
PHYSICAL RESOURCE MANAGEMENT AND ACCESS MEDIATION WITHIN

THE CLOUD COMPUTING PARADIGM

A Thesis

by

HUTSON KEITH BETTS

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2012

Major Subject: Computer Engineering

PHYSICAL RESOURCE MANAGEMENT AND ACCESS MEDIATION WITHIN

THE CLOUD COMPUTING PARADIGM

A Thesis

by

HUTSON KEITH BETTS

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Riccardo Bettati
Committee Members, A. L. Narasimha Reddy

Radu Stoleru
Head of Department, Duncan M. Walker

August 2012

Major Subject: Computer Engineering

iii

ABSTRACT

Physical Resource Management And Access Mediation Within The Cloud

Computing Paradigm. (August 2012)

Hutson Keith Betts, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Riccardo Bettati

Cloud computing has seen a surge over the past decade as corporations and insti-

tutions have sought to leverage the economies-of-scale achievable through this new

computing paradigm. However, the rapid adoptions of cloud computing technologies

that implement the existing cloud computing paradigm threaten to undermine the

long-term utility of the cloud model of computing. In this thesis we address how

to accommodate the variety of access requirements and diverse hardware platforms

of cloud computing users by developing extensions to the existing cloud computing

paradigm that afford consumer-driven access requirements and integration of new

physical hardware platforms.

iv

NOMENCLATURE

API Application Programming Interface

AWS Amazon Web Services

SCADA Supervisory Control And Data Acquisition

VLAN Virtual Local Area Network

VNEL Virtual Network Engineering Lab

VPC Virtual Private Cloud

v

TABLE OF CONTENTS

Page

ABSTRACT . iii

NOMENCLATURE . iv

TABLE OF CONTENTS . v

LIST OF TABLES . vii

LIST OF FIGURES . viii

1. INTRODUCTION . 1

1.1 Motivation . 1
1.2 Background . 2
1.3 Purpose . 5
1.4 Objective . 5

2. CLOUD COMPUTING PARADIGM WORK 7

2.1 Requirements . 7
2.1.1 Isolation . 7
2.1.2 Scalability . 8
2.1.3 Federation . 10
2.1.4 Management . 11

2.2 Prior Work . 13
2.3 Our Contributions to the Cloud Computing Paradigm 17
2.4 Tool-Sets Used in Our Work . 19

3. EVALUATION FRAMEWORK . 21

3.1 Success Criteria . 21
3.2 Evaluation Methodology . 25

4. ACCESS PATHWAY MANAGEMENT FOR CLOUD COMPUTING . . 26

4.1 Introduction . 26
4.1.1 Scenario . 27
4.1.2 Considerations . 28

4.2 Access Method . 30
4.3 Access Method Sets . 33
4.4 Access Point . 35

vi

Page

4.5 Access Pathways . 37
4.6 Implementation . 40

4.6.1 Access Pathway Manager . 40
4.6.2 Policy Engine . 45
4.6.3 Access Information Retrieval 46

4.7 Results . 48

5. PHYSICAL RESOURCE MANAGEMENT WITHIN THE CLOUD COM-
PUTING PARADIGM . 49

5.1 Introduction . 49
5.2 Resource Types . 50
5.3 Implementation Strategy . 52

5.3.1 Resource Management and Provisioning 52
5.3.2 Management Node . 53
5.3.3 USB-Devices . 54

5.4 Intra-VPC Access Management . 55

6. SERVICE MANAGEMENT SYSTEM 57

6.1 Introduction . 57
6.2 Cloud Architecture . 58
6.3 Service Management System Design 60

6.3.1 Architecture . 60
6.3.2 Supporting Components . 63
6.3.3 Service Management Portal 64
6.3.4 Service Management Daemon 64

6.4 Implementation . 65
6.4.1 Libcloud . 65
6.4.2 Service Management System 67

7. CONCLUSION . 68

7.1 Results . 68

REFERENCES . 69

VITA . 75

vii

LIST OF TABLES

TABLE Page

3.1 OpenNebula Success Criteria . 21

3.2 Libcloud Success Criteria . 22

3.3 Service Management System Success Criteria 22

3.4 Access Pathway Manager Success Criteria 23

6.1 Network Management Action Arguments 66

viii

LIST OF FIGURES

FIGURE Page

1.1 Hybrid cloud computing. 3

4.1 A WAES2 firewall VPC with a single user-accessible console port on the
firewall resource. 28

4.2 Syntax diagram for the access method specification. 30

4.3 Syntax diagram for the access type specification. 31

4.4 Syntax diagram for the access port specification. 31

4.5 Syntax diagram for the transport-layer access port specification. 32

4.6 Syntax diagram for the protocol specification. 32

4.7 Syntax diagram for the access method set specification. 34

4.8 Syntax diagram for the access point specification. 36

4.9 Syntax diagram for the access pathway specification. 38

4.10 Access Pathway Manager integration into a generic infrastructure man-
agement tool-kit. 40

4.11 Access Pathway Manager integration into the OpenNebula software stack.
Figure adapted from [65]. 43

4.12 Access Pathway Manager architecture. 44

4.13 Access Pathway Manager flow control sequence. 45

4.14 Data model for building and managing access pathways. 47

6.1 Cloud stack with the Service Management System as the top layer. . . . 59

6.2 Service Management System architecture. 61

ix

FIGURE Page

6.3 Service Management Portal architecture. 61

6.4 Service Management Daemon architecture. 62

1

1. INTRODUCTION

1.1 Motivation

Cloud computing has seen a surge over the past decade as corporations and insti-

tutions have sought to leverage the economies-of-scale achievable through this new

computing paradigm. Large-scale virtualization has been the predominant form of

cloud computing, with its low cost of entrance and ability to scale quickly. Un-

like traditional economies-of-scale, which allow for low-cost manufacturing of large

quantities of a single resource type, the cloud computing paradigm allows for a wide

variety of resource types to be created. Furthermore, the resources offered by cloud

providers are accessible to consumers from any point on the Internet. However, the

rapid adoptions of cloud computing technologies that implement the existing cloud

computing paradigm threaten to undermine the long-term utility of the cloud model

of computing. Foremost, these technologies hinder the ability for projects depen-

dent on specific physical hardware platforms to integrate with cloud tool-kits. This

inhibits the ability for those projects to leverage the benefits of cloud computing.

Also, to make resources universally accessible, cloud computing technologies have

taken a generalized approach towards providing consumers access to their resources,

further hindering consumers that require special access accommodations. In this

thesis we address how to accommodate the variety of access requirements and di-

verse hardware platforms of cloud computing users by developing extensions to the

existing cloud computing paradigm that afford consumer-driven access requirements

and integration of new physical hardware platforms.

This thesis follows the style of IEEE Security & Privacy .

2

1.2 Background

Several well-known cloud providers such as Amazon’s Elastic Compute Cloud [1],

Rackspace [2], and GoGrid [3] support large-scale deployments of virtualized systems

across commodity hardware. Some characteristics that define the cloud computing

paradigm include elasticity of consumer-owned resources, scalability to meet demand,

multitenancy of a cloud provider’s infrastructure, and many more. Other providers,

such as Emulab [4] and VNEL [5] offer support for the allocation and consumption

of physical hardware by end-users. Management of physical assets for consumption

by customers is handled through mechanisms distinct from those used by traditional

cloud providers, but still supporting a similar life-cycle management paradigm.

To assist with the adoption of the cloud model of computing, and the setup of

cloud computing installations, several publicly available tool-kits have been devel-

oped, such as [6] [7] [8] [9] [10]. Deployments of these tool-kits by private entities for

the purpose of leveraging the cloud model of computing for internal use are called

private clouds [11]. However, as noted by [12], private clouds are assumed, by some

individuals, to violate the economies of scale achievable by pooling resources since

each private entity continues to use their existing infrastructure. This has lead to a

unified approach, called hybrid cloud computing, that allows for enterprises to scale

beyond their internal resources into publicly available clouds [11]. An example of this

type of computing can be seen in Figure 1.1. The interoperability between clouds

that has allowed hybrid cloud computing, or the leveraging of multiple clouds, has

lead to the coining of the term intercloud [13], or ”cloud of clouds” [14] [15]. In some

cases, resources deployed to the cloud must communicate with one another privately

over direct virtual or physical connections. Two or more resources communicating

directly over dedicated, private connections form a special type of cloud called a

virtual private cloud, or VPC, [16]. Amazon’s EC2 platform supports virtual pri-

vate clouds for its customers through their Virtual Private Cloud [17] service. Cloud

3

computing tool-kits also facilitate virtual private clouds by supporting the ability to

create virtual private networks between virtualized resources.

Fig. 1.1.: Hybrid cloud computing.

In a number of settings, such as training, educational learning, high-performance

cyber-physical systems, or emergency recovery systems, it would be beneficial to inte-

grate physical components into traditional cloud computing platforms, making those

components accessible in the same manner as virtualized components. For example,

a supervisory control and data acquisition (SCADA) security training facility may

want to integrate physical SCANDA components into a virtual private cloud envi-

ronment. Unfortunately, commercial and educational large-scale resource providers

do not offer a unified abstraction for both physical and virtualized resources. On

one hand, providers like EC2 offer virtual machine instances through an interface

which requires users to choose an instance size, each size specifying the amount of

memory or processors to be allocated. Cloud computing tool-kits can be leveraged

more openly by allowing users to specify the amount of memory or processors they

desire directly. On the other hand, providers like Emulab require their customers

to specify exactly the type of hardware they wish to reserve. This is achieved by a

catalog-like list of available hardware, along with the hardware specifications. Users

4

must determine the appropriate hardware platform from the catalog when issuing

their request to reserve resources. Also, providers like Emulab treat virtualization

as a by-product of their hardware allocation process, leaving it to the user to deploy

a cloud computing tool-kit on their reserved physical systems to effectively leverage

large-scale virtualization. In addition to having different ways for allocating and

managing resources for consumers, providers also differ in the methods they use for

permitting access to those resources. Each provider restricts their customers to a

particular method, or methods, for accessing the resources they have been allocated;

one provider makes resources accessible directly through a network interface, another

provider connects resources through both a network proxy and a console server.

One important reason for supporting physical resources along with virtualized

resources within a cloud computing environment is so that specialized hardware,

which may be impossible to virtualize, can co-exist with virtualizable systems using

the same deployment and management infrastructure of a traditional cloud comput-

ing platform. Furthermore, leveraging specialized hardware through a cloud com-

puting platform has a number of other benefits: First, allowing the hardware to

be shared through a cloud platform allows development costs to be amortized for

per-hardware tool-kits. Second, acquisition, management and replacement costs can

be more easily amortized as new hardware is introduced and old hardware depreci-

ates. In many environments, costs associated with the acquisition and management

of specialized hardware is not economical. For example, within academia specialized

hardware might only be required for a short duration, such as a short-term grant-

funded project. Similarly, newly formed businesses partaking in a hardware-related

venture might not posses adequate start-up funds. Instead, those hardware systems

could be operated by cloud providers, who could then offer those assets on-demand to

consumers at a greatly reduced cost, effectively achieving economies-of-scale through

global resource sharing.

5

1.3 Purpose

Despite the prevalence of cloud providers and the growing availability of open

source tool-kits, no existing platform bridges the gap between hardware-based and

virtualization-based platforms or supports consumer-driven access requirements. If,

as proof-of-concept, an open-source tool-kit could be extended with support for hard-

ware and virtualization abstraction and support for multiple access methods, the

benefits could be substantial. For instance, consumers of cloud computing could

leverage the properties and peripherals of physical hardware using the cloud com-

puting paradigm. Also, consumers can dictate how access should be granted to their

cloud-enabled resources, tailoring access based on need or purpose.

These improvements to the cloud computing paradigm can enhance the un-

derlying resource management infrastructure for the Web Access Exercise System

(WAES), version 2.0, more concisely known as WAES2 [18]. WAES2 is a course

material authoring, course management, and case-based instructional learning tool,

supported by research at Texas A&M University, for the benefit of instructors and

students at community colleges. Opening up the allocation of cloud resources to

include physical assets and consumer-driven access requirements facilitates a greater

diversity of environments for teaching.

1.4 Objective

In this research, we will first evaluate existing methods for accessing resources

deployed within cloud computing environment. Next, we will extend the cloud com-

puting paradigm in two ways: (a) resource abstraction for interfacing with both

physical and virtual systems, and (b) support for multiple access methods. We will

also focus on describing, demonstrating, and evaluating how support for multiple

access methods, and allocation of virtualized and physical resources would benefit

users of the cloud computing paradigm. Finally, we will elaborate on our implemen-

6

tation of a new cloud computing layer that allows consumers to deploy and manage

virtual private clouds as a whole rather than as a collection of individual resources.

7

2. CLOUD COMPUTING PARADIGM WORK

2.1 Requirements

Prior to discussing our solution, we must establish a set of minimum require-

ments for a system capable of providing a cloud computing mechanism, resource

abstraction, and multiple access methods. For our purpose we leverage the taxon-

omy developed by the RESERVOIR project [19]. RESERVOIR consists of a set

of requirements [20] defining the characteristics of cloud computing infrastructures,

management of virtualized resources, and service architectures for large-scale ser-

vice deployments to the cloud. We will extend these requirements to handle resource

abstraction and multiple access methods. We separate the requirements into five ma-

jor categories: isolation, scalability, federation, separation, and management. Each

category has distinct points that are elaborated upon in greater detail.

