, train them using test data, and assess the usefulness of the creation 

versus the proposed goal of the system.  For the weather system, using past data and 
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known outcomes from weather patterns, the developers can determine if the machine 

learning system is predicting correctly or if modification and retraining is necessary. 

 

Diagram 1 

  

Diagram 1 gives an example view of how the pattern recognition process is 

applied in this work.  The five stages, listed in order of operation, are elaborated on and 

explained in the following paragraphs. 

The process begins with data collection in order to create a measurement space 

for examination.  The examination is performed to construct initial ideas for the 

measurement space as well as identify the need for potential data cleaning.  Features 

within the measurement space are identified, pulled out, and separated for closer 

evaluation. The evaluation will determine the usefulness of the feature space, the 

Feature 
selection/ 
extraction 

Classification 
algorithm 

Measurement  
(pattern) 
space 

     Feature  
      space 

Classes  
(of patterns) 
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robustness of the method used, or if steps in the process need to be performed once 

again. 

Selecting and retrieving relevant data from measurements are tied to feature 

selection and extraction, respectively.  It is important to develop a robust feature space, 

as Fu et al. [1970] explain in their paper.  “One important problem in pattern recognition 

is the selection of effective features from a given set of feature measurements.  It is 

known that the performance of a pattern recognition system is closely related to the 

feature measurements taken by the classifier.” 

Young and Calvert [1974] provide an initial framework for feature space 

development.  Features are an M-Dimensional set of data, Ωy, that is taken from an N-

Dimentional pattern space, Ωx.  In their book, they take special care to emphasize that 

features and measurements are not one in the same.  “The selection of measurements is 

based on our prior knowledge or experience on the particular pattern recognition 

problem . . .  Feature extraction or selection is, on the other hand, essentially a scheme 

that reduces the dimensionality from N to M” [Young and Calvert 1974].  They also note 

that the reduction in dimensionality leads to an obvious loss of certain information from 

the pattern space.  Two justifications for feature extraction given by the authors are 

relevant to the proposed work; specifically, that the feature space is more meaningful 

than the measurement space and that prior knowledge of the redundancy and correlation 

of measurements allow us to reduce the dimensionality of the measurement space 

without losing much information. 
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The first point is especially relevant since traffic measurements often include 

numerous fields of data that would be useful only for certain analyses.  While having 

this unfiltered traffic data directly in the dataset is nice, a system that can compute new 

desirable features from data stored in memory is quicker and more efficient for all uses.  

In this case, the selected information comprises the feature space pulled out of the 

overall measurement space.  This data is targeted due to its usefulness in building other 

data from it, such as being able to calculate acceleration at a specific instance in time for 

some vehicle. 

Some general methods for feature extraction have been suggested, such as the 

“Relief” method discussed by Huang et al. [2004] and Liu et al. [2004].  However those 

shall not be pursued here, as they are not relevant in light of our intent, based on 

application domain considerations to use speed and acceleration as features. 

Feature selection and extraction methods are often seen in applications with large 

data repositories.  Liu et al. [2004] give examples in relation to genome projects, mining, 

and market based analysis.  These projects use machine learning, or unsupervised 

learning, algorithms.  Once a machine has been trained, it can be fed data to process and 

dispense results.  In this sense, development of a feature space is often performed by 

unsupervised methods since a trained machine is doing the work. 

The resulting set of data is the feature space.  Stored in a format conducive to the 

next step of classification, the data contains the interesting and relevant details needed 

for the attributes used later.  In the case this work, the sought out attributes are velocity 
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and acceleration; thus the feature space contains information needed for those attributes, 

such as time frame and location for a vehicle at a given time. 

Another detail of the feature space is that the information itself can be used for 

other similar purposes to the work.  In this work, for example, the information (as stored 

from selection and extraction) are also used in creating certain visual representations of 

vehicles on the roadway. 

Classification algorithms take the values from the feature space and parse them, 

using the classifier, into the classes defined for that feature space.  The resulting sets of 

data should represent all the information originally from the feature space. 

The classifier used in this case is k-means clustering.  The k value is often 

determined by unsupervised learning; alternatively, a specific k is defined in this work 

for use in a supervised approach for clustering the feature space into four descriptive 

groups corresponding to velocity and acceleration of randomly selected vehicles within 

the dataset.  I consider this a supervised approach due to the a priori determination of the 

number of cluster groups. 

Finally the classes of patterns have been formed.  In the case of this thesis, the 

classes have been predefined for the four traffic types.  In other cases, such as 

unsupervised learning, it will be up to the classification algorithm to group up the data 

by some similarity.  The overall possibilities for classes are numerous for a dataset; in 

this work, though, it is more useful to focus on four classes that are based on the two key 

features.
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3. MICROSCOPIC TRAFFIC FLOW DATA AND A LIBRARY OF  

OPERATORS 

 
 
Section 3.1 is devoted to a description of a general abstract framework for microscopic 

traffic flow datasets, along with specifications of two publicly available concrete 

instances of such datasets.  Section 3.2 is concerned with a library of operators that I 

have designed, and implemented in MatLab®, that are intended to facilitate extraction of 

features from microscopic traffic flow datasets that are organized according to the 

framework of the preceding section. 

3.1 – A General Framework for Microscopic Traffic Flow Datasets 

 
The application creates a feature space from measurements for the purpose of 

performing cluster formation and analysis.  This measurement space exists in the form of 

traffic datasets.  Although the luxury of selecting specific measurements is beyond the 

grasp of this proposed work, I do have access to datasets that provide a large 

measurement space to work with.  One such dataset, collected by JHK and Associates2 

for U.S. DOT [1985] and reported by Smith [1985], provides an hour of observations, 

separated by one second, over roughly one-quarter mile long sections of roadway.  The 

data files include time of measurement, vehicle identification, values to represent vehicle 

type and size (respectively), speed, distance into the measured section of roadway, 

distance from the right edge of the roadway (when looking down upon the section), a 

                                                 
2 JHK and Associates is a civil engineering research firm, with multiple offices in the USA, that performs 
traffic and traffic-related studies and data collection. 
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value to represent vehicle color, and a lane number.  Some of these fields are 

unnecessary for present purpose, (eg. vehicle type, color, distance from right edge of the 

roadway, and vehicle size).  This observation is an example of feature selection at work. 

We conceive a microscopic traffic-flow dataset as organized as follows: 

 

Metadata = <number_of_patterns, time_between_frames, units_for_time,

number_of_frames, length_of_section, units_for_lengths, number_of_lanes,

graphical_description_of_measured_section, textual_description_of_measured_section,

textual_description_of_external_circumstances_during_measurements>,

 

where a “pattern” refers to a unique <time, vehicle> pair, and 

 Data= (5,1: number_of_patterns).A  

Here the columns of the data matrix A contain measurements, as follows: 

(1, ) frame_index _for_ th _pattern <1: number_of_frames>,

(2, )= vehicle_id_for_ th_pattern <as_assigned_in_source_dataset>,

 (3, )= length_of_vehicle_for_ th_pattern <continuous >,

(4, )= longitudi

A i i

A i i

A i i

A i

=

≥ 0

nal_location_of_vehicle_for_ th_pattern <continuous length_of_section>,

(5, )= lane_location_for_ th_pattern <1:number_of_lanes>.

i

A i i

≥ 0, ≤

  

For example, values of the metadata parameters for the measurements (dataset), from the 

Mulholland roadway, used in later sections for experiments are as follows: 
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number_of_patterns=181142,

time_between_frames=1,

units_for_time='seconds',

number_of_frames=3600,

length_of_section=1341 feet (408.5 m),

units_for_lengths='feet',

number_of_lanes=5,

graphical_description_of_measured_section=as in Fig. 29 of Ref. (10),

textual_description_of_measured_section=

             as in first paragraph of quotation in Section II,

textual_description_of_external_circumstances_during_measurements=

            as in second paragraph of quotation in Section II.

