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ABSTRACT 

Two Photon Luminescence from Quantum Dots Using Broad and Narrowband Ultrafast 

Laser Pulses. (December 2007) 

Haribhaskar Balasubramanian, B.E, University of Mumbai 

Chair of Advisory Committee: Dr. Kenith Meissner 

 

Nonlinear optical microscopy (NLOM) offers many advantages when imaging 

intact biological samples. By using ultrafast lasers in the near infrared and two photon 

excitation (TPE), signal production is limited to the focal volume and provides an 

excellent means for rendering thin, microscopic images from within the sample.  

Exogenous fluorophores/lumiphores may be used as efficient contrast agents to tag 

specific targets and provide enhanced signal. The efficiency of the TPE process in these 

contrast agents is broadly assumed to vary inversely with the laser pulsewidth, τ.   

In this work, we investigate the TPE efficiency of transform limited broadband 

(~133nm, ~10fs) and narrowband (~11nm, ~170fs) pulses in the generation of two-

photon luminescence from semiconductor nanocrystals or quantum dots (QD’s) both 

theoretically and experimentally.  Compared to standard organic dyes, QD’s possess a 

relatively broad, uniform spectral response that enables better use of the full bandwidth 

from the broadband laser.   

Theoretical calculations including both degenerate and non-degenerate TPE 

indicate a rolloff from the 1/τ behavior as the pulses’ spectral bandwidth becomes 

broader than the absorption spectra of the QD’s.  Experimentally measured enhancement 
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in luminescence intensity while using a broadband pulse is compared with the simulated 

enhancement in two-photon luminescence.  

A combination of increased understanding of the excitation processes in NLOM 

and proper selection of contrast agents will help in advancing the role of broadband 

ultrafast lasers in NLOM. 
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NOMENCLATURE 
 
 

QD   Quantum Dot 

CdSe   Cadmium Selenide 

ZnS   Zinc Sulfide 

TOPO   Trioctylphosphine oxide 

MAA   Mercaptoacetic acid 

PAA   Polyallylamine 

PVSA   Polyvinylsulfonic acid 

TPA   Two photon absorption 

PES   Photoluminescence excitation spectra 
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INTRODUCTION 

Quantum dots (QD’s) are bright, photostable lumiphores that have a broad 

excitation spectrum and a narrow emission spectrum at wavelengths that are dependent 

on the size of the particle. QD’s allow efficient multicolor imaging of biological samples 

and are especially useful for luminescent imaging in biological tissues, where signals can 

be buried by scattering. Multiphoton microscopy enables deep imaging in a variety of 

biological samples and produces less overall photobleaching than wide-field or confocal 

microscopy. For transform limited ultrafast laser pulses, there exists an inverse 

relationship between pulsewidth, τ, and the two photon transition probability. When 

comparing broadband and narrowband pulses with the same delivered average power, 

the peak intensity of a temporally shorter laser pulse will be higher compared to the 

longer pulse.  

Average power = Peak power * Repetition rate * Pulse width 

We characterize the emission spectra of solutions containing colloidal QD’s 

using broadband and narrowband pulses. Luminescence spectra are first taken using the 

narrowband laser at numerous wavelengths and then using broadband laser. We then 

investigate the enhancement in luminescence both theoretically and experimentally.  

____________ 
This thesis follows the style of Langmuir. 
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The reduced average power required for a given peak power of temporally 

shorter pulses reduces the photodamage to surrounding tissue. In living tissues, this 

corresponds to a decrease in thermal and oxidative damage.   
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BACKGROUND 

Band theory of solids 

Colloidal quantum dots are semiconductor nanocrystals which have been used in 

a wide array of fields including biomedical imaging, electro-optical devices, and 

computer applications.1-7 To get a better understanding of the physics behind quantum 

dots, one must understand the band theory of solids.  

Energy band structures in solids 

 For any material, electrical conductivity is determined by the number of electrons 

available to take part in conduction. The arrangement of energy states and the way in 

which each energy state is occupied by electrons determines the number of electrons 

available for conduction. In bulk semiconductor material, electrons have an array of 

energies. Only two electrons can fit in any given level. A bulk semiconductor has 

continuous energy bands as the individual energy levels in the band are so close together 

that there is no significant energy difference between them. Between the energy bands 

there may exist an energy band gap in which electrons may not possess the energies in 

the gap. For a semiconductor or an insulator, the band gap between the outer most bands, 

the valance band and conduction band, is very important in determining material 

properties. The energy bands will be collectively filled according to Pauli’s exclusion 

principle. The final filled band is called the valence band. The next higher band is called 

the conduction band.  
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Valance band 

The valance band is the outermost filled/partially filled band. At 0 K, in 

semiconductors and insulators the valance band is always completely filled with 

electrons. As the temperature starts to rise or when the electrons are excited by light, 

they absorb the energy to leave a vacant position in the valance band and move to the 

conduction band. However, the provided energy must be greater than the band gap. 

Electrons in the valence band do not participate in the conduction process. When excited 

from the valance band, the electron leaves behind an empty state in an ensemble of 

electrons. This pseudo particle is called as a hole and has properties opposite to that of 

an electron. The hole can move about the crystal, and thus contribute to the conductivity 

of the material. 