2.1.1 Isolation

Isolation requirements are established with the intention to mitigate risk associ-

ated with the cloud provider’s infrastructure and the virtual private clouds deployed

within it; risks associated with the use of resources by end-consumers, environmen-

tal factors related to physical infrastructure security and accidental network mis-

configuration. Isolation pertains to the isolation of virtual private clouds from one

another, and implies that the infrastructure must always remain under the control of

the cloud provider, even when multiple virtual private clouds co-exist within the same

physical infrastructure. The following items define the requirements for isolation:

Black Box Each resource allocated by a cloud provider must be considered a black

box; the provider need not be concerned with the internal workings of the re-

source. Once a resource has been allocated to a consumer, that resource should

be under the control of the consumer; control includes the internal workings of

8

the resource, along with actions such as starting, restarting and shutting down

the resource. Physical and virtual resources allocated to a consumer should

have no impact on the provider’s infrastructure beyond the consumption of

resources expressly allocated to them.

Sand Box Consumers should be unaware of the physical infrastructure that in-

stantiates and connects their resource. A user should not be able to interact

directly with resources outside of their own virtual private clouds, except when

those resources are connected through a public network such as the Internet.

Furthermore, a user should not be able to interact directly with a provider’s

physical hardware except for hardware allocated to the user as part of their

virtual private cloud.

Naming Space A virtual private cloud must be able to use a naming space indepen-

dent of other virtual private clouds or the underlying infrastructure. Multiple

virtual networks across one or more virtual private clouds should be able to

utilize the same addressing scheme, be it at the data-link layer or higher. Fur-

thermore, a virtual private cloud should be able to utilize the same addressing

scheme as the underlying infrastructure without conflicting with traffic on the

cloud provider’s network.

2.1.2 Scalability

Foremost, to achieve scalability, a cloud provider must meet the requirements

of the consumer regardless of the quantity of resources requested or the topology

of the consumer’s requested network. Since scalability applies to effects on both

the consumer and cloud provider, we break scalability requirements into two sub-

categories: 1) scalability as it relates to the scale and diversity of a consumer’s virtual

private cloud, and 2) scalability relating to a cloud provider’s ability to facilitate the

consumer.

9

Scalability, as it relates to the consumer, should be achievable both at instantia-

tion time of the virtual private cloud and throughout the lifetime of the VPC, that

is, when the consumer adjusts their virtual private cloud to meet on-going needs.

Virtual private clouds should scale both in size and numbers:

Scaling in size A virtual private cloud, when instantiated, must meet the require-

ments of the consumer in their entirety, or not at all. In some cases, a single

provider may not have sufficient resources available to satisfy a request. In such

cases, cloud bursting may be used to leverage resources of other providers [11].

Cloud bursting allows a cloud provider to leverage unique resource types of-

fered by another provider or to exceed their own resource availability to meet

consumer needs.

Scaling in number In order to foster a diverse ecosystem of virtual private clouds,

consumers, and providers, we believe cloud provider’s should support an ar-

bitrary large number of virtual private clouds within the same infrastructure,

provided sufficient physical and virtual resources are available.

Scalability of the cloud provider is the ability of the provider to meet the cur-

rent and future demands of its consumers. Cloud providers should scale through

federation and through diversity of resource types:

Federating When resources at one provider are exhausted, virtual private clouds

should be able to extend to other cloud providers for their demands to be meet.

Cloud bursting could be accomplished by either linking resources together us-

ing applications running within the virtual private cloud, such as transparent

VPNs, or by dedicated links between cloud providers at the infrastructure level.

In deriving a cloud provider’s decision whether to scale a virtual private cloud

across providers should not be dependent on knowledge of the internal workings

of the VPC.

10

Diversity Diversity of resource types offered by a cloud provider should scale lin-

early with the time and effort it takes to integrate new resource types into the

infrastructure. Also, a cloud provider’s configuration and management com-

plexity should be decoupled from the size and diversity of the virtual private

cloud.

2.1.3 Federation

The practice of scaling horizontally across cloud providers, leveraging resources

from each provider, is known as cloud federation. In order to scale virtual private

clouds across multiple cloud providers, the latter must be able to contribute re-

sources to form a cohesive entity even when individual resources of the VPC operate

on different infrastructures. Additionally, physical and virtual resources must be

interchangeable between providers. The following items define the requirements for

federation:

Distributed Migration Migration of virtual resources between cloud providers

and across administrative domains should be possible without requiring changes

to the virtual resource. Physical migration of physical resources between cloud

providers and across administrative domains should be possible without requir-

ing physical modification of a cloud provider’s existing infrastructure. Lastly,

physical and virtual resources should not be aware of a change in their physical

location, nor require modifications to accommodate that change.

Distributed Deployment It should be possible to deploy a virtual private cloud

consisting of physical and virtual resources across multiple cloud provider in-

frastructures and administrative domains. Federating should not require addi-

tional knowledge on the part of those resources, nor on the part of the consumer.

Administrative Privacy A virtual private cloud that spans multiple cloud providers

or administrative domains must not reveal to one cloud provider the inter-

11

nal structure or configuration of an infrastructure belonging to another cloud

provider. This includes the identities of physical machines, networking devices,

and the network’s topology. From this requirement we further stipulate that

the internal nature of an infrastructure provider’s network, that which is sup-

porting a part of the virtual private cloud, should be transparent to outside

entities.

Administrative Security The security and stability of a cloud provider should

not have an effect on any other cloud provider, even when those providers are

supporting part of the same federated virtual private cloud. If a security breach

occurs within the confines of a virtual private cloud, cloud providers hosting

any part of the virtual private cloud must remain immune to the breach. 1

Administrative Independence Administration of a cloud provider’s infrastruc-

ture should not have an effect on the administration of any other cloud provider,

even when those providers serve parts of the same virtual private cloud. Providers

should be able to add or remove physical assets from their network, and make

network alterations, without coordinating with other providers. Additionally,

providers should handle, transparently, alterations to the routing between com-

ponents of a virtual private cloud when configuration changes occur to the

physical network.

2.1.4 Management

Cloud providers must be able to manage physical and virtual resources uniformly,

along with the virtual networks they form; failure to do so limits the versatility of

1The internal security of a virtual private cloud is outside the scope of the cloud provider’s respon-
sibility. It would, therefore, be possible for a virtual private cloud to become compromised, in its
entirety, even when it expands across multiple infrastructures and administrative domains. When
the physical infrastructure of a cloud provider is compromised, virtual private clouds hosted by
the provider are typically assumed vulnerable, including parts of the virtual private cloud hosted
within other cloud providers. However, as noted earlier, compromised virtual private clouds should
not imply a higher risk to cloud providers whose infrastructures are not compromised.

12

the provider, along with the diversity of virtual private clouds that could be hosted.

Management also extends to the ability of consumers to leverage the resources of

a cloud provider through mechanisms that allow for the expressive, yet concise,

description of the consumer’s requirements, and the management of a resource’s

life-cycles. The following items define the requirements for management:

Life-Cycle Management A resource should be manageable by the consumer through-

out its life-cycle, that is, from deployment to termination. Transitioning a

resource from one state to another should be at the sole control of the con-

sumer. Only when the maintenance of the cloud provider’s infrastructure take

precedents may control of a resource’s life-cycle be preempted. At the conclu-

sion of maintenance, the consumer’s resource should be in a state before the

preemption took place.

Ad-Hoc Configuration The arrangement of physical and virtual resources into

arbitrary topologies should be possible if each resource in the topology supports

the necessary interfaces.

Resource Migration Live and off-line migration of virtual resources should be sup-

ported within a cloud provider’s infrastructure. Migration should also apply

to the contents of storage devices associated with physical resources, thereby

allowing the operating system of a physical resource to be stored off-line, mi-

grated while live, or migrated to a live system from an off-line copy.

Resource Access A cloud provider must be able to meet a consumer’s access re-

quirements, a description on how the consumer wishes to gain access to their

resource, or resources. A consumer’s access requirements may include access

methods such as network interfaces, or console ports.

13

2.2 Prior Work

In this section we summarize the issues that traditional cloud providers and

researchers have encountered with the cloud computing paradigm, their analysis

of each issue’s importance and solutions. Specifically, we will focus on the following

areas: cloud computing design principles, solutions for achieving cloud computing,

isolation of virtual private clouds and the security of cloud provider’s infrastructures,

security of the cloud and, finally, how mixed environments consisting of physical and

virtual resources are managed.

Overlay-based testbeds like PlanetLab [21] offer researchers access to geograph-

ically distributed resources, to run services they have developed, to be tested in a

wide-area network environment. Outlined in [22] are four design principles the au-

thors believe should be adhered to if testbeds are to be useful to service developers

and service consumers. Those design principles are: 1) the ability to divide comput-

ing resources into slices, 2) distributed authority and control of resources within the

overlay, 3) separation of management functionality into independent agents, and 4)

long-lived application programming interfaces. One testbed that achieves the four

design principles along with support for arbitrary network topologies is a testbed and

tool-kit developed by the Emulab project out of the University of Utah [4]. Unlike

PlanetLab described earlier, Emulab is typically deployed as a centralized infrastruc-

ture consisting of hundreds of physical servers and dozens of switches. Projects like

Emulab address a need for providers to offer physical assets and not simply virtual

machines for large scale research projects. Emulab was developed with the intent of

leveraging the physical servers for constructing virtual networks that emulate real

network environments for researchers, instructors and student alike.

To allocate resources, Emulab uses an on-demand model; when sufficient re-

sources are available, requests are acceptable, but when resources are scarce, requests

are immediately rejected. To offer a best-effort approach to resource allocation, a

batch processing system is available for users to queue their requests until sufficient

14

resources are available [23]. Because Emulab, in its original form, only allocated

physical resources, it was naturally vulnerable to resource exhaustion during peri-

ods of high demand. To overcome resource exhaustion Emulab began leveraging

FreeBSD’s jails [24] [25], which were used to segment the operating system on a

physical machine into logical systems offering separate file systems, and execution

separation between users. Emulab now offers support for virtualization using the

Xen paravirtualization hypervisor [26]. Virtualized environments allow the resources

of the physical system, such as processors and memory, to be segmented into discrete

blocks allowing for several operating systems to run in-tandem on the same physi-

cal system. With FreeBSD’s jails and Xen, Emulab can multiplex physical systems

into several virtual nodes to meet the demands of users [27]. However, when a user

requests a resource, he or she must specify whether the resource is to be physical

or virtual. They must further specify that the virtual resource is to leverage Xen,

using special syntax integrated into the ”NS” (”Network Simulator”) language used

by Emulab for describing network topologies [23]. Virtual nodes supported by Xen

are instantiated with fixed memory and disk space, as if they were physical nodes,

without exploiting Xen’s ability to be customized for each node.

Emulab’s physical servers also support full virtualization, in contrast to par-

avirtualization. Users are encouraged to take advantage of the full virtualization

using Eucalyptus [28]. Eucalyptus is a cloud computing tool-kit similar to Open-

Stack [7] and OpenNebula [6]. Cloud computing tool-kits must be installed by the

user and configured to treat the physical servers allocated to the user as virtual ma-

chine hosts. One component of Emulab’s management tool-kit is a custom hardware

restart mechanism called ”Whack-on-LAN” [29], an approach that mirrors the ability

of hypervisors to create and terminate virtual machines.

When accessing resources of a traditional cloud provider, that access is facilitated

through a network interface not firewalled by the provider. Emulab is similarly open

to its users, though they go further by providing additional methods to users for

15

gaining access to resources. Every resource, called a node in Emulab terminology,

is attached to a control network that allows for several methods of access to the

node by users. Establishing a connection to an Emulab resource is possible by

three different methods: 1) by a canonical Emulab name address accessible from the

Internet, 2) by the same address from Emulab’s user management server, or 3) console

access using telnet wrapped by a custom application on Emulab’s user management

server [23] [30]. Emulab relies upon users to secure the access methods to their

resources from infiltration by malicious adversaries and to insure their resources to

not pose a danger to the Internet. In order to mitigate risk to the Internet, Emulab

automatically applies port filtering to all connections on their control network [31],

restricting the utility of the Emulab network for applications and protocols designed

to use those restricted ports by default.

Corporations that desire to exploit the scalability of cloud computing are in-

hibited by the same security concerns that cloud providers are forced to deal with

when hosting security sensitive research [32]. Those concerns include, but are not

limited to, confidentiality, integrity and availability. DETER Lab [33] [34] [35] sup-

ports research in the same manner as Emulab, through the provisioning of physical

resources, but extends the Emulab software to facilitate a more robust and secure

environment for security related research. The security apparatus supported by DE-

TER includes dynamically configurable firewalls, intrusion detection on control net-

works, a mechanism for cleansing nodes after each experiment and a set of procedures

for classifying the security sensitivity of experiments prior to their deployment [36].

DETER Lab achieves network isolation using two approaches: 1) a dynamic assign-

ment system that leverages VLAN-capable switches, as does Emulab, and 2) their

own VLAN tagging mechanism for assigning VLAN tags based on MAC addresses

Lahey:2008:EIS:1496662.1496666.

One approach taken to run live malware on DETER [37] achieves isolation of

experiments, and security of the testbed, by focusing on four parts of an experi-

16

ment’s life-cycle: 1) the one-time setup of the physical experiment environment, 2)

pre-deployment steps, 3) experiment run-time, and 4) post-experiment clean-up. A

proposal to improve the security and architecture of DETER Lab is given in [38].

DETER Lab has also begun a transition to a more robust installation capable of

handling the diversity of security related research projects [39]. Newer developments

in DETER have lead to enhanced experimental validity, diversity in experiments and

improved scalability [40]. Outside of DETER, the authors in [41] discuss a technique

for mitigating risks associated with the security of hosted virtual machines. In [42]

a mechanism is described for cleansing potentially compromised virtual machines,

similar to those mechanisms used by DETER Lab. However, the mechanism is ap-

proached from the perspective of integration into a cloud computing tool-kit such

as OpenStack. An approach for countering security vulnerabilities associated with

transferring work between providers is examined in [43]. Other work [44], looks at

leveraging kernel-based virtual machines for scalability and for the recording and

replay of security related events within the virtual machine. This work supports ex-

periments such as distributed denial of service within the DETER infrastructure [45].