 

We term the column index of A corresponding to a particular pattern as the 

pattern_index of that pattern.  A principal use we make of the matrix data structure is the 

ability it provides to refer to a particular pattern by its pattern_index.  For purposes of 

implementing the feature-extraction operators described below and carrying out the 

experiments described in the following sections we reorganized the dataset described 

above as a MatLab® matrix.  This permits more efficient access to individual patterns 

(e.g., those previously selected as members of a random sample) than the alternative of 

sequentially searching through the original ASCII file for those patterns corresponding 

to unique <vehicle_id, frame_index> pairs.  Of course this reorganization itself is not 

without computational cost, and this factor played a role in our choice of one of the JHK 

datasets, as opposed to other alternatives (see Section 3.1.2). 

Further efficiencies, especially in implementation of the feature-extraction 

operators, can be achieved by appropriate detailed organization of the data matrix (A).  

We begin this discussion by noting that among the numerical data parameters that 

somehow reflect the size of the data, the meta-attribute number_of_patterns clearly will 
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have the largest value.  Thus one clearly wants to minimize the number of searches over 

all patterns.  The parameter number_of_patterns can be expressed in either of the ways 

 
frame_indices

vehicle_indices

number_of_patterns=

           no. of vehicles in frame = number_of_frames*vehicles per frame

           no. of frames vehicle in section = 

           (number of vehicles)

=∑

∑

*frames per vehicle,

 (1) 

where the overbars indicate mean values.  For a quarter-mile (.40 km) four-lane section 

and data acquisition over one hour at a rate of one frame per second, typical values of 

the four parameters on the right-hand sides of Eq. (1) are 

number_of_frames=3600,

vehicles per frame 40,

number of vehicles=4000,

frames per vehicle 20.

=

=

 

These suggest the advisability of organizing the data so as to minimize the necessity of 

searches over all frames, or over all vehicles, that might be required.  Although the 

present work employs only velocity and acceleration as features, and their extraction 

involves only searches for the same vehicle_id locally in time (i.e., at adjacent values of 

the frame_index), other feature-extraction operations (e.g., spacing between a vehicle 

and its leader) would involve a search for other vehicle_indices, but still would be local 

in time.  For this reason we recommend, at least for purposes of optimizing extraction of 

microscopic analogs of macroscopic attributes, organizing the data matrix (A) so that 

data for patterns contiguous in frame_index are contiguous in storage (pattern_index).  

Note that NGSIM [2007] currently employs the alternate strategy of organizing the data 

so that patterns corresponding to the same vehicle are contiguous in storage.  Some of 
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the functionality of our operator approach is provided by fields for preceding and 

following vehicles at each frame; however, we believe the operator approach adopted 

here is more flexible, in light of the large number of possible attributes. 

3.1.1 – The JHK Dataset 

 
The set used within this work was collected in the early 1980s in California and Virginia 

(specifically the District of Columbia area).  Information on certain roadway sections 

was captured via photograph; the information was then manually entered by looking at 

the photographs and identifying the vehicles in the section. 

The datasets, each for a specific roadway, are made up of a certain section length 

and an hour’s worth of time points.  Information is stored on a row-by-row basis, 

meaning everything important is stored in an individual line.  Each line specifies a 

vehicle (known by the vehicle’s ID) and is ordered overall by its timestamp and its 

distance into the section.  Vehicles further into the section are listed first. 

 An example of a section of the dataset is as follows: 

9   72 6 30  0   84 14 6  2 

9   71 1 17  0   73 34 9  3 

9   73 1 19  0   66  1 9  1 

9   74 1 16  0   25 48 4  5 

10    9 1 19 44 1327 31 4  3 

10   12 1 16 52 1305 47 8  5 

10   11 1 17 40 1277 17 4  2 

10   10 1 18 29 1262  9 9  1 

Each line of data contains nine different values, which are listed as follows: frame 

number, vehicle ID, vehicle type code, vehicle length (feet), speed (mph), distance from 

beginning of section to front of vehicle, distance from right edgeline to middle front of 
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vehicle, vehicle color code, and lane number (right lane = lane 1) [Smith 1985].  Some 

of this information exists within the dataset because it was part of the process of entering 

the information and keeping references to the visual images for each time period and 

section. 

 Vehicles are given an ID as they enter the section (with the next ID going to the 

newest vehicle that is furthest into the section).  The reader should take note of the 

zeroes in the speed column listed above.  Since the section of roadway was 

photographed, researchers did not have any information with which to recreate the initial 

velocity of a vehicle that first entered the section.  Because of this, the velocity was set 

to zero for the first appearance of a vehicle in the section.  While it would be possible to 

come up with some methods to create a hypothetical velocity as a placeholder, I decided 

to retain the zero value due to the fact that it does not cause any detrimental effect to 

plots or functions in the code.  

3.1.2 – The NGSIM Project 

 
NGSIM, or Next Generation Simulation, is a community effort in association with the 

Federal Highway Administration (FHWA) to improve simulation in regards to traffic 

research [NGSIM 2007].  Their work aims to improve simulation tools and research 

results; thus part of the effort involves the data that is needed for such work. 

 Data formats for traffic research are, up to the point of NGSIM’s forming, 

variable depending on who is forming the data sets and what applications are using 

them.  Such inconsistency not only makes it hard to apply datasets across applications 
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but also makes it difficult for verification of the data and the experiments using the data 

without exclusive use of the tools used in the first place.  It is then favorable to find 

common elements of all datasets and combine them into a user-friendly data format that 

aims to be cross platform and portable. 

 NGSIM’s goal is to meet the demand for such a dataset.  As described on their 

website, their goals for datasets come from the following statements: 

Feedback from NGSIM stakeholders indicated a strong need for robust datasets for 
validating and enhancing their models. In particular, stakeholders expressed a need 
for two types of data including:  

• Vehicle trajectory data: These are detailed, sub-second vehicle position data 
which are typically used in simulation models development, estimation and 
validation. These data are needed to improve simulation modeling efforts. 

• Aggregate data: These are aggregate traffic data, at the same locations as the 
vehicle trajectory data if possible, over a larger area. These data can be used for 
simulation model validation and development purposes.[NGSIM 2007] 

The datasets follow a similar format to the JHK.  The overall sorting is done by time, 

with a vehicle being tagged with an ID upon entering the section.  The ID is part of the 

sorting as well, since vehicles can overtake one another before exiting the section. 

 This common formatting for datasets is likely the future of formatting of traffic 

data.  With that in mind, it was looked at as a choice for use in these experiments.  

Despite the potential for future work complying with this format type, it was rejected 

from this work for the time being due to its size.  Many of these datasets have multiple 

data points per second, which is beyond the level of complexity desired for this work.  

The work itself does not prohibit future use of NGSIM datasets, though.  The function 

used to read the JHK files and create the matrix of values could be potentially modified 
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to access NGSIM datasets and, if necessary, be selective in how many lines of data are 

collected per experimental run. 

3.2 – A Library of Feature Extraction Operators  

The information specified for extraction from the dataset, into the data matrix, serves 

two purposes.  Firstly, the vehicle ID provides a unique piece of data to distinguish one 

vehicle from another within the dataset.  Secondly, the accompanying values are used in 

quick computations for creating velocity and acceleration of specified vehicles at 

specific times.  Data fields required for the extraction of these features are: 

Frame number:  This corresponds directly to a certain period of time, set at one 

second differentials in this dataset, in which some vehicle appears.  This, along 

with the vehicle’s identification number for clarification, is needed in several 

computations. 

Vehicle ID:  Each vehicle in the dataset was giving a unique identification 

number for tracking over multiple frames.  This guarantees separation of values. 