Conduction band 

 Insulators and semiconductors have an empty conduction band. When an electron 

gains energy which is greater than the band gap energy of the crystal, it jumps to the 

conduction band. The conductivity is increased as the electron is free to move in the 

conduction band becoming a carrier. High electrical conductivity comes from ease of 

scattering electrons with an applied electric field. The approximate lifetime of an 

electron in the conduction band is a very small fraction of a second before the electron 

falls back to the valance band. When the electron loses its energy, it decays back to the 

valance band emitting energy in the form of heat and/or light which is called as 

photoluminescence emission. In semiconductors, the gap between valance and 

conduction band is small and energy in the form of heat or light will bridge the gap 
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making it possible for the electrons to move freely.8 The energy bands in different types 

of materials are shown in figure 1.  

The band gap determines the wavelength of light required to excite the electrons 

to the conduction band and also determines the emission wavelength of the light when 

the electron decays back to the valance band. The electron that decays back recombines 

with a hole. As the band gap is constant for a particular bulk material at a given 

temperature, the absorption and emission spectra are also constant.9   

 

Figure 1. Energy bands in solids 

 A photo excited electron in the valance band and its corresponding hole are 

bound to each other by an electrostatic attraction. This bound pair is called an exciton. 

The average physical separation distance between the electron and hole in the exciton is 

called the exciton Bohr radius. The exciton Bohr radius is different for all materials. In a 
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bulk semiconductor, the dimensions of the crystal are larger than the exciton Bohr 

radius. However, if the size of the crystal becomes smaller than the material’s Bohr 

exciton radius, the electrons hole pairs in that material are said to be confined. This 

phenomenon of confinement of the electron hole pairs in different dimensions is called 

quantum confinement.  

Quantum well 

A quantum well is fabricated by sandwiching a narrow bandgap material between 

two wide bandgap materials.10 This arrangement creates a potential well that confines 

electrons and holes to the narrow bandgap semiconductor material, forcing them to 

occupy a planar region. Thus a quasi-two dimensional structure is formed.  

In order to determine the optical properties, the number of available states per 

unit volume per unit energy may be calculated and measured. The available states are 

first calculated in k-space and then the density of states (DOS) is calculated in terms of 

energy. The DOS is a function that shows the distribution of energy states in the system. 

The DOS for a quantum well is a step function with steps occurring at the energy of each 

quantized level. Figure 2 shows the dimensional confinement of a structure and the 

corresponding density of states.  

Quantum wire  

 A quantum wire is a quasi one dimensional structure. In quantum wires, energy is 

quantized in two dimensions. The spatial confinement results in the compression of 

energy states within the bands. The confinement of material and the resulting density of 

states is shown in figure 2.  
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Figure 2. Quantum confinement in different materials13 

Quantum dots 

 A quantum dot is a semiconductor nanostructure in which the electron-hole pairs 

are confined in all three space dimensions.11 The characteristic length or radius of a 
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quantum dot can be compared to the Bohr radius.12 The quantum confinement results in 

narrow and discrete peaks in the density of states and causes a blue shift in the emission 

wavelength. A quantum dot is a quasi zero dimensional structures with sharp resonances 

conceptually similar to an atom as shown in figure 2. Ideally, the absorption lines would 

be delta functions for QD’s. However, the actual transitions are both inhomogeneously 

and homogeneously broadened, and are therefore not delta functions.  

The discrete energy states lnE ,  for an ideal spherical QD is given by14, 

2
,

22

2, 8
111

π
α ln

he
ln

h
mmR

EgE ⎥
⎦

⎤
⎢
⎣

⎡
++= ,    (1) 

Here Eg is the bulk energy gap, me is the electron mass, mh is mass of the hole, R is the 

radius and ln,
2α  is the nth root of lth order Bessel function.  

The quantum confinement effect allows effective tuning of the emission and 

absorption wavelengths of QD’s as a function of their size. The larger the QD, the 

smaller it’s transition energy resulting in longer emission wavelengths. As the size 

decreases, the confinement increases and therefore the emission is blue shifted.  

Fabrication of QD’s 

 There are numerous methods to fabricate quantum dots. The three most 

commonly used synthesis methods are: 

1) Epitaxial QD synthesis 

2) Aqueous synthesis 

3) Organometallic QD synthesis 

• Epitaxial QD synthesis 
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 QD’s are prepared using the Stranski-Krastanow growth mode using strained 

InGaAs on GaAs and SiGe on Si.10, 15 Self assembled QD’s nucleate under certain 

growth conditions using molecular beam epitaxy (MBE). When a semiconductors lattice 

structure does not match that of a material and when the semiconductor material is 

grown on that substrate, the strain that results due to the lattice mismatch produces 

QD’s.16 However, the QD’s fabricated using this technique are not used in biological 

research as it is not biocompatible. The QD’s fabricated using MBE are also very 

expensive due to the cost of the MBE system. The quantum dots prepared using this 

method are defect-free and can be incorporated coherently into the host material, which 

makes them potential candidates for electronic and optoelectronic applications. 