Federation is the provisioning of resources across multiple providers in a manner

that allows those resources to operate as if they were provisioned within a single

provider. Federation has been achieved by DETER using a tool called SEER, or

Security Experimentation EnviRonment, that leverages the existing DETER Lab

infrastructure [46]. Another approach to federation relies upon the concept of Cloud

Brokers [47] to split a consumer’s request across multiple cloud providers, achieving

the lowest cost possible, while insuring network connectivity between resources. The

cloud broker takes responsibility for interacting directly with each provider. Open-

Nebula supports federation by scaling horizontally, issuing requests for resources

from other cloud providers when internal resources are scarce [48].

When federating across providers, one must insure the security of the infras-

tructure and proper authentication of the consumer; a point that has been vocal-

17

ized in [49]. Issues that are raised include authentication of consumers, issues with

name spaces within each testbed or cloud provider, and finally, the decomposition

of services across those providers. Efforts to federate Emulab-like testbeds [50] [51]

concentrate on overcoming the limitation of small network security testbeds, the

isolation required to conduct experiments involving malware, and facilitate access

to resources. One approach for achieving an abstraction of the proprietary inter-

faces exposed by cloud providers required to support federation is the cloud-provider

neutral abstraction layer developed in [52].

Even though DETER is capable of handling security sensitive experiments, their

deployment requires prior approval by DETER Lab’s administrators. For security-

sensitive applications the authors in [53] propose a two-constraint approach by which

providers and consumers negotiate constraints that insure a provider is comfortable

with the risk, and that the consumer is satisfied that the provider can facilitate the

needs of the experiment.

2.3 Our Contributions to the Cloud Computing Paradigm

One of our primary contributions to the cloud computing paradigm is the intro-

duction of a robust platform for supporting the diverse access requirements of cloud

computing consumers. To this end, we developed an access management system,

known formally as the Access Pathway Manager, to compliment the existing func-

tionality of cloud computing tool-kits. Our access management system supports the

ability for consumers to specify the exact methods they require to access their cloud-

enabled resources. We call these methods Access Methods, which describe how access

should be grated to a cloud resource. One or more access methods associated with a

resource are bundled together into what we call the consumers access requirements.

Access requirements are associated with a single cloud-enabled resource, typically

compute nodes. One particularly important property of an access requirements set

is the purpose of the consumer’s resource. A purpose must be chosen from a list of

18

categories that describe how a resource could be used by the consumer. The pur-

pose affects how, or even if, access methods are deployed within a cloud provider’s

infrastructure. Depending on the purpose, cloud providers may apply different ad-

ministrative policies to the requested method, effecting accessibility, or the cloud

provider may even outright reject the requested access method.

Upon extracting access requirements from a resource request our access man-

agement system makes a decision on whether the request is valid and if it can be

satisfied. If the consumer’s access requirements can be meet, the access management

system will make the appropriate configuration modifications on the cloud provider’s

infrastructure. Actual modification is handled by a policy engine. The policy engine

takes into consideration the consumer’s requirements, the purpose of the resource to

which those requirements are associated, and the administrative policies of the cloud

provider.

Our second contribution illustrates how existing capabilities of cloud computing

frameworks can be leveraged to allocate and manage physical hardware resources.

We accomplish this illustration by extending the framework of an existing cloud

computing tool-kit to: support requests for specific hardware types, integrate drivers

for managing the hardware, and support the allocation of hardware to consumers.

The primary benefit achieved by extending an existing framework is that we can

demonstrate how physical hardware can be integrated into virtual private clouds

using the same cloud computing paradigm primitives to deploy, update and delete

resources. Though our approach is applicable to all cloud platforms, our work is

directly beneficial to the OpenNebula community, whose cloud computing tool-kit

we use in our work.

Our third contribution is a system to deploy multiple identical virtual private

clouds without modification and without issuing requests for each component of the

VPC. Our system operates as a web service at the layer above traditional cloud

providers or cloud computing tool-kits, leveraging cloud APIs to manage the compo-

19

nents that constitute the virtual private cloud. To further this end we use a software

library called Libcloud to manage the life-cycle of cloud resources. However, that

library and similar libraries, do not support the management of virtual private net-

works. Virtual private networks are a key component required to create a private

LAN within the cloud. We contribute, therefore, to Libcloud by implementing sup-

port for managing virtual private networks in the cloud.

2.4 Tool-Sets Used in Our Work

We use an open source cloud computing tool-kit known as OpenNebula [6] for our

cloud computing platform. As part of its default installation, OpenNebula uses the

best-effort resource allocation model of cloud computing, instantiating virtual ma-

chines when resources become available. Resource allocation occurs at the direction

of OpenNebula’s built-in scheduler, which reserves system resources on a physical

host and then allocates those resources to a virtual machine instance. Furthermore,

OpenNebula supports the provisioning of virtual private networks between virtual

machine instances by instantiating virtual network interfaces and managing VLAN

assignments on the physical host. Virtual private networks are made possible by

employing either data-link layer filtering of MAC addresses, or VLAN tagging as

speIEEE 802.1Q [54] and IEEE 802.1ad [55]. Of those, the latter two are important

for their ability to isolate network traffic in a secure and reliable manner. Lastly,

OpenNebula includes a web service component that adheres to the Open Cloud

Computing Interface (OCCI) standard [56] for managing cloud resources.

Our work also requires a language-agnostic, human-readable, and structured for-

mat capable of conveying structure and relationships. This format must require

little effort to incorporate into existing cloud computing tool-kits. We decided upon

JavaScript Object Notation [57], or better known as its acronym JSON. JSON

providers a lightweight standard for data-interchange using a form that is simple,

human-readable, and capable of serializing and de-serializing data structures.

20

We also use four Python libraries in our work: DJANGO [58], Django-Piston [59],

SQLAlchemy [60] and Libcloud [61]. We require these libraries for their ability to

provide a RESTful [62] web service that consumers use for managing their virtual

private clouds, interaction with cloud APIs and maintaining persistence of each user’s

request.

21

3. EVALUATION FRAMEWORK

For formulating our evaluation criteria and methodology, it is important to note

that this research contains very few metrics that can be gathered and analyzed in

a meaningful way. Rather, this research consists of functional attributes which will

require a different analysis other than raw performance analysis or number compar-

isons.

3.1 Success Criteria

Because of the qualitative nature of this work, we will take an inventory of the

functional requirements of this research to be considered successful, while not failing

to also include a few metrics that could also be useful, or potentially meaningful.

Metrics which we will account for must be viewed critically since only numerical

values gathered from system-as-a-whole testing would demonstrate the performance

characteristics and limitations of the research implementation. However, those values

could potentially be skewed as a result of the particular functional limitations of any

tool-kit, or hardware used as a part of the while system.

For our qualitative success criterion, we inventory the functional requirements of

each component of our research deemed necessary for validating the approach taken

by this research:

Table 3.1: OpenNebula Success Criteria

Criteria Valid If
Ability to deploy two virtual resources
connected by a virtual network.

Resource is queued for deployment.

Resources are deployed to cluster.
Network traffic can flow between re-
source devices.

22

Table 3.2: Libcloud Success Criteria

Criteria Valid If
Ability to poll for existing virtual re-
sources, and virtual networks.

All existing virtual resources are dis-
played.
All existing virtual networks are dis-
played.

Ability to instantiate a service consist-
ing of a single virtual resource device.

Resource is queued for deployment.

Resource is deployed to cluster.
Ability to instantiate two virtual re-
source devices connected by a shared
virtual network.

Virtual network is registered by the
cloud management tool-kit, OpenNeb-
ula.
Resources are queued for deployment.

Ability to remove resources deployed
through the Libcloud tool-kit.

Virtual resources, and system resources
associated with hose resources, are de-
stroyed.

Table 3.3: Service Management System Success Criteria

Criteria Valid If
Ability to instantiate a service consist-
ing of a single virtual resource device.

Resource is queued for deployment.

Resource is deployed to cluster.
Ability to instantiate two virtual re-
source devices connected by a shared
virtual network.

Virtual network is registered by the
cloud management tool-kit.

Resources are queued for deployment.
Resources are deployed to cluster.

Ability to remove services deployed
through SMS.

Virtual resources, and system resources
associated with hose resources, are de-
stroyed.
Resources are queued for deployment.
Resources are deployed to cluster.

23

Table 3.4: Access Pathway Manager Success Criteria

Criteria Valid If
Ability to modify virtual resource de-
ployment definitions.

Given a particular policy directive, the
appropriate modifications are made to
a virtual resource deployment defini-
tion.

Ability to apply different deployment
policies based on service requirements.

Service requirements are correctly in-
terpreted by policy engine.
Unique service requirements lead to the
correct application of unique policy di-
rectives.
Virtual resources are deployed with ap-
propriate modifications resulting from
policy directives.

24

First, a test must be conducted using the cloud management tool-kit, Open-

Nebula. Most capabilities of OpenNebula are assumed to be functional, and their

behaviors adequately documented by their official developers for the purpose of this

research. We therefore restrict our success criterion for OpenNebula to its ability to

deploy virtual networks across a cluster of systems, which is a primary focus of this

research, and will validate virtual networking as an acceptable solution for facilitating

network security and isolation.

After tests relating to OpenNebula are completed, it will fall upon Libcloud to be

validated. Libcloud’s compute driver for OpenNebula will be tested to verify work on

the driver matches the requirements of the OpenNebula OCCI API. Furthermore,

the network driver developed for OpenNebula will be tested against OpenNebula

to insure that user requirements are properly interpreted by the driver, network at-

tributes properly extrapolated, and the virtual networks successfully deployed within

a cloud computing environment.

Next, our Access Pathway Manager will be tested to determine if it meets our

success criterion. Each success criterion will be tested in part to verify the Access

Pathway Manager in both the low-level instantiation processes, and in high-level pol-

icy evaluation process. For success criterion (1), a policy is fixed, and the test focuses

on APMs ability to deploy the policy. Success criterion (2) focuses on APMs ability

to successfully interpret the requirements of a service, and chose the appropriate

policy.

Lastly, the Service Management System, which is dependent on the success of

Libcloud and OpenNebula, will be tested. These tests will verify that SMS can suc-

cessfully extrapolate the service components from a service description, and deploy

them to OpenNebula through OCCI.

25

3.2 Evaluation Methodology

To evaluate the success of our research contributions, a step-wise approach will

be taken to assess the degree to which each component of our cloud implementation

meets its success criterion. The step-by-step testing and evaluation process will

focus in-detail on each component, beginning with the component on which most

other components are dependent, and transitioning to the component with the most

implementation dependencies.

As noted earlier, there are metrics that could be meaningful to other in support

on their own evaluations of the particular implementation demonstrated here. There-

fore, those values will be included as part of the evaluation and shown in perspective.

26

4. ACCESS PATHWAY MANAGEMENT FOR CLOUD COMPUTING

4.1 Introduction

Leveraging large-scale cloud installations is possible because consumers are able

to gain access to resources therein in a reliable and secure manner. Such remote

access is supported by traditional cloud providers and Emulab-like installations alike.

For example, traditional cloud providers attach the virtual equivalent of a Ethernet

cable between a cloud-enabled resource and the Internet. Those connections support

network protocols layered over Ethernet with few if any traffic restrictions. Those

traffic restrictions are typically in place to prevent network abuse, such as unsolicited

e-mail traffic or malware. Emulab-like installations offer additional remote access

in the form of a serial-like interface. This interface is accessible directly from the

Internet, facilitated through a transparent proxy and from a system housed within the

Emulab infrastructure. Both the network and serial-like interfaces are attached to a

consumer’s resource without input from the consumer. Consumers only have control

over the services that listen for in-bound connection requests on those interfaces.

Naturally, access to cloud resources is less versatile than access to locally owned

and operated resources. Resources under the physical control of the consumer can be

configured to use any method of access desired as long as the physical hardware and

operating system support it. As a result of the minimal access methods offered by

cloud providers and Emulab-like installations, those platforms impose a limitation on

the utility of resources by consumers 1. Restricted utility results from the limitation

on services that use unsupported access methods and from the unnecessary exposing

of resources to malicious activity on the Internet, and the burden placed on consumers

to mitigate that risk.

1The term consumer denotes the owner and operator of one or more virtual private clouds, while
the term client will denote the user of services provided by a VPC.

27

In many cases these traditional access methods are not sufficient to meet the

needs of the consumer. Instead, consumers may require a variety of access methods

to gain access to their cloud-enabled resources. For example, software running on

a consumer’s resources may pose a risk to the cloud provider’s infrastructure or

Internet at large, but only over certain ports or a network interface. Similarly, a

network interface may be unnecessary to meet the needs of the consumer or their

purpose. Finally, resources may possess multiple services, with each service requiring

its own dedicated access method. A consumer’s needs and the access methods that

satisfy them are considered to be the access requirements of the consumer. If the

consumer’s requirements are not meet, then their needs and expectations are not

fulfilled.

In section 4.2 we define access methods and describe how they are constructed,

in section 4.3 we describe how consumers define sets of access methods per resource,

in section 4.4 we discuss how access points are presented to consumers, in section 4.5

we describe access pathways and what they represent and in section 6.4 we discuss

our software architecture and implementation.

4.1.1 Scenario

To illustrate the importance of custom access requirements, we present an ex-

ample currently used in a real-world scenario involving a virtual private cloud with

three resources connected in a series by two virtual private networks. In this scenario,

students at academic institutes are required to configure a firewall on one of these

resources for the purpose of learning how to filter traffic and protect network services.