Longitudinal location:  The vehicle’s distance into the measured section.  The 

actual distance is measured in feet for this dataset.  This is a crucial value in 

calculations. 

Lane number:  This is included in the matrix to allow experiments in which 

patterns are distinguished by lane location. 

The initial steps of the extraction function gather these values from the dataset line-by-

line and create a matrix array for storage. 
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The operators are constructed with the intention of nesting and reuse.  A notion 

of levels is used to distinguish them.  NEXT and PREVIOUS are designated Level 1 to 

emphasize their use by all Level 2 operators in computation.  Table 1 describes the 

expected operators by name, execution, and purpose: 

Table 1 - Description of operators, with name, execution, and purpose. 

Operator Name Execution Purpose 

 Level 1 Operators  
NEXT Returns the position in the matrix of 

the next (future) instance in which 
vehicle j shows up. 

NEXT searches forward 
through the matrix to 
find the next data point 
of a specified vehicle in 
the data set. 

PREVIOUS Returns the position in the matrix of 
the previous (past) instance in which 
vehicle j shows up. 

PREVIOUS searches 
backwards through the 
matrix to find the 
previous data point of a 
specified vehicle in the 
data set. 

LEADER Returns the position in the matrix of 
the vehicle that is leading vehicle j in 
the same lane during a specific 
instance of time.  Operator 
PREVIOUS is used. 

LEADER traverses the 
matrix backwards to find 
the vehicle traveling 
downstream in the same 
lane. 

FOLLOWER Returns the position in the matrix of 
the vehicle that is following vehicle j 
in the same lane during a specific 
instance of time.  Operator NEXT is 
used. 

FOLLOWER traverses 
the matrix forwards to 
find the vehicle traveling 
upstream in the same 
lane. 
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Table 1 Continued 

Operator Name Execution Purpose 

 Level 2 Operators  
ACCELERATION Returns the calculated 

acceleration for a vehicle 
using its previous, current, 
and next longitudinal 
positions.  Operators NEXT 
and PREVIOUS are used to 
find the proper locations. 

ACCELERATION uses 
three locations associated 
with the specified time 
frames to calculate the 
vehicle’s acceleration for 
time t_i. 

VELOCITY Returns the calculated 
velocity for a vehicle using 
its previous and next 
longitudinal positions to 
determine current velocity.  
Operators NEXT and 
PREVIOUS are used to 
find proper locations. 
 

VELOCITY uses the 
former and future locations 
surrounding the current 
time frame’s location to 
compute a velocity for time 
t_i. 

 
 
 

In order to better understand the organization, I include this description of the 

VELOCITY operator.  The module receives as input a reference to a pattern value in the 

dataset.  In order to calculate the velocity for the vehicle at that particular frame of 

reference, the PREVIOUS and NEXT operators are used to determine the location of the 

vehicle on the roadway at the preceding and succeeding interval of time (one second 

before and one second later).  With this method, the needed code to search backwards 

and forwards in the code for the appropriate instances of that vehicle is separated into a 

reusable, easily called function that can also be used by other operators; thus these basic 

pieces of code are separated and called as necessary as opposed to being repeated in 

code sections as used. 
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3.3 – Macroscopic Graphic View of the Data 

 
Given a set of traffic data, the application can construct visual images that assist in 

giving a more understandable view of the progression of traffic through the section of 

roadway.  In this case, there is actually a method already used in the traffic community: 

trajectory plots.  While it is possible to pull information out of these graphs by looking at 

them, they are truly more interesting to those who are well practiced at it.  To those who 

are not, it is a longer, more arduous task.  That is where the three dimensional, top-down 

space-time-speed plots come in.  By using color as the third property, the speed of the 

vehicles in the section is now much more identifiable at first glance. 

3.3.1 – Trajectory plotting 

 
Trajectory plots describe a vehicles’ speed by a line traveling from west to east (along 

the time axis) and from south to north (along the distance axis).  While trying to interpret 

the speed of the vehicles is difficult without a good mathematical background in 

trajectory plots, several details are noticeable.  Take a look at Figure 1 for example. 

The first details I note when looking at the plot is that, during free flow, traffic is nicely 

spaced and speeds seem to be even.  When the traffic reaches the congested region, 

though, we see curves (implying deceleration) as well as vehicles becoming more 

clumped up.  Also notable is the breaking up of some lines, implying that lane changing 

is occurring as traffic tries to react to the slowdown. 
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Figure 1 - Example of a trajectory plot. 
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While this information is enlightening, it falls short.  Speeds of vehicles in the section 

are not readily obvious without relying on pen and paper to calculate it out for individual 

trajectories.  Furthermore, it is difficult to get a sense of how quickly the shock wave 

propagates upstream.  While we are able to see vehicles traveling the beginning of the 

section at a slower speed than those before the congestion (as well as accelerating at the 

end of the section in contrast to those early on in the congested region), it does not stand 

out extremely well without really digging into the numbers. 

3.3.2 – Space-time-speed plotting 

 
With such issues in mind, I formed a method for plotting the vehicles’ speed on a three-

dimensional graph to accentuate the speeds with color.  Using a defined colorbar (for 

values from 0 to 90 feet per second), speeds are more obvious to the viewer just by 

examining the plot.  Looking at Figure 2, we can visibly see free flow speeds in the 

section by the clear green sections of traffic (we even see some people reaching faster 

speeds due to the small amounts of blue).  At the congested region, though, we notice 

bands of yellow and red as traffic rapidly decelerates and begins traveling at slower 

speeds due to the shock wave. 
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Figure 2 - Space-time-speed plot of time section 1260-1860. 

 

 

This kind of plot brings the speed of the vehicles clearly to the forefront of the viewers’ 

attention.  Rather than having to sit down and individually determine the velocity of 

vehicles in the section, one can now pull out said information quickly and start trying to 

read the patterns of the shock waves, acceleration waves, and congested flow.
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4. GENERALITIES OF K-MEANS CLUSTERING 

 

The following sections elaborate on the k-means algorithm (4.1), how and why it was 

developed (4.2), why convergence is ensured (4.3), its application to this work (4.4), and 

finally presentation of the visualization plots, silhouettes, which help identify the quality 

of cluster groups created by k-means (4.5). 

4.1 – k-means Clustering: The Algorithm 

 
The k-means clustering technique is used to classify data into classes, which in this 

context are often termed as “clusters”.  The goal is to divide the patterns (data) into 

clusters (classes) that provide the best possible fit, in the sense of minimizing the sum of 

the distance from the individual patterns to the centroids of their assigned clusters.  Here 

“distance” can be defined in the sense of any acceptable measure, but for the present 

work we consider exclusively weighted Euclidean distances in feature (velocity-

acceleration) space. 

With the given data, the k-means clustering algorithm takes rudimentary centroid 

values to start the process and then does a recursive two step process to refine those 

centroid values as well as redistribute any data into other clusters that may be a better fit.  

A more elaborate description of k-means is as follows, with a pseudocode description by 

Pena et al. [1999] as well as elaboration afterword: 
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1. Assign data points into k clusters (k being defined by the user in the present 

supervised case), where they resemble a cluster mean, in order to be used in 

forming initial centroid values for each cluster group. 

2. At this point, the centroids are calculated and assigned to each cluster group. 

3. (Re)evaluate the clusters as follows: 

a. Reallocate data points to their nearest centroid, moving them to the 

appropriate cluster if it is not their current cluster’s centroid. 

b. Recalculate the centroids and the square-error [Pena et al. 1999] of 

the affected clusters in order to reflect the new cluster mean due to the 

data point removal/addition. 

4. Check if clusters have converged (the square-error of the clusters cannot be 

further reduced [Pena et al. 1999]), terminating if so.  If not, resume at step 3 

to move data points until the clusters do converge. 