• Aqueous synthesis of colloidal QD’s 

 Synthesis of colloidal QD’s by aqueous chemistry involves the use of low 

temperature polar solvents like methanol or water. For example, reverse micelles (nano-

reactors) can be used for aqueous growth of QD’s.17 As micelles bump into each other, 

they exchange material and QD’s begin to grow. The temperature of the synthesis is 

limited by the boiling point of the solvent that is used for the synthesis.18 

• Organometallic QD synthesis 

 Quantum dots can be fabricated colloidally using both hot and cold 

organometallic synthesis. There are three steps involved in the preparation of QD’s: 

Nucleation 

Growth 

Quenching the growth 
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The QD’s prepared by the hot organometallic method utilizes non polar solvents 

such as trioctylphosphine oxide (TOPO)19-21, dodecylamine or stearic acid.22 High 

temperature growth anneals the QD’s producing a more crystalline material. As 

produced, the QD’s fabricated using the organometallic technique are not water soluble 

and therefore not biocompatible. The space required for this fabrication method is 

considerably smaller than that required for MBE. Additionally, these QD’s initially have 

a relatively low quantum yield. 

• Colloidal core/shell QD’s 

 This work involves the preparation of Cadmium Selenide (CdSe) QD’s with an 

organic coating of TOPO and an additional Zinc Sulfide (ZnS) capping layer. The ZnS 

capping layer passivates the surface of the QD core, and increases the quantum yield and 

luminescence.23 Quantum yield is defined as the ratio of the number of photons emitted 

to the number of photons absorbed. The ZnS coating also reduces blinking which can be 

one of the disadvantages in using QD’s.24 Again, the ZnS coated QD’s are not water 

soluble as produced. A number of methods can make the QD’s water soluble. One of the 

methods to make them water soluble is the ligand exchange method in which a layer of 

mercaptoacetic acid (MAA) or dihydrolipoic acid (DHLA) is coated over the QD’s.25 

Advantages of QD’s over traditional organic fluorophores 

 QD’s have several advantages over organic fluorophores and they have the 

potential to replace organic dyes in many biological applications. The advantages 

include: 

a) Narrow emission spectrum 



 11

b) Broad absorption spectrum 

c) Photobleaching resistance 

d) Size-tunable absorption and emission spectra 

e) High quantum yield 

a) Narrow emission spectrum 

 The emission spectrum of a sample QD is very narrow and symmetric compared 

to organic fluorophores if the sample has monodisperse size distribution, as little as 5% 

variation in diameter. Due to the band structure, electrons (holes) scatter to the bottom 

(top) of the conduction (valence) band before recombining. Therefore the QD’s will 

always emit from the lowest energy state. This results in a spectral width under 40 nm 

FWHM; making the QD’s ideal for spectral multiplexing. Spectral multiplexing, 

involves the simultaneous observation and spectral separation of a number of distinct 

QD populations. Figure 3 shows the linear absorption and emission from a sample of 

QD’s. This emission has a FWHM of approximately 40 nm and is symmetric about the 

center wavelength of QD emission spectrum.                                                                                                   

b) Broad absorption spectrum 

QD’s possess very broad excitation spectra and can be excited with simple 

excitation sources at essentially any wavelength shorter than the emission peak.26 This 

facilitates simultaneous excitation detection, imaging and quantification of QD 

populations.  
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Figure 3. Comparison of absorption and emission spectrum of QD’s 

In the case of traditional dyes, the emission and absorption peaks are close to 

each other. Stokes shift is the wavelength or frequency difference between positions of 

the absorption peak and emission peak. If the first absorption peak in the QD sample is 

considered, the Stoke’s shift in QD’s is much smaller than that of organic dyes. 

However, the broad absorption spectrum allows us to choose an excitation wavelength 

that produces a large effective Stoke’s shift. The very low spectral overlap of the 

emission spectrum of different colored QD’s is a very useful property for spectral 
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multiplexing. A sufficient Stokes’s shift is essential for spectral multiplexing 

applications. 

c) Size-tunable absorption and emission spectra 

 From equation 1, the QD’s lowest energy state (from which it emits) is inversely 

dependent on size. Thus it is possible to control the output wavelength of QD’s by 

changing the QD size. Emission spectra from different size QD’s is shown in figure 4. 

The size of QD’s can be controlled by the temperature of the reaction, by the type of 

organic solvent used, and by the duration for which the reaction is run. Thus, through 

size tunability, QD samples can be fabricated to emit narrow color spectra that are 

spectrally distinct and may be excited by a single excitation wavelength.22 This property 

of size tunability also makes QD’s a good donor in Förster Resonance Energy Transfer 

(FRET) applications. 

 

Emission spectra of CdSe-ZnS QDs
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Figure 4. Size tunable emission spectra of QD’s8 
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d)  Photobleaching resistance  

One of the main advantages of QD’s is high photostability when compared to 

organic fluorophores. Wu et al7 studied the comparison of photostability between an 

organic dye (Alexa 488) and CdSe/ZnS QD’s. In their work, they labeled nuclear 

antigens with QD-streptavidin emitting at 630 nm and microtubules with Alexa 488, 

conjugated with IgG, having an emission peak at 488 nm. The specimens were 

illuminated for 3 minutes with a 100 W mercury lamp. They observed that the signal 

from Alexa 488 faded completely within 2 minutes while the QD’s show little, if any, 

photobleaching. They repeated the same procedure with a reversal of the labels on 

nuclear antigens and microtubules. Again, Alexa 488 underwent significant 

photobleaching within the first 2 minutes of illumination while the QD’s were extremely 

stable throughout the observation time. When a molecule has to be tracked for an 

extended period of time, photostability is a key factor to the success of the experiment. 