Because traffic will be affected on the network interfaces attached to the resource,

the training scenario precludes students from connecting to that resource over any

network-like interface. Instead, the student must access the resource through another

medium. In this scenario, students connect to the VPC through a console port. An

illustration of this VPC setup used by WAES2 [18] can be seen in Figure 4.1. Stu-

28

dents connect to the console port of Machine B and then configure the firewall to

filter traffic between Machines A and C. This scenario illustrates how virtual private

clouds may require the cloud infrastructure to support diverse access requirements

to achieve a VPC’s full potential.

Fig. 4.1.: A WAES2 firewall VPC with a single user-accessible console port on the
firewall resource.

4.1.2 Considerations

When allowing consumers to request their own access methods, cloud providers

must taken into consideration the consumer’s intention. As part of the resource re-

quest process, each requested resource must be marked with the consumer’s purpose

for that resource. At this time, we assume that resources only fall into a single

category. We can derivepse adequate categories based on on-going research leverag-

ing cloud computing for malware analysis [63], the establishment of expectations for

storage confidentiality as elaborated upon in [64] and testbeds for network protocol

development [4]. We don’t impose a restriction on the concrete types that may be

used for the purpose. A consumer might describe the purpose of their virtual private

cloud as a exploitable platform, malware platform, secure platform, testbed platform,

29

or confidential platform. If a consumer’s access methods can not be meet because of

the purpose, then the entire request is rejected.

To determine the appropriate method for accessing a resource, three approaches

can be taken. First, access methods can be derived from the properties of a virtual

private cloud and applied automatically by the cloud provider. Second, consumers

can be restricted to a pre-defined set of access methods offered by the cloud provider

from which the consumer may choose on a per-resource basis. Third, a more relax

approach may be supported in which the consumer may poll for valid access method

types, and then build their own access method definition around that type on a

per-resource basis.

The first way is hazardous, as the mapping of VPC properties to a set of access

methods may not coincide with the expectations of the consumer. The second way

establishes well-defined behavior but severely limits the utility of cloud computing as

the consumer must expend effort to locate a cloud provider that offers the resources

and access methods they require. Therefore, we support the third approach.

Our motivation for supporting a more relaxed approach is to remedy the prob-

lems of the other two alternatives. By allowing consumers to define their own access

methods, we relax the requirement that services deployed to the cloud must adhere

to the access methods imposed by the cloud provider. Furthermore, supporting con-

sumer defined access methods allow consumers to request only those access methods

they require, subsequently limiting the extent to which their cloud resources and

services are exposed to the Internet.

In the following we argue that access methods should be treated as first-class ob-

jects, just as traditional cloud-enabled compute nodes are treated; consumers should

be able to retrieve supported access method types and build access method defini-

tions that can then be assigned to the consumer’s resources. In this chapter we will

also define what we call consumer-defined access methods, explain their relationship

to a consumer’s access requirements, explain how access points are derived from ac-

30

cess methods and introduce the concept of access pathways. Furthermore we will

demonstrate how access pathways exceed the current standards in cloud computing,

providing a unified approach toward deploying firewalls, port and protocol filtering,

yet improving the utility of cloud computing to consumers. Lastly, we will outline

a software architecture capable of facilitating the management of access pathways

and examine how our solution can be incorporated into the cloud computing tool-kit

OpenNebula.

4.2 Access Method

An access method describes how a resource within the cloud should be made

accessible to the Internet. For each resource requested by the consumer, the consumer

may associate one or more access methods with the resource. Each access method

is defined by an access type and one or more access ports. A diagram of the access

method syntax can be seen in Figure 4.2.

Fig. 4.2.: Syntax diagram for the access method specification.

The access type defines the connection medium and the control capabilities that

the access method should provide. For example, a serial connection may be estab-

lished over a serial interface to communicate with the virtual or physical equivalent

of a console port on a resource. Alternatively, the consumer may need access over a

Ethernet network to support services that require TCP/IP for traffic management.

Different access types provide different levels of control over the traffic that can

propagate across the access medium. A network access type implies that the access

method will behave like any network interface, though the actual medium could be

a virtual or physical interface, of which the physical medium could be wireless, Eth-

31

ernet, or Fiber, among others. A serial access type implies that the access method

will behave like a serial cable attached to the console port of a physical system,

though again, the actual medium could be a virtual console, DB-9, or similar type

of interface. A diagram of the access type syntax can be seen in Figure 4.3.

Fig. 4.3.: Syntax diagram for the access type specification.

The access port of the access method specifies the transport-layer access port on

the resource and the set of protocols allowed to pass through that port. A diagram

of the access port syntax can be seen in Figure 4.4.

Fig. 4.4.: Syntax diagram for the access port specification.

In the case of network access, the transport-layer access port is defined by a port

number. When the access port is implied by the access type, or is not applicable to

the access type, this parameter can be omitted. When access is desired on all ports

for a network-type access method, no ports should be included as part of the access

method definition. A diagram of the transport-layer access port syntax can be seen

in Figure 4.5.

Protocols specify the transport-layer and application-layer traffic that a consumer

wants to pass through the transport-layer access port. This stipulates that any traffic

not matching a protocol in the protocols list will be dropped. Dropping traffic is

handled by the cloud provider’s own infrastructure in the form of firewalls and deep-

32

Fig. 4.5.: Syntax diagram for the transport-layer access port specification.

packet-inspection tools, all of which should remain transparent to the consumer. A

diagram of the protocol syntax can be seen in Figure 4.6.

Fig. 4.6.: Syntax diagram for the protocol specification.

Only a single instance of the type and ports properties may be defined for each

access method. In addition to a transport-layer access port, each port has a protocols

set. Handling duplicate transport-layer access ports is implementation dependent,

with one approach forbidding duplicate transport-layer access ports, while another

may merge port protocol lists together.

We illustrate our access method specification in listing 4.1 through an example

of a network -type access method 2. This example specifies that only ports 22 and

80 should allow traffic to pass through. Furthermore, only connections established

using the application-layer HTTP and HTTPS protocols are allowed on port 80, and

connections established using the application-layer SSH protocol are allowed on port

22.

2In this example we use JavaScript Object Notation [57], better known as its acronym JSON, a
the representation for the access method specification. JSON providers a lightweight standard
for data-interchange using a form that is simple, language-agnostic, human-readable, and capable
of serializing and de-serializing data structures. JSON is used to specify access methods in our
implementation of the Access Pathway Manager (See Section 4.6.1).

33

{"type": "network", "ports": {"80": ["HTTP", "HTTPS"], "22": ["SSH

"]}}

Listing 4.1: JSON-encoded Access Method

Though beneficial to both cloud providers and cloud consumers, consumer-defined

access methods raise their own issues primarily due to the fact that consumers

have only a limited knowledge of the environment in which their VPC is deployed.

First, consumers may not know the security implications of using a particular ac-

cess method. For example, consumers may assume that application-layer protocols

that are sufficient for their own private networks, such as Telnet, should suffice for

VPCs, even though the clear-text transmission of data could be exploited by ne-

farious third-parties. Second, consumers do not have an incentive to achieve the

minimum-privilege principle, or may believe the use of complimentary mechanisms

for establishing firewalled network interfaces may be to cumbersome. Fortunately,

offering the ability to specify more restrictive access requirements as part of the re-

source request process and by bundling access requirements into the resource request

process will only facilitate stronger control over the security of that resource. Third,

consumers have no knowledge of the cloud provider’s infrastructure, which may pre-

clude certain access methods. This last issue can be partially mitigated by rejecting

requests that contain an access method, or methods, that are not supported by the

cloud provider, and by providing a discovery mechanism for consumers to learn what

access methods are support by the cloud provider.

4.3 Access Method Sets

So far we have discussed how to construct the definition of a single access method.

In some cases consumers may want to associate more than one access method with a

resource. A bundle of one or more access methods is called an access method set. An

34

access method set may contain access methods of identical definitions associated with

a single resource. Each resource that has access methods will have its own access

method set. A formal definition of an access method set is shown in Figure 4.7.

Fig. 4.7.: Syntax diagram for the access method set specification.

As an example, in listing 4.2 we show the specification of the set for a single

resource. This set consists of two access methods that shall be referred to by their

types: network and serial. To maintain consistency, we use the same network access

method defined earlier.

{" access_methods ": ["{’type ’: ’network ’, ’ports ’: {80: (’HTTP ’, ’

HTTPS ’), 22: ’SSH ’}}", "{’type ’: ’serial ’}"]}

Listing 4.2: Access Method Set

Establishment of access methods in an access method set follows transactional

semantics: either all access methods in the set are established or the entire request,

including the request for resource establishment, is rejected. In the latter case the

requesting consumer is returned an error response indicating what requested access

methods could not be established and what lead to the failure. By providing a

detailed report of the failure consumers can re-issue their request with a modified

set of access methods, and so de-facto enter into a resource-negotiation round with

the cloud provider.

Part of the negotiation process may result as a consequence of cloud providers

establishing access requirements that consumers must adhere to when formulating

their access method sets. If a consumer fails to meet the requirements of the cloud

provider, they may be required to make alterations to their access methods. For

example, a consumer may request access to certain ports that are blocked by the

35

provider, as illustrated in example 4.3. Also, consumers may be required to include

additional access methods, as illustrated in example 4.4. Provider’s may also restrict

transport-layer and application-layer protocols, as illustrated in example 4.5.

{" access_methods ": ["{’type ’: ’network ’, ’ports ’: {80: (’HTTP ’, ’

HTTPS ’), 22: ’SSH ’}, ’error ’: ’Port 80 is blocked .’}", "{’type ’:

’serial ’}"]}

Listing 4.3: Access Method with Port Blocking Error

{" access_methods ": ["{’type ’: ’network ’, ’ports ’: {80: (’HTTP ’, ’

HTTPS ’)}, ’error ’: ’An SSH accessible port is required .’}", "{’

type ’: ’serial ’}"]}

Listing 4.4: Access Method with Inclusion Error

{" access_methods ": ["{’type ’: ’network ’, ’ports ’: {80: (’HTTP ’, ’

HTTPS ’), 22: ’SSH ’}, ’error ’: ’HTTP protocol is not allowed .’}",

"{’type ’: ’serial ’}"]}

Listing 4.5: Access Method with Forbidden Protocol Error

Resource negotiation can be further supported by an appropriate resource discov-

ery interface, where consumers can query the provider about available resources and

access methods. Also, this request-response mechanism can allow the consumer to

request access methods that are satisfactory for the purpose of a consumer’s virtual

private cloud. This mechanism, however, would not be a requirement prior to issuing

a request for resources.

4.4 Access Point

Access method sets convey the consumer’s desired methods for accessing their

cloud-based resources, but they do not offer information required to actually establish

36

a connection. Information relevant to establishing a connection to an end-point

consists of an address of the end-point, the port on which a service is listening and the

protocol used for the communication channel. These end-points are known as service

access points. Each access method requested by the consumer may be converted into

one or more access points. Access points are not serviced by the cloud provider, but

only indicates the location, and subsequent protocol that is allowed, to establish a

connection to the resource to which it is associated. Handling connections is the sole

responsibility of the services running within resources controlled by the consumer.

Each access point is described in a manner similar to an access method, except that

the type attribute is replaced with an address attribute. The address can be any

routable IP address or Fully Qualified Domain Name. Because an access point may

contain a list of ports and the protocols allowed on each port, it is possible to map

access methods to access points on a one-to-one basis. A diagram of the access point

specification can be seen in Figure 4.8

Fig. 4.8.: Syntax diagram for the access point specification.

As an example, Figure 4.6 shows the description of a single access point. This

access point contains the address and the ports required for applications to establish

connections using the HTTP, HTTPS and SSH application-layer protocols.

{"type": "network", "ports": {"80": ["HTTP", "HTTPS"], "22": ["SSH

"]}, "address ": "192.168.0.1"}

Listing 4.6: Access Point

Contained within the definition of the access point is an IP address, a list of

ports on which connections may be established, and a list of protocols that are

allowed over the connections. In this example, the consumer might leverage the

37

access point by pointing a web browser to the specified address 192.168.0.1 and port

80. Alternatively, the consumer may leverage port 22 to establish a secure remote

terminal.

Though accepting establishing connections, or accepting in-bound connections

is the responsibility of the consumer, both the consumer and cloud provider have

the joint responsibility to facilitate the connection from point-to-point. By point-to-

point we mean from a service running on a resource allocated to a consumer by the

cloud provider, to the end-user of the connection. The joint responsibility is broken

down as follows: (1) the consumer must have a service, such as an application,

running on the resource that will respond to connection attempts at the given port,

and using the protocol, specified in the access point definition, (2) the cloud provider

must establish a path between the publicly available access point and the consumer’s

resource. That path must allow traffic destined for the access point to pass through

the cloud provider’s infrastructure and arrive on the port specified in the consumer’s

original request for an access method.

We call this path from the publicly accessible access point made available by the

cloud provider to the access point on the cloud-enabled resource the access pathway.

In the following section we describe how to specify the access pathway.

4.5 Access Pathways

An access pathway connects consumers to their cloud-enabled resources, and

clients to the services that run on those resources, through a serial of access points.

There are three forms of access pathways: (1) Access pathways that consist of only

those access points within the cloud provider’s infrastructure through which traffic

travels transparently from the consumer to the resource. These access points are

established on systems within the cloud provider’s physical infrastructure and traffic

from the first access point is automatically forwarded to the last access point along

the pathway. (2) In other cases, access pathways that consist of access points that the

38

consumer must establish connections to in succession to gain access to their resources.

In these cases consumers are required to establish a connection to the first access

point in the pathway with the intention of directly, or indirectly, establishing a new

connection to the access point next in the chain towards the consumer’s resource. (3)

Finally, access pathways that are combinations of the two cases above. In this last

case, consumers are required to establish connections to two or more access points,

but one of more of those access points may itself be a set of access points that tunnel

traffic between each other, transparent to the consumer.