Starting from the first step, the algorithm evaluates the given data and forms k 

initial groups (using a defined k value in this work) in order to use in forming the initial 

centroids in the next step.  Once they are determined, the centroids are assigned to the 

appropriate cluster group and the sum-of-distances for each data point can determined 

for the next steps.  

In step 3, the evaluation (and reevaluation on recursive steps) portion is 

performed to check if the sum-of-distances for any cluster group is reduced by moving a 

data point to a different cluster.  If a negative result is returned (the sum-of-distances is 
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reduced) by the move, then data point is moved and the re-computation of centroid and 

square-error [Pena et al. 1999] on the affected clusters occurs. 

Finally, a check is performed to determine if the clusters have converged and can 

no longer reduce their sum-of-distances.  If the values have stabilized and benefit no 

further from moving data points between clusters, the algorithm terminates with the 

resulting clusters and centroids set. 

4.2 – k-means Clustering: Historical Development 

 
The algorithm itself was first introduced by MacQueen as “a process for partitioning an 

N-dimensional population into k sets on the basis of a sample” [MacQueen 1967].  

MacQueen was working on optimal classification problems; one of the problems boiled 

down to reduction to a minimized partition structure.  A method, k-means, was designed 

to specifically deal with the computation to find the partition that would form the 

optimal results from the minimized partitions [MacQueen 1967].  MacQueen is quick to 

mention that it does not find the optimal answer most of the time; in fact, he only 

presents two examples where it does.  Thus the solution he presents does not provide 

optimality, yet it does “give partitions which are reasonably efficient in the sense of 

within-class variance” [MacQueen 1967]. 

 One of the details about k-means that MacQueen emphasizes is that the 

procedure is “easily programmed and computationally economical” [MacQueen 1967], 

making it favorable for use on computers (a fact more considerable then than now, 

although just as useful in the present) which furthermore makes it favorable for use on 
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large sample sets [MacQueen 1967].  As he states later on in Section 3 of his paper, 

“Perhaps the most obvious application of the k-means process is to the problem of 

‘similarity grouping’ or ‘clustering’” [MacQueen 1967].  The algorithm is an assistant to 

the user due to its method of grouping information by similarities so that pertinent 

information is clearer.  With that in mind, MacQueen emphasizes using the method 

along with “theory and intuition” [MacQueen 1967]. 

The k-means algorithm needs the user define a value for k before running in 

order to ensure that mean values will be formed for each cluster.  As just mentioned, it is 

appropriate for the user of k-means to be familiar with the data being experimented on, 

but in some situations this may be considered a disadvantage.  Intimate knowledge of the 

data is not always a given; thus if one is looking to experiment to determine a more 

appropriate number of clusters, there may be limited flexibility in using k-means.  

Furthermore, it is said that k-means can suffer due to outlying data points [Fu et al. 

1970]. 

 In the case of this work, the number of desired clusters is already known.  They 

were determined based on the traffic conditions I am looking to monitor; as for outlying 

data points, the hope is that the sheer volume of data points per cluster will prevent any 

strange values from harming the overall cluster results.  There is no guarantee of this in 

that outliers may end up being a noticeable problem in attempting to get good cluster 

separation.  However, the silhouette index and associated plot introduced in Section 4.5 

below provides a means of determining if this problem exists in any given instance. 



 

 

33 

4.3 – k-means Clustering: Convergence 

 
As described earlier, the k-means process involves computing the sum-of-distances from 

the current centroids for each cluster.  This computation, combined with reassignment of 

data points to closer centroids and re-computation, is done iteratively until a minimum 

sum-of-distances is reached for all clusters.  This does not imply that every execution of 

a k-means will result in the same clusters with the same minimized sum-of-distances 

each time, but rather that on any given run the expectation is to get the local best fit 

clusters (and judging them best fit based on that sum-of-distances value).  Thus the 

optimal partitioning into clusters is not always guaranteed, but the resulting clusters 

should resemble a reasonable assignment to classes. 

The discussion of convergence in relation to k-means is immediately associated 

with the idea of having a finite number of iterations.  The execution of k-means is 

useless without reaching an end point (and thus clearly defined clusters) but can we 

ensure that it will end?  As discussed in [Selim and Ismail 1984], convergence to a 

partial local minimum will occur within a finite number of iterations.  As the authors 

emphasize, this is not guaranteed to be the global minimum for the clusters, but it does 

guarantee an eventual result to an execution of k-means on a set of data. 

4.4 – Use of k-means Clustering in This Application 

A sample of 1000 patterns was used to create a “training set” for 4-means clustering to 

implement in the experiments described in Section 5.  A seed, set specifically rather than 

using the system clock, was fed into a random number generator; the resulting set of 
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numbers was then used to select 1000 random patterns (lines of the data matrix).  The 

reason for setting the seed manually is to allow for trying multiple seeds in the process 

(as will be seen in the experiment setup and results in Section 5).  The goal was to get an 

initial set of centroids to use with the rest of the experimentation as a base case (except 

when modified for purposes of specific experiments). 

From the 1000 selected patterns in the matrix, the velocity and acceleration is 

computed for each data point.  Figure 2 in Section 3.1.2 is actually the space-time-speed 

plot from this run.  Using the operators discussed in Section 3, the preceding and 

succeeding data in the matrix for that selected pattern are used in these computations.  

The velocity and acceleration values used in the process of determining the clusters were 

normalized during computation, using the variables vnorm and anorm, respectively. 

The velocity values, in all cases, were divided by 90, to produce normalized 

values having a maximum on the order of one.  With vnorm so set, experiments were run 

to focus in on a good anorm value.  Experiments were run around anorm = vnorm/2, 

with lower values (10, 15, and 25 feet per second per second), mid-ranged values around 

the halved vnorm (45, 50, 60), and even with higher values (100, 1000). to see where 

acceleration was given enough weight.  In the end, a value slightly above half of vnorm 

was selected, specifically assigning anorm to be 50.  Thus all acceleration values were 

divided by 50.  The goal was to minimize variation in acceleration changes that may 

exist from bad, outlying data. 

With the values now normalized, the resulting information from the patterns is 

fed into Matlab®’s k-means function.  The ‘Distance’ parameter is set to ‘sqEuclidean’ 
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and ‘display’ is set to ‘iter’.  A value of 4 is also fed into the function to specify four 

clusters to be created from the input.  Finally, a set of initial centroids is given to k-

means as a start setting.  Initializations for clusters 1-4 are as follows, respectively:  

[0/vnorm, 0/anorm; 50/vnorm, -10/anorm; 50/vnorm, 5/anorm; 100/vnorm, 0/anorm].  

The k-means function gives a set of resulting centroids as well as output that can be used 

in a silhouette plot, including the cluster to which each pattern is assigned. 

Table 2 lists the centroid values created from this training case.  Notice that the 

shock and acceleration waves show a more pronounced deceleration and acceleration 

than congested and free flow; this is to be expected since we should see more stable 

speeds for the vehicles in the latter two clusters. 

 

Table 2 - Values of centroids for the four clusters from 1000 point random sample. 

Cluster number (and name) X-axis value 
(Speed, feet per second) 

Y-axis value 
(Acceleration, feet per 

second per second) 
Cluster 1 (Congested flow) 6.7841 -0.6742 

Cluster 2 (Shock wave) 55.4545 -4.0553 

Cluster 3 (Acceleration wave) 42.1271 3.3952 

Cluster 4 (Free flow) 76.6460 1.3292 

 

The silhouette plot (Figure 3) created from this training set has a mean silhouette 

value of 0.5694, as compared to an ideal of 1 and a worse case of -1.  The function “silh” 

within Matlab® is used to produce the plot as well as return the mean distance.  The 

explanation of this “mean distance” and our interest in silhouette plots for k-means 
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clustering is in Section 4.5.  Without better knowledge on understanding silhouettes in 

this matter, though, one can view the plot initially and possibly gather the concept that 

the closer to 1 the values for a cluster get, the better the fit.  