Thus, QD’s provide superior performance as contrast agents compared with organic 

flurophores in long term biological applications such as medical imaging. 

e)  High quantum yield 

Quantum yield is the ratio of the number of photons emitted to the number of 

photons absorbed.  It has been found that the CdSe/ZnS QD’s exhibit quantum yields of 

more than 80%.27 This exceeds the quantum yield of traditional organic fluorophores 

such as TRITC and FITC. 
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Disadvantages of QD’s over traditional organic fluorophores 

 There are a few issues that have restricted the use of QD’s in biological 

applications. Oxidation of the CdSe or CdTe cores is known to release Cd2+ ions. Cd2+ 

ions are cytotoxic and none of the coatings have so far been reliable in containing ionic 

leakage. Various research groups28, 29 have made efforts to coat QD’s with different 

materials to make the QD’s biocompatible. The release of cadmium and zinc ions is very 

toxic and therefore the use of QDs in long term in vivo applications has been restricted. 

Containing this ionic leakage is the center of much research and represents a major 

challenge to the use of QD’s in biomedical applications.  

Principle of photo-luminescence 

Photo-Luminescence is the process in which a molecule excited by 

electromagnetic radiation releases energy in the form of light.  

 

Figure 5. Simplified energy diagram 
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In general, a molecule is raised to an excited state via absorption of a high energy 

photon. The process is illustrated using a simplified energy diagram shown in figure 5. 

In this diagram, an incident photon is absorbed by the QD and raised to an excited 

energy state. Excited carriers at energy well above the band edge scatter or relax to the 

bottom of the band. Vibrational relaxation plays a major part in this process. In QD’s 

this is accomplished via lattice vibrations or phonons. The emission, which is termed 

luminescence, has a width that is primarily dependent on the size distribution of the 

ensemble of emitting QD’s and wavelength determined by the bandgap/size of the QD’s. 

Nonlinear optics 

 In classical non-linear optics, the polarization P of any medium is expanded in 

powers of the electric field vector E: 

P = χ (1).E + χ (2).EE + χ (3).EEE+ ··· 

where χ(n) is the n-th order nonlinear susceptibility.12, 30 Linear optics are governed by 

the first term. For a linear response, the polarization of the molecule is linearly 

proportional to the applied electric filed. There are two main nonlinear optical processes 

used in microscopy.  

1) Second harmonic generation (SHG) 

2) Multiphoton Microscopy 

Second harmonic generation 

 SHG is a case of sum frequency mixing where the frequencies of the photons 

from the two incident beams are equal (γ1=γ2). Crystal materials lacking inversion 

symmetry can exhibit χ (2) nonlinearity. An input (pump) beam generates another beam 
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with twice the optical frequency in the medium. In SHG, several photons interact with a 

molecule simultaneously with no absorption events thus avoiding complications of 

photochemistry. SHG is efficiently used for detecting changes in membrane potential as 

it is very sensitive to biological membranes. It is also used in selective corneal imaging 

and many other applications. The process of SHG is illustrated in figure 6.  

 

Figure 6. Second harmonic generation31 

Multiphoton microscopy 

 In her 1931 doctoral dissertation, Maria Goppert-Mayer predicted that an atom or 

a molecule could absorb two photons simultaneously in the same quantum event.32 

However, her hypothesis was not confirmed until the invention of ruby lasers in the early 

1960’s.33 The two photon excitation (TPE) cross section of different materials has been 
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determined using a number of different methods.34-36 Denk et al. applied TPE 

luminescence to laser scanning microscopy.37  TPE is a third order nonlinear optical 

process, which is described by the third order nonlinear optical susceptibility χ(3).  

 When the photon density is very high, two photons can be absorbed 

simultaneously to a real excited state. The electronic transition of a lumiphore to the 

higher energy state takes place as a result of the combined energy of two photons. As the 

wavelength and energy of a photon are inversely proportional, both the photons should 

have about twice the wavelength of the photon that is required for a single photon 

excitation. The absorption of the two photons is mediated by a virtual state. As an 

example, two near infrared photons are required to combine to excite a blue absorbing 

fluorophore.   

The simplified energy diagram shown in figure 7 consists of an initial state I , a 

final state F , and a manifold of virtual states V represented by dashed lines. Virtual 

states are determined by the spectral characteristics of the pulse and by the material. Two 

photon absorption (TPA) is facilitated by both degenerate and non degenerate frequency 

mixing. If the two photons that are absorbed are of the same wavelengths, the process is 

termed as degenerate TPA. This essentially means that for degenerate TPA, the virtual 

state lies halfway between the initial and final states. If the two photons absorbed 

possess different wavelengths, the process is defined as non degenerate TPA. Because of 

its broad spectral width, there is a possibility of more non degenerate transitions in 

broadband excitation than in narrowband excitation. Therefore, the probability of two 

photon absorption is greater when using a broadband femtosecond pulse.  
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Figure 7. Degenerate and non degenerate TPA 
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baE ,•μ  is the scalar product of transition dipole moment and electric field 

for degenerate two photon transitions, ba ωω =  and for non degenerate TPA, ba ωω ≠  

Degenerate TPA can be represented by just using the first term in equation 2.  
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This representation is fair for systems that use a narrow bandwidth as the probability of 

non degenerate excitation is very small in these cases. When calculating the probability 

of two photon absorption using an ultrashort pulse, both terms in equation 2 have to be 

considered in order to include non degenerate excitation.  