To represent a pathway, we have add an access pathway property to each access

point. If the consumer must connect to multiple access points in succession, the next

access point in the chain will be contained within the access pathway property of

that access point. Furthermore, the access pathway property may contain multiple

access points that are accessible from a single access point. For example, a user may

first be required to log into a resource using the top most access point. From there

they can gain access to any of the access points listed within the next lowest level.

A diagram of the access point specification can be seen in Figure 4.9

Fig. 4.9.: Syntax diagram for the access pathway specification.

An illustration of a pathway can be seen in listing 4.7. In our example a consumer

receives an access pathway consisting of one access point. That access point is

sufficient to gain access to the consumer’s resource.

{’access_point ’: {’address ’: ’192.168.0.1 ’ , ’ports ’: {’80’: (’http ’,

’https ’), ’22’: (’ssh ’)}, ’access_pathway ’: []}}

Listing 4.7: Access Pathway

39

The formulation of an access pathway as a series of access points that a consumer

has to establish connections to in succession is necessary to overcome security related

issues for cloud providers. A cloud provider may wish to offer access to the consumer’s

resource using the access methods specified but direct access to the Internet may not

be warranted as a result of the consumer’s purpose for their virtual private cloud.

A cloud provider could offer an intermediate node as part of the pathway if that

additional node would allow for the consumer’s access requirements to be satisfied.

In some cases an additional property will be required by access points when an

intermediate node is used. This additional property is known as the access point’s

credentials. Credentials are only required by those access protocols that support a

username, password, encryption key, or combination of those, and pass through an

intermediate node. For example, credentials required to establish an SSH connection,

or credentials required by the Basic Authentication mechanism of a web server that

proxies an HTTP connection between the other access point and the inner access

point. This scenario is illustrated in 4.8.

{’access_point ’: {’address ’: ’192.168.0.1 ’ , ’ports ’: {’80’: (’http ’,

’https ’), ’22’: (’ssh ’)}, ’credentials ’:{’username ’: ’bob ’, ’

password ’: ’bob ’, ’key ’: None}, ’access_pathway ’: [{’address ’:

’10.1.0.1’, ’ports ’: {’80’: (’http ’, ’https ’), ’22’: (’ssh ’) }}]}}

\end{center}

Listing 4.8: Access Pathway

In all forms of an access pathway, the cloud provider is aware of its existence for

the purpose of maintaining the pathway. Only when there are access points along a

pathway that the consumer must establish connections to in sequential order must

the consumer know about the pathway. Those cases in which a consumer has only

one access point and no pathway then the pathway is represented in the form shown

earlier in listing 4.7. In all other cases the consumer is presented with an access

pathway as shown in listing 4.8.

40

4.6 Implementation

To demonstrate the utility of the access pathway model we developed a compli-

mentary tool to the OpenNebula cloud computing tool-kit. This new tool facilitates

the creation and management of access pathways between the Internet and the re-

sources belonging to the consumers of a cloud provider. We refer to this tool as

the Access Pathway Manager (APM). In its current iteration, our Access Pathway

Manager is built against the OpenNebula tool-kit, though that decision was for con-

venience and not to impose a limitation on the cloud computing tool-kit that the

APM can be integrated into.

4.6.1 Access Pathway Manager

To support the management of access pathways within the cloud, the Access

Pathway Manager is coupled to the life-cycle of cloud resources. Creation of new

pathways occur as part of the resource request process. During that process the ac-

cess method set provided by the consumer is extracted from the resource request and

submitted to the Access Pathway Manager. In addition to the consumer’s require-

ments the Access Pathway Manager also takes into consideration the administrative

policies of the cloud provider; those policies potentially affecting the deployment of

access pathways.

Fig. 4.10.: Access Pathway Manager integration into a generic infrastructure man-
agement tool-kit.

41

Different access types are handled by the Access Pathway Manager through a set

of dedicated, type-specific, handlers. Dispatching each access method from an access

method set to the appropriate handler is accomplished by the APM’s Policy Engine.

It is the policy engine that, prior to dispatching access methods to handlers, also

validates the consumer’s request, insuring the request adheres to the administrative

policies of the cloud provider. Furthermore, to maintain state of all access pathways

across the physical infrastructure of the cloud provider, a storage back-end is used

and managed by the APM. A generalized diagram showing how our Access Pathway

Manager integrated into the cloud architecture can be seen in Figure reffig:apm-

integration-general. The Access Pathway Manager is called during the following

three transition states of a typical cloud resource life-cycle:

Deploy State transition that occurs when the cloud provider initiates the process

of provisioning a resource, or resources, to a consumer as part of a previous

request by that consumer.

Resubmit State transition that occurs when the owner of a resource that already

exists submits a new description with the expectation that the existing resource

will be destroyed and provision again with properties from the new description.

During the resubmit transition, the existing resource is destroyed and the re-

quest enters into a pending state prior to entering the deploy state transition.

During the resubmit transition, the existing pathway is destroyed in a manner

identical to the behavior of the APM during a stop state transition.

Stop State transition that occurs when the cloud provider begins the clean-up pro-

cess for a resource following the release of that resource by the consumer. In this

state all access pathways between the Internet and the resource are destroyed

by destroying access points that constitute the pathway.

Our integration of the Access Pathway Manager into OpenNebula takes advantage

of the latter’s hierarchical and compartmentalized architecture. That architecture

42

is designed to map high-level life-cycle management commands to the underlying

hypervisor used to provision a new resource. Provisioning is accomplished through a

set of virtual machine hooks, which are scripts that align with the transition between

life-cycle states. Though OpenNebula refers to their hooks as virtual machine hooks,

they are merely scripts written for particular hypervisors. Our Access Pathway

Manager is integrated into OpenNebula’s dispatch mechanism that maps the generic

life-cycle transitions to the scriptable commands for the underlying hypervisor. This

allows for a minimally invasive integration, and allows the Access Pathway Manager

to capture all calls to these hooks. The APM is passed the transition state, the

OpenNebula hypervisor driver being called and a definition of the resource. Our

Access Pathway Manager in relation to OpenNebula’s architecture can be seen in

Figure 4.11.

When a resource’s definition is passed to the appropriate OpenNebula driver, the

consumer’s access method set and VPC purpose are contained within the resource’s

definition. For OpenNebula’s KVM driver, for example, the resource definition is

encoded in XML with the access method set and VPC purpose embedded as elements

within the definition. The Access Pathway Manager, using the type of hypervisor

driver used by OpenNebula to determine how the access requirements and purpose

are embedded, will extract both for the purpose of creating a new access pathway.

Figure 4.9 gives an example of an embedded access method set and the VPC purpose:

<>

<access_point >

{’access_point ’: {’type ’: ’network ’, ’ports ’: {’80’: (’http ’, ’https

’), ’22’: (’ssh ’)}}}</ access_point >

<purpose >Web Hosting </purpose >

</>

Listing 4.9: Access Method Request

43

Fig. 4.11.: Access Pathway Manager integration into the OpenNebula software
stack. Figure adapted from [65].

We avoid modifying the core of OpenNebula directly, avoiding both OpenNeb-

ula’s resource request interpreter, and the specification used to define a resource

for provisioning by OpenNebula. We avoid these modifications by embedding the

consumer’s access requirements in a manner that causes the requirements to be

passed through OpenNebula without modification so that those requirements can

be extracted by the Access Pathway Manager. In this way, the consumer’s access

requirements are handed to the underlying drivers without further interpretation by

44

OpenNebula. Those requirements are intercepted by the APM prior to the resource

definition being handed over to the underlying hypervisor driver for provisioning.

To embed the consumer’s access requirements we exploit the ability of Open-

Nebula’s XML-RPC interface to pass raw XML to OpenNebula along with the con-

sumer’s resource request, formatted in OpenNebula’s proprietary format. Passing

raw XML causes the raw XML to become embedded within the resource definition

when OpenNebula converts the consumer’s request from the proprietary format to a

hypervisor-specific format. Raw XML is enabled by the RAW attribute allowed in

a resource template, a template that defines the properties of a resource, passed to

OpenNebula’s XML-RPC interface.

Though OpenNebula does not need to be modified, OpenNebula’s OCCI inter-

face must be modified to handle two additional properties within an XML-encoded

definition of a resource. Those properties are the access method set and the VPC

purpose. Our modifications to the OCCI API causes the OCCI interface to extract

the two new properties, embed them within XML and assign them to the RAW

attribute used by the OpenNebula XML-RPC interface. At that point, the access

methods and purpose will be transparently embedded into the hypervisor-specific

XML and captured by the Access Pathway Manager.

Fig. 4.12.: Access Pathway Manager architecture.

Each access method type is associated with a handler that is responsible for

incorporating the appropriate access point into the resource and constructing the

access pathway between the consumer and that resource. Handlers are part of the

45

Access Pathway Manager’s Policy Engine. These handlers can be seen in Figure 4.12.

Furthermore, a sequence diagram demonstrating the flow control through the Access

Pathway Manager can be seen in Figure 4.13.

Fig. 4.13.: Access Pathway Manager flow control sequence.

4.6.2 Policy Engine

An Access Pathway Manager’s Policy Engine drives the instantiation of path-

ways based on the administrative policies of the provider, the requirements of the

consumer, the type of each resource requested and the consumer’s intended purpose.

Each type of access method requested by the consumer is associated with a policy

handler. Each policy handler will generate a pathway satisfying the requirements

just mentioned. Because pathways may overlap in their use of systems within the

provider’s infrastructure, policy handlers share a common library for managing re-

source types and executing common access modifiers, such as iptable rules. Three

possible access methods that would require their own policy handlers, such as: (1)

network, (2) serial, and (3) USB.

It was our decision to associate policy handlers with each access method type and

to take sole responsibility for driving the establishment of an access pathway from the

46

resource to an Internet-accessible interface. Incorporating appropriate access points

into the resource would seem like the only responsibility of the policy handler. How-

ever, it was determined that each policy handler, possessing the knowledge on how a

particular access method is instantiated, would take further responsibility in driving

the construction of a pathway that best facilitates that access method. Resource

handlers for interacting with infrastructure components, such as switches, routers or

intermediate compute nodes, would be facilitated through a common library available

to each policy handler.

A final requirement construct an access pathway is an understanding of the cloud

provider’s network infrastructure. To facilitate this understanding, a model capa-

ble of capturing the particulars of the cloud provider’s infrastructure would need

to be incorporated into the Policy Engine. All physical systems within the infras-

tructure must be captured in model, including compute servers, switches, routers,

switched power supplies and gateways. Our model must also capture the relation-

ships between physical systems, including but not limited to Ethernet, USB, serial

and power connections. Lastly, it is important to capture the resources that are

allocated to consumers since those resources represent one of the end-points for an

access pathway. Though physical systems can be captured at installation time, vir-

tualized resources must be captured in our model when they are instantiated at the

request of a consumer. This is accomplished by updating the model when the Access

Pathway Manager is called during the deployment of a resource.

4.6.3 Access Information Retrieval

Access information should be retrieved though the same mechanism consumers

use to retrieve information about their resources. When retrieving information about

a resource through OpenNebula’s OCCI interface, an XML-encoded definition is

return containing information such as: status, memory, disks, network interfaces, ect.

Access information should be embedded within the resource definition as additional

47

Fig. 4.14.: Data model for building and managing access pathways.

top-level properties underneath the root element. Access information is nothing more

than the access point, and embedded access pathway, information. An example of

a resource definition returned as part of a information request containing embedded

access information is shown in the following example. Also shown is the purpose of

the virtual private cloud embedded as another top-level property.

<>

<access_point >

{’access_point ’: {’type ’: ’network ’, ’address ’: ’192.168.0.1 ’ , ’

ports ’: {’80’: (’http ’, ’https ’), ’22’: (’ssh ’)}, ’access_pathway

’: []}} </ access_point >

<purpose >Web Hosting </purpose >

</>

Listing 4.10: Access Information

48

4.7 Results

To validate our work, we decided upon a single test that should be sufficient

to demonstrate the utility of an Access Pathway component to the cloud comput-

ing paradigm, and to the consumer’s ability to leverage cloud computing for non-

traditional uses. Our two tests are summarized below.

For our test we demonstrate that our proposed Access Pathway Management

system is capable of modifying resources during the deployment process that are

accessible over serial connections similar to how the Virtual Network Engineering Lab

is currently used for teaching. As part of VNEL, virtual private clouds are provided

to students to learn how to configure iptables-based firewalls. Providing a standard

network interface is not feasible. Therefore, access is facilitated through a serial

connection. We wish to verify that a request for a virtual private cloud, consisting

of three resources, each resource requested along with a serial access method, can be

deployed to the cloud and instantiated with the appropriate access points. This test is

accomplished using OpenNebula’s OCCI interface and a set of network and compute

node templates. The network templates are used to establish network connections

between the three resources of the virtual private cloud as seen in Figure 4.1.

49

5. PHYSICAL RESOURCE MANAGEMENT WITHIN THE CLOUD

COMPUTING PARADIGM

5.1 Introduction

Traditional cloud providers offer consumers the ability to leverage virtualization

to achieve large-scale computing, while smaller, non-traditional, providers offer con-

sumers the use of physical resources. No single cloud provider offers the allocation of

both virtual and physical resources to a consumer. Subsequently no provider offers

a unified ontology for that provisioning. Though no unified ontology exists, Emu-

lab was the first to develop an infrastructure capable of scaling to the demands of

consumers by leveraging virtualization in conjunction with their existing physical

resource provisioning system [26]. However, their ontology is built on the premiss

that consumers must leverage the physical hardware provisioning system to deploy

virtual assets to meet those needs. This further requires the consumer to specify the

physical hardware they wish to leverage for virtualization and the virtual nodes to be

instantiated on each physical system. In addition to the requirement that consumers

map virtual nodes onto physical systems, Emulab also restricts virtual nodes to a

pre-specified configuration that dictates a particular amount of dedicated memory

and processor time. Therefore, scaling is only achieved through the direct interven-

tion of the consumer and not through a deployment mechanism that automatically

maps resource requests to resource availability.