 

 

Figure 3 - Silhouette plot of clusters from centroid creation using 1000 random samples. 

 

 

4.5 – Silhouette Plots 

 
As previously discussed, k-means does not always give an optimal solution; in fact, it 

does only in specific cases.  Thus a measure of the quality of fit of clusters is 
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appropriate.  One such method is silhouette plotting, as discussed in [Rousseeuw 1987]; 

here we have a visual tool for examining fit. 

 Given a pattern and a clustering (set of clusters), the mean distance from that 

pattern to all of the patterns in a particular cluster will be termed as the distance between 

that pattern and the specific cluster.  The unnormalized silhouette value of that pattern, 

relative to that clustering, is the distance from that pattern to the closest cluster (one at 

the smallest distance) except for its own cluster minus its distance from its own cluster.  

As described on the Matlab support website,  

The silhouette value for each point is a measure of how similar that point is to 
points in its own cluster compared to points in other clusters, and ranges from -1 
to +1. It is defined as 

S(i) = (min(b(i,:),2) - a(i)) ./ max(a(i),min(b(i,:),2)) 

where a(i) is the average distance from the ith point to the other points in its 
cluster, and b(i,k) is the average distance from the ith point to points in another 
cluster k. [The MathWorks, Inc. 2007] 
 

Ideally a clustering would assign each pattern to a cluster at a much smaller 

distance than any other cluster.  In such a case the corresponding silhouette value would 

be near one.  At the other extreme a pattern conceivably could be assigned to a cluster at 

a much larger distance than that of the cluster nearest it.  In such a case (of gross 

misassignment) the corresponding silhouette value would be near -1.  Between these two 

extremes a value near zero indicates a pattern that is difficult to assign to a cluster, and a 

value greater than 0.5 suggests a point that is likely assigned to the “right” cluster. 

 The best single figure of merit for a particular clustering is probably its 

“silhouette index,” which is defined simply as the mean silhouette value, over all 

patterns.  The larger this value, the more sharply the clustering segments of particular 
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patterns.  A more detailed graphical display of the quality of a particular clustering is 

provided by its silhouette plot.  In a silhouette plot, a segment of the vertical axis is 

assigned to each cluster, the patterns within each cluster are ordered from largest (top) to 

smallest (bottom) silhouette value, and a horizontal bar, of length proportional to the 

corresponding silhouette index, is drawn for each pattern. 

 To further analyze the quality of said resulting centroids, the silhouette index of 

the resulting silhouette is recorded.  This value, as calculated from all patterns, gives an 

idea of fit since it gives an overall perspective of how well partitioned the clusters are in 

a single, average value over all four clusters.  A higher mean implies a better overall fit 

for the four clusters.
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5. APPLICATION TO MICROSCOPIC TRAFFIC DATA 

 
 
This Section describes the four different cases that will be run, with discussion on 

specific interesting variables per case.  Each of these cases, other than the reference case, 

exist for one of two reasons: 1) They apply the training set centroids to a different time 

section of interest to make sure details are visible, or 2) they either create a specific set 

of new centroids to apply to the 1280-1860 time section from the Mulholland dataset. 

The reference case, using the 1000 sample training set centroids from the Section 

4.4, is 5.1.  This same centroid set is being used on a later section of roadway in Section 

5.2.  An experiment increasing the training set to 2000 patterns is the focus of 5.3.  

Finally, the random seeds used in the random selection of the training set are modified 

for the case in 5.4. 

 For each subsection, an elaboration on choices is made; furthermore, cluster 

values and silhouette plot are given for each modified training set execution.  The results 

for each case’s application to the selected time-slice are shown in their respective place 

within Section 6, unless otherwise noted. 

5.1 – Reference Case 

As mentioned, the centroids created from the 1000 sample training set in Section 4.4 are 

applied for this case.  Within the Mulholland dataset, there are two incidents found in the 

data that show an adverse effect on the flow of traffic.  The first incident is found in the 

section 1260-1860.  A visual representation of the incident time slice, created to identify 
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the expected KWM flow of traffic in response to the incident, is given in Figure 4.  The 

expectation in the following plots is to see a representation of the shock wave, a region 

of congested flow, an acceleration wave that propagates upstream faster than the shock 

wave, and the resulting forward shock after the acceleration wave catches up to the 

shock wave. 

 

Figure 4 - A representation of the incident time as expected from KWM. 

 

 

The focus of the reference case is this time section; the intention is to see how 

well the centroids work when data is divided into four clusters based on the centroids 

created in Section 4.4.  The space-time-cluster plot (which shows data as partitioned into 

the four classes) as well as the silhouette plot to determine fit are shown in 6.1.  The 
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following three subsections will follow the same format in terms of displaying their 

respective plots. 

 The second listed incident in the Mulholland dataset is found in the time section 

2060-2460, and is used in the experiments recorded in Section 6.4.  Once again, the 

centroids from the reference case will be applied to see if results and plots are consistent 

in revealing details about the flow of traffic.  It should be noted that this is the only case 

that uses this time section.  The other three cases all apply their centroids to the 1260-

1860 time section.  

5.2 – Increased Random Sample Size 

With two experiments done with the 1000 sample size, the next step is to see if doubling 

the sample size to 2000 random patterns creates an improved set of centroids.  The 

centroids for this run are given in Table 3 below. 

 

Table 3 - Values of centroids for the four clusters from 2000 random pattern sample. 

 

Cluster number (and name) X-axis value 
(Speed, feet per second) 

Y-axis value 
(Acceleration, feet per 

second per second) 
Cluster 1 (Congested flow) 4.5883 -0.1090 

Cluster 2 (Shock wave) 57.6441 -3.1111 

Cluster 3 (Acceleration wave) 40.8177 2.1204 

Cluster 4 (Free flow) 76.9050 1.6185 
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These new values do not show much separation from the previous centroids 

values in the 1000 sample.  The most noticeable difference is in cluster 1, where the 

speed value is reduced by roughly 2 feet per second and the acceleration value is reduced 

by .5 feet per second per second.  In both cluster 2 and 3, the speed and acceleration both 

see slight reductions.  Finally in cluster 4, both the speed and acceleration see slight 

increases. 

A silhouette plot was produced to show the fit for the centroids of the reference 

training set case of Section 4.4 (Figure 3).  Likewise, Figure 5 is the plot of the 

silhouette created from the 2000 pattern experiment, with a mean silhouette value of 

0.5302. 
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Figure 5 - Silhouette plot of clusters from centroid creation using 2000 random samples. 

 

 The plot reflects an increase in the relative number of patterns for cluster 2, 

which picks up the most new patterns from the 1000 additional patterns.  Cluster 3 also 

now reflects some misclassified values that it did not show in Figure 3.  Aside from 

these differences the results are similar to those of the base case of Figure 3. 

5.3 – Variations of Random Seeds 

The final experiment reverts back to the 1000 random sample patterns; the twist in this 

case is that the seeds for the random number generator are changed to see how much of 
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an effect differently selected random patterns have on the centroid creation process.  In 

this case, two new seeds were used. 

 

Table 4 - Values of centroids for the four clusters from 1000 point random sample, first new seed. 

 

 

The changes versus the Table 2 are fairly small, with a noticeable reduction in 

the speed as well as an increased negative acceleration for cluster 2.  Cluster 4’s 

acceleration value is reduced by nearly .5 feet per second per second as well as taking a 

small reduction in speed. 