Previously, enhancement in luminescent intensity was accomplished by chirping 

short pulses.3, 38 The temporal shift of the frequency components in chirped pulses 

reduces non degenerate contributions.39  In this work we compare, the enhancement in 

two photon excited luminescence from QD’s while using near transform limited 

experimental 10 fs and 170 fs pulses. Transform limited pulses have the minimum pulse 

duration that is possible for a given pulse spectrum. Non transform limited pulses can 

generally be brought to their transform limit by modifying the phase of the spectral 

components. When using a transform limited pulse, the non degenerate components are 

maximized.40 Therefore, luminescence intensity is increased when using a transform 

limited pulse.38, 41, 42 

 When the absorption cross section is uniform over the pulse spectrum, it can be 

shown that the transition probability (and therefore the luminescence) will increase as τp
-

1, 3, 40  where τp is the pulse duration. Recently, extensive work has not been done to 

explore the effect of transform limited short pulse on TPE luminescence as it is difficult 

to maintain a near transform limited pulse at the focus due to the dispersion from the 

optical system.43-45 Deviation from the τp
-1 is expected for ultrashort pulses when the 

spectral width of the pulse exceeds that of the two photon absorption profile.40  
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Advantages of two photon microscopy 

For optical sectioning, the two photon laser scanning microscopy technique has 

many advantages over the conventional confocal luminescence microscopy. The primary 

advantage lies in the ability to provide better optical sectioning at greater depths in thick 

specimens.37, 46, 47   

 

 

Figure 8. Picture illustrating two-photon and single-photon luminescence induced by a 
focused laser beam48 

 

 

The most important difference compared to single photon absorption is the 

quadratic dependence of luminescence on the average power. Another major advantage 

is the localization of excitation in the two photon technique.46 In two photon absorption, 

the number of absorbed photons, N abph is described by the following equation: 

N abph = (σ Pavg
2 π2 NA4) / (τp fp

2 h2 c2 λ2),48 

532 nm 
excitation 

1064 nm 
excitation 
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Where σ is the two-photon absorption cross-section, Pavg is the average power, NA is the 

numerical aperture of the objective, τp is the pulse width, fp is the repetition rate, c is the 

speed of light, and λ is the wavelength of excitation light. This equation assumes that the 

two photon excitation process is a resonant absorption process. 

With confocal microscopy, a laser is focused to a volume in the sample and the 

sample fluoresces throughout the beam path because of the large probability of single 

photon absorption. In multiphoton excitation, as the probability of absorption decreases 

with distance away from the focal volume, only the focal volume is excited. Figure 8 

shows the same dye excited by a 10264 nm laser pulse and a 532 nm laser pulse. It is 

very clear from the 1064 nm excitation that the probability of absorption decreases 

rapidly away from the focal volume and therefore we just see a small dot of excitation in 

the picture. 

Resolution in two photon microscopy 

In two photon microscopy, the axial and lateral resolution is a bit worse than that 

of confocal microscopy. This is due to the use of longer wavelength photons in two 

photon microscopy, and results in a larger point spread function. The emission signal to 

background ratio has to be high to differentiate the two signals.  In the case of 

multiphoton microscopy the signal to background ratio is inherently large owing to a 

very little excitation of the fluorophores outside of the focal volume.  

In a confocal microscope, both axial and lateral resolution is degraded by finite 

pinhole aperture, chromatic aberration and imperfect alignment of the optical system.49 

A confocal pinhole in a confocal microscope contributes to a high ratio. In the confocal 
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case, luminescence occurs and a pinhole is placed in front of the detector to eliminate 

out of focus luminescence. However, this pinhole not only eliminates the luminescence 

away from the focal point, but also scattered (diffused) luminescence from the focus. In 

a confocal microscope, only ballistic luminescence is only detected.46 Due to the longer 

wavelengths in multiphoton microscopy, scattering in tissue is lower compared to the 

UV excitation in the confocal microscope. A comparison of confocal and multiphoton 

microscopes is shown in figure 9. 

 

 

Figure 9. Comparison of excitation using confocal and multiphoton 
microscope50 

 

Near infrared (NIR) radiation is used in multiphoton microscopy. Using NIR 

radiation to excite the sample has many advantages over the UV excitation. One of the 
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advantages is that the spectral range of 600-1100 nm is referred to as an optical window 

of cells and tissues due to the lack of endogenous absorbers in this spectral range and the 

resulting high penetration depth on the order of a few millimeters in most tissues.51 

Water has an absorption coefficient of about 0.1 cm-1 which is considered to be very 

low. Water is the major absorber in cells without hemoglobin or chlorophyll. These non 

pigmented cells are nearly transparent structures in the spectral range of 700-1100 nm.  
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EXPERIMENTAL DETAILS 

Synthesis of quantum dots 

Materials 

Cadmium oxide powder, selenium powder, trioctylphosphine oxide (TOPO, 99% 

pure), cadmium oxide powder, selenium powder, and trioctylphosphine (TOP, 90% 

pure) were purchased from Sigma-Aldrich. Tetradecylphosphonic acid (TDPA, 98% 

pure) was purchased from Alfa Aesar. Methanol, ethanol, toluene, syringes and needles 

of different specifications were purchased from VWR. Hexamethyldisilathiane and 

dimethylzinc (1 molar solution in heptane) required for the ZnS capping of CdSe 

quantum dots were also purchased from Sigma-Aldrich.  