To leverage the traditional cloud computing paradigm, consumers are required to

deploy their own hypervisors, cloud computing tool-kits, or other supporting tools. It

is this cloud computing infrastructure, an infrastructure installed on top of physical

systems, that consumers rely upon for handing the deployment of virtual machines

in a manner that allows for disassociation between virtual instances and physical

hardware, and allows for consumers to dictate the properties of each virtual machine.

50

Possessing the capability to deploy cloud tool-kits on top of a virtual private cloud

is a useful technique for leveraging the scalability of cloud computing to test new

features incorporated into a tool-kit without having to deploy the tool-kit to physical

hardware; and thereby incur the overhead of managing physical assets. However, to

achieve scalability initially should not require additional effort on the part of the

consumer. Rather, the ability to scale quickly with virtualized machines should be

an intrinsic property of the infrastructure.

Expecting the consumer to manage their own cloud implementation, even with

the help of an existing tool-kit, is to much of a burden. The consumer should not

need to manage their own cloud layer on top of a physical layer just to manage virtual

instances. Rather, that should be an existing feature of the underlying provider that

already offers physical resources.

Supporting a mechanism that is capable of provisioning both virtual and physical

resources allows greater utility for the consumer while avoiding the overhead of a

dedicated mechanism for physical resources. Furthermore, we avoid the need to

deploy additional software on top of physical hardware and support the ability to

scale when the quantity of physical resources become scarce.

5.2 Resource Types

A major difference between cloud providers and Emulab-like providers is the in-

herent property that physical resources are immutable, consisting of fixed hardware

components that can not be modified pragmatically. Therefore, rather than speci-

fying the properties of the resources, such as is the case with virtual machines, the

properties of the physical hardware are intrinsic properties of the resource. Emulab-

like installations construct their resource request language such that consumers re-

quest the specific type of hardware, quantity, and their association to other resources

in a network topology. Traditional cloud providers also restrict consumer requests

51

for compute nodes to set sizes, or flavors, with each instance consisting of hard-coded

attributes such as memory, and processors.

Though this practice is not necessary for virtual machines, it’s common practice

for cloud providers since it allows them to apply price points to each size. This part of

the cloud computing paradigm can be exploited since the restriction on customization

by consumers allows for physical hardware to be integrated through the same request

mechanism.

One important aspect to managing both virtual and physical resources from the

consumer’s perspective is the ability to retrieve information about resource avail-

ability and capability. To extend OpenNebula’s ability to report information about

physical resources we must first determine the appropriate properties that can ade-

quetly decribe the resource to the consumer.

Thse properties that define a virtual resource include:

• CPU

• VCPU

• RAM

• Disk Image

For physical resources, there are only two properties that all physical resources

have. Those include:

• Type of Physical Resource

• Power Interfaces

Any other attributes of a physical resource are associated with the type, or model,

of that physical hardware. Furthermore, physical resources are considered to remain

immutable. Once installed in a cloud provider’s infrastructure, there should not exist

52

the expectation that the physical resource would, or should, be physically modified.

Those modifications would include the addition of network interface, memory or

hard disk space, or the attachment of peripheral devices. Any of these modifications

would require the addition of a new resource type that OpenNebula would report

information on.

Also, by making physical resource immutable we alleviate the requirement for on-

going human intervention to maintain a fixed quantity of resources that match the

day-to-day requirements of the consumer. Instead, we establish the expectation that

is physical resources matching a particular configuration are required by consumers,

then the resource provider should incorporate the additional resources into their

infrastructure, or replace existing physical resources with the modified ones.

5.3 Implementation Strategy

5.3.1 Resource Management and Provisioning

To facilitate a mechanism capable of provisioning physical and virtual resources,

we must establish how that mechanism can interpret the consumers request and

provision the correct resource. Fortunately, there is already a mechanism for accom-

plishing this. Traditional cloud computing providers offer a mechanism for retrieving

a list of pre-define virtual resource sizes. These sizes specify the amount of memory,

the number of processors and number of network interfaces a virtual resource is al-

located. Pre-defined sizes are restrictive but they allow cloud providers to develop

price tiers. We propose to leverage this mechanism by re-purposing for the prob-

lem of virtual-physical resource management. We purpose that virtual resource sizes

represent resource types, and that one or more instances for each type may exist to

represent the different properties of each type.

First, there is a standard virtual resource type consisting of the standard sizes

already presented through the aforementioned mechanism. The other three resource

53

types are all physical types. There are two sizes for our third type, switches, rep-

resenting switches categorized by number of network ports. For our last device,

the NSLU2 is categorized by whether it is powered by a traditional power plug or

whether it is powered over the USB cable.

We approach physical resource management in a manner similar to Euclypus.

However, we only apply this approach to some types of resources based on special

consideration for connection types that require special management. For those that

have this approach applied, we assign one or more management nodes to handle the

execution of life-cycle steps. Life-cycle steps include restarting physical hardware,

and virtual machines, deploying disk images, and provisioning resources based on

demand.

5.3.2 Management Node

Management nodes are pre-configured physical servers that act as the care-takers

of physical devices offered to consumers. A major reason for leveraging this architec-

ture is the ability to integrate with the cloud computing paradigm. Cloud tool-kits

provision compute nodes across physical servers by instantiating virtual machines

within hypervisors on those servers. Provisioning is only possible when adequate

resources exist within the servers that act as hosts. Those resources are typically the

available memory, or CPU.

To support the provisioning of physical resources, we must make them known to

the cloud tool-kit. For provisioning virtual machines ,physical host are registered

with the cloud tool-kit and periodically polled for resource availability and current

virtual machine state. Therefore, we first need a method to project availability. Also,

provisioning is carried out by the cloud tool-kit by issuing commands remotely on

the physical host. Those commands execute actions of the hosts’s hypervisor, such

as creating, starting, pausing, resuming, and destroying virtual machines. Therefore,

in addition to projecting availability, we must also support life-cycle management.

54

Lastly, because some physical connections can not be routed using network-based

services, an intermediary must provide the ability to either route the traffic from

those connections to other virtual machines hosts, or instantiate virtual machines

directly. A summary of these requirements is given below:

• Resource availability

• Connection management

• Resource life-cycle management

We propose that an intermediary is required to satisfy these requirements. This

intermediary we shall call a management node. Management nodes are pre-configure

to carry out the tasks required to manage physical resources.

To provide resource availability, the management node must maintain a persistent

database of physical resources that are under its control.

Another benefit of using management nodes is the ability to scale. If a greater

quantity of of a particular physical resource type if requires, and existing management

nodes for that type cannot handle additional resources, then a new management node

can be provisioned and added to list of active hosts. Interaction between the cloud

tool-kit is identical between virtual machine hosts and physical resource hosts, except

for the value polled. For management nodes, only the resource quantity would be

different from virtual machine hosts. Resource state information would be reported

by both virtual machine hosts and management nodes alike.

5.3.3 USB-Devices

One example where a management node is required is for physical resources that

have USB ports that we, as the cloud provider, wish to offer to consumers. To fa-

cilitate consumer access to those USB ports, we management one or more physical

55

servers that act as end-points for the USB cables emanating from the physical re-

sources. Those physical servers, which are the management nodes, double as virtual

machine hosts.

As an example of this situation, a consumer may wish to reserve two resources,

one generic, and the other consisting of the physical resource with a USB port.

We do not provide an approach for establishing a physical connection between

the USB ports on two separate servers. Leveraging USB between physical servers

does not significantly benefit consumers. We believe communication between servers

can be achieved adequately using existing network-based services. Services offered

by USB, such as booting from USB, and external storage, can also be achieved using

network boot or network-accessible storage on other networked servers.

5.4 Intra-VPC Access Management

One important consideration that must be taken before integrating physical sys-

tems into a network infrastructure is how those physical systems will be networked.

This task is typically easier than indicated since the owner of the network already

knows how the physical systems will be used, and therefore, how they should be con-

nected to offer the intended services. Unfortunately, when it is the intended of that

owner to offer those physical systems as resources to cloud consumers, the owner now

must anticipate all possible connections, and combinations, that consumers might

desire. Towards accommodating consumers, it is straight forward to attach cables

from every access interface on the physical system, such as serial ports, Ethernet

interfaces, and USB ports, to equivalent access interfaces within the network infras-

tructure. Ethernet interfaces can be connected to switches with VLAN tag support,

and serial ports can be connected to serial console servers, which typically support

telnet or SSH to serial connections.

Since it is difficult to route certain interfaces, such as USB traffic, we propose

that all connections from a type of physical system be connected to the same set of

56

systems, one or more virtual machine hosts. Therefore, the virtual machine hosts

will act as the sole end-point for those types of connections. To accommodate the

the need for accessing the USB port on a physical system, we leave it either to the

consumer to request a virtual machine attached to the physical end-point of the USB

cable, or to the cloud provider to establish a software-based tunneling application

for projecting the USB end-point to another location within their infrastructure.

The underlying mechanism for projecting a physical serial port into a virtual

machine is already supported by hypervisors such as KVM. What we wish to propose

is the method that consumers use to indicate the need for a cloud-based resource to

be attached to a cloud-based physical resource. The semantics behind the resource

allocation and configuration it important to insure consumers can leverage physical

resources within their virtual private clouds, and to insure that cloud providers can

appropriately accommodate the consumer’s request.

In the manner that access methods allow consumers to fully specify how a resource

is accessible from the Internet, so to could it allow consumers to specify how one

resource should be accessible by another. We therefore propose to extend our use of

access method requests to include requests for methods of access between resources

within the cloud. The same semantics used to request an access method for a resource

could also apply to requesting access methods between resources.

Between virtualized resources, attaching network interfaces is trivial and applying

network traffic conditioning is possible as demonstrated by Emulab [23]. Further-

more, attaching serial devices between virtualized resources is also possible, though

the method may require the two attached devices to be co-located on the same host.

57

6. SERVICE MANAGEMENT SYSTEM

6.1 Introduction

Our third contribution to the cloud computing paradigm is a new service layer

that can deploy, update, and destroy a virtual private cloud (VPC) from a single

request. Such a self-contained VPC request would trigger the uploading of virtual

disk images, the creation of virtual private networks, and the instantiation of compute

resources. In section 6.2 we outline the cloud computing architecture and our service

layer’s relationship to it, in section 6.3 we describe the design for our new service

layer, in section 6.4 we discuss our implementation, and in section 4.7 we discuss our

results.

A major inhibiting factor preventing the easy deployment of virtual private clouds

in a single request are the inter-dependencies between VPC components. Dependen-

cies include: 1) Virtual disk images that must be uploaded prior to instantiating

compute nodes, 2) Networks that must be configured prior to instantiating compute

nodes, and 3) the unique identifiers associated with the previous two that must be

known when constructing the description of a compute configuration.

To overcome the tight dependence between VPC components, we designed a

system that takes a VPC description with fully articulated dependencies and instan-

tiates all the components in the proper order. The instantiation process also retains

an accounting of information only available after instantiation of each component,

including: the unique name or numerical identifier of the component. In some cases,

the unique identifier created during the instantiation of one component is required

as part of the definition for another component. Releasing the consumer from having

to manage these dependencies between components is one major benefit of using a

system that abstracts away the process of deploying virtual private clouds.

The system allows for a virtual private cloud to be defined within a single config-

uration description and for all its components to be deployed as a single transaction.

58

A single transaction affords the following benefits: 1) it eliminates the need to issue

multiple requests to deploy a single VPC, and 2) the consumer does not need to

maintain a detailed state about the progress of of deploying a VPC other than at

transaction level.

A direct approach towards deploying resources within the cloud can be achieved

through a more pragmatic solution by leveraging application-level libraries that al-

low scriptable interaction. Libcloud [61] is such an application-level library for the

Python language. Each component of a virtual private cloud must be fully specified

and must be instantiated in the proper order such that dependencies are satisfied

first. This leads to the necessity that the deployment of a virtual private cloud must

be written each time a different VPC is deployed.

In order to enable the deployment of VPCs in a language, and implementation

independent, fashion, we developed a Service Management System, which using the

primitives discussed in section 6.2 enables consumers to first describe a VPC and

then deploy the VPC to a cloud provider.

6.2 Cloud Architecture

Our Service Management System is a service layer supporting consumer-driven

deployment of virtual private clouds. In general, cloud architectures are described in

the form a three-level stack. At the lowest level is the physical infrastructure, which

is then leveraged by each proceeding higher level in the stack. At the top of this

stack we place the Service Management System, which the underlying complexity of

the cloud computing infrastructure is hidden in a manner supportive of large-scale

virtual private cloud computing. A cloud stack with our Service Management System

layer as the top layer can be seen in Figure 6.1.

Physical hardware forms the lowest layer of a traditional cloud stack. This layer

of the cloud stack consists of servers, networking devices, power switches, and the

connections between them all. Modification at this layer requires the physical manip-

59

Fig. 6.1.: Cloud stack with the Service Management System as the top layer.

ulation of hardware and the configuration of individual hardware devices. Using this

layer requires direct interaction with physical hardware by users wishing to utilize

the hardware’s capabilities.

The next higher layer in the cloud stack is the infrastructure management sys-

tem formed by a cloud computing tool-kit’s core management software. This layer

provides the functionality necessary to manage the physical infrastructure for the

provisioning of virtual machines and virtual networks. This could also include the

provisioning and configuration of physical hardware.

Above the infrastructure management system is the cloud management system

that affords the cloud computing paradigm. Only the minimal infrastructure man-

agement related actions, and subsequent properties, are exposed to the users of this

layer. Decisions regarding the infrastructure are left to the underlying second layer.