The centroids created from each new seed are listed in Tables 4 and 5, 

respectively, along with their corresponding silhouette plots, Figures 6 and 7. 

Cluster number (and name) X-axis value 
(Speed,  feet per second) 

Y-axis value 
(Acceleration,  feet per 

second per second) 
Cluster 1 (Congested flow) 5.4874 -0.4202 

Cluster 2 (Shock wave) 52.4864 -5.0090 

Cluster 3 (Acceleration wave) 42.3993 3.2085 

Cluster 4 (Free flow) 74.8630 0.8697 
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Figure 6 - Silhouette plot of clusters from centroid creation using first new seed. 

 

 
 This need seed apparently leads to an inflation of values in cluster 4, as it is 

larger than when we first see it in Figure 3.  The appearance of negative values in all 

four clusters shows some misclassification over all four clusters whereas it was limited 

to clusters 1 and 4 in the initial training set. 
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Table 5 - Values of centroids for the four clusters from 1000 point random sample, second new seed. 

 

 An immediately identifiable change in this centroid set is the positive 

acceleration listed for cluster 1.  This is the first occurrence so far of a non-negative 

value for that case.  Three values take notable losses, specifically the speed values for 

cluster 2 (which drops 5.5 feet per second) and cluster 4, as well as another large drop in 

the acceleration value for cluster 4.  Cluster 3 sees an increase in both speed and 

acceleration, by roughly 4 feet per second and 1.3 feet per second per second 

respectively. 

 The silhouette plot for this new seed once again shows cluster 4 having more 

patterns than the rest.  This time, though, the number of clusters with possible 

misclassified patterns is down to two clusters again (3 and 4). 

Cluster number (and name) X-axis value 
(Speed,  feet per second) 

Y-axis value 
(Acceleration,  feet per 

second per second) 
Cluster 1 (Congested flow) 4.4057 0.0410 

Cluster 2 (Shock wave) 49.9093 -4.1032 

Cluster 3 (Acceleration wave) 46.1487 4.7198 

Cluster 4 (Free flow) 74.7881 0.2465 
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Figure 7 - Silhouette plot of clusters from centroid creation using second new seed. 
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6. RESULTS FOR CLUSTERING USING CENTROIDS 

 
 
Section 6 gives the resulting plots for the cases described in Section 5, maintaining the 

section structure with the reference case as 6.1, the increased random sample size as 6.2, 

the varying random seeds as 6.3, and finally the later time section as 6.4. 

In all of these cases, the procedure is as follows.  For all patterns within the time 

section, loop through and assign each pattern to their nearest centroid.  The process for 

determining the minimal distance is to take the pattern’s velocity and acceleration and 

find its distance to the first cluster’s centroid.  Then, the distance to the centroid of the 

other three clusters is computed in succession.  If the pattern is closer to the centroid of 

another cluster, it is assigned to it and once again the minimal distance measurement is 

iterated to make sure it is in the right cluster with its nearest centroid.  The results are 

then plotted in a space-time-cluster plot as well as an associated silhouette plot. 

The space-time-cluster plot is purposefully colored and presented in a fashion 

similar to the space-time-speed plot shown earlier.  The x-axis represents the time frame 

while the y-axis represents the distance into the section.  The aim in selecting the four 

colors for the cluster is to create a plot that will be visually comparable to the space-

time-speed plot; thus the space-time-cluster plot’s results can be analyzed to see if it 

gives a good representation of the time section. 
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6.1 – Reference Case 

The centroids from the reference case were applied to the 1260-1860 time section of data 

to produce the space-time-cluster plot seen in Figure 8.  This is a visualization of the 

four clusters plotted in a similar format to the space-time-speed; the idea is to see if the 

clusters produce an improved ability, relative to the earlier space-time-speed plot of 

Figure 2, to visualize the occurrence of the different kinematic-wave classes of flow. 

 

Figure 8 - Space-time-cluster plot of time section 1260-1860, the reference case. 

 

 
 The plot itself shows an initial resemblance to the space-time-speed plot for the 

time frame.  Leading up to the initial shock section there is obvious free flow speed, 
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followed by some noticeable decelerating vehicles (who presumably saw the shock wave 

approaching and reacted).  There are seen as a solid yellow band (shock wave) 

propagated upstream (starting around 1320), followed by a wide section of congested 

flow and varying acceleration (blue), deceleration (shock, yellow) waves, and congested 

regions (red).  As was seen in the space-time-speed plot, the traffic improves (returns 

toward free flow) near the end of the time frame; here a block of free flow speed is seen 

entering from downstream while the upstream traffic continues to correct itself to join 

the free flow group. 

 

 

Figure 9 - Silhouette plot of time section 1260-1860, the reference case. 
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Figure 9 is the silhouette plot of this cluster group for 1260-1860 with the given 

initial cluster values.  The mean value over all four clusters is 0.3455.  The total number 

of vehicles for clusters 1 through 4 ended up as 4439, 9082, 19960, and 3428, 

respectively (these values are included for comparison to other cluster plots in later 

sections). 

Both the shock wave and acceleration wave clusters have an abudance of 

misclassified values.  The reasons for these two clusters being so poorly represented are 

not obvious, but a possible answer lies in the method for obtaining the training set.  

Since the random selection is done over the entire data set, there is no attempt to focus 

on certain types of traffic.  Instead, the selection assumes that patterns are equal over the 

course of the entire hour long time slice. 

In the time slice of interest observed in this Section 6, though, we are looking at 

traffic that, at times, is in a very congested state.  Thus there are a large number of 

patterns that reflect a lower velocity than is seen over the course of the hour long section.  

Since the clustering result is being performed on a specific time slice, it is worth 

examining in future work whether or not the training set should take from the entire data 

set or from a sample that more accurately reflects the time slice.  If so, the distance 

function as well as normalization values would need reconsideration as to their 

appropriateness for the training set being used. 
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6.2 – Increased Random Sample Size 

The centroids created from the 2000 random pattern sample produce the space-time-

cluster plot seen in Figure 10. 

 

Figure 10 - Space-time-cluster plot of time section 1260-1860, using 2000 random sample. 

 

 
 It is noticeable that less traffic is identified as congested flow versus previous 

cluster plots.  Whereas the reference case shows a thicker band of red at the initial 

slowdown leading into the trouble section, this centroid group places more vehicles into 

the deceleration wave cluster. 
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 Figure 11 is the silhouette plot for this example, with a mean value of 0.2461 

over all clusters.  The number of vehicles for clusters 1-4 is 3519, 11640, 16975, and 

4775, respectively. 

 

Figure 11 - Silhouette plot of time section 1260-1860, using 2000 random sample. 

 

 
Once again the acceleration and deceleration waves show some disappointment, more so 

in this case since the positive values are not strong enough to match the previous cases 
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6.3 – Variations of Random Seeds 

The first new seed’s centroid values produce Figure 12 when inserted into the 1260-1860 

time section.  Since the cluster plot looks similar, the silhouette plot in Figure 13 

presents the interesting detail of this seed’s performance. 

 

Figure 12 - Space-time-cluster plot of time section 1200-2200, first new seed. 

 

 
The mean value over all clusters is 0.2565; this is a fairly large loss of accuracy in 

clusters versus the reference case.  The number of vehicles in clusters 1-4 is 4123, 9237, 

19053, and 4496, respectively.  Despite the cluster plot seeming familiar, the silhouette 

plot shows that this seed’s selected patterns did not form a more robust centroid set. 
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Figure 13 - Silhouette plot of time section 1200-2200, first new seed. 