Set up 

The experimental setup for the organometallic synthesis of CdSe/ZnS quantum 

dots is shown in Figure 10. A stir bar made from aluminum is connected to a drill press 

to stir the contents of the reaction sample. A heating mantle filled with molten bismuth 

alloy serves as the reactor. A temperature probe and controller are used to control the 

reaction temperature. To the side, a magnetic stir plate is used to stir the TOP-Se 

mixture. Argon, being heavier than oxygen, is used to drive out the oxygen from the 

reaction flask. An Argon bubbler was used to ensure a constant argon flow into the 

reaction glassware.  
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Figure 10. Reactor for the organometallic synthesis of QD’s8 
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Methods 

0.0514 g of Cadmium oxide (CdO), 3.7768 g of trioctylphosphine oxide (TOPO) 

and 0.0567 g of tetradecylphosphonic acid (TDPA) is heated under an argon blanket at 

340°C until either the color changes from dark brown to nearly colorless or for a period 

of one hour. At this point, temperature of the Cd-TOPO solution is reduced to 270°C.22 

At the same time, 0.0411 g of selenium is stirred in 2.4 ml of trioctylphosphine (TOP) 

under argon until the selenium mixed with TOP.  

At this point, the selenium solution is injected into the cadmium precursor and 

the reaction begins immediately. Samples are removed at various time intervals 

depending on the required size and color of the QD’s. The QD’s are then washed 

multiple times with methanol and toluene, and then suspended in toluene. Figure 11 

shows emission from QD’s fabricated from a single experiment and excited by a 

ultraviolet source.52  

 

 

 

 

Figure 11. QD’s suspended in toluene (taken from the Meissner lab)52 

Capping of the CdSe QD’s with ZnS structure is an additional procedure 

performed after fabricating the CdSe QD’s. After the growth time required for QD’s of a 

particular size is reached, the temperature is dropped to 200°C and a ZnS precursor 

solution, consisting of 1.6 ml hexamethyldisilathiane and 6.4 ml dimethyl zinc 
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maintained in an argon environment is injected. After allowing 1 hour for the shell to 

form, the temperature is reduced to 100°C to anneal the particles. Annealing is done for 

a period of 30 minutes, and then the CdSe/ZnS particles are quenched in methanol and 

cleaned according to the procedures described earlier for the CdSe/TOPO nanocrystals.  

Two photon spectroscopy 

Setup for the experiments 

 A schematic representation of the experimental set up is shown in figure 12. The 

narrowband laser used was a tunable Ti:Al2O3 oscillator (Mira 900F, Coherent) pumped 

by a frequency doubled Nd:YVO4 laser (Verdi-10, Coherent). Center wavelength of 170 

fs pulses was tuned between 700 and 890 nm in 10 nm increments which is 

approximately the bandwidth of the narrowband laser pulse. The pulse spectra of 170 fs 

laser from 790-800 nm and the spectrum of the 10 fs pulse are shown in figure 13. For 

the narrowband pulses, autocorrelation spectra were recorded for each wavelength step 

in order to ensure the pulses were approximately 170 fs. Since small amounts of 

dispersion introduced by the gain medium and other optical components in the laser 

system rapidly degrade the performance of the broadband pulse, dispersion 

compensating mirrors (-200 fs2 per bounce) were used in the broadband configuration. 

These mirrors ensured a near transform limited pulse from the broadband Ti:Al2O3 

oscillator (Femtosource, Femtolasers) at the focus. The broadband laser is not tunable as 

the spectrum contains almost the complete Ti:Al2O3 tuning range as shown in Figure 13.  

 

  



 29

 

Figure 12. Experimental set up for measuring data with 10 fs and 170 fs oscillators 
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 A curved mirror (focal length 25.4 mm) was used to focus the laser pulses into a 

1 cm pathlength, fused silica cuvette. A beam expander was used to control the size of 

the laser beam so that the size of the beams from both the lasers closely matched. Two 

polarizers (Newport Inc) and one neutral density filter (Edmund optics) with an optical 

density of 0.5 were used to attenuate the laser power. Luminescence intensity from the 

QD’s was collected using a thermoelectrically cooled detector array and spectrometer 

(Roper Scientific). Five average accumulations were taken with an integration time of 15 

seconds for each accumulation. The slit width of the spectrometer was 300 microns. Slit 

width was set at 300 microns to make the spectral resolution approximately 3 nm 

(0.1*FWHM of QD’s). The number of pixels required for this resolution was first 

calculated as 

Number of pixels = 3nm/pixel-bandwidth = 3nm/0.208nm = 14 pixels 

Each pixel is 20 microns. For 14 pixels, the slit width was 14*20 microns = 280 

microns. Therefore, 300 microns was chosen. All the above calculations were based on 

the grating of 300grooves/mm at a 500nm blaze angle that was set for the experiments.  

The grating was shifted such that its center point was the emission peak of QD’s.  
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Figure 13. Spectrum of ~10 fs pulse and ~170 fs pulses 
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RESULTS 

Experimental results 

 The first step is to verify the power squared dependence to confirm two photon 

absorption. For this, the average power of the broadband laser is varied from 10 mw to 

100 mw and the luminescence from QD’s is recorded for every 10 mw increment. When 

integrated luminescence intensity (I) is plotted against average laser power (pavg) on a log 

scale, Pavg varies as I2.06 for the 10 fs laser.  
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Figure 14. Verification of two photon quadratic dependence on the 10fs laser 

 
 

To calculate the enhancement in luminescence from QD’s, experimentally, the 

integrated luminescence emission intensity using both broadband and narrowband 
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excitations are recorded. The integrated luminescence intensity while using a broadband 

pulse as the excitation source is divided by the integrated luminescence intensity when 

using the narrowband source. The quotient is the enhancement in luminescence when 

using a broadband pulse compared to a narrowband pulse.  
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Figure 15. Verification of two photon quadratic dependence on the 170fs laser. 
 