Only those actions related to controlling the life-cycle of resources deployed to the

cloud, and the configuration of those resources, is supporting by the cloud com-

puting interface. By hiding unnecessary cloud infrastructure management interface

commands and abstracting the complexity of those that remain, the cloud comput-

ing interface affords the true power of the cloud computing paradigm; shifting users

60

away from managing physical infrastructures to managing the services that leverage

that infrastructure.

Our Service Management System forms the fourth layer of the cloud stack, closest

to the consumer, providing services necessary for consumer’s to manage VPCs. This

additional virtual private cloud layer enables the combination of VPC component

definitions into a single request for deployment. This is in contrast to deploying a

virtual private cloud through a sequence of request-response pairs.

6.3 Service Management System Design

6.3.1 Architecture

Our Service Management System consists of two independent, but complemen-

tary, applications. The Service Management Portal is a web service that accepts

virtual private cloud management requests from the consumer and passes those re-

quests on to the second component of the Service Management System. The Service

Management Daemon, our second application, handles requests by dispatching those

requests to independent service agents. Dispatching is supported by a shared queue

from which service agents periodically poll and retrieve VPC management requests.

existing virtual private clouds to insure that their current state matches the descrip-

tion provided by the consumer.

Virtual private cloud management is facilitated by the Service Management Por-

tal through a RESTful web service as seen in Figure 6.3. Consumers control vir-

tual private clouds by issuing one of four actions. Each VPC management action

is mapped to an HTTP method. The four management actions supported by the

Portal are:

• GET: Retrieve information on one or more VPCs.

• POST: Request a new VPC.

61

Fig. 6.2.: Service Management System architecture.

• PUT: Update an existing VPC.

• DELETE Destroy a VPC.

POST and PUT actions require information specific to the VPC that is being

managed to be embedded within the data portion of an HTTP packet. For GET

and DELETE actions the ID of the VPC is embedded as part of the URI. Infor-

mation embedded within the data portion of an HTTP packet pertains to a virtual

private cloud’s description; specifically the resources, virtual networks and disk im-

ages requested by the consumer. The contents of that description are encoded in the

expressive language called JavaScript Object Notation [57] (JSON).

Fig. 6.3.: Service Management Portal architecture.

62

Each virtual private cloud definition contains a collection of attributes and a set

of intra-dependencies for each resource and their supporting components. Within

a virtual private cloud request, storage devices and virtual networks form the inde-

pendent components while the resources, physical or virtual, that rely on those com-

ponents within the cloud provider’s infrastructure, are the dependent components.

Intra-dependencies are expressed symbolically as named references from dependent

components to independent components. A virtual private cloud’s naming space is

perpetuated only within the VPC’s description. Names associated with resources,

and their supporting components, must remain unique within a VPC’s description,

but not within the space of all virtual private clouds.

Our Service Management Portal and Service Management System interact with

one another through a local socket that serializes JSON-encoded VPC descriptions

between applications. If the Service Management Daemon (SMD) is not active when

a request is forwarded to the SMD, then the request will fail and the consumer will

be notified. Requests that do not require the Service Management Daemon, such

as retrieving information about a virtual private cloud, can be processed from the

persistent storage mechanism used by both the Service Management Daemon and

Service Management Portal.

Fig. 6.4.: Service Management Daemon architecture.

63

Each virtual private cloud request is handled by a dedicated Service Agent (SA).

Service Agents act on the request by either creating, updating or deleting the virtual

private cloud. Our Service Management Daemon queues VPC requests sent by the

SMP and, upon the availability of a Service Agent, dispatches the request to that

SA. An overview of the SMD architecture can be seen in Figure 6.4. Interaction with

cloud providers is accomplished by leveraging the APIs exposed by cloud providers

through their publicly available web services.

6.3.2 Supporting Components

To support the Service Management System applications, we exploited the fea-

tures of existing software libraries.

We used three Python libraries to support our handling of consumer requests

and interaction with the underlying database. These libraries are DJANGO [58],

Django-Piston [59] and SQLAlchemy [60]. No modification of these libraries were

required to support our applications.

A fourth Python library, called Libcloud [61], was required was required by our

applications to interface with cloud providers. Libcloud has driver support for sev-

eral dozen cloud provider APIs that allow our application to take a cloud provider

agnostic approach. However, because of our need to deploy virtual networks, and

our choice to use OpenNebula, we encountered a limitation of Libcloud library. Lib-

cloud has no support for managing virtual networks. Furthermore, Libcloud has a

limited driver for OpenNebula’s OCCI API. Therefore, we took the latest release

of Libcloud, incorporated missing functionality into the library and leveraged that

functionality within our new software applications. The lack of network functional-

ity is not a result of a lack of community support, but rather, a consequence of the

current cloud computing paradigm.

Libcloud offers an existing abstraction layer for interacting with the public inter-

faces of cloud providers such as Amazon, OpenNebula and OpenStack. Contained

64

within the Libcloud library are several sub-libraries for managing different cloud

resources such as: compute nodes, storage, load balancers, and DNS.

6.3.3 Service Management Portal

Our Service Management Portal supports a mapping of HTTP codes to VPC

actions. That mapping is shown below:

• GET: Retrieve either a list of all virtual private clouds owned by the consumer,

or, retrieve a symbolic representation of a particular virtual private cloud. In

the latter, additional, instance-specific information such as access information,

may be included.

• POST: Request the deployment of a virtual private cloud that matches the

symbolic representation specified by the consumer.

• PUT: Request that an existing virtual private cloud be modified to match the

symbolic representation specified by the consumer.

• DELETE: Delete the specified virtual private cloud. Only those virtual private

clouds owned by the consumer making the request may deleted. Deleting a

virtual private cloud removes all components that were deployed to create the

VPC.

6.3.4 Service Management Daemon

Our second component, the Service Management System, is a daemon that ac-

cepts and handles requests, maintains a persistent database of virtual private cloud

information, and manages the life-cycle of those VPCs. Requests are initiated by the

consumer and relate to three particular life-cycle changes: 1) deploy a new virtual

private cloud, 2) modify an existing virtual private, or 3) delete all components of

65

an existing virtual private cloud. Maintaining existing virtual private clouds is ini-

tiated by the Service Management System, which schedules periodic tasks intended

to verify that all components of a virtual private cloud are running. A maintenance

task will destroy any failed components and deploy replacements.

After a component of the virtual private cloud has been deployed to a cloud

provider’s infrastructure, state information, including a cloud provider unique iden-

tifier, is returned. The Service Management System stores that information and then

builds a map between the instance information and the symbolic representation.

A map between symbolic and instance representations link the symbolic state of

a virtual private cloud to its realized instance.

Management tasks are handled by service agents of the Service Management

System. Tasks include deploying, deleting, modifying, and life-cycle management.

Each service agent is a separate process that pulls tasks from a shared queue for

processing. Upon completion of the task, the service agent pulls the next task in the

queue.

6.4 Implementation

6.4.1 Libcloud

Individual components of a virtual private cloud, such as compute nodes and

storage devices, are already supported by the Libcloud tool-kit. The same function-

ality is supported by similar tool-kits, such as Deltacloud [66]. Neither supports the

management of networks.

Virtual private network support has historically been lacking from traditional

cloud providers. Only as late as 2009 has Amazon begun to offer virtual private

networks between compute nodes [67]. In addition to Amazon, cloud computing

tool-kits have begun introducing virtual private networks as a new feature. Due

to the recent introduction of virtual private networks, cloud management tool-kits

66

Table 6.1: Network Management Action Arguments

Action Aguments
List Existing Networks location
Destroy a Network network
Create Network name, CIDR

have only now had the option to implement support for deploying, updating and

destroying virtual networks.

A common API was derived by determing the least common denominator with

regard to support for network management from cloud providers and cloud comput-

ing tool-kits. Our common API will act as the base class on which to implement

individual cloud network drivers. Further support for cloud tool-kits and providers

is achievable by extending the bass class with cloud tool-kit and provider-specific

management functionality.

We determined the common functionality was focused around: 1) listing exist-

ing networks, 2) destroying a network, and 3) creating a new network. A short

description of the functionality is given below:

• Listing Existing Networks: Listing existing networks lists all existing networks

owned by a consumer.

• Destroy a Network: Destroys an existing network.

• Create Network: Creates a new network within the infrastructure managed by

a cloud provider or cloud computing tool-kit.

Next, arguments for each network management action needed to be determined.

Arguments would need to be derived from the properties that define a network by

various cloud providers and cloud computing tool-kits.

We conclude with a set of Python-specific method definitions using the aforemen-

tioned actions and arguments:

67

• list networks(location=none)

• destroy network(network)

• create network(name, cidr)

Therefore, with the support of the Libcloud community, we extended Libcloud

to include a network library. Our initial effort focused on supporting OpenNebula’s

OCCI network interface.

6.4.2 Service Management System

All functionality specified in the Portal’s design were implemented using the

appropriate RESTful abstractions and libraries.

We only implemented the ability to handle requests for the instantiation virtual

private clouds to cloud providers supporting OpenNebula’s OCCI interface.

We have not extended the implementation of the Service Management System

to support features beyond instantiating a virtual private cloud. Not implemented

handlers return a failure notice indicating to the consumer that the functionality has

not been implemented.

68

7. CONCLUSION

7.1 Results

With regard to Libcloud, the OpenNebula driver has been re-factored, and now

supports OpenNebula v3.0, which is the version of OpenNebula used for this research.

Preliminary work has been completed on a Libcloud networking component. There

is a working OpenNebula networking driver for Libcloud. However, there are design

decisions that require further consideration to insure that the networking component

of Libcloud can support driver for other cloud providers.

We constructed the framework for our Access Pathway Manager and one of its two

major parts. Implementing the first part of the Access Pathway Manager included

the support for injecting access points into virtual machine descriptions, the re-

configuration of switch ports, and the routing of traffic from resources to publicly

accessible access points. Updates to the OCCI interface for extracting access method

requirements and returning access point information will require additional future

work.

Our Service Management System is operational and supports the ability to de-

ploy virtual private clouds to OpenNebula clouds. Also, access method sets can be

included as part of the virtual private cloud. Work is forthcoming to support retriev-

ing access point information for resources, and supporting a mechanism by which the

Service Management System can extract provider supported access methods.

69

REFERENCES

[1] A. W. S. LLC, “Amazon elastic compute cloud,” February 2012. [Online].
Available: http://aws.amazon.com/ec2/

[2] R. Hosting, “Cloud computing, managed hosting, dedicated server hosting by
rackspace,” February 2012. [Online]. Available: http://www.rackspace.com/

[3] GoGrid, “Complex infrastructure made easy,” May 2012. [Online]. Available:
http://www.gogrid.com/

[4] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental environment
for distributed systems and networks,” SIGOPS Oper. Syst. Rev., vol. 36, pp.
255–270, 2002. [Online]. Available: http://doi.acm.org/10.1145/844128.844152

[5] S. Liu, W. Marti, and W. Zhao, “Virtual networking lab (vnl): its concepts
and implementation,” in 2001 ASEE Annual Conference Proceedings, June
2001. [Online]. Available: http://www.umac.mo/rectors office/docs/weizhao -
cv/pub refereed conferences/2001/0106-ASEE-LMZ.pdf

[6] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Virtual
infrastructure management in private and hybrid clouds,” IEEE Internet
Computing, vol. 13, no. 5, pp. 14–22, September/October 2009. [Online].
Available: http://doi.ieeecomputersociety.org/10.1109/MIC.2009.119

[7] OpenStack and et al., “Openstack,” February 2012. [Online]. Available:
http://openstack.org/

[8] Eucalyptus and et al., “Eucalyptus,” February 2012. [Online]. Available:
http://www.eucalyptus.com/

[9] CloudStack and et al., “Cloudstack,” February 2012. [Online]. Available:
http://cloudstack.org/

[10] Nimbus and et al., “Nimbus,” February 2012. [Online]. Available:
http://www.nimbusproject.org/

[11] P. Mell and T. Grance, “The nist definition of cloud computing,” National
Institute of Standards and Technology, Tech. Rep. 800-145, September 2011.
[Online]. Available: http://csrc.nist.gov/publications/nistpubs/800-145/SP800-
145.pdf

[12] G. Haff, “Just don’t call them private clouds,” January 2009. [Online].
Available: http://news.cnet.com/8301-13556 3-10150841-61.html

[13] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and M. Morrow, “Blueprint
for the intercloud - protocols and formats for cloud computing interoperability.”
Los Alamitos, CA, USA: IEEE Computer Society, May 2009, pp. 328–336.
[Online]. Available: http://doi.ieeecomputersociety.org/10.1109/ICIW.2009.55

70

[14] K. Kevin, “A cloudbook for the cloud,” May 2012. [Online]. Available:
http://www.kk.org/thetechnium/archives/2007/11/a cloudbook for.php

[15] S. Johnston, “The intercloud is a global cloud of clouds,” May 2012. [Online].
Available: http://samj.net/2009/06/intercloud-is-global-cloud-of-clouds.html

[16] T. Wood, A. Gerber, K. K. Ramakrishnan, P. Shenoy, and J. Van der
Merwe, “The case for enterprise-ready virtual private clouds,” in Proceedings
of the 2009 conference on Hot topics in cloud computing, ser. HotCloud’09.
Berkeley, CA, USA: USENIX Association, 2009. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855533.1855537

[17] A. W. S. LLC, “Amazon virtual private cloud,” February 2012. [Online].
Available: http://aws.amazon.com/vpc/

[18] L. Cifuentes, R. Mercer, O. Alverez, and R. Bettati, “An architecture for
case-based learning,” TechTrends, vol. 54, pp. 44–50, 2010. [Online]. Available:
http://dx.doi.org/10.1007/s11528-010-0453-9