 

 
The results for the second seed once again show a recognizable cluster plot 

(Figure 14) but a poor silhouette plot (Figure 15).  An interesting result appears in the 

number of vehicles for each cluster.  In this case, the shock wave cluster has just under 

3000 more vehicles present than the reference case while the acceleration wave has 4000 

less vehicles present.  Despite this reduction, the number of misclassified patterns is still 

large.  The number of vehicles for clusters 1-4 is 4482, 12786, 15295, and 4346. 
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Figure 14 - Space-time-cluster plot of time section 1200-2200, second new seed. 

 

 

Despite these differences, the silhouette for the deceleration and acceleration 

wave clusters shows a lot of misclassified values.  The mean over all clusters is 0.1411.  

It should be noted that despite the fact that two changes resulted in degraded 

performance, these changes were not based on any specific reasoning, just seeds.  In 

other words, just as changing the seeds can produce less reliable results, I would venture 

to guess that another seed change could potentially improve the performance. 



 

 

57 

 

 

 

 
Figure 15 - Silhouette plot of time section 1200-2200, second new seed. 
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Guessing seeds would not be a productive or scientific method for improving this; that 

being said, unless the first seed used was surprisingly the best available (unlikely), there 

is at least the possibility to find better results if only be figuring out a better process for 

getting the random pattern samples. 

6.4 – Later Time Section from Dataset 

 
The 2060-2460 time section’s clusters are shown in the time-speed-cluster plot in Figure 

16.  Although the section shows very little congested flow, there might be signs of a 

truck slowing down traffic (this is the suggested explanation for the slow down as given 

by [25], listed the event at 2280 [38 minutes]).  From roughly 2170 and on, you see a 

group of acceleration and deceleration waves apparent in the middle of the section and 

downstream.  Furthermore around 2300 there is a small group of deceleration wave 

vehicles near the downstream edge of the section.  Both these groups could be showing 

the effect of the truck on the overall traffic going through the section; thus perhaps the 

clustering is showing traffic as it approaches the truck and attempts to pass it.  The lane 

changes could be the explanation of slowing down; likewise, passing and reentering the 

truck’s lane downstream could be the explanation of the speeding up. 
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Figure 16 - Space-time-cluster plot of the 2060-2460 section. 

 

 

The silhouette plot for this 2060-2460 section is shown in Figure 17, with a mean 

of 0.3158 over all clusters.  The number of vehicles in clusters 1-4 is 24, 8642, 3819, and 

6238, respectively. 

The congested flow cluster shows little in terms of results due to the lack of 

stalled traffic in this time section, and is thus not interesting in this example.  Once again 

the acceleration and deceleration wave clusters show some weakness, although in this 
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example they tradeoff as the deceleration wave shows some improvement while the 

acceleration wave degrades.  The free flow cluster remains fairly respectable despite 

some negative values that perhaps would be better assigned in the lacking congested 

flow cluster. 

The examples from these training sets show that the k-means implementation has 

not identified the kind of results expected to reflect well produced clusters.  While there 

may be solutions to obtaining more accurate results from this methodology, Section 7 

examines another technique for dividing the patterns into clusters. 

 

Figure 17 - Silhouette plot of time section 2200-3200. 
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7. CLUSTERING FROM DECISION TREES 

 
 
Another method considered for experimentation is the idea of creating clusters using a 

decision tree.  Here, each pattern is assigned into one of four clusters based on where it 

fits in using certain values to distinguish for velocity and acceleration/deceleration. 

An individual data point is assigned first by whether or not its acceleration is less than 

some deceleration threshold or greater than some acceleration threshold, in which case it 

is assigned respectively to the shock-wave or acceleration-wave cluster.  Assuming it 

falls in between, it is assigned to the congested or free-flow cluster depending on 

whether its velocity is below or above some velocity threshold.  The original values of 

velocity and acceleration are used in the decision tree as opposed to the normalized 

values used for the 4-means clustering. 

Section titles specify the thresholds used by the decision tree.  So, in order, they 

define the deceleration threshold, the acceleration threshold, and the velocity threshold.  

A wider time slice (1200-2200) is used in these examples. 

7.1 – Case [-6, 3, 50] 

The initial run of the decision tree is given the values of -6 for the deceleration threshold, 

3 for the acceleration threshold, and 50 feet per second as the division of velocity 

between congested and free flow.  Figure 18 is the resulting cluster plot using these 

settings.  The number of patterns per clusters 1-4 is 16170, 9200, 14837, and 14241 

respectively. 
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 As seen by those numbers and by the plot, the congested region might be 

showing signs of start-stop waves as accelerating and decelerating patterns are partially 

visible amongst the congested patterns.  This plot also has a slightly more 

distinguishable free flow region following the congestion (around 1800) than is seen in 

the previous space-time-cluster plots.  This could be an indication that the decision tree 

method is assigning more values to free flow than k-means was assigning as shock and 

acceleration waves. 

 
Figure 18 - Decision tree space-time-cluster plot for -6, 3, 50. 
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7.2 – Case [-6, 1.5, 50] 

The first modified run puts an emphasis on acceleration, lowering the threshold value to 

see how many more are reclassified as being in the acceleration wave as opposed to the 

congested and free flow clusters.  The changed leads to new cluster values of 12439, 

9200, 21766, and 11043 for clusters 1-4 respectively.  The acceleration wave cluster 

took roughly 3700 vehicles from the congested flow and roughly 2800 vehicles from the 

free flow. 

The resulting plot, Figure 19, shows that the 6500 addition acceleration wave 

values tend to emphasize the attempts to reestablish free flow speed during the congested 

region.  Furthermore, the reduced threshold value is forming a clearer forward shock as 

traffic reestablishes the free flow region.  One attribute that is more visible is the 

presence of the forward shock seen in the KWM expectation graph, Figure 4, described 

Section 5.1.  The free flow region reflects more acceleration wave vehicles than in 

Figure 18, but it is still giving a good look at the free flow region itself with fewer 

misclassified shock wave patterns present. 
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Figure 19 - Decision tree space-time-cluster plot for -6, 1.5, 50. 

 

 

7.3 – Case [-6, 4.5, 50] 

This execution of the decision tree takes the opposite approach, increasing the 

acceleration threshold and thus presumably reducing the number of values in the 

acceleration wave cluster and dispersing them into the congested and free flow clusters.  

The new number of patterns per cluster results in 17679, 9200, 12008, and 15561 for 

clusters 1-4 respectively.  That is roughly 1500 into the congested flow and 1300 into the 

free flow. 
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 The resulting Figure 20 shows an understandable increase in the congested 

region, although the increase in congested vehicles from this threshold change is not as 

noticeably different from the base case run as the reduction in congested vehicles seen in 

the plot of an acceleration threshold of 1.5.  The increased threshold seems to create a 

worse view of the section, indicating that a larger acceleration threshold value is heading 

in the wrong direction. 

  

 
Figure 20 - Decision tree space-time-cluster plot for -6, 4.5, 50. 
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7.4 – Case[-10, 3, 50] 

Starting with this section, the significant change is a reduction in the deceleration 

threshold value for all three of the acceleration experiments, as seen in Figure 21.  In 

these cases, a driver’s deceleration must be more significant to be considered a part of 

the deceleration wave (cluster 2).  For clusters 1-4, there are 19374, 3375, 14837, and 

16862 patterns respectively. 

 Nearly 6000 patterns are moved out of the deceleration wave cluster, with 

roughly 55% of them being inserted into the congested flow and the rest into the free 

flow clusters.  It is within the congested region of the plot that the increase in the 

congested flow cluster size is most apparent; the amount of visible shock wave patterns 

is drowned out.  With shock waves being harder to see, a larger negative threshold value 

for deceleration appears to be the wrong direction for adjustment. 
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Figure 21 - Decision tree space-time-cluster plot for -10, 3, 50. 