 

In the case of the narrowband laser, average power is varied from 150 mw to 350 mw 

and luminescence from the QD’s is recorded for 10 mw increments. For the 170 fs laser, 

pavg varies as I1.77with integrated fluorescence intensity. A log plot of the power squared 

dependence for the 10 fs laser and 170 fs laser are shown in figure 14 and 15 

respectively. This verifies the I 2 relationship expected for two photon absorption.  
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Figure 16. 3D plot of emission wavelength, excitation wavelength and Luminescence 
intensity 

 

Luminescence intensity from the QD sample is measured from 170 fs pulses centered in 

increments of 10 nm from 700 to 890 nm. Figure 16 shows a 3D plot of the excitation 

wavelength, emission wavelength and luminescence intensity from the QD sample. 

From this figure we can see that the excitation peak for the QD’s was 780 nm.  
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Figure 17. Enhancement in luminescence at 800 nm excitation 

 

Experimental data is also measured on the QD sample using the broadband pulses (800 

nm) in a similar way to the data acquisition using narrowband pulses. For the broadband 

laser, the pulse is centered at 800 nm as it is not a tunable laser. Using the data obtained 

from the experiments, the enhancement in luminescence intensity using the broadband 

pulse is calculated to be 7.7 more when comparing near transform limited 10 fs with 170 

fs excitation as shown in figure 17.  To find minimum enhancement, the QD emission 

peak excitation at the 780 nm peak for the 170 fs pulse is compared with the emission 
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from the 800 nm excitation of the 10 fs pulse. The enhancement in luminescence is 5.4 

as shown in figure 18.  
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Figure 18. Enhancement in luminescence @ 780 nm (170 fs) and 800 nm (10fs) 
excitation 
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Theoretical results 

Data from figure 16 is used to plot the two photon photoluminescence excitation 

spectrum (2PES). The normalized luminescence emission integrated intensity for each 

excitation wavelengths (700-890 nm) is taken and plotted against transition energy 

((ΔE⁄ħ)*1015) to get the 2PES data points. For calculations, a sum of three Gaussian 

functions has been used to recreate the 2PES lineshape as shown in figure 19.  
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Figure 19. Two photon photoluminescence excitation spectrum 
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The entire two photon excitation spectrum for a pulse can be calculated as, 

2

0 22 )()()( ∫
∞

ΩΩ−Ω+=Τ dEE ωωω ,            (3) 
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Figure 20. Two photon excitation spectrum (Gaussians) 

 

 Two photon excitation spectra (Gaussians) for different pulsewidths is shown in 

figure 20. The 2PES, γ(ω0) as shown in figure 19 and the normalized pulse spectrum, 

from equation 4, were used for the calculation of transition probability of QD’s as,53 

0

2

0 220 0 )()()( 00 ωωγ ωω ddEE∫∫
∞∞

ΩΩ−Ω+∝Γ ,     (4) 

where ω0 is the transition energy.  Equation 4 follows from second-order, time-

dependent perturbation theory, assuming pulsed, non-resonant two-photon excitation.53  
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Figure 21. Two photon transition probability of QD’s  
 

   

A logarithmic plot of transition probability for QD’s using Equation 4, the experimental 

pulse spectra (10 and 170 fs), and the 2PES is shown in Figure 21 (asterisks). A solid 

line with a slope of -1 is shown for reference. The blue dots in figure 21 are transition 

probabilities for different pulsewidths when using Gaussian pulses. The blue circle at 10 

fs is the calculated transition probability using the experimental pulse (10 fs). The black 
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and red asterisks are the two photon transition probability calculated using 170 fs pulse 

centered at 780 nm and 800 nm respectively. The transition probability for QD’s when 

excited by Gaussians centered at 800 nm, yields an enhancement of 14.92.  

 Transition probability when using the experimental pulses centered at 800 nm 

instead of the Gaussians yielded an enhancement of 15.65. The enhancement is 13.13 

when comparing excitation from 170 fs experimental pulse centered at 780 nm and the 

10 fs experimental pulse centered at 800 nm. For relatively narrow pulse spectra, the 

transition probability as a function of pulse duration follows a τp
-1 relationship.40 This 

relationship holds for pulse durations greater than 40 fs. Deviations begin to occur for 

ultrashort pulses. 

 

Summary of results 

Excitation Pulse  

 

Experimental 
Calculations 

 

Theoretical 
calculations using 

Gaussians 
 

Theoretical 
Calculations using 

actual pulse 

800 nm 7.78 14.92 15.65 

780 nm (2PES 
peak) 

5.4 13 13.13 

Table 1. Summary of results 
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DISCUSSION 

 From the results, we see that there is an appreciable increase in the luminescence 

intensity of the QD’s when using a 10fs pulse compared to a 170fs pulse.  To verify if 

there was any shift or broadening of the emission spectra (figure 16), a plot of emission 

wavelength and power spectral density has been plotted for 3 excitation wavelengths 

(700, 800 and 890) for the 170 fs laser and 800 nm for the 10 fs laser as shown in figure 

21. It is evident from the graph that there is no appreciable broadening or shifts 

observed.  
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Figure 22. Normalized emission spectrum from QD’s using 170 fs excitation @ 700, 
800 and 890 nm 
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The 2PES spectrum (figure 19) was fitted so that the Gaussian peaks approximately 

corresponded to peaks/shoulders in the single photon absorption as shown by the arrows 

in figure 19. 
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Figure 23. Comparison of single photon absorption and 2PES lineshape 

The single photon absorption spectrum has three distinct peaks as shown with three 

arrows in figure 22. The 2PES spectrum for longer wavelengths (> 950 nm) were not 

predicted as our laser does not cover those wavelengths. Sums of 1-4 Gaussians were 
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investigated to determine the best fit for the 2PES spectrum. With an R2 of 0.97, the sum 

of three Gaussians was the best fit.  