[19] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M. Llorente,
R. Montero, Y. Wolfsthal, E. Elmroth, J. Cáceres, M. Ben-Yehuda,
W. Emmerich, and F. Galán, “The reservoir model and architecture for open
federated cloud computing,” IBM J. Res. Dev., vol. 53, pp. 535–545, July 2009.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1850659.1850663

[20] B. Rochwerger, A. Galis, E. Levy, J. A. Caceres, D. Breitgand, Y. Wolfsthal,
I. M. Llorente, M. Wusthoff, R. S. Montero, and E. Elmroth, “Reservoir:
Management technologies and requirements for next generation service oriented
infrastructures,” in Integrated Network Management, 2009. IM ’09. IFIP/IEEE
International Symposium on, June 2009, pp. 307–310. [Online]. Available:
http://dx.doi.org/10.1109/INM.2009.5188828

[21] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman, “Planetlab: an overlay testbed for broad-coverage services,”
SIGCOMM Comput. Commun. Rev., vol. 33, no. 3, pp. 3–12, 2003. [Online].
Available: http://doi.acm.org/10.1145/956993.956995

[22] L. Peterson, T. Anderson, D. Culler, and T. Roscoe, “A blueprint for
introducing disruptive technology into the internet,” SIGCOMM Comput.
Commun. Rev., vol. 33, pp. 59–64, January 2003. [Online]. Available:
http://doi.acm.org/10.1145/774763.774772

[23] Emulab, “Emulab tutorial,” March 2012. [Online]. Available:
https://users.emulab.net/trac/emulab/wiki/Tutorial

[24] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack, K. Webb,
and J. Lepreau, “Large-scale virtualization in the emulab network testbed,” in
USENIX 2008 Annual Technical Conference on Annual Technical Conference.
Berkeley, CA, USA: USENIX Association, 2008, pp. 113–128. [Online].
Available: http://dl.acm.org/citation.cfm?id=1404014.1404023

[25] ——, “Feedback-directed virtualization techniques for scalable net-
work experimentation,” Tech. Rep., 2002. [Online]. Available:
http://www.cs.utah.edu/flux/papers/virt-ftn2004-02.pdf

71

[26] Emulab, “Xen-based emulab virtual nodes,” March 2012. [Online]. Available:
http://users.emulab.net/trac/emulab/wiki/xen

[27] ——, “Multiplexed virtual nodes in emulab,” March 2012. [Online]. Available:
https://users.emulab.net/trac/emulab/wiki/vnodes

[28] ——, “A short tutorial to setting up eucalyptus cloud sys-
tem on emulab nodes,” March 2012. [Online]. Available:
https://users.emulab.net/trac/emulab/wiki/eucalyptus

[29] G. Ayers, K. Webb, M. Hibler, and J. Lepreau, “Whack-on-lan: Inexpensive
remote pc reset,” University of Utah, Tech. Rep., December 2005. [Online].
Available: http://www.cs.utah.edu/flux/papers/whol-ftn-draft1.pdf

[30] Emulab, “Emulab faq: Using the testbed: Do my nodes have
consoles i can look at?” March 2012. [Online]. Available:
https://users.emulab.net/trac/emulab/wiki/kb24

[31] ——, “Emulab faq: Security issues: Is emulab firewalled?” April 2012.
[Online]. Available: https://users.emulab.net/trac/emulab/wiki/kb58

[32] S. A. Almulla and C. Y. Yeun, “Cloud computing security management,”
in Engineering Systems Management and Its Applications (ICESMA), 2010
Second International Conference on, April 2010, pp. 1–7. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5542654

[33] T. U. of Southern California, “Deter network security testbed,” March 2012.
[Online]. Available: http://isi.deterlab.net/index.php3

[34] ——, “The deter project,” March 2012. [Online]. Available: http://deter-
project.org/

[35] T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph, K. Sklower,
R. Ostrenga, and S. Schwab, “Experience with deter: a testbed
for security research,” in Testbeds and Research Infrastructures for the
Development of Networks and Communities, 2006. TRIDENTCOM 2006.
2nd International Conference on, 2006, pp. 388–398. [Online]. Available:
http://dx.doi.org/10.1109/TRIDNT.2006.1649172

[36] ——, “Design, deployment, and use of the deter testbed,” in Proceedings of the
DETER Community Workshop on Cyber Security Experimentation and Test on
DETER Community Workshop on Cyber Security Experimentation and Test
2007. Berkeley, CA, USA: USENIX Association, 2007, pp. 1–1. [Online].
Available: http://dl.acm.org/citation.cfm?id=1322592.1322593

[37] C. Neuman, C. Shah, and K. Lahey, “Running live self-propagating malware
on the deter testbed,” in DETER Community Workshop, Arlington, VA, June
2006.

[38] R. Ostrenga, S. Schwab, and R. Braden, “A plan for malware containment in
the deter testbed,” in Proceedings of the DETER Community Workshop on
Cyber Security Experimentation and Test on DETER Community Workshop
on Cyber Security Experimentation and Test 2007, ser. DETER. Berkeley,

72

CA, USA: USENIX Association, 2007, pp. 10–10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1322592.1322602

[39] T. Benzel, B. Braden, T. Faber, J. Mirkovic, S. Schwab, K. Sollins,
and J. Wroclawski, “Current developments in deter cybersecurity testbed
technology,” in Conference For Homeland Security, 2009. CATCH ’09.
Cybersecurity Applications Technology, March 2009, pp. 57–70. [Online].
Available: http://dx.doi.org/10.1109/CATCH.2009.30

[40] J. Mirkovic, T. V. Benzel, T. Faber, R. Braden, J. T. Wroclawski, and
S. Schwab, “The deter project: Advancing the science of cyber security
experimentation and test,” in Technologies for Homeland Security (HST),
2010 IEEE International Conference on, November 2010, pp. 1–7. [Online].
Available: http://dx.doi.org/10.1109/THS.2010.5655108

[41] A. TaheriMonfared, “Securing the iaas service model ofcloud computing
againstcompromised components,” Ph.D. dissertation, NORWEGIAN UNI-
VERSITY OF SCIENCE AND TECHNOLOGY, 2011. [Online]. Available:
http://org.ntnu.no/cloudsecurity/thesis/Docs/Report/thesis.ps

[42] A. TaheriMonfared and M. G. Jaatun, “As strong as the weakest
link: Handling compromised components in openstack,” in Cloud Com-
puting Technology and Science (CloudCom), 2011 IEEE Third Interna-
tional Conference on, December 2011, pp. 189–196. [Online]. Available:
http://dx.doi.org/10.1109/CloudCom.2011.34

[43] M. Christodorescu, R. Sailer, D. L. Schales, D. Sgandurra, and D. Zamboni,
“Cloud security is not (just) virtualization security: a short paper,” in
Proceedings of the 2009 ACM workshop on Cloud computing security, ser.
CCSW ’09. New York, NY, USA: ACM, 2009, pp. 97–102. [Online]. Available:
http://doi.acm.org/10.1145/1655008.1655022

[44] D. Duchamp and G. De Angelis, “A hypervisor based security testbed,”
in Proceedings of the DETER Community Workshop on Cyber Secu-
rity Experimentation and Test on DETER Community Workshop on
Cyber Security Experimentation and Test 2007, ser. DETER. Berke-
ley, CA, USA: USENIX Association, 2007, pp. 3–3. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1322592.1322595

[45] J. Mirkovic, B. Wilson, A. Hussain, S. Fahmy, P. Reiher, R. Thomas, and
S. Schwab, “Automating ddos experimentation,” in Proceedings of the DETER
Community Workshop on Cyber Security Experimentation and Test on DETER
Community Workshop on Cyber Security Experimentation and Test 2007, ser.
DETER. Berkeley, CA, USA: USENIX Association, 2007, pp. 4–4. [Online].
Available: http://dl.acm.org/citation.cfm?id=1322592.1322596

[46] S. Schwab, B. Wilson, C. Ko, and A. Hussain, “Seer: a security
experimentation environment for deter,” in Proceedings of the DETER
Community Workshop on Cyber Security Experimentation and Test on DETER
Community Workshop on Cyber Security Experimentation and Test 2007, ser.
DETER. Berkeley, CA, USA: USENIX Association, 2007, pp. 2–2. [Online].
Available: http://dl.acm.org/citation.cfm?id=1322592.1322594

73

[47] I. Houidi, M. Mechtri, W. Louati, and D. Zeghlache, “Cloud service delivery
across multiple cloud platforms,” in Services Computing (SCC), 2011 IEEE
International Conference on, July 2011, pp. 741–742. [Online]. Available:
http://dx.doi.org/10.1109/SCC.2011.107

[48] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “How to enhance cloud
architectures to enable cross-federation,” in Cloud Computing (CLOUD), 2010
IEEE 3rd International Conference on, July 2010, pp. 337–345. [Online].
Available: http://dx.doi.org/10.1109/CLOUD.2010.46

[49] T. Faber and J. Wroclawski, “Access control for federation of emulab-
based network testbeds,” in Proceedings of the conference on Cy-
ber security experimentation and test, ser. CSET’08. Berkeley, CA,
USA: USENIX Association, 2008, pp. 6:1–6:6. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1496662.1496668

[50] K. Sklower and A. D. Joseph, “Very large scale cooperative experiments
in emulab-derived systems,” in Proceedings of the DETER Community
Workshop on Cyber Security Experimentation and Test on DETER Community
Workshop on Cyber Security Experimentation and Test 2007, ser. DETER.
Berkeley, CA, USA: USENIX Association, 2007, pp. 12–12. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1322592.1322604

[51] T. Faber, J. Wroclawski, and K. Lahey, “A deter federation architec-
ture,” in Proceedings of the DETER Community Workshop on Cyber
Security Experimentation and Test on DETER Community Workshop on
Cyber Security Experimentation and Test 2007, ser. DETER. Berkeley,
CA, USA: USENIX Association, 2007, pp. 11–11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1322592.1322603

[52] T. Harmer, P. Wright, C. Cunningham, and R. Perrott, “Provider-independent
use of the cloud,” in Euro-Par 2009 Parallel Processing, ser. Lecture Notes in
Computer Science, H. Sips, D. Epema, and H.-X. Lin, Eds. Springer Berlin
/ Heidelberg, 2009, vol. 5704, pp. 454–465, 10.1007/978-3-642-03869-3-44.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-03869-3 44

[53] A Two-Constraint Approach to Risky Cybersecurity Experiment Management,
April 2008. [Online]. Available: http://www.isi.edu/ mirkovic/publication-
s/sarnoff.pdf

[54] I. of Electrical and E. Engineers, “Ieee standard for local and metropolitan area
networks–media access control (mac) bridges and virtual bridged local area
networks,” Institute of Electrical and Electronics Engineers, Tech. Rep., August
2011. [Online]. Available: http://www.techstreet.com/standards/ieee/802 1q -
2011?product id=1778388

[55] ——, “Ieee standard for local and metropolitan area networks—virtual
bridged local area networks—amendment 4: Provider bridges,” Institute of
Electrical and Electronics Engineers, Tech. Rep., May 2006. [Online]. Available:
http://www.techstreet.com/standards/ieee/802 1ad 2005?product id=1270166

[56] O. C. C. I. W. Group, “Open cloud computing interface,” Open Grid Forum,
February 2012. [Online]. Available: http://occi-wg.org/

74

[57] D. Crockford, “The application/json media type for javascript object
notation (json),” RFC 4627 (Informational), 2006. [Online]. Available:
http://www.ietf.org/rfc/rfc4627.txt

[58] D. S. Foundation and et al., “Django,” February 2012. [Online]. Available:
https://www.djangoproject.com/

[59] J. Noehr and et al., “Django-piston,” February 2012. [Online]. Available:
https://bitbucket.org/jespern/django-piston/wiki/Home

[60] SQLAlchemy and et al., “Sqlalchemy,” May 2012. [Online]. Available:
http://www.sqlalchemy.org/

[61] T. Muraus and et al., “Libcloud,” May 2012. [Online]. Available:
http://libcloud.apache.org/

[62] R. T. Fielding, “Architectural styles and the design of network-based software
architectures,” Ph.D. dissertation, University of California, Irvine, 2000. [On-
line]. Available: http://www.ics.uci.edu/ fielding/pubs/dissertation/top.htm

[63] N. Weaver, S. Staniford, and V. Paxson, “Very fast containment of scanning
worms, revisited,” in Malware Detection, ser. Advances in Information
Security, M. Christodorescu, S. Jha, D. Maughan, D. Song, and C. Wang,
Eds. Springer US, 2007, vol. 27, pp. 113–145. [Online]. Available:
http://dx.doi.org/10.1007/978-0-387-44599-1 6

[64] A. Haeberlen, “A case for the accountable cloud,” SIGOPS Oper.
Syst. Rev., vol. 44, pp. 52–57, April 2010. [Online]. Available:
http://doi.acm.org/10.1145/1773912.1773926

[65] OpenNebula and et al., “Opennebula,” July 2012. [Online]. Available:
http://opennebula.org/

[66] M. Fojtik and et al., “Deltacloud,” May 2012. [Online]. Available:
http://deltacloud.apache.org/

[67] L. Dignan, “Amazon launches virtual private cloud service,” May 2012.
[Online]. Available: http://www.zdnet.co.uk/news/cloud/2009/08/27/amazon-
launches-virtual-private-cloud-service-39730194/

75

VITA

Name: Hutson Keith Betts

Address: Department of Computer Science and Engineering

Texas A&M University

TAMU 3112

College Station, TX 77843-3112

Email Address: hut101@tamu.edu

Education: B.S., Computer Science, Texas A&M University, 2009

M.S., Computer Engineering, Texas A&M University, 2012