 

 

7.5 – Case [-3, 1.5, 50] 

In both the deceleration and acceleration threshold cases, it appears that reducing the 

threshold may be the key to revealing more significant detail.  With the new values, 

clusters 1-4 have a total of 7856, 17475, 21899, and 7218 patterns, respectively.  The 

reduced number of patterns in both the congested and free flow clusters is apparent with 

both clusters containing less than 8000 patterns a piece versus the shock and acceleration 

wave clusters which now contain a much more noticeable number of patterns. 
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 Figure 22 is the associated plot for this decision tree run.  The initial shock wave 

preceding the congested region stands out much clearer in this case.  The acceleration 

wave clusters perhaps are overly emphasized in this case, as there is a wide spread of 

blue amongst the congested and free flow regions in the time slice.  The congested 

region itself is more difficult to define since the number of congested patterns is reduced 

by so much in this case. 

 

Figure 22 - Decision tree space-time-cluster plot for -3, 1.5, 50. 
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8. CONCLUSIONS AND FUTURE PROBLEMS 

 
The included results show that the application of pattern recognition, specifically 

through clustering analysis in this case, provides a potentially useful method for 

examining and identifying the classes of traffic flow.  This work structures data into a 

logical, efficient schema (in the form of a matrix) with the goal of assisting in efficient 

experimentation with microscopic traffic data, while avoiding specific data structures 

that would confuse or be incompatible with other styles already available.  Instead of 

attempting to include all interesting features within the dataset itself this work focuses on 

storing and making available the key information needed to derive the more specific and 

interesting features one may wish to examine, and providing simple, object-like 

operators that have the ability to extract additional features that a particular researcher 

might wish to examine. 

 The k-means method, as implemented here with k=4 and in a highly supervised 

fashion, was not as useful as hoped in identifying the classes of traffic-flow patterns 

predicted by the classical kinematic-wave model, specifically in identifying spatio-

temporal regions corresponding to shock and acceleration waves.  As discussed in 

Section 6.1, this problem could be attributed to the use of training sets that select random 

patterns from the entire data set instead of patterns from time slices that more accurately 

reflect the experiment space (i.e., the time slice that our attempted data analysis focused 

upon).  We nonetheless recommend further experimentation with this method, both with 

alternative values of k, and with implementation in unsupervised fashion. 
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 The decision-tree method showed promise, for identification of the kinematic-

wave classes, especially with lower acceleration thresholds that accent the acceleration 

waves exiting a congested region as well as a clearer free flow region with less patterns 

classified into the shock and acceleration waves (see Figure 19, and the associated 

discussion).  The ability to adjust these thresholds is useful for quick examination of the 

quality of a particular plot without having to recreate each group of centroids with every 

adjustment, which is a downside in using the k-means approach.  I recommend this 

approach be further developed. 

 Yet another approach to pattern recognition that might be useful for traffic flow 

is the method of expectation maximization [Dempster et al. 1977].  This approach seems 

well suited to data that do not cluster well in feature space, which is precisely the 

characteristic of traffic data, particularly under conditions of congestion (e.g., stop-and-

go traffic). I accordingly recommend that its application to pattern recognition in 

microscopic data sets be further explored.   (This possible approach was suggested to the 

author by Dr. Ricardo Guterriez-Osuna.) 

The flexibility of the decision tree method in this work allows for a wide range of 

possible future applications.  There are other features not discussed in this work that one 

could be interested in.  Using the JHK datasets as an example, some of the interesting 

alternative features to examine are: the effect of lane changing effect on flow; vehicle 

following/leading distances effects on flow and acceleration/deceleration; and vehicle 

size (such as use in examining the effect of tractor trailers in a region of congested flow). 
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APPENDIX A 

 

NEXT.M 

 
% next.m 

 

% Returns the position in the matrix of the next (future) instance in 

which 

%   vehicle j shows up. 

 

N=-1; % If NEXT is still -1 after search, searh did not find 

appropriate value 

j_p=j+1; 

 

if(j==181148) 

    j=181147; 

end 

 

time_j=traffic_data(1,j); 

v_id_j=traffic_data(2,j); 

 

while traffic_data(1,j_p)<=((time_j)+1) 

    if traffic_data(2,j_p)==v_id_j 

        N=j_p; 

        break 

    else 

        j_p=j_p+1; 

        if (j_p>181147) 

            break 

        end 

    end 

end 

 

time_j=0; 

v_id_j=0; % Zeroing out to clear variables in memory for next use. 

 

PREVIOUS.M 

 
% previous.m 

 

% Returns the position in the matrix of the previous (past) instance in 

%   which vehicle j shows up. 

 

P=-1; % If PREVIOUS is still -1 after search, searh did not find 

appropriate value 

j_p=j-1; 
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time_j=traffic_data(1,j); 

v_id_j=traffic_data(2,j); 

 

% modification - re-examine after data_graphing experiment 

if(j_p==0) 

    j_p=1; 

end 

 

while traffic_data(1,j_p)>=((time_j)-1) 

    if traffic_data(2,j_p)==v_id_j 

        P=j_p; 

        break 

    else 

        j_p=j_p-1; 

        if (j_p<1) 

            break 

        end 

    end 

end 

 

time_j=0; 

v_id_j=0; % Zeroing out to clear variables in memory for next use. 

 

LEADER.M 

 
% leader.m 

 

% Returns the position in the matrix of the vehicle that is leading 

%   vehicle j in the same lane during a specific instance of time. 

 

L=-1; % If LEADER is still -1 after search, searh did not find 

appropriate value 

j_p=j-1; 

 

time_j=traffic_data(1,j); 

lane_j=traffic_data(5,j); 

 

while traffic_data(1,j_p)==time_j 

    if traffic_data(5,j_p)==lane_j 

        L=j_p; 

        break 

    else 

        j_p=j_p-1; 

        if (j_p<1) 

            break 

        end 

    end 

end 

 

time_j=0; 

lane_j=0; % Zeroing out to clear variables in memory for next use. 
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FOLLOWER.M 

 
% follower.m 

 

% Returns the position in the matrix of the vehicle that is following 

%   vehicle j in the same lane during a specific instance of time. 

 

F=-1; % If FOLLOWER is still -1 after search, searh did not find 

appropriate value 

j_p=j+1; 

 

time_j=traffic_data(1,j); 

lane_j=traffic_data(5,j); 

 

while traffic_data(1,j_p)==time_j 

    if traffic_data(5,j_p)==lane_j 

        F=j_p; 

        break 

    else 

        j_p=j_p+1; 

        if (j_p>181147) 

            break 

        end 

    end 

end 

 

time_j=0; 

lane_j=0; % Zeroing out to clear variables in memory for next use. 
 

ACCELERATION.M 

 
% acceleration.m 

 

% Returns the calculated acceleration for a vehicle using its previous, 

% current, and next longitudinal positions.  Operators NEXT and 

PREVIOUS 

% are used to find the proper locations. 

 

NEXT(); 

PREVIOUS(); 

if(N==-1|P==-1) 

    A=-1000; % When acceleration cannot be calculated, set to -1000. 

else 

    A=(traffic_data(4,N))-(2*(traffic_data(4,j)))+(traffic_data(4,P)); 

% Delta_t omitted for being 1 

end 

 

N=0; 
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P=0; % Zeroing out to clear variables in memory for next use. 

 

VELOCITY.M 

 
% velocity.m 

 

% Returns the calculated velocity for a vehicle using its previous and 

next 

% longitudinal positions to determine current velocity.  Operators NEXT 

and 

% PREVIOUS are used to find proper locations. 

 

NEXT(); 

PREVIOUS(); 

if(N==-1|P==-1) 

    V=-1; % When velocity cannot be calculated, set to -1 for now. 

else 

    V=((traffic_data(4,N))-(traffic_data(4,P)))/2; 

end 

 

N=0; 

P=0; % Zeroing out to clear variables in memory for next use. 
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