740 760 780 800 820 840 860
0  

0.5

1  

Wavelength (nm)

In
te

ns
ity

 (a
.u

.)

 

 
Experimental 170 fs pulse (800nm)
Gaussian 170 fs pulse (800nm)

 

Figure 24: Comparison of Experimental and Gaussian 170 fs pulses 

 The transition probabilities for the experimental pulse spectra centered at 800 nm 

do not exactly match the values determined by the Gaussian pulses. It is interesting to 

note that the pulse spectrum of the 170 fs pulse is Gaussian-like but has low spectral 

intensity in the central lobes as shown in figure 23. Therefore, the transition probability 

calculated for the QD’s using the experimental pulse is lower when compared to its 
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Gaussian counterpart. The 10 fs pulse has a non ideal shape (figure 14) and the transition 

probability calculated using this pulse is also lower than its Gaussian counterpart. 

 A comparison of the enhancement in luminescence from the experimental data 

and the theory was performed. The ratio of enhancement from the experiments to the 

enhancement from the theory using experimental pulses centered at 800 nm was 2.03.   

The same ratio when using 780 nm excitation for the 170 fs pulses and 800 nm 

excitation for the 10 fs pulse was 2.43. This data suggests that the experimental data 

qualitatively matched the theoretically predicted behavior. 

 The measured enhancement in luminescence intensity was approximately half 

that calculated for the QD sample. There are a number of reasons that could contribute to 

this discrepancy. Because the experiments were performed using two different laser 

systems, the beam properties (beam size, beam spatial cross-section) of the systems were 

different. To minimize the error due to differences in beam size, care was taken 

throughout the course of experiments to ensure that the beam sizes of the 170 fs and 10 

fs laser were closely matched (4.5 mm diameter). Experimental error resulting from 

differences in focal volume and collection efficiency could also introduce errors. To 

minimize this, a Region of Interest (ROI) was defined in the detector array. A 

rectangular region was defined in X and Y direction by a start pixel, an end pixel and a 

group/height (binning factor). This rectangular ROI was closely matched when taking 

data with both the systems. The other major error could be uncompensated chirp on the 

broadband pulse. It has been shown that 100 fs2 of uncompensated dispersion in the sub-

10-fs pulse would result in 30 – 40% of the maximum luminescence intensity.40 100 fs2 
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of linear chirp could be provided by ≤1 mm of glass or 4 mm of water.40 The chirped 

mirrors compensate in steps of 200 fs2. Therefore, there could also be residual second 

order chirp in the pulse. Interferometric autocorrelation of the compensated pulse is 

shown in Figure 24. This figure indicates the existence of third and higher order 

dispersion which is not compensated.  

 

 

Figure 25. Autocorrelation pulsewidth of the ~10 fs pulse 

 The use of ultrashort pulses in NLOM systems not only enhances the 

luminescence signal but also facilitates spectral multiplexing. By utilizing the broad 

bandwidth of the ultrashort laser pulses, an array of different colored quantum dots can 
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more efficiently be imaged in one shot. QD’s are an excellent choice for spectral 

multiplexing applications due to their narrow emission spectrum and broad absorption.

 Comparison of pulsewidths on two photon excited luminescence from QD’s does 

suggest that ultrashort transform limited pulses present the most efficient excitation 

source for a NLOM system. Nevertheless, there is a price to pay when ultrashort pulses 

are used. To fully appreciate the contributions from non degenerate TPA dispersion must 

be tightly controlled. It is however extremely difficult to maintain a 10 fs pulse at the 

focus and therefore difficult to achieve the full benefit of using ultrashort pulses.  
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FUTURE WORK 

The same experiments should be repeated with a single laser system that has a 

center wavelength tunability and adjustable spectral bandwidth. Micra54, a Ti: Sapphire 

oscillator manufactured by Coherent is a new family of compact, high-tech, broadband 

(>100 nm) ultrafast lasers that could be useful for future work. Typical pulse bandwidth 

of the Micra is shown in the figure 26. The Micra has an adjustable spectral bandwidth 

from less than 30 nm to over 100 nm.54 Using Micra for the same experiments will help 

eliminate factors such as differences in collection efficiency and focal volume arising 

from variations in the beam properties.    

 

Figure 26. Possible pulsewidths using micra at 800 nm54 

Using one system, in the experiments to evaluate the effect of transform limited 

pulsewidth on TPEF will yield a better comparison to the values predicted by modeling. 

The ultimate goal is to develop a two photon imaging system with the optimized TPE 

wavelength and pulsewidth. Also using biocompatible QD’s as contrast agents with this 

systems will optimize two photon imaging.  
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